aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog9
-rw-r--r--src/algebra/Makefile.in8
-rw-r--r--src/algebra/Makefile.pamphlet8
-rw-r--r--src/algebra/syntax.spad.pamphlet8
-rw-r--r--src/share/algebra/browse.daase3170
-rw-r--r--src/share/algebra/category.daase5011
-rw-r--r--src/share/algebra/compress.daase1289
-rw-r--r--src/share/algebra/interp.daase9736
-rw-r--r--src/share/algebra/operation.daase31831
9 files changed, 25551 insertions, 25519 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 4b90f072..e19df674 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,12 @@
+2008-01-21 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/syntax.spad.pamphlet (Syntax): Assert a member of
+ SetCategory. Implement equality.
+ * algebra/Makefile.pamphlet (axiom_algebra_layer_0): Move
+ BASTYPE.o from layer 3 to here. Move SYNTAX.o from here to layer 1.
+ (axiom_algebra_layer_1): Move CTROCALL.o to layer 2.
+ * share/algebra: Update database.
+
2008-01-20 Gabriel Dos Reis <gdr@cs.tamu.edu>
* algebra/syntax.spad.pamphlet (ElaboratedExpression): New.
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index baf81660..8bd466fb 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -378,7 +378,7 @@ axiom_algebra_layer_0 = \
OM.o OMCONN.o OMDEV.o OUT.o \
PRIMCAT.o PRINT.o PTRANFN.o SPFCAT.o \
TYPE.o UTYPE.o PROPLOG.o PROPERTY.o \
- SYNTAX.o
+ BASTYPE.o BASTYPE-.o
axiom_algebra_layer_0_nrlibs = \
$(axiom_algebra_layer_0:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -392,7 +392,7 @@ axiom_algebra_layer_1 = \
PATAB.o PLOT1.o PPCURVE.o PSCURVE.o \
REAL.o RESLATC.o RETRACT.o RETRACT-.o \
SEGBIND2.o SEGCAT.o STREAM1.o STREAM2.o \
- STREAM3.o BINDING.o CTORCALL.o
+ STREAM3.o BINDING.o SYNTAX.o
axiom_algebra_layer_1_nrlibs = \
$(axiom_algebra_layer_1:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -400,7 +400,7 @@ axiom_algebra_layer_1_nrlibs = \
axiom_algebra_layer_1_objects = \
$(addprefix $(OUT)/, $(axiom_algebra_layer_1))
axiom_algebra_layer_2 = \
- FMC.o FMFUN.o FORTFN.o FVC.o \
+ FMC.o FMFUN.o FORTFN.o FVC.o CTORCALL.o \
FVFUN.o INTRET.o SEGXCAT.o CONTOUR.o
axiom_algebra_layer_2_nrlibs = \
@@ -409,7 +409,7 @@ axiom_algebra_layer_2_nrlibs = \
axiom_algebra_layer_2_objects = \
$(addprefix $(OUT)/, $(axiom_algebra_layer_2))
axiom_algebra_layer_3 = \
- AGG.o AGG-.o BASTYPE.o BASTYPE-.o \
+ AGG.o AGG-.o \
GRDEF.o LIST3.o MKFUNC.o SCOPE.o
axiom_algebra_layer_3_nrlibs = \
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index 114935b0..829c6dd3 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -206,7 +206,7 @@ axiom_algebra_layer_0 = \
OM.o OMCONN.o OMDEV.o OUT.o \
PRIMCAT.o PRINT.o PTRANFN.o SPFCAT.o \
TYPE.o UTYPE.o PROPLOG.o PROPERTY.o \
- SYNTAX.o
+ BASTYPE.o BASTYPE-.o
axiom_algebra_layer_0_nrlibs = \
$(axiom_algebra_layer_0:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -234,7 +234,7 @@ axiom_algebra_layer_1 = \
PATAB.o PLOT1.o PPCURVE.o PSCURVE.o \
REAL.o RESLATC.o RETRACT.o RETRACT-.o \
SEGBIND2.o SEGCAT.o STREAM1.o STREAM2.o \
- STREAM3.o BINDING.o CTORCALL.o
+ STREAM3.o BINDING.o SYNTAX.o
axiom_algebra_layer_1_nrlibs = \
$(axiom_algebra_layer_1:.$(OBJEXT)=.NRLIB/code.$(OBJEXT))
@@ -249,7 +249,7 @@ axiom_algebra_layer_1_objects = \
<<layer2>>=
axiom_algebra_layer_2 = \
- FMC.o FMFUN.o FORTFN.o FVC.o \
+ FMC.o FMFUN.o FORTFN.o FVC.o CTORCALL.o \
FVFUN.o INTRET.o SEGXCAT.o CONTOUR.o
axiom_algebra_layer_2_nrlibs = \
@@ -269,7 +269,7 @@ grdef.spad.pamphlet (GRDEF)
<<layer3>>=
axiom_algebra_layer_3 = \
- AGG.o AGG-.o BASTYPE.o BASTYPE-.o \
+ AGG.o AGG-.o \
GRDEF.o LIST3.o MKFUNC.o SCOPE.o
axiom_algebra_layer_3_nrlibs = \
diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet
index 4b3ce07f..bf95adcc 100644
--- a/src/algebra/syntax.spad.pamphlet
+++ b/src/algebra/syntax.spad.pamphlet
@@ -23,11 +23,12 @@
++ and strings. This domain differs from InputForm in that it represents
++ any entity from a Spad program, not just expressions.
++ Related Constructors: Boolean, Integer, Float, symbol, String, SExpression.
-++ See Also: SExpression.
+++ See Also: SExpression, SetCategory
+++ The equality supported by this domain is structural.
++ Fixme: Provide direct support for boolean values, arbritrary
++ precision float point values.
Syntax(): Public == Private where
- Public ==> Join(UnionType, CoercibleTo(OutputForm)) with
+ Public ==> Join(UnionType, SetCategory) with
convert: % -> SExpression
++ convert(s) returns the s-expression representation of a syntax.
@@ -117,6 +118,9 @@ Syntax(): Public == Private where
per(x: SExpression): % ==
x pretend %
+ x = y ==
+ EQUAL(x,y)$Lisp @ Boolean
+
s case Integer ==
integer? rep s
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 14ce0e7c..7da8d7f8 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2233072 . 3409817877)
+(2234201 . 3409939477)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4230 . T) (-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4226 . T) (-4231 . T) (-4225 . T) (-2092 . T))
+((-4235 . T) (-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4231 . T) (-4236 . T) (-4230 . T) (-2047 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -4049)
+(-31 R -4055)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))
+((|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4233)))
+((|HasAttribute| |#1| (QUOTE -4238)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-2092 . T))
+((-2047 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -4049 UP UPUP -3967)
+(-39 -4055 UP UPUP -3010)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4226 |has| (-381 |#2|) (-337)) (-4231 |has| (-381 |#2|) (-337)) (-4225 |has| (-381 |#2|) (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-381 |#2|) (QUOTE (-133))) (|HasCategory| (-381 |#2|) (QUOTE (-135))) (|HasCategory| (-381 |#2|) (QUOTE (-323))) (|HasCategory| (-381 |#2|) (QUOTE (-337))) (-3703 (|HasCategory| (-381 |#2|) (QUOTE (-337))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))) (|HasCategory| (-381 |#2|) (QUOTE (-342))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-342))) (-3703 (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-323))))) (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))))
-(-40 R -4049)
+((-4231 |has| (-382 |#2|) (-338)) (-4236 |has| (-382 |#2|) (-338)) (-4230 |has| (-382 |#2|) (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-382 |#2|) (QUOTE (-133))) (|HasCategory| (-382 |#2|) (QUOTE (-135))) (|HasCategory| (-382 |#2|) (QUOTE (-324))) (|HasCategory| (-382 |#2|) (QUOTE (-338))) (-3708 (|HasCategory| (-382 |#2|) (QUOTE (-338))) (|HasCategory| (-382 |#2|) (QUOTE (-324)))) (|HasCategory| (-382 |#2|) (QUOTE (-343))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-343))) (-3708 (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-324))))) (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (|HasCategory| (-382 |#2|) (QUOTE (-324)))))
+(-40 R -4055)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -404) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -405) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -99,34 +99,34 @@ NIL
(-42 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-282))))
+((|HasCategory| |#1| (QUOTE (-283))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4230 |has| |#1| (-513)) (-4228 . T) (-4227 . T))
-((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513))))
+((-4235 |has| |#1| (-514)) (-4233 . T) (-4232 . T))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (-3703 (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (-3708 (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|))))))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))))
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4230 . T))
+((-4235 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -4049)
+(-53 |Base| R -4055)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-59 -2890)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-59 -2888)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -2890)
+(-60 -2888)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -2890)
+(-61 -2888)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2890)
+(-62 -2888)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -2890)
+(-63 -2888)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2890)
+(-64 -2888)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2890)
+(-65 -2888)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2890)
+(-66 -2888)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -2890)
+(-67 -2888)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -2890)
+(-68 -2888)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2890)
+(-69 -2888)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -2890)
+(-70 -2888)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -2890)
+(-71 -2888)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -2890)
+(-72 -2888)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,66 +228,66 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -2890)
+(-75 -2888)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -2890)
+(-76 -2888)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -2890)
+(-77 -2888)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -2890)
+(-78 -2888)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -2890)
+(-79 -2888)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2890)
+(-80 -2888)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2890)
+(-81 -2888)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -2890)
+(-82 -2888)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2890)
+(-83 -2888)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2890)
+(-84 -2888)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2890)
+(-85 -2888)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2890)
+(-86 -2888)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -2890)
+(-87 -2888)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-88 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))))
+((|HasCategory| |#1| (QUOTE (-338))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4233 . T))
+((-4238 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4233 . T) ((-4235 "*") . T) (-4234 . T) (-4230 . T) (-4228 . T) (-4227 . T) (-4226 . T) (-4231 . T) (-4225 . T) (-4224 . T) (-4223 . T) (-4222 . T) (-4221 . T) (-4229 . T) (-4232 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4220 . T))
+((-4238 . T) ((-4240 "*") . T) (-4239 . T) (-4235 . T) (-4233 . T) (-4232 . T) (-4231 . T) (-4236 . T) (-4230 . T) (-4229 . T) (-4228 . T) (-4227 . T) (-4226 . T) (-4234 . T) (-4237 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4225 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4230 . T))
+((-4235 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4235 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4240 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4233 . T))
+((-4238 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,12 +338,12 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-521) (QUOTE (-837))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-783))) (-3703 (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (QUOTE (-783)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (|HasCategory| (-521) (QUOTE (-133)))))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3708 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133)))))
(-104)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -354,11 +354,11 @@ NIL
NIL
(-106)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-108) (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| (-108) (QUOTE (-1013))) (-12 (|HasCategory| (-108) (QUOTE (-1013))) (|HasCategory| (-108) (LIST (QUOTE -284) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -561) (QUOTE (-791)))))
+((-4239 . T) (-4238 . T))
+((|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-108) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-108) (QUOTE (-1014))) (-12 (|HasCategory| (-108) (QUOTE (-1014))) (|HasCategory| (-108) (LIST (QUOTE -285) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-792)))))
(-107 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
(-108)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -367,30 +367,30 @@ NIL
(-109 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
+((|HasCategory| |#1| (QUOTE (-784))))
(-110)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-111 -4049 UP)
+(-111 -4055 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-113 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-112 |#1|) (QUOTE (-837))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-135))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-112 |#1|) (QUOTE (-946))) (|HasCategory| (-112 |#1|) (QUOTE (-756))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-112 |#1|) (QUOTE (-1060))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-112 |#1|) (QUOTE (-210))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -284) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -261) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-282))) (|HasCategory| (-112 |#1|) (QUOTE (-506))) (|HasCategory| (-112 |#1|) (QUOTE (-783))) (-3703 (|HasCategory| (-112 |#1|) (QUOTE (-756))) (|HasCategory| (-112 |#1|) (QUOTE (-783)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-837)))) (|HasCategory| (-112 |#1|) (QUOTE (-133)))))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-112 |#1|) (QUOTE (-838))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-112 |#1|) (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-135))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-112 |#1|) (QUOTE (-947))) (|HasCategory| (-112 |#1|) (QUOTE (-757))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-112 |#1|) (QUOTE (-1061))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-112 |#1|) (QUOTE (-210))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -262) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-283))) (|HasCategory| (-112 |#1|) (QUOTE (-507))) (|HasCategory| (-112 |#1|) (QUOTE (-784))) (-3708 (|HasCategory| (-112 |#1|) (QUOTE (-757))) (|HasCategory| (-112 |#1|) (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-112 |#1|) (QUOTE (-838)))) (|HasCategory| (-112 |#1|) (QUOTE (-133)))))
(-114 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)))
+((|HasAttribute| |#1| (QUOTE -4239)))
(-115 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-2092 . T))
+((-2047 . T))
NIL
(-116 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -398,15 +398,15 @@ NIL
NIL
(-117 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-118 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-119)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
(-120 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -414,16 +414,16 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-124)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -434,20 +434,20 @@ NIL
NIL
(-126)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4235 "*") . T))
+(((-4240 "*") . T))
NIL
-(-127 |minix| -2623 S T$)
+(-127 |minix| -2617 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-128 |minix| -2623 R)
+(-128 |minix| -2617 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-129)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4233 . T) (-4223 . T) (-4234 . T))
-((|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-132) (QUOTE (-342))) (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1013))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-3703 (-12 (|HasCategory| (-132) (QUOTE (-342))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-791)))))
+((-4238 . T) (-4228 . T) (-4239 . T))
+((|HasCategory| (-132) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-132) (QUOTE (-343))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-3708 (-12 (|HasCategory| (-132) (QUOTE (-343))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792)))))
(-130 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -462,7 +462,7 @@ NIL
NIL
(-133)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4230 . T))
+((-4235 . T))
NIL
(-134 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -470,9 +470,9 @@ NIL
NIL
(-135)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-136 -4049 UP UPUP)
+(-136 -4055 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -483,14 +483,14 @@ NIL
(-138 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasAttribute| |#1| (QUOTE -4233)))
+((|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasAttribute| |#1| (QUOTE -4238)))
(-139 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-2092 . T))
+((-2047 . T))
NIL
(-140 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4228 . T) (-4227 . T) (-4230 . T))
+((-4233 . T) (-4232 . T) (-4235 . T))
NIL
(-141)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -504,7 +504,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-144 R -4049)
+(-144 R -4055)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -531,10 +531,10 @@ NIL
(-150 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-946))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-337))) (|HasAttribute| |#2| (QUOTE -4229)) (|HasAttribute| |#2| (QUOTE -4232)) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-783))))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (QUOTE (-980))) (|HasCategory| |#2| (QUOTE (-947))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasAttribute| |#2| (QUOTE -4234)) (|HasAttribute| |#2| (QUOTE -4237)) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-784))))
(-151 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4226 -3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4229 |has| |#1| (-6 -4229)) (-4232 |has| |#1| (-6 -4232)) (-3905 . T) (-2092 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 -3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4234 |has| |#1| (-6 -4234)) (-4237 |has| |#1| (-6 -4237)) (-3911 . T) (-2047 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-152 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -546,8 +546,8 @@ NIL
NIL
(-154 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4226 -3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4229 |has| |#1| (-6 -4229)) (-4232 |has| |#1| (-6 -4232)) (-3905 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-1105))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-946))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-764))) (|HasCategory| |#1| (QUOTE (-979))) (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-282))) (-3703 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-210))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-210))) (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-764)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-783)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-946)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-837))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-837))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasAttribute| |#1| (QUOTE -4229)) (|HasAttribute| |#1| (QUOTE -4232)) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084))))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-323)))))
+((-4231 -3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4234 |has| |#1| (-6 -4234)) (-4237 |has| |#1| (-6 -4237)) (-3911 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-1106))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-947))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-765))) (|HasCategory| |#1| (QUOTE (-980))) (-12 (|HasCategory| |#1| (QUOTE (-980))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-507))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-283))) (-3708 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-210))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-210))) (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-765)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-947)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-1106)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-838))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-838))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasAttribute| |#1| (QUOTE -4234)) (|HasAttribute| |#1| (QUOTE -4237)) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-324)))))
(-155 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -558,11 +558,11 @@ NIL
NIL
(-157)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-158 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4235 "*") . T) (-4226 . T) (-4231 . T) (-4225 . T) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") . T) (-4231 . T) (-4236 . T) (-4230 . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-159)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -579,7 +579,7 @@ NIL
(-162 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-880 |#2|) (LIST (QUOTE -814) (|devaluate| |#1|))))
+((|HasCategory| (-881 |#2|) (LIST (QUOTE -815) (|devaluate| |#1|))))
(-163 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -596,7 +596,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-167 R -4049)
+(-167 R -4055)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -700,19 +700,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-193 -4049 UP UPUP R)
+(-193 -4055 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-194 -4049 FP)
+(-194 -4055 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-195)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-521) (QUOTE (-837))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-783))) (-3703 (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (QUOTE (-783)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (|HasCategory| (-521) (QUOTE (-133)))))
-(-196 R -4049)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3708 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133)))))
+(-196 R -4055)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -726,19 +726,19 @@ NIL
NIL
(-199 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-200 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-201 R -4049)
+(-201 R -4055)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-202)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3893 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-3898 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-203)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -746,23 +746,23 @@ NIL
NIL
(-204 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))) (|HasAttribute| |#1| (QUOTE (-4235 "*"))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))) (|HasAttribute| |#1| (QUOTE (-4240 "*"))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-205 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-206 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
(-207 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))))
(-208 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4230 . T))
+((-4235 . T))
NIL
(-209 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -770,36 +770,36 @@ NIL
NIL
(-210)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4230 . T))
+((-4235 . T))
NIL
(-211 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4233)))
+((|HasAttribute| |#1| (QUOTE -4238)))
(-212 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
(-213)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-214 S -2623 R)
+(-214 S -2617 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-781))) (|HasAttribute| |#3| (QUOTE -4230)) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-1013))))
-(-215 -2623 R)
+((|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (|HasAttribute| |#3| (QUOTE -4235)) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-1014))))
+(-215 -2617 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T) (-2092 . T))
+((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T) (-2047 . T))
NIL
-(-216 -2623 A B)
+(-216 -2617 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-217 -2623 R)
+(-217 -2617 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T))
-((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781))) (-3703 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-783))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (|HasCategory| |#2| (QUOTE (-663))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#2| (QUOTE (-970))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-124))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-25))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T))
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (-3708 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#2| (QUOTE (-664))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (|HasCategory| |#2| (QUOTE (-971))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -4235)) (|HasCategory| |#2| (QUOTE (-124))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-25))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014))))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3708 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
(-218)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -810,47 +810,47 @@ NIL
NIL
(-220)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4226 . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
(-221 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-2092 . T))
+((-2047 . T))
NIL
(-222 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
(-223 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-224 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
(-225)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-226 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4230 -3703 (-4009 (|has| |#4| (-970)) (|has| |#4| (-210))) (-4009 (|has| |#4| (-970)) (|has| |#4| (-828 (-1084)))) (|has| |#4| (-6 -4230)) (-4009 (|has| |#4| (-970)) (|has| |#4| (-583 (-521))))) (-4227 |has| |#4| (-970)) (-4228 |has| |#4| (-970)) ((-4235 "*") |has| |#4| (-157)) (-4233 . T))
-((|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (QUOTE (-781))) (-3703 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (QUOTE (-781)))) (|HasCategory| |#4| (QUOTE (-157))) (-3703 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (QUOTE (-970)))) (-3703 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-337)))) (-3703 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-970)))) (|HasCategory| |#4| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#4| (QUOTE (-210))) (-3703 (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-970)))) (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#4| (QUOTE (-663))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-970)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521)))))) (-3703 (|HasCategory| |#4| (QUOTE (-970))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-1013)))) (-3703 (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-157)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-210)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-337)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-342)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-729)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-781)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-970)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (QUOTE (-1013))))) (-3703 (|HasAttribute| |#4| (QUOTE -4230)) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-970)))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-3703 (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-729))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-781))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-970))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-791)))))
+((-4235 -3708 (-4015 (|has| |#4| (-971)) (|has| |#4| (-210))) (-4015 (|has| |#4| (-971)) (|has| |#4| (-829 (-1085)))) (|has| |#4| (-6 -4235)) (-4015 (|has| |#4| (-971)) (|has| |#4| (-584 (-522))))) (-4232 |has| |#4| (-971)) (-4233 |has| |#4| (-971)) ((-4240 "*") |has| |#4| (-157)) (-4238 . T))
+((|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (QUOTE (-782))) (-3708 (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (QUOTE (-782)))) (|HasCategory| |#4| (QUOTE (-157))) (-3708 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (QUOTE (-971)))) (-3708 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-338)))) (-3708 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-971)))) (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#4| (QUOTE (-210))) (-3708 (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-971)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-664))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-971)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (-12 (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-782))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522)))))) (-3708 (|HasCategory| |#4| (QUOTE (-971))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-1014)))) (-3708 (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-157)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-210)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-343)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-730)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-782)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-971)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (QUOTE (-1014))))) (-3708 (|HasAttribute| |#4| (QUOTE -4235)) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (QUOTE (-971)))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#4| (QUOTE (-124))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-3708 (-12 (|HasCategory| |#4| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-210))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-730))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-782))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-971))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792)))))
(-227 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4230 -3703 (-4009 (|has| |#3| (-970)) (|has| |#3| (-210))) (-4009 (|has| |#3| (-970)) (|has| |#3| (-828 (-1084)))) (|has| |#3| (-6 -4230)) (-4009 (|has| |#3| (-970)) (|has| |#3| (-583 (-521))))) (-4227 |has| |#3| (-970)) (-4228 |has| |#3| (-970)) ((-4235 "*") |has| |#3| (-157)) (-4233 . T))
-((|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-781))) (-3703 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-157))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-210))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#3| (QUOTE (-663))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-3703 (|HasCategory| |#3| (QUOTE (-970))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013)))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-337)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-342)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-729)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-781)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013))))) (-3703 (|HasAttribute| |#3| (QUOTE -4230)) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-3703 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-791)))))
+((-4235 -3708 (-4015 (|has| |#3| (-971)) (|has| |#3| (-210))) (-4015 (|has| |#3| (-971)) (|has| |#3| (-829 (-1085)))) (|has| |#3| (-6 -4235)) (-4015 (|has| |#3| (-971)) (|has| |#3| (-584 (-522))))) (-4232 |has| |#3| (-971)) (-4233 |has| |#3| (-971)) ((-4240 "*") |has| |#3| (-157)) (-4238 . T))
+((|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (-3708 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782)))) (|HasCategory| |#3| (QUOTE (-157))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338)))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-210))) (-3708 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-664))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (-12 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-3708 (|HasCategory| |#3| (QUOTE (-971))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014)))) (-3708 (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-343)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-730)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-782)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014))))) (-3708 (|HasAttribute| |#3| (QUOTE -4235)) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-3708 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792)))))
(-228 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-210))))
(-229 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
(-230 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
(-231)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -890,8 +890,8 @@ NIL
NIL
(-240 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#3| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#3| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#3| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#3| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
(-241 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -936,3765 +936,3769 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-252 R -4049)
+(-252 R -4055)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-253 R -4049)
+(-253 R -4055)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
(-254 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))))
+((|HasCategory| |#1| (QUOTE (-338))))
(-255 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))))
-(-256 A S)
+((|HasCategory| |#1| (QUOTE (-338))))
+(-256)
+((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the of operands in `e'e,{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getVariable| (((|Union| (|Symbol|) "failed") $) "\\spad{getVariable(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
+NIL
+NIL
+(-257 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))))
-(-257 S)
+((|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))))
+(-258 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
-(-258 S)
+(-259 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-259)
+(-260)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-260 |Coef| UTS)
+(-261 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-261 S |Index|)
+(-262 S |Index|)
((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
NIL
NIL
-(-262 S |Dom| |Im|)
+(-263 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)))
-(-263 |Dom| |Im|)
+((|HasAttribute| |#1| (QUOTE -4239)))
+(-264 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-264 S R |Mod| -1664 -3389 |exactQuo|)
+(-265 S R |Mod| -4048 -2160 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-265)
+(-266)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4226 . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-266)
+(-267)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
NIL
NIL
-(-267 R)
+(-268 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-268 S R)
+(-269 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-269 S)
+(-270 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4230 -3703 (|has| |#1| (-970)) (|has| |#1| (-446))) (-4227 |has| |#1| (-970)) (-4228 |has| |#1| (-970)))
-((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-277))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-446)))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-663))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-1025))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-25))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))))
-(-270 |Key| |Entry|)
+((-4235 -3708 (|has| |#1| (-971)) (|has| |#1| (-447))) (-4232 |has| |#1| (-971)) (-4233 |has| |#1| (-971)))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-278))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-447)))) (-3708 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-971)))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-664))) (-3708 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-1026))) (-3708 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-21))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-971)))) (-3708 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-25))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-971)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))))
+(-271 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-271)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-272)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-272 -4049 S)
+(-273 -4055 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-273 E -4049)
+(-274 E -4055)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
-(-274 A B)
+(-275 A B)
((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
-(-275)
+(-276)
((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
NIL
-(-276 S)
+(-277 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-970))))
-(-277)
+((|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-971))))
+(-278)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-278 R1)
+(-279 R1)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-279 R1 R2)
+(-280 R1 R2)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-280)
+(-281)
((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-281 S)
+(-282 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-282)
+(-283)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-283 S R)
+(-284 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-284 R)
+(-285 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-285 -4049)
+(-286 -4055)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-286)
+(-287)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-287 R FE |var| |cen|)
+(-288 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-837))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-946))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-1060))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-210))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -284) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (LIST (QUOTE -261) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-282))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-506))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-783))) (-3703 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-783)))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-837))) (|HasCategory| $ (QUOTE (-133)))) (-3703 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (-12 (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-837))) (|HasCategory| $ (QUOTE (-133))))))
-(-288 R S)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-947))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-1061))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-210))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (LIST (QUOTE -262) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1152) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-283))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-507))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-784))) (-3708 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-784)))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| $ (QUOTE (-133)))) (-3708 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-133))) (-12 (|HasCategory| (-1152 |#1| |#2| |#3| |#4|) (QUOTE (-838))) (|HasCategory| $ (QUOTE (-133))))))
+(-289 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-289 R FE)
+(-290 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-290 R)
+(-291 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4230 -3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (-12 (|has| |#1| (-513)) (-3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (|has| |#1| (-970)) (|has| |#1| (-446)))) (|has| |#1| (-970)) (|has| |#1| (-446))) (-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) ((-4235 "*") |has| |#1| (-513)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-513)) (-4225 |has| |#1| (-513)))
-((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-970))) (-3703 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-970)))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-970)))) (-3703 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-1025))) (-3703 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3703 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))) (|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
-(-291 R -4049)
+((-4235 -3708 (-4015 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (-12 (|has| |#1| (-514)) (-3708 (-4015 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (|has| |#1| (-971)) (|has| |#1| (-447)))) (|has| |#1| (-971)) (|has| |#1| (-447))) (-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) ((-4240 "*") |has| |#1| (-514)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-514)) (-4230 |has| |#1| (-514)))
+((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-971))) (-3708 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (-3708 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-971)))) (|HasCategory| |#1| (QUOTE (-21))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (-3708 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-971)))) (-3708 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-1026))) (-3708 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#1| (QUOTE (-1026)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-1026)))) (-3708 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))) (|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522)))))
+(-292 R -4055)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
-(-292)
+(-293)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-293 FE |var| |cen|)
+(-294 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
-(-294 M)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-295 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-295 E OV R P)
+(-296 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-296 S)
+(-297 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4228 . T) (-4227 . T))
-((|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-728))))
-(-297 S E)
+((-4233 . T) (-4232 . T))
+((|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-729))))
+(-298 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-298 S)
+(-299 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-707) (QUOTE (-728))))
-(-299 S R E)
+((|HasCategory| (-708) (QUOTE (-729))))
+(-300 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))))
-(-300 R E)
+((|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))))
+(-301 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-301 S)
+(-302 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-302 S -4049)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-303 S -4055)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-342))))
-(-303 -4049)
+((|HasCategory| |#2| (QUOTE (-343))))
+(-304 -4055)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-304)
+(-305)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
NIL
NIL
-(-305 E)
+(-306 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-306)
+(-307)
((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-307 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-308 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-308 S -4049 UP UPUP R)
+(-309 S -4055 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-309 -4049 UP UPUP R)
+(-310 -4055 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-310 -4049 UP UPUP R)
+(-311 -4055 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
-(-311 S R)
+(-312 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-312 R)
+((|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-313 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-313 |basicSymbols| |subscriptedSymbols| R)
+(-314 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-353)))) (|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
-(-314 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-354)))) (|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522)))))
+(-315 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-315 S -4049 UP UPUP)
+(-316 S -4055 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
-((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-337))))
-(-316 -4049 UP UPUP)
+((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-338))))
+(-317 -4055 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4226 |has| (-381 |#2|) (-337)) (-4231 |has| (-381 |#2|) (-337)) (-4225 |has| (-381 |#2|) (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 |has| (-382 |#2|) (-338)) (-4236 |has| (-382 |#2|) (-338)) (-4230 |has| (-382 |#2|) (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-317 |p| |extdeg|)
+(-318 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-838 |#1|) (QUOTE (-135))) (|HasCategory| (-838 |#1|) (QUOTE (-342))) (|HasCategory| (-838 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-838 |#1|) (QUOTE (-133))) (|HasCategory| (-838 |#1|) (QUOTE (-342)))))
-(-318 GF |defpol|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-343))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3708 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-343)))))
+(-319 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
-(-319 GF |extdeg|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-320 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
-(-320 GF)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-321 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-321 F1 GF F2)
+(-322 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-322 S)
+(-323 S)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-323)
+(-324)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-324 R UP -4049)
+(-325 R UP -4055)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-325 |p| |extdeg|)
+(-326 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-838 |#1|) (QUOTE (-135))) (|HasCategory| (-838 |#1|) (QUOTE (-342))) (|HasCategory| (-838 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-838 |#1|) (QUOTE (-133))) (|HasCategory| (-838 |#1|) (QUOTE (-342)))))
-(-326 GF |uni|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-343))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3708 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-343)))))
+(-327 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
-(-327 GF |extdeg|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-328 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
-(-328 |p| |n|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-329 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-838 |#1|) (QUOTE (-135))) (|HasCategory| (-838 |#1|) (QUOTE (-342))) (|HasCategory| (-838 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-838 |#1|) (QUOTE (-133))) (|HasCategory| (-838 |#1|) (QUOTE (-342)))))
-(-329 GF |defpol|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-839 |#1|) (QUOTE (-135))) (|HasCategory| (-839 |#1|) (QUOTE (-343))) (|HasCategory| (-839 |#1|) (QUOTE (-133))) (-3708 (|HasCategory| (-839 |#1|) (QUOTE (-133))) (|HasCategory| (-839 |#1|) (QUOTE (-343)))))
+(-330 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
-(-330 -4049 GF)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-331 -4055 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-331 GF)
+(-332 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-332 -4049 FP FPP)
+(-333 -4055 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-333 GF |n|)
+(-334 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-342)))))
-(-334 R |ls|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-343)))))
+(-335 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-335 S)
+(-336 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-336 S)
+(-337 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-337)
+(-338)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-338 |Name| S)
+(-339 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-339 S)
+(-340 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-340 S R)
+(-341 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-513))))
-(-341 R)
+((|HasCategory| |#2| (QUOTE (-514))))
+(-342 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4230 |has| |#1| (-513)) (-4228 . T) (-4227 . T))
+((-4235 |has| |#1| (-514)) (-4233 . T) (-4232 . T))
NIL
-(-342)
+(-343)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-343 S R UP)
+(-344 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-337))))
-(-344 R UP)
+((|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-338))))
+(-345 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-345 S A R B)
+(-346 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
-(-346 A S)
+(-347 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))))
-(-347 S)
+((|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))))
+(-348 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4233 . T) (-2092 . T))
+((-4238 . T) (-2047 . T))
NIL
-(-348 |VarSet| R)
+(-349 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4228 . T) (-4227 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4233 . T) (-4232 . T))
NIL
-(-349 S V)
+(-350 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-350 S R)
+(-351 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))))
-(-351 R)
+((|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))))
+(-352 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-352 |Par|)
+(-353 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
-(-353)
+(-354)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4216 . T) (-4224 . T) (-3893 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4221 . T) (-4229 . T) (-3898 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-354 |Par|)
+(-355 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-355 R S)
+(-356 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
((|HasCategory| |#1| (QUOTE (-157))))
-(-356 R |Basis|)
+(-357 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
-(-357)
+(-358)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-358)
+(-359)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-359 R S)
+(-360 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
((|HasCategory| |#1| (QUOTE (-157))))
-(-360 S)
+(-361 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
-(-361)
+((|HasCategory| |#1| (QUOTE (-784))))
+(-362)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-362)
+(-363)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-363)
+(-364)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions.")))
NIL
NIL
-(-364 |n| |class| R)
+(-365 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
-(-365)
+(-366)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-366 -4049 UP UPUP R)
+(-367 -4055 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-367 S)
+(-368 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-368)
+(-369)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
-(-369)
+(-370)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-370)
+(-371)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-371)
+(-372)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-372 -2890 |returnType| -3886 |symbols|)
+(-373 -2888 |returnType| -3890 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-373 -4049 UP)
+(-374 -4055 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-374 R)
+(-375 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-375 S)
+(-376 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-376)
+(-377)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-377 S)
+(-378 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4216)) (|HasAttribute| |#1| (QUOTE -4224)))
-(-378)
+((|HasAttribute| |#1| (QUOTE -4221)) (|HasAttribute| |#1| (QUOTE -4229)))
+(-379)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3893 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-3898 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-379 R S)
+(-380 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-380 A B)
+(-381 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-381 S)
+(-382 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4220 -12 (|has| |#1| (-6 -4231)) (|has| |#1| (-425)) (|has| |#1| (-6 -4220))) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-506))) (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-764)))) (-12 (|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#1| (QUOTE -4220)) (|HasCategory| |#1| (QUOTE (-425)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-764)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (-3703 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-783)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-764)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-764)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-764))))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-764))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-382 S R UP)
+((-4225 -12 (|has| |#1| (-6 -4236)) (|has| |#1| (-426)) (|has| |#1| (-6 -4225))) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-507))) (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (-12 (|HasAttribute| |#1| (QUOTE -4236)) (|HasAttribute| |#1| (QUOTE -4225)) (|HasCategory| |#1| (QUOTE (-426)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (-3708 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765))))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-765))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-383 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-383 R UP)
+(-384 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-384 A S)
+(-385 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))
-(-385 S)
+((|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))
+(-386 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-386 R1 F1 U1 A1 R2 F2 U2 A2)
+(-387 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-387 R -4049 UP A)
+(-388 R -4055 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-388 R -4049 UP A |ibasis|)
+(-389 R -4055 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -961) (|devaluate| |#2|))))
-(-389 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -962) (|devaluate| |#2|))))
+(-390 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-390 S R)
+(-391 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-337))))
-(-391 R)
+((|HasCategory| |#2| (QUOTE (-338))))
+(-392 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4230 |has| |#1| (-513)) (-4228 . T) (-4227 . T))
+((-4235 |has| |#1| (-514)) (-4233 . T) (-4232 . T))
NIL
-(-392 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -284) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -261) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-1123))) (|HasCategory| |#1| (QUOTE (-946))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-1123)))))
(-393 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -262) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-947))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-1124)))))
+(-394 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-394 R FE |x| |cen|)
+(-395 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-395 R A S B)
+(-396 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-396 R FE |Expon| UPS TRAN |x|)
+(-397 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-397 S A R B)
+(-398 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-398 A S)
+(-399 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-342))))
-(-399 S)
+((|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-343))))
+(-400 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4233 . T) (-4223 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4228 . T) (-4239 . T) (-2047 . T))
NIL
-(-400 R -4049)
+(-401 R -4055)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-401 R E)
+(-402 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4220 -12 (|has| |#1| (-6 -4220)) (|has| |#2| (-6 -4220))) (-4227 . T) (-4228 . T) (-4230 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4220)) (|HasAttribute| |#2| (QUOTE -4220))))
-(-402 R -4049)
+((-4225 -12 (|has| |#1| (-6 -4225)) (|has| |#2| (-6 -4225))) (-4232 . T) (-4233 . T) (-4235 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4225)) (|HasAttribute| |#2| (QUOTE -4225))))
+(-403 R -4055)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-403 S R)
+(-404 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))))
-(-404 R)
+((|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))))
+(-405 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4230 -3703 (|has| |#1| (-970)) (|has| |#1| (-446))) (-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) ((-4235 "*") |has| |#1| (-513)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-513)) (-4225 |has| |#1| (-513)) (-2092 . T))
+((-4235 -3708 (|has| |#1| (-971)) (|has| |#1| (-447))) (-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) ((-4240 "*") |has| |#1| (-514)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-514)) (-4230 |has| |#1| (-514)) (-2047 . T))
NIL
-(-405 R -4049)
+(-406 R -4055)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-406 R -4049)
+(-407 R -4055)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-407 R -4049)
+(-408 R -4055)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-408)
+(-409)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-409 R -4049 UP)
+(-410 R -4055 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-47)))))
-(-410)
+((|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-47)))))
+(-411)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-411)
+(-412)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
-(-412 |f|)
+(-413 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-413)
+(-414)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-414)
+(-415)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-415 UP)
+(-416 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-416 R UP -4049)
+(-417 R UP -4055)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-417 R UP)
+(-418 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-418 R)
+(-419 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-378))))
-(-419)
+((|HasCategory| |#1| (QUOTE (-379))))
+(-420)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-420 |Dom| |Expon| |VarSet| |Dpol|)
+(-421 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-421 |Dom| |Expon| |VarSet| |Dpol|)
+(-422 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-422 |Dom| |Expon| |VarSet| |Dpol|)
+(-423 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-423 |Dom| |Expon| |VarSet| |Dpol|)
+(-424 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))))
-(-424 S)
+((|HasCategory| |#1| (QUOTE (-338))))
+(-425 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-425)
+(-426)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-426 R |n| |ls| |gamma|)
+(-427 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4230 |has| (-381 (-880 |#1|)) (-513)) (-4228 . T) (-4227 . T))
-((|HasCategory| (-381 (-880 |#1|)) (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| (-381 (-880 |#1|)) (QUOTE (-513))))
-(-427 |vl| R E)
+((-4235 |has| (-382 (-881 |#1|)) (-514)) (-4233 . T) (-4232 . T))
+((|HasCategory| (-382 (-881 |#1|)) (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| (-382 (-881 |#1|)) (QUOTE (-514))))
+(-428 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-428 R BP)
+(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-429 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-429 OV E S R P)
+(-430 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-430 E OV R P)
+(-431 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-431 R)
+(-432 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-432 R FE)
+(-433 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")))
NIL
NIL
-(-433 RP TP)
+(-434 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-434 |vl| R IS E |ff| P)
+(-435 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
-(-435 E V R P Q)
+(-436 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-436 R E |VarSet| P)
+(-437 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-437 S R E)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-438 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-438 R E)
+(-439 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-439)
+(-440)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-440)
+(-441)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-441)
+(-442)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-442 S R E)
+(-443 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-443 R E)
+(-444 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-444 |lv| -4049 R)
+(-445 |lv| -4055 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-445 S)
+(-446 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-446)
+(-447)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-447 |Coef| |var| |cen|)
+(-448 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
-(-448 |Key| |Entry| |Tbl| |dent|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-449 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-449 R E V P)
+((-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-450 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-450)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-451)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-451 |Key| |Entry| |hashfn|)
+(-452 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-452)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-453)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-453 |vl| R)
+(-454 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-454 -2623 S)
+(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-455 -2617 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T))
-((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781))) (-3703 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-783))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (|HasCategory| |#2| (QUOTE (-663))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#2| (QUOTE (-970))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-124))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-25))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-455 S)
+((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T))
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (-3708 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#2| (QUOTE (-664))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (|HasCategory| |#2| (QUOTE (-971))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -4235)) (|HasCategory| |#2| (QUOTE (-124))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-25))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014))))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3708 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-456 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-456 -4049 UP UPUP R)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-457 -4055 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-457 BP)
+(-458 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-458)
+(-459)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-521) (QUOTE (-837))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-783))) (-3703 (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (QUOTE (-783)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (|HasCategory| (-521) (QUOTE (-133)))))
-(-459 A S)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3708 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133)))))
+(-460 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4233)) (|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-460 S)
+((|HasAttribute| |#1| (QUOTE -4238)) (|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-461 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-461 S)
+(-462 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-462)
+(-463)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-463 -4049 UP |AlExt| |AlPol|)
+(-464 -4055 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-464)
+(-465)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| $ (QUOTE (-970))) (|HasCategory| $ (LIST (QUOTE -961) (QUOTE (-521)))))
-(-465 S |mn|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| $ (QUOTE (-971))) (|HasCategory| $ (LIST (QUOTE -962) (QUOTE (-522)))))
+(-466 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-466 R |mnRow| |mnCol|)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-467 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-467 K R UP)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-468 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-468 R UP -4049)
+(-469 R UP -4055)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-469 |mn|)
+(-470 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-108) (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| (-108) (QUOTE (-1013))) (-12 (|HasCategory| (-108) (QUOTE (-1013))) (|HasCategory| (-108) (LIST (QUOTE -284) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -561) (QUOTE (-791)))))
-(-470 K R UP L)
+((-4239 . T) (-4238 . T))
+((|HasCategory| (-108) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-108) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-108) (QUOTE (-1014))) (-12 (|HasCategory| (-108) (QUOTE (-1014))) (|HasCategory| (-108) (LIST (QUOTE -285) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -562) (QUOTE (-792)))))
+(-471 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-471)
+(-472)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-472 R Q A B)
+(-473 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-473 -4049 |Expon| |VarSet| |DPoly|)
+(-474 -4055 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-1084)))))
-(-474 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-1085)))))
+(-475 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-475 A S)
+(-476 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-476 A S)
+(-477 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-477 A S)
+(-478 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-478 A S)
+(-479 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-479 A S)
+(-480 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-480 A S)
+(-481 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-481 S A B)
+(-482 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-482 A B)
+(-483 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-483 S E |un|)
+(-484 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-728))))
-(-484 S |mn|)
+((|HasCategory| |#2| (QUOTE (-729))))
+(-485 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-485 |p| |n|)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-486 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-534 |#1|) (QUOTE (-135))) (|HasCategory| (-534 |#1|) (QUOTE (-342))) (|HasCategory| (-534 |#1|) (QUOTE (-133))) (-3703 (|HasCategory| (-534 |#1|) (QUOTE (-133))) (|HasCategory| (-534 |#1|) (QUOTE (-342)))))
-(-486 R |mnRow| |mnCol| |Row| |Col|)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-535 |#1|) (QUOTE (-135))) (|HasCategory| (-535 |#1|) (QUOTE (-343))) (|HasCategory| (-535 |#1|) (QUOTE (-133))) (-3708 (|HasCategory| (-535 |#1|) (QUOTE (-133))) (|HasCategory| (-535 |#1|) (QUOTE (-343)))))
+(-487 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-487 S |mn|)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-488 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-488 R |Row| |Col| M)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-489 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4234)))
-(-489 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4239)))
+(-490 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4234)))
-(-490 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4239)))
+(-491 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))) (|HasAttribute| |#1| (QUOTE (-4235 "*"))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-491 GF)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))) (|HasAttribute| |#1| (QUOTE (-4240 "*"))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-492 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-492 R)
+(-493 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-493 |Varset|)
+(-494 |Varset|)
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-494 K -4049 |Par|)
+(-495 K -4055 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-495)
+(-496)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-496 R)
+(-497 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-497)
+(-498)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-498 |Coef| UTS)
+(-499 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-499 K -4049 |Par|)
+(-500 K -4055 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-500 R BP |pMod| |nextMod|)
+(-501 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-501 OV E R P)
+(-502 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-502 K UP |Coef| UTS)
+(-503 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-503 |Coef| UTS)
+(-504 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-504 R UP)
+(-505 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-505 S)
+(-506 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-506)
+(-507)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-507 |Key| |Entry| |addDom|)
+(-508 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-508 R -4049)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-509 R -4055)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-509 R0 -4049 UP UPUP R)
+(-510 R0 -4055 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-510)
+(-511)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-511 R)
+(-512 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3893 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-3898 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-512 S)
+(-513 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-513)
+(-514)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-514 R -4049)
+(-515 R -4055)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-515 I)
+(-516 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-516)
+(-517)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-517 R -4049 L)
+(-518 R -4055 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -597) (|devaluate| |#2|))))
-(-518)
+((|HasCategory| |#3| (LIST (QUOTE -598) (|devaluate| |#2|))))
+(-519)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-519 -4049 UP UPUP R)
+(-520 -4055 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-520 -4049 UP)
+(-521 -4055 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-521)
+(-522)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4215 . T) (-4221 . T) (-4225 . T) (-4220 . T) (-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4220 . T) (-4226 . T) (-4230 . T) (-4225 . T) (-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-522)
+(-523)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-523 R -4049 L)
+(-524 R -4055 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -597) (|devaluate| |#2|))))
-(-524 R -4049)
+((|HasCategory| |#3| (LIST (QUOTE -598) (|devaluate| |#2|))))
+(-525 R -4055)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-1048)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-573)))))
-(-525 -4049 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-574)))))
+(-526 -4055 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-526 S)
+(-527 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-527 -4049)
+(-528 -4055)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-528 R)
+(-529 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3893 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-3898 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-529)
+(-530)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-530 R -4049)
+(-531 R -4055)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-259))) (|HasCategory| |#2| (QUOTE (-573))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-259)))) (|HasCategory| |#1| (QUOTE (-513))))
-(-531 -4049 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-260))) (|HasCategory| |#2| (QUOTE (-574))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-260)))) (|HasCategory| |#1| (QUOTE (-514))))
+(-532 -4055 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-532 R -4049)
+(-533 R -4055)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-533 |p| |unBalanced?|)
+(-534 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-534 |p|)
+(-535 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-342))))
-(-535)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-343))))
+(-536)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-536 R -4049)
+(-537 R -4055)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-537 E -4049)
+(-538 E -4055)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-538 -4049)
+(-539 -4055)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4228 . T) (-4227 . T))
-((|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-1084)))))
-(-539 I)
+((-4233 . T) (-4232 . T))
+((|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-1085)))))
+(-540 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-540 GF)
+(-541 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-541 R)
+(-542 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-135))))
-(-542)
+(-543)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-543 R E V P TS)
+(-544 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-544 |mn|)
+(-545 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1013))) (-3703 (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1013)))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-3703 (-12 (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-791)))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))))
-(-545 E V R P)
+((-4239 . T) (-4238 . T))
+((|HasCategory| (-132) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014))) (-3708 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014)))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-3708 (-12 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))))
+(-546 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-546 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))))
(-547 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))))
+(-548 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4228 |has| |#1| (-513)) (-4227 |has| |#1| (-513)) ((-4235 "*") |has| |#1| (-513)) (-4226 |has| |#1| (-513)) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-513))))
-(-548 A B)
+((-4233 |has| |#1| (-514)) (-4232 |has| |#1| (-514)) ((-4240 "*") |has| |#1| (-514)) (-4231 |has| |#1| (-514)) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-514))))
+(-549 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-549 A B C)
+(-550 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-550 R -4049 FG)
+(-551 R -4055 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-551 S)
+(-552 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-552 R |mn|)
+(-553 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-553 S |Index| |Entry|)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-554 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (QUOTE (-783))) (|HasAttribute| |#1| (QUOTE -4233)) (|HasCategory| |#3| (QUOTE (-1013))))
-(-554 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (QUOTE (-784))) (|HasAttribute| |#1| (QUOTE -4238)) (|HasCategory| |#3| (QUOTE (-1014))))
+(-555 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-555 R A)
+(-556 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4230 -3703 (-4009 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))) (-4228 . T) (-4227 . T))
-((|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))))))
-(-556 |Entry|)
+((-4235 -3708 (-4015 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))) (-4233 . T) (-4232 . T))
+((|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|))))))
+(-557 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| (-1067) (QUOTE (-783))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (QUOTE (-1067))) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -561) (QUOTE (-791)))))
-(-557 S |Key| |Entry|)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| (-1068) (QUOTE (-784))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (QUOTE (-1068))) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))))
+(-558 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-558 |Key| |Entry|)
+(-559 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
-(-559 R S)
+(-560 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-560 S)
+(-561 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))))
-(-561 S)
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))))
+(-562 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-562 S)
+(-563 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-563 -4049 UP)
+(-564 -4055 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-564 S R)
+(-565 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-565 R)
+(-566 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-566 A R S)
+(-567 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-781))))
-(-567 R -4049)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-782))))
+(-568 R -4055)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-568 R UP)
+(-569 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4226 . T) (-4230 . T))
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))))
-(-569 R E V P TS ST)
+((-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4231 . T) (-4235 . T))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))))
+(-570 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-570 OV E Z P)
+(-571 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-571 |VarSet| R |Order|)
+(-572 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-572 R |ls|)
+(-573 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-573)
+(-574)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-574 R -4049)
+(-575 R -4055)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-575 |lv| -4049)
+(-576 |lv| -4055)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-576)
+(-577)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4234 . T))
-((|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-1067) (QUOTE (-783))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1013))) (-12 (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -284) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (QUOTE (-1067))) (LIST (QUOTE |:|) (QUOTE -3050) (QUOTE (-51))))))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791))))))
-(-577 S R)
+((-4239 . T))
+((|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-1068) (QUOTE (-784))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (-12 (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -285) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (QUOTE (-1068))) (LIST (QUOTE |:|) (QUOTE -3048) (QUOTE (-51))))))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))))
+(-578 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-337))))
-(-578 R)
+((|HasCategory| |#2| (QUOTE (-338))))
+(-579 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4228 . T) (-4227 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4233 . T) (-4232 . T))
NIL
-(-579 R A)
+(-580 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4230 -3703 (-4009 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))) (-4228 . T) (-4227 . T))
-((|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -341) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -391) (|devaluate| |#1|))))))
-(-580 R FE)
+((-4235 -3708 (-4015 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))) (-4233 . T) (-4232 . T))
+((|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -342) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -392) (|devaluate| |#1|))))))
+(-581 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-581 R)
+(-582 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-582 S R)
+(-583 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))) (-2416 (|HasCategory| |#1| (QUOTE (-337)))))
-(-583 R)
+((|HasCategory| |#1| (QUOTE (-338))) (-2401 (|HasCategory| |#1| (QUOTE (-338)))))
+(-584 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-584 A B)
+(-585 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-585 A B)
+(-586 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-586 A B C)
+(-587 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-587 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-764))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
(-588 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-765))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-589 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-589 R)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-590 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-590 S E |un|)
+(-591 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-591 A S)
+(-592 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)))
-(-592 S)
+((|HasAttribute| |#1| (QUOTE -4239)))
+(-593 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-593 R -4049 L)
+(-594 R -4055 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-594 A)
+(-595 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
-(-595 A M)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338))))
+(-596 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
-(-596 S A)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338))))
+(-597 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-337))))
-(-597 A)
+((|HasCategory| |#2| (QUOTE (-338))))
+(-598 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-598 -4049 UP)
+(-599 -4055 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-599 A -3274)
+(-600 A -3383)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
-(-600 A L)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338))))
+(-601 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-601 S)
+(-602 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-602)
+(-603)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-603 M R S)
+(-604 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4228 . T) (-4227 . T))
-((|HasCategory| |#1| (QUOTE (-727))))
-(-604 R)
+((-4233 . T) (-4232 . T))
+((|HasCategory| |#1| (QUOTE (-728))))
+(-605 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-605 |VarSet| R)
+(-606 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4228 . T) (-4227 . T))
-((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-157))))
-(-606 A S)
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4233 . T) (-4232 . T))
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-157))))
+(-607 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-607 S)
+(-608 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-608 -4049)
+(-609 -4055)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-609 -4049 |Row| |Col| M)
+(-610 -4055 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-610 R E OV P)
+(-611 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-611 |n| R)
+(-612 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4230 . T) (-4233 . T) (-4227 . T) (-4228 . T))
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-513))) (-3703 (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-157))))
-(-612 |VarSet|)
+((-4235 . T) (-4238 . T) (-4232 . T) (-4233 . T))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-514))) (-3708 (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3708 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-157))))
+(-613 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-613 A S)
+(-614 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-614 S)
+(-615 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-615 R)
+(-616 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-616 |VarSet|)
+((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-617 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-617 A)
+(-618 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-618 A C)
+(-619 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-619 A B C)
+(-620 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-620 A)
+(-621 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-621 A C)
+(-622 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-622 A B C)
+(-623 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-623 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-624 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-624 S R |Row| |Col|)
+(-625 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-513))))
-(-625 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-514))))
+(-626 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
-(-626 R |Row| |Col| M)
+(-627 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))))
-(-627 R)
-((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-513))) (|HasAttribute| |#1| (QUOTE (-4235 "*"))) (|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))))
(-628 R)
+((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-514))) (|HasAttribute| |#1| (QUOTE (-4240 "*"))) (|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-629 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-629 S -4049 FLAF FLAS)
+(-630 S -4055 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-630 R Q)
+(-631 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-631)
+(-632)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4226 . T) (-4231 |has| (-636) (-337)) (-4225 |has| (-636) (-337)) (-3905 . T) (-4232 |has| (-636) (-6 -4232)) (-4229 |has| (-636) (-6 -4229)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-636) (QUOTE (-135))) (|HasCategory| (-636) (QUOTE (-133))) (|HasCategory| (-636) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-636) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-636) (QUOTE (-342))) (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-636) (QUOTE (-210))) (|HasCategory| (-636) (QUOTE (-323))) (-3703 (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (QUOTE (-323)))) (|HasCategory| (-636) (LIST (QUOTE -261) (QUOTE (-636)) (QUOTE (-636)))) (|HasCategory| (-636) (LIST (QUOTE -284) (QUOTE (-636)))) (|HasCategory| (-636) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-636)))) (|HasCategory| (-636) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-636) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-636) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-636) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-636) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-636) (QUOTE (-946))) (|HasCategory| (-636) (QUOTE (-1105))) (-12 (|HasCategory| (-636) (QUOTE (-927))) (|HasCategory| (-636) (QUOTE (-1105)))) (|HasCategory| (-636) (QUOTE (-506))) (|HasCategory| (-636) (QUOTE (-979))) (-12 (|HasCategory| (-636) (QUOTE (-979))) (|HasCategory| (-636) (QUOTE (-1105)))) (-3703 (|HasCategory| (-636) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-636) (QUOTE (-337)))) (|HasCategory| (-636) (QUOTE (-282))) (-3703 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (QUOTE (-323)))) (|HasCategory| (-636) (QUOTE (-837))) (-12 (|HasCategory| (-636) (QUOTE (-210))) (|HasCategory| (-636) (QUOTE (-337)))) (-12 (|HasCategory| (-636) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-636) (QUOTE (-337)))) (|HasCategory| (-636) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-636) (QUOTE (-783))) (|HasCategory| (-636) (QUOTE (-513))) (|HasAttribute| (-636) (QUOTE -4232)) (|HasAttribute| (-636) (QUOTE -4229)) (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (|HasCategory| (-636) (QUOTE (-337))) (-12 (|HasCategory| (-636) (QUOTE (-323))) (|HasCategory| (-636) (QUOTE (-837))))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (-12 (|HasCategory| (-636) (QUOTE (-337))) (|HasCategory| (-636) (QUOTE (-837)))) (-12 (|HasCategory| (-636) (QUOTE (-323))) (|HasCategory| (-636) (QUOTE (-837))))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (|HasCategory| (-636) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (|HasCategory| (-636) (QUOTE (-513)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (|HasCategory| (-636) (QUOTE (-133)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-636) (QUOTE (-282))) (|HasCategory| (-636) (QUOTE (-837)))) (|HasCategory| (-636) (QUOTE (-323)))))
-(-632 S)
+((-4231 . T) (-4236 |has| (-637) (-338)) (-4230 |has| (-637) (-338)) (-3911 . T) (-4237 |has| (-637) (-6 -4237)) (-4234 |has| (-637) (-6 -4234)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-637) (QUOTE (-135))) (|HasCategory| (-637) (QUOTE (-133))) (|HasCategory| (-637) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-637) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-637) (QUOTE (-343))) (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-637) (QUOTE (-210))) (|HasCategory| (-637) (QUOTE (-324))) (-3708 (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (QUOTE (-324)))) (|HasCategory| (-637) (LIST (QUOTE -262) (QUOTE (-637)) (QUOTE (-637)))) (|HasCategory| (-637) (LIST (QUOTE -285) (QUOTE (-637)))) (|HasCategory| (-637) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-637)))) (|HasCategory| (-637) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-637) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-637) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-637) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-637) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-637) (QUOTE (-947))) (|HasCategory| (-637) (QUOTE (-1106))) (-12 (|HasCategory| (-637) (QUOTE (-928))) (|HasCategory| (-637) (QUOTE (-1106)))) (|HasCategory| (-637) (QUOTE (-507))) (|HasCategory| (-637) (QUOTE (-980))) (-12 (|HasCategory| (-637) (QUOTE (-980))) (|HasCategory| (-637) (QUOTE (-1106)))) (-3708 (|HasCategory| (-637) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-637) (QUOTE (-338)))) (|HasCategory| (-637) (QUOTE (-283))) (-3708 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (QUOTE (-324)))) (|HasCategory| (-637) (QUOTE (-838))) (-12 (|HasCategory| (-637) (QUOTE (-210))) (|HasCategory| (-637) (QUOTE (-338)))) (-12 (|HasCategory| (-637) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-637) (QUOTE (-338)))) (|HasCategory| (-637) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-637) (QUOTE (-784))) (|HasCategory| (-637) (QUOTE (-514))) (|HasAttribute| (-637) (QUOTE -4237)) (|HasAttribute| (-637) (QUOTE -4234)) (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-338))) (-12 (|HasCategory| (-637) (QUOTE (-324))) (|HasCategory| (-637) (QUOTE (-838))))) (-3708 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (-12 (|HasCategory| (-637) (QUOTE (-338))) (|HasCategory| (-637) (QUOTE (-838)))) (-12 (|HasCategory| (-637) (QUOTE (-324))) (|HasCategory| (-637) (QUOTE (-838))))) (-3708 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-514)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-133)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-637) (QUOTE (-283))) (|HasCategory| (-637) (QUOTE (-838)))) (|HasCategory| (-637) (QUOTE (-324)))))
+(-633 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
-(-633 U)
+(-634 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-634)
+(-635)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-635 OV E -4049 PG)
+(-636 OV E -4055 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-636)
+(-637)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3893 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-3898 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-637 R)
+(-638 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-638)
+(-639)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4232 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4237 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-639 S D1 D2 I)
+(-640 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-640 S)
+(-641 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%.")))
NIL
NIL
-(-641 S)
+(-642 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-642 S)
+(-643 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-643 S T$)
+(-644 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-644 S -2244 I)
+(-645 S -2213 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-645 E OV R P)
+(-646 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-646 R)
+(-647 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-648 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-648 R |Mod| -1664 -3389 |exactQuo|)
+(-649 R |Mod| -4048 -2160 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-649 R |Rep|)
+(-650 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-323))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-650 IS E |ff|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-324))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-651 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-651 R M)
+(-652 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
+((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T))
((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))))
-(-652 R |Mod| -1664 -3389 |exactQuo|)
+(-653 R |Mod| -4048 -2160 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-653 S R)
+(-654 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-654 R)
+(-655 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
-(-655 -4049)
+(-656 -4055)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-656 S)
+(-657 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-657)
+(-658)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-658 S)
+(-659 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-659)
+(-660)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-660 S R UP)
+(-661 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-323))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))))
-(-661 R UP)
+((|HasCategory| |#2| (QUOTE (-324))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))))
+(-662 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4226 |has| |#1| (-337)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 |has| |#1| (-338)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-662 S)
+(-663 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-663)
+(-664)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-664 -4049 UP)
+(-665 -4055 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-665 |VarSet| E1 E2 R S PR PS)
+(-666 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-666 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-667 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-667 E OV R PPR)
+(-668 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-668 |vl| R)
+(-669 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-793 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-669 E OV R PRF)
+(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-794 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-670 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-670 E OV R P)
+(-671 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-671 R S M)
+(-672 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-672 R M)
+(-673 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-783))))
-(-673 S)
+((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-784))))
+(-674 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4223 . T) (-4234 . T) (-2092 . T))
+((-4228 . T) (-4239 . T) (-2047 . T))
NIL
-(-674 S)
+(-675 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4233 . T) (-4223 . T) (-4234 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-675)
+((-4238 . T) (-4228 . T) (-4239 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-676)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-676 S)
+(-677 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-677 |Coef| |Var|)
+(-678 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4228 . T) (-4227 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
-(-678 OV E R P)
+(-679 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-679 E OV R P)
+(-680 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-680 S R)
+(-681 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-681 R)
+(-682 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
-(-682)
+(-683)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-683)
+(-684)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-684)
+(-685)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-685)
+(-686)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-686)
+(-687)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-687)
+(-688)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-688)
+(-689)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-689)
+(-690)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-690)
+(-691)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-691)
+(-692)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-692)
+(-693)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-693)
+(-694)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-694)
+(-695)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-695)
+(-696)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-696)
+(-697)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-697 S)
+(-698 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-698)
+(-699)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-699 S)
+(-700 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-700)
+(-701)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-701 |Par|)
+(-702 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-702 -4049)
+(-703 -4055)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-703 P -4049)
+(-704 P -4055)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-704 UP -4049)
+(-705 UP -4055)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-705)
+(-706)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-706 R)
+(-707 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-707)
+(-708)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4235 "*") . T))
+(((-4240 "*") . T))
NIL
-(-708 R -4049)
+(-709 R -4055)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-709 S)
+(-710 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-710)
+(-711)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-711 R |PolR| E |PolE|)
+(-712 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-712 R E V P TS)
+(-713 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-713 -4049 |ExtF| |SUEx| |ExtP| |n|)
+(-714 -4055 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-714 BP E OV R P)
+(-715 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-715 |Par|)
+(-716 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-716 R |VarSet|)
+(-717 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084))))) (|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2416 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2416 (|HasCategory| |#1| (QUOTE (-506)))) (-2416 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2416 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-521))))) (-2416 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-1084)))) (-2416 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-521))))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-717 R S)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085))))) (|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2401 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2401 (|HasCategory| |#1| (QUOTE (-507)))) (-2401 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2401 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-522))))) (-2401 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-1085)))) (-2401 (|HasCategory| |#1| (LIST (QUOTE -919) (QUOTE (-522))))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-718 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-718 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
(-719 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-720 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))
-(-720 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))
+(-721 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-721 S)
+(-722 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-513))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-783)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-157))))
-(-722)
+((|HasCategory| |#1| (QUOTE (-514))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-784)))) (|HasCategory| |#1| (QUOTE (-971))) (|HasCategory| |#1| (QUOTE (-157))))
+(-723)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-723)
+(-724)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-724)
+(-725)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-725)
+(-726)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-726 |Curve|)
+(-727 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-727)
+(-728)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-728)
+(-729)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-729)
+(-730)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-730)
+(-731)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-731)
+(-732)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-732 S R)
+(-733 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-342))))
-(-733 R)
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-980))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-343))))
+(-734 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-734 -3703 R OS S)
+(-735 -3708 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-735 R)
+(-736 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (|HasCategory| (-924 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))))
-(-736)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-980))) (|HasCategory| |#1| (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (-3708 (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-3708 (|HasCategory| (-925 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))))
+(-737)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-737 R -4049 L)
+(-738 R -4055 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-738 R -4049)
+(-739 R -4055)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-739)
+(-740)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-740 R -4049)
+(-741 R -4055)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-741)
+(-742)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-742 -4049 UP UPUP R)
+(-743 -4055 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-743 -4049 UP L LQ)
+(-744 -4055 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-744)
+(-745)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-745 -4049 UP L LQ)
+(-746 -4055 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-746 -4049 UP)
+(-747 -4055 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-747 -4049 L UP A LO)
+(-748 -4055 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-748 -4049 UP)
+(-749 -4055 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-749 -4049 LO)
+(-750 -4055 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-750 -4049 LODO)
+(-751 -4055 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-751 -2623 S |f|)
+(-752 -2617 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4227 |has| |#2| (-970)) (-4228 |has| |#2| (-970)) (-4230 |has| |#2| (-6 -4230)) ((-4235 "*") |has| |#2| (-157)) (-4233 . T))
-((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781))) (-3703 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781)))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337)))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-783))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (|HasCategory| |#2| (QUOTE (-663))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#2| (QUOTE (-970))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -4230)) (|HasCategory| |#2| (QUOTE (-124))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (|HasCategory| |#2| (QUOTE (-25))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-1013)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-781)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-729))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-781))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-970)))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-752 R)
+((-4232 |has| |#2| (-971)) (-4233 |has| |#2| (-971)) (-4235 |has| |#2| (-6 -4235)) ((-4240 "*") |has| |#2| (-157)) (-4238 . T))
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (-3708 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782)))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338)))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#2| (QUOTE (-664))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (|HasCategory| |#2| (QUOTE (-971))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -4235)) (|HasCategory| |#2| (QUOTE (-124))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (|HasCategory| |#2| (QUOTE (-25))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-1014)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-971)))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-157)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-782)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014))))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3708 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-124))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-730))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-782))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (QUOTE (-971)))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-753 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-754 (-1084)) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-754 (-1084)) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-754 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-754 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-754 (-1084)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-753 |Kernels| R |var|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-755 (-1085)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-754 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4235 "*") |has| |#2| (-337)) (-4226 |has| |#2| (-337)) (-4231 |has| |#2| (-337)) (-4225 |has| |#2| (-337)) (-4230 . T) (-4228 . T) (-4227 . T))
-((|HasCategory| |#2| (QUOTE (-337))))
-(-754 S)
+(((-4240 "*") |has| |#2| (-338)) (-4231 |has| |#2| (-338)) (-4236 |has| |#2| (-338)) (-4230 |has| |#2| (-338)) (-4235 . T) (-4233 . T) (-4232 . T))
+((|HasCategory| |#2| (QUOTE (-338))))
+(-755 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-755 S)
+(-756 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-756)
+(-757)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-757)
+(-758)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-758)
+(-759)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-759)
+(-760)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-760)
+(-761)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-761)
+(-762)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-762 R)
+(-763 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-763 P R)
+(-764 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-210))))
-(-764)
+(-765)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-765)
+(-766)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-766 S)
+(-767 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4233 . T) (-4223 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4228 . T) (-4239 . T) (-2047 . T))
NIL
-(-767)
+(-768)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-768 R S)
+(-769 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-769 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4230 |has| |#1| (-781)))
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-781)))))
(-770 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4235 |has| |#1| (-782)))
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-507))) (-3708 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-21))) (-3708 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-782)))))
+(-771 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
+((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T))
((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))))
-(-771)
+(-772)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-772)
+(-773)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-773)
+(-774)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-774)
+(-775)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-775 R S)
+(-776 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-776 R)
+(-777 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4230 |has| |#1| (-781)))
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-21))) (-3703 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-781)))))
-(-777)
+((-4235 |has| |#1| (-782)))
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-507))) (-3708 (|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-21))) (-3708 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-782)))))
+(-778)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-778 -2623 S)
+(-779 -2617 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-779)
+(-780)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-780 S)
+(-781 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-781)
+(-782)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-782 S)
+(-783 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-783)
+(-784)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-784 S R)
+(-785 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))))
-(-785 R)
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))))
+(-786 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-786 R C)
+(-787 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513))))
-(-787 R |sigma| -1202)
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514))))
+(-788 R |sigma| -1203)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-337))))
-(-788 |x| R |sigma| -1202)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-338))))
+(-789 |x| R |sigma| -1203)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-337))))
-(-789 R)
+((-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-338))))
+(-790 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))
-(-790)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))
+(-791)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-791)
+(-792)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-792)
+(-793)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-793 |VariableList|)
+(-794 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-794 R |vl| |wl| |wtlevel|)
+(-795 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))))
-(-795 R PS UP)
+((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))))
+(-796 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-796 R |x| |pt|)
+(-797 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-797 |p|)
+(-798 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-798 |p|)
+(-799 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-799 |p|)
+(-800 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-798 |#1|) (QUOTE (-837))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-798 |#1|) (QUOTE (-133))) (|HasCategory| (-798 |#1|) (QUOTE (-135))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-798 |#1|) (QUOTE (-946))) (|HasCategory| (-798 |#1|) (QUOTE (-756))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-798 |#1|) (QUOTE (-1060))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-798 |#1|) (QUOTE (-210))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -798) (|devaluate| |#1|)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -284) (LIST (QUOTE -798) (|devaluate| |#1|)))) (|HasCategory| (-798 |#1|) (LIST (QUOTE -261) (LIST (QUOTE -798) (|devaluate| |#1|)) (LIST (QUOTE -798) (|devaluate| |#1|)))) (|HasCategory| (-798 |#1|) (QUOTE (-282))) (|HasCategory| (-798 |#1|) (QUOTE (-506))) (|HasCategory| (-798 |#1|) (QUOTE (-783))) (-3703 (|HasCategory| (-798 |#1|) (QUOTE (-756))) (|HasCategory| (-798 |#1|) (QUOTE (-783)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-798 |#1|) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-798 |#1|) (QUOTE (-837)))) (|HasCategory| (-798 |#1|) (QUOTE (-133)))))
-(-800 |p| PADIC)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-799 |#1|) (QUOTE (-838))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-799 |#1|) (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-135))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-799 |#1|) (QUOTE (-947))) (|HasCategory| (-799 |#1|) (QUOTE (-757))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-799 |#1|) (QUOTE (-1061))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-799 |#1|) (QUOTE (-210))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (LIST (QUOTE -262) (LIST (QUOTE -799) (|devaluate| |#1|)) (LIST (QUOTE -799) (|devaluate| |#1|)))) (|HasCategory| (-799 |#1|) (QUOTE (-283))) (|HasCategory| (-799 |#1|) (QUOTE (-507))) (|HasCategory| (-799 |#1|) (QUOTE (-784))) (-3708 (|HasCategory| (-799 |#1|) (QUOTE (-757))) (|HasCategory| (-799 |#1|) (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-799 |#1|) (QUOTE (-838)))) (|HasCategory| (-799 |#1|) (QUOTE (-133)))))
+(-801 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-946))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-783))) (-3703 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-783)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-801 S T$)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-947))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-784))) (-3708 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-802 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))))))
-(-802)
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))))))
+(-803)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-803)
+(-804)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-804 CF1 CF2)
+(-805 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-805 |ComponentFunction|)
+(-806 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-806 CF1 CF2)
+(-807 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-807 |ComponentFunction|)
+(-808 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-808)
+(-809)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-809 CF1 CF2)
+(-810 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-810 |ComponentFunction|)
+(-811 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-811)
+(-812)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-812 R)
+(-813 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-813 R S L)
+(-814 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-814 S)
+(-815 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-815 |Base| |Subject| |Pat|)
+(-816 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))) (-12 (-2416 (|HasCategory| |#2| (QUOTE (-970)))) (-2416 (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))))) (-12 (|HasCategory| |#2| (QUOTE (-970))) (-2416 (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))))))
-(-816 R A B)
+((|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))) (-12 (-2401 (|HasCategory| |#2| (QUOTE (-971)))) (-2401 (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))))) (-12 (|HasCategory| |#2| (QUOTE (-971))) (-2401 (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))))))
+(-817 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-817 R S)
+(-818 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-818 R -2244)
+(-819 R -2213)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-819 R S)
+(-820 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-820 R)
+(-821 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-821 |VarSet|)
+(-822 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-822 UP R)
+(-823 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-823)
+(-824)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-824 UP -4049)
+(-825 UP -4055)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-825)
+(-826)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-826)
+(-827)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-827 A S)
+(-828 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-828 S)
+(-829 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-829 S)
+(-830 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-830 |n| R)
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-831 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-831 S)
+(-832 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-832 S)
+(-833 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-833 S)
+(-834 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4230 . T))
-((|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-783))) (-3703 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-783)))))
-(-834 R E |VarSet| S)
+((-4235 . T))
+((|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-784))) (-3708 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-784)))))
+(-835 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-835 R S)
+(-836 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-836 S)
+(-837 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-133))))
-(-837)
+(-838)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-838 |p|)
+(-839 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-342))))
-(-839 R0 -4049 UP UPUP R)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| $ (QUOTE (-135))) (|HasCategory| $ (QUOTE (-133))) (|HasCategory| $ (QUOTE (-343))))
+(-840 R0 -4055 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-840 UP UPUP R)
+(-841 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-841 UP UPUP)
+(-842 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-842 R)
+(-843 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-843 R)
+(-844 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-844 E OV R P)
+(-845 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-845)
+(-846)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-846 -4049)
+(-847 -4055)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-847 R)
+(-848 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-848)
+(-849)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-849)
+(-850)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4235 "*") . T))
+(((-4240 "*") . T))
NIL
-(-850 -4049 P)
+(-851 -4055 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-851 |xx| -4049)
+(-852 |xx| -4055)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-852 R |Var| |Expon| GR)
+(-853 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-853 S)
+(-854 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-854)
+(-855)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-855)
+(-856)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-856)
+(-857)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-857 R -4049)
+(-858 R -4055)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-858)
+(-859)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-859 S A B)
+(-860 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-860 S R -4049)
+(-861 S R -4055)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-861 I)
+(-862 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-862 S E)
+(-863 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-863 S R L)
+(-864 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-864 S E V R P)
+(-865 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -814) (|devaluate| |#1|))))
-(-865 R -4049 -2244)
+((|HasCategory| |#3| (LIST (QUOTE -815) (|devaluate| |#1|))))
+(-866 R -4055 -2213)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-866 -2244)
+(-867 -2213)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-867 S R Q)
+(-868 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-868 S)
+(-869 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-869 S R P)
+(-870 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-870)
+(-871)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-871 R)
+(-872 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-872 |lv| R)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-873 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-873 |TheField| |ThePols|)
+(-874 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))))
-(-874 R S)
+((|HasCategory| |#1| (QUOTE (-782))))
+(-875 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-875 |x| R)
+(-876 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-876 S R E |VarSet|)
+(-877 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-837))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#4| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#4| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#4| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-783))))
-(-877 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-838))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#4| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#4| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#4| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#4| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-784))))
+(-878 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
-(-878 E V R P -4049)
+(-879 E V R P -4055)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-879 E |Vars| R P S)
+(-880 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-880 R)
+(-881 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-881 E V R P -4049)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-1085) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-882 E V R P -4055)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-425))))
-(-882)
+((|HasCategory| |#3| (QUOTE (-426))))
+(-883)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-883 R L)
+(-884 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-884 A B)
+(-885 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-885 S)
+(-886 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-886)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-887)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-887 -4049)
+(-888 -4055)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-888 I)
+(-889 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-889)
+(-890)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-890 R E)
+(-891 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (-12 (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-124)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)))
-(-891 A B)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (-12 (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-124)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)))
+(-892 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4230 -12 (|has| |#2| (-446)) (|has| |#1| (-446))))
-((-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-446)))) (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-342)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-446)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-446)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729))))) (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-783)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-729))) (|HasCategory| |#2| (QUOTE (-729)))) (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-783))))))
-(-892)
+((-4235 -12 (|has| |#2| (-447)) (|has| |#1| (-447))))
+((-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-447)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-447)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-124))) (|HasCategory| |#2| (QUOTE (-124)))) (-12 (|HasCategory| |#1| (QUOTE (-447))) (|HasCategory| |#2| (QUOTE (-447)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-730))) (|HasCategory| |#2| (QUOTE (-730)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))))
+(-893)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-893 T$)
+(-894 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-894)
+((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-895)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-895 S)
+(-896 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
-(-896 R |polR|)
+(-897 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-425))))
-(-897)
+((|HasCategory| |#1| (QUOTE (-426))))
+(-898)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-898 S |Coef| |Expon| |Var|)
+(-899 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-899 |Coef| |Expon| |Var|)
+(-900 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-900)
+(-901)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-901 S R E |VarSet| P)
+(-902 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-513))))
-(-902 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-514))))
+(-903 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4233 . T) (-2092 . T))
+((-4238 . T) (-2047 . T))
NIL
-(-903 R E V P)
+(-904 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-282)))) (|HasCategory| |#1| (QUOTE (-425))))
-(-904 K)
+((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-426))))
+(-905 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-905 |VarSet| E RC P)
+(-906 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-906 R)
+(-907 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-907 R1 R2)
+(-908 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-908 R)
+(-909 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-909 K)
+(-910 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-910 R E OV PPR)
+(-911 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-911 K R UP -4049)
+(-912 K R UP -4055)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-912 |vl| |nv|)
+(-913 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-913 R |Var| |Expon| |Dpoly|)
+(-914 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-282)))))
-(-914 R E V P TS)
+((-12 (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-283)))))
+(-915 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-915)
+(-916)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-916 A B R S)
+(-917 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-917 A S)
+(-918 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-946))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-1060))))
-(-918 S)
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-947))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-1061))))
+(-919 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2092 . T) (-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-2047 . T) (-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-919 |n| K)
+(-920 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-920 S)
+(-921 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
-(-921 S R)
+(-922 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-265))))
-(-922 R)
+((|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (QUOTE (-980))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-266))))
+(-923 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4226 |has| |#1| (-265)) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 |has| |#1| (-266)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-923 QR R QS S)
+(-924 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-924 R)
+(-925 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4226 |has| |#1| (-265)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-265))) (-3703 (|HasCategory| |#1| (QUOTE (-265))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -261) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-506))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))))
-(-925 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
+((-4231 |has| |#1| (-266)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-266))) (-3708 (|HasCategory| |#1| (QUOTE (-266))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -262) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-980))) (|HasCategory| |#1| (QUOTE (-507))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))))
(-926 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-927 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-927)
+(-928)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-928 -4049 UP UPUP |radicnd| |n|)
+(-929 -4055 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4226 |has| (-381 |#2|) (-337)) (-4231 |has| (-381 |#2|) (-337)) (-4225 |has| (-381 |#2|) (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-381 |#2|) (QUOTE (-133))) (|HasCategory| (-381 |#2|) (QUOTE (-135))) (|HasCategory| (-381 |#2|) (QUOTE (-323))) (|HasCategory| (-381 |#2|) (QUOTE (-337))) (-3703 (|HasCategory| (-381 |#2|) (QUOTE (-337))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))) (|HasCategory| (-381 |#2|) (QUOTE (-342))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-342))) (-3703 (|HasCategory| (-381 |#2|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-12 (|HasCategory| (-381 |#2|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-381 |#2|) (QUOTE (-323))))) (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-381 |#2|) (QUOTE (-210))) (|HasCategory| (-381 |#2|) (QUOTE (-337)))) (|HasCategory| (-381 |#2|) (QUOTE (-323)))))
-(-929 |bb|)
+((-4231 |has| (-382 |#2|) (-338)) (-4236 |has| (-382 |#2|) (-338)) (-4230 |has| (-382 |#2|) (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-382 |#2|) (QUOTE (-133))) (|HasCategory| (-382 |#2|) (QUOTE (-135))) (|HasCategory| (-382 |#2|) (QUOTE (-324))) (|HasCategory| (-382 |#2|) (QUOTE (-338))) (-3708 (|HasCategory| (-382 |#2|) (QUOTE (-338))) (|HasCategory| (-382 |#2|) (QUOTE (-324)))) (|HasCategory| (-382 |#2|) (QUOTE (-343))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-343))) (-3708 (|HasCategory| (-382 |#2|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-12 (|HasCategory| (-382 |#2|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-382 |#2|) (QUOTE (-324))))) (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-382 |#2|) (QUOTE (-210))) (|HasCategory| (-382 |#2|) (QUOTE (-338)))) (|HasCategory| (-382 |#2|) (QUOTE (-324)))))
+(-930 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-521) (QUOTE (-837))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| (-521) (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-135))) (|HasCategory| (-521) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-946))) (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-1060))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| (-521) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| (-521) (QUOTE (-210))) (|HasCategory| (-521) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| (-521) (LIST (QUOTE -482) (QUOTE (-1084)) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -284) (QUOTE (-521)))) (|HasCategory| (-521) (LIST (QUOTE -261) (QUOTE (-521)) (QUOTE (-521)))) (|HasCategory| (-521) (QUOTE (-282))) (|HasCategory| (-521) (QUOTE (-506))) (|HasCategory| (-521) (QUOTE (-783))) (-3703 (|HasCategory| (-521) (QUOTE (-756))) (|HasCategory| (-521) (QUOTE (-783)))) (|HasCategory| (-521) (LIST (QUOTE -583) (QUOTE (-521)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-521) (QUOTE (-837)))) (|HasCategory| (-521) (QUOTE (-133)))))
-(-930)
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-522) (QUOTE (-838))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| (-522) (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-135))) (|HasCategory| (-522) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-947))) (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-1061))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| (-522) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| (-522) (QUOTE (-210))) (|HasCategory| (-522) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| (-522) (LIST (QUOTE -483) (QUOTE (-1085)) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -285) (QUOTE (-522)))) (|HasCategory| (-522) (LIST (QUOTE -262) (QUOTE (-522)) (QUOTE (-522)))) (|HasCategory| (-522) (QUOTE (-283))) (|HasCategory| (-522) (QUOTE (-507))) (|HasCategory| (-522) (QUOTE (-784))) (-3708 (|HasCategory| (-522) (QUOTE (-757))) (|HasCategory| (-522) (QUOTE (-784)))) (|HasCategory| (-522) (LIST (QUOTE -584) (QUOTE (-522)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-522) (QUOTE (-838)))) (|HasCategory| (-522) (QUOTE (-133)))))
+(-931)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-931)
+(-932)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-932 RP)
+(-933 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-933 S)
+(-934 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-934 A S)
+(-935 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)) (|HasCategory| |#2| (QUOTE (-1013))))
-(-935 S)
+((|HasAttribute| |#1| (QUOTE -4239)) (|HasCategory| |#2| (QUOTE (-1014))))
+(-936 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-936 S)
+(-937 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-937)
+(-938)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4226 . T) (-4231 . T) (-4225 . T) (-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4230 . T))
+((-4231 . T) (-4236 . T) (-4230 . T) (-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4235 . T))
NIL
-(-938 R -4049)
+(-939 R -4055)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-939 R -4049)
+(-940 R -4055)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-940 -4049 UP)
+(-941 -4055 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-941 -4049 UP)
+(-942 -4055 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-942 S)
+(-943 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-943 F1 UP UPUP R F2)
+(-944 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-944 |Pol|)
+(-945 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-945 |Pol|)
+(-946 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-946)
+(-947)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-947)
+(-948)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-948 |TheField|)
+(-949 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4226 . T) (-4231 . T) (-4225 . T) (-4228 . T) (-4227 . T) ((-4235 "*") . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-381 (-521)) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-381 (-521)) (LIST (QUOTE -961) (QUOTE (-521)))) (-3703 (|HasCategory| (-381 (-521)) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521))))))
-(-949 -4049 L)
+((-4231 . T) (-4236 . T) (-4230 . T) (-4233 . T) (-4232 . T) ((-4240 "*") . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-382 (-522)) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-382 (-522)) (LIST (QUOTE -962) (QUOTE (-522)))) (-3708 (|HasCategory| (-382 (-522)) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522))))))
+(-950 -4055 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-950 S)
+(-951 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))))
-(-951 R E V P)
+((|HasCategory| |#1| (QUOTE (-1014))))
+(-952 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-952 R)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-953 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4235 "*"))))
-(-953 R)
+((|HasAttribute| |#1| (QUOTE (-4240 "*"))))
+(-954 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-342)))) (|HasCategory| |#1| (QUOTE (-282))))
-(-954 S)
+((|HasCategory| |#1| (QUOTE (-338))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-283))))
+(-955 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-955)
+(-956)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-956 S)
+(-957 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-957 S)
+(-958 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-958 -4049 |Expon| |VarSet| |FPol| |LFPol|)
+(-959 -4055 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-959)
+(-960)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (QUOTE (-1084))) (LIST (QUOTE |:|) (QUOTE -3050) (QUOTE (-51))))))) (|HasCategory| (-1084) (QUOTE (-783))) (|HasCategory| (-51) (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-1013)))) (-12 (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -284) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791))))))
-(-960 A S)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -3048) (QUOTE (-51))))))) (|HasCategory| (-1085) (QUOTE (-784))) (|HasCategory| (-51) (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-1014)))) (-12 (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -285) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))))
+(-961 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-961 S)
+(-962 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-962 Q R)
+(-963 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-963)
+(-964)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-964 UP)
+(-965 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-965 R)
+(-966 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-966 R)
+(-967 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-967 R |ls|)
+(-968 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| (-716 |#1| (-793 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-716 |#1| (-793 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-716 |#1| (-793 |#2|)) (QUOTE (-1013))) (|HasCategory| (-716 |#1| (-793 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -716) (|devaluate| |#1|) (LIST (QUOTE -793) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| (-793 |#2|) (QUOTE (-342))) (|HasCategory| (-716 |#1| (-793 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))))
-(-968)
+((-4239 . T) (-4238 . T))
+((|HasCategory| (-717 |#1| (-794 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-717 |#1| (-794 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-717 |#1| (-794 |#2|)) (QUOTE (-1014))) (|HasCategory| (-717 |#1| (-794 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -717) (|devaluate| |#1|) (LIST (QUOTE -794) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| (-794 |#2|) (QUOTE (-343))) (|HasCategory| (-717 |#1| (-794 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))))
+(-969)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-969 S)
+(-970 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-970)
+(-971)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4230 . T))
+((-4235 . T))
NIL
-(-971 |xx| -4049)
+(-972 |xx| -4055)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-972 S |m| |n| R |Row| |Col|)
+(-973 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-282))) (|HasCategory| |#4| (QUOTE (-337))) (|HasCategory| |#4| (QUOTE (-513))) (|HasCategory| |#4| (QUOTE (-157))))
-(-973 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-283))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (QUOTE (-514))) (|HasCategory| |#4| (QUOTE (-157))))
+(-974 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4233 . T) (-2092 . T) (-4228 . T) (-4227 . T))
+((-4238 . T) (-2047 . T) (-4233 . T) (-4232 . T))
NIL
-(-974 |m| |n| R)
+(-975 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4233 . T) (-4228 . T) (-4227 . T))
-((|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-282))) (|HasCategory| |#3| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-157))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337)))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-791)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-3703 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))))))
-(-975 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4238 . T) (-4233 . T) (-4232 . T))
+((|HasCategory| |#3| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-283))) (|HasCategory| |#3| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-157))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338)))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-3708 (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))))))
+(-976 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-976 R)
+(-977 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-977)
+(-978)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-978 S)
+(-979 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-979)
+(-980)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-980 |TheField| |ThePolDom|)
+(-981 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-981)
+(-982)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4221 . T) (-4225 . T) (-4220 . T) (-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4226 . T) (-4230 . T) (-4225 . T) (-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-982)
+(-983)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (QUOTE (-1084))) (LIST (QUOTE |:|) (QUOTE -3050) (QUOTE (-51))))))) (|HasCategory| (-1084) (QUOTE (-783))) (|HasCategory| (-51) (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-1013)))) (-12 (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -284) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-51) (LIST (QUOTE -561) (QUOTE (-791))))))
-(-983 S R E V)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -3048) (QUOTE (-51))))))) (|HasCategory| (-1085) (QUOTE (-784))) (|HasCategory| (-51) (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-1014)))) (-12 (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -285) (QUOTE (-51))))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-51) (LIST (QUOTE -562) (QUOTE (-792))))))
+(-984 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-506))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-1084)))))
-(-984 R E V)
+((|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-507))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -919) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-1085)))))
+(-985 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
-(-985 S |TheField| |ThePols|)
+(-986 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-986 |TheField| |ThePols|)
+(-987 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-987 R E V P TS)
+(-988 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-988 S R E V P)
+(-989 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-989 R E V P)
+(-990 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-990 R E V P TS)
+(-991 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-991 |f|)
+(-992 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-992 |Base| R -4049)
+(-993 |Base| R -4055)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-993 |Base| R -4049)
+(-994 |Base| R -4055)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-994 R |ls|)
+(-995 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-995 UP SAE UPA)
+(-996 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-996 R UP M)
+(-997 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4226 |has| |#1| (-337)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-323)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-323))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-323)))))
-(-997 UP SAE UPA)
+((-4231 |has| |#1| (-338)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-324)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-324))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-324)))))
+(-998 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-998)
+(-999)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-999 S)
+(-1000 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1000)
+(-1001)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1001 R)
+(-1002 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1002 R)
+(-1003 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-1003 (-1084)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1003 S)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-1004 (-1085)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1004 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1004 R S)
+(-1005 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))))
-(-1005 R S)
+((|HasCategory| |#1| (QUOTE (-782))))
+(-1006 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1006 S)
+(-1007 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))))
-(-1007 S)
+((|HasCategory| |#1| (QUOTE (-1014))))
+(-1008 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-1008 S)
+(-1009 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1013))))
-(-1009 S L)
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1014))))
+(-1010 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-1010 A S)
+(-1011 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1011 S)
+(-1012 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4223 . T) (-2092 . T))
+((-4228 . T) (-2047 . T))
NIL
-(-1012 S)
+(-1013 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1013)
+(-1014)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1014 |m| |n|)
+(-1015 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1015 S)
+(-1016 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4233 . T) (-4223 . T) (-4234 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-783))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-342))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-1016 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4238 . T) (-4228 . T) (-4239 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-784))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1017)
+(-1018)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1018 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1019 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1019 R FS)
+(-1020 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1020 R E V P TS)
+(-1021 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1021 R E V P TS)
+(-1022 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1022 R E V P)
+(-1023 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-1023)
+(-1024)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1024 S)
+(-1025 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1025)
+(-1026)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1026 |dimtot| |dim1| S)
+(-1027 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4227 |has| |#3| (-970)) (-4228 |has| |#3| (-970)) (-4230 |has| |#3| (-6 -4230)) ((-4235 "*") |has| |#3| (-157)) (-4233 . T))
-((|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-781))) (-3703 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-781)))) (|HasCategory| |#3| (QUOTE (-157))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-337)))) (-3703 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-210))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| (-521) (QUOTE (-783))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084))))) (|HasCategory| |#3| (QUOTE (-663))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-3703 (|HasCategory| |#3| (QUOTE (-970))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -4230)) (|HasCategory| |#3| (QUOTE (-124))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (|HasCategory| |#3| (QUOTE (-25))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (QUOTE (-1013)))) (-3703 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (QUOTE (-970)))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-337)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-342)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-729)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-781)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013))))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521)))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-3703 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-337))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-729))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-781))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#3| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-970)))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#3| (QUOTE (-970))) (|HasCategory| |#3| (LIST (QUOTE -828) (QUOTE (-1084))))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -284) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (LIST (QUOTE -961) (QUOTE (-521))))) (|HasCategory| |#3| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1027 R |x|)
+((-4232 |has| |#3| (-971)) (-4233 |has| |#3| (-971)) (-4235 |has| |#3| (-6 -4235)) ((-4240 "*") |has| |#3| (-157)) (-4238 . T))
+((|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (-3708 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782)))) (|HasCategory| |#3| (QUOTE (-157))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-338)))) (-3708 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-210))) (-3708 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3708 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| (-522) (QUOTE (-784))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (|HasCategory| |#3| (QUOTE (-664))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-3708 (|HasCategory| |#3| (QUOTE (-971))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -4235)) (|HasCategory| |#3| (QUOTE (-124))) (-3708 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (|HasCategory| |#3| (QUOTE (-25))) (-3708 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (QUOTE (-1014)))) (-3708 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-971)))) (-3708 (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-124)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-157)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-210)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-343)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-730)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-782)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014))))) (-3708 (-12 (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522)))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-3708 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-124))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-157))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-730))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-782))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#3| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-210))) (|HasCategory| |#3| (QUOTE (-971)))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#3| (QUOTE (-971))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-1085))))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -285) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (LIST (QUOTE -962) (QUOTE (-522))))) (|HasCategory| |#3| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1028 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-425))))
-(-1028 R -4049)
+((|HasCategory| |#1| (QUOTE (-426))))
+(-1029 R -4055)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1029 R)
+(-1030 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1030)
+(-1031)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1031)
+(-1032)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4221 . T) (-4225 . T) (-4220 . T) (-4231 . T) (-4232 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4226 . T) (-4230 . T) (-4225 . T) (-4236 . T) (-4237 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1032 S)
+(-1033 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4233 . T) (-4234 . T) (-2092 . T))
+((-4238 . T) (-4239 . T) (-2047 . T))
NIL
-(-1033 S |ndim| R |Row| |Col|)
+(-1034 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-337))) (|HasAttribute| |#3| (QUOTE (-4235 "*"))) (|HasCategory| |#3| (QUOTE (-157))))
-(-1034 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-338))) (|HasAttribute| |#3| (QUOTE (-4240 "*"))) (|HasCategory| |#3| (QUOTE (-157))))
+(-1035 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2092 . T) (-4233 . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-2047 . T) (-4238 . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1035 R |Row| |Col| M)
+(-1036 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1036 R |VarSet|)
+(-1037 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1037 |Coef| |Var| SMP)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1038 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-513))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-337))))
-(-1038 R E V P)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-514))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-338))))
+(-1039 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-1039 UP -4049)
+(-1040 UP -4055)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1040 R)
+(-1041 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1041 R)
+(-1042 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1042 R)
+(-1043 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1043 S A)
+(-1044 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
-(-1044 R)
+((|HasCategory| |#1| (QUOTE (-784))))
+(-1045 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1045 R)
+(-1046 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1046)
+(-1047)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1047)
+(-1048)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1048)
+(-1049)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1049 V C)
+(-1050 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1050 V C)
+(-1051 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-1049 |#1| |#2|) (QUOTE (-1013))) (-12 (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -284) (LIST (QUOTE -1049) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1049 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -561) (QUOTE (-791)))) (-12 (|HasCategory| (-1049 |#1| |#2|) (LIST (QUOTE -284) (LIST (QUOTE -1049) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1049 |#1| |#2|) (QUOTE (-1013))))))
-(-1051 |ndim| R)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-1050 |#1| |#2|) (QUOTE (-1014))) (-12 (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -285) (LIST (QUOTE -1050) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1050 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -562) (QUOTE (-792)))) (-12 (|HasCategory| (-1050 |#1| |#2|) (LIST (QUOTE -285) (LIST (QUOTE -1050) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1050 |#1| |#2|) (QUOTE (-1014))))))
+(-1052 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4230 . T) (-4222 |has| |#2| (-6 (-4235 "*"))) (-4233 . T) (-4227 . T) (-4228 . T))
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (QUOTE (-282))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-337))) (-3703 (|HasAttribute| |#2| (QUOTE (-4235 "*"))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-3703 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-157))))
-(-1052 S)
+((-4235 . T) (-4227 |has| |#2| (-6 (-4240 "*"))) (-4238 . T) (-4232 . T) (-4233 . T))
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-338))) (-3708 (|HasAttribute| |#2| (QUOTE (-4240 "*"))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#2| (QUOTE (-210)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-3708 (-12 (|HasCategory| |#2| (QUOTE (-210))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-157))))
+(-1053 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1053)
+(-1054)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-1054 R E V P TS)
+(-1055 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1055 R E V P)
+(-1056 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-1056 S)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-1057 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1057 A S)
+((-4238 . T) (-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1058 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1058 S)
+(-1059 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-1059 |Key| |Ent| |dent|)
+(-1060 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1060)
+((-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1061)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1061 |Coef|)
+(-1062 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1062 S)
+(-1063 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1063 A B)
+(-1064 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1064 A B C)
+(-1065 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1065 S)
+(-1066 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4234 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1066)
+((-4239 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1067)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-1067)
+(-1068)
NIL
-((-4234 . T) (-4233 . T))
-((|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| (-132) (QUOTE (-1013))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-3703 (-12 (|HasCategory| (-132) (QUOTE (-783))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1013))) (|HasCategory| (-132) (LIST (QUOTE -284) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -561) (QUOTE (-791)))))
-(-1068 |Entry|)
+((-4239 . T) (-4238 . T))
+((|HasCategory| (-132) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| (-132) (QUOTE (-1014))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-3708 (-12 (|HasCategory| (-132) (QUOTE (-784))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132))))) (-12 (|HasCategory| (-132) (QUOTE (-1014))) (|HasCategory| (-132) (LIST (QUOTE -285) (QUOTE (-132)))))) (|HasCategory| (-132) (LIST (QUOTE -562) (QUOTE (-792)))))
+(-1069 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (QUOTE (-1067))) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#1|)))))) (|HasCategory| (-1067) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1013)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1069 A)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (QUOTE (-1068))) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#1|)))))) (|HasCategory| (-1068) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-1014)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1070 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))))
-(-1070 |Coef|)
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))))
+(-1071 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1071 |Coef|)
+(-1072 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1072 R UP)
+(-1073 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-282))))
-(-1073 |n| R)
+((|HasCategory| |#1| (QUOTE (-283))))
+(-1074 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1074 S1 S2)
+(-1075 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1075 |Coef| |var| |cen|)
+(-1076 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4235 "*") -3703 (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-756))) (|has| |#1| (-157)) (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-837)))) (-4226 -3703 (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-756))) (|has| |#1| (-513)) (-4009 (|has| |#1| (-337)) (|has| (-1082 |#1| |#2| |#3|) (-837)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-337))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1082) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1082 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1076 R -4049)
+(((-4240 "*") -3708 (-4015 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-757))) (|has| |#1| (-157)) (-4015 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-838)))) (-4231 -3708 (-4015 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-757))) (|has| |#1| (-514)) (-4015 (|has| |#1| (-338)) (|has| (-1083 |#1| |#2| |#3|) (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|)))))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1083) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))) (-3708 (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1083 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1077 R -4055)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1077 R)
+(-1078 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1078 R S)
+(-1079 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1079 E OV R P)
+(-1080 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1080 R)
+(-1081 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4231)) (|HasCategory| |#1| (QUOTE (-425))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (|HasCategory| |#1| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1081 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1061))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#1| (QUOTE (-210))) (|HasAttribute| |#1| (QUOTE -4236)) (|HasCategory| |#1| (QUOTE (-426))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (|HasCategory| |#1| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133)))))
(-1082 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-1083 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|))))) (|HasCategory| (-707) (QUOTE (-1025))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
-(-1083)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|))))) (|HasCategory| (-708) (QUOTE (-1026))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-1084)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1084)
+(-1085)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1085 R)
+(-1086 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1086 R)
+(-1087 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-6 -4231)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-425))) (-12 (|HasCategory| (-897) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasAttribute| |#1| (QUOTE -4231)))
-(-1087)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-6 -4236)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-426))) (-12 (|HasCategory| (-898) (QUOTE (-124))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasAttribute| |#1| (QUOTE -4236)))
+(-1088)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1088)
+(-1089)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1089)
-((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
+(-1090)
+((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} is \\spad{x} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} is \\spad{x} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} is \\spad{x} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} is \\spad{x} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The return value is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cell ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1090 R)
+(-1091 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1091 S)
+(-1092 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1092 S)
+(-1093 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1093 |Key| |Entry|)
+(-1094 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4233 . T) (-4234 . T))
-((|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -284) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2535) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3050) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#2| (QUOTE (-1013))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))) (-3703 (|HasCategory| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (LIST (QUOTE -561) (QUOTE (-791)))) (|HasCategory| |#2| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1094 R)
+((-4238 . T) (-4239 . T))
+((|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -285) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2530) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3048) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-1014))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))) (-3708 (|HasCategory| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (LIST (QUOTE -562) (QUOTE (-792)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1095 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1095 S |Key| |Entry|)
+(-1096 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1096 |Key| |Entry|)
+(-1097 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4234 . T) (-2092 . T))
+((-4239 . T) (-2047 . T))
NIL
-(-1097 |Key| |Entry|)
+(-1098 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1098)
+(-1099)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1099 S)
+(-1100 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1100)
+(-1101)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1101)
+(-1102)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1102 R)
+(-1103 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1103)
+(-1104)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1104 S)
+(-1105 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1105)
+(-1106)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1106 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
(-1107 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1108 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1108)
+(-1109)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1109 R -4049)
+(-1110 R -4055)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1110 R |Row| |Col| M)
+(-1111 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1111 R -4049)
+(-1112 R -4055)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -562) (LIST (QUOTE -820) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -814) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -814) (|devaluate| |#1|)))))
-(-1112 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -563) (LIST (QUOTE -821) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -815) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -815) (|devaluate| |#1|)))))
+(-1113 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-342))))
-(-1113 R E V P)
+((|HasCategory| |#4| (QUOTE (-343))))
+(-1114 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-1114 |Coef|)
+(-1115 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-513))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-337))))
-(-1115 |Curve|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-514))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-338))))
+(-1116 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1116)
+(-1117)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1117 S)
+(-1118 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-1118 -4049)
+((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-1119 -4055)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1119)
+(-1120)
((|constructor| (NIL "The fundamental Type.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-1120 S)
+(-1121 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-783))))
-(-1121)
+((|HasCategory| |#1| (QUOTE (-784))))
+(-1122)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1122 S)
+(-1123 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1123)
+(-1124)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1124 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1125 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1125 |Coef|)
+(-1126 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1126 S |Coef| UTS)
+(-1127 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-337))))
-(-1127 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-338))))
+(-1128 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-2092 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-2047 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1128 |Coef| UTS)
+(-1129 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-135))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-135))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-210)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-946)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-783)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-783))))) (|HasCategory| |#2| (QUOTE (-837))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-282)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133))) (-3703 (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-133))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -261) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -482) (QUOTE (-1084)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-756)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-783)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-946)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-1060)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -284) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521))))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-133))))))
-(-1129 |Coef| |var| |cen|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-135))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-135))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-210)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-947)))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784))))) (|HasCategory| |#2| (QUOTE (-838))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-507)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133))) (-3708 (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-133))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3708 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -262) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -483) (QUOTE (-1085)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-757)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-947)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-1061)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522))))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-133))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-133))))))
+(-1130 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4235 "*") -3703 (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-756))) (|has| |#1| (-157)) (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-837)))) (-4226 -3703 (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-756))) (|has| |#1| (-513)) (-4009 (|has| |#1| (-337)) (|has| (-1157 |#1| |#2| |#3|) (-837)))) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| (-521) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-521)) (|devaluate| |#1|))))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-506))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-282))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-337))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-946))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -261) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -284) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -482) (QUOTE (-1084)) (LIST (QUOTE -1157) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-1084)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))) (-3703 (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-837))) (|HasCategory| |#1| (QUOTE (-337)))) (-12 (|HasCategory| (-1157 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-337)))) (|HasCategory| |#1| (QUOTE (-133)))))
-(-1130 ZP)
+(((-4240 "*") -3708 (-4015 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-757))) (|has| |#1| (-157)) (-4015 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-838)))) (-4231 -3708 (-4015 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-757))) (|has| |#1| (-514)) (-4015 (|has| |#1| (-338)) (|has| (-1158 |#1| |#2| |#3|) (-838)))) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| (-522) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-135))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-135)))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|)))))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-210))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-522)) (|devaluate| |#1|))))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-507))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-133))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133)))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-157)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-947))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-1061))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -262) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -483) (QUOTE (-1085)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))) (-3708 (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-838))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3|) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-133)))))
+(-1131 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1131 R S)
+(-1132 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))))
-(-1132 S)
+((|HasCategory| |#1| (QUOTE (-782))))
+(-1133 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-781))) (|HasCategory| |#1| (QUOTE (-1013))))
-(-1133 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-782))) (|HasCategory| |#1| (QUOTE (-1014))))
+(-1134 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1134 R Q UP)
+(-1135 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1135 R UP)
+(-1136 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1136 R UP)
+(-1137 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1137 R U)
+(-1138 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1138 |x| R)
+(-1139 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4235 "*") |has| |#2| (-157)) (-4226 |has| |#2| (-513)) (-4229 |has| |#2| (-337)) (-4231 |has| |#2| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-837))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-513)))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-353)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-353))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -814) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -814) (QUOTE (-521))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-353)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -562) (LIST (QUOTE -820) (QUOTE (-521)))))) (-12 (|HasCategory| (-998) (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#2| (LIST (QUOTE -562) (QUOTE (-497))))) (|HasCategory| |#2| (QUOTE (-783))) (|HasCategory| |#2| (LIST (QUOTE -583) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (-3703 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE -4231)) (|HasCategory| |#2| (QUOTE (-425))) (-3703 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-837)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (-3703 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-837)))) (|HasCategory| |#2| (QUOTE (-133)))))
-(-1139 R PR S PS)
+(((-4240 "*") |has| |#2| (-157)) (-4231 |has| |#2| (-514)) (-4234 |has| |#2| (-338)) (-4236 |has| |#2| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-838))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-514)))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-354)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-354))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -815) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -815) (QUOTE (-522))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-354)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -563) (LIST (QUOTE -821) (QUOTE (-522)))))) (-12 (|HasCategory| (-999) (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#2| (LIST (QUOTE -563) (QUOTE (-498))))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -584) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-135))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-1061))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (-3708 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| |#2| (QUOTE (-210))) (|HasAttribute| |#2| (QUOTE -4236)) (|HasCategory| |#2| (QUOTE (-426))) (-3708 (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-838)))) (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (-3708 (-12 (|HasCategory| $ (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-133)))))
+(-1140 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1140 S R)
+(-1141 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))) (|HasCategory| |#2| (QUOTE (-425))) (|HasCategory| |#2| (QUOTE (-513))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-1060))))
-(-1141 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-426))) (|HasCategory| |#2| (QUOTE (-514))) (|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (QUOTE (-1061))))
+(-1142 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4229 |has| |#1| (-337)) (-4231 |has| |#1| (-6 -4231)) (-4228 . T) (-4227 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4234 |has| |#1| (-338)) (-4236 |has| |#1| (-6 -4236)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
-(-1142 S |Coef| |Expon|)
+(-1143 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2223) (LIST (|devaluate| |#2|) (QUOTE (-1084))))))
-(-1143 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2190) (LIST (|devaluate| |#2|) (QUOTE (-1085))))))
+(-1144 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1144 RC P)
+(-1145 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1145 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1146 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1146 |Coef|)
+(-1147 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1147 S |Coef| ULS)
+(-1148 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1148 |Coef| ULS)
+(-1149 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1149 |Coef| ULS)
+(-1150 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
-(-1150 |Coef| |var| |cen|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-1151 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4231 |has| |#1| (-337)) (-4225 |has| |#1| (-337)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521))) (|devaluate| |#1|))))) (|HasCategory| (-381 (-521)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (-3703 (|HasCategory| |#1| (QUOTE (-337))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
-(-1151 R FE |var| |cen|)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4236 |has| |#1| (-338)) (-4230 |has| |#1| (-338)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522))) (|devaluate| |#1|))))) (|HasCategory| (-382 (-522)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (-3708 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-1152 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4235 "*") |has| (-1150 |#2| |#3| |#4|) (-157)) (-4226 |has| (-1150 |#2| |#3| |#4|) (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-157))) (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -961) (QUOTE (-521)))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-337))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-425))) (-3703 (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (LIST (QUOTE -961) (LIST (QUOTE -381) (QUOTE (-521)))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-513))))
-(-1152 A S)
+(((-4240 "*") |has| (-1151 |#2| |#3| |#4|) (-157)) (-4231 |has| (-1151 |#2| |#3| |#4|) (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-133))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-135))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-157))) (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -962) (QUOTE (-522)))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-338))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-426))) (-3708 (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (LIST (QUOTE -962) (LIST (QUOTE -382) (QUOTE (-522)))))) (|HasCategory| (-1151 |#2| |#3| |#4|) (QUOTE (-514))))
+(-1153 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4234)))
-(-1153 S)
+((|HasAttribute| |#1| (QUOTE -4239)))
+(-1154 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-1154 |Coef1| |Coef2| UTS1 UTS2)
+(-1155 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1155 S |Coef|)
+(-1156 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1749) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1084))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#2| (QUOTE (-337))))
-(-1156 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#2| (QUOTE (-887))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1858) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1085))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#2| (QUOTE (-338))))
+(-1157 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1157 |Coef| |var| |cen|)
+(-1158 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4235 "*") |has| |#1| (-157)) (-4226 |has| |#1| (-513)) (-4227 . T) (-4228 . T) (-4230 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#1| (QUOTE (-157))) (-3703 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-513)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -828) (QUOTE (-1084)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-707)) (|devaluate| |#1|))))) (|HasCategory| (-707) (QUOTE (-1025))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-707))))) (|HasSignature| |#1| (LIST (QUOTE -2223) (LIST (|devaluate| |#1|) (QUOTE (-1084)))))) (|HasCategory| |#1| (QUOTE (-337))) (-3703 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-521)))) (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasSignature| |#1| (LIST (QUOTE -1749) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1084))))) (|HasSignature| |#1| (LIST (QUOTE -4085) (LIST (LIST (QUOTE -587) (QUOTE (-1084))) (|devaluate| |#1|)))))))
-(-1158 |Coef| UTS)
+(((-4240 "*") |has| |#1| (-157)) (-4231 |has| |#1| (-514)) (-4232 . T) (-4233 . T) (-4235 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#1| (QUOTE (-157))) (-3708 (|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-514)))) (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-135))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-1085)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-708)) (|devaluate| |#1|))))) (|HasCategory| (-708) (QUOTE (-1026))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-708))))) (|HasSignature| |#1| (LIST (QUOTE -2190) (LIST (|devaluate| |#1|) (QUOTE (-1085)))))) (|HasCategory| |#1| (QUOTE (-338))) (-3708 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-887))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasSignature| |#1| (LIST (QUOTE -1858) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1085))))) (|HasSignature| |#1| (LIST (QUOTE -4090) (LIST (LIST (QUOTE -588) (QUOTE (-1085))) (|devaluate| |#1|)))))))
+(-1159 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1159 -4049 UP L UTS)
+(-1160 -4055 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-513))))
-(-1160)
+((|HasCategory| |#1| (QUOTE (-514))))
+(-1161)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-2092 . T))
+((-2047 . T))
NIL
-(-1161 |sym|)
+(-1162 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1162 S R)
+(-1163 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1163 R)
+((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-971))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1164 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4234 . T) (-4233 . T) (-2092 . T))
+((-4239 . T) (-4238 . T) (-2047 . T))
NIL
-(-1164 A B)
+(-1165 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1165 R)
+(-1166 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| (-521) (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013))) (-3703 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-970)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-783))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791)))) (-3703 (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (LIST (QUOTE -284) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -561) (QUOTE (-791))))))
-(-1166)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#1| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| (-522) (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014))) (-3708 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-971))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-971)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792)))) (-3708 (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -562) (QUOTE (-792))))))
+(-1167)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1167)
+(-1168)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1168)
+(-1169)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1169)
+(-1170)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1170)
+(-1171)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1171 A S)
+(-1172 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1172 S)
+(-1173 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4228 . T) (-4227 . T))
+((-4233 . T) (-4232 . T))
NIL
-(-1173 R)
+(-1174 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1174 K R UP -4049)
+(-1175 K R UP -4055)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1175 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1176 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4228 |has| |#1| (-157)) (-4227 |has| |#1| (-157)) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))))
-(-1176 R E V P)
+((-4233 |has| |#1| (-157)) (-4232 |has| |#1| (-157)) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))))
+(-1177 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4234 . T) (-4233 . T))
-((|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-497)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (LIST (QUOTE -284) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-513))) (|HasCategory| |#3| (QUOTE (-342))) (|HasCategory| |#4| (LIST (QUOTE -561) (QUOTE (-791)))))
-(-1177 R)
+((-4239 . T) (-4238 . T))
+((|HasCategory| |#4| (LIST (QUOTE -563) (QUOTE (-498)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (LIST (QUOTE -285) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-514))) (|HasCategory| |#3| (QUOTE (-343))) (|HasCategory| |#4| (LIST (QUOTE -562) (QUOTE (-792)))))
+(-1178 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4227 . T) (-4228 . T) (-4230 . T))
+((-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1178 |vl| R)
+(-1179 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4230 . T) (-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4226)))
-(-1179 R |VarSet| XPOLY)
+((-4235 . T) (-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4231)))
+(-1180 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1180 |vl| R)
+(-1181 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
+((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
-(-1181 S -4049)
+(-1182 S -4055)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-342))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))))
-(-1182 -4049)
+((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-135))))
+(-1183 -4055)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4225 . T) (-4231 . T) (-4226 . T) ((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+((-4230 . T) (-4236 . T) (-4231 . T) ((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
-(-1183 |VarSet| R)
+(-1184 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -654) (LIST (QUOTE -381) (QUOTE (-521))))) (|HasAttribute| |#2| (QUOTE -4226)))
-(-1184 |vl| R)
+((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasCategory| |#2| (LIST (QUOTE -655) (LIST (QUOTE -382) (QUOTE (-522))))) (|HasAttribute| |#2| (QUOTE -4231)))
+(-1185 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
+((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T))
NIL
-(-1185 R)
+(-1186 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4226 |has| |#1| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasAttribute| |#1| (QUOTE -4226)))
-(-1186 R E)
+((-4231 |has| |#1| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasAttribute| |#1| (QUOTE -4231)))
+(-1187 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4230 . T) (-4231 |has| |#1| (-6 -4231)) (-4226 |has| |#1| (-6 -4226)) (-4228 . T) (-4227 . T))
-((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-337))) (|HasAttribute| |#1| (QUOTE -4230)) (|HasAttribute| |#1| (QUOTE -4231)) (|HasAttribute| |#1| (QUOTE -4226)))
-(-1187 |VarSet| R)
+((-4235 . T) (-4236 |has| |#1| (-6 -4236)) (-4231 |has| |#1| (-6 -4231)) (-4233 . T) (-4232 . T))
+((|HasCategory| |#1| (QUOTE (-157))) (|HasCategory| |#1| (QUOTE (-338))) (|HasAttribute| |#1| (QUOTE -4235)) (|HasAttribute| |#1| (QUOTE -4236)) (|HasAttribute| |#1| (QUOTE -4231)))
+(-1188 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4226 |has| |#2| (-6 -4226)) (-4228 . T) (-4227 . T) (-4230 . T))
-((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4226)))
-(-1188 A)
+((-4231 |has| |#2| (-6 -4231)) (-4233 . T) (-4232 . T) (-4235 . T))
+((|HasCategory| |#2| (QUOTE (-157))) (|HasAttribute| |#2| (QUOTE -4231)))
+(-1189 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1189 R |ls| |ls2|)
+(-1190 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1190 R)
+(-1191 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1191 |p|)
+(-1192 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4235 "*") . T) (-4227 . T) (-4228 . T) (-4230 . T))
+(((-4240 "*") . T) (-4232 . T) (-4233 . T) (-4235 . T))
NIL
NIL
NIL
@@ -4716,4 +4720,4 @@ NIL
NIL
NIL
NIL
-((-1196 NIL 2233052 2233057 2233062 2233067) (-3 NIL 2233032 2233037 2233042 2233047) (-2 NIL 2233012 2233017 2233022 2233027) (-1 NIL 2232992 2232997 2233002 2233007) (0 NIL 2232972 2232977 2232982 2232987) (-1191 "ZMOD.spad" 2232781 2232794 2232910 2232967) (-1190 "ZLINDEP.spad" 2231825 2231836 2232771 2232776) (-1189 "ZDSOLVE.spad" 2221674 2221696 2231815 2231820) (-1188 "YSTREAM.spad" 2221167 2221178 2221664 2221669) (-1187 "XRPOLY.spad" 2220387 2220407 2221023 2221092) (-1186 "XPR.spad" 2218116 2218129 2220105 2220204) (-1185 "XPOLY.spad" 2217671 2217682 2217972 2218041) (-1184 "XPOLYC.spad" 2216988 2217004 2217597 2217666) (-1183 "XPBWPOLY.spad" 2215425 2215445 2216768 2216837) (-1182 "XF.spad" 2213886 2213901 2215327 2215420) (-1181 "XF.spad" 2212327 2212344 2213770 2213775) (-1180 "XFALG.spad" 2209351 2209367 2212253 2212322) (-1179 "XEXPPKG.spad" 2208602 2208628 2209341 2209346) (-1178 "XDPOLY.spad" 2208216 2208232 2208458 2208527) (-1177 "XALG.spad" 2207814 2207825 2208172 2208211) (-1176 "WUTSET.spad" 2203653 2203670 2207460 2207487) (-1175 "WP.spad" 2202667 2202711 2203511 2203578) (-1174 "WFFINTBS.spad" 2200230 2200252 2202657 2202662) (-1173 "WEIER.spad" 2198444 2198455 2200220 2200225) (-1172 "VSPACE.spad" 2198117 2198128 2198412 2198439) (-1171 "VSPACE.spad" 2197810 2197823 2198107 2198112) (-1170 "VOID.spad" 2197400 2197409 2197800 2197805) (-1169 "VIEW.spad" 2195022 2195031 2197390 2197395) (-1168 "VIEWDEF.spad" 2190219 2190228 2195012 2195017) (-1167 "VIEW3D.spad" 2174054 2174063 2190209 2190214) (-1166 "VIEW2D.spad" 2161791 2161800 2174044 2174049) (-1165 "VECTOR.spad" 2160468 2160479 2160719 2160746) (-1164 "VECTOR2.spad" 2159095 2159108 2160458 2160463) (-1163 "VECTCAT.spad" 2156983 2156994 2159051 2159090) (-1162 "VECTCAT.spad" 2154692 2154705 2156762 2156767) (-1161 "VARIABLE.spad" 2154472 2154487 2154682 2154687) (-1160 "UTYPE.spad" 2154106 2154115 2154452 2154467) (-1159 "UTSODETL.spad" 2153399 2153423 2154062 2154067) (-1158 "UTSODE.spad" 2151587 2151607 2153389 2153394) (-1157 "UTS.spad" 2146376 2146404 2150054 2150151) (-1156 "UTSCAT.spad" 2143827 2143843 2146274 2146371) (-1155 "UTSCAT.spad" 2140922 2140940 2143371 2143376) (-1154 "UTS2.spad" 2140515 2140550 2140912 2140917) (-1153 "URAGG.spad" 2135137 2135148 2140495 2140510) (-1152 "URAGG.spad" 2129733 2129746 2135093 2135098) (-1151 "UPXSSING.spad" 2127379 2127405 2128817 2128950) (-1150 "UPXS.spad" 2124406 2124434 2125511 2125660) (-1149 "UPXSCONS.spad" 2122163 2122183 2122538 2122687) (-1148 "UPXSCCA.spad" 2120621 2120641 2122009 2122158) (-1147 "UPXSCCA.spad" 2119221 2119243 2120611 2120616) (-1146 "UPXSCAT.spad" 2117802 2117818 2119067 2119216) (-1145 "UPXS2.spad" 2117343 2117396 2117792 2117797) (-1144 "UPSQFREE.spad" 2115755 2115769 2117333 2117338) (-1143 "UPSCAT.spad" 2113348 2113372 2115653 2115750) (-1142 "UPSCAT.spad" 2110647 2110673 2112954 2112959) (-1141 "UPOLYC.spad" 2105625 2105636 2110489 2110642) (-1140 "UPOLYC.spad" 2100495 2100508 2105361 2105366) (-1139 "UPOLYC2.spad" 2099964 2099983 2100485 2100490) (-1138 "UP.spad" 2097014 2097029 2097522 2097675) (-1137 "UPMP.spad" 2095904 2095917 2097004 2097009) (-1136 "UPDIVP.spad" 2095467 2095481 2095894 2095899) (-1135 "UPDECOMP.spad" 2093704 2093718 2095457 2095462) (-1134 "UPCDEN.spad" 2092911 2092927 2093694 2093699) (-1133 "UP2.spad" 2092273 2092294 2092901 2092906) (-1132 "UNISEG.spad" 2091626 2091637 2092192 2092197) (-1131 "UNISEG2.spad" 2091119 2091132 2091582 2091587) (-1130 "UNIFACT.spad" 2090220 2090232 2091109 2091114) (-1129 "ULS.spad" 2080779 2080807 2081872 2082301) (-1128 "ULSCONS.spad" 2074822 2074842 2075194 2075343) (-1127 "ULSCCAT.spad" 2072419 2072439 2074642 2074817) (-1126 "ULSCCAT.spad" 2070150 2070172 2072375 2072380) (-1125 "ULSCAT.spad" 2068366 2068382 2069996 2070145) (-1124 "ULS2.spad" 2067878 2067931 2068356 2068361) (-1123 "UFD.spad" 2066943 2066952 2067804 2067873) (-1122 "UFD.spad" 2066070 2066081 2066933 2066938) (-1121 "UDVO.spad" 2064917 2064926 2066060 2066065) (-1120 "UDPO.spad" 2062344 2062355 2064873 2064878) (-1119 "TYPE.spad" 2062266 2062275 2062324 2062339) (-1118 "TWOFACT.spad" 2060916 2060931 2062256 2062261) (-1117 "TUPLE.spad" 2060302 2060313 2060815 2060820) (-1116 "TUBETOOL.spad" 2057139 2057148 2060292 2060297) (-1115 "TUBE.spad" 2055780 2055797 2057129 2057134) (-1114 "TS.spad" 2054369 2054385 2055345 2055442) (-1113 "TSETCAT.spad" 2041484 2041501 2054325 2054364) (-1112 "TSETCAT.spad" 2028597 2028616 2041440 2041445) (-1111 "TRMANIP.spad" 2022963 2022980 2028303 2028308) (-1110 "TRIMAT.spad" 2021922 2021947 2022953 2022958) (-1109 "TRIGMNIP.spad" 2020439 2020456 2021912 2021917) (-1108 "TRIGCAT.spad" 2019951 2019960 2020429 2020434) (-1107 "TRIGCAT.spad" 2019461 2019472 2019941 2019946) (-1106 "TREE.spad" 2018032 2018043 2019068 2019095) (-1105 "TRANFUN.spad" 2017863 2017872 2018022 2018027) (-1104 "TRANFUN.spad" 2017692 2017703 2017853 2017858) (-1103 "TOPSP.spad" 2017366 2017375 2017682 2017687) (-1102 "TOOLSIGN.spad" 2017029 2017040 2017356 2017361) (-1101 "TEXTFILE.spad" 2015586 2015595 2017019 2017024) (-1100 "TEX.spad" 2012603 2012612 2015576 2015581) (-1099 "TEX1.spad" 2012159 2012170 2012593 2012598) (-1098 "TEMUTL.spad" 2011714 2011723 2012149 2012154) (-1097 "TBCMPPK.spad" 2009807 2009830 2011704 2011709) (-1096 "TBAGG.spad" 2008831 2008854 2009775 2009802) (-1095 "TBAGG.spad" 2007875 2007900 2008821 2008826) (-1094 "TANEXP.spad" 2007251 2007262 2007865 2007870) (-1093 "TABLE.spad" 2005662 2005685 2005932 2005959) (-1092 "TABLEAU.spad" 2005143 2005154 2005652 2005657) (-1091 "TABLBUMP.spad" 2001926 2001937 2005133 2005138) (-1090 "SYSSOLP.spad" 1999399 1999410 2001916 2001921) (-1089 "SYNTAX.spad" 1995684 1995693 1999389 1999394) (-1088 "SYMTAB.spad" 1993740 1993749 1995674 1995679) (-1087 "SYMS.spad" 1989725 1989734 1993730 1993735) (-1086 "SYMPOLY.spad" 1988735 1988746 1988817 1988944) (-1085 "SYMFUNC.spad" 1988210 1988221 1988725 1988730) (-1084 "SYMBOL.spad" 1985546 1985555 1988200 1988205) (-1083 "SWITCH.spad" 1982303 1982312 1985536 1985541) (-1082 "SUTS.spad" 1979202 1979230 1980770 1980867) (-1081 "SUPXS.spad" 1976216 1976244 1977334 1977483) (-1080 "SUP.spad" 1972993 1973004 1973774 1973927) (-1079 "SUPFRACF.spad" 1972098 1972116 1972983 1972988) (-1078 "SUP2.spad" 1971488 1971501 1972088 1972093) (-1077 "SUMRF.spad" 1970454 1970465 1971478 1971483) (-1076 "SUMFS.spad" 1970087 1970104 1970444 1970449) (-1075 "SULS.spad" 1960633 1960661 1961739 1962168) (-1074 "SUCH.spad" 1960313 1960328 1960623 1960628) (-1073 "SUBSPACE.spad" 1952320 1952335 1960303 1960308) (-1072 "SUBRESP.spad" 1951480 1951494 1952276 1952281) (-1071 "STTF.spad" 1947579 1947595 1951470 1951475) (-1070 "STTFNC.spad" 1944047 1944063 1947569 1947574) (-1069 "STTAYLOR.spad" 1936445 1936456 1943928 1943933) (-1068 "STRTBL.spad" 1934950 1934967 1935099 1935126) (-1067 "STRING.spad" 1934359 1934368 1934373 1934400) (-1066 "STRICAT.spad" 1934135 1934144 1934315 1934354) (-1065 "STREAM.spad" 1930903 1930914 1933660 1933675) (-1064 "STREAM3.spad" 1930448 1930463 1930893 1930898) (-1063 "STREAM2.spad" 1929516 1929529 1930438 1930443) (-1062 "STREAM1.spad" 1929220 1929231 1929506 1929511) (-1061 "STINPROD.spad" 1928126 1928142 1929210 1929215) (-1060 "STEP.spad" 1927327 1927336 1928116 1928121) (-1059 "STBL.spad" 1925853 1925881 1926020 1926035) (-1058 "STAGG.spad" 1924918 1924929 1925833 1925848) (-1057 "STAGG.spad" 1923991 1924004 1924908 1924913) (-1056 "STACK.spad" 1923342 1923353 1923598 1923625) (-1055 "SREGSET.spad" 1921046 1921063 1922988 1923015) (-1054 "SRDCMPK.spad" 1919591 1919611 1921036 1921041) (-1053 "SRAGG.spad" 1914676 1914685 1919547 1919586) (-1052 "SRAGG.spad" 1909793 1909804 1914666 1914671) (-1051 "SQMATRIX.spad" 1907419 1907437 1908327 1908414) (-1050 "SPLTREE.spad" 1901971 1901984 1906855 1906882) (-1049 "SPLNODE.spad" 1898559 1898572 1901961 1901966) (-1048 "SPFCAT.spad" 1897336 1897345 1898549 1898554) (-1047 "SPECOUT.spad" 1895886 1895895 1897326 1897331) (-1046 "spad-parser.spad" 1895351 1895360 1895876 1895881) (-1045 "SPACEC.spad" 1879364 1879375 1895341 1895346) (-1044 "SPACE3.spad" 1879140 1879151 1879354 1879359) (-1043 "SORTPAK.spad" 1878685 1878698 1879096 1879101) (-1042 "SOLVETRA.spad" 1876442 1876453 1878675 1878680) (-1041 "SOLVESER.spad" 1874962 1874973 1876432 1876437) (-1040 "SOLVERAD.spad" 1870972 1870983 1874952 1874957) (-1039 "SOLVEFOR.spad" 1869392 1869410 1870962 1870967) (-1038 "SNTSCAT.spad" 1868980 1868997 1869348 1869387) (-1037 "SMTS.spad" 1867240 1867266 1868545 1868642) (-1036 "SMP.spad" 1864682 1864702 1865072 1865199) (-1035 "SMITH.spad" 1863525 1863550 1864672 1864677) (-1034 "SMATCAT.spad" 1861623 1861653 1863457 1863520) (-1033 "SMATCAT.spad" 1859665 1859697 1861501 1861506) (-1032 "SKAGG.spad" 1858614 1858625 1859621 1859660) (-1031 "SINT.spad" 1856922 1856931 1858480 1858609) (-1030 "SIMPAN.spad" 1856650 1856659 1856912 1856917) (-1029 "SIGNRF.spad" 1855758 1855769 1856640 1856645) (-1028 "SIGNEF.spad" 1855027 1855044 1855748 1855753) (-1027 "SHP.spad" 1852945 1852960 1854983 1854988) (-1026 "SHDP.spad" 1844335 1844362 1844844 1844973) (-1025 "SGROUP.spad" 1843801 1843810 1844325 1844330) (-1024 "SGROUP.spad" 1843265 1843276 1843791 1843796) (-1023 "SGCF.spad" 1836146 1836155 1843255 1843260) (-1022 "SFRTCAT.spad" 1835062 1835079 1836102 1836141) (-1021 "SFRGCD.spad" 1834125 1834145 1835052 1835057) (-1020 "SFQCMPK.spad" 1828762 1828782 1834115 1834120) (-1019 "SFORT.spad" 1828197 1828211 1828752 1828757) (-1018 "SEXOF.spad" 1828040 1828080 1828187 1828192) (-1017 "SEX.spad" 1827932 1827941 1828030 1828035) (-1016 "SEXCAT.spad" 1825036 1825076 1827922 1827927) (-1015 "SET.spad" 1823336 1823347 1824457 1824496) (-1014 "SETMN.spad" 1821770 1821787 1823326 1823331) (-1013 "SETCAT.spad" 1821255 1821264 1821760 1821765) (-1012 "SETCAT.spad" 1820738 1820749 1821245 1821250) (-1011 "SETAGG.spad" 1817261 1817272 1820706 1820733) (-1010 "SETAGG.spad" 1813804 1813817 1817251 1817256) (-1009 "SEGXCAT.spad" 1812916 1812929 1813784 1813799) (-1008 "SEG.spad" 1812729 1812740 1812835 1812840) (-1007 "SEGCAT.spad" 1811548 1811559 1812709 1812724) (-1006 "SEGBIND.spad" 1810620 1810631 1811503 1811508) (-1005 "SEGBIND2.spad" 1810316 1810329 1810610 1810615) (-1004 "SEG2.spad" 1809741 1809754 1810272 1810277) (-1003 "SDVAR.spad" 1809017 1809028 1809731 1809736) (-1002 "SDPOL.spad" 1806410 1806421 1806701 1806828) (-1001 "SCPKG.spad" 1804489 1804500 1806400 1806405) (-1000 "SCOPE.spad" 1803634 1803643 1804479 1804484) (-999 "SCACHE.spad" 1802317 1802327 1803624 1803629) (-998 "SAOS.spad" 1802190 1802198 1802307 1802312) (-997 "SAERFFC.spad" 1801904 1801923 1802180 1802185) (-996 "SAE.spad" 1800083 1800098 1800693 1800828) (-995 "SAEFACT.spad" 1799785 1799804 1800073 1800078) (-994 "RURPK.spad" 1797427 1797442 1799775 1799780) (-993 "RULESET.spad" 1796869 1796892 1797417 1797422) (-992 "RULE.spad" 1795074 1795097 1796859 1796864) (-991 "RULECOLD.spad" 1794927 1794939 1795064 1795069) (-990 "RSETGCD.spad" 1791306 1791325 1794917 1794922) (-989 "RSETCAT.spad" 1781079 1781095 1791262 1791301) (-988 "RSETCAT.spad" 1770884 1770902 1781069 1781074) (-987 "RSDCMPK.spad" 1769337 1769356 1770874 1770879) (-986 "RRCC.spad" 1767722 1767751 1769327 1769332) (-985 "RRCC.spad" 1766105 1766136 1767712 1767717) (-984 "RPOLCAT.spad" 1745466 1745480 1765973 1766100) (-983 "RPOLCAT.spad" 1724542 1724558 1745051 1745056) (-982 "ROUTINE.spad" 1720406 1720414 1723189 1723216) (-981 "ROMAN.spad" 1719639 1719647 1720272 1720401) (-980 "ROIRC.spad" 1718720 1718751 1719629 1719634) (-979 "RNS.spad" 1717624 1717632 1718622 1718715) (-978 "RNS.spad" 1716614 1716624 1717614 1717619) (-977 "RNG.spad" 1716350 1716358 1716604 1716609) (-976 "RMODULE.spad" 1715989 1715999 1716340 1716345) (-975 "RMCAT2.spad" 1715398 1715454 1715979 1715984) (-974 "RMATRIX.spad" 1714078 1714096 1714565 1714604) (-973 "RMATCAT.spad" 1709600 1709630 1714022 1714073) (-972 "RMATCAT.spad" 1705024 1705056 1709448 1709453) (-971 "RINTERP.spad" 1704913 1704932 1705014 1705019) (-970 "RING.spad" 1704271 1704279 1704893 1704908) (-969 "RING.spad" 1703637 1703647 1704261 1704266) (-968 "RIDIST.spad" 1703022 1703030 1703627 1703632) (-967 "RGCHAIN.spad" 1701602 1701617 1702507 1702534) (-966 "RF.spad" 1699217 1699227 1701592 1701597) (-965 "RFFACTOR.spad" 1698680 1698690 1699207 1699212) (-964 "RFFACT.spad" 1698416 1698427 1698670 1698675) (-963 "RFDIST.spad" 1697405 1697413 1698406 1698411) (-962 "RETSOL.spad" 1696823 1696835 1697395 1697400) (-961 "RETRACT.spad" 1696173 1696183 1696813 1696818) (-960 "RETRACT.spad" 1695521 1695533 1696163 1696168) (-959 "RESULT.spad" 1693582 1693590 1694168 1694195) (-958 "RESRING.spad" 1692930 1692976 1693520 1693577) (-957 "RESLATC.spad" 1692255 1692265 1692920 1692925) (-956 "REPSQ.spad" 1691985 1691995 1692245 1692250) (-955 "REP.spad" 1689538 1689546 1691975 1691980) (-954 "REPDB.spad" 1689244 1689254 1689528 1689533) (-953 "REP2.spad" 1678817 1678827 1689086 1689091) (-952 "REP1.spad" 1672808 1672818 1678767 1678772) (-951 "REGSET.spad" 1670606 1670622 1672454 1672481) (-950 "REF.spad" 1669936 1669946 1670561 1670566) (-949 "REDORDER.spad" 1669113 1669129 1669926 1669931) (-948 "RECLOS.spad" 1667903 1667922 1668606 1668699) (-947 "REALSOLV.spad" 1667036 1667044 1667893 1667898) (-946 "REAL.spad" 1666909 1666917 1667026 1667031) (-945 "REAL0Q.spad" 1664192 1664206 1666899 1666904) (-944 "REAL0.spad" 1661021 1661035 1664182 1664187) (-943 "RDIV.spad" 1660673 1660697 1661011 1661016) (-942 "RDIST.spad" 1660237 1660247 1660663 1660668) (-941 "RDETRS.spad" 1659034 1659051 1660227 1660232) (-940 "RDETR.spad" 1657142 1657159 1659024 1659029) (-939 "RDEEFS.spad" 1656216 1656232 1657132 1657137) (-938 "RDEEF.spad" 1655213 1655229 1656206 1656211) (-937 "RCFIELD.spad" 1652397 1652405 1655115 1655208) (-936 "RCFIELD.spad" 1649667 1649677 1652387 1652392) (-935 "RCAGG.spad" 1647570 1647580 1649647 1649662) (-934 "RCAGG.spad" 1645410 1645422 1647489 1647494) (-933 "RATRET.spad" 1644771 1644781 1645400 1645405) (-932 "RATFACT.spad" 1644464 1644475 1644761 1644766) (-931 "RANDSRC.spad" 1643784 1643792 1644454 1644459) (-930 "RADUTIL.spad" 1643539 1643547 1643774 1643779) (-929 "RADIX.spad" 1640332 1640345 1642009 1642102) (-928 "RADFF.spad" 1638749 1638785 1638867 1639023) (-927 "RADCAT.spad" 1638343 1638351 1638739 1638744) (-926 "RADCAT.spad" 1637935 1637945 1638333 1638338) (-925 "QUEUE.spad" 1637278 1637288 1637542 1637569) (-924 "QUAT.spad" 1635864 1635874 1636206 1636271) (-923 "QUATCT2.spad" 1635483 1635501 1635854 1635859) (-922 "QUATCAT.spad" 1633648 1633658 1635413 1635478) (-921 "QUATCAT.spad" 1631565 1631577 1633332 1633337) (-920 "QUAGG.spad" 1630379 1630389 1631521 1631560) (-919 "QFORM.spad" 1629842 1629856 1630369 1630374) (-918 "QFCAT.spad" 1628533 1628543 1629732 1629837) (-917 "QFCAT.spad" 1626830 1626842 1628031 1628036) (-916 "QFCAT2.spad" 1626521 1626537 1626820 1626825) (-915 "QEQUAT.spad" 1626078 1626086 1626511 1626516) (-914 "QCMPACK.spad" 1620825 1620844 1626068 1626073) (-913 "QALGSET.spad" 1616900 1616932 1620739 1620744) (-912 "QALGSET2.spad" 1614896 1614914 1616890 1616895) (-911 "PWFFINTB.spad" 1612206 1612227 1614886 1614891) (-910 "PUSHVAR.spad" 1611535 1611554 1612196 1612201) (-909 "PTRANFN.spad" 1607661 1607671 1611525 1611530) (-908 "PTPACK.spad" 1604749 1604759 1607651 1607656) (-907 "PTFUNC2.spad" 1604570 1604584 1604739 1604744) (-906 "PTCAT.spad" 1603652 1603662 1604526 1604565) (-905 "PSQFR.spad" 1602959 1602983 1603642 1603647) (-904 "PSEUDLIN.spad" 1601817 1601827 1602949 1602954) (-903 "PSETPK.spad" 1587250 1587266 1601695 1601700) (-902 "PSETCAT.spad" 1581158 1581181 1587218 1587245) (-901 "PSETCAT.spad" 1575052 1575077 1581114 1581119) (-900 "PSCURVE.spad" 1574035 1574043 1575042 1575047) (-899 "PSCAT.spad" 1572802 1572831 1573933 1574030) (-898 "PSCAT.spad" 1571659 1571690 1572792 1572797) (-897 "PRTITION.spad" 1570502 1570510 1571649 1571654) (-896 "PRS.spad" 1560064 1560081 1570458 1570463) (-895 "PRQAGG.spad" 1559483 1559493 1560020 1560059) (-894 "PROPLOG.spad" 1558886 1558894 1559473 1559478) (-893 "PROPFRML.spad" 1556751 1556762 1558822 1558827) (-892 "PROPERTY.spad" 1556245 1556253 1556741 1556746) (-891 "PRODUCT.spad" 1553925 1553937 1554211 1554266) (-890 "PR.spad" 1552314 1552326 1553019 1553146) (-889 "PRINT.spad" 1552066 1552074 1552304 1552309) (-888 "PRIMES.spad" 1550317 1550327 1552056 1552061) (-887 "PRIMELT.spad" 1548298 1548312 1550307 1550312) (-886 "PRIMCAT.spad" 1547921 1547929 1548288 1548293) (-885 "PRIMARR.spad" 1546926 1546936 1547104 1547131) (-884 "PRIMARR2.spad" 1545649 1545661 1546916 1546921) (-883 "PREASSOC.spad" 1545021 1545033 1545639 1545644) (-882 "PPCURVE.spad" 1544158 1544166 1545011 1545016) (-881 "POLYROOT.spad" 1542930 1542952 1544114 1544119) (-880 "POLY.spad" 1540230 1540240 1540747 1540874) (-879 "POLYLIFT.spad" 1539491 1539514 1540220 1540225) (-878 "POLYCATQ.spad" 1537593 1537615 1539481 1539486) (-877 "POLYCAT.spad" 1530999 1531020 1537461 1537588) (-876 "POLYCAT.spad" 1523707 1523730 1530171 1530176) (-875 "POLY2UP.spad" 1523155 1523169 1523697 1523702) (-874 "POLY2.spad" 1522750 1522762 1523145 1523150) (-873 "POLUTIL.spad" 1521691 1521720 1522706 1522711) (-872 "POLTOPOL.spad" 1520439 1520454 1521681 1521686) (-871 "POINT.spad" 1519280 1519290 1519367 1519394) (-870 "PNTHEORY.spad" 1515946 1515954 1519270 1519275) (-869 "PMTOOLS.spad" 1514703 1514717 1515936 1515941) (-868 "PMSYM.spad" 1514248 1514258 1514693 1514698) (-867 "PMQFCAT.spad" 1513835 1513849 1514238 1514243) (-866 "PMPRED.spad" 1513304 1513318 1513825 1513830) (-865 "PMPREDFS.spad" 1512748 1512770 1513294 1513299) (-864 "PMPLCAT.spad" 1511818 1511836 1512680 1512685) (-863 "PMLSAGG.spad" 1511399 1511413 1511808 1511813) (-862 "PMKERNEL.spad" 1510966 1510978 1511389 1511394) (-861 "PMINS.spad" 1510542 1510552 1510956 1510961) (-860 "PMFS.spad" 1510115 1510133 1510532 1510537) (-859 "PMDOWN.spad" 1509401 1509415 1510105 1510110) (-858 "PMASS.spad" 1508413 1508421 1509391 1509396) (-857 "PMASSFS.spad" 1507382 1507398 1508403 1508408) (-856 "PLOTTOOL.spad" 1507162 1507170 1507372 1507377) (-855 "PLOT.spad" 1501993 1502001 1507152 1507157) (-854 "PLOT3D.spad" 1498413 1498421 1501983 1501988) (-853 "PLOT1.spad" 1497554 1497564 1498403 1498408) (-852 "PLEQN.spad" 1484770 1484797 1497544 1497549) (-851 "PINTERP.spad" 1484386 1484405 1484760 1484765) (-850 "PINTERPA.spad" 1484168 1484184 1484376 1484381) (-849 "PI.spad" 1483775 1483783 1484142 1484163) (-848 "PID.spad" 1482731 1482739 1483701 1483770) (-847 "PICOERCE.spad" 1482388 1482398 1482721 1482726) (-846 "PGROEB.spad" 1480985 1480999 1482378 1482383) (-845 "PGE.spad" 1472238 1472246 1480975 1480980) (-844 "PGCD.spad" 1471120 1471137 1472228 1472233) (-843 "PFRPAC.spad" 1470263 1470273 1471110 1471115) (-842 "PFR.spad" 1466920 1466930 1470165 1470258) (-841 "PFOTOOLS.spad" 1466178 1466194 1466910 1466915) (-840 "PFOQ.spad" 1465548 1465566 1466168 1466173) (-839 "PFO.spad" 1464967 1464994 1465538 1465543) (-838 "PF.spad" 1464541 1464553 1464772 1464865) (-837 "PFECAT.spad" 1462207 1462215 1464467 1464536) (-836 "PFECAT.spad" 1459901 1459911 1462163 1462168) (-835 "PFBRU.spad" 1457771 1457783 1459891 1459896) (-834 "PFBR.spad" 1455309 1455332 1457761 1457766) (-833 "PERM.spad" 1450990 1451000 1455139 1455154) (-832 "PERMGRP.spad" 1445726 1445736 1450980 1450985) (-831 "PERMCAT.spad" 1444278 1444288 1445706 1445721) (-830 "PERMAN.spad" 1442810 1442824 1444268 1444273) (-829 "PENDTREE.spad" 1442083 1442093 1442439 1442444) (-828 "PDRING.spad" 1440574 1440584 1442063 1442078) (-827 "PDRING.spad" 1439073 1439085 1440564 1440569) (-826 "PDEPROB.spad" 1438030 1438038 1439063 1439068) (-825 "PDEPACK.spad" 1432032 1432040 1438020 1438025) (-824 "PDECOMP.spad" 1431494 1431511 1432022 1432027) (-823 "PDECAT.spad" 1429848 1429856 1431484 1431489) (-822 "PCOMP.spad" 1429699 1429712 1429838 1429843) (-821 "PBWLB.spad" 1428281 1428298 1429689 1429694) (-820 "PATTERN.spad" 1422712 1422722 1428271 1428276) (-819 "PATTERN2.spad" 1422448 1422460 1422702 1422707) (-818 "PATTERN1.spad" 1420750 1420766 1422438 1422443) (-817 "PATRES.spad" 1418297 1418309 1420740 1420745) (-816 "PATRES2.spad" 1417959 1417973 1418287 1418292) (-815 "PATMATCH.spad" 1416121 1416152 1417672 1417677) (-814 "PATMAB.spad" 1415546 1415556 1416111 1416116) (-813 "PATLRES.spad" 1414630 1414644 1415536 1415541) (-812 "PATAB.spad" 1414394 1414404 1414620 1414625) (-811 "PARTPERM.spad" 1411756 1411764 1414384 1414389) (-810 "PARSURF.spad" 1411184 1411212 1411746 1411751) (-809 "PARSU2.spad" 1410979 1410995 1411174 1411179) (-808 "script-parser.spad" 1410499 1410507 1410969 1410974) (-807 "PARSCURV.spad" 1409927 1409955 1410489 1410494) (-806 "PARSC2.spad" 1409716 1409732 1409917 1409922) (-805 "PARPCURV.spad" 1409174 1409202 1409706 1409711) (-804 "PARPC2.spad" 1408963 1408979 1409164 1409169) (-803 "PAN2EXPR.spad" 1408375 1408383 1408953 1408958) (-802 "PALETTE.spad" 1407345 1407353 1408365 1408370) (-801 "PAIR.spad" 1406328 1406341 1406933 1406938) (-800 "PADICRC.spad" 1403661 1403679 1404836 1404929) (-799 "PADICRAT.spad" 1401679 1401691 1401900 1401993) (-798 "PADIC.spad" 1401374 1401386 1401605 1401674) (-797 "PADICCT.spad" 1399915 1399927 1401300 1401369) (-796 "PADEPAC.spad" 1398594 1398613 1399905 1399910) (-795 "PADE.spad" 1397334 1397350 1398584 1398589) (-794 "OWP.spad" 1396318 1396348 1397192 1397259) (-793 "OVAR.spad" 1396099 1396122 1396308 1396313) (-792 "OUT.spad" 1395183 1395191 1396089 1396094) (-791 "OUTFORM.spad" 1384597 1384605 1395173 1395178) (-790 "OSI.spad" 1384072 1384080 1384587 1384592) (-789 "ORTHPOL.spad" 1382533 1382543 1383989 1383994) (-788 "OREUP.spad" 1381893 1381921 1382215 1382254) (-787 "ORESUP.spad" 1381194 1381218 1381575 1381614) (-786 "OREPCTO.spad" 1379013 1379025 1381114 1381119) (-785 "OREPCAT.spad" 1373070 1373080 1378969 1379008) (-784 "OREPCAT.spad" 1367017 1367029 1372918 1372923) (-783 "ORDSET.spad" 1366183 1366191 1367007 1367012) (-782 "ORDSET.spad" 1365347 1365357 1366173 1366178) (-781 "ORDRING.spad" 1364737 1364745 1365327 1365342) (-780 "ORDRING.spad" 1364135 1364145 1364727 1364732) (-779 "ORDMON.spad" 1363990 1363998 1364125 1364130) (-778 "ORDFUNS.spad" 1363116 1363132 1363980 1363985) (-777 "ORDFIN.spad" 1363050 1363058 1363106 1363111) (-776 "ORDCOMP.spad" 1361518 1361528 1362600 1362629) (-775 "ORDCOMP2.spad" 1360803 1360815 1361508 1361513) (-774 "OPTPROB.spad" 1359383 1359391 1360793 1360798) (-773 "OPTPACK.spad" 1351768 1351776 1359373 1359378) (-772 "OPTCAT.spad" 1349443 1349451 1351758 1351763) (-771 "OPQUERY.spad" 1348992 1349000 1349433 1349438) (-770 "OP.spad" 1348734 1348744 1348814 1348881) (-769 "ONECOMP.spad" 1347482 1347492 1348284 1348313) (-768 "ONECOMP2.spad" 1346900 1346912 1347472 1347477) (-767 "OMSERVER.spad" 1345902 1345910 1346890 1346895) (-766 "OMSAGG.spad" 1345678 1345688 1345846 1345897) (-765 "OMPKG.spad" 1344290 1344298 1345668 1345673) (-764 "OM.spad" 1343255 1343263 1344280 1344285) (-763 "OMLO.spad" 1342680 1342692 1343141 1343180) (-762 "OMEXPR.spad" 1342514 1342524 1342670 1342675) (-761 "OMERR.spad" 1342057 1342065 1342504 1342509) (-760 "OMERRK.spad" 1341091 1341099 1342047 1342052) (-759 "OMENC.spad" 1340435 1340443 1341081 1341086) (-758 "OMDEV.spad" 1334724 1334732 1340425 1340430) (-757 "OMCONN.spad" 1334133 1334141 1334714 1334719) (-756 "OINTDOM.spad" 1333896 1333904 1334059 1334128) (-755 "OFMONOID.spad" 1330083 1330093 1333886 1333891) (-754 "ODVAR.spad" 1329344 1329354 1330073 1330078) (-753 "ODR.spad" 1328792 1328818 1329156 1329305) (-752 "ODPOL.spad" 1326141 1326151 1326481 1326608) (-751 "ODP.spad" 1317667 1317687 1318040 1318169) (-750 "ODETOOLS.spad" 1316250 1316269 1317657 1317662) (-749 "ODESYS.spad" 1313900 1313917 1316240 1316245) (-748 "ODERTRIC.spad" 1309841 1309858 1313857 1313862) (-747 "ODERED.spad" 1309228 1309252 1309831 1309836) (-746 "ODERAT.spad" 1306779 1306796 1309218 1309223) (-745 "ODEPRRIC.spad" 1303670 1303692 1306769 1306774) (-744 "ODEPROB.spad" 1302869 1302877 1303660 1303665) (-743 "ODEPRIM.spad" 1300143 1300165 1302859 1302864) (-742 "ODEPAL.spad" 1299519 1299543 1300133 1300138) (-741 "ODEPACK.spad" 1286121 1286129 1299509 1299514) (-740 "ODEINT.spad" 1285552 1285568 1286111 1286116) (-739 "ODEIFTBL.spad" 1282947 1282955 1285542 1285547) (-738 "ODEEF.spad" 1278314 1278330 1282937 1282942) (-737 "ODECONST.spad" 1277833 1277851 1278304 1278309) (-736 "ODECAT.spad" 1276429 1276437 1277823 1277828) (-735 "OCT.spad" 1274576 1274586 1275292 1275331) (-734 "OCTCT2.spad" 1274220 1274241 1274566 1274571) (-733 "OC.spad" 1271994 1272004 1274176 1274215) (-732 "OC.spad" 1269494 1269506 1271678 1271683) (-731 "OCAMON.spad" 1269342 1269350 1269484 1269489) (-730 "OASGP.spad" 1269157 1269165 1269332 1269337) (-729 "OAMONS.spad" 1268677 1268685 1269147 1269152) (-728 "OAMON.spad" 1268538 1268546 1268667 1268672) (-727 "OAGROUP.spad" 1268400 1268408 1268528 1268533) (-726 "NUMTUBE.spad" 1267987 1268003 1268390 1268395) (-725 "NUMQUAD.spad" 1255849 1255857 1267977 1267982) (-724 "NUMODE.spad" 1246985 1246993 1255839 1255844) (-723 "NUMINT.spad" 1244543 1244551 1246975 1246980) (-722 "NUMFMT.spad" 1243383 1243391 1244533 1244538) (-721 "NUMERIC.spad" 1235456 1235466 1243189 1243194) (-720 "NTSCAT.spad" 1233946 1233962 1235412 1235451) (-719 "NTPOLFN.spad" 1233491 1233501 1233863 1233868) (-718 "NSUP.spad" 1226509 1226519 1231049 1231202) (-717 "NSUP2.spad" 1225901 1225913 1226499 1226504) (-716 "NSMP.spad" 1222100 1222119 1222408 1222535) (-715 "NREP.spad" 1220472 1220486 1222090 1222095) (-714 "NPCOEF.spad" 1219718 1219738 1220462 1220467) (-713 "NORMRETR.spad" 1219316 1219355 1219708 1219713) (-712 "NORMPK.spad" 1217218 1217237 1219306 1219311) (-711 "NORMMA.spad" 1216906 1216932 1217208 1217213) (-710 "NONE.spad" 1216647 1216655 1216896 1216901) (-709 "NONE1.spad" 1216323 1216333 1216637 1216642) (-708 "NODE1.spad" 1215792 1215808 1216313 1216318) (-707 "NNI.spad" 1214679 1214687 1215766 1215787) (-706 "NLINSOL.spad" 1213301 1213311 1214669 1214674) (-705 "NIPROB.spad" 1211784 1211792 1213291 1213296) (-704 "NFINTBAS.spad" 1209244 1209261 1211774 1211779) (-703 "NCODIV.spad" 1207442 1207458 1209234 1209239) (-702 "NCNTFRAC.spad" 1207084 1207098 1207432 1207437) (-701 "NCEP.spad" 1205244 1205258 1207074 1207079) (-700 "NASRING.spad" 1204840 1204848 1205234 1205239) (-699 "NASRING.spad" 1204434 1204444 1204830 1204835) (-698 "NARNG.spad" 1203778 1203786 1204424 1204429) (-697 "NARNG.spad" 1203120 1203130 1203768 1203773) (-696 "NAGSP.spad" 1202193 1202201 1203110 1203115) (-695 "NAGS.spad" 1191718 1191726 1202183 1202188) (-694 "NAGF07.spad" 1190111 1190119 1191708 1191713) (-693 "NAGF04.spad" 1184343 1184351 1190101 1190106) (-692 "NAGF02.spad" 1178152 1178160 1184333 1184338) (-691 "NAGF01.spad" 1173755 1173763 1178142 1178147) (-690 "NAGE04.spad" 1167215 1167223 1173745 1173750) (-689 "NAGE02.spad" 1157557 1157565 1167205 1167210) (-688 "NAGE01.spad" 1153441 1153449 1157547 1157552) (-687 "NAGD03.spad" 1151361 1151369 1153431 1153436) (-686 "NAGD02.spad" 1143892 1143900 1151351 1151356) (-685 "NAGD01.spad" 1138005 1138013 1143882 1143887) (-684 "NAGC06.spad" 1133792 1133800 1137995 1138000) (-683 "NAGC05.spad" 1132261 1132269 1133782 1133787) (-682 "NAGC02.spad" 1131516 1131524 1132251 1132256) (-681 "NAALG.spad" 1131051 1131061 1131484 1131511) (-680 "NAALG.spad" 1130606 1130618 1131041 1131046) (-679 "MULTSQFR.spad" 1127564 1127581 1130596 1130601) (-678 "MULTFACT.spad" 1126947 1126964 1127554 1127559) (-677 "MTSCAT.spad" 1124981 1125002 1126845 1126942) (-676 "MTHING.spad" 1124638 1124648 1124971 1124976) (-675 "MSYSCMD.spad" 1124072 1124080 1124628 1124633) (-674 "MSET.spad" 1122014 1122024 1123778 1123817) (-673 "MSETAGG.spad" 1121847 1121857 1121970 1122009) (-672 "MRING.spad" 1118818 1118830 1121555 1121622) (-671 "MRF2.spad" 1118386 1118400 1118808 1118813) (-670 "MRATFAC.spad" 1117932 1117949 1118376 1118381) (-669 "MPRFF.spad" 1115962 1115981 1117922 1117927) (-668 "MPOLY.spad" 1113400 1113415 1113759 1113886) (-667 "MPCPF.spad" 1112664 1112683 1113390 1113395) (-666 "MPC3.spad" 1112479 1112519 1112654 1112659) (-665 "MPC2.spad" 1112121 1112154 1112469 1112474) (-664 "MONOTOOL.spad" 1110456 1110473 1112111 1112116) (-663 "MONOID.spad" 1109630 1109638 1110446 1110451) (-662 "MONOID.spad" 1108802 1108812 1109620 1109625) (-661 "MONOGEN.spad" 1107548 1107561 1108662 1108797) (-660 "MONOGEN.spad" 1106316 1106331 1107432 1107437) (-659 "MONADWU.spad" 1104330 1104338 1106306 1106311) (-658 "MONADWU.spad" 1102342 1102352 1104320 1104325) (-657 "MONAD.spad" 1101486 1101494 1102332 1102337) (-656 "MONAD.spad" 1100628 1100638 1101476 1101481) (-655 "MOEBIUS.spad" 1099314 1099328 1100608 1100623) (-654 "MODULE.spad" 1099184 1099194 1099282 1099309) (-653 "MODULE.spad" 1099074 1099086 1099174 1099179) (-652 "MODRING.spad" 1098405 1098444 1099054 1099069) (-651 "MODOP.spad" 1097064 1097076 1098227 1098294) (-650 "MODMONOM.spad" 1096596 1096614 1097054 1097059) (-649 "MODMON.spad" 1093306 1093322 1094082 1094235) (-648 "MODFIELD.spad" 1092664 1092703 1093208 1093301) (-647 "MMAP.spad" 1092404 1092438 1092654 1092659) (-646 "MLO.spad" 1090831 1090841 1092360 1092399) (-645 "MLIFT.spad" 1089403 1089420 1090821 1090826) (-644 "MKUCFUNC.spad" 1088936 1088954 1089393 1089398) (-643 "MKRECORD.spad" 1088538 1088551 1088926 1088931) (-642 "MKFUNC.spad" 1087919 1087929 1088528 1088533) (-641 "MKFLCFN.spad" 1086875 1086885 1087909 1087914) (-640 "MKCHSET.spad" 1086651 1086661 1086865 1086870) (-639 "MKBCFUNC.spad" 1086136 1086154 1086641 1086646) (-638 "MINT.spad" 1085575 1085583 1086038 1086131) (-637 "MHROWRED.spad" 1084076 1084086 1085565 1085570) (-636 "MFLOAT.spad" 1082521 1082529 1083966 1084071) (-635 "MFINFACT.spad" 1081921 1081943 1082511 1082516) (-634 "MESH.spad" 1079653 1079661 1081911 1081916) (-633 "MDDFACT.spad" 1077846 1077856 1079643 1079648) (-632 "MDAGG.spad" 1077121 1077131 1077814 1077841) (-631 "MCMPLX.spad" 1073101 1073109 1073715 1073916) (-630 "MCDEN.spad" 1072309 1072321 1073091 1073096) (-629 "MCALCFN.spad" 1069411 1069437 1072299 1072304) (-628 "MATSTOR.spad" 1066687 1066697 1069401 1069406) (-627 "MATRIX.spad" 1065391 1065401 1065875 1065902) (-626 "MATLIN.spad" 1062717 1062741 1065275 1065280) (-625 "MATCAT.spad" 1054290 1054312 1062673 1062712) (-624 "MATCAT.spad" 1045747 1045771 1054132 1054137) (-623 "MATCAT2.spad" 1045015 1045063 1045737 1045742) (-622 "MAPPKG3.spad" 1043914 1043928 1045005 1045010) (-621 "MAPPKG2.spad" 1043248 1043260 1043904 1043909) (-620 "MAPPKG1.spad" 1042066 1042076 1043238 1043243) (-619 "MAPHACK3.spad" 1041874 1041888 1042056 1042061) (-618 "MAPHACK2.spad" 1041639 1041651 1041864 1041869) (-617 "MAPHACK1.spad" 1041269 1041279 1041629 1041634) (-616 "MAGMA.spad" 1039059 1039076 1041259 1041264) (-615 "M3D.spad" 1036757 1036767 1038439 1038444) (-614 "LZSTAGG.spad" 1033975 1033985 1036737 1036752) (-613 "LZSTAGG.spad" 1031201 1031213 1033965 1033970) (-612 "LWORD.spad" 1027906 1027923 1031191 1031196) (-611 "LSQM.spad" 1026134 1026148 1026532 1026583) (-610 "LSPP.spad" 1025667 1025684 1026124 1026129) (-609 "LSMP.spad" 1024507 1024535 1025657 1025662) (-608 "LSMP1.spad" 1022311 1022325 1024497 1024502) (-607 "LSAGG.spad" 1021968 1021978 1022267 1022306) (-606 "LSAGG.spad" 1021657 1021669 1021958 1021963) (-605 "LPOLY.spad" 1020611 1020630 1021513 1021582) (-604 "LPEFRAC.spad" 1019868 1019878 1020601 1020606) (-603 "LO.spad" 1019269 1019283 1019802 1019829) (-602 "LOGIC.spad" 1018871 1018879 1019259 1019264) (-601 "LOGIC.spad" 1018471 1018481 1018861 1018866) (-600 "LODOOPS.spad" 1017389 1017401 1018461 1018466) (-599 "LODO.spad" 1016775 1016791 1017071 1017110) (-598 "LODOF.spad" 1015819 1015836 1016732 1016737) (-597 "LODOCAT.spad" 1014477 1014487 1015775 1015814) (-596 "LODOCAT.spad" 1013133 1013145 1014433 1014438) (-595 "LODO2.spad" 1012408 1012420 1012815 1012854) (-594 "LODO1.spad" 1011810 1011820 1012090 1012129) (-593 "LODEEF.spad" 1010582 1010600 1011800 1011805) (-592 "LNAGG.spad" 1006374 1006384 1010562 1010577) (-591 "LNAGG.spad" 1002140 1002152 1006330 1006335) (-590 "LMOPS.spad" 998876 998893 1002130 1002135) (-589 "LMODULE.spad" 998518 998528 998866 998871) (-588 "LMDICT.spad" 997801 997811 998069 998096) (-587 "LIST.spad" 995519 995529 996948 996975) (-586 "LIST3.spad" 994810 994824 995509 995514) (-585 "LIST2.spad" 993450 993462 994800 994805) (-584 "LIST2MAP.spad" 990327 990339 993440 993445) (-583 "LINEXP.spad" 989759 989769 990307 990322) (-582 "LINDEP.spad" 988536 988548 989671 989676) (-581 "LIMITRF.spad" 986450 986460 988526 988531) (-580 "LIMITPS.spad" 985333 985346 986440 986445) (-579 "LIE.spad" 983347 983359 984623 984768) (-578 "LIECAT.spad" 982823 982833 983273 983342) (-577 "LIECAT.spad" 982327 982339 982779 982784) (-576 "LIB.spad" 980375 980383 980986 981001) (-575 "LGROBP.spad" 977728 977747 980365 980370) (-574 "LF.spad" 976647 976663 977718 977723) (-573 "LFCAT.spad" 975666 975674 976637 976642) (-572 "LEXTRIPK.spad" 971169 971184 975656 975661) (-571 "LEXP.spad" 969172 969199 971149 971164) (-570 "LEADCDET.spad" 967556 967573 969162 969167) (-569 "LAZM3PK.spad" 966260 966282 967546 967551) (-568 "LAUPOL.spad" 964951 964964 965855 965924) (-567 "LAPLACE.spad" 964524 964540 964941 964946) (-566 "LA.spad" 963964 963978 964446 964485) (-565 "LALG.spad" 963740 963750 963944 963959) (-564 "LALG.spad" 963524 963536 963730 963735) (-563 "KOVACIC.spad" 962237 962254 963514 963519) (-562 "KONVERT.spad" 961959 961969 962227 962232) (-561 "KOERCE.spad" 961696 961706 961949 961954) (-560 "KERNEL.spad" 960231 960241 961480 961485) (-559 "KERNEL2.spad" 959934 959946 960221 960226) (-558 "KDAGG.spad" 959025 959047 959902 959929) (-557 "KDAGG.spad" 958136 958160 959015 959020) (-556 "KAFILE.spad" 957099 957115 957334 957361) (-555 "JORDAN.spad" 954926 954938 956389 956534) (-554 "IXAGG.spad" 953039 953063 954906 954921) (-553 "IXAGG.spad" 951017 951043 952886 952891) (-552 "IVECTOR.spad" 949790 949805 949945 949972) (-551 "ITUPLE.spad" 948935 948945 949780 949785) (-550 "ITRIGMNP.spad" 947746 947765 948925 948930) (-549 "ITFUN3.spad" 947240 947254 947736 947741) (-548 "ITFUN2.spad" 946970 946982 947230 947235) (-547 "ITAYLOR.spad" 944762 944777 946806 946931) (-546 "ISUPS.spad" 937173 937188 943736 943833) (-545 "ISUMP.spad" 936670 936686 937163 937168) (-544 "ISTRING.spad" 935673 935686 935839 935866) (-543 "IRURPK.spad" 934386 934405 935663 935668) (-542 "IRSN.spad" 932346 932354 934376 934381) (-541 "IRRF2F.spad" 930821 930831 932302 932307) (-540 "IRREDFFX.spad" 930422 930433 930811 930816) (-539 "IROOT.spad" 928753 928763 930412 930417) (-538 "IR.spad" 926543 926557 928609 928636) (-537 "IR2.spad" 925563 925579 926533 926538) (-536 "IR2F.spad" 924763 924779 925553 925558) (-535 "IPRNTPK.spad" 924523 924531 924753 924758) (-534 "IPF.spad" 924088 924100 924328 924421) (-533 "IPADIC.spad" 923849 923875 924014 924083) (-532 "INVLAPLA.spad" 923494 923510 923839 923844) (-531 "INTTR.spad" 916740 916757 923484 923489) (-530 "INTTOOLS.spad" 914452 914468 916315 916320) (-529 "INTSLPE.spad" 913758 913766 914442 914447) (-528 "INTRVL.spad" 913324 913334 913672 913753) (-527 "INTRF.spad" 911688 911702 913314 913319) (-526 "INTRET.spad" 911120 911130 911678 911683) (-525 "INTRAT.spad" 909795 909812 911110 911115) (-524 "INTPM.spad" 908158 908174 909438 909443) (-523 "INTPAF.spad" 905926 905944 908090 908095) (-522 "INTPACK.spad" 896236 896244 905916 905921) (-521 "INT.spad" 895597 895605 896090 896231) (-520 "INTHERTR.spad" 894863 894880 895587 895592) (-519 "INTHERAL.spad" 894529 894553 894853 894858) (-518 "INTHEORY.spad" 890942 890950 894519 894524) (-517 "INTG0.spad" 884405 884423 890874 890879) (-516 "INTFTBL.spad" 878434 878442 884395 884400) (-515 "INTFACT.spad" 877493 877503 878424 878429) (-514 "INTEF.spad" 875808 875824 877483 877488) (-513 "INTDOM.spad" 874423 874431 875734 875803) (-512 "INTDOM.spad" 873100 873110 874413 874418) (-511 "INTCAT.spad" 871353 871363 873014 873095) (-510 "INTBIT.spad" 870856 870864 871343 871348) (-509 "INTALG.spad" 870038 870065 870846 870851) (-508 "INTAF.spad" 869530 869546 870028 870033) (-507 "INTABL.spad" 868048 868079 868211 868238) (-506 "INS.spad" 865444 865452 867950 868043) (-505 "INS.spad" 862926 862936 865434 865439) (-504 "INPSIGN.spad" 862360 862373 862916 862921) (-503 "INPRODPF.spad" 861426 861445 862350 862355) (-502 "INPRODFF.spad" 860484 860508 861416 861421) (-501 "INNMFACT.spad" 859455 859472 860474 860479) (-500 "INMODGCD.spad" 858939 858969 859445 859450) (-499 "INFSP.spad" 857224 857246 858929 858934) (-498 "INFPROD0.spad" 856274 856293 857214 857219) (-497 "INFORM.spad" 853542 853550 856264 856269) (-496 "INFORM1.spad" 853167 853177 853532 853537) (-495 "INFINITY.spad" 852719 852727 853157 853162) (-494 "INEP.spad" 851251 851273 852709 852714) (-493 "INDE.spad" 851157 851174 851241 851246) (-492 "INCRMAPS.spad" 850578 850588 851147 851152) (-491 "INBFF.spad" 846348 846359 850568 850573) (-490 "IMATRIX.spad" 845293 845319 845805 845832) (-489 "IMATQF.spad" 844387 844431 845249 845254) (-488 "IMATLIN.spad" 842992 843016 844343 844348) (-487 "ILIST.spad" 841648 841663 842175 842202) (-486 "IIARRAY2.spad" 841036 841074 841255 841282) (-485 "IFF.spad" 840446 840462 840717 840810) (-484 "IFARRAY.spad" 837933 837948 839629 839656) (-483 "IFAMON.spad" 837795 837812 837889 837894) (-482 "IEVALAB.spad" 837184 837196 837785 837790) (-481 "IEVALAB.spad" 836571 836585 837174 837179) (-480 "IDPO.spad" 836369 836381 836561 836566) (-479 "IDPOAMS.spad" 836125 836137 836359 836364) (-478 "IDPOAM.spad" 835845 835857 836115 836120) (-477 "IDPC.spad" 834779 834791 835835 835840) (-476 "IDPAM.spad" 834524 834536 834769 834774) (-475 "IDPAG.spad" 834271 834283 834514 834519) (-474 "IDECOMP.spad" 831508 831526 834261 834266) (-473 "IDEAL.spad" 826431 826470 831443 831448) (-472 "ICDEN.spad" 825582 825598 826421 826426) (-471 "ICARD.spad" 824771 824779 825572 825577) (-470 "IBPTOOLS.spad" 823364 823381 824761 824766) (-469 "IBITS.spad" 822563 822576 823000 823027) (-468 "IBATOOL.spad" 819438 819457 822553 822558) (-467 "IBACHIN.spad" 817925 817940 819428 819433) (-466 "IARRAY2.spad" 816913 816939 817532 817559) (-465 "IARRAY1.spad" 815958 815973 816096 816123) (-464 "IAN.spad" 814173 814181 815776 815869) (-463 "IALGFACT.spad" 813774 813807 814163 814168) (-462 "HYPCAT.spad" 813198 813206 813764 813769) (-461 "HYPCAT.spad" 812620 812630 813188 813193) (-460 "HOAGG.spad" 809878 809888 812600 812615) (-459 "HOAGG.spad" 806921 806933 809645 809650) (-458 "HEXADEC.spad" 804793 804801 805391 805484) (-457 "HEUGCD.spad" 803808 803819 804783 804788) (-456 "HELLFDIV.spad" 803398 803422 803798 803803) (-455 "HEAP.spad" 802790 802800 803005 803032) (-454 "HDP.spad" 794312 794328 794689 794818) (-453 "HDMP.spad" 791491 791506 792109 792236) (-452 "HB.spad" 789728 789736 791481 791486) (-451 "HASHTBL.spad" 788198 788229 788409 788436) (-450 "HACKPI.spad" 787681 787689 788100 788193) (-449 "GTSET.spad" 786620 786636 787327 787354) (-448 "GSTBL.spad" 785139 785174 785313 785328) (-447 "GSERIES.spad" 782306 782333 783271 783420) (-446 "GROUP.spad" 781480 781488 782286 782301) (-445 "GROUP.spad" 780662 780672 781470 781475) (-444 "GROEBSOL.spad" 779150 779171 780652 780657) (-443 "GRMOD.spad" 777721 777733 779140 779145) (-442 "GRMOD.spad" 776290 776304 777711 777716) (-441 "GRIMAGE.spad" 768895 768903 776280 776285) (-440 "GRDEF.spad" 767274 767282 768885 768890) (-439 "GRAY.spad" 765733 765741 767264 767269) (-438 "GRALG.spad" 764780 764792 765723 765728) (-437 "GRALG.spad" 763825 763839 764770 764775) (-436 "GPOLSET.spad" 763279 763302 763507 763534) (-435 "GOSPER.spad" 762544 762562 763269 763274) (-434 "GMODPOL.spad" 761682 761709 762512 762539) (-433 "GHENSEL.spad" 760751 760765 761672 761677) (-432 "GENUPS.spad" 756852 756865 760741 760746) (-431 "GENUFACT.spad" 756429 756439 756842 756847) (-430 "GENPGCD.spad" 756013 756030 756419 756424) (-429 "GENMFACT.spad" 755465 755484 756003 756008) (-428 "GENEEZ.spad" 753404 753417 755455 755460) (-427 "GDMP.spad" 750425 750442 751201 751328) (-426 "GCNAALG.spad" 744320 744347 750219 750286) (-425 "GCDDOM.spad" 743492 743500 744246 744315) (-424 "GCDDOM.spad" 742726 742736 743482 743487) (-423 "GB.spad" 740244 740282 742682 742687) (-422 "GBINTERN.spad" 736264 736302 740234 740239) (-421 "GBF.spad" 732021 732059 736254 736259) (-420 "GBEUCLID.spad" 729895 729933 732011 732016) (-419 "GAUSSFAC.spad" 729192 729200 729885 729890) (-418 "GALUTIL.spad" 727514 727524 729148 729153) (-417 "GALPOLYU.spad" 725960 725973 727504 727509) (-416 "GALFACTU.spad" 724125 724144 725950 725955) (-415 "GALFACT.spad" 714258 714269 724115 724120) (-414 "FVFUN.spad" 711271 711279 714238 714253) (-413 "FVC.spad" 710313 710321 711251 711266) (-412 "FUNCTION.spad" 710162 710174 710303 710308) (-411 "FT.spad" 708374 708382 710152 710157) (-410 "FTEM.spad" 707537 707545 708364 708369) (-409 "FSUPFACT.spad" 706438 706457 707474 707479) (-408 "FST.spad" 704524 704532 706428 706433) (-407 "FSRED.spad" 704002 704018 704514 704519) (-406 "FSPRMELT.spad" 702826 702842 703959 703964) (-405 "FSPECF.spad" 700903 700919 702816 702821) (-404 "FS.spad" 694954 694964 700667 700898) (-403 "FS.spad" 688796 688808 694511 694516) (-402 "FSINT.spad" 688454 688470 688786 688791) (-401 "FSERIES.spad" 687641 687653 688274 688373) (-400 "FSCINT.spad" 686954 686970 687631 687636) (-399 "FSAGG.spad" 686059 686069 686898 686949) (-398 "FSAGG.spad" 685138 685150 685979 685984) (-397 "FSAGG2.spad" 683837 683853 685128 685133) (-396 "FS2UPS.spad" 678226 678260 683827 683832) (-395 "FS2.spad" 677871 677887 678216 678221) (-394 "FS2EXPXP.spad" 676994 677017 677861 677866) (-393 "FRUTIL.spad" 675936 675946 676984 676989) (-392 "FR.spad" 669633 669643 674963 675032) (-391 "FRNAALG.spad" 664720 664730 669575 669628) (-390 "FRNAALG.spad" 659819 659831 664676 664681) (-389 "FRNAAF2.spad" 659273 659291 659809 659814) (-388 "FRMOD.spad" 658668 658698 659205 659210) (-387 "FRIDEAL.spad" 657863 657884 658648 658663) (-386 "FRIDEAL2.spad" 657465 657497 657853 657858) (-385 "FRETRCT.spad" 656976 656986 657455 657460) (-384 "FRETRCT.spad" 656355 656367 656836 656841) (-383 "FRAMALG.spad" 654683 654696 656311 656350) (-382 "FRAMALG.spad" 653043 653058 654673 654678) (-381 "FRAC.spad" 650146 650156 650549 650722) (-380 "FRAC2.spad" 649749 649761 650136 650141) (-379 "FR2.spad" 649083 649095 649739 649744) (-378 "FPS.spad" 645892 645900 648973 649078) (-377 "FPS.spad" 642729 642739 645812 645817) (-376 "FPC.spad" 641771 641779 642631 642724) (-375 "FPC.spad" 640899 640909 641761 641766) (-374 "FPATMAB.spad" 640651 640661 640879 640894) (-373 "FPARFRAC.spad" 639124 639141 640641 640646) (-372 "FORTRAN.spad" 637630 637673 639114 639119) (-371 "FORT.spad" 636559 636567 637620 637625) (-370 "FORTFN.spad" 633719 633727 636539 636554) (-369 "FORTCAT.spad" 633393 633401 633699 633714) (-368 "FORMULA.spad" 630731 630739 633383 633388) (-367 "FORMULA1.spad" 630210 630220 630721 630726) (-366 "FORDER.spad" 629901 629925 630200 630205) (-365 "FOP.spad" 629102 629110 629891 629896) (-364 "FNLA.spad" 628526 628548 629070 629097) (-363 "FNCAT.spad" 626854 626862 628516 628521) (-362 "FNAME.spad" 626746 626754 626844 626849) (-361 "FMTC.spad" 626544 626552 626672 626741) (-360 "FMONOID.spad" 623599 623609 626500 626505) (-359 "FM.spad" 623294 623306 623533 623560) (-358 "FMFUN.spad" 620314 620322 623274 623289) (-357 "FMC.spad" 619356 619364 620294 620309) (-356 "FMCAT.spad" 617010 617028 619324 619351) (-355 "FM1.spad" 616367 616379 616944 616971) (-354 "FLOATRP.spad" 614088 614102 616357 616362) (-353 "FLOAT.spad" 607252 607260 613954 614083) (-352 "FLOATCP.spad" 604669 604683 607242 607247) (-351 "FLINEXP.spad" 604381 604391 604649 604664) (-350 "FLINEXP.spad" 604047 604059 604317 604322) (-349 "FLASORT.spad" 603367 603379 604037 604042) (-348 "FLALG.spad" 601013 601032 603293 603362) (-347 "FLAGG.spad" 598019 598029 600981 601008) (-346 "FLAGG.spad" 594938 594950 597902 597907) (-345 "FLAGG2.spad" 593619 593635 594928 594933) (-344 "FINRALG.spad" 591648 591661 593575 593614) (-343 "FINRALG.spad" 589603 589618 591532 591537) (-342 "FINITE.spad" 588755 588763 589593 589598) (-341 "FINAALG.spad" 577736 577746 588697 588750) (-340 "FINAALG.spad" 566729 566741 577692 577697) (-339 "FILE.spad" 566312 566322 566719 566724) (-338 "FILECAT.spad" 564830 564847 566302 566307) (-337 "FIELD.spad" 564236 564244 564732 564825) (-336 "FIELD.spad" 563728 563738 564226 564231) (-335 "FGROUP.spad" 562337 562347 563708 563723) (-334 "FGLMICPK.spad" 561124 561139 562327 562332) (-333 "FFX.spad" 560499 560514 560840 560933) (-332 "FFSLPE.spad" 559988 560009 560489 560494) (-331 "FFPOLY.spad" 551240 551251 559978 559983) (-330 "FFPOLY2.spad" 550300 550317 551230 551235) (-329 "FFP.spad" 549697 549717 550016 550109) (-328 "FF.spad" 549145 549161 549378 549471) (-327 "FFNBX.spad" 547657 547677 548861 548954) (-326 "FFNBP.spad" 546170 546187 547373 547466) (-325 "FFNB.spad" 544635 544656 545851 545944) (-324 "FFINTBAS.spad" 542049 542068 544625 544630) (-323 "FFIELDC.spad" 539624 539632 541951 542044) (-322 "FFIELDC.spad" 537285 537295 539614 539619) (-321 "FFHOM.spad" 536033 536050 537275 537280) (-320 "FFF.spad" 533468 533479 536023 536028) (-319 "FFCGX.spad" 532315 532335 533184 533277) (-318 "FFCGP.spad" 531204 531224 532031 532124) (-317 "FFCG.spad" 529996 530017 530885 530978) (-316 "FFCAT.spad" 522897 522919 529835 529991) (-315 "FFCAT.spad" 515877 515901 522817 522822) (-314 "FFCAT2.spad" 515622 515662 515867 515872) (-313 "FEXPR.spad" 507335 507381 515382 515421) (-312 "FEVALAB.spad" 507041 507051 507325 507330) (-311 "FEVALAB.spad" 506532 506544 506818 506823) (-310 "FDIV.spad" 505974 505998 506522 506527) (-309 "FDIVCAT.spad" 504016 504040 505964 505969) (-308 "FDIVCAT.spad" 502056 502082 504006 504011) (-307 "FDIV2.spad" 501710 501750 502046 502051) (-306 "FCPAK1.spad" 500263 500271 501700 501705) (-305 "FCOMP.spad" 499642 499652 500253 500258) (-304 "FC.spad" 489467 489475 499632 499637) (-303 "FAXF.spad" 482402 482416 489369 489462) (-302 "FAXF.spad" 475389 475405 482358 482363) (-301 "FARRAY.spad" 473535 473545 474572 474599) (-300 "FAMR.spad" 471655 471667 473433 473530) (-299 "FAMR.spad" 469759 469773 471539 471544) (-298 "FAMONOID.spad" 469409 469419 469713 469718) (-297 "FAMONC.spad" 467631 467643 469399 469404) (-296 "FAGROUP.spad" 467237 467247 467527 467554) (-295 "FACUTIL.spad" 465433 465450 467227 467232) (-294 "FACTFUNC.spad" 464609 464619 465423 465428) (-293 "EXPUPXS.spad" 461442 461465 462741 462890) (-292 "EXPRTUBE.spad" 458670 458678 461432 461437) (-291 "EXPRODE.spad" 455542 455558 458660 458665) (-290 "EXPR.spad" 450844 450854 451558 451961) (-289 "EXPR2UPS.spad" 446936 446949 450834 450839) (-288 "EXPR2.spad" 446639 446651 446926 446931) (-287 "EXPEXPAN.spad" 443580 443605 444214 444307) (-286 "EXIT.spad" 443251 443259 443570 443575) (-285 "EVALCYC.spad" 442709 442723 443241 443246) (-284 "EVALAB.spad" 442273 442283 442699 442704) (-283 "EVALAB.spad" 441835 441847 442263 442268) (-282 "EUCDOM.spad" 439377 439385 441761 441830) (-281 "EUCDOM.spad" 436981 436991 439367 439372) (-280 "ESTOOLS.spad" 428821 428829 436971 436976) (-279 "ESTOOLS2.spad" 428422 428436 428811 428816) (-278 "ESTOOLS1.spad" 428107 428118 428412 428417) (-277 "ES.spad" 420654 420662 428097 428102) (-276 "ES.spad" 413109 413119 420554 420559) (-275 "ESCONT.spad" 409882 409890 413099 413104) (-274 "ESCONT1.spad" 409631 409643 409872 409877) (-273 "ES2.spad" 409126 409142 409621 409626) (-272 "ES1.spad" 408692 408708 409116 409121) (-271 "ERROR.spad" 406013 406021 408682 408687) (-270 "EQTBL.spad" 404485 404507 404694 404721) (-269 "EQ.spad" 399369 399379 402168 402277) (-268 "EQ2.spad" 399085 399097 399359 399364) (-267 "EP.spad" 395399 395409 399075 399080) (-266 "ENV.spad" 394101 394109 395389 395394) (-265 "ENTIRER.spad" 393769 393777 394045 394096) (-264 "EMR.spad" 392970 393011 393695 393764) (-263 "ELTAGG.spad" 391210 391229 392960 392965) (-262 "ELTAGG.spad" 389414 389435 391166 391171) (-261 "ELTAB.spad" 388861 388879 389404 389409) (-260 "ELFUTS.spad" 388240 388259 388851 388856) (-259 "ELEMFUN.spad" 387929 387937 388230 388235) (-258 "ELEMFUN.spad" 387616 387626 387919 387924) (-257 "ELAGG.spad" 385547 385557 387584 387611) (-256 "ELAGG.spad" 383427 383439 385466 385471) (-255 "EFUPXS.spad" 380203 380233 383383 383388) (-254 "EFULS.spad" 377039 377062 380159 380164) (-253 "EFSTRUC.spad" 374994 375010 377029 377034) (-252 "EF.spad" 369760 369776 374984 374989) (-251 "EAB.spad" 368036 368044 369750 369755) (-250 "E04UCFA.spad" 367572 367580 368026 368031) (-249 "E04NAFA.spad" 367149 367157 367562 367567) (-248 "E04MBFA.spad" 366729 366737 367139 367144) (-247 "E04JAFA.spad" 366265 366273 366719 366724) (-246 "E04GCFA.spad" 365801 365809 366255 366260) (-245 "E04FDFA.spad" 365337 365345 365791 365796) (-244 "E04DGFA.spad" 364873 364881 365327 365332) (-243 "E04AGNT.spad" 360715 360723 364863 364868) (-242 "DVARCAT.spad" 357400 357410 360705 360710) (-241 "DVARCAT.spad" 354083 354095 357390 357395) (-240 "DSMP.spad" 351517 351531 351822 351949) (-239 "DROPT.spad" 345462 345470 351507 351512) (-238 "DROPT1.spad" 345125 345135 345452 345457) (-237 "DROPT0.spad" 339952 339960 345115 345120) (-236 "DRAWPT.spad" 338107 338115 339942 339947) (-235 "DRAW.spad" 330707 330720 338097 338102) (-234 "DRAWHACK.spad" 330015 330025 330697 330702) (-233 "DRAWCX.spad" 327457 327465 330005 330010) (-232 "DRAWCURV.spad" 326994 327009 327447 327452) (-231 "DRAWCFUN.spad" 316166 316174 326984 326989) (-230 "DQAGG.spad" 314322 314332 316122 316161) (-229 "DPOLCAT.spad" 309663 309679 314190 314317) (-228 "DPOLCAT.spad" 305090 305108 309619 309624) (-227 "DPMO.spad" 299077 299093 299215 299511) (-226 "DPMM.spad" 293077 293095 293202 293498) (-225 "domain.spad" 292348 292356 293067 293072) (-224 "DMP.spad" 289573 289588 290145 290272) (-223 "DLP.spad" 288921 288931 289563 289568) (-222 "DLIST.spad" 287333 287343 288104 288131) (-221 "DLAGG.spad" 285734 285744 287313 287328) (-220 "DIVRING.spad" 285181 285189 285678 285729) (-219 "DIVRING.spad" 284672 284682 285171 285176) (-218 "DISPLAY.spad" 282852 282860 284662 284667) (-217 "DIRPROD.spad" 274111 274127 274751 274880) (-216 "DIRPROD2.spad" 272919 272937 274101 274106) (-215 "DIRPCAT.spad" 271851 271867 272773 272914) (-214 "DIRPCAT.spad" 270523 270541 271447 271452) (-213 "DIOSP.spad" 269348 269356 270513 270518) (-212 "DIOPS.spad" 268320 268330 269316 269343) (-211 "DIOPS.spad" 267278 267290 268276 268281) (-210 "DIFRING.spad" 266570 266578 267258 267273) (-209 "DIFRING.spad" 265870 265880 266560 266565) (-208 "DIFEXT.spad" 265029 265039 265850 265865) (-207 "DIFEXT.spad" 264105 264117 264928 264933) (-206 "DIAGG.spad" 263723 263733 264073 264100) (-205 "DIAGG.spad" 263361 263373 263713 263718) (-204 "DHMATRIX.spad" 261665 261675 262818 262845) (-203 "DFSFUN.spad" 255073 255081 261655 261660) (-202 "DFLOAT.spad" 251596 251604 254963 255068) (-201 "DFINTTLS.spad" 249805 249821 251586 251591) (-200 "DERHAM.spad" 247715 247747 249785 249800) (-199 "DEQUEUE.spad" 247033 247043 247322 247349) (-198 "DEGRED.spad" 246648 246662 247023 247028) (-197 "DEFINTRF.spad" 244173 244183 246638 246643) (-196 "DEFINTEF.spad" 242669 242685 244163 244168) (-195 "DECIMAL.spad" 240553 240561 241139 241232) (-194 "DDFACT.spad" 238352 238369 240543 240548) (-193 "DBLRESP.spad" 237950 237974 238342 238347) (-192 "DBASE.spad" 236522 236532 237940 237945) (-191 "D03FAFA.spad" 236350 236358 236512 236517) (-190 "D03EEFA.spad" 236170 236178 236340 236345) (-189 "D03AGNT.spad" 235250 235258 236160 236165) (-188 "D02EJFA.spad" 234712 234720 235240 235245) (-187 "D02CJFA.spad" 234190 234198 234702 234707) (-186 "D02BHFA.spad" 233680 233688 234180 234185) (-185 "D02BBFA.spad" 233170 233178 233670 233675) (-184 "D02AGNT.spad" 227974 227982 233160 233165) (-183 "D01WGTS.spad" 226293 226301 227964 227969) (-182 "D01TRNS.spad" 226270 226278 226283 226288) (-181 "D01GBFA.spad" 225792 225800 226260 226265) (-180 "D01FCFA.spad" 225314 225322 225782 225787) (-179 "D01ASFA.spad" 224782 224790 225304 225309) (-178 "D01AQFA.spad" 224228 224236 224772 224777) (-177 "D01APFA.spad" 223652 223660 224218 224223) (-176 "D01ANFA.spad" 223146 223154 223642 223647) (-175 "D01AMFA.spad" 222656 222664 223136 223141) (-174 "D01ALFA.spad" 222196 222204 222646 222651) (-173 "D01AKFA.spad" 221722 221730 222186 222191) (-172 "D01AJFA.spad" 221245 221253 221712 221717) (-171 "D01AGNT.spad" 217304 217312 221235 221240) (-170 "CYCLOTOM.spad" 216810 216818 217294 217299) (-169 "CYCLES.spad" 213642 213650 216800 216805) (-168 "CVMP.spad" 213059 213069 213632 213637) (-167 "CTRIGMNP.spad" 211549 211565 213049 213054) (-166 "CTORCALL.spad" 211137 211145 211539 211544) (-165 "CSTTOOLS.spad" 210380 210393 211127 211132) (-164 "CRFP.spad" 204084 204097 210370 210375) (-163 "CRAPACK.spad" 203127 203137 204074 204079) (-162 "CPMATCH.spad" 202627 202642 203052 203057) (-161 "CPIMA.spad" 202332 202351 202617 202622) (-160 "COORDSYS.spad" 197225 197235 202322 202327) (-159 "CONTOUR.spad" 196627 196635 197215 197220) (-158 "CONTFRAC.spad" 192239 192249 196529 196622) (-157 "COMRING.spad" 191913 191921 192177 192234) (-156 "COMPPROP.spad" 191427 191435 191903 191908) (-155 "COMPLPAT.spad" 191194 191209 191417 191422) (-154 "COMPLEX.spad" 185227 185237 185471 185732) (-153 "COMPLEX2.spad" 184940 184952 185217 185222) (-152 "COMPFACT.spad" 184542 184556 184930 184935) (-151 "COMPCAT.spad" 182598 182608 184264 184537) (-150 "COMPCAT.spad" 180361 180373 182029 182034) (-149 "COMMUPC.spad" 180107 180125 180351 180356) (-148 "COMMONOP.spad" 179640 179648 180097 180102) (-147 "COMM.spad" 179449 179457 179630 179635) (-146 "COMBOPC.spad" 178354 178362 179439 179444) (-145 "COMBINAT.spad" 177099 177109 178344 178349) (-144 "COMBF.spad" 174467 174483 177089 177094) (-143 "COLOR.spad" 173304 173312 174457 174462) (-142 "CMPLXRT.spad" 173013 173030 173294 173299) (-141 "CLIP.spad" 169105 169113 173003 173008) (-140 "CLIF.spad" 167744 167760 169061 169100) (-139 "CLAGG.spad" 164219 164229 167724 167739) (-138 "CLAGG.spad" 160575 160587 164082 164087) (-137 "CINTSLPE.spad" 159900 159913 160565 160570) (-136 "CHVAR.spad" 157978 158000 159890 159895) (-135 "CHARZ.spad" 157893 157901 157958 157973) (-134 "CHARPOL.spad" 157401 157411 157883 157888) (-133 "CHARNZ.spad" 157154 157162 157381 157396) (-132 "CHAR.spad" 155044 155052 157144 157149) (-131 "CFCAT.spad" 154360 154368 155034 155039) (-130 "CDEN.spad" 153518 153532 154350 154355) (-129 "CCLASS.spad" 151667 151675 152929 152968) (-128 "CARTEN.spad" 146770 146794 151657 151662) (-127 "CARTEN2.spad" 146156 146183 146760 146765) (-126 "CARD.spad" 143445 143453 146130 146151) (-125 "CACHSET.spad" 143067 143075 143435 143440) (-124 "CABMON.spad" 142620 142628 143057 143062) (-123 "BTREE.spad" 141689 141699 142227 142254) (-122 "BTOURN.spad" 140692 140702 141296 141323) (-121 "BTCAT.spad" 140068 140078 140648 140687) (-120 "BTCAT.spad" 139476 139488 140058 140063) (-119 "BTAGG.spad" 138492 138500 139432 139471) (-118 "BTAGG.spad" 137540 137550 138482 138487) (-117 "BSTREE.spad" 136275 136285 137147 137174) (-116 "BRILL.spad" 134470 134481 136265 136270) (-115 "BRAGG.spad" 133384 133394 134450 134465) (-114 "BRAGG.spad" 132272 132284 133340 133345) (-113 "BPADICRT.spad" 130256 130268 130511 130604) (-112 "BPADIC.spad" 129920 129932 130182 130251) (-111 "BOUNDZRO.spad" 129576 129593 129910 129915) (-110 "BOP.spad" 125040 125048 129566 129571) (-109 "BOP1.spad" 122426 122436 124996 125001) (-108 "BOOLEAN.spad" 121679 121687 122416 122421) (-107 "BMODULE.spad" 121391 121403 121647 121674) (-106 "BITS.spad" 120810 120818 121027 121054) (-105 "BINFILE.spad" 120153 120161 120800 120805) (-104 "BINDING.spad" 119572 119580 120143 120148) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-1197 NIL 2234181 2234186 2234191 2234196) (-3 NIL 2234161 2234166 2234171 2234176) (-2 NIL 2234141 2234146 2234151 2234156) (-1 NIL 2234121 2234126 2234131 2234136) (0 NIL 2234101 2234106 2234111 2234116) (-1192 "ZMOD.spad" 2233910 2233923 2234039 2234096) (-1191 "ZLINDEP.spad" 2232954 2232965 2233900 2233905) (-1190 "ZDSOLVE.spad" 2222803 2222825 2232944 2232949) (-1189 "YSTREAM.spad" 2222296 2222307 2222793 2222798) (-1188 "XRPOLY.spad" 2221516 2221536 2222152 2222221) (-1187 "XPR.spad" 2219245 2219258 2221234 2221333) (-1186 "XPOLY.spad" 2218800 2218811 2219101 2219170) (-1185 "XPOLYC.spad" 2218117 2218133 2218726 2218795) (-1184 "XPBWPOLY.spad" 2216554 2216574 2217897 2217966) (-1183 "XF.spad" 2215015 2215030 2216456 2216549) (-1182 "XF.spad" 2213456 2213473 2214899 2214904) (-1181 "XFALG.spad" 2210480 2210496 2213382 2213451) (-1180 "XEXPPKG.spad" 2209731 2209757 2210470 2210475) (-1179 "XDPOLY.spad" 2209345 2209361 2209587 2209656) (-1178 "XALG.spad" 2208943 2208954 2209301 2209340) (-1177 "WUTSET.spad" 2204782 2204799 2208589 2208616) (-1176 "WP.spad" 2203796 2203840 2204640 2204707) (-1175 "WFFINTBS.spad" 2201359 2201381 2203786 2203791) (-1174 "WEIER.spad" 2199573 2199584 2201349 2201354) (-1173 "VSPACE.spad" 2199246 2199257 2199541 2199568) (-1172 "VSPACE.spad" 2198939 2198952 2199236 2199241) (-1171 "VOID.spad" 2198529 2198538 2198929 2198934) (-1170 "VIEW.spad" 2196151 2196160 2198519 2198524) (-1169 "VIEWDEF.spad" 2191348 2191357 2196141 2196146) (-1168 "VIEW3D.spad" 2175183 2175192 2191338 2191343) (-1167 "VIEW2D.spad" 2162920 2162929 2175173 2175178) (-1166 "VECTOR.spad" 2161597 2161608 2161848 2161875) (-1165 "VECTOR2.spad" 2160224 2160237 2161587 2161592) (-1164 "VECTCAT.spad" 2158112 2158123 2160180 2160219) (-1163 "VECTCAT.spad" 2155821 2155834 2157891 2157896) (-1162 "VARIABLE.spad" 2155601 2155616 2155811 2155816) (-1161 "UTYPE.spad" 2155235 2155244 2155581 2155596) (-1160 "UTSODETL.spad" 2154528 2154552 2155191 2155196) (-1159 "UTSODE.spad" 2152716 2152736 2154518 2154523) (-1158 "UTS.spad" 2147505 2147533 2151183 2151280) (-1157 "UTSCAT.spad" 2144956 2144972 2147403 2147500) (-1156 "UTSCAT.spad" 2142051 2142069 2144500 2144505) (-1155 "UTS2.spad" 2141644 2141679 2142041 2142046) (-1154 "URAGG.spad" 2136266 2136277 2141624 2141639) (-1153 "URAGG.spad" 2130862 2130875 2136222 2136227) (-1152 "UPXSSING.spad" 2128508 2128534 2129946 2130079) (-1151 "UPXS.spad" 2125535 2125563 2126640 2126789) (-1150 "UPXSCONS.spad" 2123292 2123312 2123667 2123816) (-1149 "UPXSCCA.spad" 2121750 2121770 2123138 2123287) (-1148 "UPXSCCA.spad" 2120350 2120372 2121740 2121745) (-1147 "UPXSCAT.spad" 2118931 2118947 2120196 2120345) (-1146 "UPXS2.spad" 2118472 2118525 2118921 2118926) (-1145 "UPSQFREE.spad" 2116884 2116898 2118462 2118467) (-1144 "UPSCAT.spad" 2114477 2114501 2116782 2116879) (-1143 "UPSCAT.spad" 2111776 2111802 2114083 2114088) (-1142 "UPOLYC.spad" 2106754 2106765 2111618 2111771) (-1141 "UPOLYC.spad" 2101624 2101637 2106490 2106495) (-1140 "UPOLYC2.spad" 2101093 2101112 2101614 2101619) (-1139 "UP.spad" 2098143 2098158 2098651 2098804) (-1138 "UPMP.spad" 2097033 2097046 2098133 2098138) (-1137 "UPDIVP.spad" 2096596 2096610 2097023 2097028) (-1136 "UPDECOMP.spad" 2094833 2094847 2096586 2096591) (-1135 "UPCDEN.spad" 2094040 2094056 2094823 2094828) (-1134 "UP2.spad" 2093402 2093423 2094030 2094035) (-1133 "UNISEG.spad" 2092755 2092766 2093321 2093326) (-1132 "UNISEG2.spad" 2092248 2092261 2092711 2092716) (-1131 "UNIFACT.spad" 2091349 2091361 2092238 2092243) (-1130 "ULS.spad" 2081908 2081936 2083001 2083430) (-1129 "ULSCONS.spad" 2075951 2075971 2076323 2076472) (-1128 "ULSCCAT.spad" 2073548 2073568 2075771 2075946) (-1127 "ULSCCAT.spad" 2071279 2071301 2073504 2073509) (-1126 "ULSCAT.spad" 2069495 2069511 2071125 2071274) (-1125 "ULS2.spad" 2069007 2069060 2069485 2069490) (-1124 "UFD.spad" 2068072 2068081 2068933 2069002) (-1123 "UFD.spad" 2067199 2067210 2068062 2068067) (-1122 "UDVO.spad" 2066046 2066055 2067189 2067194) (-1121 "UDPO.spad" 2063473 2063484 2066002 2066007) (-1120 "TYPE.spad" 2063395 2063404 2063453 2063468) (-1119 "TWOFACT.spad" 2062045 2062060 2063385 2063390) (-1118 "TUPLE.spad" 2061431 2061442 2061944 2061949) (-1117 "TUBETOOL.spad" 2058268 2058277 2061421 2061426) (-1116 "TUBE.spad" 2056909 2056926 2058258 2058263) (-1115 "TS.spad" 2055498 2055514 2056474 2056571) (-1114 "TSETCAT.spad" 2042613 2042630 2055454 2055493) (-1113 "TSETCAT.spad" 2029726 2029745 2042569 2042574) (-1112 "TRMANIP.spad" 2024092 2024109 2029432 2029437) (-1111 "TRIMAT.spad" 2023051 2023076 2024082 2024087) (-1110 "TRIGMNIP.spad" 2021568 2021585 2023041 2023046) (-1109 "TRIGCAT.spad" 2021080 2021089 2021558 2021563) (-1108 "TRIGCAT.spad" 2020590 2020601 2021070 2021075) (-1107 "TREE.spad" 2019161 2019172 2020197 2020224) (-1106 "TRANFUN.spad" 2018992 2019001 2019151 2019156) (-1105 "TRANFUN.spad" 2018821 2018832 2018982 2018987) (-1104 "TOPSP.spad" 2018495 2018504 2018811 2018816) (-1103 "TOOLSIGN.spad" 2018158 2018169 2018485 2018490) (-1102 "TEXTFILE.spad" 2016715 2016724 2018148 2018153) (-1101 "TEX.spad" 2013732 2013741 2016705 2016710) (-1100 "TEX1.spad" 2013288 2013299 2013722 2013727) (-1099 "TEMUTL.spad" 2012843 2012852 2013278 2013283) (-1098 "TBCMPPK.spad" 2010936 2010959 2012833 2012838) (-1097 "TBAGG.spad" 2009960 2009983 2010904 2010931) (-1096 "TBAGG.spad" 2009004 2009029 2009950 2009955) (-1095 "TANEXP.spad" 2008380 2008391 2008994 2008999) (-1094 "TABLE.spad" 2006791 2006814 2007061 2007088) (-1093 "TABLEAU.spad" 2006272 2006283 2006781 2006786) (-1092 "TABLBUMP.spad" 2003055 2003066 2006262 2006267) (-1091 "SYSSOLP.spad" 2000528 2000539 2003045 2003050) (-1090 "SYNTAX.spad" 1996746 1996755 2000518 2000523) (-1089 "SYMTAB.spad" 1994802 1994811 1996736 1996741) (-1088 "SYMS.spad" 1990787 1990796 1994792 1994797) (-1087 "SYMPOLY.spad" 1989797 1989808 1989879 1990006) (-1086 "SYMFUNC.spad" 1989272 1989283 1989787 1989792) (-1085 "SYMBOL.spad" 1986608 1986617 1989262 1989267) (-1084 "SWITCH.spad" 1983365 1983374 1986598 1986603) (-1083 "SUTS.spad" 1980264 1980292 1981832 1981929) (-1082 "SUPXS.spad" 1977278 1977306 1978396 1978545) (-1081 "SUP.spad" 1974055 1974066 1974836 1974989) (-1080 "SUPFRACF.spad" 1973160 1973178 1974045 1974050) (-1079 "SUP2.spad" 1972550 1972563 1973150 1973155) (-1078 "SUMRF.spad" 1971516 1971527 1972540 1972545) (-1077 "SUMFS.spad" 1971149 1971166 1971506 1971511) (-1076 "SULS.spad" 1961695 1961723 1962801 1963230) (-1075 "SUCH.spad" 1961375 1961390 1961685 1961690) (-1074 "SUBSPACE.spad" 1953382 1953397 1961365 1961370) (-1073 "SUBRESP.spad" 1952542 1952556 1953338 1953343) (-1072 "STTF.spad" 1948641 1948657 1952532 1952537) (-1071 "STTFNC.spad" 1945109 1945125 1948631 1948636) (-1070 "STTAYLOR.spad" 1937507 1937518 1944990 1944995) (-1069 "STRTBL.spad" 1936012 1936029 1936161 1936188) (-1068 "STRING.spad" 1935421 1935430 1935435 1935462) (-1067 "STRICAT.spad" 1935197 1935206 1935377 1935416) (-1066 "STREAM.spad" 1931965 1931976 1934722 1934737) (-1065 "STREAM3.spad" 1931510 1931525 1931955 1931960) (-1064 "STREAM2.spad" 1930578 1930591 1931500 1931505) (-1063 "STREAM1.spad" 1930282 1930293 1930568 1930573) (-1062 "STINPROD.spad" 1929188 1929204 1930272 1930277) (-1061 "STEP.spad" 1928389 1928398 1929178 1929183) (-1060 "STBL.spad" 1926915 1926943 1927082 1927097) (-1059 "STAGG.spad" 1925980 1925991 1926895 1926910) (-1058 "STAGG.spad" 1925053 1925066 1925970 1925975) (-1057 "STACK.spad" 1924404 1924415 1924660 1924687) (-1056 "SREGSET.spad" 1922108 1922125 1924050 1924077) (-1055 "SRDCMPK.spad" 1920653 1920673 1922098 1922103) (-1054 "SRAGG.spad" 1915738 1915747 1920609 1920648) (-1053 "SRAGG.spad" 1910855 1910866 1915728 1915733) (-1052 "SQMATRIX.spad" 1908481 1908499 1909389 1909476) (-1051 "SPLTREE.spad" 1903033 1903046 1907917 1907944) (-1050 "SPLNODE.spad" 1899621 1899634 1903023 1903028) (-1049 "SPFCAT.spad" 1898398 1898407 1899611 1899616) (-1048 "SPECOUT.spad" 1896948 1896957 1898388 1898393) (-1047 "spad-parser.spad" 1896413 1896422 1896938 1896943) (-1046 "SPACEC.spad" 1880426 1880437 1896403 1896408) (-1045 "SPACE3.spad" 1880202 1880213 1880416 1880421) (-1044 "SORTPAK.spad" 1879747 1879760 1880158 1880163) (-1043 "SOLVETRA.spad" 1877504 1877515 1879737 1879742) (-1042 "SOLVESER.spad" 1876024 1876035 1877494 1877499) (-1041 "SOLVERAD.spad" 1872034 1872045 1876014 1876019) (-1040 "SOLVEFOR.spad" 1870454 1870472 1872024 1872029) (-1039 "SNTSCAT.spad" 1870042 1870059 1870410 1870449) (-1038 "SMTS.spad" 1868302 1868328 1869607 1869704) (-1037 "SMP.spad" 1865744 1865764 1866134 1866261) (-1036 "SMITH.spad" 1864587 1864612 1865734 1865739) (-1035 "SMATCAT.spad" 1862685 1862715 1864519 1864582) (-1034 "SMATCAT.spad" 1860727 1860759 1862563 1862568) (-1033 "SKAGG.spad" 1859676 1859687 1860683 1860722) (-1032 "SINT.spad" 1857984 1857993 1859542 1859671) (-1031 "SIMPAN.spad" 1857712 1857721 1857974 1857979) (-1030 "SIGNRF.spad" 1856820 1856831 1857702 1857707) (-1029 "SIGNEF.spad" 1856089 1856106 1856810 1856815) (-1028 "SHP.spad" 1854007 1854022 1856045 1856050) (-1027 "SHDP.spad" 1845397 1845424 1845906 1846035) (-1026 "SGROUP.spad" 1844863 1844872 1845387 1845392) (-1025 "SGROUP.spad" 1844327 1844338 1844853 1844858) (-1024 "SGCF.spad" 1837208 1837217 1844317 1844322) (-1023 "SFRTCAT.spad" 1836124 1836141 1837164 1837203) (-1022 "SFRGCD.spad" 1835187 1835207 1836114 1836119) (-1021 "SFQCMPK.spad" 1829824 1829844 1835177 1835182) (-1020 "SFORT.spad" 1829259 1829273 1829814 1829819) (-1019 "SEXOF.spad" 1829102 1829142 1829249 1829254) (-1018 "SEX.spad" 1828994 1829003 1829092 1829097) (-1017 "SEXCAT.spad" 1826098 1826138 1828984 1828989) (-1016 "SET.spad" 1824398 1824409 1825519 1825558) (-1015 "SETMN.spad" 1822832 1822849 1824388 1824393) (-1014 "SETCAT.spad" 1822317 1822326 1822822 1822827) (-1013 "SETCAT.spad" 1821800 1821811 1822307 1822312) (-1012 "SETAGG.spad" 1818323 1818334 1821768 1821795) (-1011 "SETAGG.spad" 1814866 1814879 1818313 1818318) (-1010 "SEGXCAT.spad" 1813978 1813991 1814846 1814861) (-1009 "SEG.spad" 1813791 1813802 1813897 1813902) (-1008 "SEGCAT.spad" 1812610 1812621 1813771 1813786) (-1007 "SEGBIND.spad" 1811682 1811693 1812565 1812570) (-1006 "SEGBIND2.spad" 1811378 1811391 1811672 1811677) (-1005 "SEG2.spad" 1810803 1810816 1811334 1811339) (-1004 "SDVAR.spad" 1810079 1810090 1810793 1810798) (-1003 "SDPOL.spad" 1807472 1807483 1807763 1807890) (-1002 "SCPKG.spad" 1805551 1805562 1807462 1807467) (-1001 "SCOPE.spad" 1804696 1804705 1805541 1805546) (-1000 "SCACHE.spad" 1803378 1803389 1804686 1804691) (-999 "SAOS.spad" 1803251 1803259 1803368 1803373) (-998 "SAERFFC.spad" 1802965 1802984 1803241 1803246) (-997 "SAE.spad" 1801144 1801159 1801754 1801889) (-996 "SAEFACT.spad" 1800846 1800865 1801134 1801139) (-995 "RURPK.spad" 1798488 1798503 1800836 1800841) (-994 "RULESET.spad" 1797930 1797953 1798478 1798483) (-993 "RULE.spad" 1796135 1796158 1797920 1797925) (-992 "RULECOLD.spad" 1795988 1796000 1796125 1796130) (-991 "RSETGCD.spad" 1792367 1792386 1795978 1795983) (-990 "RSETCAT.spad" 1782140 1782156 1792323 1792362) (-989 "RSETCAT.spad" 1771945 1771963 1782130 1782135) (-988 "RSDCMPK.spad" 1770398 1770417 1771935 1771940) (-987 "RRCC.spad" 1768783 1768812 1770388 1770393) (-986 "RRCC.spad" 1767166 1767197 1768773 1768778) (-985 "RPOLCAT.spad" 1746527 1746541 1767034 1767161) (-984 "RPOLCAT.spad" 1725603 1725619 1746112 1746117) (-983 "ROUTINE.spad" 1721467 1721475 1724250 1724277) (-982 "ROMAN.spad" 1720700 1720708 1721333 1721462) (-981 "ROIRC.spad" 1719781 1719812 1720690 1720695) (-980 "RNS.spad" 1718685 1718693 1719683 1719776) (-979 "RNS.spad" 1717675 1717685 1718675 1718680) (-978 "RNG.spad" 1717411 1717419 1717665 1717670) (-977 "RMODULE.spad" 1717050 1717060 1717401 1717406) (-976 "RMCAT2.spad" 1716459 1716515 1717040 1717045) (-975 "RMATRIX.spad" 1715139 1715157 1715626 1715665) (-974 "RMATCAT.spad" 1710661 1710691 1715083 1715134) (-973 "RMATCAT.spad" 1706085 1706117 1710509 1710514) (-972 "RINTERP.spad" 1705974 1705993 1706075 1706080) (-971 "RING.spad" 1705332 1705340 1705954 1705969) (-970 "RING.spad" 1704698 1704708 1705322 1705327) (-969 "RIDIST.spad" 1704083 1704091 1704688 1704693) (-968 "RGCHAIN.spad" 1702663 1702678 1703568 1703595) (-967 "RF.spad" 1700278 1700288 1702653 1702658) (-966 "RFFACTOR.spad" 1699741 1699751 1700268 1700273) (-965 "RFFACT.spad" 1699477 1699488 1699731 1699736) (-964 "RFDIST.spad" 1698466 1698474 1699467 1699472) (-963 "RETSOL.spad" 1697884 1697896 1698456 1698461) (-962 "RETRACT.spad" 1697234 1697244 1697874 1697879) (-961 "RETRACT.spad" 1696582 1696594 1697224 1697229) (-960 "RESULT.spad" 1694643 1694651 1695229 1695256) (-959 "RESRING.spad" 1693991 1694037 1694581 1694638) (-958 "RESLATC.spad" 1693316 1693326 1693981 1693986) (-957 "REPSQ.spad" 1693046 1693056 1693306 1693311) (-956 "REP.spad" 1690599 1690607 1693036 1693041) (-955 "REPDB.spad" 1690305 1690315 1690589 1690594) (-954 "REP2.spad" 1679878 1679888 1690147 1690152) (-953 "REP1.spad" 1673869 1673879 1679828 1679833) (-952 "REGSET.spad" 1671667 1671683 1673515 1673542) (-951 "REF.spad" 1670997 1671007 1671622 1671627) (-950 "REDORDER.spad" 1670174 1670190 1670987 1670992) (-949 "RECLOS.spad" 1668964 1668983 1669667 1669760) (-948 "REALSOLV.spad" 1668097 1668105 1668954 1668959) (-947 "REAL.spad" 1667970 1667978 1668087 1668092) (-946 "REAL0Q.spad" 1665253 1665267 1667960 1667965) (-945 "REAL0.spad" 1662082 1662096 1665243 1665248) (-944 "RDIV.spad" 1661734 1661758 1662072 1662077) (-943 "RDIST.spad" 1661298 1661308 1661724 1661729) (-942 "RDETRS.spad" 1660095 1660112 1661288 1661293) (-941 "RDETR.spad" 1658203 1658220 1660085 1660090) (-940 "RDEEFS.spad" 1657277 1657293 1658193 1658198) (-939 "RDEEF.spad" 1656274 1656290 1657267 1657272) (-938 "RCFIELD.spad" 1653458 1653466 1656176 1656269) (-937 "RCFIELD.spad" 1650728 1650738 1653448 1653453) (-936 "RCAGG.spad" 1648631 1648641 1650708 1650723) (-935 "RCAGG.spad" 1646471 1646483 1648550 1648555) (-934 "RATRET.spad" 1645832 1645842 1646461 1646466) (-933 "RATFACT.spad" 1645525 1645536 1645822 1645827) (-932 "RANDSRC.spad" 1644845 1644853 1645515 1645520) (-931 "RADUTIL.spad" 1644600 1644608 1644835 1644840) (-930 "RADIX.spad" 1641393 1641406 1643070 1643163) (-929 "RADFF.spad" 1639810 1639846 1639928 1640084) (-928 "RADCAT.spad" 1639404 1639412 1639800 1639805) (-927 "RADCAT.spad" 1638996 1639006 1639394 1639399) (-926 "QUEUE.spad" 1638339 1638349 1638603 1638630) (-925 "QUAT.spad" 1636925 1636935 1637267 1637332) (-924 "QUATCT2.spad" 1636544 1636562 1636915 1636920) (-923 "QUATCAT.spad" 1634709 1634719 1636474 1636539) (-922 "QUATCAT.spad" 1632626 1632638 1634393 1634398) (-921 "QUAGG.spad" 1631440 1631450 1632582 1632621) (-920 "QFORM.spad" 1630903 1630917 1631430 1631435) (-919 "QFCAT.spad" 1629594 1629604 1630793 1630898) (-918 "QFCAT.spad" 1627891 1627903 1629092 1629097) (-917 "QFCAT2.spad" 1627582 1627598 1627881 1627886) (-916 "QEQUAT.spad" 1627139 1627147 1627572 1627577) (-915 "QCMPACK.spad" 1621886 1621905 1627129 1627134) (-914 "QALGSET.spad" 1617961 1617993 1621800 1621805) (-913 "QALGSET2.spad" 1615957 1615975 1617951 1617956) (-912 "PWFFINTB.spad" 1613267 1613288 1615947 1615952) (-911 "PUSHVAR.spad" 1612596 1612615 1613257 1613262) (-910 "PTRANFN.spad" 1608722 1608732 1612586 1612591) (-909 "PTPACK.spad" 1605810 1605820 1608712 1608717) (-908 "PTFUNC2.spad" 1605631 1605645 1605800 1605805) (-907 "PTCAT.spad" 1604713 1604723 1605587 1605626) (-906 "PSQFR.spad" 1604020 1604044 1604703 1604708) (-905 "PSEUDLIN.spad" 1602878 1602888 1604010 1604015) (-904 "PSETPK.spad" 1588311 1588327 1602756 1602761) (-903 "PSETCAT.spad" 1582219 1582242 1588279 1588306) (-902 "PSETCAT.spad" 1576113 1576138 1582175 1582180) (-901 "PSCURVE.spad" 1575096 1575104 1576103 1576108) (-900 "PSCAT.spad" 1573863 1573892 1574994 1575091) (-899 "PSCAT.spad" 1572720 1572751 1573853 1573858) (-898 "PRTITION.spad" 1571563 1571571 1572710 1572715) (-897 "PRS.spad" 1561125 1561142 1571519 1571524) (-896 "PRQAGG.spad" 1560544 1560554 1561081 1561120) (-895 "PROPLOG.spad" 1559947 1559955 1560534 1560539) (-894 "PROPFRML.spad" 1557812 1557823 1559883 1559888) (-893 "PROPERTY.spad" 1557306 1557314 1557802 1557807) (-892 "PRODUCT.spad" 1554986 1554998 1555272 1555327) (-891 "PR.spad" 1553375 1553387 1554080 1554207) (-890 "PRINT.spad" 1553127 1553135 1553365 1553370) (-889 "PRIMES.spad" 1551378 1551388 1553117 1553122) (-888 "PRIMELT.spad" 1549359 1549373 1551368 1551373) (-887 "PRIMCAT.spad" 1548982 1548990 1549349 1549354) (-886 "PRIMARR.spad" 1547987 1547997 1548165 1548192) (-885 "PRIMARR2.spad" 1546710 1546722 1547977 1547982) (-884 "PREASSOC.spad" 1546082 1546094 1546700 1546705) (-883 "PPCURVE.spad" 1545219 1545227 1546072 1546077) (-882 "POLYROOT.spad" 1543991 1544013 1545175 1545180) (-881 "POLY.spad" 1541291 1541301 1541808 1541935) (-880 "POLYLIFT.spad" 1540552 1540575 1541281 1541286) (-879 "POLYCATQ.spad" 1538654 1538676 1540542 1540547) (-878 "POLYCAT.spad" 1532060 1532081 1538522 1538649) (-877 "POLYCAT.spad" 1524768 1524791 1531232 1531237) (-876 "POLY2UP.spad" 1524216 1524230 1524758 1524763) (-875 "POLY2.spad" 1523811 1523823 1524206 1524211) (-874 "POLUTIL.spad" 1522752 1522781 1523767 1523772) (-873 "POLTOPOL.spad" 1521500 1521515 1522742 1522747) (-872 "POINT.spad" 1520341 1520351 1520428 1520455) (-871 "PNTHEORY.spad" 1517007 1517015 1520331 1520336) (-870 "PMTOOLS.spad" 1515764 1515778 1516997 1517002) (-869 "PMSYM.spad" 1515309 1515319 1515754 1515759) (-868 "PMQFCAT.spad" 1514896 1514910 1515299 1515304) (-867 "PMPRED.spad" 1514365 1514379 1514886 1514891) (-866 "PMPREDFS.spad" 1513809 1513831 1514355 1514360) (-865 "PMPLCAT.spad" 1512879 1512897 1513741 1513746) (-864 "PMLSAGG.spad" 1512460 1512474 1512869 1512874) (-863 "PMKERNEL.spad" 1512027 1512039 1512450 1512455) (-862 "PMINS.spad" 1511603 1511613 1512017 1512022) (-861 "PMFS.spad" 1511176 1511194 1511593 1511598) (-860 "PMDOWN.spad" 1510462 1510476 1511166 1511171) (-859 "PMASS.spad" 1509474 1509482 1510452 1510457) (-858 "PMASSFS.spad" 1508443 1508459 1509464 1509469) (-857 "PLOTTOOL.spad" 1508223 1508231 1508433 1508438) (-856 "PLOT.spad" 1503054 1503062 1508213 1508218) (-855 "PLOT3D.spad" 1499474 1499482 1503044 1503049) (-854 "PLOT1.spad" 1498615 1498625 1499464 1499469) (-853 "PLEQN.spad" 1485831 1485858 1498605 1498610) (-852 "PINTERP.spad" 1485447 1485466 1485821 1485826) (-851 "PINTERPA.spad" 1485229 1485245 1485437 1485442) (-850 "PI.spad" 1484836 1484844 1485203 1485224) (-849 "PID.spad" 1483792 1483800 1484762 1484831) (-848 "PICOERCE.spad" 1483449 1483459 1483782 1483787) (-847 "PGROEB.spad" 1482046 1482060 1483439 1483444) (-846 "PGE.spad" 1473299 1473307 1482036 1482041) (-845 "PGCD.spad" 1472181 1472198 1473289 1473294) (-844 "PFRPAC.spad" 1471324 1471334 1472171 1472176) (-843 "PFR.spad" 1467981 1467991 1471226 1471319) (-842 "PFOTOOLS.spad" 1467239 1467255 1467971 1467976) (-841 "PFOQ.spad" 1466609 1466627 1467229 1467234) (-840 "PFO.spad" 1466028 1466055 1466599 1466604) (-839 "PF.spad" 1465602 1465614 1465833 1465926) (-838 "PFECAT.spad" 1463268 1463276 1465528 1465597) (-837 "PFECAT.spad" 1460962 1460972 1463224 1463229) (-836 "PFBRU.spad" 1458832 1458844 1460952 1460957) (-835 "PFBR.spad" 1456370 1456393 1458822 1458827) (-834 "PERM.spad" 1452051 1452061 1456200 1456215) (-833 "PERMGRP.spad" 1446787 1446797 1452041 1452046) (-832 "PERMCAT.spad" 1445339 1445349 1446767 1446782) (-831 "PERMAN.spad" 1443871 1443885 1445329 1445334) (-830 "PENDTREE.spad" 1443144 1443154 1443500 1443505) (-829 "PDRING.spad" 1441635 1441645 1443124 1443139) (-828 "PDRING.spad" 1440134 1440146 1441625 1441630) (-827 "PDEPROB.spad" 1439091 1439099 1440124 1440129) (-826 "PDEPACK.spad" 1433093 1433101 1439081 1439086) (-825 "PDECOMP.spad" 1432555 1432572 1433083 1433088) (-824 "PDECAT.spad" 1430909 1430917 1432545 1432550) (-823 "PCOMP.spad" 1430760 1430773 1430899 1430904) (-822 "PBWLB.spad" 1429342 1429359 1430750 1430755) (-821 "PATTERN.spad" 1423773 1423783 1429332 1429337) (-820 "PATTERN2.spad" 1423509 1423521 1423763 1423768) (-819 "PATTERN1.spad" 1421811 1421827 1423499 1423504) (-818 "PATRES.spad" 1419358 1419370 1421801 1421806) (-817 "PATRES2.spad" 1419020 1419034 1419348 1419353) (-816 "PATMATCH.spad" 1417182 1417213 1418733 1418738) (-815 "PATMAB.spad" 1416607 1416617 1417172 1417177) (-814 "PATLRES.spad" 1415691 1415705 1416597 1416602) (-813 "PATAB.spad" 1415455 1415465 1415681 1415686) (-812 "PARTPERM.spad" 1412817 1412825 1415445 1415450) (-811 "PARSURF.spad" 1412245 1412273 1412807 1412812) (-810 "PARSU2.spad" 1412040 1412056 1412235 1412240) (-809 "script-parser.spad" 1411560 1411568 1412030 1412035) (-808 "PARSCURV.spad" 1410988 1411016 1411550 1411555) (-807 "PARSC2.spad" 1410777 1410793 1410978 1410983) (-806 "PARPCURV.spad" 1410235 1410263 1410767 1410772) (-805 "PARPC2.spad" 1410024 1410040 1410225 1410230) (-804 "PAN2EXPR.spad" 1409436 1409444 1410014 1410019) (-803 "PALETTE.spad" 1408406 1408414 1409426 1409431) (-802 "PAIR.spad" 1407389 1407402 1407994 1407999) (-801 "PADICRC.spad" 1404722 1404740 1405897 1405990) (-800 "PADICRAT.spad" 1402740 1402752 1402961 1403054) (-799 "PADIC.spad" 1402435 1402447 1402666 1402735) (-798 "PADICCT.spad" 1400976 1400988 1402361 1402430) (-797 "PADEPAC.spad" 1399655 1399674 1400966 1400971) (-796 "PADE.spad" 1398395 1398411 1399645 1399650) (-795 "OWP.spad" 1397379 1397409 1398253 1398320) (-794 "OVAR.spad" 1397160 1397183 1397369 1397374) (-793 "OUT.spad" 1396244 1396252 1397150 1397155) (-792 "OUTFORM.spad" 1385658 1385666 1396234 1396239) (-791 "OSI.spad" 1385133 1385141 1385648 1385653) (-790 "ORTHPOL.spad" 1383594 1383604 1385050 1385055) (-789 "OREUP.spad" 1382954 1382982 1383276 1383315) (-788 "ORESUP.spad" 1382255 1382279 1382636 1382675) (-787 "OREPCTO.spad" 1380074 1380086 1382175 1382180) (-786 "OREPCAT.spad" 1374131 1374141 1380030 1380069) (-785 "OREPCAT.spad" 1368078 1368090 1373979 1373984) (-784 "ORDSET.spad" 1367244 1367252 1368068 1368073) (-783 "ORDSET.spad" 1366408 1366418 1367234 1367239) (-782 "ORDRING.spad" 1365798 1365806 1366388 1366403) (-781 "ORDRING.spad" 1365196 1365206 1365788 1365793) (-780 "ORDMON.spad" 1365051 1365059 1365186 1365191) (-779 "ORDFUNS.spad" 1364177 1364193 1365041 1365046) (-778 "ORDFIN.spad" 1364111 1364119 1364167 1364172) (-777 "ORDCOMP.spad" 1362579 1362589 1363661 1363690) (-776 "ORDCOMP2.spad" 1361864 1361876 1362569 1362574) (-775 "OPTPROB.spad" 1360444 1360452 1361854 1361859) (-774 "OPTPACK.spad" 1352829 1352837 1360434 1360439) (-773 "OPTCAT.spad" 1350504 1350512 1352819 1352824) (-772 "OPQUERY.spad" 1350053 1350061 1350494 1350499) (-771 "OP.spad" 1349795 1349805 1349875 1349942) (-770 "ONECOMP.spad" 1348543 1348553 1349345 1349374) (-769 "ONECOMP2.spad" 1347961 1347973 1348533 1348538) (-768 "OMSERVER.spad" 1346963 1346971 1347951 1347956) (-767 "OMSAGG.spad" 1346739 1346749 1346907 1346958) (-766 "OMPKG.spad" 1345351 1345359 1346729 1346734) (-765 "OM.spad" 1344316 1344324 1345341 1345346) (-764 "OMLO.spad" 1343741 1343753 1344202 1344241) (-763 "OMEXPR.spad" 1343575 1343585 1343731 1343736) (-762 "OMERR.spad" 1343118 1343126 1343565 1343570) (-761 "OMERRK.spad" 1342152 1342160 1343108 1343113) (-760 "OMENC.spad" 1341496 1341504 1342142 1342147) (-759 "OMDEV.spad" 1335785 1335793 1341486 1341491) (-758 "OMCONN.spad" 1335194 1335202 1335775 1335780) (-757 "OINTDOM.spad" 1334957 1334965 1335120 1335189) (-756 "OFMONOID.spad" 1331144 1331154 1334947 1334952) (-755 "ODVAR.spad" 1330405 1330415 1331134 1331139) (-754 "ODR.spad" 1329853 1329879 1330217 1330366) (-753 "ODPOL.spad" 1327202 1327212 1327542 1327669) (-752 "ODP.spad" 1318728 1318748 1319101 1319230) (-751 "ODETOOLS.spad" 1317311 1317330 1318718 1318723) (-750 "ODESYS.spad" 1314961 1314978 1317301 1317306) (-749 "ODERTRIC.spad" 1310902 1310919 1314918 1314923) (-748 "ODERED.spad" 1310289 1310313 1310892 1310897) (-747 "ODERAT.spad" 1307840 1307857 1310279 1310284) (-746 "ODEPRRIC.spad" 1304731 1304753 1307830 1307835) (-745 "ODEPROB.spad" 1303930 1303938 1304721 1304726) (-744 "ODEPRIM.spad" 1301204 1301226 1303920 1303925) (-743 "ODEPAL.spad" 1300580 1300604 1301194 1301199) (-742 "ODEPACK.spad" 1287182 1287190 1300570 1300575) (-741 "ODEINT.spad" 1286613 1286629 1287172 1287177) (-740 "ODEIFTBL.spad" 1284008 1284016 1286603 1286608) (-739 "ODEEF.spad" 1279375 1279391 1283998 1284003) (-738 "ODECONST.spad" 1278894 1278912 1279365 1279370) (-737 "ODECAT.spad" 1277490 1277498 1278884 1278889) (-736 "OCT.spad" 1275637 1275647 1276353 1276392) (-735 "OCTCT2.spad" 1275281 1275302 1275627 1275632) (-734 "OC.spad" 1273055 1273065 1275237 1275276) (-733 "OC.spad" 1270555 1270567 1272739 1272744) (-732 "OCAMON.spad" 1270403 1270411 1270545 1270550) (-731 "OASGP.spad" 1270218 1270226 1270393 1270398) (-730 "OAMONS.spad" 1269738 1269746 1270208 1270213) (-729 "OAMON.spad" 1269599 1269607 1269728 1269733) (-728 "OAGROUP.spad" 1269461 1269469 1269589 1269594) (-727 "NUMTUBE.spad" 1269048 1269064 1269451 1269456) (-726 "NUMQUAD.spad" 1256910 1256918 1269038 1269043) (-725 "NUMODE.spad" 1248046 1248054 1256900 1256905) (-724 "NUMINT.spad" 1245604 1245612 1248036 1248041) (-723 "NUMFMT.spad" 1244444 1244452 1245594 1245599) (-722 "NUMERIC.spad" 1236517 1236527 1244250 1244255) (-721 "NTSCAT.spad" 1235007 1235023 1236473 1236512) (-720 "NTPOLFN.spad" 1234552 1234562 1234924 1234929) (-719 "NSUP.spad" 1227570 1227580 1232110 1232263) (-718 "NSUP2.spad" 1226962 1226974 1227560 1227565) (-717 "NSMP.spad" 1223161 1223180 1223469 1223596) (-716 "NREP.spad" 1221533 1221547 1223151 1223156) (-715 "NPCOEF.spad" 1220779 1220799 1221523 1221528) (-714 "NORMRETR.spad" 1220377 1220416 1220769 1220774) (-713 "NORMPK.spad" 1218279 1218298 1220367 1220372) (-712 "NORMMA.spad" 1217967 1217993 1218269 1218274) (-711 "NONE.spad" 1217708 1217716 1217957 1217962) (-710 "NONE1.spad" 1217384 1217394 1217698 1217703) (-709 "NODE1.spad" 1216853 1216869 1217374 1217379) (-708 "NNI.spad" 1215740 1215748 1216827 1216848) (-707 "NLINSOL.spad" 1214362 1214372 1215730 1215735) (-706 "NIPROB.spad" 1212845 1212853 1214352 1214357) (-705 "NFINTBAS.spad" 1210305 1210322 1212835 1212840) (-704 "NCODIV.spad" 1208503 1208519 1210295 1210300) (-703 "NCNTFRAC.spad" 1208145 1208159 1208493 1208498) (-702 "NCEP.spad" 1206305 1206319 1208135 1208140) (-701 "NASRING.spad" 1205901 1205909 1206295 1206300) (-700 "NASRING.spad" 1205495 1205505 1205891 1205896) (-699 "NARNG.spad" 1204839 1204847 1205485 1205490) (-698 "NARNG.spad" 1204181 1204191 1204829 1204834) (-697 "NAGSP.spad" 1203254 1203262 1204171 1204176) (-696 "NAGS.spad" 1192779 1192787 1203244 1203249) (-695 "NAGF07.spad" 1191172 1191180 1192769 1192774) (-694 "NAGF04.spad" 1185404 1185412 1191162 1191167) (-693 "NAGF02.spad" 1179213 1179221 1185394 1185399) (-692 "NAGF01.spad" 1174816 1174824 1179203 1179208) (-691 "NAGE04.spad" 1168276 1168284 1174806 1174811) (-690 "NAGE02.spad" 1158618 1158626 1168266 1168271) (-689 "NAGE01.spad" 1154502 1154510 1158608 1158613) (-688 "NAGD03.spad" 1152422 1152430 1154492 1154497) (-687 "NAGD02.spad" 1144953 1144961 1152412 1152417) (-686 "NAGD01.spad" 1139066 1139074 1144943 1144948) (-685 "NAGC06.spad" 1134853 1134861 1139056 1139061) (-684 "NAGC05.spad" 1133322 1133330 1134843 1134848) (-683 "NAGC02.spad" 1132577 1132585 1133312 1133317) (-682 "NAALG.spad" 1132112 1132122 1132545 1132572) (-681 "NAALG.spad" 1131667 1131679 1132102 1132107) (-680 "MULTSQFR.spad" 1128625 1128642 1131657 1131662) (-679 "MULTFACT.spad" 1128008 1128025 1128615 1128620) (-678 "MTSCAT.spad" 1126042 1126063 1127906 1128003) (-677 "MTHING.spad" 1125699 1125709 1126032 1126037) (-676 "MSYSCMD.spad" 1125133 1125141 1125689 1125694) (-675 "MSET.spad" 1123075 1123085 1124839 1124878) (-674 "MSETAGG.spad" 1122908 1122918 1123031 1123070) (-673 "MRING.spad" 1119879 1119891 1122616 1122683) (-672 "MRF2.spad" 1119447 1119461 1119869 1119874) (-671 "MRATFAC.spad" 1118993 1119010 1119437 1119442) (-670 "MPRFF.spad" 1117023 1117042 1118983 1118988) (-669 "MPOLY.spad" 1114461 1114476 1114820 1114947) (-668 "MPCPF.spad" 1113725 1113744 1114451 1114456) (-667 "MPC3.spad" 1113540 1113580 1113715 1113720) (-666 "MPC2.spad" 1113182 1113215 1113530 1113535) (-665 "MONOTOOL.spad" 1111517 1111534 1113172 1113177) (-664 "MONOID.spad" 1110691 1110699 1111507 1111512) (-663 "MONOID.spad" 1109863 1109873 1110681 1110686) (-662 "MONOGEN.spad" 1108609 1108622 1109723 1109858) (-661 "MONOGEN.spad" 1107377 1107392 1108493 1108498) (-660 "MONADWU.spad" 1105391 1105399 1107367 1107372) (-659 "MONADWU.spad" 1103403 1103413 1105381 1105386) (-658 "MONAD.spad" 1102547 1102555 1103393 1103398) (-657 "MONAD.spad" 1101689 1101699 1102537 1102542) (-656 "MOEBIUS.spad" 1100375 1100389 1101669 1101684) (-655 "MODULE.spad" 1100245 1100255 1100343 1100370) (-654 "MODULE.spad" 1100135 1100147 1100235 1100240) (-653 "MODRING.spad" 1099466 1099505 1100115 1100130) (-652 "MODOP.spad" 1098125 1098137 1099288 1099355) (-651 "MODMONOM.spad" 1097657 1097675 1098115 1098120) (-650 "MODMON.spad" 1094367 1094383 1095143 1095296) (-649 "MODFIELD.spad" 1093725 1093764 1094269 1094362) (-648 "MMAP.spad" 1093465 1093499 1093715 1093720) (-647 "MLO.spad" 1091892 1091902 1093421 1093460) (-646 "MLIFT.spad" 1090464 1090481 1091882 1091887) (-645 "MKUCFUNC.spad" 1089997 1090015 1090454 1090459) (-644 "MKRECORD.spad" 1089599 1089612 1089987 1089992) (-643 "MKFUNC.spad" 1088980 1088990 1089589 1089594) (-642 "MKFLCFN.spad" 1087936 1087946 1088970 1088975) (-641 "MKCHSET.spad" 1087712 1087722 1087926 1087931) (-640 "MKBCFUNC.spad" 1087197 1087215 1087702 1087707) (-639 "MINT.spad" 1086636 1086644 1087099 1087192) (-638 "MHROWRED.spad" 1085137 1085147 1086626 1086631) (-637 "MFLOAT.spad" 1083582 1083590 1085027 1085132) (-636 "MFINFACT.spad" 1082982 1083004 1083572 1083577) (-635 "MESH.spad" 1080714 1080722 1082972 1082977) (-634 "MDDFACT.spad" 1078907 1078917 1080704 1080709) (-633 "MDAGG.spad" 1078182 1078192 1078875 1078902) (-632 "MCMPLX.spad" 1074162 1074170 1074776 1074977) (-631 "MCDEN.spad" 1073370 1073382 1074152 1074157) (-630 "MCALCFN.spad" 1070472 1070498 1073360 1073365) (-629 "MATSTOR.spad" 1067748 1067758 1070462 1070467) (-628 "MATRIX.spad" 1066452 1066462 1066936 1066963) (-627 "MATLIN.spad" 1063778 1063802 1066336 1066341) (-626 "MATCAT.spad" 1055351 1055373 1063734 1063773) (-625 "MATCAT.spad" 1046808 1046832 1055193 1055198) (-624 "MATCAT2.spad" 1046076 1046124 1046798 1046803) (-623 "MAPPKG3.spad" 1044975 1044989 1046066 1046071) (-622 "MAPPKG2.spad" 1044309 1044321 1044965 1044970) (-621 "MAPPKG1.spad" 1043127 1043137 1044299 1044304) (-620 "MAPHACK3.spad" 1042935 1042949 1043117 1043122) (-619 "MAPHACK2.spad" 1042700 1042712 1042925 1042930) (-618 "MAPHACK1.spad" 1042330 1042340 1042690 1042695) (-617 "MAGMA.spad" 1040120 1040137 1042320 1042325) (-616 "M3D.spad" 1037818 1037828 1039500 1039505) (-615 "LZSTAGG.spad" 1035036 1035046 1037798 1037813) (-614 "LZSTAGG.spad" 1032262 1032274 1035026 1035031) (-613 "LWORD.spad" 1028967 1028984 1032252 1032257) (-612 "LSQM.spad" 1027195 1027209 1027593 1027644) (-611 "LSPP.spad" 1026728 1026745 1027185 1027190) (-610 "LSMP.spad" 1025568 1025596 1026718 1026723) (-609 "LSMP1.spad" 1023372 1023386 1025558 1025563) (-608 "LSAGG.spad" 1023029 1023039 1023328 1023367) (-607 "LSAGG.spad" 1022718 1022730 1023019 1023024) (-606 "LPOLY.spad" 1021672 1021691 1022574 1022643) (-605 "LPEFRAC.spad" 1020929 1020939 1021662 1021667) (-604 "LO.spad" 1020330 1020344 1020863 1020890) (-603 "LOGIC.spad" 1019932 1019940 1020320 1020325) (-602 "LOGIC.spad" 1019532 1019542 1019922 1019927) (-601 "LODOOPS.spad" 1018450 1018462 1019522 1019527) (-600 "LODO.spad" 1017836 1017852 1018132 1018171) (-599 "LODOF.spad" 1016880 1016897 1017793 1017798) (-598 "LODOCAT.spad" 1015538 1015548 1016836 1016875) (-597 "LODOCAT.spad" 1014194 1014206 1015494 1015499) (-596 "LODO2.spad" 1013469 1013481 1013876 1013915) (-595 "LODO1.spad" 1012871 1012881 1013151 1013190) (-594 "LODEEF.spad" 1011643 1011661 1012861 1012866) (-593 "LNAGG.spad" 1007435 1007445 1011623 1011638) (-592 "LNAGG.spad" 1003201 1003213 1007391 1007396) (-591 "LMOPS.spad" 999937 999954 1003191 1003196) (-590 "LMODULE.spad" 999579 999589 999927 999932) (-589 "LMDICT.spad" 998862 998872 999130 999157) (-588 "LIST.spad" 996580 996590 998009 998036) (-587 "LIST3.spad" 995871 995885 996570 996575) (-586 "LIST2.spad" 994511 994523 995861 995866) (-585 "LIST2MAP.spad" 991388 991400 994501 994506) (-584 "LINEXP.spad" 990820 990830 991368 991383) (-583 "LINDEP.spad" 989597 989609 990732 990737) (-582 "LIMITRF.spad" 987511 987521 989587 989592) (-581 "LIMITPS.spad" 986394 986407 987501 987506) (-580 "LIE.spad" 984408 984420 985684 985829) (-579 "LIECAT.spad" 983884 983894 984334 984403) (-578 "LIECAT.spad" 983388 983400 983840 983845) (-577 "LIB.spad" 981436 981444 982047 982062) (-576 "LGROBP.spad" 978789 978808 981426 981431) (-575 "LF.spad" 977708 977724 978779 978784) (-574 "LFCAT.spad" 976727 976735 977698 977703) (-573 "LEXTRIPK.spad" 972230 972245 976717 976722) (-572 "LEXP.spad" 970233 970260 972210 972225) (-571 "LEADCDET.spad" 968617 968634 970223 970228) (-570 "LAZM3PK.spad" 967321 967343 968607 968612) (-569 "LAUPOL.spad" 966012 966025 966916 966985) (-568 "LAPLACE.spad" 965585 965601 966002 966007) (-567 "LA.spad" 965025 965039 965507 965546) (-566 "LALG.spad" 964801 964811 965005 965020) (-565 "LALG.spad" 964585 964597 964791 964796) (-564 "KOVACIC.spad" 963298 963315 964575 964580) (-563 "KONVERT.spad" 963020 963030 963288 963293) (-562 "KOERCE.spad" 962757 962767 963010 963015) (-561 "KERNEL.spad" 961292 961302 962541 962546) (-560 "KERNEL2.spad" 960995 961007 961282 961287) (-559 "KDAGG.spad" 960086 960108 960963 960990) (-558 "KDAGG.spad" 959197 959221 960076 960081) (-557 "KAFILE.spad" 958160 958176 958395 958422) (-556 "JORDAN.spad" 955987 955999 957450 957595) (-555 "IXAGG.spad" 954100 954124 955967 955982) (-554 "IXAGG.spad" 952078 952104 953947 953952) (-553 "IVECTOR.spad" 950851 950866 951006 951033) (-552 "ITUPLE.spad" 949996 950006 950841 950846) (-551 "ITRIGMNP.spad" 948807 948826 949986 949991) (-550 "ITFUN3.spad" 948301 948315 948797 948802) (-549 "ITFUN2.spad" 948031 948043 948291 948296) (-548 "ITAYLOR.spad" 945823 945838 947867 947992) (-547 "ISUPS.spad" 938234 938249 944797 944894) (-546 "ISUMP.spad" 937731 937747 938224 938229) (-545 "ISTRING.spad" 936734 936747 936900 936927) (-544 "IRURPK.spad" 935447 935466 936724 936729) (-543 "IRSN.spad" 933407 933415 935437 935442) (-542 "IRRF2F.spad" 931882 931892 933363 933368) (-541 "IRREDFFX.spad" 931483 931494 931872 931877) (-540 "IROOT.spad" 929814 929824 931473 931478) (-539 "IR.spad" 927604 927618 929670 929697) (-538 "IR2.spad" 926624 926640 927594 927599) (-537 "IR2F.spad" 925824 925840 926614 926619) (-536 "IPRNTPK.spad" 925584 925592 925814 925819) (-535 "IPF.spad" 925149 925161 925389 925482) (-534 "IPADIC.spad" 924910 924936 925075 925144) (-533 "INVLAPLA.spad" 924555 924571 924900 924905) (-532 "INTTR.spad" 917801 917818 924545 924550) (-531 "INTTOOLS.spad" 915513 915529 917376 917381) (-530 "INTSLPE.spad" 914819 914827 915503 915508) (-529 "INTRVL.spad" 914385 914395 914733 914814) (-528 "INTRF.spad" 912749 912763 914375 914380) (-527 "INTRET.spad" 912181 912191 912739 912744) (-526 "INTRAT.spad" 910856 910873 912171 912176) (-525 "INTPM.spad" 909219 909235 910499 910504) (-524 "INTPAF.spad" 906987 907005 909151 909156) (-523 "INTPACK.spad" 897297 897305 906977 906982) (-522 "INT.spad" 896658 896666 897151 897292) (-521 "INTHERTR.spad" 895924 895941 896648 896653) (-520 "INTHERAL.spad" 895590 895614 895914 895919) (-519 "INTHEORY.spad" 892003 892011 895580 895585) (-518 "INTG0.spad" 885466 885484 891935 891940) (-517 "INTFTBL.spad" 879495 879503 885456 885461) (-516 "INTFACT.spad" 878554 878564 879485 879490) (-515 "INTEF.spad" 876869 876885 878544 878549) (-514 "INTDOM.spad" 875484 875492 876795 876864) (-513 "INTDOM.spad" 874161 874171 875474 875479) (-512 "INTCAT.spad" 872414 872424 874075 874156) (-511 "INTBIT.spad" 871917 871925 872404 872409) (-510 "INTALG.spad" 871099 871126 871907 871912) (-509 "INTAF.spad" 870591 870607 871089 871094) (-508 "INTABL.spad" 869109 869140 869272 869299) (-507 "INS.spad" 866505 866513 869011 869104) (-506 "INS.spad" 863987 863997 866495 866500) (-505 "INPSIGN.spad" 863421 863434 863977 863982) (-504 "INPRODPF.spad" 862487 862506 863411 863416) (-503 "INPRODFF.spad" 861545 861569 862477 862482) (-502 "INNMFACT.spad" 860516 860533 861535 861540) (-501 "INMODGCD.spad" 860000 860030 860506 860511) (-500 "INFSP.spad" 858285 858307 859990 859995) (-499 "INFPROD0.spad" 857335 857354 858275 858280) (-498 "INFORM.spad" 854603 854611 857325 857330) (-497 "INFORM1.spad" 854228 854238 854593 854598) (-496 "INFINITY.spad" 853780 853788 854218 854223) (-495 "INEP.spad" 852312 852334 853770 853775) (-494 "INDE.spad" 852218 852235 852302 852307) (-493 "INCRMAPS.spad" 851639 851649 852208 852213) (-492 "INBFF.spad" 847409 847420 851629 851634) (-491 "IMATRIX.spad" 846354 846380 846866 846893) (-490 "IMATQF.spad" 845448 845492 846310 846315) (-489 "IMATLIN.spad" 844053 844077 845404 845409) (-488 "ILIST.spad" 842709 842724 843236 843263) (-487 "IIARRAY2.spad" 842097 842135 842316 842343) (-486 "IFF.spad" 841507 841523 841778 841871) (-485 "IFARRAY.spad" 838994 839009 840690 840717) (-484 "IFAMON.spad" 838856 838873 838950 838955) (-483 "IEVALAB.spad" 838245 838257 838846 838851) (-482 "IEVALAB.spad" 837632 837646 838235 838240) (-481 "IDPO.spad" 837430 837442 837622 837627) (-480 "IDPOAMS.spad" 837186 837198 837420 837425) (-479 "IDPOAM.spad" 836906 836918 837176 837181) (-478 "IDPC.spad" 835840 835852 836896 836901) (-477 "IDPAM.spad" 835585 835597 835830 835835) (-476 "IDPAG.spad" 835332 835344 835575 835580) (-475 "IDECOMP.spad" 832569 832587 835322 835327) (-474 "IDEAL.spad" 827492 827531 832504 832509) (-473 "ICDEN.spad" 826643 826659 827482 827487) (-472 "ICARD.spad" 825832 825840 826633 826638) (-471 "IBPTOOLS.spad" 824425 824442 825822 825827) (-470 "IBITS.spad" 823624 823637 824061 824088) (-469 "IBATOOL.spad" 820499 820518 823614 823619) (-468 "IBACHIN.spad" 818986 819001 820489 820494) (-467 "IARRAY2.spad" 817974 818000 818593 818620) (-466 "IARRAY1.spad" 817019 817034 817157 817184) (-465 "IAN.spad" 815234 815242 816837 816930) (-464 "IALGFACT.spad" 814835 814868 815224 815229) (-463 "HYPCAT.spad" 814259 814267 814825 814830) (-462 "HYPCAT.spad" 813681 813691 814249 814254) (-461 "HOAGG.spad" 810939 810949 813661 813676) (-460 "HOAGG.spad" 807982 807994 810706 810711) (-459 "HEXADEC.spad" 805854 805862 806452 806545) (-458 "HEUGCD.spad" 804869 804880 805844 805849) (-457 "HELLFDIV.spad" 804459 804483 804859 804864) (-456 "HEAP.spad" 803851 803861 804066 804093) (-455 "HDP.spad" 795373 795389 795750 795879) (-454 "HDMP.spad" 792552 792567 793170 793297) (-453 "HB.spad" 790789 790797 792542 792547) (-452 "HASHTBL.spad" 789259 789290 789470 789497) (-451 "HACKPI.spad" 788742 788750 789161 789254) (-450 "GTSET.spad" 787681 787697 788388 788415) (-449 "GSTBL.spad" 786200 786235 786374 786389) (-448 "GSERIES.spad" 783367 783394 784332 784481) (-447 "GROUP.spad" 782541 782549 783347 783362) (-446 "GROUP.spad" 781723 781733 782531 782536) (-445 "GROEBSOL.spad" 780211 780232 781713 781718) (-444 "GRMOD.spad" 778782 778794 780201 780206) (-443 "GRMOD.spad" 777351 777365 778772 778777) (-442 "GRIMAGE.spad" 769956 769964 777341 777346) (-441 "GRDEF.spad" 768335 768343 769946 769951) (-440 "GRAY.spad" 766794 766802 768325 768330) (-439 "GRALG.spad" 765841 765853 766784 766789) (-438 "GRALG.spad" 764886 764900 765831 765836) (-437 "GPOLSET.spad" 764340 764363 764568 764595) (-436 "GOSPER.spad" 763605 763623 764330 764335) (-435 "GMODPOL.spad" 762743 762770 763573 763600) (-434 "GHENSEL.spad" 761812 761826 762733 762738) (-433 "GENUPS.spad" 757913 757926 761802 761807) (-432 "GENUFACT.spad" 757490 757500 757903 757908) (-431 "GENPGCD.spad" 757074 757091 757480 757485) (-430 "GENMFACT.spad" 756526 756545 757064 757069) (-429 "GENEEZ.spad" 754465 754478 756516 756521) (-428 "GDMP.spad" 751486 751503 752262 752389) (-427 "GCNAALG.spad" 745381 745408 751280 751347) (-426 "GCDDOM.spad" 744553 744561 745307 745376) (-425 "GCDDOM.spad" 743787 743797 744543 744548) (-424 "GB.spad" 741305 741343 743743 743748) (-423 "GBINTERN.spad" 737325 737363 741295 741300) (-422 "GBF.spad" 733082 733120 737315 737320) (-421 "GBEUCLID.spad" 730956 730994 733072 733077) (-420 "GAUSSFAC.spad" 730253 730261 730946 730951) (-419 "GALUTIL.spad" 728575 728585 730209 730214) (-418 "GALPOLYU.spad" 727021 727034 728565 728570) (-417 "GALFACTU.spad" 725186 725205 727011 727016) (-416 "GALFACT.spad" 715319 715330 725176 725181) (-415 "FVFUN.spad" 712332 712340 715299 715314) (-414 "FVC.spad" 711374 711382 712312 712327) (-413 "FUNCTION.spad" 711223 711235 711364 711369) (-412 "FT.spad" 709435 709443 711213 711218) (-411 "FTEM.spad" 708598 708606 709425 709430) (-410 "FSUPFACT.spad" 707499 707518 708535 708540) (-409 "FST.spad" 705585 705593 707489 707494) (-408 "FSRED.spad" 705063 705079 705575 705580) (-407 "FSPRMELT.spad" 703887 703903 705020 705025) (-406 "FSPECF.spad" 701964 701980 703877 703882) (-405 "FS.spad" 696015 696025 701728 701959) (-404 "FS.spad" 689857 689869 695572 695577) (-403 "FSINT.spad" 689515 689531 689847 689852) (-402 "FSERIES.spad" 688702 688714 689335 689434) (-401 "FSCINT.spad" 688015 688031 688692 688697) (-400 "FSAGG.spad" 687120 687130 687959 688010) (-399 "FSAGG.spad" 686199 686211 687040 687045) (-398 "FSAGG2.spad" 684898 684914 686189 686194) (-397 "FS2UPS.spad" 679287 679321 684888 684893) (-396 "FS2.spad" 678932 678948 679277 679282) (-395 "FS2EXPXP.spad" 678055 678078 678922 678927) (-394 "FRUTIL.spad" 676997 677007 678045 678050) (-393 "FR.spad" 670694 670704 676024 676093) (-392 "FRNAALG.spad" 665781 665791 670636 670689) (-391 "FRNAALG.spad" 660880 660892 665737 665742) (-390 "FRNAAF2.spad" 660334 660352 660870 660875) (-389 "FRMOD.spad" 659729 659759 660266 660271) (-388 "FRIDEAL.spad" 658924 658945 659709 659724) (-387 "FRIDEAL2.spad" 658526 658558 658914 658919) (-386 "FRETRCT.spad" 658037 658047 658516 658521) (-385 "FRETRCT.spad" 657416 657428 657897 657902) (-384 "FRAMALG.spad" 655744 655757 657372 657411) (-383 "FRAMALG.spad" 654104 654119 655734 655739) (-382 "FRAC.spad" 651207 651217 651610 651783) (-381 "FRAC2.spad" 650810 650822 651197 651202) (-380 "FR2.spad" 650144 650156 650800 650805) (-379 "FPS.spad" 646953 646961 650034 650139) (-378 "FPS.spad" 643790 643800 646873 646878) (-377 "FPC.spad" 642832 642840 643692 643785) (-376 "FPC.spad" 641960 641970 642822 642827) (-375 "FPATMAB.spad" 641712 641722 641940 641955) (-374 "FPARFRAC.spad" 640185 640202 641702 641707) (-373 "FORTRAN.spad" 638691 638734 640175 640180) (-372 "FORT.spad" 637620 637628 638681 638686) (-371 "FORTFN.spad" 634780 634788 637600 637615) (-370 "FORTCAT.spad" 634454 634462 634760 634775) (-369 "FORMULA.spad" 631792 631800 634444 634449) (-368 "FORMULA1.spad" 631271 631281 631782 631787) (-367 "FORDER.spad" 630962 630986 631261 631266) (-366 "FOP.spad" 630163 630171 630952 630957) (-365 "FNLA.spad" 629587 629609 630131 630158) (-364 "FNCAT.spad" 627915 627923 629577 629582) (-363 "FNAME.spad" 627807 627815 627905 627910) (-362 "FMTC.spad" 627605 627613 627733 627802) (-361 "FMONOID.spad" 624660 624670 627561 627566) (-360 "FM.spad" 624355 624367 624594 624621) (-359 "FMFUN.spad" 621375 621383 624335 624350) (-358 "FMC.spad" 620417 620425 621355 621370) (-357 "FMCAT.spad" 618071 618089 620385 620412) (-356 "FM1.spad" 617428 617440 618005 618032) (-355 "FLOATRP.spad" 615149 615163 617418 617423) (-354 "FLOAT.spad" 608313 608321 615015 615144) (-353 "FLOATCP.spad" 605730 605744 608303 608308) (-352 "FLINEXP.spad" 605442 605452 605710 605725) (-351 "FLINEXP.spad" 605108 605120 605378 605383) (-350 "FLASORT.spad" 604428 604440 605098 605103) (-349 "FLALG.spad" 602074 602093 604354 604423) (-348 "FLAGG.spad" 599080 599090 602042 602069) (-347 "FLAGG.spad" 595999 596011 598963 598968) (-346 "FLAGG2.spad" 594680 594696 595989 595994) (-345 "FINRALG.spad" 592709 592722 594636 594675) (-344 "FINRALG.spad" 590664 590679 592593 592598) (-343 "FINITE.spad" 589816 589824 590654 590659) (-342 "FINAALG.spad" 578797 578807 589758 589811) (-341 "FINAALG.spad" 567790 567802 578753 578758) (-340 "FILE.spad" 567373 567383 567780 567785) (-339 "FILECAT.spad" 565891 565908 567363 567368) (-338 "FIELD.spad" 565297 565305 565793 565886) (-337 "FIELD.spad" 564789 564799 565287 565292) (-336 "FGROUP.spad" 563398 563408 564769 564784) (-335 "FGLMICPK.spad" 562185 562200 563388 563393) (-334 "FFX.spad" 561560 561575 561901 561994) (-333 "FFSLPE.spad" 561049 561070 561550 561555) (-332 "FFPOLY.spad" 552301 552312 561039 561044) (-331 "FFPOLY2.spad" 551361 551378 552291 552296) (-330 "FFP.spad" 550758 550778 551077 551170) (-329 "FF.spad" 550206 550222 550439 550532) (-328 "FFNBX.spad" 548718 548738 549922 550015) (-327 "FFNBP.spad" 547231 547248 548434 548527) (-326 "FFNB.spad" 545696 545717 546912 547005) (-325 "FFINTBAS.spad" 543110 543129 545686 545691) (-324 "FFIELDC.spad" 540685 540693 543012 543105) (-323 "FFIELDC.spad" 538346 538356 540675 540680) (-322 "FFHOM.spad" 537094 537111 538336 538341) (-321 "FFF.spad" 534529 534540 537084 537089) (-320 "FFCGX.spad" 533376 533396 534245 534338) (-319 "FFCGP.spad" 532265 532285 533092 533185) (-318 "FFCG.spad" 531057 531078 531946 532039) (-317 "FFCAT.spad" 523958 523980 530896 531052) (-316 "FFCAT.spad" 516938 516962 523878 523883) (-315 "FFCAT2.spad" 516683 516723 516928 516933) (-314 "FEXPR.spad" 508396 508442 516443 516482) (-313 "FEVALAB.spad" 508102 508112 508386 508391) (-312 "FEVALAB.spad" 507593 507605 507879 507884) (-311 "FDIV.spad" 507035 507059 507583 507588) (-310 "FDIVCAT.spad" 505077 505101 507025 507030) (-309 "FDIVCAT.spad" 503117 503143 505067 505072) (-308 "FDIV2.spad" 502771 502811 503107 503112) (-307 "FCPAK1.spad" 501324 501332 502761 502766) (-306 "FCOMP.spad" 500703 500713 501314 501319) (-305 "FC.spad" 490528 490536 500693 500698) (-304 "FAXF.spad" 483463 483477 490430 490523) (-303 "FAXF.spad" 476450 476466 483419 483424) (-302 "FARRAY.spad" 474596 474606 475633 475660) (-301 "FAMR.spad" 472716 472728 474494 474591) (-300 "FAMR.spad" 470820 470834 472600 472605) (-299 "FAMONOID.spad" 470470 470480 470774 470779) (-298 "FAMONC.spad" 468692 468704 470460 470465) (-297 "FAGROUP.spad" 468298 468308 468588 468615) (-296 "FACUTIL.spad" 466494 466511 468288 468293) (-295 "FACTFUNC.spad" 465670 465680 466484 466489) (-294 "EXPUPXS.spad" 462503 462526 463802 463951) (-293 "EXPRTUBE.spad" 459731 459739 462493 462498) (-292 "EXPRODE.spad" 456603 456619 459721 459726) (-291 "EXPR.spad" 451905 451915 452619 453022) (-290 "EXPR2UPS.spad" 447997 448010 451895 451900) (-289 "EXPR2.spad" 447700 447712 447987 447992) (-288 "EXPEXPAN.spad" 444641 444666 445275 445368) (-287 "EXIT.spad" 444312 444320 444631 444636) (-286 "EVALCYC.spad" 443770 443784 444302 444307) (-285 "EVALAB.spad" 443334 443344 443760 443765) (-284 "EVALAB.spad" 442896 442908 443324 443329) (-283 "EUCDOM.spad" 440438 440446 442822 442891) (-282 "EUCDOM.spad" 438042 438052 440428 440433) (-281 "ESTOOLS.spad" 429882 429890 438032 438037) (-280 "ESTOOLS2.spad" 429483 429497 429872 429877) (-279 "ESTOOLS1.spad" 429168 429179 429473 429478) (-278 "ES.spad" 421715 421723 429158 429163) (-277 "ES.spad" 414170 414180 421615 421620) (-276 "ESCONT.spad" 410943 410951 414160 414165) (-275 "ESCONT1.spad" 410692 410704 410933 410938) (-274 "ES2.spad" 410187 410203 410682 410687) (-273 "ES1.spad" 409753 409769 410177 410182) (-272 "ERROR.spad" 407074 407082 409743 409748) (-271 "EQTBL.spad" 405546 405568 405755 405782) (-270 "EQ.spad" 400430 400440 403229 403338) (-269 "EQ2.spad" 400146 400158 400420 400425) (-268 "EP.spad" 396460 396470 400136 400141) (-267 "ENV.spad" 395162 395170 396450 396455) (-266 "ENTIRER.spad" 394830 394838 395106 395157) (-265 "EMR.spad" 394031 394072 394756 394825) (-264 "ELTAGG.spad" 392271 392290 394021 394026) (-263 "ELTAGG.spad" 390475 390496 392227 392232) (-262 "ELTAB.spad" 389922 389940 390465 390470) (-261 "ELFUTS.spad" 389301 389320 389912 389917) (-260 "ELEMFUN.spad" 388990 388998 389291 389296) (-259 "ELEMFUN.spad" 388677 388687 388980 388985) (-258 "ELAGG.spad" 386608 386618 388645 388672) (-257 "ELAGG.spad" 384488 384500 386527 386532) (-256 "ELABEXPR.spad" 383427 383435 384478 384483) (-255 "EFUPXS.spad" 380203 380233 383383 383388) (-254 "EFULS.spad" 377039 377062 380159 380164) (-253 "EFSTRUC.spad" 374994 375010 377029 377034) (-252 "EF.spad" 369760 369776 374984 374989) (-251 "EAB.spad" 368036 368044 369750 369755) (-250 "E04UCFA.spad" 367572 367580 368026 368031) (-249 "E04NAFA.spad" 367149 367157 367562 367567) (-248 "E04MBFA.spad" 366729 366737 367139 367144) (-247 "E04JAFA.spad" 366265 366273 366719 366724) (-246 "E04GCFA.spad" 365801 365809 366255 366260) (-245 "E04FDFA.spad" 365337 365345 365791 365796) (-244 "E04DGFA.spad" 364873 364881 365327 365332) (-243 "E04AGNT.spad" 360715 360723 364863 364868) (-242 "DVARCAT.spad" 357400 357410 360705 360710) (-241 "DVARCAT.spad" 354083 354095 357390 357395) (-240 "DSMP.spad" 351517 351531 351822 351949) (-239 "DROPT.spad" 345462 345470 351507 351512) (-238 "DROPT1.spad" 345125 345135 345452 345457) (-237 "DROPT0.spad" 339952 339960 345115 345120) (-236 "DRAWPT.spad" 338107 338115 339942 339947) (-235 "DRAW.spad" 330707 330720 338097 338102) (-234 "DRAWHACK.spad" 330015 330025 330697 330702) (-233 "DRAWCX.spad" 327457 327465 330005 330010) (-232 "DRAWCURV.spad" 326994 327009 327447 327452) (-231 "DRAWCFUN.spad" 316166 316174 326984 326989) (-230 "DQAGG.spad" 314322 314332 316122 316161) (-229 "DPOLCAT.spad" 309663 309679 314190 314317) (-228 "DPOLCAT.spad" 305090 305108 309619 309624) (-227 "DPMO.spad" 299077 299093 299215 299511) (-226 "DPMM.spad" 293077 293095 293202 293498) (-225 "domain.spad" 292348 292356 293067 293072) (-224 "DMP.spad" 289573 289588 290145 290272) (-223 "DLP.spad" 288921 288931 289563 289568) (-222 "DLIST.spad" 287333 287343 288104 288131) (-221 "DLAGG.spad" 285734 285744 287313 287328) (-220 "DIVRING.spad" 285181 285189 285678 285729) (-219 "DIVRING.spad" 284672 284682 285171 285176) (-218 "DISPLAY.spad" 282852 282860 284662 284667) (-217 "DIRPROD.spad" 274111 274127 274751 274880) (-216 "DIRPROD2.spad" 272919 272937 274101 274106) (-215 "DIRPCAT.spad" 271851 271867 272773 272914) (-214 "DIRPCAT.spad" 270523 270541 271447 271452) (-213 "DIOSP.spad" 269348 269356 270513 270518) (-212 "DIOPS.spad" 268320 268330 269316 269343) (-211 "DIOPS.spad" 267278 267290 268276 268281) (-210 "DIFRING.spad" 266570 266578 267258 267273) (-209 "DIFRING.spad" 265870 265880 266560 266565) (-208 "DIFEXT.spad" 265029 265039 265850 265865) (-207 "DIFEXT.spad" 264105 264117 264928 264933) (-206 "DIAGG.spad" 263723 263733 264073 264100) (-205 "DIAGG.spad" 263361 263373 263713 263718) (-204 "DHMATRIX.spad" 261665 261675 262818 262845) (-203 "DFSFUN.spad" 255073 255081 261655 261660) (-202 "DFLOAT.spad" 251596 251604 254963 255068) (-201 "DFINTTLS.spad" 249805 249821 251586 251591) (-200 "DERHAM.spad" 247715 247747 249785 249800) (-199 "DEQUEUE.spad" 247033 247043 247322 247349) (-198 "DEGRED.spad" 246648 246662 247023 247028) (-197 "DEFINTRF.spad" 244173 244183 246638 246643) (-196 "DEFINTEF.spad" 242669 242685 244163 244168) (-195 "DECIMAL.spad" 240553 240561 241139 241232) (-194 "DDFACT.spad" 238352 238369 240543 240548) (-193 "DBLRESP.spad" 237950 237974 238342 238347) (-192 "DBASE.spad" 236522 236532 237940 237945) (-191 "D03FAFA.spad" 236350 236358 236512 236517) (-190 "D03EEFA.spad" 236170 236178 236340 236345) (-189 "D03AGNT.spad" 235250 235258 236160 236165) (-188 "D02EJFA.spad" 234712 234720 235240 235245) (-187 "D02CJFA.spad" 234190 234198 234702 234707) (-186 "D02BHFA.spad" 233680 233688 234180 234185) (-185 "D02BBFA.spad" 233170 233178 233670 233675) (-184 "D02AGNT.spad" 227974 227982 233160 233165) (-183 "D01WGTS.spad" 226293 226301 227964 227969) (-182 "D01TRNS.spad" 226270 226278 226283 226288) (-181 "D01GBFA.spad" 225792 225800 226260 226265) (-180 "D01FCFA.spad" 225314 225322 225782 225787) (-179 "D01ASFA.spad" 224782 224790 225304 225309) (-178 "D01AQFA.spad" 224228 224236 224772 224777) (-177 "D01APFA.spad" 223652 223660 224218 224223) (-176 "D01ANFA.spad" 223146 223154 223642 223647) (-175 "D01AMFA.spad" 222656 222664 223136 223141) (-174 "D01ALFA.spad" 222196 222204 222646 222651) (-173 "D01AKFA.spad" 221722 221730 222186 222191) (-172 "D01AJFA.spad" 221245 221253 221712 221717) (-171 "D01AGNT.spad" 217304 217312 221235 221240) (-170 "CYCLOTOM.spad" 216810 216818 217294 217299) (-169 "CYCLES.spad" 213642 213650 216800 216805) (-168 "CVMP.spad" 213059 213069 213632 213637) (-167 "CTRIGMNP.spad" 211549 211565 213049 213054) (-166 "CTORCALL.spad" 211137 211145 211539 211544) (-165 "CSTTOOLS.spad" 210380 210393 211127 211132) (-164 "CRFP.spad" 204084 204097 210370 210375) (-163 "CRAPACK.spad" 203127 203137 204074 204079) (-162 "CPMATCH.spad" 202627 202642 203052 203057) (-161 "CPIMA.spad" 202332 202351 202617 202622) (-160 "COORDSYS.spad" 197225 197235 202322 202327) (-159 "CONTOUR.spad" 196627 196635 197215 197220) (-158 "CONTFRAC.spad" 192239 192249 196529 196622) (-157 "COMRING.spad" 191913 191921 192177 192234) (-156 "COMPPROP.spad" 191427 191435 191903 191908) (-155 "COMPLPAT.spad" 191194 191209 191417 191422) (-154 "COMPLEX.spad" 185227 185237 185471 185732) (-153 "COMPLEX2.spad" 184940 184952 185217 185222) (-152 "COMPFACT.spad" 184542 184556 184930 184935) (-151 "COMPCAT.spad" 182598 182608 184264 184537) (-150 "COMPCAT.spad" 180361 180373 182029 182034) (-149 "COMMUPC.spad" 180107 180125 180351 180356) (-148 "COMMONOP.spad" 179640 179648 180097 180102) (-147 "COMM.spad" 179449 179457 179630 179635) (-146 "COMBOPC.spad" 178354 178362 179439 179444) (-145 "COMBINAT.spad" 177099 177109 178344 178349) (-144 "COMBF.spad" 174467 174483 177089 177094) (-143 "COLOR.spad" 173304 173312 174457 174462) (-142 "CMPLXRT.spad" 173013 173030 173294 173299) (-141 "CLIP.spad" 169105 169113 173003 173008) (-140 "CLIF.spad" 167744 167760 169061 169100) (-139 "CLAGG.spad" 164219 164229 167724 167739) (-138 "CLAGG.spad" 160575 160587 164082 164087) (-137 "CINTSLPE.spad" 159900 159913 160565 160570) (-136 "CHVAR.spad" 157978 158000 159890 159895) (-135 "CHARZ.spad" 157893 157901 157958 157973) (-134 "CHARPOL.spad" 157401 157411 157883 157888) (-133 "CHARNZ.spad" 157154 157162 157381 157396) (-132 "CHAR.spad" 155044 155052 157144 157149) (-131 "CFCAT.spad" 154360 154368 155034 155039) (-130 "CDEN.spad" 153518 153532 154350 154355) (-129 "CCLASS.spad" 151667 151675 152929 152968) (-128 "CARTEN.spad" 146770 146794 151657 151662) (-127 "CARTEN2.spad" 146156 146183 146760 146765) (-126 "CARD.spad" 143445 143453 146130 146151) (-125 "CACHSET.spad" 143067 143075 143435 143440) (-124 "CABMON.spad" 142620 142628 143057 143062) (-123 "BTREE.spad" 141689 141699 142227 142254) (-122 "BTOURN.spad" 140692 140702 141296 141323) (-121 "BTCAT.spad" 140068 140078 140648 140687) (-120 "BTCAT.spad" 139476 139488 140058 140063) (-119 "BTAGG.spad" 138492 138500 139432 139471) (-118 "BTAGG.spad" 137540 137550 138482 138487) (-117 "BSTREE.spad" 136275 136285 137147 137174) (-116 "BRILL.spad" 134470 134481 136265 136270) (-115 "BRAGG.spad" 133384 133394 134450 134465) (-114 "BRAGG.spad" 132272 132284 133340 133345) (-113 "BPADICRT.spad" 130256 130268 130511 130604) (-112 "BPADIC.spad" 129920 129932 130182 130251) (-111 "BOUNDZRO.spad" 129576 129593 129910 129915) (-110 "BOP.spad" 125040 125048 129566 129571) (-109 "BOP1.spad" 122426 122436 124996 125001) (-108 "BOOLEAN.spad" 121679 121687 122416 122421) (-107 "BMODULE.spad" 121391 121403 121647 121674) (-106 "BITS.spad" 120810 120818 121027 121054) (-105 "BINFILE.spad" 120153 120161 120800 120805) (-104 "BINDING.spad" 119572 119580 120143 120148) (-103 "BINARY.spad" 117465 117473 118042 118135) (-102 "BGAGG.spad" 116650 116660 117433 117460) (-101 "BGAGG.spad" 115855 115867 116640 116645) (-100 "BFUNCT.spad" 115419 115427 115835 115850) (-99 "BEZOUT.spad" 114554 114580 115369 115374) (-98 "BBTREE.spad" 111374 111383 114161 114188) (-97 "BASTYPE.spad" 111047 111054 111364 111369) (-96 "BASTYPE.spad" 110718 110727 111037 111042) (-95 "BALFACT.spad" 110158 110170 110708 110713) (-94 "AUTOMOR.spad" 109605 109614 110138 110153) (-93 "ATTREG.spad" 106324 106331 109357 109600) (-92 "ATTRBUT.spad" 102347 102354 106304 106319) (-91 "ATRIG.spad" 101817 101824 102337 102342) (-90 "ATRIG.spad" 101285 101294 101807 101812) (-89 "ASTACK.spad" 100618 100627 100892 100919) (-88 "ASSOCEQ.spad" 99418 99429 100574 100579) (-87 "ASP9.spad" 98499 98512 99408 99413) (-86 "ASP8.spad" 97542 97555 98489 98494) (-85 "ASP80.spad" 96864 96877 97532 97537) (-84 "ASP7.spad" 96024 96037 96854 96859) (-83 "ASP78.spad" 95475 95488 96014 96019) (-82 "ASP77.spad" 94844 94857 95465 95470) (-81 "ASP74.spad" 93936 93949 94834 94839) (-80 "ASP73.spad" 93207 93220 93926 93931) (-79 "ASP6.spad" 91839 91852 93197 93202) (-78 "ASP55.spad" 90348 90361 91829 91834) (-77 "ASP50.spad" 88165 88178 90338 90343) (-76 "ASP4.spad" 87460 87473 88155 88160) (-75 "ASP49.spad" 86459 86472 87450 87455) (-74 "ASP42.spad" 84866 84905 86449 86454) (-73 "ASP41.spad" 83445 83484 84856 84861) (-72 "ASP35.spad" 82433 82446 83435 83440) (-71 "ASP34.spad" 81734 81747 82423 82428) (-70 "ASP33.spad" 81294 81307 81724 81729) (-69 "ASP31.spad" 80434 80447 81284 81289) (-68 "ASP30.spad" 79326 79339 80424 80429) (-67 "ASP29.spad" 78792 78805 79316 79321) (-66 "ASP28.spad" 70065 70078 78782 78787) (-65 "ASP27.spad" 68962 68975 70055 70060) (-64 "ASP24.spad" 68049 68062 68952 68957) (-63 "ASP20.spad" 67265 67278 68039 68044) (-62 "ASP1.spad" 66646 66659 67255 67260) (-61 "ASP19.spad" 61332 61345 66636 66641) (-60 "ASP12.spad" 60746 60759 61322 61327) (-59 "ASP10.spad" 60017 60030 60736 60741) (-58 "ARRAY2.spad" 59377 59386 59624 59651) (-57 "ARRAY1.spad" 58212 58221 58560 58587) (-56 "ARRAY12.spad" 56881 56892 58202 58207) (-55 "ARR2CAT.spad" 52531 52552 56837 56876) (-54 "ARR2CAT.spad" 48213 48236 52521 52526) (-53 "APPRULE.spad" 47457 47479 48203 48208) (-52 "APPLYORE.spad" 47072 47085 47447 47452) (-51 "ANY.spad" 45414 45421 47062 47067) (-50 "ANY1.spad" 44485 44494 45404 45409) (-49 "ANTISYM.spad" 42924 42940 44465 44480) (-48 "ANON.spad" 42837 42844 42914 42919) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 395fcd89..9583d92d 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1198 +1,1198 @@
-(142467 . 3409817882)
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
+(142485 . 3409939483)
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
(((|#2| |#2|) . T))
-((((-521)) . T))
-((($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))) ((|#2| |#2|) . T) ((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))))
+((((-522)) . T))
+((($ $) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2| |#2|) . T) ((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(((|#2|) . T))
-((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))) ((|#2|) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
-(|has| |#1| (-837))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((($) . T) (((-381 (-521))) . T))
+((($) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2|) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))))
+(|has| |#1| (-838))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((($) . T) (((-382 (-522))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-132)) . T))
-((((-497)) . T) (((-1067)) . T) (((-202)) . T) (((-353)) . T) (((-820 (-353))) . T))
-(((|#1|) . T))
-((((-202)) . T) (((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((($ $) . T) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1| |#1|) . T))
-(-3703 (|has| |#1| (-756)) (|has| |#1| (-783)))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(|has| |#1| (-781))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-498)) . T) (((-1068)) . T) (((-202)) . T) (((-354)) . T) (((-821 (-354))) . T))
+(((|#1|) . T))
+((((-202)) . T) (((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((($ $) . T) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1| |#1|) . T))
+(-3708 (|has| |#1| (-757)) (|has| |#1| (-784)))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(|has| |#1| (-782))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) |has| |#1| (-1013)))
+((($) . T) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) |has| |#1| (-1014)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#2| (-454 (-3478 |#1|) (-707))) . T))
-(((|#1| (-493 (-1084))) . T))
-(((#0=(-798 |#1|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(|has| |#4| (-342))
-(|has| |#3| (-342))
-(((|#1|) . T))
-((((-798 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#2| (-455 (-3480 |#1|) (-708))) . T))
+(((|#1| (-494 (-1085))) . T))
+(((#0=(-799 |#1|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(|has| |#4| (-343))
+(|has| |#3| (-343))
+(((|#1|) . T))
+((((-799 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(|has| |#1| (-513))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-((($) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
-((((-791)) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) (($) . T) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
+(|has| |#1| (-514))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+((($) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
+((((-792)) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) (($) . T) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
(((|#1| |#2|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
-(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
+(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
(((|#1|) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
((($ $) . T))
(((|#2|) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
((($) . T))
-(|has| |#1| (-342))
+(|has| |#1| (-343))
(((|#1|) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
-((((-791)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
(((|#1| |#1|) . T))
-(|has| |#1| (-513))
-(((|#2| |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))) (((-1084) |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-482 (-1084) |#2|))))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(|has| |#1| (-1013))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(|has| |#1| (-1013))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(|has| |#1| (-781))
-((($) . T) (((-381 (-521))) . T))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(-3703 (|has| |#4| (-729)) (|has| |#4| (-781)))
-(-3703 (|has| |#4| (-729)) (|has| |#4| (-781)))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
+(|has| |#1| (-514))
+(((|#2| |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))) (((-1085) |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-483 (-1085) |#2|))))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(|has| |#1| (-1014))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(|has| |#1| (-1014))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(|has| |#1| (-782))
+((($) . T) (((-382 (-522))) . T))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(-3708 (|has| |#4| (-730)) (|has| |#4| (-782)))
+(-3708 (|has| |#4| (-730)) (|has| |#4| (-782)))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-(((|#1| (-1084) (-1003 (-1084)) (-493 (-1003 (-1084)))) . T))
-((((-521) |#1|) . T))
-((((-521)) . T))
-((((-521)) . T))
-((((-838 |#1|)) . T))
-(((|#1| (-493 |#2|)) . T))
-((((-521)) . T))
-((((-521)) . T))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(((|#1| (-707)) . T))
-(|has| |#2| (-729))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(|has| |#2| (-781))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+(((|#1| (-1085) (-1004 (-1085)) (-494 (-1004 (-1085)))) . T))
+((((-522) |#1|) . T))
+((((-522)) . T))
+((((-522)) . T))
+((((-839 |#1|)) . T))
+(((|#1| (-494 |#2|)) . T))
+((((-522)) . T))
+((((-522)) . T))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(((|#1| (-708)) . T))
+(|has| |#2| (-730))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(|has| |#2| (-782))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1067) |#1|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
+((((-1068) |#1|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
(((|#1|) . T))
-(((|#3| (-707)) . T))
+(((|#3| (-708)) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(|has| |#1| (-1013))
-((((-381 (-521))) . T) (((-521)) . T))
-((((-1084) |#2|) |has| |#2| (-482 (-1084) |#2|)) ((|#2| |#2|) |has| |#2| (-284 |#2|)))
-((((-381 (-521))) . T) (((-521)) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(|has| |#1| (-1014))
+((((-382 (-522))) . T) (((-522)) . T))
+((((-1085) |#2|) |has| |#2| (-483 (-1085) |#2|)) ((|#2| |#2|) |has| |#2| (-285 |#2|)))
+((((-382 (-522))) . T) (((-522)) . T))
(((|#1|) . T) (($) . T))
-((((-521)) . T))
-((((-521)) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
-((((-521)) . T))
-((((-521)) . T))
-(((#0=(-636) (-1080 #0#)) . T))
-((((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-((((-521) |#1|) . T))
-((($) . T) (((-521)) . T) (((-381 (-521))) . T))
-(((|#1|) . T))
-(|has| |#2| (-337))
+((((-522)) . T))
+((((-522)) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157)))
+((((-522)) . T))
+((((-522)) . T))
+(((#0=(-637) (-1081 #0#)) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+((((-522) |#1|) . T))
+((($) . T) (((-522)) . T) (((-382 (-522))) . T))
+(((|#1|) . T))
+(|has| |#2| (-338))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-1067) |#1|) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-1068) |#1|) . T))
(((|#3| |#3|) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#1|) . T))
-(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970))) ((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-521) |#1|) . T))
-((((-791)) . T))
-((((-154 (-202))) |has| |#1| (-946)) (((-154 (-353))) |has| |#1| (-946)) (((-497)) |has| |#1| (-562 (-497))) (((-1080 |#1|)) . T) (((-820 (-521))) |has| |#1| (-562 (-820 (-521)))) (((-820 (-353))) |has| |#1| (-562 (-820 (-353)))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#2|) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
-(|has| |#1| (-337))
-(-12 (|has| |#4| (-210)) (|has| |#4| (-970)))
-(-12 (|has| |#3| (-210)) (|has| |#3| (-970)))
-(-3703 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-970)))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-((((-791)) . T))
-(((|#1|) . T))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
-(((|#2|) . T) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-(|has| |#1| (-513))
-(|has| |#1| (-513))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(|has| |#1| (-513))
-(|has| |#1| (-513))
-(|has| |#1| (-513))
-((((-636)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-927)) (|has| |#1| (-1105)))
-(((|#2|) . T) (($) . T) (((-381 (-521))) . T))
-(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
-((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
-(((|#4| |#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337)) (|has| |#4| (-970))) (($ $) |has| |#4| (-157)))
-(((|#3| |#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($ $) |has| |#3| (-157)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-497)) |has| |#2| (-562 (-497))) (((-820 (-353))) |has| |#2| (-562 (-820 (-353)))) (((-820 (-521))) |has| |#2| (-562 (-820 (-521)))))
-((((-791)) . T))
+(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) ((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-522) |#1|) . T))
+((((-792)) . T))
+((((-154 (-202))) |has| |#1| (-947)) (((-154 (-354))) |has| |#1| (-947)) (((-498)) |has| |#1| (-563 (-498))) (((-1081 |#1|)) . T) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#2|) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))))
+(|has| |#1| (-338))
+(-12 (|has| |#4| (-210)) (|has| |#4| (-971)))
+(-12 (|has| |#3| (-210)) (|has| |#3| (-971)))
+(-3708 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971)))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+((((-792)) . T))
+(((|#1|) . T))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522))))
+(((|#2|) . T) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+(|has| |#1| (-514))
+(|has| |#1| (-514))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(|has| |#1| (-514))
+(|has| |#1| (-514))
+(|has| |#1| (-514))
+((((-637)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-928)) (|has| |#1| (-1106)))
+(((|#2|) . T) (($) . T) (((-382 (-522))) . T))
+(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
+((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T))
+(((|#4| |#4|) -3708 (|has| |#4| (-157)) (|has| |#4| (-338)) (|has| |#4| (-971))) (($ $) |has| |#4| (-157)))
+(((|#3| |#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($ $) |has| |#3| (-157)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522)))))
+((((-792)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))) (((-820 (-353))) |has| |#1| (-562 (-820 (-353)))) (((-820 (-521))) |has| |#1| (-562 (-820 (-521)))))
-((((-791)) . T))
-(((|#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337)) (|has| |#4| (-970))) (($) |has| |#4| (-157)))
-(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($) |has| |#3| (-157)))
-((((-791)) . T))
-((((-497)) . T) (((-521)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
-((((-381 $) (-381 $)) |has| |#2| (-513)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-837))
-((((-1067) (-51)) . T))
-((((-521)) |has| #0=(-381 |#2|) (-583 (-521))) ((#0#) . T))
-((((-497)) . T) (((-202)) . T) (((-353)) . T) (((-820 (-353))) . T))
-((((-791)) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))))
+((((-792)) . T))
+(((|#4|) -3708 (|has| |#4| (-157)) (|has| |#4| (-338)) (|has| |#4| (-971))) (($) |has| |#4| (-157)))
+(((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($) |has| |#3| (-157)))
+((((-792)) . T))
+((((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T))
+((((-382 $) (-382 $)) |has| |#2| (-514)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-838))
+((((-1068) (-51)) . T))
+((((-522)) |has| #0=(-382 |#2|) (-584 (-522))) ((#0#) . T))
+((((-498)) . T) (((-202)) . T) (((-354)) . T) (((-821 (-354))) . T))
+((((-792)) . T))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
(((|#1|) |has| |#1| (-157)))
-(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
-((((-791)) . T))
-((((-791)) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-791)) . T))
-(|has| |#1| (-783))
-(|has| |#1| (-1013))
-(((|#1|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((|#1| $) |has| |#1| (-262 |#1| |#1|)))
+((((-792)) . T))
+((((-792)) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-792)) . T))
+(|has| |#1| (-784))
+(|has| |#1| (-1014))
+(((|#1|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(|has| |#1| (-210))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1| (-493 (-754 (-1084)))) . T))
-(((|#1| (-897)) . T))
-(((#0=(-798 |#1|) $) |has| #0# (-261 #0# #0#)))
-((((-521) |#4|) . T))
-((((-521) |#3|) . T))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1| (-494 (-755 (-1085)))) . T))
+(((|#1| (-898)) . T))
+(((#0=(-799 |#1|) $) |has| #0# (-262 #0# #0#)))
+((((-522) |#4|) . T))
+((((-522) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1060))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-(|has| (-1151 |#1| |#2| |#3| |#4|) (-133))
-(|has| (-1151 |#1| |#2| |#3| |#4|) (-135))
+(|has| |#1| (-1061))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+(|has| (-1152 |#1| |#2| |#3| |#4|) (-133))
+(|has| (-1152 |#1| |#2| |#3| |#4|) (-135))
(|has| |#1| (-133))
(|has| |#1| (-135))
(((|#1|) |has| |#1| (-157)))
-((((-1084)) -12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970))))
+((((-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971))))
(((|#2|) . T))
-(|has| |#1| (-1013))
-((((-1067) |#1|) . T))
+(|has| |#1| (-1014))
+((((-1068) |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
-(|has| |#2| (-342))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
+(|has| |#2| (-343))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-970)))
-((((-791)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
+(((|#2|) |has| |#2| (-971)))
+((((-792)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((#0=(-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) #0#) |has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))))
-((((-521) |#1|) . T))
-((((-791)) . T))
-((((-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497)))) (((-820 (-353))) -12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353))))) (((-820 (-521))) -12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521))))))
-((((-791)) . T))
-((((-791)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((#0=(-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) #0#) |has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))))
+((((-522) |#1|) . T))
+((((-792)) . T))
+((((-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498)))) (((-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354))))) (((-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522))))))
+((((-792)) . T))
+((((-792)) . T))
((($) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) . T))
-((((-791)) . T))
-(|has| (-1150 |#2| |#3| |#4|) (-135))
-(|has| (-1150 |#2| |#3| |#4|) (-133))
-(((|#2|) |has| |#2| (-1013)) (((-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (((-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) . T))
+((((-792)) . T))
+(|has| (-1151 |#2| |#3| |#4|) (-135))
+(|has| (-1151 |#2| |#3| |#4|) (-133))
+(((|#2|) |has| |#2| (-1014)) (((-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (((-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014))))
(((|#1|) . T))
-(|has| |#1| (-1013))
-((((-791)) . T))
+(|has| |#1| (-1014))
+((((-792)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
(((|#1|) . T))
-((((-521) |#1|) . T))
+((((-522) |#1|) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((((-791)) |has| |#1| (-1013)))
-(-3703 (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-((((-838 |#1|)) . T))
-((((-381 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-521) |#1|)))
-((((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-783))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((((-792)) |has| |#1| (-1014)))
+(-3708 (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+((((-839 |#1|)) . T))
+((((-382 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-522) |#1|)))
+((((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-784))
(((|#1|) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
-(|has| |#1| (-337))
-(-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))
-(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
-(|has| |#1| (-337))
-((((-521)) . T))
-(|has| |#1| (-15 * (|#1| (-707) |#1|)))
-((((-1051 |#2| (-381 (-880 |#1|)))) . T) (((-381 (-880 |#1|))) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)))
+(|has| |#1| (-338))
+(-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))
+(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))
+(|has| |#1| (-338))
+((((-522)) . T))
+(|has| |#1| (-15 * (|#1| (-708) |#1|)))
+((((-1052 |#2| (-382 (-881 |#1|)))) . T) (((-382 (-881 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
-(((|#1|) . T))
-((((-521) |#1|) . T))
-(((|#2|) . T))
-(-3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(((|#1|) . T))
-((((-1084)) -12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-756)))
-(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513)))
-(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
-((($ $) |has| |#1| (-513)))
-(((#0=(-636) (-1080 #0#)) . T))
-((((-791)) . T))
-((((-791)) . T) (((-1165 |#4|)) . T))
-((((-791)) . T) (((-1165 |#3|)) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
-((($) |has| |#1| (-513)))
-((((-791)) . T))
-((($) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((#1=(-1157 |#1| |#2| |#3|) #1#) |has| |#1| (-337)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) . T))
-(((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
-(((|#3|) |has| |#3| (-970)))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(|has| |#1| (-1013))
-(((|#2| (-755 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-337))
-((((-381 $) (-381 $)) |has| |#1| (-513)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-998) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-838 |#1|)) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T))
+(((|#1|) . T))
+((((-522) |#1|) . T))
+(((|#2|) . T))
+(-3708 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(((|#1|) . T))
+((((-1085)) -12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-757)))
+(-3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514)))
+(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))))
+((($ $) |has| |#1| (-514)))
+(((#0=(-637) (-1081 #0#)) . T))
+((((-792)) . T))
+((((-792)) . T) (((-1166 |#4|)) . T))
+((((-792)) . T) (((-1166 |#3|)) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))))
+((($) |has| |#1| (-514)))
+((((-792)) . T))
+((($) . T))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((#1=(-1158 |#1| |#2| |#3|) #1#) |has| |#1| (-338)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) . T))
+(((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))))
+(((|#3|) |has| |#3| (-971)))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(|has| |#1| (-1014))
+(((|#2| (-756 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-338))
+((((-382 $) (-382 $)) |has| |#1| (-514)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-999) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-839 |#1|)) . T))
((((-132)) . T))
((((-132)) . T))
-(((|#3|) |has| |#3| (-1013)) (((-521)) -12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (((-381 (-521))) -12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(((|#1|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-(|has| |#1| (-337))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
-((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
-(|has| |#2| (-756))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-781))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-497)) |has| |#1| (-562 (-497))))
+(((|#3|) |has| |#3| (-1014)) (((-522)) -12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (((-382 (-522))) -12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(((|#1|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+(|has| |#1| (-338))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
+((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|)))
+(|has| |#2| (-757))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-782))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-498)) |has| |#1| (-563 (-498))))
(((|#1| |#2|) . T))
-((((-1084)) -12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084)))))
-((((-1067) |#1|) . T))
-(((|#1| |#2| |#3| (-493 |#3|)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-((((-791)) . T))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(|has| |#1| (-342))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((((-521)) . T))
-((((-521)) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-((((-791)) . T))
-((((-791)) . T))
-(-12 (|has| |#2| (-210)) (|has| |#2| (-970)))
-((((-1084) #0=(-798 |#1|)) |has| #0# (-482 (-1084) #0#)) ((#0# #0#) |has| #0# (-284 #0#)))
-(((|#1|) . T))
-((((-521) |#4|) . T))
-((((-521) |#3|) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-((((-381 (-521))) . T) (((-521)) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
+((((-1085)) -12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085)))))
+((((-1068) |#1|) . T))
+(((|#1| |#2| |#3| (-494 |#3|)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+((((-792)) . T))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(|has| |#1| (-343))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((((-522)) . T))
+((((-522)) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+((((-792)) . T))
+((((-792)) . T))
+(-12 (|has| |#2| (-210)) (|has| |#2| (-971)))
+((((-1085) #0=(-799 |#1|)) |has| #0# (-483 (-1085) #0#)) ((#0# #0#) |has| #0# (-285 #0#)))
+(((|#1|) . T))
+((((-522) |#4|) . T))
+((((-522) |#3|) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522))))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+((((-382 (-522))) . T) (((-522)) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-521)) . T) (((-381 (-521))) . T))
-((((-521)) . T))
-((((-521)) . T))
-((($) . T) (((-521)) . T) (((-381 (-521))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+((($) . T) (((-522)) . T) (((-382 (-522))) . T))
+((((-522)) . T))
+((((-522)) . T))
+((($) . T) (((-522)) . T) (((-382 (-522))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) |has| |#1| (-513)))
-((((-521) |#4|) . T))
-((((-521) |#3|) . T))
-((((-791)) . T))
-((((-521)) . T) (((-381 (-521))) . T) (($) . T))
-((((-791)) . T))
-((((-521) |#1|) . T))
+(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) |has| |#1| (-514)))
+((((-522) |#4|) . T))
+((((-522) |#3|) . T))
+((((-792)) . T))
+((((-522)) . T) (((-382 (-522))) . T) (($) . T))
+((((-792)) . T))
+((((-522) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1084) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1085) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-157)))
-((($) -3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))) ((|#2|) |has| |#2| (-157)) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
-(((|#2| |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($ $) |has| |#2| (-157)))
+((($) -3708 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2|) |has| |#2| (-157)) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))))
+(((|#2| |#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($ $) |has| |#2| (-157)))
((((-132)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-342)) (|has| |#2| (-342)))
-((((-791)) . T))
-(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($) |has| |#2| (-157)))
+(-12 (|has| |#1| (-343)) (|has| |#2| (-343)))
+((((-792)) . T))
+(((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($) |has| |#2| (-157)))
(((|#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-1013))
+((((-792)) . T))
+(|has| |#1| (-1014))
(|has| $ (-135))
-((((-521) |#1|) . T))
-((($) -3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))))
-(|has| |#1| (-337))
-(-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))
-(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
-(|has| |#1| (-337))
-(|has| |#1| (-15 * (|#1| (-707) |#1|)))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(((|#2| (-493 (-793 |#1|))) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((((-534 |#1|)) . T))
+((((-522) |#1|) . T))
+((($) -3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))))
+(|has| |#1| (-338))
+(-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))
+(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))
+(|has| |#1| (-338))
+(|has| |#1| (-15 * (|#1| (-708) |#1|)))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(((|#2| (-494 (-794 |#1|))) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((((-535 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
(((|#4|) . T))
(((|#3|) . T))
-((((-798 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-((((-1084)) -12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970))))
-(((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-521) |#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-799 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+((((-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971))))
+(((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-522) |#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((#1=(-1082 |#1| |#2| |#3|) #1#) |has| |#1| (-337)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-(((|#2|) |has| |#2| (-970)))
-(|has| |#1| (-1013))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) . T))
-(((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((#1=(-1083 |#1| |#2| |#3|) #1#) |has| |#1| (-338)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+(((|#2|) |has| |#2| (-971)))
+(|has| |#1| (-1014))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) . T))
+(((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(((|#1|) |has| |#1| (-157)) (($) . T))
(((|#1|) . T))
-(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((((-791)) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
+(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((((-792)) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
-(((#0=(-998) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#2|) |has| |#1| (-337)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1013)) (((-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (((-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))))
-((((-521) |#1|) . T))
-(((|#1| (-381 (-521))) . T))
-((((-381 |#2|) |#3|) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
+(((#0=(-999) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#2|) |has| |#1| (-338)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1014)) (((-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (((-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014))))
+((((-522) |#1|) . T))
+(((|#1| (-382 (-522))) . T))
+((((-382 |#2|) |#3|) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
(|has| |#1| (-133))
(|has| |#1| (-135))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-(((|#2| |#3| (-793 |#1|)) . T))
-((((-1084)) |has| |#2| (-828 (-1084))))
-(((|#1|) . T))
-(((|#1| (-493 |#2|) |#2|) . T))
-(((|#1| (-707) (-998)) . T))
-((((-381 (-521))) |has| |#2| (-337)) (($) . T))
-(((|#1| (-493 (-1003 (-1084))) (-1003 (-1084))) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(|has| |#2| (-729))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#2| (-781))
-((((-821 |#1|)) . T) (((-755 |#1|)) . T))
-((((-755 (-1084))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-587 (-521))) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-497)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#2| |#3| (-794 |#1|)) . T))
+((((-1085)) |has| |#2| (-829 (-1085))))
+(((|#1|) . T))
+(((|#1| (-494 |#2|) |#2|) . T))
+(((|#1| (-708) (-999)) . T))
+((((-382 (-522))) |has| |#2| (-338)) (($) . T))
+(((|#1| (-494 (-1004 (-1085))) (-1004 (-1085))) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(|has| |#2| (-730))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#2| (-782))
+((((-822 |#1|)) . T) (((-756 |#1|)) . T))
+((((-756 (-1085))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-588 (-522))) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
(|has| |#1| (-210))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-1157 |#1| |#2| |#3|) $) -12 (|has| (-1157 |#1| |#2| |#3|) (-261 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-1158 |#1| |#2| |#3|) $) -12 (|has| (-1158 |#1| |#2| |#3|) (-262 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1049 |#1| |#2|)) |has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
-(((|#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
+((((-1050 |#1| |#2|)) |has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522)))))
+(((|#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
(((|#2|) . T))
-((((-791)) -3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-561 (-791))) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013))) (((-1165 |#2|)) . T))
+((((-792)) -3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-562 (-792))) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) (((-1166 |#2|)) . T))
(((|#1|) |has| |#1| (-157)))
-((((-521)) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-521) (-132)) . T))
-((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970))) ((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
-(((|#2|) |has| |#1| (-337)))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-522)) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-522) (-132)) . T))
+((($) -3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) ((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971)))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971)))
+(((|#2|) |has| |#1| (-338)))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| (-493 #0=(-1084)) #0#) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157)))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| (-494 #0=(-1085)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-157))
(|has| |#3| (-157))
-(((#0=(-381 (-880 |#1|)) #0#) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(|has| |#1| (-1013))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(|has| |#1| (-1013))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
+(((#0=(-382 (-881 |#1|)) #0#) . T))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(|has| |#1| (-1014))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(|has| |#1| (-1014))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
(((|#1| |#1|) |has| |#1| (-157)))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
-((((-381 (-880 |#1|))) . T))
+((((-382 (-881 |#1|))) . T))
(((|#1|) |has| |#1| (-157)))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((((-791)) . T))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-970)) (((-521)) -12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((((-792)) . T))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-971)) (((-522)) -12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))
(((|#1| |#2|) . T))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-(|has| |#3| (-729))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-(|has| |#3| (-781))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#2|) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
-(((|#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| (-1065 |#1|)) |has| |#1| (-781)))
-((((-521) |#2|) . T))
-(|has| |#1| (-1013))
-(((|#1|) . T))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-1060)))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
-(((|#2|) . T))
-((((-497)) |has| |#2| (-562 (-497))) (((-820 (-353))) |has| |#2| (-562 (-820 (-353)))) (((-820 (-521))) |has| |#2| (-562 (-820 (-521)))))
-(((|#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337))))
-(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337))))
-((((-791)) . T))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-837)))
-((($ $) . T) ((#0=(-1084) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-754 (-1084)) |#1|) . T) ((#1# $) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-837)))
-((((-521) |#2|) . T))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((($) -3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970))) ((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))))
-((((-521) |#1|) . T))
-(|has| (-381 |#2|) (-135))
-(|has| (-381 |#2|) (-133))
-(((|#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))))
-(|has| |#1| (-37 (-381 (-521))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-381 (-521))) . T))
-((((-791)) . T))
-(|has| |#1| (-513))
-(|has| |#1| (-513))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-791)) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((((-362) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#2| (-1060))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(((|#1|) . T))
-((((-362) (-1067)) . T))
-(|has| |#1| (-513))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+(|has| |#3| (-730))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+(|has| |#3| (-782))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#2|) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))))
+(((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| (-1066 |#1|)) |has| |#1| (-782)))
+((((-522) |#2|) . T))
+(|has| |#1| (-1014))
+(((|#1|) . T))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-1061)))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
+(((|#2|) . T))
+((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522)))))
+(((|#4|) -3708 (|has| |#4| (-157)) (|has| |#4| (-338))))
+(((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338))))
+((((-792)) . T))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-838)))
+((($ $) . T) ((#0=(-1085) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-755 (-1085)) |#1|) . T) ((#1# $) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-838)))
+((((-522) |#2|) . T))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((($) -3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) ((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))))
+((((-522) |#1|) . T))
+(|has| (-382 |#2|) (-135))
+(|has| (-382 |#2|) (-133))
+(((|#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))))
+(|has| |#1| (-37 (-382 (-522))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-382 (-522))) . T))
+((((-792)) . T))
+(|has| |#1| (-514))
+(|has| |#1| (-514))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-792)) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((((-363) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#2| (-1061))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(((|#1|) . T))
+((((-363) (-1068)) . T))
+(|has| |#1| (-514))
((((-112 |#1|)) . T))
-((((-521) |#1|) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
+((((-522) |#1|) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
(((|#2|) . T))
-((((-791)) . T))
-((((-755 |#1|)) . T))
+((((-792)) . T))
+((((-756 |#1|)) . T))
(((|#2|) |has| |#2| (-157)))
-((((-1084) (-51)) . T))
+((((-1085) (-51)) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-513))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-514))
(((|#1|) |has| |#1| (-157)))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#2|) |has| |#2| (-284 |#2|)))
-(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#2|) |has| |#2| (-285 |#2|)))
+(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1080 |#1|)) . T))
+(((|#1| (-1081 |#1|)) . T))
(|has| $ (-135))
(((|#2|) . T))
-(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-((($) . T) (((-521)) . T) (((-381 (-521))) . T))
-(|has| |#2| (-342))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-((((-521)) . T) (((-381 (-521))) . T) (($) . T))
+(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+((($) . T) (((-522)) . T) (((-382 (-522))) . T))
+(|has| |#2| (-343))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+((((-522)) . T) (((-382 (-522))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-521)) . T) (((-381 (-521))) . T) (($) . T))
-((((-1082 |#1| |#2| |#3|) $) -12 (|has| (-1082 |#1| |#2| |#3|) (-261 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))) (($ $) . T))
-((((-791)) . T))
-((((-791)) . T))
-((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
+((((-522)) . T) (((-382 (-522))) . T) (($) . T))
+((((-1083 |#1| |#2| |#3|) $) -12 (|has| (-1083 |#1| |#2| |#3|) (-262 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))) (($ $) . T))
+((((-792)) . T))
+((((-792)) . T))
+((($) . T) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
((($ $) . T))
((($ $) . T))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((#0=(-1157 |#1| |#2| |#3|) #0#) -12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))) (((-1084) #0#) -12 (|has| (-1157 |#1| |#2| |#3|) (-482 (-1084) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))
-(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((#0=(-1158 |#1| |#2| |#3|) #0#) -12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))) (((-1085) #0#) -12 (|has| (-1158 |#1| |#2| |#3|) (-483 (-1085) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))))
+(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-381 (-521))) . T) (((-521)) . T))
-((((-521) (-132)) . T))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-382 (-522))) . T) (((-522)) . T))
+((((-522) (-132)) . T))
((((-132)) . T))
(((|#1|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971)))
((((-108)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
((((-108)) . T))
(((|#1|) . T))
-((((-497)) |has| |#1| (-562 (-497))) (((-202)) . #0=(|has| |#1| (-946))) (((-353)) . #0#))
-((((-791)) . T))
-(|has| |#1| (-756))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(|has| |#1| (-783))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-(|has| |#1| (-513))
-(|has| |#1| (-837))
-(((|#1|) . T))
-(|has| |#1| (-1013))
-((((-791)) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
-((((-521) (-132)) . T))
-((($) . T))
-(-3703 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-970)))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-((((-791)) . T))
-(|has| |#1| (-1013))
-(((|#1| (-897)) . T))
+((((-498)) |has| |#1| (-563 (-498))) (((-202)) . #0=(|has| |#1| (-947))) (((-354)) . #0#))
+((((-792)) . T))
+(|has| |#1| (-757))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(|has| |#1| (-784))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+(|has| |#1| (-514))
+(|has| |#1| (-838))
+(((|#1|) . T))
+(|has| |#1| (-1014))
+((((-792)) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| (-1166 |#1|) (-1166 |#1|)) . T))
+((((-522) (-132)) . T))
+((($) . T))
+(-3708 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971)))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+((((-792)) . T))
+(|has| |#1| (-1014))
+(((|#1| (-898)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(-12 (|has| |#1| (-446)) (|has| |#2| (-446)))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(-12 (|has| |#1| (-447)) (|has| |#2| (-447)))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
(((|#1|) . T))
-(|has| |#2| (-729))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
+(|has| |#2| (-730))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(|has| |#2| (-781))
-(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
-(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(|has| |#2| (-782))
+(-12 (|has| |#1| (-730)) (|has| |#2| (-730)))
+(-12 (|has| |#1| (-730)) (|has| |#2| (-730)))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
-((((-791)) . T))
-(|has| |#1| (-323))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-381 (-521))) . T) (($) . T))
-((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) . T))
-(|has| |#1| (-764))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
-((($) |has| |#1| (-513)))
-(((|#4|) |has| |#4| (-1013)))
-(((|#3|) |has| |#3| (-1013)))
-(|has| |#3| (-342))
-(((|#1|) . T) (((-791)) . T))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
-((((-791)) . T))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((((-792)) . T))
+(|has| |#1| (-324))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-382 (-522))) . T) (($) . T))
+((($) . T) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) . T))
+(|has| |#1| (-765))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
+(|has| |#1| (-1014))
+(((|#1| $) |has| |#1| (-262 |#1| |#1|)))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)))
+((($) |has| |#1| (-514)))
+(((|#4|) |has| |#4| (-1014)))
+(((|#3|) |has| |#3| (-1014)))
+(|has| |#3| (-343))
+(((|#1|) . T) (((-792)) . T))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))))
+((((-792)) . T))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(((|#2|) . T))
(((|#1| |#1|) |has| |#1| (-157)))
(((|#1| |#2|) . T))
-(|has| |#2| (-337))
+(|has| |#2| (-338))
(((|#1|) . T))
(((|#1|) |has| |#1| (-157)))
-((((-381 (-521))) . T) (((-521)) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+((((-382 (-522))) . T) (((-522)) . T))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
((((-132)) . T))
(((|#1|) . T))
((((-132)) . T))
-((($) -3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970))) ((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))))
+((($) -3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971))) ((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))))
((((-132)) . T))
(((|#1| |#2| |#3|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971)))
(|has| $ (-135))
(|has| $ (-135))
-(|has| |#1| (-1013))
-((((-791)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-446)) (|has| |#1| (-513)) (|has| |#1| (-970)) (|has| |#1| (-1025)))
-((($ $) |has| |#1| (-261 $ $)) ((|#1| $) |has| |#1| (-261 |#1| |#1|)))
-(((|#1| (-381 (-521))) . T))
-(((|#1|) . T))
-((((-1084)) . T))
-(|has| |#1| (-513))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(|has| |#1| (-513))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-((((-791)) . T))
+(|has| |#1| (-1014))
+((((-792)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-447)) (|has| |#1| (-514)) (|has| |#1| (-971)) (|has| |#1| (-1026)))
+((($ $) |has| |#1| (-262 $ $)) ((|#1| $) |has| |#1| (-262 |#1| |#1|)))
+(((|#1| (-382 (-522))) . T))
+(((|#1|) . T))
+((((-1085)) . T))
+(|has| |#1| (-514))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(|has| |#1| (-514))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+((((-792)) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
(((|#2|) . T) (($) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(|has| |#4| (-781))
-(((|#2| (-217 (-3478 |#1|) (-707)) (-793 |#1|)) . T))
-(|has| |#3| (-781))
-(((|#1| (-493 |#3|) |#3|) . T))
+(|has| |#4| (-782))
+(((|#2| (-217 (-3480 |#1|) (-708)) (-794 |#1|)) . T))
+(|has| |#3| (-782))
+(((|#1| (-494 |#3|) |#3|) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(((#0=(-381 (-521)) #0#) |has| |#2| (-337)) (($ $) . T))
-((((-798 |#1|)) . T))
+(((#0=(-382 (-522)) #0#) |has| |#2| (-338)) (($ $) . T))
+((((-799 |#1|)) . T))
(|has| |#1| (-135))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
(|has| |#1| (-133))
-((((-381 (-521))) |has| |#2| (-337)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-323)) (|has| |#1| (-342)))
-((((-1051 |#2| |#1|)) . T) ((|#1|) . T))
+((((-382 (-522))) |has| |#2| (-338)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-324)) (|has| |#1| (-343)))
+((((-1052 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-157))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-210)) (|has| |#2| (-970)))
-(((|#2|) . T) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-((((-791)) . T))
+(-12 (|has| |#2| (-210)) (|has| |#2| (-971)))
+(((|#2|) . T) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+((((-792)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-636)) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(|has| |#1| (-513))
+((((-637)) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(|has| |#1| (-514))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1084) (-51)) . T))
-((((-791)) . T))
-((((-497)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
+((((-1085) (-51)) . T))
+((((-792)) . T))
+((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
(((|#1|) . T))
-((((-791)) . T))
-((((-497)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
-(((|#1| (-521)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
+(((|#1| (-522)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-381 (-521))) . T))
-(((|#3|) . T) (((-560 $)) . T))
+(((|#1| (-382 (-522))) . T))
+(((|#3|) . T) (((-561 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((#0=(-1082 |#1| |#2| |#3|) #0#) -12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))) (((-1084) #0#) -12 (|has| (-1082 |#1| |#2| |#3|) (-482 (-1084) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
-((((-791)) . T))
-((((-791)) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((#0=(-1083 |#1| |#2| |#3|) #0#) -12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))) (((-1085) #0#) -12 (|has| (-1083 |#1| |#2| |#3|) (-483 (-1085) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) |has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))))
-((((-791)) . T))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) |has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))))
+((((-792)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1084) (-51)) . T))
+((((-1085) (-51)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-764))
-(|has| |#1| (-1013))
-(((|#2| |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($ $) |has| |#2| (-157)))
-(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337))))
-((((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($) |has| |#2| (-157)))
-((((-707)) . T))
-((((-521)) . T))
-(|has| |#1| (-513))
-((((-791)) . T))
-(((|#1| (-381 (-521)) (-998)) . T))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-765))
+(|has| |#1| (-1014))
+(((|#2| |#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($ $) |has| |#2| (-157)))
+(((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338))))
+((((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($) |has| |#2| (-157)))
+((((-708)) . T))
+((((-522)) . T))
+(|has| |#1| (-514))
+((((-792)) . T))
+(((|#1| (-382 (-522)) (-999)) . T))
(|has| |#1| (-133))
(((|#1|) . T))
-(|has| |#1| (-513))
-((((-521)) . T))
+(|has| |#1| (-514))
+((((-522)) . T))
((((-112 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-135))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-((((-820 (-521))) . T) (((-820 (-353))) . T) (((-497)) . T) (((-1084)) . T))
-((((-791)) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-((($) . T))
-((((-791)) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+((((-821 (-522))) . T) (((-821 (-354))) . T) (((-498)) . T) (((-1085)) . T))
+((((-792)) . T))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+((($) . T))
+((((-792)) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
(((|#2|) |has| |#2| (-157)))
-((($) -3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))) ((|#2|) |has| |#2| (-157)) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
-((((-798 |#1|)) . T))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
-(-12 (|has| |#3| (-210)) (|has| |#3| (-970)))
-(|has| |#2| (-1060))
-(((#0=(-51)) . T) (((-2 (|:| -2535 (-1084)) (|:| -3050 #0#))) . T))
+((($) -3708 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))) ((|#2|) |has| |#2| (-157)) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))))
+((((-799 |#1|)) . T))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014)))
+(-12 (|has| |#3| (-210)) (|has| |#3| (-971)))
+(|has| |#2| (-1061))
+(((#0=(-51)) . T) (((-2 (|:| -2530 (-1085)) (|:| -3048 #0#))) . T))
(((|#1| |#2|) . T))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-(((|#1| (-521) (-998)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| (-381 (-521)) (-998)) . T))
-((($) -3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-((((-521) |#2|) . T))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+(((|#1| (-522) (-999)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| (-382 (-522)) (-999)) . T))
+((($) -3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+((((-522) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-342))
-(-12 (|has| |#1| (-342)) (|has| |#2| (-342)))
-((((-791)) . T))
-((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
-(((|#1|) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) . T))
-(|has| |#1| (-323))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
-(|has| |#1| (-513))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
+(|has| |#2| (-343))
+(-12 (|has| |#1| (-343)) (|has| |#2| (-343)))
+((((-792)) . T))
+((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
+(((|#1|) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) . T))
+(|has| |#1| (-324))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
+(|has| |#1| (-514))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
(((|#1| |#2|) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-837)))
-((((-381 (-521))) . T) (((-521)) . T))
-((((-521)) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-798 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-((((-791)) . T))
-(((|#3| |#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($ $) |has| |#3| (-157)))
-(|has| |#1| (-946))
-((((-791)) . T))
-(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))) (($) |has| |#3| (-157)))
-((((-521) (-108)) . T))
-(((|#1|) |has| |#1| (-284 |#1|)))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-((((-1084) $) |has| |#1| (-482 (-1084) $)) (($ $) |has| |#1| (-284 $)) ((|#1| |#1|) |has| |#1| (-284 |#1|)) (((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)))
-((((-1084)) |has| |#1| (-828 (-1084))))
-(-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))
-((((-362) (-1031)) . T))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-838)))
+((((-382 (-522))) . T) (((-522)) . T))
+((((-522)) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-799 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+((((-792)) . T))
+(((|#3| |#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($ $) |has| |#3| (-157)))
+(|has| |#1| (-947))
+((((-792)) . T))
+(((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))) (($) |has| |#3| (-157)))
+((((-522) (-108)) . T))
+(((|#1|) |has| |#1| (-285 |#1|)))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+((((-1085) $) |has| |#1| (-483 (-1085) $)) (($ $) |has| |#1| (-285 $)) ((|#1| |#1|) |has| |#1| (-285 |#1|)) (((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)))
+((((-1085)) |has| |#1| (-829 (-1085))))
+(-3708 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))
+((((-363) (-1032)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-362) |#1|) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(|has| |#1| (-1013))
-((((-791)) . T))
-((((-791)) . T))
-((((-838 |#1|)) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
+((((-363) |#1|) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(|has| |#1| (-1014))
+((((-792)) . T))
+((((-792)) . T))
+((((-839 |#1|)) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-(((#0=(-798 |#1|)) |has| #0# (-284 #0#)))
+(((#0=(-799 |#1|)) |has| #0# (-285 #0#)))
(((|#1| |#2|) . T))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(-12 (|has| |#1| (-730)) (|has| |#2| (-730)))
(((|#1|) . T))
-(-12 (|has| |#1| (-729)) (|has| |#2| (-729)))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
+(-12 (|has| |#1| (-730)) (|has| |#2| (-730)))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(|has| |#1| (-1105))
-(((#0=(-521) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-((((-381 (-521))) . T) (($) . T))
-(((|#4|) |has| |#4| (-970)))
-(((|#3|) |has| |#3| (-970)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(|has| |#1| (-337))
-((((-521)) . T) (((-381 (-521))) . T) (($) . T))
-((($ $) . T) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1| |#1|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-521) |#3|) . T))
-((((-791)) . T))
-((((-497)) |has| |#3| (-562 (-497))))
-((((-627 |#3|)) . T) (((-791)) . T))
+(((|#2|) . T) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(|has| |#1| (-1106))
+(((#0=(-522) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#4|) |has| |#4| (-971)))
+(((|#3|) |has| |#3| (-971)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(|has| |#1| (-338))
+((((-522)) . T) (((-382 (-522))) . T) (($) . T))
+((($ $) . T) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1| |#1|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-522) |#3|) . T))
+((((-792)) . T))
+((((-498)) |has| |#3| (-563 (-498))))
+((((-628 |#3|)) . T) (((-792)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-(((#0=(-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) #0#) |has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))))
-((($) . T))
-(|has| |#2| (-783))
-((($) . T))
-(((|#2|) |has| |#2| (-1013)))
-((((-791)) -3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-561 (-791))) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013))) (((-1165 |#2|)) . T))
-(|has| |#1| (-783))
-(|has| |#1| (-783))
-((((-1067) (-51)) . T))
-(|has| |#1| (-783))
-((((-791)) . T))
-((((-521)) |has| #0=(-381 |#2|) (-583 (-521))) ((#0#) . T))
-((((-521) (-132)) . T))
-((((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((|#1| |#2|) . T))
-((((-381 (-521))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-791)) . T))
-((((-838 |#1|)) . T))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
-(|has| |#1| (-781))
-(|has| |#1| (-337))
-(|has| |#1| (-781))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+((($) . T) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+(((#0=(-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) #0#) |has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))))
+((($) . T))
+(|has| |#2| (-784))
+((($) . T))
+(((|#2|) |has| |#2| (-1014)))
+((((-792)) -3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-562 (-792))) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) (((-1166 |#2|)) . T))
+(|has| |#1| (-784))
+(|has| |#1| (-784))
+((((-1068) (-51)) . T))
+(|has| |#1| (-784))
+((((-792)) . T))
+((((-522)) |has| #0=(-382 |#2|) (-584 (-522))) ((#0#) . T))
+((((-522) (-132)) . T))
+((((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((|#1| |#2|) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-792)) . T))
+((((-839 |#1|)) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))
+(|has| |#1| (-782))
+(|has| |#1| (-338))
+(|has| |#1| (-782))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-781))
-((((-1084)) |has| |#1| (-828 (-1084))))
-(((|#1| (-1084)) . T))
-(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
+(|has| |#1| (-782))
+((((-1085)) |has| |#1| (-829 (-1085))))
+(((|#1| (-1085)) . T))
+(((|#1| (-1166 |#1|) (-1166 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1013))
-(((|#1| (-1084) (-754 (-1084)) (-493 (-754 (-1084)))) . T))
-((((-381 (-880 |#1|))) . T))
-((((-497)) . T))
-((((-791)) . T))
+(|has| |#1| (-1014))
+(((|#1| (-1085) (-755 (-1085)) (-494 (-755 (-1085)))) . T))
+((((-382 (-881 |#1|))) . T))
+((((-498)) . T))
+((((-792)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-157)))
-((((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((|#1| |#2|) . T))
+((((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-157)))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-497)) |has| |#1| (-562 (-497))) (((-820 (-353))) |has| |#1| (-562 (-820 (-353)))) (((-820 (-521))) |has| |#1| (-562 (-820 (-521)))))
-((((-791)) . T))
-(((|#2|) . T) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(|has| |#2| (-781))
-(-12 (|has| |#2| (-210)) (|has| |#2| (-970)))
-(|has| |#1| (-513))
-(|has| |#1| (-1060))
-((((-1067) |#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1| |#1|) . T))
-((((-381 (-521))) |has| |#1| (-961 (-521))) (((-521)) |has| |#1| (-961 (-521))) (((-1084)) |has| |#1| (-961 (-1084))) ((|#1|) . T))
-((((-521) |#2|) . T))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
-((((-521)) |has| |#1| (-814 (-521))) (((-353)) |has| |#1| (-814 (-353))))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1|) . T))
-(((|#1|) . T))
-((((-587 |#4|)) . T) (((-791)) . T))
-((((-497)) |has| |#4| (-562 (-497))))
-((((-497)) |has| |#4| (-562 (-497))))
-((((-791)) . T) (((-587 |#4|)) . T))
-((($) |has| |#1| (-781)))
-(((|#1|) . T))
-((((-587 |#4|)) . T) (((-791)) . T))
-((((-497)) |has| |#4| (-562 (-497))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1084)) |has| (-381 |#2|) (-828 (-1084))))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-791)) -3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-561 (-791))) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-342)) (|has| |#3| (-729)) (|has| |#3| (-781)) (|has| |#3| (-970)) (|has| |#3| (-1013))) (((-1165 |#3|)) . T))
-((((-521) |#2|) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#2| |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($ $) |has| |#2| (-157)))
-((((-791)) . T))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((|#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-1067) (-1084) (-521) (-202) (-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-((((-791)) . T))
-((((-521) (-108)) . T))
-(((|#1|) . T))
-((((-791)) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-498)) |has| |#1| (-563 (-498))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))))
+((((-792)) . T))
+(((|#2|) . T) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(|has| |#2| (-782))
+(-12 (|has| |#2| (-210)) (|has| |#2| (-971)))
+(|has| |#1| (-514))
+(|has| |#1| (-1061))
+((((-1068) |#1|) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1| |#1|) . T))
+((((-382 (-522))) |has| |#1| (-962 (-522))) (((-522)) |has| |#1| (-962 (-522))) (((-1085)) |has| |#1| (-962 (-1085))) ((|#1|) . T))
+((((-522) |#2|) . T))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
+((((-522)) |has| |#1| (-815 (-522))) (((-354)) |has| |#1| (-815 (-354))))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1|) . T))
+(((|#1|) . T))
+((((-588 |#4|)) . T) (((-792)) . T))
+((((-498)) |has| |#4| (-563 (-498))))
+((((-498)) |has| |#4| (-563 (-498))))
+((((-792)) . T) (((-588 |#4|)) . T))
+((($) |has| |#1| (-782)))
+(((|#1|) . T))
+((((-588 |#4|)) . T) (((-792)) . T))
+((((-498)) |has| |#4| (-563 (-498))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1085)) |has| (-382 |#2|) (-829 (-1085))))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-792)) -3708 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-562 (-792))) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-343)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)) (|has| |#3| (-1014))) (((-1166 |#3|)) . T))
+((((-522) |#2|) . T))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#2| |#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($ $) |has| |#2| (-157)))
+((((-792)) . T))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-1068) (-1085) (-522) (-202) (-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+((((-792)) . T))
+((((-522) (-108)) . T))
+(((|#1|) . T))
+((((-792)) . T))
((((-108)) . T))
((((-108)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-792)) . T))
((((-108)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-970))) (($) |has| |#2| (-157)))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-971))) (($) |has| |#2| (-157)))
(|has| $ (-135))
-((((-381 |#2|)) . T))
-((((-381 (-521))) |has| #0=(-381 |#2|) (-961 (-381 (-521)))) (((-521)) |has| #0# (-961 (-521))) ((#0#) . T))
+((((-382 |#2|)) . T))
+((((-382 (-522))) |has| #0=(-382 |#2|) (-962 (-382 (-522)))) (((-522)) |has| #0# (-962 (-522))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-157)))
(|has| |#2| (-133))
@@ -1200,171 +1200,171 @@
(((|#3|) |has| |#3| (-157)))
(|has| |#1| (-135))
(|has| |#1| (-133))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
(|has| |#1| (-135))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
(|has| |#1| (-135))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
(|has| |#1| (-135))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-210))
-((((-1084) (-51)) . T))
-((((-791)) . T))
+((((-1085) (-51)) . T))
+((((-792)) . T))
(((|#1| |#1|) . T))
-((((-1084)) |has| |#2| (-828 (-1084))))
-((((-521) (-108)) . T))
-(|has| |#1| (-513))
+((((-1085)) |has| |#2| (-829 (-1085))))
+((((-522) (-108)) . T))
+(|has| |#1| (-514))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
(((|#3|) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(((|#1|) . T))
-((((-791)) . T))
-((((-497)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-924 |#1|)) . T) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-381 (-521))) . T) (((-381 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1080 |#1|)) . T))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(((|#1|) . T))
+((((-792)) . T))
+((((-498)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-925 |#1|)) . T) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-382 (-522))) . T) (((-382 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1081 |#1|)) . T))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-783))
+(|has| |#1| (-784))
(((|#2|) . T))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-((((-521) |#2|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+((((-522) |#2|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
(((|#2|) . T))
-((((-521) |#3|) . T))
+((((-522) |#3|) . T))
(((|#2|) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-((((-791)) . T))
-(|has| |#1| (-1013))
-(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+((((-792)) . T))
+(|has| |#1| (-1014))
+(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#2| (-337))
-(((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
+(|has| |#2| (-338))
+(((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522)))))
(((|#2|) . T))
-((((-1067) (-51)) . T))
+((((-1068) (-51)) . T))
(((|#2|) |has| |#2| (-157)))
-((((-521) |#3|) . T))
-((((-521) (-132)) . T))
+((((-522) |#3|) . T))
+((((-522) (-132)) . T))
((((-132)) . T))
-((((-791)) . T))
+((((-792)) . T))
((((-108)) . T))
(|has| |#1| (-135))
(((|#1|) . T))
(|has| |#1| (-133))
((($) . T))
-(|has| |#1| (-513))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-514))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
-((((-791)) . T))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
-((((-1067) (-51)) . T))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
+((((-792)) . T))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
+((((-1068) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1| |#2|) . T))
-((((-521) (-132)) . T))
-(((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(|has| |#1| (-783))
-(((|#2| (-707) (-998)) . T))
+((((-522) (-132)) . T))
+(((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(|has| |#1| (-784))
+(((|#2| (-708) (-999)) . T))
(((|#1| |#2|) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-(|has| |#1| (-727))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+(|has| |#1| (-728))
(((|#1|) |has| |#1| (-157)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3703 (|has| |#1| (-135)) (-12 (|has| |#1| (-337)) (|has| |#2| (-135))))
-(-3703 (|has| |#1| (-133)) (-12 (|has| |#1| (-337)) (|has| |#2| (-133))))
+(-3708 (|has| |#1| (-135)) (-12 (|has| |#1| (-338)) (|has| |#2| (-135))))
+(-3708 (|has| |#1| (-133)) (-12 (|has| |#1| (-338)) (|has| |#2| (-133))))
(((|#4|) . T))
(|has| |#1| (-133))
-((((-1067) |#1|) . T))
+((((-1068) |#1|) . T))
(|has| |#1| (-135))
(((|#1|) . T))
-((((-521)) . T))
-((((-791)) . T))
+((((-522)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#3|) . T))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))) (((-885 |#1|)) . T))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(|has| |#2| (-337))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))) (((-886 |#1|)) . T))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(|has| |#2| (-338))
(((|#1|) |has| |#1| (-157)))
-(((|#2|) |has| |#2| (-970)))
-((((-1067) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
-(((|#2| (-821 |#1|)) . T))
-((($) . T))
-((((-362) (-1067)) . T))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) -3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-561 (-791))) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013))) (((-1165 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2535 (-1067)) (|:| -3050 #0#))) . T))
-(((|#1|) . T))
-((((-791)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-971)))
+((((-1068) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))
+(((|#2| (-822 |#1|)) . T))
+((($) . T))
+((((-363) (-1068)) . T))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) -3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-562 (-792))) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014))) (((-1166 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2530 (-1068)) (|:| -3048 #0#))) . T))
+(((|#1|) . T))
+((((-792)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
((((-132)) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
-(|has| |#1| (-446))
-(-3703 (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
-(|has| |#1| (-337))
-((((-791)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
-((($) |has| |#1| (-513)))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-((((-791)) . T))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+(|has| |#1| (-447))
+(-3708 (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
+(|has| |#1| (-338))
+((((-792)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)))
+((($) |has| |#1| (-514)))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+((((-792)) . T))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(((|#1| |#2|) . T))
-((((-1084)) |has| |#1| (-828 (-1084))))
-((((-838 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-((((-791)) . T))
-((((-791)) . T))
-(|has| |#1| (-1013))
-(((|#2| (-454 (-3478 |#1|) (-707)) (-793 |#1|)) . T))
-((((-381 (-521))) . #0=(|has| |#2| (-337))) (($) . #0#))
-(((|#1| (-493 (-1084)) (-1084)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-1085)) |has| |#1| (-829 (-1085))))
+((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+((((-792)) . T))
+((((-792)) . T))
+(|has| |#1| (-1014))
+(((|#2| (-455 (-3480 |#1|) (-708)) (-794 |#1|)) . T))
+((((-382 (-522))) . #0=(|has| |#2| (-338))) (($) . #0#))
+(((|#1| (-494 (-1085)) (-1085)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1378,62 +1378,62 @@
(|has| |#1| (-135))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-1084) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-1085) (-51)) . T))
((($ $) . T))
-(((|#1| (-521)) . T))
-((((-838 |#1|)) . T))
-(((|#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-970))) (($) -3703 (|has| |#1| (-828 (-1084))) (|has| |#1| (-970))))
-(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-(|has| |#1| (-783))
-(|has| |#1| (-783))
-((((-521) |#2|) . T))
-((((-521)) . T))
-((((-1157 |#1| |#2| |#3|)) -12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))
-(|has| |#1| (-783))
-((((-627 |#2|)) . T) (((-791)) . T))
+(((|#1| (-522)) . T))
+((((-839 |#1|)) . T))
+(((|#1|) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-971))) (($) -3708 (|has| |#1| (-829 (-1085))) (|has| |#1| (-971))))
+(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+(|has| |#1| (-784))
+(|has| |#1| (-784))
+((((-522) |#2|) . T))
+((((-522)) . T))
+((((-1158 |#1| |#2| |#3|)) -12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))))
+(|has| |#1| (-784))
+((((-628 |#2|)) . T) (((-792)) . T))
(((|#1| |#2|) . T))
-((((-381 (-880 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+((((-382 (-881 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
(((|#1|) |has| |#1| (-157)))
-(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337))))
-(|has| |#2| (-783))
-(|has| |#1| (-783))
-(-3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-837)))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-((((-521) |#2|) . T))
-(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337))))
-(|has| |#1| (-323))
-(((|#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
-((($) . T) (((-381 (-521))) . T))
-((((-521) (-108)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(|has| |#1| (-37 (-381 (-521))))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-1084)) |has| |#1| (-828 (-1084))) (((-998)) . T))
-(((|#1|) . T))
-(|has| |#1| (-781))
-(((#0=(-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) #0#) |has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-1013))
+(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338))))
+(|has| |#2| (-784))
+(|has| |#1| (-784))
+(-3708 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-838)))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+((((-522) |#2|) . T))
+(((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338))))
+(|has| |#1| (-324))
+(((|#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))
+((($) . T) (((-382 (-522))) . T))
+((((-522) (-108)) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(|has| |#1| (-37 (-382 (-522))))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-1085)) |has| |#1| (-829 (-1085))) (((-999)) . T))
+(((|#1|) . T))
+(|has| |#1| (-782))
+(((#0=(-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) #0#) |has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-1014))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1442,263 +1442,264 @@
(((|#3| |#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-493 |#2|) |#2|) . T))
-((((-791)) . T))
-(((|#1| (-707) (-998)) . T))
+(((|#1| (-494 |#2|) |#2|) . T))
+((((-792)) . T))
+(((|#1| (-708) (-999)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-132)) . T))
(((|#2|) |has| |#2| (-157)))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014)))
(((|#1|) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#3| (-157))
-(((|#4|) |has| |#4| (-337)))
-(((|#3|) |has| |#3| (-337)))
+(((|#4|) |has| |#4| (-338)))
+(((|#3|) |has| |#3| (-338)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-337)))
+(((|#2|) |has| |#1| (-338)))
+((((-792)) . T))
(((|#2|) . T))
-(((|#1| (-1080 |#1|)) . T))
-((((-998)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((($) . T) ((|#1|) . T) (((-381 (-521))) . T))
+(((|#1| (-1081 |#1|)) . T))
+((((-999)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((($) . T) ((|#1|) . T) (((-382 (-522))) . T))
(((|#2|) . T))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((($) |has| |#1| (-781)))
-(|has| |#1| (-837))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((($) |has| |#1| (-782)))
+(|has| |#1| (-838))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((#0=(-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) #0#) |has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-837)))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((#0=(-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) #0#) |has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-838)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337))))
-(|has| |#1| (-783))
-(|has| |#1| (-513))
-((((-534 |#1|)) . T))
+(((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338))))
+(|has| |#1| (-784))
+(|has| |#1| (-514))
+((((-535 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-756))) (-12 (|has| |#1| (-337)) (|has| |#2| (-783))))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-((((-838 |#1|)) . T))
-(((|#1| (-465 |#1| |#3|) (-465 |#1| |#2|)) . T))
+(-3708 (-12 (|has| |#1| (-338)) (|has| |#2| (-757))) (-12 (|has| |#1| (-338)) (|has| |#2| (-784))))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+((((-839 |#1|)) . T))
+(((|#1| (-466 |#1| |#3|) (-466 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-707)) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
-((((-612 |#1|)) . T))
+(((|#1| (-708)) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
+((((-613 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-497)) . T))
-((((-791)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#2|) . T))
-(-3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-342)) (|has| |#3| (-729)) (|has| |#3| (-781)) (|has| |#3| (-970)) (|has| |#3| (-1013)))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
-(|has| |#1| (-1105))
-(|has| |#1| (-1105))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
-(|has| |#1| (-1105))
-(|has| |#1| (-1105))
+((((-498)) . T))
+((((-792)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#2|) . T))
+(-3708 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-343)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)) (|has| |#3| (-1014)))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
+(|has| |#1| (-1106))
+(|has| |#1| (-1106))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014)))
+(|has| |#1| (-1106))
+(|has| |#1| (-1106))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T) ((#1=(-381 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T) ((#1=(-382 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
(((|#3|) . T))
-((($) . T) (((-381 (-521))) . T) (((-381 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-((((-1067) (-51)) . T))
-(|has| |#1| (-1013))
-(-3703 (|has| |#2| (-756)) (|has| |#2| (-783)))
-(((|#1|) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
+((($) . T) (((-382 (-522))) . T) (((-382 |#1|)) . T) ((|#1|) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+((((-1068) (-51)) . T))
+(|has| |#1| (-1014))
+(-3708 (|has| |#2| (-757)) (|has| |#2| (-784)))
+(((|#1|) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
((($) . T))
-((((-1082 |#1| |#2| |#3|)) -12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))
-((((-791)) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-((($) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-837)))
-(|has| |#2| (-837))
-(|has| |#1| (-337))
-(((|#2|) |has| |#2| (-1013)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
+((((-1083 |#1| |#2| |#3|)) -12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))))
+((((-792)) . T))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+((($) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-838)))
+(|has| |#2| (-838))
+(|has| |#1| (-338))
+(((|#2|) |has| |#2| (-1014)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
((($) . T) ((|#2|) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-837)))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
-((((-497)) . T) (((-381 (-1080 (-521)))) . T) (((-202)) . T) (((-353)) . T))
-((((-353)) . T) (((-202)) . T) (((-791)) . T))
-(|has| |#1| (-837))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-838)))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
+((((-498)) . T) (((-382 (-1081 (-522)))) . T) (((-202)) . T) (((-354)) . T))
+((((-354)) . T) (((-202)) . T) (((-792)) . T))
+(|has| |#1| (-838))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
((($ $) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
((($ $) . T))
-((((-521) (-108)) . T))
+((((-522) (-108)) . T))
((($) . T))
(((|#1|) . T))
-((((-521)) . T))
+((((-522)) . T))
((((-108)) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513)))
-(|has| |#1| (-37 (-381 (-521))))
-(((|#1| (-521)) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514)))
+(|has| |#1| (-37 (-382 (-522))))
+(((|#1| (-522)) . T))
((($) . T))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
(((|#1|) . T))
-((((-521)) . T))
+((((-522)) . T))
(((|#1| |#2|) . T))
-((((-1084)) |has| |#1| (-970)))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
+((((-1085)) |has| |#1| (-971)))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
(((|#1|) . T))
-((((-791)) . T))
-(((|#1| (-521)) . T))
-(((|#1| (-1157 |#1| |#2| |#3|)) . T))
+((((-792)) . T))
+(((|#1| (-522)) . T))
+(((|#1| (-1158 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-381 (-521))) . T))
-(((|#1| (-1129 |#1| |#2| |#3|)) . T))
-(((|#1| (-707)) . T))
+(((|#1| (-382 (-522))) . T))
+(((|#1| (-1130 |#1| |#2| |#3|)) . T))
+(((|#1| (-708)) . T))
(((|#1|) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-791)) . T))
-(|has| |#1| (-1013))
-((((-1067) |#1|) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-792)) . T))
+(|has| |#1| (-1014))
+((((-1068) |#1|) . T))
((($) . T))
(|has| |#2| (-135))
(|has| |#2| (-133))
-(((|#1| (-493 (-754 (-1084))) (-754 (-1084))) . T))
-((((-791)) . T))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-970)))
-((((-521) (-108)) . T))
-((((-791)) |has| |#1| (-1013)))
+(((|#1| (-494 (-755 (-1085))) (-755 (-1085))) . T))
+((((-792)) . T))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-971)))
+((((-522) (-108)) . T))
+((((-792)) |has| |#1| (-1014)))
(|has| |#2| (-157))
-((((-521)) . T))
-(|has| |#2| (-781))
+((((-522)) . T))
+(|has| |#2| (-782))
(((|#1|) . T))
-((((-521)) . T))
-((((-791)) . T))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-323)))
-((((-791)) . T))
+((((-522)) . T))
+((((-792)) . T))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-324)))
+((((-792)) . T))
(|has| |#1| (-135))
(((|#3|) . T))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-((((-791)) . T))
-((((-1150 |#2| |#3| |#4|)) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T))
-((((-791)) . T))
-((((-47)) -12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (((-560 $)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) -3703 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (|has| |#1| (-961 (-381 (-521))))) (((-381 (-880 |#1|))) |has| |#1| (-513)) (((-880 |#1|)) |has| |#1| (-970)) (((-1084)) . T))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+((((-792)) . T))
+((((-1151 |#2| |#3| |#4|)) . T) (((-1152 |#1| |#2| |#3| |#4|)) . T))
+((((-792)) . T))
+((((-47)) -12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (((-561 $)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) -3708 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (|has| |#1| (-962 (-382 (-522))))) (((-382 (-881 |#1|))) |has| |#1| (-514)) (((-881 |#1|)) |has| |#1| (-971)) (((-1085)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-707)) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
-(((|#1|) |has| |#1| (-284 |#1|)))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-((((-521)) |has| |#1| (-814 (-521))) (((-353)) |has| |#1| (-814 (-353))))
+(((|#1| (-708)) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157)))
+(((|#1|) |has| |#1| (-285 |#1|)))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+((((-522)) |has| |#1| (-815 (-522))) (((-354)) |has| |#1| (-815 (-354))))
(((|#1|) . T))
-(|has| |#1| (-513))
+(|has| |#1| (-514))
(((|#1|) . T))
-((((-791)) . T))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
+((((-792)) . T))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
(((|#1|) |has| |#1| (-157)))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1013)))
-(((|#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-337))))
-((((-1150 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1014)))
+(((|#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-338))))
+((((-1151 |#2| |#3| |#4|)) . T))
((((-108)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(((|#1| (-521) (-998)) . T))
-((($) |has| |#1| (-284 $)) ((|#1|) |has| |#1| (-284 |#1|)))
-(|has| |#1| (-781))
-(|has| |#1| (-781))
-(((|#1| (-521) (-998)) . T))
-(-3703 (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(((|#1| (-381 (-521)) (-998)) . T))
-(((|#1| (-707) (-998)) . T))
-(|has| |#1| (-783))
-(((#0=(-838 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
+(|has| |#1| (-757))
+(|has| |#1| (-757))
+(((|#1| (-522) (-999)) . T))
+((($) |has| |#1| (-285 $)) ((|#1|) |has| |#1| (-285 |#1|)))
+(|has| |#1| (-782))
+(|has| |#1| (-782))
+(((|#1| (-522) (-999)) . T))
+(-3708 (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(((|#1| (-382 (-522)) (-999)) . T))
+(((|#1| (-708) (-999)) . T))
+(|has| |#1| (-784))
+(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
(((|#2|) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(|has| |#1| (-1013))
-((((-838 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-(|has| |#1| (-1013))
+(|has| |#1| (-1014))
+((((-839 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+(|has| |#1| (-1014))
(((|#1|) . T))
-(|has| |#1| (-1013))
-((((-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-583 (-521)))) ((|#2|) |has| |#1| (-337)))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
+(|has| |#1| (-1014))
+((((-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-584 (-522)))) ((|#2|) |has| |#1| (-338)))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014)))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-((((-791)) . T))
-(|has| |#3| (-781))
-((((-791)) . T))
-((((-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) . T))
-((((-791)) . T))
-(((|#1| |#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-970))))
-(((|#1|) . T))
-((((-521)) . T))
-((((-521)) . T))
-(((|#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-970))))
-(((|#2|) |has| |#2| (-337)))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-337)))
-(|has| |#1| (-783))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) |has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-837)))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
-((((-791)) . T))
-((((-791)) . T))
-((((-497)) . T) (((-521)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
-((((-791)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+((((-792)) . T))
+(|has| |#3| (-782))
+((((-792)) . T))
+((((-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) . T))
+((((-792)) . T))
+(((|#1| |#1|) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-971))))
+(((|#1|) . T))
+((((-522)) . T))
+((((-522)) . T))
+(((|#1|) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-971))))
+(((|#2|) |has| |#2| (-338)))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-338)))
+(|has| |#1| (-784))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) |has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-838)))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
+((((-792)) . T))
+((((-792)) . T))
+((((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
+((((-792)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
(|has| |#1| (-210))
(((|#1|) . T))
-(((|#1| (-521)) . T))
-(|has| |#1| (-781))
-(((|#1| (-1082 |#1| |#2| |#3|)) . T))
+(((|#1| (-522)) . T))
+(|has| |#1| (-782))
+(((|#1| (-1083 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-381 (-521))) . T))
-(((|#1| (-1075 |#1| |#2| |#3|)) . T))
-(((|#1| (-707)) . T))
+(((|#1| (-382 (-522))) . T))
+(((|#1| (-1076 |#1| |#2| |#3|)) . T))
+(((|#1| (-708)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
(((|#1|) . T))
@@ -1709,1500 +1710,1500 @@
(|has| |#1| (-133))
(((|#1| |#2|) . T))
((((-132)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) . T) (($ $) . T))
-((((-791)) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| (-381 |#2|) (-210))
-(|has| |#1| (-837))
-(((|#2|) |has| |#2| (-970)))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
-(|has| |#1| (-337))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) . T) (($ $) . T))
+((((-792)) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| (-382 |#2|) (-210))
+(|has| |#1| (-838))
+(((|#2|) |has| |#2| (-971)))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
+(|has| |#1| (-338))
(((|#1|) |has| |#1| (-157)))
(((|#1| |#1|) . T))
-((((-798 |#1|)) . T))
-((((-791)) . T))
+((((-799 |#1|)) . T))
+((((-792)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1013)))
-(|has| |#2| (-783))
+(((|#2|) |has| |#2| (-1014)))
+(|has| |#2| (-784))
(((|#1|) . T))
-((((-381 (-521))) . T) (((-521)) . T) (((-560 $)) . T))
+((((-382 (-522))) . T) (((-522)) . T) (((-561 $)) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
((($) . T))
-(|has| |#1| (-783))
-((((-791)) . T))
-(((|#1| (-493 |#2|) |#2|) . T))
-(((|#1| (-521) (-998)) . T))
-((((-838 |#1|)) . T))
-((((-791)) . T))
+(|has| |#1| (-784))
+((((-792)) . T))
+(((|#1| (-494 |#2|) |#2|) . T))
+(((|#1| (-522) (-999)) . T))
+((((-839 |#1|)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-381 (-521)) (-998)) . T))
-(((|#1| (-707) (-998)) . T))
-(((#0=(-381 |#2|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-521)) -3703 (|has| (-381 (-521)) (-961 (-521))) (|has| |#1| (-961 (-521)))) (((-381 (-521))) . T))
-(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T))
+(((|#1| (-382 (-522)) (-999)) . T))
+(((|#1| (-708) (-999)) . T))
+(((#0=(-382 |#2|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-522)) -3708 (|has| (-382 (-522)) (-962 (-522))) (|has| |#1| (-962 (-522)))) (((-382 (-522))) . T))
+(((|#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
(|has| |#2| (-210))
-(((|#2| (-493 (-793 |#1|)) (-793 |#1|)) . T))
-((((-791)) . T))
-((($) |has| |#1| (-513)) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) . T))
+(((|#2| (-494 (-794 |#1|)) (-794 |#1|)) . T))
+((((-792)) . T))
+((($) |has| |#1| (-514)) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) . T))
(((|#1| |#3|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) |has| |#1| (-157)))
-((((-636)) . T))
-((((-636)) . T))
+((((-637)) . T))
+((((-637)) . T))
(((|#2|) |has| |#2| (-157)))
-(|has| |#2| (-781))
-((((-108)) |has| |#1| (-1013)) (((-791)) -3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)) (|has| |#1| (-1013))))
+(|has| |#2| (-782))
+((((-108)) |has| |#1| (-1014)) (((-792)) -3708 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)) (|has| |#1| (-1014))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) . T))
-((((-791)) . T))
-((((-521) |#1|) . T))
-((((-636)) . T) (((-381 (-521))) . T) (((-521)) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) . T))
+((((-792)) . T))
+((((-522) |#1|) . T))
+((((-637)) . T) (((-382 (-522))) . T) (((-522)) . T))
(((|#1| |#1|) |has| |#1| (-157)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
-((((-353)) . T))
-((((-636)) . T))
-((((-381 (-521))) . #0=(|has| |#2| (-337))) (($) . #0#))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
+((((-354)) . T))
+((((-637)) . T))
+((((-382 (-522))) . #0=(|has| |#2| (-338))) (($) . #0#))
(((|#1|) |has| |#1| (-157)))
-((((-381 (-880 |#1|))) . T))
+((((-382 (-881 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#2|) . T))
-(|has| |#2| (-783))
-(((|#3|) |has| |#3| (-970)))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
-(|has| |#1| (-337))
-(|has| |#1| (-783))
-((((-1084)) |has| |#2| (-828 (-1084))))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-446))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-337))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-446)) (|has| |#1| (-513)) (|has| |#1| (-970)) (|has| |#1| (-1025)))
-(|has| |#1| (-37 (-381 (-521))))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#2|) . T))
+(|has| |#2| (-784))
+(((|#3|) |has| |#3| (-971)))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
+(|has| |#1| (-338))
+(|has| |#1| (-784))
+((((-1085)) |has| |#2| (-829 (-1085))))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-447))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-338))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-447)) (|has| |#1| (-514)) (|has| |#1| (-971)) (|has| |#1| (-1026)))
+(|has| |#1| (-37 (-382 (-522))))
((((-112 |#1|)) . T))
((((-112 |#1|)) . T))
-(|has| |#1| (-323))
+(|has| |#1| (-324))
((((-132)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((($) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(((|#2|) . T) (((-791)) . T))
-(((|#2|) . T) (((-791)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-783))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((($) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(((|#2|) . T) (((-792)) . T))
+(((|#2|) . T) (((-792)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-784))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) ((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) ((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
(((|#2|) . T))
(((|#3|) . T))
((((-112 |#1|)) . T))
-(|has| |#1| (-342))
-(|has| |#1| (-783))
-(((|#2|) . T) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
+(|has| |#1| (-343))
+(|has| |#1| (-784))
+(((|#2|) . T) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
((((-112 |#1|)) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) . T))
-((((-521)) . T))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-((((-791)) . T))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))) (((-820 (-521))) |has| |#1| (-562 (-820 (-521)))) (((-820 (-353))) |has| |#1| (-562 (-820 (-353)))) (((-353)) . #0=(|has| |#1| (-946))) (((-202)) . #0#))
-(((|#1|) |has| |#1| (-337)))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((($ $) . T) (((-560 $) $) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-((($) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T) (((-381 (-521))) . T))
-((($) -3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-513)))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-((((-353)) . T) (((-521)) . T) (((-381 (-521))) . T))
-((((-587 (-716 |#1| (-793 |#2|)))) . T) (((-791)) . T))
-((((-497)) |has| (-716 |#1| (-793 |#2|)) (-562 (-497))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-353)) . T))
-(((|#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
-((((-791)) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-837)))
-(((|#1|) . T))
-(|has| |#1| (-783))
-(|has| |#1| (-783))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
-(|has| |#1| (-1013))
-((((-791)) . T))
-((((-381 (-521))) . T) (((-521)) . T) (((-560 $)) . T))
+((((-522)) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((((-792)) . T))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))) (((-354)) . #0=(|has| |#1| (-947))) (((-202)) . #0#))
+(((|#1|) |has| |#1| (-338)))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((($ $) . T) (((-561 $) $) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+((($) . T) (((-1152 |#1| |#2| |#3| |#4|)) . T) (((-382 (-522))) . T))
+((($) -3708 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-514)))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((((-354)) . T) (((-522)) . T) (((-382 (-522))) . T))
+((((-588 (-717 |#1| (-794 |#2|)))) . T) (((-792)) . T))
+((((-498)) |has| (-717 |#1| (-794 |#2|)) (-563 (-498))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-354)) . T))
+(((|#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))
+((((-792)) . T))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-838)))
+(((|#1|) . T))
+(|has| |#1| (-784))
+(|has| |#1| (-784))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
+(|has| |#1| (-1014))
+((((-792)) . T))
+((((-382 (-522))) . T) (((-522)) . T) (((-561 $)) . T))
(|has| |#1| (-133))
(|has| |#1| (-135))
-((((-521)) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(((#0=(-1150 |#2| |#3| |#4|)) . T) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))) (($) . T))
-((((-521)) . T))
-(|has| |#1| (-337))
-(-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-135)) (|has| |#1| (-337))) (|has| |#1| (-135)))
-(-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133)))
-(|has| |#1| (-337))
+((((-522)) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(((#0=(-1151 |#2| |#3| |#4|)) . T) (((-382 (-522))) |has| #0# (-37 (-382 (-522)))) (($) . T))
+((((-522)) . T))
+(|has| |#1| (-338))
+(-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-135)) (|has| |#1| (-338))) (|has| |#1| (-135)))
+(-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133)))
+(|has| |#1| (-338))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#1| (-135))
(|has| |#1| (-133))
(|has| |#1| (-210))
-(|has| |#1| (-337))
+(|has| |#1| (-338))
(((|#3|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-521)) |has| |#2| (-583 (-521))) ((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-522)) |has| |#2| (-584 (-522))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1013))
+(|has| |#1| (-1014))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
+(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522))))
(((|#3|) |has| |#3| (-157)))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
-((((-521)) . T))
-(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
-((((-381 (-521))) . T) (($) . T) (((-381 |#1|)) . T) ((|#1|) . T))
-((((-791)) . T))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014)))
+((((-522)) . T))
+(((|#1| $) |has| |#1| (-262 |#1| |#1|)))
+((((-382 (-522))) . T) (($) . T) (((-382 |#1|)) . T) ((|#1|) . T))
+((((-792)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-265)) (|has| |#1| (-337))) ((#0=(-381 (-521)) #0#) |has| |#1| (-337)))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-((($) . T))
-((((-521) |#1|) . T))
-((((-1084)) |has| (-381 |#2|) (-828 (-1084))))
-(((|#1|) . T) (($) -3703 (|has| |#1| (-265)) (|has| |#1| (-337))) (((-381 (-521))) |has| |#1| (-337)))
-((((-497)) |has| |#2| (-562 (-497))))
-((((-627 |#2|)) . T) (((-791)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-((((-798 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(-3703 (|has| |#4| (-729)) (|has| |#4| (-781)))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-((((-791)) . T))
-((((-791)) . T))
-(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#2|) |has| |#2| (-970)))
-(((|#1|) . T))
-((((-381 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))
-((((-521) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-521)) . T) (($) . T) (((-381 (-521))) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 (-521))) . T) (($) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-1123)))
-((($) . T))
-((((-381 (-521))) |has| #0=(-381 |#2|) (-961 (-381 (-521)))) (((-521)) |has| #0# (-961 (-521))) ((#0#) . T))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
-(((|#1| (-707)) . T))
-(|has| |#1| (-783))
-(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-((((-521)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) |has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-781))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-323))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
+(((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-266)) (|has| |#1| (-338))) ((#0=(-382 (-522)) #0#) |has| |#1| (-338)))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+((($) . T))
+((((-522) |#1|) . T))
+((((-1085)) |has| (-382 |#2|) (-829 (-1085))))
+(((|#1|) . T) (($) -3708 (|has| |#1| (-266)) (|has| |#1| (-338))) (((-382 (-522))) |has| |#1| (-338)))
+((((-498)) |has| |#2| (-563 (-498))))
+((((-628 |#2|)) . T) (((-792)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+((((-799 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(-3708 (|has| |#4| (-730)) (|has| |#4| (-782)))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+((((-792)) . T))
+((((-792)) . T))
+(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#2|) |has| |#2| (-971)))
+(((|#1|) . T))
+((((-382 |#2|)) . T))
+(((|#1|) . T))
+(((|#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))
+((((-522) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-522)) . T) (($) . T) (((-382 (-522))) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 (-522))) . T) (($) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-1124)))
+((($) . T))
+((((-382 (-522))) |has| #0=(-382 |#2|) (-962 (-382 (-522)))) (((-522)) |has| #0# (-962 (-522))) ((#0#) . T))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
+(((|#1| (-708)) . T))
+(|has| |#1| (-784))
+(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522))))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+((((-522)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) |has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-782))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-324))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
(((|#1| |#2|) . T))
((((-132)) . T))
-((((-716 |#1| (-793 |#2|))) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(|has| |#1| (-1105))
+((((-717 |#1| (-794 |#2|))) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(|has| |#1| (-1106))
(((|#1|) . T))
-(-3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-342)) (|has| |#3| (-729)) (|has| |#3| (-781)) (|has| |#3| (-970)) (|has| |#3| (-1013)))
-((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)))
+(-3708 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-343)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)) (|has| |#3| (-1014)))
+((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)))
(((|#2|) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-838 |#1|)) . T))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-839 |#1|)) . T))
((($) . T))
-((((-381 (-880 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-497)) |has| |#4| (-562 (-497))))
-((((-791)) . T) (((-587 |#4|)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-382 (-881 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-498)) |has| |#4| (-563 (-498))))
+((((-792)) . T) (((-588 |#4|)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
(((|#1|) . T))
-(|has| |#1| (-781))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) |has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))))
-(|has| |#1| (-1013))
-(|has| |#1| (-337))
-(|has| |#1| (-783))
+(|has| |#1| (-782))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) |has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))))
+(|has| |#1| (-1014))
+(|has| |#1| (-338))
+(|has| |#1| (-784))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-381 (-521))) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) |has| |#1| (-157)))
+((($) . T) (((-382 (-522))) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) |has| |#1| (-157)))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-135)) (|has| |#1| (-337))) (|has| |#1| (-135)))
-(-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133)))
+(-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-135)) (|has| |#1| (-338))) (|has| |#1| (-135)))
+(-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133)))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-(|has| |#1| (-781))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+(|has| |#1| (-782))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
-((((-838 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-1013))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T) (((-521)) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522))))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
+((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-1014))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T) (((-522)) . T))
(|has| |#2| (-133))
(|has| |#2| (-135))
-((((-838 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-1013))
+((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-1014))
(((|#2|) |has| |#2| (-157)))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-337)))
-((((-381 |#2|)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
-(((|#1|) -3703 (|has| |#1| (-157)) (|has| |#1| (-337))))
-((((-290 |#1|)) . T))
-(((|#2|) |has| |#2| (-337)))
-(((|#2|) . T))
-((((-381 (-521))) . T) (((-636)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((#0=(-716 |#1| (-793 |#2|)) #0#) |has| (-716 |#1| (-793 |#2|)) (-284 (-716 |#1| (-793 |#2|)))))
-((((-793 |#1|)) . T))
+(((|#3|) |has| |#3| (-338)))
+((((-382 |#2|)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|)))
+(((|#1|) -3708 (|has| |#1| (-157)) (|has| |#1| (-338))))
+((((-291 |#1|)) . T))
+(((|#2|) |has| |#2| (-338)))
+(((|#2|) . T))
+((((-382 (-522))) . T) (((-637)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((#0=(-717 |#1| (-794 |#2|)) #0#) |has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))))
+((((-794 |#1|)) . T))
(((|#2|) |has| |#2| (-157)))
(((|#1|) |has| |#1| (-157)))
(((|#2|) . T))
-((((-1084)) |has| |#1| (-828 (-1084))) (((-998)) . T))
-((((-1084)) |has| |#1| (-828 (-1084))) (((-1003 (-1084))) . T))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(|has| |#1| (-37 (-381 (-521))))
-(((|#4|) |has| |#4| (-970)) (((-521)) -12 (|has| |#4| (-583 (-521))) (|has| |#4| (-970))))
-(((|#3|) |has| |#3| (-970)) (((-521)) -12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970))))
+((((-1085)) |has| |#1| (-829 (-1085))) (((-999)) . T))
+((((-1085)) |has| |#1| (-829 (-1085))) (((-1004 (-1085))) . T))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(|has| |#1| (-37 (-382 (-522))))
+(((|#4|) |has| |#4| (-971)) (((-522)) -12 (|has| |#4| (-584 (-522))) (|has| |#4| (-971))))
+(((|#3|) |has| |#3| (-971)) (((-522)) -12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971))))
(|has| |#1| (-133))
(|has| |#1| (-135))
((($ $) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
-(|has| |#1| (-513))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
+(|has| |#1| (-514))
(((|#2|) . T))
-((((-521)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-522)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
-((((-534 |#1|)) . T))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971)))
+((((-535 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-791)) . T))
-(((|#2|) |has| |#2| (-6 (-4235 "*"))))
+((((-792)) . T))
+(((|#2|) |has| |#2| (-6 (-4240 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-793 |#1|)) . T))
-((($) . T) (((-112 |#1|)) . T) (((-381 (-521))) . T))
-((((-1036 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((((-1080 |#1|)) . T) (((-998)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((((-1036 |#1| (-1084))) . T) (((-1003 (-1084))) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-1084)) . T))
-(|has| |#1| (-1013))
+((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T))
+((($) . T) (((-112 |#1|)) . T) (((-382 (-522))) . T))
+((((-1037 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((((-1081 |#1|)) . T) (((-999)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((((-1037 |#1| (-1085))) . T) (((-1004 (-1085))) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-1085)) . T))
+(|has| |#1| (-1014))
((($) . T))
-(|has| |#1| (-1013))
-((((-521)) -12 (|has| |#1| (-814 (-521))) (|has| |#2| (-814 (-521)))) (((-353)) -12 (|has| |#1| (-814 (-353))) (|has| |#2| (-814 (-353)))))
+(|has| |#1| (-1014))
+((((-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))) (((-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354)))))
(((|#1| |#2|) . T))
-((((-1084) |#1|) . T))
+((((-1085) |#1|) . T))
(((|#4|) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-((((-1084) (-51)) . T))
-((((-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) . T))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T))
-((((-791)) . T))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-342)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)) (|has| |#2| (-1013)))
-(((#0=(-1151 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-157)) ((#0=(-381 (-521)) #0#) |has| |#1| (-513)) (($ $) |has| |#1| (-513)))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1| $) |has| |#1| (-261 |#1| |#1|)))
-((((-1151 |#1| |#2| |#3| |#4|)) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-513)) (($) |has| |#1| (-513)))
-(|has| |#1| (-337))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+((((-1085) (-51)) . T))
+((((-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) . T))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T))
+((((-792)) . T))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-343)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)) (|has| |#2| (-1014)))
+(((#0=(-1152 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-157)) ((#0=(-382 (-522)) #0#) |has| |#1| (-514)) (($ $) |has| |#1| (-514)))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1| $) |has| |#1| (-262 |#1| |#1|)))
+((((-1152 |#1| |#2| |#3| |#4|)) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-514)) (($) |has| |#1| (-514)))
+(|has| |#1| (-338))
(|has| |#1| (-133))
(|has| |#1| (-135))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((((-381 (-521))) . T) (($) . T))
-(((|#3|) |has| |#3| (-337)))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
-((((-1084)) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#3|) |has| |#3| (-338)))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
+((((-1085)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
(((|#2| |#3|) . T))
-(-3703 (|has| |#2| (-337)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(((|#1| (-493 |#2|)) . T))
-(((|#1| (-707)) . T))
-(((|#1| (-493 (-1003 (-1084)))) . T))
+(-3708 (|has| |#2| (-338)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(((|#1| (-494 |#2|)) . T))
+(((|#1| (-708)) . T))
+(((|#1| (-494 (-1004 (-1085)))) . T))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
-(|has| |#2| (-837))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-((((-791)) . T))
-((($ $) . T) ((#0=(-1150 |#2| |#3| |#4|) #0#) . T) ((#1=(-381 (-521)) #1#) |has| #0# (-37 (-381 (-521)))))
-((((-838 |#1|)) . T))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-756)))
-((($) . T) (((-381 (-521))) . T))
+(|has| |#2| (-838))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+((((-792)) . T))
+((($ $) . T) ((#0=(-1151 |#2| |#3| |#4|) #0#) . T) ((#1=(-382 (-522)) #1#) |has| #0# (-37 (-382 (-522)))))
+((((-839 |#1|)) . T))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-757)))
+((($) . T) (((-382 (-522))) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-337))
-(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)) (|has| |#1| (-513)))
-(|has| |#1| (-337))
-((($) . T) ((#0=(-1150 |#2| |#3| |#4|)) . T) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))))
+(|has| |#1| (-338))
+(-3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)) (|has| |#1| (-514)))
+(|has| |#1| (-338))
+((($) . T) ((#0=(-1151 |#2| |#3| |#4|)) . T) (((-382 (-522))) |has| #0# (-37 (-382 (-522)))))
(((|#1| |#2|) . T))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
-(-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337)) (|has| |#1| (-323)))
-(-3703 (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)))
-((((-521)) |has| |#1| (-583 (-521))) ((|#1|) . T))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
+(-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338)) (|has| |#1| (-324)))
+(-3708 (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)))
+((((-522)) |has| |#1| (-584 (-522))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((((-792)) . T))
((((-108)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|))) . T))
-(|has| |#2| (-337))
-(|has| |#1| (-783))
+(((|#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) . T))
+(|has| |#2| (-338))
+(|has| |#1| (-784))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-1013))
+((((-792)) . T))
+(|has| |#1| (-1014))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-381 $) (-381 $)) |has| |#1| (-513)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-756))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-382 $) (-382 $)) |has| |#1| (-514)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-757))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-791)) . T))
-(((|#1| (-493 (-1084))) . T))
+((((-792)) . T))
+(((|#1| (-494 (-1085))) . T))
(((|#1|) |has| |#1| (-157)))
-((((-791)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(((|#2|) -3703 (|has| |#2| (-6 (-4235 "*"))) (|has| |#2| (-157))))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(|has| |#2| (-783))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
+((((-792)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(((|#2|) -3708 (|has| |#2| (-6 (-4240 "*"))) (|has| |#2| (-157))))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(|has| |#2| (-784))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
(((|#2|) |has| |#2| (-157)))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((((-791)) . T))
-((((-791)) . T))
-((((-497)) . T) (((-521)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((((-792)) . T))
+((((-792)) . T))
+((((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-381 (-521))) . T))
+(((|#1| (-382 (-522))) . T))
(((|#1|) . T))
-(-3703 (|has| |#1| (-265)) (|has| |#1| (-337)))
+(-3708 (|has| |#1| (-266)) (|has| |#1| (-338)))
((((-132)) . T))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-781))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-782))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1| |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))) (((-820 (-521))) |has| |#1| (-562 (-820 (-521)))) (((-820 (-353))) |has| |#1| (-562 (-820 (-353)))))
-((((-1084) (-51)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-587 (-132))) . T) (((-1067)) . T))
-((((-791)) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-((((-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((|#1| |#1|) |has| |#1| (-284 |#1|)))
-(|has| |#1| (-783))
-((((-791)) . T))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) . T))
-(((|#2|) |has| |#2| (-337)))
-((((-791)) . T))
-((((-497)) |has| |#4| (-562 (-497))))
-((((-791)) . T) (((-587 |#4|)) . T))
-(((|#2|) . T))
-((((-838 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-(-3703 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-970)))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-((((-1084) (-51)) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-791)) . T))
-((((-521)) . T))
-(((#0=(-381 (-521)) #0#) . T) (($ $) . T))
-((((-381 (-521))) . T) (($) . T))
-(((|#1| (-381 (-521)) (-998)) . T))
-(|has| |#1| (-1013))
-(|has| |#1| (-513))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(|has| |#1| (-756))
-(((#0=(-838 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
-((((-381 |#2|)) . T))
-(|has| |#1| (-781))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) . T) ((#1=(-521) #1#) . T) (($ $) . T))
-((((-838 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-(((|#2|) |has| |#2| (-970)) (((-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))))
-(((|#1|) . T) (((-381 (-521))) . T) (((-521)) . T) (($) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))) (((-821 (-522))) |has| |#1| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#1| (-563 (-821 (-354)))))
+((((-1085) (-51)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-588 (-132))) . T) (((-1068)) . T))
+((((-792)) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+((((-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((|#1| |#1|) |has| |#1| (-285 |#1|)))
+(|has| |#1| (-784))
+((((-792)) . T))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) . T))
+(((|#2|) |has| |#2| (-338)))
+((((-792)) . T))
+((((-498)) |has| |#4| (-563 (-498))))
+((((-792)) . T) (((-588 |#4|)) . T))
+(((|#2|) . T))
+((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+(-3708 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971)))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+((((-1085) (-51)) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-792)) . T))
+((((-522)) . T))
+(((#0=(-382 (-522)) #0#) . T) (($ $) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#1| (-382 (-522)) (-999)) . T))
+(|has| |#1| (-1014))
+(|has| |#1| (-514))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(|has| |#1| (-757))
+(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T))
+((((-382 |#2|)) . T))
+(|has| |#1| (-782))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) . T) ((#1=(-522) #1#) . T) (($ $) . T))
+((((-839 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+(((|#2|) |has| |#2| (-971)) (((-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971))))
+(((|#1|) . T) (((-382 (-522))) . T) (((-522)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
(((|#2|) . T))
-((((-791)) . T))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2535 (-1084)) (|:| -3050 #0#))) . T))
-(|has| |#1| (-323))
-((((-521)) . T))
-((((-791)) . T))
-(((#0=(-1151 |#1| |#2| |#3| |#4|) $) |has| #0# (-261 #0# #0#)))
-(|has| |#1| (-337))
-(((#0=(-998) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(((#0=(-381 (-521)) #0#) . T) ((#1=(-636) #1#) . T) (($ $) . T))
-((((-290 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-337)))
-(|has| |#1| (-1013))
-(((|#1|) . T))
-(((|#1|) -3703 (|has| |#2| (-341 |#1|)) (|has| |#2| (-391 |#1|))))
-(((|#1|) -3703 (|has| |#2| (-341 |#1|)) (|has| |#2| (-391 |#1|))))
-(((|#2|) . T))
-((((-381 (-521))) . T) (((-636)) . T) (($) . T))
+((((-792)) . T))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -2530 (-1085)) (|:| -3048 #0#))) . T))
+(|has| |#1| (-324))
+((((-522)) . T))
+((((-792)) . T))
+(((#0=(-1152 |#1| |#2| |#3| |#4|) $) |has| #0# (-262 #0# #0#)))
+(|has| |#1| (-338))
+(((#0=(-999) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(((#0=(-382 (-522)) #0#) . T) ((#1=(-637) #1#) . T) (($ $) . T))
+((((-291 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-338)))
+(|has| |#1| (-1014))
+(((|#1|) . T))
+(((|#1|) -3708 (|has| |#2| (-342 |#1|)) (|has| |#2| (-392 |#1|))))
+(((|#1|) -3708 (|has| |#2| (-342 |#1|)) (|has| |#2| (-392 |#1|))))
+(((|#2|) . T))
+((((-382 (-522))) . T) (((-637)) . T) (($) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-210))
-((((-793 |#1|)) . T))
-((((-1084)) |has| |#1| (-828 (-1084))) ((|#3|) . T))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-946)))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((((-791)) . T))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-((((-381 (-521))) . T) (($) . T) (((-381 |#1|)) . T) ((|#1|) . T))
-((((-521)) . T))
-(|has| |#1| (-1013))
+((((-794 |#1|)) . T))
+((((-1085)) |has| |#1| (-829 (-1085))) ((|#3|) . T))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-947)))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((((-792)) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((((-382 (-522))) . T) (($) . T) (((-382 |#1|)) . T) ((|#1|) . T))
+((((-522)) . T))
+(|has| |#1| (-1014))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-521)) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
+((((-522)) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
(((|#1| |#2|) . T))
((($) . T))
-((((-534 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-((($) . T) (((-381 (-521))) . T))
+((((-535 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+((($) . T) (((-382 (-522))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
+(((|#1| (-1166 |#1|) (-1166 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((#0=(-112 |#1|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-793 |#1|)) . T))
-((((-1036 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((|#2|) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((#0=(-112 |#1|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T))
+((((-1037 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-612 |#1|)) . T))
-((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
-((((-112 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-((((-521)) -12 (|has| |#1| (-814 (-521))) (|has| |#3| (-814 (-521)))) (((-353)) -12 (|has| |#1| (-814 (-353))) (|has| |#3| (-814 (-353)))))
+((((-613 |#1|)) . T))
+((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T))
+((((-112 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+((((-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) (((-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) (($) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) (($) . T))
((((-132)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(((|#1|) . T))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
(((|#4|) . T))
-(|has| |#2| (-946))
+(|has| |#2| (-947))
((($) . T))
-(|has| |#1| (-837))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+(|has| |#1| (-838))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-337))
-((((-838 |#1|)) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(-3703 (|has| |#1| (-342)) (|has| |#1| (-783)))
-(((|#1|) . T))
-((((-791)) . T))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))))
-((((-381 |#2|) |#3|) . T))
-((($) . T) (((-381 (-521))) . T))
-((((-707) |#1|) . T))
-(((|#2| (-217 (-3478 |#1|) (-707))) . T))
-(((|#1| (-493 |#3|)) . T))
-((((-381 (-521))) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((((-791)) . T))
-(((#0=(-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) #0#) |has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))))
-(|has| |#1| (-837))
-(|has| |#2| (-337))
-(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-154 (-353))) . T) (((-202)) . T) (((-353)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-((((-353)) . T) (((-521)) . T))
-(((#0=(-381 (-521)) #0#) . T) (($ $) . T))
+(|has| |#1| (-338))
+((((-839 |#1|)) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(-3708 (|has| |#1| (-343)) (|has| |#1| (-784)))
+(((|#1|) . T))
+((((-792)) . T))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))))
+((((-382 |#2|) |#3|) . T))
+((($) . T) (((-382 (-522))) . T))
+((((-708) |#1|) . T))
+(((|#2| (-217 (-3480 |#1|) (-708))) . T))
+(((|#1| (-494 |#3|)) . T))
+((((-382 (-522))) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((((-792)) . T))
+(((#0=(-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) #0#) |has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))))
+(|has| |#1| (-838))
+(|has| |#2| (-338))
+(-3708 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-154 (-354))) . T) (((-202)) . T) (((-354)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+((((-354)) . T) (((-522)) . T))
+(((#0=(-382 (-522)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-513))
-((((-381 (-521))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)))
-(|has| |#1| (-37 (-381 (-521))))
-(-12 (|has| |#1| (-506)) (|has| |#1| (-764)))
-((((-791)) . T))
-((((-1084)) -3703 (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))) (-12 (|has| |#1| (-337)) (|has| |#2| (-828 (-1084))))))
-(|has| |#1| (-337))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))))
-(|has| |#1| (-337))
-((((-381 (-521))) . T) (($) . T))
-((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
-((((-521) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-337)))
-(((|#2|) |has| |#1| (-337)))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-792)) . T))
+(|has| |#1| (-514))
+((((-382 (-522))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(-3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)))
+(|has| |#1| (-37 (-382 (-522))))
+(-12 (|has| |#1| (-507)) (|has| |#1| (-765)))
+((((-792)) . T))
+((((-1085)) -3708 (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))) (-12 (|has| |#1| (-338)) (|has| |#2| (-829 (-1085))))))
+(|has| |#1| (-338))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))))
+(|has| |#1| (-338))
+((((-382 (-522))) . T) (($) . T))
+((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T))
+((((-522) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-338)))
+(((|#2|) |has| |#1| (-338)))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
-(((|#2|) . T) (((-1084)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-1084)))) (((-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))) (((-381 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))))
+(((|#2|) . T) (((-1085)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-1085)))) (((-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))) (((-382 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))))
(((|#2|) . T))
-((((-1084) #0=(-1151 |#1| |#2| |#3| |#4|)) |has| #0# (-482 (-1084) #0#)) ((#0# #0#) |has| #0# (-284 #0#)))
-((((-560 $) $) . T) (($ $) . T))
-((((-154 (-202))) . T) (((-154 (-353))) . T) (((-1080 (-636))) . T) (((-820 (-353))) . T))
-((((-791)) . T))
-(|has| |#1| (-513))
-(|has| |#1| (-513))
-(|has| (-381 |#2|) (-210))
-(((|#1| (-381 (-521))) . T))
+((((-1085) #0=(-1152 |#1| |#2| |#3| |#4|)) |has| #0# (-483 (-1085) #0#)) ((#0# #0#) |has| #0# (-285 #0#)))
+((((-561 $) $) . T) (($ $) . T))
+((((-154 (-202))) . T) (((-154 (-354))) . T) (((-1081 (-637))) . T) (((-821 (-354))) . T))
+((((-792)) . T))
+(|has| |#1| (-514))
+(|has| |#1| (-514))
+(|has| (-382 |#2|) (-210))
+(((|#1| (-382 (-522))) . T))
((($ $) . T))
-((((-1084)) |has| |#2| (-828 (-1084))))
-((($) . T))
-((((-791)) . T))
-((((-381 (-521))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#2|) |has| |#1| (-337)))
-((((-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-814 (-353)))) (((-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-814 (-521)))))
-(|has| |#1| (-337))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(|has| |#1| (-337))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(|has| |#1| (-337))
-(|has| |#1| (-513))
-(((|#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
+((((-1085)) |has| |#2| (-829 (-1085))))
+((($) . T))
+((((-792)) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#2|) |has| |#1| (-338)))
+((((-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-354)))) (((-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-522)))))
+(|has| |#1| (-338))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(|has| |#1| (-338))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(|has| |#1| (-338))
+(|has| |#1| (-514))
+(((|#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
(((|#3|) . T))
(((|#1|) . T))
-(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
+(-3708 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
(((|#2|) . T))
(((|#2|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(|has| |#1| (-37 (-381 (-521))))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(|has| |#1| (-37 (-382 (-522))))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(|has| |#1| (-37 (-382 (-522))))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
(|has| |#1| (-135))
-((((-1067) |#1|) . T))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+((((-1068) |#1|) . T))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
(|has| |#1| (-135))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))
(|has| |#1| (-135))
-((((-534 |#1|)) . T))
+((((-535 |#1|)) . T))
((($) . T))
-((((-381 |#2|)) . T))
-(|has| |#1| (-513))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-323)))
+((((-382 |#2|)) . T))
+(|has| |#1| (-514))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-324)))
(|has| |#1| (-135))
-((((-791)) . T))
+((((-792)) . T))
((($) . T))
-((((-381 (-521))) |has| |#2| (-961 (-521))) (((-521)) |has| |#2| (-961 (-521))) (((-1084)) |has| |#2| (-961 (-1084))) ((|#2|) . T))
-(((#0=(-381 |#2|) #0#) . T) ((#1=(-381 (-521)) #1#) . T) (($ $) . T))
-((((-1049 |#1| |#2|)) . T))
-(((|#1| (-521)) . T))
-(((|#1| (-381 (-521))) . T))
-((((-521)) |has| |#2| (-814 (-521))) (((-353)) |has| |#2| (-814 (-353))))
+((((-382 (-522))) |has| |#2| (-962 (-522))) (((-522)) |has| |#2| (-962 (-522))) (((-1085)) |has| |#2| (-962 (-1085))) ((|#2|) . T))
+(((#0=(-382 |#2|) #0#) . T) ((#1=(-382 (-522)) #1#) . T) (($ $) . T))
+((((-1050 |#1| |#2|)) . T))
+(((|#1| (-522)) . T))
+(((|#1| (-382 (-522))) . T))
+((((-522)) |has| |#2| (-815 (-522))) (((-354)) |has| |#2| (-815 (-354))))
(((|#2|) . T))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
((((-108)) . T))
(((|#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-791)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-1084) (-51)) . T))
-((((-381 |#2|)) . T))
-((((-791)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1013))
-(|has| |#1| (-727))
-(|has| |#1| (-727))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
+((((-792)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-1085) (-51)) . T))
+((((-382 |#2|)) . T))
+((((-792)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1014))
+(|has| |#1| (-728))
+(|has| |#1| (-728))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
((((-110)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-202)) . T) (((-353)) . T) (((-820 (-353))) . T))
-((((-791)) . T))
-((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)) (((-381 (-521))) |has| |#1| (-513)))
-((((-791)) . T))
+((((-202)) . T) (((-354)) . T) (((-821 (-354))) . T))
+((((-792)) . T))
+((((-1152 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)) (((-382 (-522))) |has| |#1| (-514)))
+((((-792)) . T))
(((|#2|) . T))
-((((-791)) . T))
-(((#0=(-838 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
+((((-792)) . T))
+(((#0=(-839 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-838 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-(|has| |#1| (-337))
+((((-839 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+(|has| |#1| (-338))
(((|#2|) . T))
-((((-521)) . T))
-((((-791)) . T))
-((((-521)) . T))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-((((-154 (-353))) . T) (((-202)) . T) (((-353)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-1067)) . T) (((-497)) . T) (((-521)) . T) (((-820 (-521))) . T) (((-353)) . T) (((-202)) . T))
-((((-791)) . T))
+((((-522)) . T))
+((((-792)) . T))
+((((-522)) . T))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+((((-154 (-354))) . T) (((-202)) . T) (((-354)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-1068)) . T) (((-498)) . T) (((-522)) . T) (((-821 (-522))) . T) (((-354)) . T) (((-202)) . T))
+((((-792)) . T))
(|has| |#1| (-135))
(|has| |#1| (-133))
-((($) . T) ((#0=(-1150 |#2| |#3| |#4|)) |has| #0# (-157)) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-446)) (|has| |#1| (-663)) (|has| |#1| (-828 (-1084))) (|has| |#1| (-970)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
-(|has| |#1| (-1060))
-((((-521) |#1|) . T))
-(((|#1|) . T))
-(((#0=(-112 |#1|) $) |has| #0# (-261 #0# #0#)))
+((($) . T) ((#0=(-1151 |#2| |#3| |#4|)) |has| #0# (-157)) (((-382 (-522))) |has| #0# (-37 (-382 (-522)))))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-447)) (|has| |#1| (-664)) (|has| |#1| (-829 (-1085))) (|has| |#1| (-971)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
+(|has| |#1| (-1061))
+((((-522) |#1|) . T))
+(((|#1|) . T))
+(((#0=(-112 |#1|) $) |has| #0# (-262 #0# #0#)))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
((((-110)) . T) ((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1| |#2|) . T))
-((((-1084) |#1|) . T))
-(((|#1|) |has| |#1| (-284 |#1|)))
-((((-521) |#1|) . T))
+((((-1085) |#1|) . T))
+(((|#1|) |has| |#1| (-285 |#1|)))
+((((-522) |#1|) . T))
(((|#1|) . T))
-((((-521)) . T) (((-381 (-521))) . T))
+((((-522)) . T) (((-382 (-522))) . T))
(((|#1|) . T))
-(|has| |#1| (-513))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-((((-353)) . T))
+(|has| |#1| (-514))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+((((-354)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-513))
-(|has| |#1| (-1013))
-((((-716 |#1| (-793 |#2|))) |has| (-716 |#1| (-793 |#2|)) (-284 (-716 |#1| (-793 |#2|)))))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-514))
+(|has| |#1| (-1014))
+((((-717 |#1| (-794 |#2|))) |has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-837))
+(|has| |#2| (-838))
(((|#1|) . T))
-(((|#1| (-493 |#2|)) . T))
-(((|#1| (-707)) . T))
+(((|#1| (-494 |#2|)) . T))
+(((|#1| (-708)) . T))
(|has| |#1| (-210))
-(((|#1| (-493 (-1003 (-1084)))) . T))
-(|has| |#2| (-337))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) . T))
+(((|#1| (-494 (-1004 (-1085)))) . T))
+(|has| |#2| (-338))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
-((((-791)) . T))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-((((-791)) . T))
-((((-791)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
+((((-792)) . T))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+((((-792)) . T))
+((((-792)) . T))
(((|#1|) . T))
-((($ $) . T) (((-560 $) $) . T))
+((($ $) . T) (((-561 $) $) . T))
(((|#1|) . T))
-((((-521)) . T))
+((((-522)) . T))
(((|#3|) . T))
-((((-791)) . T))
-(-3703 (|has| |#1| (-282)) (|has| |#1| (-337)) (|has| |#1| (-323)))
-(-3703 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-513)) (|has| |#1| (-970)))
-(((#0=(-534 |#1|) #0#) . T) (($ $) . T) ((#1=(-381 (-521)) #1#) . T))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+((((-792)) . T))
+(-3708 (|has| |#1| (-283)) (|has| |#1| (-338)) (|has| |#1| (-324)))
+(-3708 (|has| |#1| (-133)) (|has| |#1| (-135)) (|has| |#1| (-157)) (|has| |#1| (-514)) (|has| |#1| (-971)))
+(((#0=(-535 |#1|) #0#) . T) (($ $) . T) ((#1=(-382 (-522)) #1#) . T))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
(((|#1|) |has| |#1| (-157)))
-(((|#1| (-1165 |#1|) (-1165 |#1|)) . T))
-((((-534 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-((($) . T) (((-381 (-521))) . T))
-((($) . T) (((-381 (-521))) . T))
-(((|#2|) |has| |#2| (-6 (-4235 "*"))))
+(((|#1| (-1166 |#1|) (-1166 |#1|)) . T))
+((((-535 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+((($) . T) (((-382 (-522))) . T))
+((($) . T) (((-382 (-522))) . T))
+(((|#2|) |has| |#2| (-6 (-4240 "*"))))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) |has| |#1| (-561 (-791))))
-((((-269 |#3|)) . T))
-(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
+((((-792)) |has| |#1| (-562 (-792))))
+((((-270 |#3|)) . T))
+(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (($) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
+((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (($) . T))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
(((|#2|) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) . T))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) . T))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
(((|#1|) . T))
-((((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) . T))
+((((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#1|) . T))
-((((-1084)) . T) ((|#1|) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))
-(((#0=(-381 (-521)) #0#) . T))
-((((-381 (-521))) . T))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-497)) . T))
-((((-791)) . T))
-((((-1084)) |has| |#2| (-828 (-1084))) (((-998)) . T))
-((((-1150 |#2| |#3| |#4|)) . T))
-((((-838 |#1|)) . T))
-((($) . T) (((-381 (-521))) . T))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-756)))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-756)))
-(|has| |#1| (-1123))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-((((-1084)) |has| |#1| (-828 (-1084))))
-((((-838 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#1|) . T))
-(((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))) ((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
-((($) . T) (((-381 (-521))) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (((-521)) . T) (($) . T))
-(((|#2|) |has| |#2| (-970)) (((-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-513))))
-(|has| |#1| (-513))
-(((|#1|) |has| |#1| (-337)))
-((((-521)) . T))
-(|has| |#1| (-727))
-(|has| |#1| (-727))
-((((-1084) #0=(-112 |#1|)) |has| #0# (-482 (-1084) #0#)) ((#0# #0#) |has| #0# (-284 #0#)))
-(((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
-((((-998)) . T) ((|#2|) . T) (((-521)) |has| |#2| (-961 (-521))) (((-381 (-521))) |has| |#2| (-961 (-381 (-521)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-521) (-707)) . T) ((|#3| (-707)) . T))
+(|has| |#1| (-1014))
+(((|#1|) . T))
+((((-1085)) . T) ((|#1|) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))
+(((#0=(-382 (-522)) #0#) . T))
+((((-382 (-522))) . T))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-498)) . T))
+((((-792)) . T))
+((((-1085)) |has| |#2| (-829 (-1085))) (((-999)) . T))
+((((-1151 |#2| |#3| |#4|)) . T))
+((((-839 |#1|)) . T))
+((($) . T) (((-382 (-522))) . T))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-757)))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-757)))
+(|has| |#1| (-1124))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+((((-1085)) |has| |#1| (-829 (-1085))))
+((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+((($) . T) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#1|) . T))
+(((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))) ((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))))
+((($) . T) (((-382 (-522))) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (((-522)) . T) (($) . T))
+(((|#2|) |has| |#2| (-971)) (((-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971))))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-514))))
+(|has| |#1| (-514))
+(((|#1|) |has| |#1| (-338)))
+((((-522)) . T))
+(|has| |#1| (-728))
+(|has| |#1| (-728))
+((((-1085) #0=(-112 |#1|)) |has| #0# (-483 (-1085) #0#)) ((#0# #0#) |has| #0# (-285 #0#)))
+(((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522)))))
+((((-999)) . T) ((|#2|) . T) (((-522)) |has| |#2| (-962 (-522))) (((-382 (-522))) |has| |#2| (-962 (-382 (-522)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-522) (-708)) . T) ((|#3| (-708)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-791)) . T))
-(|has| |#2| (-756))
-(|has| |#2| (-756))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#2|) |has| |#1| (-337)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((((-521)) |has| |#1| (-814 (-521))) (((-353)) |has| |#1| (-814 (-353))))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-792)) . T))
+(|has| |#2| (-757))
+(|has| |#2| (-757))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#2|) |has| |#1| (-338)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((((-522)) |has| |#1| (-815 (-522))) (((-354)) |has| |#1| (-815 (-354))))
(((|#1|) . T))
-((((-798 |#1|)) . T))
-((((-798 |#1|)) . T))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-837)))
-((((-381 (-521))) . T) (((-636)) . T) (($) . T))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
+((((-799 |#1|)) . T))
+((((-799 |#1|)) . T))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-838)))
+((((-382 (-522))) . T) (((-637)) . T) (($) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-(|has| |#1| (-337))
+(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+(|has| |#1| (-338))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-793 |#1|)) . T))
+((((-794 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-707)) . T))
-((((-1084)) . T))
-((((-798 |#1|)) . T))
-(-3703 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-729)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-((((-791)) . T))
+(((|#2| (-708)) . T))
+((((-1085)) . T))
+((((-799 |#1|)) . T))
+(-3708 (|has| |#3| (-25)) (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+((((-792)) . T))
(((|#1|) . T))
-(-3703 (|has| |#2| (-729)) (|has| |#2| (-781)))
-(-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783))))
-((((-798 |#1|)) . T))
+(-3708 (|has| |#2| (-730)) (|has| |#2| (-782)))
+(-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784))))
+((((-799 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
-((($ $) . T) (((-560 $) $) . T))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
+((($ $) . T) (((-561 $) $) . T))
((($) . T))
-((((-791)) . T))
-((((-521)) . T))
+((((-792)) . T))
+((((-522)) . T))
(((|#2|) . T))
-((((-791)) . T))
-(((|#1|) . T) (((-381 (-521))) |has| |#1| (-337)))
-((((-791)) . T))
+((((-792)) . T))
+(((|#1|) . T) (((-382 (-522))) |has| |#1| (-338)))
+((((-792)) . T))
(((|#1|) . T))
-((((-791)) . T))
-((($) . T) ((|#2|) . T) (((-381 (-521))) . T))
-(|has| |#1| (-1013))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+((($) . T) ((|#2|) . T) (((-382 (-522))) . T))
+(|has| |#1| (-1014))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
-(|has| |#2| (-837))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-((((-497)) |has| |#2| (-562 (-497))) (((-820 (-353))) |has| |#2| (-562 (-820 (-353)))) (((-820 (-521))) |has| |#2| (-562 (-820 (-521)))))
-((((-791)) . T))
-((((-791)) . T))
-(((|#3|) |has| |#3| (-970)) (((-521)) -12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970))))
-((((-1036 |#1| |#2|)) . T) (((-880 |#1|)) |has| |#2| (-562 (-1084))) (((-791)) . T))
-((((-880 |#1|)) |has| |#2| (-562 (-1084))) (((-1067)) -12 (|has| |#1| (-961 (-521))) (|has| |#2| (-562 (-1084)))) (((-820 (-521))) -12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521))))) (((-820 (-353))) -12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353))))) (((-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497)))))
-((((-1080 |#1|)) . T) (((-791)) . T))
-((((-791)) . T))
-((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-793 |#1|)) . T))
-((((-112 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T) (((-1084)) . T))
-((((-791)) . T))
-((((-521)) . T))
+((((-792)) . T))
+(|has| |#2| (-838))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522)))))
+((((-792)) . T))
+((((-792)) . T))
+(((|#3|) |has| |#3| (-971)) (((-522)) -12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971))))
+((((-1037 |#1| |#2|)) . T) (((-881 |#1|)) |has| |#2| (-563 (-1085))) (((-792)) . T))
+((((-881 |#1|)) |has| |#2| (-563 (-1085))) (((-1068)) -12 (|has| |#1| (-962 (-522))) (|has| |#2| (-563 (-1085)))) (((-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522))))) (((-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354))))) (((-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498)))))
+((((-1081 |#1|)) . T) (((-792)) . T))
+((((-792)) . T))
+((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T))
+((((-112 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T) (((-1085)) . T))
+((((-792)) . T))
+((((-522)) . T))
((($) . T))
-((((-353)) |has| |#1| (-814 (-353))) (((-521)) |has| |#1| (-814 (-521))))
-((((-521)) . T))
+((((-354)) |has| |#1| (-815 (-354))) (((-522)) |has| |#1| (-815 (-522))))
+((((-522)) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
-((((-521)) . T) (((-381 (-521))) . T))
-(((|#1|) |has| |#1| (-284 |#1|)))
-((((-791)) . T))
-((((-353)) . T))
+((((-522)) . T) (((-382 (-522))) . T))
+(((|#1|) |has| |#1| (-285 |#1|)))
+((((-792)) . T))
+((((-354)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-381 |#2|) |#3|) . T))
+((((-792)) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-382 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1013))
-(((|#2| (-454 (-3478 |#1|) (-707))) . T))
-((((-521) |#1|) . T))
+(|has| |#1| (-1014))
+(((|#2| (-455 (-3480 |#1|) (-708))) . T))
+((((-522) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-493 (-1084))) . T))
-(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-521)) . T))
+(((|#1| (-494 (-1085))) . T))
+(-3708 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-522)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1084)) |has| |#1| (-828 (-1084))) (((-998)) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-583 (-521))))
-(|has| |#1| (-513))
-((($) . T) (((-381 (-521))) . T))
+((((-1085)) |has| |#1| (-829 (-1085))) (((-999)) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-584 (-522))))
+(|has| |#1| (-514))
+((($) . T) (((-382 (-522))) . T))
((($) . T))
((($) . T))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
(((|#1|) . T))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-791)) . T))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-792)) . T))
((((-132)) . T))
-(((|#1|) . T) (((-381 (-521))) . T))
+(((|#1|) . T) (((-382 (-522))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) . T))
+((((-792)) . T))
(((|#1|) . T))
-(|has| |#1| (-1060))
-(((|#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|))) . T))
+(|has| |#1| (-1061))
+(((|#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) . T))
(((|#1|) . T))
-((((-381 $) (-381 $)) |has| |#1| (-513)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((((-791)) . T))
-((((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-521)) |has| |#1| (-961 (-521))) ((|#1|) . T) ((|#2|) . T))
-((((-998)) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))))
-((((-353)) -12 (|has| |#1| (-814 (-353))) (|has| |#2| (-814 (-353)))) (((-521)) -12 (|has| |#1| (-814 (-521))) (|has| |#2| (-814 (-521)))))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-((((-521) |#1|) . T))
+((((-382 $) (-382 $)) |has| |#1| (-514)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((((-792)) . T))
+((((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-522)) |has| |#1| (-962 (-522))) ((|#1|) . T) ((|#2|) . T))
+((((-999)) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))))
+((((-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354)))) (((-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+((((-522) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-157)) (($) . T))
((($) . T))
-((((-636)) . T))
-((((-716 |#1| (-793 |#2|))) . T))
+((((-637)) . T))
+((((-717 |#1| (-794 |#2|))) . T))
((($) . T))
-((((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-1013))
-(|has| |#1| (-1013))
-(|has| |#2| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-37 (-381 (-521))))
-((((-521)) . T))
-((((-1084)) -12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970))))
-((((-1084)) -12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970))))
+((((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-1014))
+(|has| |#1| (-1014))
+(|has| |#2| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-37 (-382 (-522))))
+((((-522)) . T))
+((((-1085)) -12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971))))
+((((-1085)) -12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971))))
(((|#1|) . T))
(|has| |#1| (-210))
-(((|#1| (-493 |#3|)) . T))
-(|has| |#1| (-342))
-(((|#2| (-217 (-3478 |#1|) (-707))) . T))
-(|has| |#1| (-342))
-(|has| |#1| (-342))
+(((|#1| (-494 |#3|)) . T))
+(|has| |#1| (-343))
+(((|#2| (-217 (-3480 |#1|) (-708))) . T))
+(|has| |#1| (-343))
+(|has| |#1| (-343))
(((|#1|) . T) (($) . T))
-(((|#1| (-493 |#2|)) . T))
-(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(((|#1| (-707)) . T))
-(|has| |#1| (-513))
-(-3703 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-781)) (|has| |#2| (-970)))
+(((|#1| (-494 |#2|)) . T))
+(-3708 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(((|#1| (-708)) . T))
+(|has| |#1| (-514))
+(-3708 (|has| |#2| (-25)) (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-782)) (|has| |#2| (-971)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-791)) . T))
-(-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))
-(-3703 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-729)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
+((((-792)) . T))
+(-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))
+(-3708 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
(((|#1|) |has| |#1| (-157)))
-(((|#4|) |has| |#4| (-970)))
-(((|#3|) |has| |#3| (-970)))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-756)))
-(-12 (|has| |#1| (-337)) (|has| |#2| (-756)))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-381 |#2|)) . T) (((-381 (-521))) . T) (($) . T))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-((((-791)) . T))
-((($) . T) (((-381 (-521))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1013)) (((-521)) -12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013))) (((-381 (-521))) -12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))
-(((|#3|) |has| |#3| (-1013)) (((-521)) -12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (((-381 (-521))) -12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))
-(|has| |#2| (-337))
-(((|#2|) |has| |#2| (-970)) (((-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))))
-(((|#1|) . T))
-(|has| |#2| (-337))
-(((#0=(-381 (-521)) #0#) |has| |#2| (-37 (-381 (-521)))) ((|#2| |#2|) . T) (($ $) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1| |#1|) . T) ((#0=(-381 (-521)) #0#) |has| |#1| (-37 (-381 (-521)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-381 (-521)) #0#) . T))
+(((|#4|) |has| |#4| (-971)))
+(((|#3|) |has| |#3| (-971)))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-757)))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-757)))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-382 |#2|)) . T) (((-382 (-522))) . T) (($) . T))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+((((-792)) . T))
+((($) . T) (((-382 (-522))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1014)) (((-522)) -12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014))) (((-382 (-522))) -12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))
+(((|#3|) |has| |#3| (-1014)) (((-522)) -12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (((-382 (-522))) -12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))
+(|has| |#2| (-338))
+(((|#2|) |has| |#2| (-971)) (((-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971))))
+(((|#1|) . T))
+(|has| |#2| (-338))
+(((#0=(-382 (-522)) #0#) |has| |#2| (-37 (-382 (-522)))) ((|#2| |#2|) . T) (($ $) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1| |#1|) . T) ((#0=(-382 (-522)) #0#) |has| |#1| (-37 (-382 (-522)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-382 (-522)) #0#) . T))
(((|#2| |#2|) . T))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T) (($) -3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) . T) (($) . T) (((-381 (-521))) . T))
-(((|#2|) . T))
-((($) . T))
-((((-791)) |has| |#1| (-1013)))
-((((-1151 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-756))
-(|has| |#2| (-756))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
-(|has| |#1| (-337))
-(((|#1|) |has| |#2| (-391 |#1|)))
-(((|#1|) |has| |#2| (-391 |#1|)))
-((((-838 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) . T))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) |has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-((((-521) |#1|) . T))
-((((-521) |#1|) . T))
-((((-521) |#1|) . T))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((((-521) |#1|) . T))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((((-1084)) |has| |#1| (-828 (-1084))) (((-754 (-1084))) . T))
-(-3703 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-729)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-((((-755 |#1|)) . T))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T) (($) -3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) . T) (($) . T) (((-382 (-522))) . T))
+(((|#2|) . T))
+((($) . T))
+((((-792)) |has| |#1| (-1014)))
+((((-1152 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-757))
+(|has| |#2| (-757))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))
+(|has| |#1| (-338))
+(((|#1|) |has| |#2| (-392 |#1|)))
+(((|#1|) |has| |#2| (-392 |#1|)))
+((((-839 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) . T))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) |has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+((((-522) |#1|) . T))
+((((-522) |#1|) . T))
+((((-522) |#1|) . T))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((((-522) |#1|) . T))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((((-1085)) |has| |#1| (-829 (-1085))) (((-755 (-1085))) . T))
+(-3708 (|has| |#3| (-124)) (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-730)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+((((-756 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-791)) . T))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
+((((-792)) . T))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-381 (-521))))
-((((-791)) . T))
-((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-381 (-521))) . T))
-(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)) (((-381 (-521))) |has| |#1| (-513)))
-(((|#2|) . T) (((-521)) |has| |#2| (-583 (-521))))
-(|has| |#1| (-337))
-(-3703 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (-12 (|has| |#1| (-337)) (|has| |#2| (-210))))
-(|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))
-(|has| |#1| (-337))
-(((|#1|) . T))
-(((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1| |#1|) . T))
-((((-521) |#1|) . T))
-((((-290 |#1|)) . T))
-(((#0=(-636) (-1080 #0#)) . T))
-((((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((|#1|) . T))
+(|has| |#1| (-37 (-382 (-522))))
+((((-792)) . T))
+((((-1152 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-382 (-522))) . T))
+(((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)) (((-382 (-522))) |has| |#1| (-514)))
+(((|#2|) . T) (((-522)) |has| |#2| (-584 (-522))))
+(|has| |#1| (-338))
+(-3708 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (-12 (|has| |#1| (-338)) (|has| |#2| (-210))))
+(|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))
+(|has| |#1| (-338))
+(((|#1|) . T))
+(((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1| |#1|) . T))
+((((-522) |#1|) . T))
+((((-291 |#1|)) . T))
+(((#0=(-637) (-1081 #0#)) . T))
+((((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-781))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1036 |#1| (-1084))) . T) (((-754 (-1084))) . T) ((|#1|) . T) (((-521)) |has| |#1| (-961 (-521))) (((-381 (-521))) |has| |#1| (-961 (-381 (-521)))) (((-1084)) . T))
+(|has| |#1| (-782))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1037 |#1| (-1085))) . T) (((-755 (-1085))) . T) ((|#1|) . T) (((-522)) |has| |#1| (-962 (-522))) (((-382 (-522))) |has| |#1| (-962 (-382 (-522)))) (((-1085)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-998) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1084) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-1003 (-1084)) |#1|) . T) ((#1# $) . T))
+(((#0=(-999) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1085) $) |has| |#1| (-210)) ((#0# |#1|) |has| |#1| (-210)) ((#1=(-1004 (-1085)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))))
-(|has| |#2| (-837))
-((($) . T) ((#0=(-1150 |#2| |#3| |#4|)) |has| #0# (-157)) (((-381 (-521))) |has| #0# (-37 (-381 (-521)))))
-((((-521) |#1|) . T))
-(((#0=(-1151 |#1| |#2| |#3| |#4|)) |has| #0# (-284 #0#)))
+((($) . T) ((|#2|) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))))
+(|has| |#2| (-838))
+((($) . T) ((#0=(-1151 |#2| |#3| |#4|)) |has| #0# (-157)) (((-382 (-522))) |has| #0# (-37 (-382 (-522)))))
+((((-522) |#1|) . T))
+(((#0=(-1152 |#1| |#2| |#3| |#4|)) |has| #0# (-285 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#2| |#2|) |has| |#1| (-337)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) ((#0=(-381 (-521)) #0#) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
+((($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#2| |#2|) |has| |#1| (-338)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) ((#0=(-382 (-522)) #0#) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))))
(|has| |#2| (-210))
(|has| $ (-135))
-((((-791)) . T))
-((($) . T) (((-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-323))) ((|#1|) . T))
-((((-791)) . T))
-(|has| |#1| (-781))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))
-((((-381 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-791)) . T))
-(((|#2| (-612 |#1|)) . T))
-(-12 (|has| |#1| (-282)) (|has| |#1| (-837)))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+((((-792)) . T))
+((($) . T) (((-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-324))) ((|#1|) . T))
+((((-792)) . T))
+(|has| |#1| (-782))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))
+((((-382 |#2|) |#3|) . T))
+(((|#1|) . T))
+((((-792)) . T))
+(((|#2| (-613 |#1|)) . T))
+(-12 (|has| |#1| (-283)) (|has| |#1| (-838)))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#4|) . T))
-(|has| |#1| (-513))
-((($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))) ((|#2|) |has| |#1| (-337)) ((|#1|) . T))
-((((-1084)) -3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))
-(((|#1|) . T) (($) -3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-513))) (((-381 (-521))) -3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-337))))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084)))))
-(((|#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))
-((((-521) |#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(((|#1|) . T))
-(((|#1| (-493 (-754 (-1084)))) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-(((|#1|) . T))
-(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((($) . T) (((-798 |#1|)) . T) (((-381 (-521))) . T))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-(|has| |#1| (-513))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-381 |#2|)) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-381 (-521)) #0#) . T) (($ $) . T))
-((((-521)) . T))
-((((-791)) . T))
-(((|#2|) . T) (((-381 (-521))) . T) (($) . T))
-((((-534 |#1|)) . T) (((-381 (-521))) . T) (($) . T))
-((((-791)) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-521) |#1|) . T))
-((((-791)) . T))
-((($ $) . T) (((-1084) $) . T))
-((((-1157 |#1| |#2| |#3|)) . T))
-((((-1157 |#1| |#2| |#3|)) . T) (((-1129 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|))) . T))
-((((-497)) |has| |#2| (-562 (-497))) (((-820 (-353))) |has| |#2| (-562 (-820 (-353)))) (((-820 (-521))) |has| |#2| (-562 (-820 (-521)))))
-((((-791)) . T))
-((((-791)) . T))
-((((-820 (-521))) -12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#3| (-562 (-820 (-521))))) (((-820 (-353))) -12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#3| (-562 (-820 (-353))))) (((-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
+(|has| |#1| (-514))
+((($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))) ((|#2|) |has| |#1| (-338)) ((|#1|) . T))
+((((-1085)) -3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))
+(((|#1|) . T) (($) -3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-514))) (((-382 (-522))) -3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-338))))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085)))))
+(((|#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))
+((((-522) |#1|) . T))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(((|#1|) . T))
+(((|#1| (-494 (-755 (-1085)))) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+(((|#1|) . T))
+(-3708 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((($) . T) (((-799 |#1|)) . T) (((-382 (-522))) . T))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+(|has| |#1| (-514))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-382 |#2|)) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-382 (-522)) #0#) . T) (($ $) . T))
+((((-522)) . T))
+((((-792)) . T))
+(((|#2|) . T) (((-382 (-522))) . T) (($) . T))
+((((-535 |#1|)) . T) (((-382 (-522))) . T) (($) . T))
+((((-792)) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-522) |#1|) . T))
+((((-792)) . T))
+((($ $) . T) (((-1085) $) . T))
+((((-1158 |#1| |#2| |#3|)) . T))
+((((-1158 |#1| |#2| |#3|)) . T) (((-1130 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) . T))
+((((-498)) |has| |#2| (-563 (-498))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522)))))
+((((-792)) . T))
+((((-792)) . T))
+((((-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) (((-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) (((-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) . T))
-((((-791)) . T))
-((((-1157 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((((-1084)) . T) (((-791)) . T))
-(|has| |#1| (-337))
-((((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) |has| |#2| (-157)) (($) -3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837))))
+((((-792)) . T))
+((((-1158 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((((-1085)) . T) (((-792)) . T))
+(|has| |#1| (-338))
+((((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) |has| |#2| (-157)) (($) -3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-381 (-521))) |has| |#2| (-37 (-381 (-521)))) ((|#2|) . T))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((($) -3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-((((-1017)) . T))
-((((-791)) . T))
-((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
+((($) . T) (((-382 (-522))) |has| |#2| (-37 (-382 (-522)))) ((|#2|) . T))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((($) -3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+((((-1018)) . T))
+((((-792)) . T))
+((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T))
((($) . T))
-((($) -3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837))) ((|#1|) |has| |#1| (-157)) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(|has| |#2| (-837))
-(|has| |#1| (-837))
+((($) -3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838))) ((|#1|) |has| |#1| (-157)) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(|has| |#2| (-838))
+(|has| |#1| (-838))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-157)))
-((((-636)) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
+((((-637)) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
(((|#1|) |has| |#1| (-157)))
(((|#1|) |has| |#1| (-157)))
-((((-381 (-521))) . T) (($) . T))
-(((|#1| (-521)) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(|has| |#1| (-337))
-(|has| |#1| (-337))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(-3703 (|has| |#1| (-157)) (|has| |#1| (-513)))
-(((|#1| (-521)) . T))
-(((|#1| (-381 (-521))) . T))
-(((|#1| (-707)) . T))
-((((-381 (-521))) . T))
-(((|#1| (-493 |#2|) |#2|) . T))
-((((-521) |#1|) . T))
-((((-521) |#1|) . T))
-(|has| |#1| (-1013))
-((((-521) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-820 (-353))) . T) (((-820 (-521))) . T) (((-1084)) . T) (((-497)) . T))
-(((|#1|) . T))
-((((-791)) . T))
-(-3703 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-337)) (|has| |#2| (-729)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-(-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))
-((((-521)) . T))
-((((-521)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
+((((-382 (-522))) . T) (($) . T))
+(((|#1| (-522)) . T))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(-3708 (|has| |#1| (-157)) (|has| |#1| (-514)))
+(((|#1| (-522)) . T))
+(((|#1| (-382 (-522))) . T))
+(((|#1| (-708)) . T))
+((((-382 (-522))) . T))
+(((|#1| (-494 |#2|) |#2|) . T))
+((((-522) |#1|) . T))
+((((-522) |#1|) . T))
+(|has| |#1| (-1014))
+((((-522) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-821 (-354))) . T) (((-821 (-522))) . T) (((-1085)) . T) (((-498)) . T))
+(((|#1|) . T))
+((((-792)) . T))
+(-3708 (|has| |#2| (-124)) (|has| |#2| (-157)) (|has| |#2| (-338)) (|has| |#2| (-730)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+(-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))
+((((-522)) . T))
+((((-522)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3703 (|has| |#2| (-157)) (|has| |#2| (-781)) (|has| |#2| (-970)))
-((((-1084)) -12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970))))
-(-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
+(-3708 (|has| |#2| (-157)) (|has| |#2| (-782)) (|has| |#2| (-971)))
+((((-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971))))
+(-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
(|has| |#1| (-133))
(|has| |#1| (-135))
-(|has| |#1| (-337))
+(|has| |#1| (-338))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-210))
-((((-791)) . T))
-(((|#1| (-707) (-998)) . T))
-((((-521) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-521) |#1|) . T))
-((((-521) |#1|) . T))
+((((-792)) . T))
+(((|#1| (-708) (-999)) . T))
+((((-522) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-522) |#1|) . T))
+((((-522) |#1|) . T))
((((-112 |#1|)) . T))
-((((-381 (-521))) . T) (((-521)) . T))
-(((|#2|) |has| |#2| (-970)))
-((((-381 (-521))) . T) (($) . T))
-(((|#2|) . T))
-((((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-513)))
-((((-521)) . T))
-((((-521)) . T))
-((((-1067) (-1084) (-521) (-202) (-791)) . T))
+((((-382 (-522))) . T) (((-522)) . T))
+(((|#2|) |has| |#2| (-971)))
+((((-382 (-522))) . T) (($) . T))
+(((|#2|) . T))
+((((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) |has| |#1| (-157)) (($) |has| |#1| (-514)))
+((((-522)) . T))
+((((-522)) . T))
+((((-1068) (-1085) (-522) (-202) (-792)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3703 (|has| |#1| (-323)) (|has| |#1| (-342)))
+(-3708 (|has| |#1| (-324)) (|has| |#1| (-343)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
-((((-791)) . T))
-((($) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-381 (-521))) |has| |#1| (-37 (-381 (-521)))))
-(((|#2|) |has| |#2| (-1013)) (((-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (((-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))))
-((((-497)) |has| |#1| (-562 (-497))))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-783)) (|has| |#1| (-1013))))
-((($) . T) (((-381 (-521))) . T))
-(|has| |#1| (-837))
-(|has| |#1| (-837))
-((((-202)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) (((-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) (((-820 (-353))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-820 (-353))))) (((-820 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-820 (-521))))) (((-497)) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-497)))))
-((((-791)) . T))
-((((-791)) . T))
+((((-792)) . T))
+((($) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-382 (-522))) |has| |#1| (-37 (-382 (-522)))))
+(((|#2|) |has| |#2| (-1014)) (((-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (((-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014))))
+((((-498)) |has| |#1| (-563 (-498))))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-784)) (|has| |#1| (-1014))))
+((($) . T) (((-382 (-522))) . T))
+(|has| |#1| (-838))
+(|has| |#1| (-838))
+((((-202)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) (((-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) (((-821 (-354))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-354))))) (((-821 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-522))))) (((-498)) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-498)))))
+((((-792)) . T))
+((((-792)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-157)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-513)))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-514)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
(((|#2|) . T))
-(-3703 (|has| |#1| (-21)) (|has| |#1| (-781)))
+(-3708 (|has| |#1| (-21)) (|has| |#1| (-782)))
(((|#1|) |has| |#1| (-157)))
(((|#1|) . T))
(((|#1|) . T))
-((((-791)) -3703 (-12 (|has| |#1| (-561 (-791))) (|has| |#2| (-561 (-791)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))
-((((-381 |#2|) |#3|) . T))
-((((-381 (-521))) . T) (($) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-337))
-((($ $) . T) ((#0=(-381 (-521)) #0#) . T))
-(|has| (-381 |#2|) (-135))
-(|has| (-381 |#2|) (-133))
-((((-636)) . T))
-(((|#1|) . T) (((-381 (-521))) . T) (((-521)) . T) (($) . T))
-(((#0=(-521) #0#) . T))
-((($) . T) (((-381 (-521))) . T))
-(-3703 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-970)))
-(-3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970)))
-(|has| |#4| (-729))
-(-3703 (|has| |#4| (-729)) (|has| |#4| (-781)))
-(|has| |#4| (-781))
-(|has| |#3| (-729))
-(-3703 (|has| |#3| (-729)) (|has| |#3| (-781)))
-(|has| |#3| (-781))
-((((-521)) . T))
-(((|#2|) . T))
-((((-1084)) -3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))))
-((((-1084)) -12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084)))))
+((((-792)) -3708 (-12 (|has| |#1| (-562 (-792))) (|has| |#2| (-562 (-792)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))
+((((-382 |#2|) |#3|) . T))
+((((-382 (-522))) . T) (($) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-338))
+((($ $) . T) ((#0=(-382 (-522)) #0#) . T))
+(|has| (-382 |#2|) (-135))
+(|has| (-382 |#2|) (-133))
+((((-637)) . T))
+(((|#1|) . T) (((-382 (-522))) . T) (((-522)) . T) (($) . T))
+(((#0=(-522) #0#) . T))
+((($) . T) (((-382 (-522))) . T))
+(-3708 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971)))
+(-3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971)))
+(|has| |#4| (-730))
+(-3708 (|has| |#4| (-730)) (|has| |#4| (-782)))
+(|has| |#4| (-782))
+(|has| |#3| (-730))
+(-3708 (|has| |#3| (-730)) (|has| |#3| (-782)))
+(|has| |#3| (-782))
+((((-522)) . T))
+(((|#2|) . T))
+((((-1085)) -3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))))
+((((-1085)) -12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-793 |#1|)) . T))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
-((((-1049 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-((($) . T))
-(|has| |#1| (-946))
-(((|#2|) . T) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-((((-791)) . T))
-((((-497)) |has| |#2| (-562 (-497))) (((-820 (-521))) |has| |#2| (-562 (-820 (-521)))) (((-820 (-353))) |has| |#2| (-562 (-820 (-353)))) (((-353)) . #0=(|has| |#2| (-946))) (((-202)) . #0#))
-((((-1084) (-51)) . T))
-(|has| |#1| (-37 (-381 (-521))))
-(|has| |#1| (-37 (-381 (-521))))
+((((-794 |#1|)) . T))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
+((((-1050 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+((($) . T))
+(|has| |#1| (-947))
+(((|#2|) . T) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+((((-792)) . T))
+((((-498)) |has| |#2| (-563 (-498))) (((-821 (-522))) |has| |#2| (-563 (-821 (-522)))) (((-821 (-354))) |has| |#2| (-563 (-821 (-354)))) (((-354)) . #0=(|has| |#2| (-947))) (((-202)) . #0#))
+((((-1085) (-51)) . T))
+(|has| |#1| (-37 (-382 (-522))))
+(|has| |#1| (-37 (-382 (-522))))
(((|#2|) . T))
((($ $) . T))
-((((-381 (-521))) . T) (((-636)) . T) (($) . T))
-((((-1082 |#1| |#2| |#3|)) . T))
-((((-1082 |#1| |#2| |#3|)) . T) (((-1075 |#1| |#2| |#3|)) . T))
-((((-791)) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-521) |#1|) . T))
-((((-1082 |#1| |#2| |#3|)) |has| |#1| (-337)))
+((((-382 (-522))) . T) (((-637)) . T) (($) . T))
+((((-1083 |#1| |#2| |#3|)) . T))
+((((-1083 |#1| |#2| |#3|)) . T) (((-1076 |#1| |#2| |#3|)) . T))
+((((-792)) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-522) |#1|) . T))
+((((-1083 |#1| |#2| |#3|)) |has| |#1| (-338)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-337))
-(((|#3|) . T) ((|#2|) . T) (($) -3703 (|has| |#4| (-157)) (|has| |#4| (-781)) (|has| |#4| (-970))) ((|#4|) -3703 (|has| |#4| (-157)) (|has| |#4| (-337)) (|has| |#4| (-970))))
-(((|#2|) . T) (($) -3703 (|has| |#3| (-157)) (|has| |#3| (-781)) (|has| |#3| (-970))) ((|#3|) -3703 (|has| |#3| (-157)) (|has| |#3| (-337)) (|has| |#3| (-970))))
+(|has| |#2| (-338))
+(((|#3|) . T) ((|#2|) . T) (($) -3708 (|has| |#4| (-157)) (|has| |#4| (-782)) (|has| |#4| (-971))) ((|#4|) -3708 (|has| |#4| (-157)) (|has| |#4| (-338)) (|has| |#4| (-971))))
+(((|#2|) . T) (($) -3708 (|has| |#3| (-157)) (|has| |#3| (-782)) (|has| |#3| (-971))) ((|#3|) -3708 (|has| |#3| (-157)) (|has| |#3| (-338)) (|has| |#3| (-971))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-337))
+(|has| |#1| (-338))
((((-112 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-381 (-521))) |has| |#2| (-961 (-381 (-521)))) (((-521)) |has| |#2| (-961 (-521))) ((|#2|) . T) (((-793 |#1|)) . T))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
+((((-382 (-522))) |has| |#2| (-962 (-382 (-522)))) (((-522)) |has| |#2| (-962 (-522))) ((|#2|) . T) (((-794 |#1|)) . T))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
(((|#1|) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
-((((-521) |#1|) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
+((((-522) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-337)) (|has| |#2| (-261 |#2| |#2|))) (($ $) . T))
+(((|#2| $) -12 (|has| |#1| (-338)) (|has| |#2| (-262 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-425)) (|has| |#1| (-837)))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
-((((-791)) . T))
-((((-791)) . T))
-((((-791)) . T))
-(((|#1| (-493 |#2|)) . T))
-((((-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) . T))
-(((|#1| (-521)) . T))
-(((|#1| (-381 (-521))) . T))
-(((|#1| (-707)) . T))
-((((-112 |#1|)) . T) (($) . T) (((-381 (-521))) . T))
-(-3703 (|has| |#2| (-425)) (|has| |#2| (-513)) (|has| |#2| (-837)))
-(-3703 (|has| |#1| (-425)) (|has| |#1| (-513)) (|has| |#1| (-837)))
-((($) . T))
-(((|#2| (-493 (-793 |#1|))) . T))
-((((-521) |#1|) . T))
-(((|#2|) . T))
-(((|#2| (-707)) . T))
-((((-791)) -3703 (|has| |#1| (-561 (-791))) (|has| |#1| (-1013))))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-426)) (|has| |#1| (-838)))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
+((((-792)) . T))
+((((-792)) . T))
+((((-792)) . T))
+(((|#1| (-494 |#2|)) . T))
+((((-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) . T))
+(((|#1| (-522)) . T))
+(((|#1| (-382 (-522))) . T))
+(((|#1| (-708)) . T))
+((((-112 |#1|)) . T) (($) . T) (((-382 (-522))) . T))
+(-3708 (|has| |#2| (-426)) (|has| |#2| (-514)) (|has| |#2| (-838)))
+(-3708 (|has| |#1| (-426)) (|has| |#1| (-514)) (|has| |#1| (-838)))
+((($) . T))
+(((|#2| (-494 (-794 |#1|))) . T))
+((((-522) |#1|) . T))
+(((|#2|) . T))
+(((|#2| (-708)) . T))
+((((-792)) -3708 (|has| |#1| (-562 (-792))) (|has| |#1| (-1014))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1067) |#1|) . T))
-((((-381 |#2|)) . T))
-((((-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T))
-(|has| |#1| (-513))
-(|has| |#1| (-513))
+((((-1068) |#1|) . T))
+((((-382 |#2|)) . T))
+((((-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T))
+(|has| |#1| (-514))
+(|has| |#1| (-514))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#2| $) |has| |#2| (-261 |#2| |#2|)))
-(((|#1| (-587 |#1|)) |has| |#1| (-781)))
-(-3703 (|has| |#1| (-210)) (|has| |#1| (-323)))
-(-3703 (|has| |#1| (-337)) (|has| |#1| (-323)))
-(|has| |#1| (-1013))
-(((|#1|) . T))
-((((-381 (-521))) . T) (($) . T))
-((((-924 |#1|)) . T) ((|#1|) . T) (((-521)) -3703 (|has| (-924 |#1|) (-961 (-521))) (|has| |#1| (-961 (-521)))) (((-381 (-521))) -3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-((((-1084)) |has| |#1| (-828 (-1084))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))
-(((|#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) . T))
+(((|#2| $) |has| |#2| (-262 |#2| |#2|)))
+(((|#1| (-588 |#1|)) |has| |#1| (-782)))
+(-3708 (|has| |#1| (-210)) (|has| |#1| (-324)))
+(-3708 (|has| |#1| (-338)) (|has| |#1| (-324)))
+(|has| |#1| (-1014))
+(((|#1|) . T))
+((((-382 (-522))) . T) (($) . T))
+((((-925 |#1|)) . T) ((|#1|) . T) (((-522)) -3708 (|has| (-925 |#1|) (-962 (-522))) (|has| |#1| (-962 (-522)))) (((-382 (-522))) -3708 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+((((-1085)) |has| |#1| (-829 (-1085))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))
+(((|#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1049 |#1| |#2|) #0#) |has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((#0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) #0#) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))))
-(((#0=(-112 |#1|)) |has| #0# (-284 #0#)))
-(-3703 (|has| |#1| (-783)) (|has| |#1| (-1013)))
+(((#0=(-1050 |#1| |#2|) #0#) |has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((#0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) #0#) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))))
+(((#0=(-112 |#1|)) |has| #0# (-285 #0#)))
+(-3708 (|has| |#1| (-784)) (|has| |#1| (-1014)))
((($ $) . T))
-((($ $) . T) ((#0=(-793 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-794 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-210)) ((|#2| |#1|) |has| |#1| (-210)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-603 . -1013) T) ((-240 . -482) 142358) ((-224 . -482) 142301) ((-528 . -107) 142286) ((-493 . -23) T) ((-222 . -1013) 142236) ((-113 . -284) 142193) ((-451 . -482) 141985) ((-631 . -97) T) ((-1050 . -482) 141904) ((-364 . -124) T) ((-1176 . -902) 141873) ((-552 . -460) 141857) ((-566 . -124) T) ((-755 . -779) T) ((-490 . -55) 141807) ((-57 . -482) 141740) ((-486 . -482) 141673) ((-392 . -828) 141632) ((-154 . -970) T) ((-484 . -482) 141565) ((-466 . -482) 141498) ((-465 . -482) 141431) ((-735 . -961) 141218) ((-636 . -37) 141183) ((-317 . -323) T) ((-1008 . -1007) 141167) ((-1008 . -1013) 141145) ((-154 . -220) 141096) ((-154 . -210) 141047) ((-1008 . -1009) 141005) ((-800 . -261) 140963) ((-202 . -731) T) ((-202 . -728) T) ((-631 . -259) NIL) ((-1059 . -1096) 140942) ((-381 . -918) 140926) ((-638 . -21) T) ((-638 . -25) T) ((-1178 . -589) 140900) ((-290 . -146) 140879) ((-290 . -131) 140858) ((-1059 . -102) 140808) ((-126 . -25) T) ((-39 . -208) 140785) ((-112 . -21) T) ((-112 . -25) T) ((-556 . -263) 140761) ((-448 . -263) 140740) ((-1138 . -970) T) ((-788 . -970) T) ((-735 . -312) 140724) ((-113 . -1060) NIL) ((-89 . -561) 140656) ((-450 . -124) T) ((-544 . -1119) T) ((-1138 . -300) 140633) ((-528 . -970) T) ((-1138 . -210) T) ((-603 . -654) 140617) ((-885 . -263) 140594) ((-58 . -33) T) ((-981 . -731) T) ((-981 . -728) T) ((-752 . -663) T) ((-668 . -46) 140559) ((-568 . -37) 140546) ((-329 . -265) T) ((-326 . -265) T) ((-318 . -265) T) ((-240 . -265) 140477) ((-224 . -265) 140408) ((-948 . -97) T) ((-387 . -663) T) ((-113 . -37) 140353) ((-387 . -446) T) ((-328 . -97) T) ((-1114 . -977) T) ((-648 . -977) T) ((-1082 . -46) 140330) ((-1081 . -46) 140300) ((-1075 . -46) 140277) ((-959 . -139) 140223) ((-838 . -265) T) ((-1037 . -46) 140195) ((-631 . -284) NIL) ((-483 . -561) 140177) ((-478 . -561) 140159) ((-476 . -561) 140141) ((-301 . -1013) 140091) ((-649 . -425) 140022) ((-47 . -97) T) ((-1149 . -261) 140007) ((-1128 . -261) 139927) ((-587 . -607) 139911) ((-587 . -592) 139895) ((-313 . -21) T) ((-313 . -25) T) ((-39 . -323) NIL) ((-158 . -21) T) ((-158 . -25) T) ((-587 . -347) 139879) ((-552 . -261) 139856) ((-362 . -97) T) ((-1031 . -131) T) ((-122 . -561) 139788) ((-802 . -1013) T) ((-599 . -385) 139772) ((-651 . -561) 139754) ((-147 . -561) 139736) ((-143 . -561) 139718) ((-1178 . -663) T) ((-1015 . -33) T) ((-799 . -731) NIL) ((-799 . -728) NIL) ((-790 . -783) T) ((-668 . -814) NIL) ((-1187 . -124) T) ((-355 . -124) T) ((-832 . -97) T) ((-668 . -961) 139596) ((-493 . -124) T) ((-1002 . -385) 139580) ((-925 . -460) 139564) ((-113 . -374) 139541) ((-1075 . -1119) 139520) ((-718 . -385) 139504) ((-716 . -385) 139488) ((-871 . -33) T) ((-631 . -1060) NIL) ((-227 . -589) 139325) ((-226 . -589) 139149) ((-753 . -848) 139128) ((-427 . -385) 139112) ((-552 . -19) 139096) ((-1055 . -1113) 139065) ((-1075 . -814) NIL) ((-1075 . -812) 139017) ((-552 . -554) 138994) ((-1106 . -561) 138926) ((-1083 . -561) 138908) ((-60 . -369) T) ((-1081 . -961) 138843) ((-1075 . -961) 138809) ((-631 . -37) 138759) ((-447 . -261) 138744) ((-668 . -351) 138728) ((-599 . -977) T) ((-1149 . -927) 138694) ((-1128 . -927) 138660) ((-982 . -1096) 138635) ((-800 . -562) 138443) ((-800 . -561) 138425) ((-1093 . -460) 138362) ((-392 . -946) 138341) ((-47 . -284) 138328) ((-982 . -102) 138274) ((-451 . -460) 138211) ((-487 . -1119) T) ((-1050 . -460) 138182) ((-1075 . -312) 138134) ((-1075 . -351) 138086) ((-411 . -97) T) ((-1002 . -977) T) ((-227 . -33) T) ((-226 . -33) T) ((-718 . -977) T) ((-716 . -977) T) ((-668 . -828) 138063) ((-427 . -977) T) ((-57 . -460) 138047) ((-958 . -976) 138021) ((-486 . -460) 138005) ((-484 . -460) 137989) ((-466 . -460) 137973) ((-465 . -460) 137957) ((-222 . -482) 137890) ((-958 . -107) 137857) ((-1082 . -828) 137770) ((-611 . -1025) T) ((-1081 . -828) 137676) ((-1075 . -828) 137509) ((-1037 . -828) 137493) ((-328 . -1060) T) ((-296 . -976) 137475) ((-227 . -727) 137454) ((-227 . -730) 137405) ((-227 . -729) 137384) ((-226 . -727) 137363) ((-226 . -730) 137314) ((-226 . -729) 137293) ((-49 . -977) T) ((-227 . -663) 137224) ((-226 . -663) 137155) ((-1114 . -1013) T) ((-611 . -23) T) ((-534 . -977) T) ((-485 . -977) T) ((-353 . -976) 137120) ((-296 . -107) 137095) ((-71 . -357) T) ((-71 . -369) T) ((-948 . -37) 137032) ((-631 . -374) 137014) ((-94 . -97) T) ((-648 . -1013) T) ((-928 . -133) 136986) ((-928 . -135) 136958) ((-353 . -107) 136914) ((-293 . -1123) 136893) ((-447 . -927) 136859) ((-328 . -37) 136824) ((-39 . -344) 136796) ((-801 . -561) 136668) ((-123 . -121) 136652) ((-117 . -121) 136636) ((-770 . -976) 136606) ((-769 . -21) 136558) ((-763 . -976) 136542) ((-769 . -25) 136494) ((-293 . -513) 136445) ((-521 . -764) T) ((-217 . -1119) T) ((-770 . -107) 136410) ((-763 . -107) 136389) ((-1149 . -561) 136371) ((-1128 . -561) 136353) ((-1128 . -562) 136026) ((-1080 . -837) 136005) ((-1036 . -837) 135984) ((-47 . -37) 135949) ((-1185 . -1025) T) ((-552 . -561) 135861) ((-552 . -562) 135822) ((-1183 . -1025) T) ((-217 . -961) 135651) ((-1080 . -589) 135576) ((-1036 . -589) 135501) ((-655 . -561) 135483) ((-787 . -589) 135457) ((-1185 . -23) T) ((-1183 . -23) T) ((-958 . -970) T) ((-1093 . -261) 135436) ((-154 . -342) 135387) ((-929 . -1119) T) ((-43 . -23) T) ((-451 . -261) 135366) ((-538 . -1013) T) ((-1055 . -1022) 135335) ((-1017 . -1016) 135287) ((-364 . -21) T) ((-364 . -25) T) ((-140 . -1025) T) ((-1191 . -97) T) ((-929 . -812) 135269) ((-929 . -814) 135251) ((-1114 . -654) 135148) ((-568 . -208) 135132) ((-566 . -21) T) ((-264 . -513) T) ((-566 . -25) T) ((-1100 . -1013) T) ((-648 . -654) 135097) ((-217 . -351) 135067) ((-929 . -961) 135027) ((-353 . -970) T) ((-200 . -977) T) ((-113 . -208) 135004) ((-57 . -261) 134981) ((-140 . -23) T) ((-484 . -261) 134958) ((-301 . -482) 134891) ((-465 . -261) 134868) ((-353 . -220) T) ((-353 . -210) T) ((-770 . -970) T) ((-763 . -970) T) ((-649 . -877) 134838) ((-638 . -783) T) ((-447 . -561) 134820) ((-763 . -210) 134799) ((-126 . -783) T) ((-599 . -1013) T) ((-1093 . -554) 134778) ((-507 . -1096) 134757) ((-310 . -1013) T) ((-293 . -337) 134736) ((-381 . -135) 134715) ((-381 . -133) 134694) ((-891 . -1025) 134593) ((-217 . -828) 134526) ((-751 . -1025) 134457) ((-595 . -785) 134441) ((-451 . -554) 134420) ((-507 . -102) 134370) ((-929 . -351) 134352) ((-929 . -312) 134334) ((-92 . -1013) T) ((-891 . -23) 134145) ((-450 . -21) T) ((-450 . -25) T) ((-751 . -23) 134016) ((-1084 . -561) 133998) ((-57 . -19) 133982) ((-1084 . -562) 133904) ((-1080 . -663) T) ((-1036 . -663) T) ((-484 . -19) 133888) ((-465 . -19) 133872) ((-57 . -554) 133849) ((-1002 . -1013) T) ((-829 . -97) 133827) ((-787 . -663) T) ((-718 . -1013) T) ((-484 . -554) 133804) ((-465 . -554) 133781) ((-716 . -1013) T) ((-716 . -984) 133748) ((-434 . -1013) T) ((-427 . -1013) T) ((-538 . -654) 133723) ((-590 . -1013) T) ((-929 . -828) NIL) ((-1157 . -46) 133700) ((-571 . -1025) T) ((-611 . -124) T) ((-1151 . -97) T) ((-1150 . -46) 133670) ((-1129 . -46) 133647) ((-1114 . -157) 133598) ((-996 . -1123) 133549) ((-251 . -1013) T) ((-83 . -414) T) ((-83 . -369) T) ((-1081 . -282) 133528) ((-1075 . -282) 133507) ((-49 . -1013) T) ((-996 . -513) 133458) ((-648 . -157) T) ((-546 . -46) 133435) ((-202 . -589) 133400) ((-534 . -1013) T) ((-485 . -1013) T) ((-333 . -1123) T) ((-327 . -1123) T) ((-319 . -1123) T) ((-458 . -756) T) ((-458 . -848) T) ((-293 . -1025) T) ((-103 . -1123) T) ((-313 . -783) T) ((-195 . -848) T) ((-195 . -756) T) ((-651 . -976) 133370) ((-333 . -513) T) ((-327 . -513) T) ((-319 . -513) T) ((-103 . -513) T) ((-599 . -654) 133340) ((-1075 . -946) NIL) ((-293 . -23) T) ((-65 . -1119) T) ((-925 . -561) 133272) ((-631 . -208) 133254) ((-651 . -107) 133219) ((-587 . -33) T) ((-222 . -460) 133203) ((-1015 . -1011) 133187) ((-156 . -1013) T) ((-880 . -837) 133166) ((-453 . -837) 133145) ((-1187 . -21) T) ((-1187 . -25) T) ((-1185 . -124) T) ((-1183 . -124) T) ((-1002 . -654) 132994) ((-981 . -589) 132981) ((-880 . -589) 132906) ((-497 . -561) 132888) ((-497 . -562) 132869) ((-718 . -654) 132698) ((-716 . -654) 132547) ((-1176 . -97) T) ((-993 . -97) T) ((-355 . -25) T) ((-355 . -21) T) ((-453 . -589) 132472) ((-434 . -654) 132443) ((-427 . -654) 132292) ((-913 . -97) T) ((-674 . -97) T) ((-493 . -25) T) ((-1129 . -1119) 132271) ((-1161 . -561) 132237) ((-1129 . -814) NIL) ((-1129 . -812) 132189) ((-129 . -97) T) ((-43 . -124) T) ((-1093 . -562) NIL) ((-1093 . -561) 132171) ((-1051 . -1034) 132116) ((-317 . -977) T) ((-605 . -561) 132098) ((-264 . -1025) T) ((-329 . -561) 132080) ((-326 . -561) 132062) ((-318 . -561) 132044) ((-240 . -562) 131792) ((-240 . -561) 131774) ((-224 . -561) 131756) ((-224 . -562) 131617) ((-967 . -1113) 131546) ((-829 . -284) 131484) ((-1191 . -1060) T) ((-1150 . -961) 131419) ((-1129 . -961) 131385) ((-1114 . -482) 131352) ((-1050 . -561) 131334) ((-755 . -663) T) ((-552 . -263) 131311) ((-534 . -654) 131276) ((-451 . -562) NIL) ((-451 . -561) 131258) ((-485 . -654) 131203) ((-290 . -97) T) ((-287 . -97) T) ((-264 . -23) T) ((-140 . -124) T) ((-360 . -663) T) ((-800 . -976) 131155) ((-838 . -561) 131137) ((-838 . -562) 131119) ((-800 . -107) 131057) ((-128 . -97) T) ((-110 . -97) T) ((-649 . -1141) 131041) ((-651 . -970) T) ((-631 . -323) NIL) ((-486 . -561) 130973) ((-353 . -731) T) ((-200 . -1013) T) ((-353 . -728) T) ((-202 . -730) T) ((-202 . -727) T) ((-57 . -562) 130934) ((-57 . -561) 130846) ((-202 . -663) T) ((-484 . -562) 130807) ((-484 . -561) 130719) ((-466 . -561) 130651) ((-465 . -562) 130612) ((-465 . -561) 130524) ((-996 . -337) 130475) ((-39 . -385) 130452) ((-75 . -1119) T) ((-799 . -837) NIL) ((-333 . -303) 130436) ((-333 . -337) T) ((-327 . -303) 130420) ((-327 . -337) T) ((-319 . -303) 130404) ((-319 . -337) T) ((-290 . -259) 130383) ((-103 . -337) T) ((-68 . -1119) T) ((-1129 . -312) 130335) ((-799 . -589) 130280) ((-1129 . -351) 130232) ((-891 . -124) 130087) ((-751 . -124) 129958) ((-885 . -592) 129942) ((-1002 . -157) 129853) ((-885 . -347) 129837) ((-981 . -730) T) ((-981 . -727) T) ((-718 . -157) 129728) ((-716 . -157) 129639) ((-752 . -46) 129601) ((-981 . -663) T) ((-301 . -460) 129585) ((-880 . -663) T) ((-427 . -157) 129496) ((-222 . -261) 129473) ((-453 . -663) T) ((-1176 . -284) 129411) ((-1157 . -828) 129324) ((-1150 . -828) 129230) ((-1149 . -976) 129065) ((-1129 . -828) 128898) ((-1128 . -976) 128706) ((-1114 . -265) 128685) ((-1055 . -139) 128669) ((-991 . -97) T) ((-855 . -882) T) ((-73 . -1119) T) ((-674 . -284) 128607) ((-154 . -837) 128560) ((-605 . -356) 128532) ((-30 . -882) T) ((-1 . -561) 128514) ((-1031 . -97) T) ((-996 . -23) T) ((-49 . -565) 128498) ((-996 . -1025) T) ((-928 . -383) 128470) ((-546 . -828) 128383) ((-412 . -97) T) ((-129 . -284) NIL) ((-800 . -970) T) ((-769 . -783) 128362) ((-79 . -1119) T) ((-648 . -265) T) ((-39 . -977) T) ((-534 . -157) T) ((-485 . -157) T) ((-479 . -561) 128344) ((-154 . -589) 128254) ((-475 . -561) 128236) ((-325 . -135) 128218) ((-325 . -133) T) ((-333 . -1025) T) ((-327 . -1025) T) ((-319 . -1025) T) ((-929 . -282) T) ((-842 . -282) T) ((-800 . -220) T) ((-103 . -1025) T) ((-800 . -210) 128197) ((-1149 . -107) 128018) ((-1128 . -107) 127807) ((-222 . -1153) 127791) ((-521 . -781) T) ((-333 . -23) T) ((-328 . -323) T) ((-290 . -284) 127778) ((-287 . -284) 127719) ((-327 . -23) T) ((-293 . -124) T) ((-319 . -23) T) ((-929 . -946) T) ((-103 . -23) T) ((-222 . -554) 127696) ((-1151 . -37) 127588) ((-1138 . -837) 127567) ((-108 . -1013) T) ((-959 . -97) T) ((-1138 . -589) 127492) ((-799 . -730) NIL) ((-788 . -589) 127466) ((-799 . -727) NIL) ((-752 . -814) NIL) ((-799 . -663) T) ((-1002 . -482) 127339) ((-718 . -482) 127287) ((-716 . -482) 127239) ((-528 . -589) 127226) ((-752 . -961) 127056) ((-427 . -482) 126999) ((-362 . -363) T) ((-58 . -1119) T) ((-566 . -783) 126978) ((-469 . -602) T) ((-1055 . -902) 126947) ((-928 . -425) T) ((-636 . -781) T) ((-478 . -728) T) ((-447 . -976) 126782) ((-317 . -1013) T) ((-287 . -1060) NIL) ((-264 . -124) T) ((-368 . -1013) T) ((-631 . -344) 126749) ((-798 . -977) T) ((-200 . -565) 126726) ((-301 . -261) 126703) ((-447 . -107) 126524) ((-1149 . -970) T) ((-1128 . -970) T) ((-752 . -351) 126508) ((-154 . -663) T) ((-595 . -97) T) ((-1149 . -220) 126487) ((-1149 . -210) 126439) ((-1128 . -210) 126344) ((-1128 . -220) 126323) ((-928 . -376) NIL) ((-611 . -583) 126271) ((-290 . -37) 126181) ((-287 . -37) 126110) ((-67 . -561) 126092) ((-293 . -462) 126058) ((-1093 . -263) 126037) ((-1026 . -1025) 125968) ((-81 . -1119) T) ((-59 . -561) 125950) ((-451 . -263) 125929) ((-1178 . -961) 125906) ((-1073 . -1013) T) ((-1026 . -23) 125777) ((-752 . -828) 125713) ((-1138 . -663) T) ((-1015 . -1119) T) ((-1002 . -265) 125644) ((-821 . -97) T) ((-718 . -265) 125555) ((-301 . -19) 125539) ((-57 . -263) 125516) ((-716 . -265) 125447) ((-788 . -663) T) ((-113 . -781) NIL) ((-484 . -263) 125424) ((-301 . -554) 125401) ((-465 . -263) 125378) ((-427 . -265) 125309) ((-959 . -284) 125160) ((-528 . -663) T) ((-603 . -561) 125142) ((-222 . -562) 125103) ((-222 . -561) 125015) ((-1056 . -33) T) ((-871 . -1119) T) ((-317 . -654) 124960) ((-611 . -25) T) ((-611 . -21) T) ((-447 . -970) T) ((-579 . -391) 124925) ((-555 . -391) 124890) ((-1031 . -1060) T) ((-534 . -265) T) ((-485 . -265) T) ((-1150 . -282) 124869) ((-447 . -210) 124821) ((-447 . -220) 124800) ((-1129 . -282) 124779) ((-996 . -124) T) ((-800 . -731) 124758) ((-132 . -97) T) ((-39 . -1013) T) ((-800 . -728) 124737) ((-587 . -935) 124721) ((-533 . -977) T) ((-521 . -977) T) ((-464 . -977) T) ((-381 . -425) T) ((-333 . -124) T) ((-290 . -374) 124705) ((-287 . -374) 124666) ((-327 . -124) T) ((-319 . -124) T) ((-1129 . -946) NIL) ((-1008 . -561) 124633) ((-103 . -124) T) ((-1031 . -37) 124620) ((-849 . -1013) T) ((-707 . -1013) T) ((-612 . -1013) T) ((-638 . -135) T) ((-112 . -135) T) ((-1185 . -21) T) ((-1185 . -25) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-605 . -976) 124604) ((-493 . -783) T) ((-469 . -783) T) ((-329 . -976) 124556) ((-326 . -976) 124508) ((-318 . -976) 124460) ((-227 . -1119) T) ((-226 . -1119) T) ((-240 . -976) 124303) ((-224 . -976) 124146) ((-605 . -107) 124125) ((-329 . -107) 124063) ((-326 . -107) 124001) ((-318 . -107) 123939) ((-240 . -107) 123768) ((-224 . -107) 123597) ((-753 . -1123) 123576) ((-568 . -385) 123560) ((-43 . -21) T) ((-43 . -25) T) ((-751 . -583) 123468) ((-753 . -513) 123447) ((-227 . -961) 123276) ((-226 . -961) 123105) ((-122 . -115) 123089) ((-838 . -976) 123054) ((-636 . -977) T) ((-649 . -97) T) ((-317 . -157) T) ((-140 . -21) T) ((-140 . -25) T) ((-86 . -561) 123036) ((-838 . -107) 122992) ((-39 . -654) 122937) ((-798 . -1013) T) ((-301 . -562) 122898) ((-301 . -561) 122810) ((-1128 . -728) 122763) ((-1128 . -731) 122716) ((-227 . -351) 122686) ((-226 . -351) 122656) ((-595 . -37) 122626) ((-556 . -33) T) ((-454 . -1025) 122557) ((-448 . -33) T) ((-1026 . -124) 122428) ((-891 . -25) 122239) ((-802 . -561) 122221) ((-891 . -21) 122176) ((-751 . -21) 122087) ((-751 . -25) 121939) ((-568 . -977) T) ((-1086 . -513) 121918) ((-1080 . -46) 121895) ((-329 . -970) T) ((-326 . -970) T) ((-454 . -23) 121766) ((-318 . -970) T) ((-240 . -970) T) ((-224 . -970) T) ((-1036 . -46) 121738) ((-113 . -977) T) ((-958 . -589) 121712) ((-885 . -33) T) ((-329 . -210) 121691) ((-329 . -220) T) ((-326 . -210) 121670) ((-224 . -300) 121627) ((-326 . -220) T) ((-318 . -210) 121606) ((-318 . -220) T) ((-240 . -300) 121578) ((-240 . -210) 121557) ((-1065 . -139) 121541) ((-227 . -828) 121474) ((-226 . -828) 121407) ((-998 . -783) T) ((-1132 . -1119) T) ((-388 . -1025) T) ((-974 . -23) T) ((-838 . -970) T) ((-296 . -589) 121389) ((-948 . -781) T) ((-1114 . -927) 121355) ((-1081 . -848) 121334) ((-1075 . -848) 121313) ((-838 . -220) T) ((-753 . -337) 121292) ((-359 . -23) T) ((-123 . -1013) 121270) ((-117 . -1013) 121248) ((-838 . -210) T) ((-1075 . -756) NIL) ((-353 . -589) 121213) ((-798 . -654) 121200) ((-967 . -139) 121165) ((-39 . -157) T) ((-631 . -385) 121147) ((-649 . -284) 121134) ((-770 . -589) 121094) ((-763 . -589) 121068) ((-293 . -25) T) ((-293 . -21) T) ((-599 . -261) 121047) ((-533 . -1013) T) ((-521 . -1013) T) ((-464 . -1013) T) ((-222 . -263) 121024) ((-287 . -208) 120985) ((-1080 . -814) NIL) ((-1036 . -814) 120844) ((-1080 . -961) 120727) ((-1036 . -961) 120612) ((-166 . -561) 120594) ((-787 . -961) 120492) ((-718 . -261) 120419) ((-753 . -1025) T) ((-958 . -663) T) ((-552 . -592) 120403) ((-967 . -902) 120332) ((-924 . -97) T) ((-753 . -23) T) ((-649 . -1060) 120310) ((-631 . -977) T) ((-552 . -347) 120294) ((-325 . -425) T) ((-317 . -265) T) ((-1166 . -1013) T) ((-373 . -97) T) ((-264 . -21) T) ((-264 . -25) T) ((-335 . -663) T) ((-636 . -1013) T) ((-335 . -446) T) ((-1114 . -561) 120276) ((-1080 . -351) 120260) ((-1036 . -351) 120244) ((-948 . -385) 120206) ((-129 . -206) 120188) ((-353 . -730) T) ((-353 . -727) T) ((-798 . -157) T) ((-353 . -663) T) ((-648 . -561) 120170) ((-649 . -37) 119999) ((-1165 . -1163) 119983) ((-325 . -376) T) ((-1165 . -1013) 119933) ((-533 . -654) 119920) ((-521 . -654) 119907) ((-464 . -654) 119872) ((-290 . -573) 119851) ((-770 . -663) T) ((-763 . -663) T) ((-587 . -1119) T) ((-996 . -583) 119799) ((-1080 . -828) 119743) ((-1036 . -828) 119727) ((-603 . -976) 119711) ((-103 . -583) 119693) ((-454 . -124) 119564) ((-1086 . -1025) T) ((-880 . -46) 119533) ((-568 . -1013) T) ((-603 . -107) 119512) ((-301 . -263) 119489) ((-453 . -46) 119446) ((-1086 . -23) T) ((-113 . -1013) T) ((-98 . -97) 119424) ((-1175 . -1025) T) ((-974 . -124) T) ((-948 . -977) T) ((-755 . -961) 119408) ((-928 . -661) 119380) ((-1175 . -23) T) ((-636 . -654) 119345) ((-538 . -561) 119327) ((-360 . -961) 119311) ((-328 . -977) T) ((-359 . -124) T) ((-298 . -961) 119295) ((-202 . -814) 119277) ((-929 . -848) T) ((-89 . -33) T) ((-929 . -756) T) ((-842 . -848) T) ((-458 . -1123) T) ((-1100 . -561) 119259) ((-1018 . -1013) T) ((-195 . -1123) T) ((-924 . -284) 119224) ((-202 . -961) 119184) ((-39 . -265) T) ((-996 . -21) T) ((-996 . -25) T) ((-1031 . -764) T) ((-458 . -513) T) ((-333 . -25) T) ((-195 . -513) T) ((-333 . -21) T) ((-327 . -25) T) ((-327 . -21) T) ((-651 . -589) 119144) ((-319 . -25) T) ((-319 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -977) T) ((-533 . -157) T) ((-521 . -157) T) ((-464 . -157) T) ((-599 . -561) 119126) ((-674 . -673) 119110) ((-310 . -561) 119092) ((-66 . -357) T) ((-66 . -369) T) ((-1015 . -102) 119076) ((-981 . -814) 119058) ((-880 . -814) 118983) ((-594 . -1025) T) ((-568 . -654) 118970) ((-453 . -814) NIL) ((-1055 . -97) T) ((-981 . -961) 118952) ((-92 . -561) 118934) ((-450 . -135) T) ((-880 . -961) 118816) ((-113 . -654) 118761) ((-594 . -23) T) ((-453 . -961) 118639) ((-1002 . -562) NIL) ((-1002 . -561) 118621) ((-718 . -562) NIL) ((-718 . -561) 118582) ((-716 . -562) 118217) ((-716 . -561) 118131) ((-1026 . -583) 118039) ((-434 . -561) 118021) ((-427 . -561) 118003) ((-427 . -562) 117864) ((-959 . -206) 117810) ((-122 . -33) T) ((-753 . -124) T) ((-800 . -837) 117789) ((-590 . -561) 117771) ((-329 . -1182) 117755) ((-326 . -1182) 117739) ((-318 . -1182) 117723) ((-123 . -482) 117656) ((-117 . -482) 117589) ((-479 . -728) T) ((-479 . -731) T) ((-478 . -730) T) ((-98 . -284) 117527) ((-199 . -97) 117505) ((-631 . -1013) T) ((-636 . -157) T) ((-800 . -589) 117457) ((-63 . -358) T) ((-251 . -561) 117439) ((-63 . -369) T) ((-880 . -351) 117423) ((-798 . -265) T) ((-49 . -561) 117405) ((-924 . -37) 117353) ((-534 . -561) 117335) ((-453 . -351) 117319) ((-534 . -562) 117301) ((-485 . -561) 117283) ((-838 . -1182) 117270) ((-799 . -1119) T) ((-638 . -425) T) ((-464 . -482) 117236) ((-458 . -337) T) ((-329 . -342) 117215) ((-326 . -342) 117194) ((-318 . -342) 117173) ((-195 . -337) T) ((-651 . -663) T) ((-112 . -425) T) ((-1186 . -1177) 117157) ((-799 . -812) 117134) ((-799 . -814) NIL) ((-891 . -783) 117033) ((-751 . -783) 116984) ((-595 . -597) 116968) ((-1106 . -33) T) ((-156 . -561) 116950) ((-1026 . -21) 116861) ((-1026 . -25) 116713) ((-799 . -961) 116690) ((-880 . -828) 116671) ((-1138 . -46) 116648) ((-838 . -342) T) ((-57 . -592) 116632) ((-484 . -592) 116616) ((-453 . -828) 116593) ((-69 . -414) T) ((-69 . -369) T) ((-465 . -592) 116577) ((-57 . -347) 116561) ((-568 . -157) T) ((-484 . -347) 116545) ((-465 . -347) 116529) ((-763 . -646) 116513) ((-1080 . -282) 116492) ((-1086 . -124) T) ((-113 . -157) T) ((-1055 . -284) 116430) ((-154 . -1119) T) ((-579 . -681) 116414) ((-555 . -681) 116398) ((-1175 . -124) T) ((-1150 . -848) 116377) ((-1129 . -848) 116356) ((-1129 . -756) NIL) ((-631 . -654) 116306) ((-1128 . -837) 116259) ((-948 . -1013) T) ((-799 . -351) 116236) ((-799 . -312) 116213) ((-833 . -1025) T) ((-154 . -812) 116197) ((-154 . -814) 116122) ((-458 . -1025) T) ((-328 . -1013) T) ((-195 . -1025) T) ((-74 . -414) T) ((-74 . -369) T) ((-154 . -961) 116020) ((-293 . -783) T) ((-1165 . -482) 115953) ((-1149 . -589) 115850) ((-1128 . -589) 115720) ((-800 . -730) 115699) ((-800 . -727) 115678) ((-800 . -663) T) ((-458 . -23) T) ((-200 . -561) 115660) ((-158 . -425) T) ((-199 . -284) 115598) ((-84 . -414) T) ((-84 . -369) T) ((-195 . -23) T) ((-1187 . -1180) 115577) ((-533 . -265) T) ((-521 . -265) T) ((-616 . -961) 115561) ((-464 . -265) T) ((-128 . -443) 115516) ((-47 . -1013) T) ((-649 . -208) 115500) ((-799 . -828) NIL) ((-1138 . -814) NIL) ((-817 . -97) T) ((-813 . -97) T) ((-362 . -1013) T) ((-154 . -351) 115484) ((-154 . -312) 115468) ((-1138 . -961) 115351) ((-788 . -961) 115249) ((-1051 . -97) T) ((-594 . -124) T) ((-113 . -482) 115157) ((-603 . -728) 115136) ((-603 . -731) 115115) ((-528 . -961) 115097) ((-269 . -1172) 115067) ((-794 . -97) T) ((-890 . -513) 115046) ((-1114 . -976) 114929) ((-454 . -583) 114837) ((-832 . -1013) T) ((-948 . -654) 114774) ((-648 . -976) 114739) ((-552 . -33) T) ((-1056 . -1119) T) ((-1114 . -107) 114608) ((-447 . -589) 114505) ((-328 . -654) 114450) ((-154 . -828) 114409) ((-636 . -265) T) ((-631 . -157) T) ((-648 . -107) 114365) ((-1191 . -977) T) ((-1138 . -351) 114349) ((-392 . -1123) 114327) ((-287 . -781) NIL) ((-392 . -513) T) ((-202 . -282) T) ((-1128 . -727) 114280) ((-1128 . -730) 114233) ((-1149 . -663) T) ((-1128 . -663) T) ((-47 . -654) 114198) ((-202 . -946) T) ((-325 . -1172) 114175) ((-1151 . -385) 114141) ((-655 . -663) T) ((-1138 . -828) 114085) ((-108 . -561) 114067) ((-108 . -562) 114049) ((-655 . -446) T) ((-454 . -21) 113960) ((-123 . -460) 113944) ((-117 . -460) 113928) ((-454 . -25) 113780) ((-568 . -265) T) ((-538 . -976) 113755) ((-411 . -1013) T) ((-981 . -282) T) ((-113 . -265) T) ((-1017 . -97) T) ((-928 . -97) T) ((-538 . -107) 113723) ((-1051 . -284) 113661) ((-1114 . -970) T) ((-981 . -946) T) ((-64 . -1119) T) ((-974 . -25) T) ((-974 . -21) T) ((-648 . -970) T) ((-359 . -21) T) ((-359 . -25) T) ((-631 . -482) NIL) ((-948 . -157) T) ((-648 . -220) T) ((-981 . -506) T) ((-471 . -97) T) ((-328 . -157) T) ((-317 . -561) 113643) ((-368 . -561) 113625) ((-447 . -663) T) ((-1031 . -781) T) ((-820 . -961) 113593) ((-103 . -783) T) ((-599 . -976) 113577) ((-458 . -124) T) ((-1151 . -977) T) ((-195 . -124) T) ((-1065 . -97) 113555) ((-94 . -1013) T) ((-222 . -607) 113539) ((-222 . -592) 113523) ((-599 . -107) 113502) ((-290 . -385) 113486) ((-222 . -347) 113470) ((-1068 . -212) 113417) ((-924 . -208) 113401) ((-72 . -1119) T) ((-47 . -157) T) ((-638 . -361) T) ((-638 . -131) T) ((-1186 . -97) T) ((-1002 . -976) 113244) ((-240 . -837) 113223) ((-224 . -837) 113202) ((-718 . -976) 113025) ((-716 . -976) 112868) ((-556 . -1119) T) ((-1073 . -561) 112850) ((-1002 . -107) 112679) ((-967 . -97) T) ((-448 . -1119) T) ((-434 . -976) 112650) ((-427 . -976) 112493) ((-605 . -589) 112477) ((-799 . -282) T) ((-718 . -107) 112286) ((-716 . -107) 112115) ((-329 . -589) 112067) ((-326 . -589) 112019) ((-318 . -589) 111971) ((-240 . -589) 111896) ((-224 . -589) 111821) ((-1067 . -783) T) ((-1003 . -961) 111805) ((-434 . -107) 111766) ((-427 . -107) 111595) ((-992 . -961) 111572) ((-925 . -33) T) ((-893 . -561) 111533) ((-885 . -1119) T) ((-122 . -935) 111517) ((-890 . -1025) T) ((-799 . -946) NIL) ((-672 . -1025) T) ((-652 . -1025) T) ((-1165 . -460) 111501) ((-1051 . -37) 111461) ((-890 . -23) T) ((-776 . -97) T) ((-753 . -21) T) ((-753 . -25) T) ((-672 . -23) T) ((-652 . -23) T) ((-106 . -602) T) ((-838 . -589) 111426) ((-534 . -976) 111391) ((-485 . -976) 111336) ((-204 . -55) 111294) ((-426 . -23) T) ((-381 . -97) T) ((-239 . -97) T) ((-631 . -265) T) ((-794 . -37) 111264) ((-534 . -107) 111220) ((-485 . -107) 111149) ((-392 . -1025) T) ((-290 . -977) 111040) ((-287 . -977) T) ((-599 . -970) T) ((-1191 . -1013) T) ((-154 . -282) 110971) ((-392 . -23) T) ((-39 . -561) 110953) ((-39 . -562) 110937) ((-103 . -918) 110919) ((-112 . -797) 110903) ((-47 . -482) 110869) ((-1106 . -935) 110853) ((-1089 . -561) 110835) ((-1093 . -33) T) ((-849 . -561) 110817) ((-1026 . -783) 110768) ((-707 . -561) 110750) ((-612 . -561) 110732) ((-1065 . -284) 110670) ((-451 . -33) T) ((-1006 . -1119) T) ((-450 . -425) T) ((-1002 . -970) T) ((-1050 . -33) T) ((-718 . -970) T) ((-716 . -970) T) ((-588 . -212) 110654) ((-576 . -212) 110600) ((-1138 . -282) 110579) ((-1002 . -300) 110540) ((-427 . -970) T) ((-1086 . -21) T) ((-1002 . -210) 110519) ((-718 . -300) 110496) ((-718 . -210) T) ((-716 . -300) 110468) ((-301 . -592) 110452) ((-668 . -1123) 110431) ((-1086 . -25) T) ((-57 . -33) T) ((-486 . -33) T) ((-484 . -33) T) ((-427 . -300) 110410) ((-301 . -347) 110394) ((-466 . -33) T) ((-465 . -33) T) ((-928 . -1060) NIL) ((-579 . -97) T) ((-555 . -97) T) ((-668 . -513) 110325) ((-329 . -663) T) ((-326 . -663) T) ((-318 . -663) T) ((-240 . -663) T) ((-224 . -663) T) ((-967 . -284) 110233) ((-829 . -1013) 110211) ((-49 . -970) T) ((-1175 . -21) T) ((-1175 . -25) T) ((-1082 . -513) 110190) ((-1081 . -1123) 110169) ((-534 . -970) T) ((-485 . -970) T) ((-1075 . -1123) 110148) ((-335 . -961) 110132) ((-296 . -961) 110116) ((-948 . -265) T) ((-353 . -814) 110098) ((-1081 . -513) 110049) ((-1075 . -513) 110000) ((-928 . -37) 109945) ((-735 . -1025) T) ((-838 . -663) T) ((-534 . -220) T) ((-534 . -210) T) ((-485 . -210) T) ((-485 . -220) T) ((-1037 . -513) 109924) ((-328 . -265) T) ((-588 . -632) 109908) ((-353 . -961) 109868) ((-1031 . -977) T) ((-98 . -121) 109852) ((-735 . -23) T) ((-1165 . -261) 109829) ((-381 . -284) 109794) ((-1185 . -1180) 109770) ((-1183 . -1180) 109749) ((-1151 . -1013) T) ((-798 . -561) 109731) ((-770 . -961) 109700) ((-182 . -723) T) ((-181 . -723) T) ((-180 . -723) T) ((-179 . -723) T) ((-178 . -723) T) ((-177 . -723) T) ((-176 . -723) T) ((-175 . -723) T) ((-174 . -723) T) ((-173 . -723) T) ((-464 . -927) T) ((-250 . -772) T) ((-249 . -772) T) ((-248 . -772) T) ((-247 . -772) T) ((-47 . -265) T) ((-246 . -772) T) ((-245 . -772) T) ((-244 . -772) T) ((-172 . -723) T) ((-560 . -783) T) ((-595 . -385) 109684) ((-106 . -783) T) ((-594 . -21) T) ((-594 . -25) T) ((-1186 . -37) 109654) ((-113 . -261) 109605) ((-1165 . -19) 109589) ((-1165 . -554) 109566) ((-1176 . -1013) T) ((-993 . -1013) T) ((-913 . -1013) T) ((-890 . -124) T) ((-674 . -1013) T) ((-672 . -124) T) ((-652 . -124) T) ((-479 . -729) T) ((-381 . -1060) 109544) ((-426 . -124) T) ((-479 . -730) T) ((-200 . -970) T) ((-269 . -97) 109327) ((-129 . -1013) T) ((-636 . -927) T) ((-89 . -1119) T) ((-123 . -561) 109259) ((-117 . -561) 109191) ((-1191 . -157) T) ((-1081 . -337) 109170) ((-1075 . -337) 109149) ((-290 . -1013) T) ((-392 . -124) T) ((-287 . -1013) T) ((-381 . -37) 109101) ((-1044 . -97) T) ((-1151 . -654) 108993) ((-595 . -977) T) ((-293 . -133) 108972) ((-293 . -135) 108951) ((-128 . -1013) T) ((-110 . -1013) T) ((-790 . -97) T) ((-533 . -561) 108933) ((-521 . -562) 108832) ((-521 . -561) 108814) ((-464 . -561) 108796) ((-464 . -562) 108741) ((-456 . -23) T) ((-454 . -783) 108692) ((-458 . -583) 108674) ((-892 . -561) 108656) ((-195 . -583) 108638) ((-202 . -378) T) ((-603 . -589) 108622) ((-1080 . -848) 108601) ((-668 . -1025) T) ((-325 . -97) T) ((-754 . -783) T) ((-668 . -23) T) ((-317 . -976) 108546) ((-1067 . -1066) T) ((-1056 . -102) 108530) ((-1082 . -1025) T) ((-1081 . -1025) T) ((-483 . -961) 108514) ((-1075 . -1025) T) ((-1037 . -1025) T) ((-317 . -107) 108443) ((-929 . -1123) T) ((-122 . -1119) T) ((-842 . -1123) T) ((-631 . -261) NIL) ((-1166 . -561) 108425) ((-1082 . -23) T) ((-1081 . -23) T) ((-929 . -513) T) ((-1075 . -23) T) ((-842 . -513) T) ((-1051 . -208) 108409) ((-225 . -561) 108391) ((-1037 . -23) T) ((-991 . -1013) T) ((-735 . -124) T) ((-290 . -654) 108301) ((-287 . -654) 108230) ((-636 . -561) 108212) ((-636 . -562) 108157) ((-381 . -374) 108141) ((-412 . -1013) T) ((-458 . -25) T) ((-458 . -21) T) ((-1031 . -1013) T) ((-195 . -25) T) ((-195 . -21) T) ((-649 . -385) 108125) ((-651 . -961) 108094) ((-1165 . -561) 108006) ((-1165 . -562) 107967) ((-1151 . -157) T) ((-222 . -33) T) ((-854 . -900) T) ((-1106 . -1119) T) ((-603 . -727) 107946) ((-603 . -730) 107925) ((-372 . -369) T) ((-490 . -97) 107903) ((-959 . -1013) T) ((-199 . -920) 107887) ((-473 . -97) T) ((-568 . -561) 107869) ((-44 . -783) NIL) ((-568 . -562) 107846) ((-959 . -558) 107821) ((-829 . -482) 107754) ((-317 . -970) T) ((-113 . -562) NIL) ((-113 . -561) 107736) ((-800 . -1119) T) ((-611 . -391) 107720) ((-611 . -1034) 107665) ((-469 . -139) 107647) ((-317 . -210) T) ((-317 . -220) T) ((-39 . -976) 107592) ((-800 . -812) 107576) ((-800 . -814) 107501) ((-649 . -977) T) ((-631 . -927) NIL) ((-1149 . -46) 107471) ((-1128 . -46) 107448) ((-1050 . -935) 107419) ((-202 . -848) T) ((-39 . -107) 107348) ((-800 . -961) 107215) ((-1031 . -654) 107202) ((-1018 . -561) 107184) ((-996 . -135) 107163) ((-996 . -133) 107114) ((-929 . -337) T) ((-293 . -1108) 107080) ((-353 . -282) T) ((-293 . -1105) 107046) ((-290 . -157) 107025) ((-287 . -157) T) ((-928 . -208) 107002) ((-842 . -337) T) ((-534 . -1182) 106989) ((-485 . -1182) 106966) ((-333 . -135) 106945) ((-333 . -133) 106896) ((-327 . -135) 106875) ((-327 . -133) 106826) ((-556 . -1096) 106802) ((-319 . -135) 106781) ((-319 . -133) 106732) ((-293 . -34) 106698) ((-448 . -1096) 106677) ((0 . |EnumerationCategory|) T) ((-293 . -91) 106643) ((-353 . -946) T) ((-103 . -135) T) ((-103 . -133) NIL) ((-44 . -212) 106593) ((-595 . -1013) T) ((-556 . -102) 106540) ((-456 . -124) T) ((-448 . -102) 106490) ((-217 . -1025) 106421) ((-800 . -351) 106405) ((-800 . -312) 106389) ((-217 . -23) 106260) ((-981 . -848) T) ((-981 . -756) T) ((-534 . -342) T) ((-485 . -342) T) ((-325 . -1060) T) ((-301 . -33) T) ((-43 . -391) 106244) ((-801 . -1119) T) ((-364 . -681) 106228) ((-1176 . -482) 106161) ((-668 . -124) T) ((-1157 . -513) 106140) ((-1150 . -1123) 106119) ((-1150 . -513) 106070) ((-674 . -482) 106003) ((-1129 . -1123) 105982) ((-1129 . -513) 105933) ((-821 . -1013) T) ((-132 . -777) T) ((-1128 . -1119) 105912) ((-1128 . -814) 105785) ((-1128 . -812) 105755) ((-490 . -284) 105693) ((-1082 . -124) T) ((-129 . -482) NIL) ((-1081 . -124) T) ((-1075 . -124) T) ((-1037 . -124) T) ((-948 . -927) T) ((-325 . -37) 105658) ((-929 . -1025) T) ((-842 . -1025) T) ((-80 . -561) 105640) ((-39 . -970) T) ((-798 . -976) 105627) ((-929 . -23) T) ((-800 . -828) 105586) ((-638 . -97) T) ((-928 . -323) NIL) ((-552 . -1119) T) ((-897 . -23) T) ((-842 . -23) T) ((-798 . -107) 105571) ((-401 . -1025) T) ((-447 . -46) 105541) ((-126 . -97) T) ((-39 . -210) 105513) ((-39 . -220) T) ((-112 . -97) T) ((-547 . -513) 105492) ((-546 . -513) 105471) ((-631 . -561) 105453) ((-631 . -562) 105361) ((-290 . -482) 105327) ((-287 . -482) 105219) ((-1149 . -961) 105203) ((-1128 . -961) 104992) ((-924 . -385) 104976) ((-401 . -23) T) ((-1031 . -157) T) ((-1151 . -265) T) ((-595 . -654) 104946) ((-132 . -1013) T) ((-47 . -927) T) ((-381 . -208) 104930) ((-270 . -212) 104880) ((-799 . -848) T) ((-799 . -756) NIL) ((-793 . -783) T) ((-1128 . -312) 104850) ((-1128 . -351) 104820) ((-199 . -1032) 104804) ((-1165 . -263) 104781) ((-1114 . -589) 104706) ((-890 . -21) T) ((-890 . -25) T) ((-672 . -21) T) ((-672 . -25) T) ((-652 . -21) T) ((-652 . -25) T) ((-648 . -589) 104671) ((-426 . -21) T) ((-426 . -25) T) ((-313 . -97) T) ((-158 . -97) T) ((-924 . -977) T) ((-798 . -970) T) ((-710 . -97) T) ((-1150 . -337) 104650) ((-1149 . -828) 104556) ((-1129 . -337) 104535) ((-1128 . -828) 104386) ((-948 . -561) 104368) ((-381 . -764) 104321) ((-1082 . -462) 104287) ((-154 . -848) 104218) ((-1081 . -462) 104184) ((-1075 . -462) 104150) ((-649 . -1013) T) ((-1037 . -462) 104116) ((-533 . -976) 104103) ((-521 . -976) 104090) ((-464 . -976) 104055) ((-290 . -265) 104034) ((-287 . -265) T) ((-328 . -561) 104016) ((-392 . -25) T) ((-392 . -21) T) ((-94 . -261) 103995) ((-533 . -107) 103980) ((-521 . -107) 103965) ((-464 . -107) 103921) ((-1084 . -814) 103888) ((-829 . -460) 103872) ((-47 . -561) 103854) ((-47 . -562) 103799) ((-217 . -124) 103670) ((-1138 . -848) 103649) ((-752 . -1123) 103628) ((-959 . -482) 103472) ((-362 . -561) 103454) ((-752 . -513) 103385) ((-538 . -589) 103360) ((-240 . -46) 103332) ((-224 . -46) 103289) ((-493 . -477) 103266) ((-925 . -1119) T) ((-636 . -976) 103231) ((-1157 . -1025) T) ((-1150 . -1025) T) ((-1129 . -1025) T) ((-928 . -344) 103203) ((-108 . -342) T) ((-447 . -828) 103109) ((-1157 . -23) T) ((-1150 . -23) T) ((-832 . -561) 103091) ((-89 . -102) 103075) ((-1114 . -663) T) ((-833 . -783) 103026) ((-638 . -1060) T) ((-636 . -107) 102982) ((-1129 . -23) T) ((-547 . -1025) T) ((-546 . -1025) T) ((-649 . -654) 102811) ((-648 . -663) T) ((-1031 . -265) T) ((-929 . -124) T) ((-458 . -783) T) ((-897 . -124) T) ((-842 . -124) T) ((-533 . -970) T) ((-195 . -783) T) ((-521 . -970) T) ((-735 . -25) T) ((-735 . -21) T) ((-464 . -970) T) ((-547 . -23) T) ((-317 . -1182) 102788) ((-293 . -425) 102767) ((-313 . -284) 102754) ((-546 . -23) T) ((-401 . -124) T) ((-599 . -589) 102728) ((-222 . -935) 102712) ((-800 . -282) T) ((-1187 . -1177) 102696) ((-638 . -37) 102683) ((-521 . -210) T) ((-464 . -220) T) ((-464 . -210) T) ((-707 . -728) T) ((-707 . -731) T) ((-1059 . -212) 102633) ((-1002 . -837) 102612) ((-112 . -37) 102599) ((-188 . -736) T) ((-187 . -736) T) ((-186 . -736) T) ((-185 . -736) T) ((-800 . -946) 102578) ((-1176 . -460) 102562) ((-718 . -837) 102541) ((-716 . -837) 102520) ((-1093 . -1119) T) ((-427 . -837) 102499) ((-674 . -460) 102483) ((-1002 . -589) 102408) ((-718 . -589) 102333) ((-568 . -976) 102320) ((-451 . -1119) T) ((-317 . -342) T) ((-129 . -460) 102302) ((-716 . -589) 102227) ((-1050 . -1119) T) ((-434 . -589) 102198) ((-240 . -814) 102057) ((-224 . -814) NIL) ((-113 . -976) 102002) ((-427 . -589) 101927) ((-605 . -961) 101904) ((-568 . -107) 101889) ((-329 . -961) 101873) ((-326 . -961) 101857) ((-318 . -961) 101841) ((-240 . -961) 101687) ((-224 . -961) 101565) ((-113 . -107) 101494) ((-57 . -1119) T) ((-486 . -1119) T) ((-484 . -1119) T) ((-466 . -1119) T) ((-465 . -1119) T) ((-411 . -561) 101476) ((-408 . -561) 101458) ((-3 . -97) T) ((-951 . -1113) 101427) ((-769 . -97) T) ((-627 . -55) 101385) ((-636 . -970) T) ((-49 . -589) 101359) ((-264 . -425) T) ((-449 . -1113) 101328) ((0 . -97) T) ((-534 . -589) 101293) ((-485 . -589) 101238) ((-48 . -97) T) ((-838 . -961) 101225) ((-636 . -220) T) ((-996 . -383) 101204) ((-668 . -583) 101152) ((-924 . -1013) T) ((-649 . -157) 101043) ((-458 . -918) 101025) ((-240 . -351) 101009) ((-224 . -351) 100993) ((-373 . -1013) T) ((-313 . -37) 100977) ((-950 . -97) 100955) ((-195 . -918) 100937) ((-158 . -37) 100869) ((-1149 . -282) 100848) ((-1128 . -282) 100827) ((-599 . -663) T) ((-94 . -561) 100809) ((-1075 . -583) 100761) ((-456 . -25) T) ((-456 . -21) T) ((-1128 . -946) 100714) ((-568 . -970) T) ((-353 . -378) T) ((-364 . -97) T) ((-240 . -828) 100660) ((-224 . -828) 100637) ((-113 . -970) T) ((-752 . -1025) T) ((-1002 . -663) T) ((-568 . -210) 100616) ((-566 . -97) T) ((-718 . -663) T) ((-716 . -663) T) ((-387 . -1025) T) ((-113 . -220) T) ((-39 . -342) NIL) ((-113 . -210) NIL) ((-427 . -663) T) ((-752 . -23) T) ((-668 . -25) T) ((-668 . -21) T) ((-640 . -783) T) ((-993 . -261) 100595) ((-76 . -370) T) ((-76 . -369) T) ((-631 . -976) 100545) ((-1157 . -124) T) ((-1150 . -124) T) ((-1129 . -124) T) ((-1051 . -385) 100529) ((-579 . -341) 100461) ((-555 . -341) 100393) ((-1065 . -1058) 100377) ((-98 . -1013) 100355) ((-1082 . -25) T) ((-1082 . -21) T) ((-1081 . -21) T) ((-924 . -654) 100303) ((-200 . -589) 100270) ((-631 . -107) 100204) ((-49 . -663) T) ((-1081 . -25) T) ((-325 . -323) T) ((-1075 . -21) T) ((-996 . -425) 100155) ((-1075 . -25) T) ((-649 . -482) 100103) ((-534 . -663) T) ((-485 . -663) T) ((-1037 . -21) T) ((-1037 . -25) T) ((-547 . -124) T) ((-546 . -124) T) ((-333 . -425) T) ((-327 . -425) T) ((-319 . -425) T) ((-447 . -282) 100082) ((-287 . -261) 100017) ((-103 . -425) T) ((-77 . -414) T) ((-77 . -369) T) ((-450 . -97) T) ((-1191 . -561) 99999) ((-1191 . -562) 99981) ((-996 . -376) 99960) ((-959 . -460) 99891) ((-521 . -731) T) ((-521 . -728) T) ((-982 . -212) 99837) ((-333 . -376) 99788) ((-327 . -376) 99739) ((-319 . -376) 99690) ((-1178 . -1025) T) ((-1178 . -23) T) ((-1167 . -97) T) ((-159 . -561) 99672) ((-1051 . -977) T) ((-611 . -681) 99656) ((-1086 . -133) 99635) ((-1086 . -135) 99614) ((-1055 . -1013) T) ((-1055 . -989) 99583) ((-67 . -1119) T) ((-948 . -976) 99520) ((-794 . -977) T) ((-217 . -583) 99428) ((-631 . -970) T) ((-328 . -976) 99373) ((-59 . -1119) T) ((-948 . -107) 99289) ((-829 . -561) 99221) ((-631 . -220) T) ((-631 . -210) NIL) ((-776 . -781) 99200) ((-636 . -731) T) ((-636 . -728) T) ((-928 . -385) 99177) ((-328 . -107) 99106) ((-353 . -848) T) ((-381 . -781) 99085) ((-649 . -265) 98996) ((-200 . -663) T) ((-1157 . -462) 98962) ((-1150 . -462) 98928) ((-1129 . -462) 98894) ((-290 . -927) 98873) ((-199 . -1013) 98851) ((-293 . -899) 98814) ((-100 . -97) T) ((-47 . -976) 98779) ((-1187 . -97) T) ((-355 . -97) T) ((-47 . -107) 98735) ((-929 . -583) 98717) ((-1151 . -561) 98699) ((-493 . -97) T) ((-469 . -97) T) ((-1044 . -1045) 98683) ((-140 . -1172) 98667) ((-222 . -1119) T) ((-1080 . -1123) 98646) ((-1036 . -1123) 98625) ((-217 . -21) 98536) ((-217 . -25) 98388) ((-123 . -115) 98372) ((-117 . -115) 98356) ((-43 . -681) 98340) ((-1080 . -513) 98251) ((-1036 . -513) 98182) ((-959 . -261) 98157) ((-752 . -124) T) ((-113 . -731) NIL) ((-113 . -728) NIL) ((-329 . -282) T) ((-326 . -282) T) ((-318 . -282) T) ((-1008 . -1119) T) ((-227 . -1025) 98088) ((-226 . -1025) 98019) ((-948 . -970) T) ((-928 . -977) T) ((-317 . -589) 97964) ((-566 . -37) 97948) ((-1176 . -561) 97910) ((-1176 . -562) 97871) ((-993 . -561) 97853) ((-948 . -220) T) ((-328 . -970) T) ((-751 . -1172) 97823) ((-227 . -23) T) ((-226 . -23) T) ((-913 . -561) 97805) ((-674 . -562) 97766) ((-674 . -561) 97748) ((-735 . -783) 97727) ((-924 . -482) 97639) ((-328 . -210) T) ((-328 . -220) T) ((-1068 . -139) 97586) ((-929 . -25) T) ((-129 . -561) 97568) ((-129 . -562) 97527) ((-838 . -282) T) ((-929 . -21) T) ((-897 . -25) T) ((-842 . -21) T) ((-842 . -25) T) ((-401 . -21) T) ((-401 . -25) T) ((-776 . -385) 97511) ((-47 . -970) T) ((-1185 . -1177) 97495) ((-1183 . -1177) 97479) ((-959 . -554) 97454) ((-290 . -562) 97315) ((-290 . -561) 97297) ((-287 . -562) NIL) ((-287 . -561) 97279) ((-47 . -220) T) ((-47 . -210) T) ((-595 . -261) 97240) ((-507 . -212) 97190) ((-128 . -561) 97172) ((-110 . -561) 97154) ((-450 . -37) 97119) ((-1187 . -1184) 97098) ((-1178 . -124) T) ((-1186 . -977) T) ((-998 . -97) T) ((-86 . -1119) T) ((-469 . -284) NIL) ((-925 . -102) 97082) ((-817 . -1013) T) ((-813 . -1013) T) ((-1165 . -592) 97066) ((-1165 . -347) 97050) ((-301 . -1119) T) ((-544 . -783) T) ((-1051 . -1013) T) ((-1051 . -973) 96990) ((-98 . -482) 96923) ((-855 . -561) 96905) ((-317 . -663) T) ((-30 . -561) 96887) ((-794 . -1013) T) ((-776 . -977) 96866) ((-39 . -589) 96811) ((-202 . -1123) T) ((-381 . -977) T) ((-1067 . -139) 96793) ((-924 . -265) 96744) ((-202 . -513) T) ((-293 . -1146) 96728) ((-293 . -1143) 96698) ((-1093 . -1096) 96677) ((-991 . -561) 96659) ((-588 . -139) 96643) ((-576 . -139) 96589) ((-1093 . -102) 96539) ((-451 . -1096) 96518) ((-458 . -135) T) ((-458 . -133) NIL) ((-1031 . -562) 96433) ((-412 . -561) 96415) ((-195 . -135) T) ((-195 . -133) NIL) ((-1031 . -561) 96397) ((-51 . -97) T) ((-1129 . -583) 96349) ((-451 . -102) 96299) ((-919 . -23) T) ((-1187 . -37) 96269) ((-1080 . -1025) T) ((-1036 . -1025) T) ((-981 . -1123) T) ((-787 . -1025) T) ((-880 . -1123) 96248) ((-453 . -1123) 96227) ((-668 . -783) 96206) ((-981 . -513) T) ((-880 . -513) 96137) ((-1080 . -23) T) ((-1036 . -23) T) ((-787 . -23) T) ((-453 . -513) 96068) ((-1051 . -654) 96000) ((-1055 . -482) 95933) ((-959 . -562) NIL) ((-959 . -561) 95915) ((-794 . -654) 95885) ((-1114 . -46) 95854) ((-227 . -124) T) ((-226 . -124) T) ((-1017 . -1013) T) ((-928 . -1013) T) ((-60 . -561) 95836) ((-1075 . -783) NIL) ((-948 . -728) T) ((-948 . -731) T) ((-1191 . -976) 95823) ((-1191 . -107) 95808) ((-798 . -589) 95795) ((-1157 . -25) T) ((-1157 . -21) T) ((-1150 . -21) T) ((-1150 . -25) T) ((-1129 . -21) T) ((-1129 . -25) T) ((-951 . -139) 95779) ((-800 . -756) 95758) ((-800 . -848) T) ((-649 . -261) 95685) ((-547 . -21) T) ((-547 . -25) T) ((-546 . -21) T) ((-39 . -663) T) ((-199 . -482) 95618) ((-546 . -25) T) ((-449 . -139) 95602) ((-436 . -139) 95586) ((-849 . -663) T) ((-707 . -729) T) ((-707 . -730) T) ((-471 . -1013) T) ((-707 . -663) T) ((-202 . -337) T) ((-1065 . -1013) 95564) ((-799 . -1123) T) ((-595 . -561) 95546) ((-799 . -513) T) ((-631 . -342) NIL) ((-333 . -1172) 95530) ((-611 . -97) T) ((-327 . -1172) 95514) ((-319 . -1172) 95498) ((-1186 . -1013) T) ((-487 . -783) 95477) ((-753 . -425) 95456) ((-967 . -1013) T) ((-967 . -989) 95385) ((-951 . -902) 95354) ((-755 . -1025) T) ((-928 . -654) 95299) ((-360 . -1025) T) ((-449 . -902) 95268) ((-436 . -902) 95237) ((-106 . -139) 95219) ((-71 . -561) 95201) ((-821 . -561) 95183) ((-996 . -661) 95162) ((-1191 . -970) T) ((-752 . -583) 95110) ((-269 . -977) 95053) ((-154 . -1123) 94958) ((-202 . -1025) T) ((-298 . -23) T) ((-1075 . -918) 94910) ((-776 . -1013) T) ((-1037 . -677) 94889) ((-1151 . -976) 94794) ((-1149 . -848) 94773) ((-798 . -663) T) ((-154 . -513) 94684) ((-1128 . -848) 94663) ((-533 . -589) 94650) ((-381 . -1013) T) ((-521 . -589) 94637) ((-239 . -1013) T) ((-464 . -589) 94602) ((-202 . -23) T) ((-1128 . -756) 94555) ((-1185 . -97) T) ((-328 . -1182) 94532) ((-1183 . -97) T) ((-1151 . -107) 94424) ((-132 . -561) 94406) ((-919 . -124) T) ((-43 . -97) T) ((-217 . -783) 94357) ((-1138 . -1123) 94336) ((-98 . -460) 94320) ((-1186 . -654) 94290) ((-1002 . -46) 94251) ((-981 . -1025) T) ((-880 . -1025) T) ((-123 . -33) T) ((-117 . -33) T) ((-718 . -46) 94228) ((-716 . -46) 94200) ((-1138 . -513) 94111) ((-328 . -342) T) ((-453 . -1025) T) ((-1080 . -124) T) ((-1036 . -124) T) ((-427 . -46) 94090) ((-799 . -337) T) ((-787 . -124) T) ((-140 . -97) T) ((-981 . -23) T) ((-880 . -23) T) ((-528 . -513) T) ((-752 . -25) T) ((-752 . -21) T) ((-1051 . -482) 94023) ((-538 . -961) 94007) ((-453 . -23) T) ((-325 . -977) T) ((-1114 . -828) 93988) ((-611 . -284) 93926) ((-1026 . -1172) 93896) ((-636 . -589) 93861) ((-928 . -157) T) ((-890 . -133) 93840) ((-579 . -1013) T) ((-555 . -1013) T) ((-890 . -135) 93819) ((-929 . -783) T) ((-672 . -135) 93798) ((-672 . -133) 93777) ((-897 . -783) T) ((-447 . -848) 93756) ((-290 . -976) 93666) ((-287 . -976) 93595) ((-924 . -261) 93553) ((-381 . -654) 93505) ((-638 . -781) T) ((-1151 . -970) T) ((-290 . -107) 93401) ((-287 . -107) 93314) ((-891 . -97) T) ((-751 . -97) 93125) ((-649 . -562) NIL) ((-649 . -561) 93107) ((-599 . -961) 93005) ((-1151 . -300) 92949) ((-959 . -263) 92924) ((-533 . -663) T) ((-521 . -730) T) ((-154 . -337) 92875) ((-521 . -727) T) ((-521 . -663) T) ((-464 . -663) T) ((-1055 . -460) 92859) ((-1002 . -814) NIL) ((-799 . -1025) T) ((-113 . -837) NIL) ((-1185 . -1184) 92835) ((-1183 . -1184) 92814) ((-718 . -814) NIL) ((-716 . -814) 92673) ((-1178 . -25) T) ((-1178 . -21) T) ((-1117 . -97) 92651) ((-1019 . -369) T) ((-568 . -589) 92638) ((-427 . -814) NIL) ((-615 . -97) 92616) ((-1002 . -961) 92445) ((-799 . -23) T) ((-718 . -961) 92307) ((-716 . -961) 92166) ((-113 . -589) 92111) ((-427 . -961) 91989) ((-590 . -961) 91973) ((-571 . -97) T) ((-199 . -460) 91957) ((-1165 . -33) T) ((-579 . -654) 91941) ((-555 . -654) 91925) ((-611 . -37) 91885) ((-293 . -97) T) ((-83 . -561) 91867) ((-49 . -961) 91851) ((-1031 . -976) 91838) ((-1002 . -351) 91822) ((-58 . -55) 91784) ((-636 . -730) T) ((-636 . -727) T) ((-534 . -961) 91771) ((-485 . -961) 91748) ((-636 . -663) T) ((-290 . -970) 91639) ((-298 . -124) T) ((-287 . -970) T) ((-154 . -1025) T) ((-718 . -351) 91623) ((-716 . -351) 91607) ((-44 . -139) 91557) ((-929 . -918) 91539) ((-427 . -351) 91523) ((-381 . -157) T) ((-290 . -220) 91502) ((-287 . -220) T) ((-287 . -210) NIL) ((-269 . -1013) 91285) ((-202 . -124) T) ((-1031 . -107) 91270) ((-154 . -23) T) ((-735 . -135) 91249) ((-735 . -133) 91228) ((-227 . -583) 91136) ((-226 . -583) 91044) ((-293 . -259) 91010) ((-1065 . -482) 90943) ((-1044 . -1013) T) ((-202 . -979) T) ((-751 . -284) 90881) ((-1002 . -828) 90816) ((-718 . -828) 90760) ((-716 . -828) 90744) ((-1185 . -37) 90714) ((-1183 . -37) 90684) ((-1138 . -1025) T) ((-788 . -1025) T) ((-427 . -828) 90661) ((-790 . -1013) T) ((-1138 . -23) T) ((-528 . -1025) T) ((-788 . -23) T) ((-568 . -663) T) ((-329 . -848) T) ((-326 . -848) T) ((-264 . -97) T) ((-318 . -848) T) ((-981 . -124) T) ((-880 . -124) T) ((-113 . -730) NIL) ((-113 . -727) NIL) ((-113 . -663) T) ((-631 . -837) NIL) ((-967 . -482) 90562) ((-453 . -124) T) ((-528 . -23) T) ((-615 . -284) 90500) ((-579 . -698) T) ((-555 . -698) T) ((-1129 . -783) NIL) ((-928 . -265) T) ((-227 . -21) T) ((-631 . -589) 90450) ((-325 . -1013) T) ((-227 . -25) T) ((-226 . -21) T) ((-226 . -25) T) ((-140 . -37) 90434) ((-2 . -97) T) ((-838 . -848) T) ((-454 . -1172) 90404) ((-200 . -961) 90381) ((-1031 . -970) T) ((-648 . -282) T) ((-269 . -654) 90323) ((-638 . -977) T) ((-458 . -425) T) ((-381 . -482) 90235) ((-195 . -425) T) ((-1031 . -210) T) ((-270 . -139) 90185) ((-924 . -562) 90146) ((-924 . -561) 90128) ((-915 . -561) 90110) ((-112 . -977) T) ((-595 . -976) 90094) ((-202 . -462) T) ((-373 . -561) 90076) ((-373 . -562) 90053) ((-974 . -1172) 90023) ((-595 . -107) 90002) ((-1051 . -460) 89986) ((-751 . -37) 89956) ((-61 . -414) T) ((-61 . -369) T) ((-1068 . -97) T) ((-799 . -124) T) ((-455 . -97) 89934) ((-1191 . -342) T) ((-996 . -97) T) ((-980 . -97) T) ((-325 . -654) 89879) ((-668 . -135) 89858) ((-668 . -133) 89837) ((-948 . -589) 89774) ((-490 . -1013) 89752) ((-333 . -97) T) ((-327 . -97) T) ((-319 . -97) T) ((-103 . -97) T) ((-473 . -1013) T) ((-328 . -589) 89697) ((-1080 . -583) 89645) ((-1036 . -583) 89593) ((-359 . -477) 89572) ((-769 . -781) 89551) ((-353 . -1123) T) ((-631 . -663) T) ((-313 . -977) T) ((-1129 . -918) 89503) ((-158 . -977) T) ((-98 . -561) 89435) ((-1082 . -133) 89414) ((-1082 . -135) 89393) ((-353 . -513) T) ((-1081 . -135) 89372) ((-1081 . -133) 89351) ((-1075 . -133) 89258) ((-381 . -265) T) ((-1075 . -135) 89165) ((-1037 . -135) 89144) ((-1037 . -133) 89123) ((-293 . -37) 88964) ((-154 . -124) T) ((-287 . -731) NIL) ((-287 . -728) NIL) ((-595 . -970) T) ((-47 . -589) 88929) ((-919 . -21) T) ((-123 . -935) 88913) ((-117 . -935) 88897) ((-919 . -25) T) ((-829 . -115) 88881) ((-1067 . -97) T) ((-752 . -783) 88860) ((-1138 . -124) T) ((-1080 . -25) T) ((-1080 . -21) T) ((-788 . -124) T) ((-1036 . -25) T) ((-1036 . -21) T) ((-787 . -25) T) ((-787 . -21) T) ((-718 . -282) 88839) ((-588 . -97) 88817) ((-576 . -97) T) ((-1068 . -284) 88612) ((-528 . -124) T) ((-566 . -781) 88591) ((-1065 . -460) 88575) ((-1059 . -139) 88525) ((-1055 . -561) 88487) ((-1055 . -562) 88448) ((-948 . -727) T) ((-948 . -730) T) ((-948 . -663) T) ((-455 . -284) 88386) ((-426 . -391) 88356) ((-325 . -157) T) ((-264 . -37) 88343) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-317 . -961) 88320) ((-191 . -97) T) ((-190 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-185 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-649 . -976) 88143) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-328 . -663) T) ((-649 . -107) 87952) ((-611 . -208) 87936) ((-534 . -282) T) ((-485 . -282) T) ((-269 . -482) 87885) ((-103 . -284) NIL) ((-70 . -369) T) ((-1026 . -97) 87696) ((-769 . -385) 87680) ((-1031 . -731) T) ((-1031 . -728) T) ((-638 . -1013) T) ((-353 . -337) T) ((-154 . -462) 87658) ((-199 . -561) 87590) ((-126 . -1013) T) ((-112 . -1013) T) ((-47 . -663) T) ((-967 . -460) 87555) ((-129 . -399) 87537) ((-129 . -342) T) ((-951 . -97) T) ((-480 . -477) 87516) ((-449 . -97) T) ((-436 . -97) T) ((-958 . -1025) T) ((-1082 . -34) 87482) ((-1082 . -91) 87448) ((-1082 . -1108) 87414) ((-1082 . -1105) 87380) ((-1067 . -284) NIL) ((-87 . -370) T) ((-87 . -369) T) ((-996 . -1060) 87359) ((-1081 . -1105) 87325) ((-1081 . -1108) 87291) ((-958 . -23) T) ((-1081 . -91) 87257) ((-528 . -462) T) ((-1081 . -34) 87223) ((-1075 . -1105) 87189) ((-1075 . -1108) 87155) ((-1075 . -91) 87121) ((-335 . -1025) T) ((-333 . -1060) 87100) ((-327 . -1060) 87079) ((-319 . -1060) 87058) ((-1075 . -34) 87024) ((-1037 . -34) 86990) ((-1037 . -91) 86956) ((-103 . -1060) T) ((-1037 . -1108) 86922) ((-769 . -977) 86901) ((-588 . -284) 86839) ((-576 . -284) 86690) ((-1037 . -1105) 86656) ((-649 . -970) T) ((-981 . -583) 86638) ((-996 . -37) 86506) ((-880 . -583) 86454) ((-929 . -135) T) ((-929 . -133) NIL) ((-353 . -1025) T) ((-298 . -25) T) ((-296 . -23) T) ((-871 . -783) 86433) ((-649 . -300) 86410) ((-453 . -583) 86358) ((-39 . -961) 86248) ((-638 . -654) 86235) ((-649 . -210) T) ((-313 . -1013) T) ((-158 . -1013) T) ((-305 . -783) T) ((-392 . -425) 86185) ((-353 . -23) T) ((-333 . -37) 86150) ((-327 . -37) 86115) ((-319 . -37) 86080) ((-78 . -414) T) ((-78 . -369) T) ((-202 . -25) T) ((-202 . -21) T) ((-770 . -1025) T) ((-103 . -37) 86030) ((-763 . -1025) T) ((-710 . -1013) T) ((-112 . -654) 86017) ((-612 . -961) 86001) ((-560 . -97) T) ((-770 . -23) T) ((-763 . -23) T) ((-1065 . -261) 85978) ((-1026 . -284) 85916) ((-1015 . -212) 85900) ((-62 . -370) T) ((-62 . -369) T) ((-106 . -97) T) ((-39 . -351) 85877) ((-594 . -785) 85861) ((-981 . -21) T) ((-981 . -25) T) ((-751 . -208) 85831) ((-880 . -25) T) ((-880 . -21) T) ((-566 . -977) T) ((-453 . -25) T) ((-453 . -21) T) ((-951 . -284) 85769) ((-817 . -561) 85751) ((-813 . -561) 85733) ((-227 . -783) 85684) ((-226 . -783) 85635) ((-490 . -482) 85568) ((-799 . -583) 85545) ((-449 . -284) 85483) ((-436 . -284) 85421) ((-325 . -265) T) ((-1065 . -1153) 85405) ((-1051 . -561) 85367) ((-1051 . -562) 85328) ((-1049 . -97) T) ((-924 . -976) 85224) ((-39 . -828) 85176) ((-1065 . -554) 85153) ((-1191 . -589) 85140) ((-982 . -139) 85086) ((-800 . -1123) T) ((-924 . -107) 84968) ((-313 . -654) 84952) ((-794 . -561) 84934) ((-158 . -654) 84866) ((-381 . -261) 84824) ((-800 . -513) T) ((-103 . -374) 84806) ((-82 . -358) T) ((-82 . -369) T) ((-638 . -157) T) ((-94 . -663) T) ((-454 . -97) 84617) ((-94 . -446) T) ((-112 . -157) T) ((-1026 . -37) 84587) ((-154 . -583) 84535) ((-974 . -97) T) ((-799 . -25) T) ((-751 . -215) 84514) ((-799 . -21) T) ((-754 . -97) T) ((-388 . -97) T) ((-359 . -97) T) ((-106 . -284) NIL) ((-204 . -97) 84492) ((-123 . -1119) T) ((-117 . -1119) T) ((-958 . -124) T) ((-611 . -341) 84476) ((-924 . -970) T) ((-1138 . -583) 84424) ((-1017 . -561) 84406) ((-928 . -561) 84388) ((-483 . -23) T) ((-478 . -23) T) ((-317 . -282) T) ((-476 . -23) T) ((-296 . -124) T) ((-3 . -1013) T) ((-928 . -562) 84372) ((-924 . -220) 84351) ((-924 . -210) 84330) ((-1191 . -663) T) ((-1157 . -133) 84309) ((-769 . -1013) T) ((-1157 . -135) 84288) ((-1150 . -135) 84267) ((-1150 . -133) 84246) ((-1149 . -1123) 84225) ((-1129 . -133) 84132) ((-1129 . -135) 84039) ((-1128 . -1123) 84018) ((-353 . -124) T) ((-521 . -814) 84000) ((0 . -1013) T) ((-158 . -157) T) ((-154 . -21) T) ((-154 . -25) T) ((-48 . -1013) T) ((-1151 . -589) 83905) ((-1149 . -513) 83856) ((-651 . -1025) T) ((-1128 . -513) 83807) ((-521 . -961) 83789) ((-546 . -135) 83768) ((-546 . -133) 83747) ((-464 . -961) 83690) ((-85 . -358) T) ((-85 . -369) T) ((-800 . -337) T) ((-770 . -124) T) ((-763 . -124) T) ((-651 . -23) T) ((-471 . -561) 83672) ((-1187 . -977) T) ((-353 . -979) T) ((-950 . -1013) 83650) ((-829 . -33) T) ((-454 . -284) 83588) ((-1065 . -562) 83549) ((-1065 . -561) 83481) ((-1080 . -783) 83460) ((-44 . -97) T) ((-1036 . -783) 83439) ((-753 . -97) T) ((-1138 . -25) T) ((-1138 . -21) T) ((-788 . -25) T) ((-43 . -341) 83423) ((-788 . -21) T) ((-668 . -425) 83374) ((-1186 . -561) 83356) ((-528 . -25) T) ((-528 . -21) T) ((-364 . -1013) T) ((-974 . -284) 83294) ((-566 . -1013) T) ((-636 . -814) 83276) ((-1165 . -1119) T) ((-204 . -284) 83214) ((-132 . -342) T) ((-967 . -562) 83156) ((-967 . -561) 83099) ((-287 . -837) NIL) ((-636 . -961) 83044) ((-648 . -848) T) ((-447 . -1123) 83023) ((-1081 . -425) 83002) ((-1075 . -425) 82981) ((-304 . -97) T) ((-800 . -1025) T) ((-290 . -589) 82803) ((-287 . -589) 82732) ((-447 . -513) 82683) ((-313 . -482) 82649) ((-507 . -139) 82599) ((-39 . -282) T) ((-776 . -561) 82581) ((-638 . -265) T) ((-800 . -23) T) ((-353 . -462) T) ((-996 . -208) 82551) ((-480 . -97) T) ((-381 . -562) 82359) ((-381 . -561) 82341) ((-239 . -561) 82323) ((-112 . -265) T) ((-1151 . -663) T) ((-1149 . -337) 82302) ((-1128 . -337) 82281) ((-1176 . -33) T) ((-113 . -1119) T) ((-103 . -208) 82263) ((-1086 . -97) T) ((-450 . -1013) T) ((-490 . -460) 82247) ((-674 . -33) T) ((-454 . -37) 82217) ((-129 . -33) T) ((-113 . -812) 82194) ((-113 . -814) NIL) ((-568 . -961) 82079) ((-587 . -783) 82058) ((-1175 . -97) T) ((-270 . -97) T) ((-649 . -342) 82037) ((-113 . -961) 82014) ((-364 . -654) 81998) ((-566 . -654) 81982) ((-44 . -284) 81786) ((-752 . -133) 81765) ((-752 . -135) 81744) ((-1186 . -356) 81723) ((-755 . -783) T) ((-1167 . -1013) T) ((-1068 . -206) 81670) ((-360 . -783) 81649) ((-1157 . -1108) 81615) ((-1157 . -1105) 81581) ((-1150 . -1105) 81547) ((-483 . -124) T) ((-1150 . -1108) 81513) ((-1129 . -1105) 81479) ((-1129 . -1108) 81445) ((-1157 . -34) 81411) ((-1157 . -91) 81377) ((-579 . -561) 81346) ((-555 . -561) 81315) ((-202 . -783) T) ((-1150 . -91) 81281) ((-1150 . -34) 81247) ((-1149 . -1025) T) ((-1031 . -589) 81234) ((-1129 . -91) 81200) ((-1128 . -1025) T) ((-544 . -139) 81182) ((-996 . -323) 81161) ((-113 . -351) 81138) ((-113 . -312) 81115) ((-158 . -265) T) ((-1129 . -34) 81081) ((-798 . -282) T) ((-287 . -730) NIL) ((-287 . -727) NIL) ((-290 . -663) 80931) ((-287 . -663) T) ((-447 . -337) 80910) ((-333 . -323) 80889) ((-327 . -323) 80868) ((-319 . -323) 80847) ((-290 . -446) 80826) ((-1149 . -23) T) ((-1128 . -23) T) ((-655 . -1025) T) ((-651 . -124) T) ((-594 . -97) T) ((-450 . -654) 80791) ((-44 . -257) 80741) ((-100 . -1013) T) ((-66 . -561) 80723) ((-793 . -97) T) ((-568 . -828) 80682) ((-1187 . -1013) T) ((-355 . -1013) T) ((-80 . -1119) T) ((-981 . -783) T) ((-880 . -783) 80661) ((-113 . -828) NIL) ((-718 . -848) 80640) ((-650 . -783) T) ((-493 . -1013) T) ((-469 . -1013) T) ((-329 . -1123) T) ((-326 . -1123) T) ((-318 . -1123) T) ((-240 . -1123) 80619) ((-224 . -1123) 80598) ((-1026 . -208) 80568) ((-453 . -783) 80547) ((-1051 . -976) 80531) ((-364 . -698) T) ((-1067 . -764) T) ((-631 . -1119) T) ((-329 . -513) T) ((-326 . -513) T) ((-318 . -513) T) ((-240 . -513) 80462) ((-224 . -513) 80393) ((-1051 . -107) 80372) ((-426 . -681) 80342) ((-794 . -976) 80312) ((-753 . -37) 80254) ((-631 . -812) 80236) ((-631 . -814) 80218) ((-270 . -284) 80022) ((-838 . -1123) T) ((-611 . -385) 80006) ((-794 . -107) 79971) ((-631 . -961) 79916) ((-929 . -425) T) ((-838 . -513) T) ((-534 . -848) T) ((-447 . -1025) T) ((-485 . -848) T) ((-1065 . -263) 79893) ((-842 . -425) T) ((-63 . -561) 79875) ((-576 . -206) 79821) ((-447 . -23) T) ((-1031 . -730) T) ((-800 . -124) T) ((-1031 . -727) T) ((-1178 . -1180) 79800) ((-1031 . -663) T) ((-595 . -589) 79774) ((-269 . -561) 79516) ((-959 . -33) T) ((-751 . -781) 79495) ((-533 . -282) T) ((-521 . -282) T) ((-464 . -282) T) ((-1187 . -654) 79465) ((-631 . -351) 79447) ((-631 . -312) 79429) ((-450 . -157) T) ((-355 . -654) 79399) ((-799 . -783) NIL) ((-521 . -946) T) ((-464 . -946) T) ((-1044 . -561) 79381) ((-1026 . -215) 79360) ((-192 . -97) T) ((-1059 . -97) T) ((-69 . -561) 79342) ((-1051 . -970) T) ((-1086 . -37) 79239) ((-790 . -561) 79221) ((-521 . -506) T) ((-611 . -977) T) ((-668 . -877) 79174) ((-1051 . -210) 79153) ((-998 . -1013) T) ((-958 . -25) T) ((-958 . -21) T) ((-928 . -976) 79098) ((-833 . -97) T) ((-794 . -970) T) ((-631 . -828) NIL) ((-329 . -303) 79082) ((-329 . -337) T) ((-326 . -303) 79066) ((-326 . -337) T) ((-318 . -303) 79050) ((-318 . -337) T) ((-458 . -97) T) ((-1175 . -37) 79020) ((-490 . -625) 78970) ((-195 . -97) T) ((-948 . -961) 78852) ((-928 . -107) 78781) ((-1082 . -899) 78751) ((-1081 . -899) 78714) ((-487 . -139) 78698) ((-996 . -344) 78677) ((-325 . -561) 78659) ((-296 . -21) T) ((-328 . -961) 78636) ((-296 . -25) T) ((-1075 . -899) 78606) ((-1037 . -899) 78573) ((-74 . -561) 78555) ((-636 . -282) T) ((-154 . -783) 78534) ((-838 . -337) T) ((-353 . -25) T) ((-353 . -21) T) ((-838 . -303) 78521) ((-84 . -561) 78503) ((-636 . -946) T) ((-616 . -783) T) ((-1149 . -124) T) ((-1128 . -124) T) ((-829 . -935) 78487) ((-770 . -21) T) ((-47 . -961) 78430) ((-770 . -25) T) ((-763 . -25) T) ((-763 . -21) T) ((-1185 . -977) T) ((-1183 . -977) T) ((-595 . -663) T) ((-1186 . -976) 78414) ((-1138 . -783) 78393) ((-751 . -385) 78362) ((-98 . -115) 78346) ((-51 . -1013) T) ((-854 . -561) 78328) ((-799 . -918) 78305) ((-759 . -97) T) ((-1186 . -107) 78284) ((-594 . -37) 78254) ((-528 . -783) T) ((-329 . -1025) T) ((-326 . -1025) T) ((-318 . -1025) T) ((-240 . -1025) T) ((-224 . -1025) T) ((-568 . -282) 78233) ((-1059 . -284) 78037) ((-605 . -23) T) ((-454 . -208) 78007) ((-140 . -977) T) ((-329 . -23) T) ((-326 . -23) T) ((-318 . -23) T) ((-113 . -282) T) ((-240 . -23) T) ((-224 . -23) T) ((-928 . -970) T) ((-649 . -837) 77986) ((-928 . -210) 77958) ((-928 . -220) T) ((-113 . -946) NIL) ((-838 . -1025) T) ((-1150 . -425) 77937) ((-1129 . -425) 77916) ((-490 . -561) 77848) ((-649 . -589) 77773) ((-381 . -976) 77725) ((-473 . -561) 77707) ((-838 . -23) T) ((-458 . -284) NIL) ((-447 . -124) T) ((-195 . -284) NIL) ((-381 . -107) 77645) ((-751 . -977) 77576) ((-674 . -1011) 77560) ((-1149 . -462) 77526) ((-1128 . -462) 77492) ((-129 . -1011) 77474) ((-450 . -265) T) ((-1186 . -970) T) ((-982 . -97) T) ((-469 . -482) NIL) ((-640 . -97) T) ((-454 . -215) 77453) ((-1080 . -133) 77432) ((-1080 . -135) 77411) ((-1036 . -135) 77390) ((-1036 . -133) 77369) ((-579 . -976) 77353) ((-555 . -976) 77337) ((-611 . -1013) T) ((-611 . -973) 77277) ((-1082 . -1156) 77261) ((-1082 . -1143) 77238) ((-458 . -1060) T) ((-1081 . -1148) 77199) ((-1081 . -1143) 77169) ((-1081 . -1146) 77153) ((-195 . -1060) T) ((-317 . -848) T) ((-754 . -242) 77137) ((-579 . -107) 77116) ((-555 . -107) 77095) ((-1075 . -1127) 77056) ((-776 . -970) 77035) ((-1075 . -1143) 77012) ((-483 . -25) T) ((-464 . -277) T) ((-479 . -23) T) ((-478 . -25) T) ((-476 . -25) T) ((-475 . -23) T) ((-1075 . -1125) 76996) ((-381 . -970) T) ((-293 . -977) T) ((-631 . -282) T) ((-103 . -781) T) ((-381 . -220) T) ((-381 . -210) 76975) ((-649 . -663) T) ((-458 . -37) 76925) ((-195 . -37) 76875) ((-447 . -462) 76841) ((-1067 . -1053) T) ((-1014 . -97) T) ((-638 . -561) 76823) ((-638 . -562) 76738) ((-651 . -21) T) ((-651 . -25) T) ((-126 . -561) 76720) ((-112 . -561) 76702) ((-143 . -25) T) ((-1185 . -1013) T) ((-800 . -583) 76650) ((-1183 . -1013) T) ((-890 . -97) T) ((-672 . -97) T) ((-652 . -97) T) ((-426 . -97) T) ((-752 . -425) 76601) ((-43 . -1013) T) ((-1003 . -783) T) ((-605 . -124) T) ((-982 . -284) 76452) ((-611 . -654) 76436) ((-264 . -977) T) ((-329 . -124) T) ((-326 . -124) T) ((-318 . -124) T) ((-240 . -124) T) ((-224 . -124) T) ((-392 . -97) T) ((-140 . -1013) T) ((-44 . -206) 76386) ((-885 . -783) 76365) ((-924 . -589) 76303) ((-217 . -1172) 76273) ((-948 . -282) T) ((-269 . -976) 76195) ((-838 . -124) T) ((-39 . -848) T) ((-458 . -374) 76177) ((-328 . -282) T) ((-195 . -374) 76159) ((-996 . -385) 76143) ((-269 . -107) 76060) ((-800 . -25) T) ((-800 . -21) T) ((-313 . -561) 76042) ((-1151 . -46) 75986) ((-202 . -135) T) ((-158 . -561) 75968) ((-1026 . -781) 75947) ((-710 . -561) 75929) ((-556 . -212) 75876) ((-448 . -212) 75826) ((-1185 . -654) 75796) ((-47 . -282) T) ((-1183 . -654) 75766) ((-891 . -1013) T) ((-751 . -1013) 75577) ((-286 . -97) T) ((-829 . -1119) T) ((-47 . -946) T) ((-1128 . -583) 75485) ((-627 . -97) 75463) ((-43 . -654) 75447) ((-507 . -97) T) ((-65 . -357) T) ((-65 . -369) T) ((-603 . -23) T) ((-611 . -698) T) ((-1117 . -1013) 75425) ((-325 . -976) 75370) ((-615 . -1013) 75348) ((-981 . -135) T) ((-880 . -135) 75327) ((-880 . -133) 75306) ((-735 . -97) T) ((-140 . -654) 75290) ((-453 . -135) 75269) ((-453 . -133) 75248) ((-325 . -107) 75177) ((-996 . -977) T) ((-296 . -783) 75156) ((-1157 . -899) 75126) ((-571 . -1013) T) ((-1150 . -899) 75089) ((-479 . -124) T) ((-475 . -124) T) ((-270 . -206) 75039) ((-333 . -977) T) ((-327 . -977) T) ((-319 . -977) T) ((-269 . -970) 74982) ((-1129 . -899) 74952) ((-353 . -783) T) ((-103 . -977) T) ((-924 . -663) T) ((-798 . -848) T) ((-776 . -731) 74931) ((-776 . -728) 74910) ((-392 . -284) 74849) ((-441 . -97) T) ((-546 . -899) 74819) ((-293 . -1013) T) ((-381 . -731) 74798) ((-381 . -728) 74777) ((-469 . -460) 74759) ((-1151 . -961) 74725) ((-1149 . -21) T) ((-1149 . -25) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-751 . -654) 74667) ((-636 . -378) T) ((-1176 . -1119) T) ((-1026 . -385) 74636) ((-928 . -342) NIL) ((-98 . -33) T) ((-674 . -1119) T) ((-43 . -698) T) ((-544 . -97) T) ((-75 . -370) T) ((-75 . -369) T) ((-594 . -597) 74620) ((-129 . -1119) T) ((-799 . -135) T) ((-799 . -133) NIL) ((-325 . -970) T) ((-68 . -357) T) ((-68 . -369) T) ((-1074 . -97) T) ((-611 . -482) 74553) ((-627 . -284) 74491) ((-890 . -37) 74388) ((-672 . -37) 74358) ((-507 . -284) 74162) ((-290 . -1119) T) ((-325 . -210) T) ((-325 . -220) T) ((-287 . -1119) T) ((-264 . -1013) T) ((-1088 . -561) 74144) ((-648 . -1123) T) ((-1065 . -592) 74128) ((-1114 . -513) 74107) ((-648 . -513) T) ((-290 . -812) 74091) ((-290 . -814) 74016) ((-287 . -812) 73977) ((-287 . -814) NIL) ((-735 . -284) 73942) ((-293 . -654) 73783) ((-298 . -297) 73760) ((-456 . -97) T) ((-447 . -25) T) ((-447 . -21) T) ((-392 . -37) 73734) ((-290 . -961) 73402) ((-202 . -1105) T) ((-202 . -1108) T) ((-3 . -561) 73384) ((-287 . -961) 73314) ((-2 . -1013) T) ((-2 . |RecordCategory|) T) ((-769 . -561) 73296) ((-1026 . -977) 73227) ((-533 . -848) T) ((-521 . -756) T) ((-521 . -848) T) ((-464 . -848) T) ((-128 . -961) 73211) ((-202 . -91) T) ((-154 . -135) 73190) ((-73 . -414) T) ((0 . -561) 73172) ((-73 . -369) T) ((-154 . -133) 73123) ((-202 . -34) T) ((-48 . -561) 73105) ((-450 . -977) T) ((-458 . -208) 73087) ((-455 . -895) 73071) ((-454 . -781) 73050) ((-195 . -208) 73032) ((-79 . -414) T) ((-79 . -369) T) ((-1055 . -33) T) ((-751 . -157) 73011) ((-668 . -97) T) ((-950 . -561) 72978) ((-469 . -261) 72953) ((-290 . -351) 72923) ((-287 . -351) 72884) ((-287 . -312) 72845) ((-1000 . -561) 72827) ((-752 . -877) 72774) ((-603 . -124) T) ((-1138 . -133) 72753) ((-1138 . -135) 72732) ((-1082 . -97) T) ((-1081 . -97) T) ((-1075 . -97) T) ((-1068 . -1013) T) ((-1037 . -97) T) ((-199 . -33) T) ((-264 . -654) 72719) ((-1068 . -558) 72695) ((-544 . -284) NIL) ((-455 . -1013) 72673) ((-364 . -561) 72655) ((-478 . -783) T) ((-1059 . -206) 72605) ((-1157 . -1156) 72589) ((-1157 . -1143) 72566) ((-1150 . -1148) 72527) ((-1150 . -1143) 72497) ((-1150 . -1146) 72481) ((-1129 . -1127) 72442) ((-1129 . -1143) 72419) ((-566 . -561) 72401) ((-1129 . -1125) 72385) ((-636 . -848) T) ((-1082 . -259) 72351) ((-1081 . -259) 72317) ((-1075 . -259) 72283) ((-996 . -1013) T) ((-980 . -1013) T) ((-47 . -277) T) ((-290 . -828) 72250) ((-287 . -828) NIL) ((-980 . -986) 72229) ((-1031 . -814) 72211) ((-735 . -37) 72195) ((-240 . -583) 72143) ((-224 . -583) 72091) ((-638 . -976) 72078) ((-546 . -1143) 72055) ((-1037 . -259) 72021) ((-293 . -157) 71952) ((-333 . -1013) T) ((-327 . -1013) T) ((-319 . -1013) T) ((-469 . -19) 71934) ((-1031 . -961) 71916) ((-1015 . -139) 71900) ((-103 . -1013) T) ((-112 . -976) 71887) ((-648 . -337) T) ((-469 . -554) 71862) ((-638 . -107) 71847) ((-410 . -97) T) ((-44 . -1058) 71797) ((-112 . -107) 71782) ((-579 . -657) T) ((-555 . -657) T) ((-751 . -482) 71715) ((-959 . -1119) T) ((-871 . -139) 71699) ((-487 . -97) 71649) ((-1002 . -1123) 71628) ((-450 . -561) 71580) ((-450 . -562) 71502) ((-60 . -1119) T) ((-718 . -1123) 71481) ((-716 . -1123) 71460) ((-1080 . -425) 71391) ((-1067 . -1013) T) ((-1051 . -589) 71365) ((-1002 . -513) 71296) ((-454 . -385) 71265) ((-568 . -848) 71244) ((-427 . -1123) 71223) ((-1036 . -425) 71174) ((-372 . -561) 71156) ((-615 . -482) 71089) ((-718 . -513) 71000) ((-716 . -513) 70931) ((-668 . -284) 70918) ((-605 . -25) T) ((-605 . -21) T) ((-427 . -513) 70849) ((-113 . -848) T) ((-113 . -756) NIL) ((-329 . -25) T) ((-329 . -21) T) ((-326 . -25) T) ((-326 . -21) T) ((-318 . -25) T) ((-318 . -21) T) ((-240 . -25) T) ((-240 . -21) T) ((-81 . -358) T) ((-81 . -369) T) ((-224 . -25) T) ((-224 . -21) T) ((-1167 . -561) 70831) ((-1114 . -1025) T) ((-1114 . -23) T) ((-1075 . -284) 70716) ((-1037 . -284) 70703) ((-794 . -589) 70663) ((-996 . -654) 70531) ((-871 . -906) 70515) ((-264 . -157) T) ((-838 . -21) T) ((-838 . -25) T) ((-800 . -783) 70466) ((-648 . -1025) T) ((-648 . -23) T) ((-588 . -1013) 70444) ((-576 . -558) 70419) ((-576 . -1013) T) ((-534 . -1123) T) ((-485 . -1123) T) ((-534 . -513) T) ((-485 . -513) T) ((-333 . -654) 70371) ((-327 . -654) 70323) ((-158 . -976) 70255) ((-313 . -976) 70239) ((-103 . -654) 70189) ((-158 . -107) 70100) ((-319 . -654) 70052) ((-313 . -107) 70031) ((-250 . -1013) T) ((-249 . -1013) T) ((-248 . -1013) T) ((-247 . -1013) T) ((-638 . -970) T) ((-246 . -1013) T) ((-245 . -1013) T) ((-244 . -1013) T) ((-191 . -1013) T) ((-190 . -1013) T) ((-188 . -1013) T) ((-154 . -1108) 70009) ((-154 . -1105) 69987) ((-187 . -1013) T) ((-186 . -1013) T) ((-112 . -970) T) ((-185 . -1013) T) ((-182 . -1013) T) ((-638 . -210) T) ((-181 . -1013) T) ((-180 . -1013) T) ((-179 . -1013) T) ((-178 . -1013) T) ((-177 . -1013) T) ((-176 . -1013) T) ((-175 . -1013) T) ((-174 . -1013) T) ((-173 . -1013) T) ((-172 . -1013) T) ((-217 . -97) 69798) ((-154 . -34) 69776) ((-154 . -91) 69754) ((-595 . -961) 69652) ((-454 . -977) 69583) ((-1026 . -1013) 69394) ((-1051 . -33) T) ((-611 . -460) 69378) ((-71 . -1119) T) ((-100 . -561) 69360) ((-1187 . -561) 69342) ((-355 . -561) 69324) ((-528 . -1108) T) ((-528 . -1105) T) ((-668 . -37) 69173) ((-493 . -561) 69155) ((-487 . -284) 69093) ((-469 . -561) 69075) ((-469 . -562) 69057) ((-1075 . -1060) NIL) ((-951 . -989) 69026) ((-951 . -1013) T) ((-929 . -97) T) ((-897 . -97) T) ((-842 . -97) T) ((-821 . -961) 69003) ((-1051 . -663) T) ((-928 . -589) 68948) ((-449 . -1013) T) ((-436 . -1013) T) ((-538 . -23) T) ((-528 . -34) T) ((-528 . -91) T) ((-401 . -97) T) ((-982 . -206) 68894) ((-1082 . -37) 68791) ((-794 . -663) T) ((-631 . -848) T) ((-479 . -25) T) ((-475 . -21) T) ((-475 . -25) T) ((-1081 . -37) 68632) ((-313 . -970) T) ((-1075 . -37) 68428) ((-996 . -157) T) ((-158 . -970) T) ((-1037 . -37) 68325) ((-649 . -46) 68302) ((-333 . -157) T) ((-327 . -157) T) ((-486 . -55) 68276) ((-466 . -55) 68226) ((-325 . -1182) 68203) ((-202 . -425) T) ((-293 . -265) 68154) ((-319 . -157) T) ((-158 . -220) T) ((-1128 . -783) 68053) ((-103 . -157) T) ((-800 . -918) 68037) ((-599 . -1025) T) ((-534 . -337) T) ((-534 . -303) 68024) ((-485 . -303) 68001) ((-485 . -337) T) ((-290 . -282) 67980) ((-287 . -282) T) ((-552 . -783) 67959) ((-1026 . -654) 67901) ((-487 . -257) 67885) ((-599 . -23) T) ((-392 . -208) 67869) ((-287 . -946) NIL) ((-310 . -23) T) ((-98 . -935) 67853) ((-44 . -35) 67832) ((-560 . -1013) T) ((-325 . -342) T) ((-464 . -27) T) ((-217 . -284) 67770) ((-1002 . -1025) T) ((-1186 . -589) 67744) ((-718 . -1025) T) ((-716 . -1025) T) ((-427 . -1025) T) ((-981 . -425) T) ((-880 . -425) 67695) ((-106 . -1013) T) ((-1002 . -23) T) ((-753 . -977) T) ((-718 . -23) T) ((-716 . -23) T) ((-453 . -425) 67646) ((-1068 . -482) 67429) ((-355 . -356) 67408) ((-1086 . -385) 67392) ((-434 . -23) T) ((-427 . -23) T) ((-455 . -482) 67325) ((-264 . -265) T) ((-998 . -561) 67307) ((-381 . -837) 67286) ((-49 . -1025) T) ((-948 . -848) T) ((-928 . -663) T) ((-649 . -814) NIL) ((-534 . -1025) T) ((-485 . -1025) T) ((-776 . -589) 67259) ((-1114 . -124) T) ((-1075 . -374) 67211) ((-929 . -284) NIL) ((-751 . -460) 67195) ((-328 . -848) T) ((-1065 . -33) T) ((-381 . -589) 67147) ((-49 . -23) T) ((-648 . -124) T) ((-649 . -961) 67030) ((-534 . -23) T) ((-103 . -482) NIL) ((-485 . -23) T) ((-154 . -383) 67001) ((-1049 . -1013) T) ((-1178 . -1177) 66985) ((-638 . -731) T) ((-638 . -728) T) ((-353 . -135) T) ((-1031 . -282) T) ((-1128 . -918) 66955) ((-47 . -848) T) ((-615 . -460) 66939) ((-227 . -1172) 66909) ((-226 . -1172) 66879) ((-1084 . -783) T) ((-1026 . -157) 66858) ((-1031 . -946) T) ((-967 . -33) T) ((-770 . -135) 66837) ((-770 . -133) 66816) ((-674 . -102) 66800) ((-560 . -125) T) ((-454 . -1013) 66611) ((-1086 . -977) T) ((-799 . -425) T) ((-83 . -1119) T) ((-217 . -37) 66581) ((-129 . -102) 66563) ((-649 . -351) 66547) ((-1031 . -506) T) ((-364 . -976) 66531) ((-1186 . -663) T) ((-1080 . -877) 66501) ((-51 . -561) 66483) ((-1036 . -877) 66450) ((-594 . -385) 66434) ((-1175 . -977) T) ((-566 . -976) 66418) ((-603 . -25) T) ((-603 . -21) T) ((-1067 . -482) NIL) ((-1157 . -97) T) ((-1150 . -97) T) ((-364 . -107) 66397) ((-199 . -230) 66381) ((-1129 . -97) T) ((-974 . -1013) T) ((-929 . -1060) T) ((-974 . -973) 66321) ((-754 . -1013) T) ((-317 . -1123) T) ((-579 . -589) 66305) ((-566 . -107) 66284) ((-555 . -589) 66268) ((-547 . -97) T) ((-538 . -124) T) ((-546 . -97) T) ((-388 . -1013) T) ((-359 . -1013) T) ((-204 . -1013) 66246) ((-588 . -482) 66179) ((-576 . -482) 66023) ((-769 . -970) 66002) ((-587 . -139) 65986) ((-317 . -513) T) ((-649 . -828) 65930) ((-507 . -206) 65880) ((-1157 . -259) 65846) ((-996 . -265) 65797) ((-458 . -781) T) ((-200 . -1025) T) ((-1150 . -259) 65763) ((-1129 . -259) 65729) ((-929 . -37) 65679) ((-195 . -781) T) ((-1114 . -462) 65645) ((-842 . -37) 65597) ((-776 . -730) 65576) ((-776 . -727) 65555) ((-776 . -663) 65534) ((-333 . -265) T) ((-327 . -265) T) ((-319 . -265) T) ((-154 . -425) 65465) ((-401 . -37) 65449) ((-103 . -265) T) ((-200 . -23) T) ((-381 . -730) 65428) ((-381 . -727) 65407) ((-381 . -663) T) ((-469 . -263) 65382) ((-450 . -976) 65347) ((-599 . -124) T) ((-1026 . -482) 65280) ((-310 . -124) T) ((-154 . -376) 65259) ((-454 . -654) 65201) ((-751 . -261) 65178) ((-450 . -107) 65134) ((-594 . -977) T) ((-1138 . -425) 65065) ((-1002 . -124) T) ((-240 . -783) 65044) ((-224 . -783) 65023) ((-718 . -124) T) ((-716 . -124) T) ((-528 . -425) T) ((-974 . -654) 64965) ((-566 . -970) T) ((-951 . -482) 64898) ((-434 . -124) T) ((-427 . -124) T) ((-44 . -1013) T) ((-359 . -654) 64868) ((-753 . -1013) T) ((-449 . -482) 64801) ((-436 . -482) 64734) ((-426 . -341) 64704) ((-44 . -558) 64683) ((-290 . -277) T) ((-611 . -561) 64645) ((-57 . -783) 64624) ((-1129 . -284) 64509) ((-929 . -374) 64491) ((-751 . -554) 64468) ((-484 . -783) 64447) ((-465 . -783) 64426) ((-39 . -1123) T) ((-924 . -961) 64324) ((-49 . -124) T) ((-534 . -124) T) ((-485 . -124) T) ((-269 . -589) 64186) ((-317 . -303) 64163) ((-317 . -337) T) ((-296 . -297) 64140) ((-293 . -261) 64125) ((-39 . -513) T) ((-353 . -1105) T) ((-353 . -1108) T) ((-959 . -1096) 64100) ((-1093 . -212) 64050) ((-1075 . -208) 64002) ((-304 . -1013) T) ((-353 . -91) T) ((-353 . -34) T) ((-959 . -102) 63948) ((-450 . -970) T) ((-451 . -212) 63898) ((-1068 . -460) 63832) ((-1187 . -976) 63816) ((-355 . -976) 63800) ((-450 . -220) T) ((-752 . -97) T) ((-651 . -135) 63779) ((-651 . -133) 63758) ((-455 . -460) 63742) ((-456 . -309) 63711) ((-1187 . -107) 63690) ((-480 . -1013) T) ((-454 . -157) 63669) ((-924 . -351) 63653) ((-387 . -97) T) ((-355 . -107) 63632) ((-924 . -312) 63616) ((-255 . -909) 63600) ((-254 . -909) 63584) ((-1185 . -561) 63566) ((-1183 . -561) 63548) ((-106 . -482) NIL) ((-1080 . -1141) 63532) ((-787 . -785) 63516) ((-1086 . -1013) T) ((-98 . -1119) T) ((-880 . -877) 63477) ((-753 . -654) 63419) ((-1129 . -1060) NIL) ((-453 . -877) 63364) ((-981 . -131) T) ((-58 . -97) 63342) ((-43 . -561) 63324) ((-76 . -561) 63306) ((-325 . -589) 63251) ((-1175 . -1013) T) ((-479 . -783) T) ((-317 . -1025) T) ((-270 . -1013) T) ((-924 . -828) 63210) ((-270 . -558) 63189) ((-1157 . -37) 63086) ((-1150 . -37) 62927) ((-458 . -977) T) ((-1129 . -37) 62723) ((-195 . -977) T) ((-317 . -23) T) ((-140 . -561) 62705) ((-769 . -731) 62684) ((-769 . -728) 62663) ((-547 . -37) 62636) ((-546 . -37) 62533) ((-798 . -513) T) ((-200 . -124) T) ((-293 . -927) 62499) ((-77 . -561) 62481) ((-649 . -282) 62460) ((-269 . -663) 62363) ((-760 . -97) T) ((-793 . -777) T) ((-269 . -446) 62342) ((-1178 . -97) T) ((-39 . -337) T) ((-800 . -135) 62321) ((-800 . -133) 62300) ((-1067 . -460) 62282) ((-1187 . -970) T) ((-454 . -482) 62215) ((-1055 . -1119) T) ((-891 . -561) 62197) ((-588 . -460) 62181) ((-576 . -460) 62112) ((-751 . -561) 61864) ((-47 . -27) T) ((-1086 . -654) 61761) ((-594 . -1013) T) ((-410 . -338) 61735) ((-1015 . -97) T) ((-752 . -284) 61722) ((-793 . -1013) T) ((-1183 . -356) 61694) ((-974 . -482) 61627) ((-1068 . -261) 61603) ((-217 . -208) 61573) ((-1175 . -654) 61543) ((-753 . -157) 61522) ((-204 . -482) 61455) ((-566 . -731) 61434) ((-566 . -728) 61413) ((-1117 . -561) 61325) ((-199 . -1119) T) ((-615 . -561) 61257) ((-1065 . -935) 61241) ((-325 . -663) T) ((-871 . -97) 61191) ((-1129 . -374) 61143) ((-1026 . -460) 61127) ((-58 . -284) 61065) ((-305 . -97) T) ((-1114 . -21) T) ((-1114 . -25) T) ((-39 . -1025) T) ((-648 . -21) T) ((-571 . -561) 61047) ((-483 . -297) 61026) ((-648 . -25) T) ((-103 . -261) NIL) ((-849 . -1025) T) ((-39 . -23) T) ((-707 . -1025) T) ((-521 . -1123) T) ((-464 . -1123) T) ((-293 . -561) 61008) ((-929 . -208) 60990) ((-154 . -151) 60974) ((-533 . -513) T) ((-521 . -513) T) ((-464 . -513) T) ((-707 . -23) T) ((-1149 . -135) 60953) ((-1068 . -554) 60929) ((-1149 . -133) 60908) ((-951 . -460) 60892) ((-1128 . -133) 60817) ((-1128 . -135) 60742) ((-1178 . -1184) 60721) ((-449 . -460) 60705) ((-436 . -460) 60689) ((-490 . -33) T) ((-594 . -654) 60659) ((-108 . -894) T) ((-603 . -783) 60638) ((-1086 . -157) 60589) ((-339 . -97) T) ((-217 . -215) 60568) ((-227 . -97) T) ((-226 . -97) T) ((-1138 . -877) 60538) ((-105 . -97) T) ((-222 . -783) 60517) ((-752 . -37) 60366) ((-44 . -482) 60158) ((-1067 . -261) 60133) ((-192 . -1013) T) ((-1059 . -1013) T) ((-1059 . -558) 60112) ((-538 . -25) T) ((-538 . -21) T) ((-1015 . -284) 60050) ((-890 . -385) 60034) ((-636 . -1123) T) ((-576 . -261) 60009) ((-1002 . -583) 59957) ((-718 . -583) 59905) ((-716 . -583) 59853) ((-317 . -124) T) ((-264 . -561) 59835) ((-636 . -513) T) ((-833 . -1013) T) ((-798 . -1025) T) ((-427 . -583) 59783) ((-833 . -831) 59767) ((-353 . -425) T) ((-458 . -1013) T) ((-638 . -589) 59754) ((-871 . -284) 59692) ((-195 . -1013) T) ((-290 . -848) 59671) ((-287 . -848) T) ((-287 . -756) NIL) ((-364 . -657) T) ((-798 . -23) T) ((-112 . -589) 59658) ((-447 . -133) 59637) ((-392 . -385) 59621) ((-447 . -135) 59600) ((-106 . -460) 59582) ((-2 . -561) 59564) ((-1067 . -19) 59546) ((-1067 . -554) 59521) ((-599 . -21) T) ((-599 . -25) T) ((-544 . -1053) T) ((-1026 . -261) 59498) ((-310 . -25) T) ((-310 . -21) T) ((-464 . -337) T) ((-1178 . -37) 59468) ((-1051 . -1119) T) ((-576 . -554) 59443) ((-1002 . -25) T) ((-1002 . -21) T) ((-493 . -728) T) ((-493 . -731) T) ((-113 . -1123) T) ((-890 . -977) T) ((-568 . -513) T) ((-672 . -977) T) ((-652 . -977) T) ((-718 . -25) T) ((-718 . -21) T) ((-716 . -21) T) ((-716 . -25) T) ((-611 . -976) 59427) ((-434 . -25) T) ((-113 . -513) T) ((-434 . -21) T) ((-427 . -25) T) ((-427 . -21) T) ((-1051 . -961) 59325) ((-753 . -265) 59304) ((-759 . -1013) T) ((-893 . -894) T) ((-611 . -107) 59283) ((-270 . -482) 59075) ((-1185 . -976) 59059) ((-1183 . -976) 59043) ((-227 . -284) 58981) ((-226 . -284) 58919) ((-1132 . -97) 58897) ((-1068 . -562) NIL) ((-1068 . -561) 58879) ((-1149 . -1105) 58845) ((-1149 . -1108) 58811) ((-1129 . -208) 58763) ((-1128 . -1105) 58729) ((-1128 . -1108) 58695) ((-1051 . -351) 58679) ((-1031 . -756) T) ((-1031 . -848) T) ((-1026 . -554) 58656) ((-996 . -562) 58640) ((-455 . -561) 58572) ((-751 . -263) 58549) ((-556 . -139) 58496) ((-392 . -977) T) ((-458 . -654) 58446) ((-454 . -460) 58430) ((-301 . -783) 58409) ((-313 . -589) 58383) ((-49 . -21) T) ((-49 . -25) T) ((-195 . -654) 58333) ((-154 . -661) 58304) ((-158 . -589) 58236) ((-534 . -21) T) ((-534 . -25) T) ((-485 . -25) T) ((-485 . -21) T) ((-448 . -139) 58186) ((-996 . -561) 58168) ((-980 . -561) 58150) ((-919 . -97) T) ((-791 . -97) T) ((-735 . -385) 58114) ((-39 . -124) T) ((-636 . -337) T) ((-191 . -823) T) ((-638 . -730) T) ((-638 . -727) T) ((-533 . -1025) T) ((-521 . -1025) T) ((-464 . -1025) T) ((-638 . -663) T) ((-333 . -561) 58096) ((-327 . -561) 58078) ((-319 . -561) 58060) ((-64 . -370) T) ((-64 . -369) T) ((-103 . -562) 57990) ((-103 . -561) 57972) ((-190 . -823) T) ((-885 . -139) 57956) ((-1149 . -91) 57922) ((-707 . -124) T) ((-126 . -663) T) ((-112 . -663) T) ((-1149 . -34) 57888) ((-974 . -460) 57872) ((-533 . -23) T) ((-521 . -23) T) ((-464 . -23) T) ((-1128 . -91) 57838) ((-1128 . -34) 57804) ((-1080 . -97) T) ((-1036 . -97) T) ((-787 . -97) T) ((-204 . -460) 57788) ((-1185 . -107) 57767) ((-1183 . -107) 57746) ((-43 . -976) 57730) ((-1138 . -1141) 57714) ((-788 . -785) 57698) ((-1086 . -265) 57677) ((-106 . -261) 57652) ((-1051 . -828) 57611) ((-43 . -107) 57590) ((-611 . -970) T) ((-1089 . -1160) T) ((-1067 . -562) NIL) ((-1067 . -561) 57572) ((-982 . -558) 57547) ((-982 . -1013) T) ((-72 . -414) T) ((-72 . -369) T) ((-611 . -210) 57526) ((-140 . -976) 57510) ((-528 . -511) 57494) ((-329 . -135) 57473) ((-329 . -133) 57424) ((-326 . -135) 57403) ((-640 . -1013) T) ((-326 . -133) 57354) ((-318 . -135) 57333) ((-318 . -133) 57284) ((-240 . -133) 57263) ((-240 . -135) 57242) ((-227 . -37) 57212) ((-224 . -135) 57191) ((-113 . -337) T) ((-224 . -133) 57170) ((-226 . -37) 57140) ((-140 . -107) 57119) ((-928 . -961) 57009) ((-1075 . -781) NIL) ((-631 . -1123) T) ((-735 . -977) T) ((-636 . -1025) T) ((-1185 . -970) T) ((-1183 . -970) T) ((-1065 . -1119) T) ((-928 . -351) 56986) ((-838 . -133) T) ((-838 . -135) 56968) ((-798 . -124) T) ((-751 . -976) 56866) ((-631 . -513) T) ((-636 . -23) T) ((-588 . -561) 56798) ((-588 . -562) 56759) ((-576 . -562) NIL) ((-576 . -561) 56741) ((-458 . -157) T) ((-200 . -21) T) ((-195 . -157) T) ((-200 . -25) T) ((-447 . -1108) 56707) ((-447 . -1105) 56673) ((-250 . -561) 56655) ((-249 . -561) 56637) ((-248 . -561) 56619) ((-247 . -561) 56601) ((-246 . -561) 56583) ((-469 . -592) 56565) ((-245 . -561) 56547) ((-313 . -663) T) ((-244 . -561) 56529) ((-106 . -19) 56511) ((-158 . -663) T) ((-469 . -347) 56493) ((-191 . -561) 56475) ((-487 . -1058) 56459) ((-469 . -119) T) ((-106 . -554) 56434) ((-190 . -561) 56416) ((-447 . -34) 56382) ((-447 . -91) 56348) ((-188 . -561) 56330) ((-187 . -561) 56312) ((-186 . -561) 56294) ((-185 . -561) 56276) ((-182 . -561) 56258) ((-181 . -561) 56240) ((-180 . -561) 56222) ((-179 . -561) 56204) ((-178 . -561) 56186) ((-177 . -561) 56168) ((-176 . -561) 56150) ((-497 . -1016) 56102) ((-175 . -561) 56084) ((-174 . -561) 56066) ((-44 . -460) 56003) ((-173 . -561) 55985) ((-172 . -561) 55967) ((-751 . -107) 55858) ((-587 . -97) 55808) ((-454 . -261) 55785) ((-1026 . -561) 55537) ((-1014 . -1013) T) ((-967 . -1119) T) ((-568 . -1025) T) ((-1186 . -961) 55521) ((-1080 . -284) 55508) ((-1036 . -284) 55495) ((-113 . -1025) T) ((-755 . -97) T) ((-568 . -23) T) ((-1059 . -482) 55287) ((-360 . -97) T) ((-298 . -97) T) ((-928 . -828) 55239) ((-890 . -1013) T) ((-140 . -970) T) ((-113 . -23) T) ((-668 . -385) 55223) ((-672 . -1013) T) ((-652 . -1013) T) ((-640 . -125) T) ((-426 . -1013) T) ((-290 . -404) 55207) ((-381 . -1119) T) ((-951 . -562) 55168) ((-948 . -1123) T) ((-202 . -97) T) ((-951 . -561) 55130) ((-752 . -208) 55114) ((-948 . -513) T) ((-769 . -589) 55087) ((-328 . -1123) T) ((-449 . -561) 55049) ((-449 . -562) 55010) ((-436 . -562) 54971) ((-436 . -561) 54933) ((-381 . -812) 54917) ((-293 . -976) 54752) ((-381 . -814) 54677) ((-776 . -961) 54575) ((-458 . -482) NIL) ((-454 . -554) 54552) ((-328 . -513) T) ((-195 . -482) NIL) ((-800 . -425) T) ((-392 . -1013) T) ((-381 . -961) 54419) ((-293 . -107) 54240) ((-631 . -337) T) ((-202 . -259) T) ((-47 . -1123) T) ((-751 . -970) 54171) ((-533 . -124) T) ((-521 . -124) T) ((-464 . -124) T) ((-47 . -513) T) ((-1068 . -263) 54147) ((-1080 . -1060) 54125) ((-290 . -27) 54104) ((-981 . -97) T) ((-751 . -210) 54057) ((-217 . -781) 54036) ((-880 . -97) T) ((-650 . -97) T) ((-270 . -460) 53973) ((-453 . -97) T) ((-668 . -977) T) ((-560 . -561) 53955) ((-560 . -562) 53816) ((-381 . -351) 53800) ((-381 . -312) 53784) ((-1080 . -37) 53613) ((-1036 . -37) 53462) ((-787 . -37) 53432) ((-364 . -589) 53416) ((-587 . -284) 53354) ((-890 . -654) 53251) ((-199 . -102) 53235) ((-44 . -261) 53160) ((-672 . -654) 53130) ((-566 . -589) 53104) ((-286 . -1013) T) ((-264 . -976) 53091) ((-106 . -561) 53073) ((-106 . -562) 53055) ((-426 . -654) 53025) ((-752 . -229) 52964) ((-627 . -1013) 52942) ((-507 . -1013) T) ((-1082 . -977) T) ((-1081 . -977) T) ((-264 . -107) 52927) ((-1075 . -977) T) ((-1037 . -977) T) ((-507 . -558) 52906) ((-929 . -781) T) ((-204 . -625) 52864) ((-631 . -1025) T) ((-1114 . -677) 52840) ((-293 . -970) T) ((-317 . -25) T) ((-317 . -21) T) ((-381 . -828) 52799) ((-66 . -1119) T) ((-769 . -730) 52778) ((-392 . -654) 52752) ((-735 . -1013) T) ((-769 . -727) 52731) ((-636 . -124) T) ((-649 . -848) 52710) ((-631 . -23) T) ((-458 . -265) T) ((-769 . -663) 52689) ((-293 . -210) 52641) ((-293 . -220) 52620) ((-195 . -265) T) ((-948 . -337) T) ((-1149 . -425) 52599) ((-1128 . -425) 52578) ((-328 . -303) 52555) ((-328 . -337) T) ((-1049 . -561) 52537) ((-44 . -1153) 52487) ((-799 . -97) T) ((-587 . -257) 52471) ((-636 . -979) T) ((-450 . -589) 52436) ((-441 . -1013) T) ((-44 . -554) 52361) ((-1067 . -263) 52336) ((-39 . -583) 52275) ((-47 . -337) T) ((-1019 . -561) 52257) ((-1002 . -783) 52236) ((-576 . -263) 52211) ((-718 . -783) 52190) ((-716 . -783) 52169) ((-454 . -561) 51921) ((-217 . -385) 51890) ((-880 . -284) 51877) ((-427 . -783) 51856) ((-63 . -1119) T) ((-568 . -124) T) ((-453 . -284) 51843) ((-982 . -482) 51687) ((-264 . -970) T) ((-113 . -124) T) ((-426 . -698) T) ((-890 . -157) 51638) ((-996 . -976) 51548) ((-566 . -730) 51527) ((-544 . -1013) T) ((-566 . -727) 51506) ((-566 . -663) T) ((-270 . -261) 51485) ((-269 . -1119) T) ((-974 . -561) 51447) ((-974 . -562) 51408) ((-948 . -1025) T) ((-154 . -97) T) ((-251 . -783) T) ((-1074 . -1013) T) ((-754 . -561) 51390) ((-1026 . -263) 51367) ((-1015 . -206) 51351) ((-928 . -282) T) ((-735 . -654) 51335) ((-333 . -976) 51287) ((-328 . -1025) T) ((-327 . -976) 51239) ((-388 . -561) 51221) ((-359 . -561) 51203) ((-319 . -976) 51155) ((-204 . -561) 51087) ((-996 . -107) 50983) ((-948 . -23) T) ((-103 . -976) 50933) ((-826 . -97) T) ((-774 . -97) T) ((-744 . -97) T) ((-705 . -97) T) ((-616 . -97) T) ((-447 . -425) 50912) ((-392 . -157) T) ((-333 . -107) 50850) ((-327 . -107) 50788) ((-319 . -107) 50726) ((-227 . -208) 50696) ((-226 . -208) 50666) ((-328 . -23) T) ((-69 . -1119) T) ((-202 . -37) 50631) ((-103 . -107) 50565) ((-39 . -25) T) ((-39 . -21) T) ((-611 . -657) T) ((-154 . -259) 50543) ((-47 . -1025) T) ((-849 . -25) T) ((-707 . -25) T) ((-1059 . -460) 50480) ((-456 . -1013) T) ((-1187 . -589) 50454) ((-1138 . -97) T) ((-788 . -97) T) ((-217 . -977) 50385) ((-981 . -1060) T) ((-891 . -728) 50338) ((-355 . -589) 50322) ((-47 . -23) T) ((-891 . -731) 50275) ((-751 . -731) 50226) ((-751 . -728) 50177) ((-270 . -554) 50156) ((-450 . -663) T) ((-528 . -97) T) ((-799 . -284) 50113) ((-594 . -261) 50092) ((-108 . -602) T) ((-74 . -1119) T) ((-981 . -37) 50079) ((-605 . -348) 50058) ((-880 . -37) 49907) ((-668 . -1013) T) ((-453 . -37) 49756) ((-84 . -1119) T) ((-528 . -259) T) ((-1129 . -781) NIL) ((-1082 . -1013) T) ((-1081 . -1013) T) ((-1075 . -1013) T) ((-325 . -961) 49733) ((-996 . -970) T) ((-929 . -977) T) ((-44 . -561) 49715) ((-44 . -562) NIL) ((-842 . -977) T) ((-753 . -561) 49697) ((-1056 . -97) 49675) ((-996 . -220) 49626) ((-401 . -977) T) ((-333 . -970) T) ((-327 . -970) T) ((-339 . -338) 49603) ((-319 . -970) T) ((-227 . -215) 49582) ((-226 . -215) 49561) ((-105 . -338) 49535) ((-996 . -210) 49460) ((-1037 . -1013) T) ((-269 . -828) 49419) ((-103 . -970) T) ((-631 . -124) T) ((-392 . -482) 49261) ((-333 . -210) 49240) ((-333 . -220) T) ((-43 . -657) T) ((-327 . -210) 49219) ((-327 . -220) T) ((-319 . -210) 49198) ((-319 . -220) T) ((-154 . -284) 49163) ((-103 . -220) T) ((-103 . -210) T) ((-293 . -728) T) ((-798 . -21) T) ((-798 . -25) T) ((-381 . -282) T) ((-469 . -33) T) ((-106 . -263) 49138) ((-1026 . -976) 49036) ((-799 . -1060) NIL) ((-304 . -561) 49018) ((-381 . -946) 48997) ((-1026 . -107) 48888) ((-410 . -1013) T) ((-1187 . -663) T) ((-61 . -561) 48870) ((-799 . -37) 48815) ((-490 . -1119) T) ((-552 . -139) 48799) ((-480 . -561) 48781) ((-1138 . -284) 48768) ((-668 . -654) 48617) ((-493 . -729) T) ((-493 . -730) T) ((-521 . -583) 48599) ((-464 . -583) 48559) ((-329 . -425) T) ((-326 . -425) T) ((-318 . -425) T) ((-240 . -425) 48510) ((-487 . -1013) 48460) ((-224 . -425) 48411) ((-1059 . -261) 48390) ((-1086 . -561) 48372) ((-627 . -482) 48305) ((-890 . -265) 48284) ((-507 . -482) 48076) ((-1080 . -208) 48060) ((-154 . -1060) 48039) ((-1175 . -561) 48021) ((-1082 . -654) 47918) ((-1081 . -654) 47759) ((-820 . -97) T) ((-1075 . -654) 47555) ((-1037 . -654) 47452) ((-1065 . -614) 47436) ((-329 . -376) 47387) ((-326 . -376) 47338) ((-318 . -376) 47289) ((-948 . -124) T) ((-735 . -482) 47201) ((-270 . -562) NIL) ((-270 . -561) 47183) ((-838 . -425) T) ((-891 . -342) 47136) ((-751 . -342) 47115) ((-478 . -477) 47094) ((-476 . -477) 47073) ((-458 . -261) NIL) ((-454 . -263) 47050) ((-392 . -265) T) ((-328 . -124) T) ((-195 . -261) NIL) ((-631 . -462) NIL) ((-94 . -1025) T) ((-154 . -37) 46878) ((-1149 . -899) 46841) ((-1056 . -284) 46779) ((-1128 . -899) 46749) ((-838 . -376) T) ((-1026 . -970) 46680) ((-1151 . -513) T) ((-1059 . -554) 46659) ((-108 . -783) T) ((-982 . -460) 46590) ((-533 . -21) T) ((-533 . -25) T) ((-521 . -21) T) ((-521 . -25) T) ((-464 . -25) T) ((-464 . -21) T) ((-1138 . -1060) 46568) ((-1026 . -210) 46521) ((-47 . -124) T) ((-1101 . -97) T) ((-217 . -1013) 46332) ((-799 . -374) 46309) ((-1003 . -97) T) ((-992 . -97) T) ((-556 . -97) T) ((-448 . -97) T) ((-1138 . -37) 46138) ((-788 . -37) 46108) ((-668 . -157) 46019) ((-594 . -561) 46001) ((-528 . -37) 45988) ((-885 . -97) 45938) ((-793 . -561) 45920) ((-793 . -562) 45842) ((-544 . -482) NIL) ((-1157 . -977) T) ((-1150 . -977) T) ((-1129 . -977) T) ((-547 . -977) T) ((-546 . -977) T) ((-1191 . -1025) T) ((-1082 . -157) 45793) ((-1081 . -157) 45724) ((-1075 . -157) 45655) ((-1037 . -157) 45606) ((-929 . -1013) T) ((-897 . -1013) T) ((-842 . -1013) T) ((-1114 . -135) 45585) ((-735 . -733) 45569) ((-636 . -25) T) ((-636 . -21) T) ((-113 . -583) 45546) ((-638 . -814) 45528) ((-401 . -1013) T) ((-290 . -1123) 45507) ((-287 . -1123) T) ((-154 . -374) 45491) ((-1114 . -133) 45470) ((-447 . -899) 45433) ((-70 . -561) 45415) ((-103 . -731) T) ((-103 . -728) T) ((-290 . -513) 45394) ((-638 . -961) 45376) ((-287 . -513) T) ((-1191 . -23) T) ((-126 . -961) 45358) ((-454 . -976) 45256) ((-44 . -263) 45181) ((-217 . -654) 45123) ((-454 . -107) 45014) ((-1006 . -97) 44992) ((-958 . -97) T) ((-587 . -764) 44971) ((-668 . -482) 44914) ((-974 . -976) 44898) ((-568 . -21) T) ((-568 . -25) T) ((-982 . -261) 44873) ((-335 . -97) T) ((-296 . -97) T) ((-611 . -589) 44847) ((-359 . -976) 44831) ((-974 . -107) 44810) ((-752 . -385) 44794) ((-113 . -25) T) ((-87 . -561) 44776) ((-113 . -21) T) ((-556 . -284) 44571) ((-448 . -284) 44375) ((-1059 . -562) NIL) ((-359 . -107) 44354) ((-353 . -97) T) ((-192 . -561) 44336) ((-1059 . -561) 44318) ((-929 . -654) 44268) ((-1075 . -482) 44037) ((-842 . -654) 43989) ((-1037 . -482) 43959) ((-325 . -282) T) ((-1093 . -139) 43909) ((-885 . -284) 43847) ((-770 . -97) T) ((-401 . -654) 43831) ((-202 . -764) T) ((-763 . -97) T) ((-761 . -97) T) ((-451 . -139) 43781) ((-1149 . -1148) 43760) ((-1031 . -1123) T) ((-313 . -961) 43727) ((-1149 . -1143) 43697) ((-1149 . -1146) 43681) ((-1128 . -1127) 43660) ((-78 . -561) 43642) ((-833 . -561) 43624) ((-1128 . -1143) 43601) ((-1031 . -513) T) ((-849 . -783) T) ((-458 . -562) 43531) ((-458 . -561) 43513) ((-707 . -783) T) ((-353 . -259) T) ((-612 . -783) T) ((-1128 . -1125) 43497) ((-1151 . -1025) T) ((-195 . -562) 43427) ((-195 . -561) 43409) ((-982 . -554) 43384) ((-57 . -139) 43368) ((-484 . -139) 43352) ((-465 . -139) 43336) ((-333 . -1182) 43320) ((-327 . -1182) 43304) ((-319 . -1182) 43288) ((-290 . -337) 43267) ((-287 . -337) T) ((-454 . -970) 43198) ((-631 . -583) 43180) ((-1185 . -589) 43154) ((-1183 . -589) 43128) ((-1151 . -23) T) ((-627 . -460) 43112) ((-62 . -561) 43094) ((-1026 . -731) 43045) ((-1026 . -728) 42996) ((-507 . -460) 42933) ((-611 . -33) T) ((-454 . -210) 42886) ((-270 . -263) 42865) ((-217 . -157) 42844) ((-752 . -977) T) ((-43 . -589) 42802) ((-996 . -342) 42753) ((-668 . -265) 42684) ((-487 . -482) 42617) ((-753 . -976) 42568) ((-1002 . -133) 42547) ((-333 . -342) 42526) ((-327 . -342) 42505) ((-319 . -342) 42484) ((-1002 . -135) 42463) ((-799 . -208) 42440) ((-753 . -107) 42382) ((-718 . -133) 42361) ((-718 . -135) 42340) ((-240 . -877) 42307) ((-227 . -781) 42286) ((-224 . -877) 42231) ((-226 . -781) 42210) ((-716 . -133) 42189) ((-716 . -135) 42168) ((-140 . -589) 42142) ((-427 . -135) 42121) ((-427 . -133) 42100) ((-611 . -663) T) ((-759 . -561) 42082) ((-1157 . -1013) T) ((-1150 . -1013) T) ((-1129 . -1013) T) ((-1114 . -1108) 42048) ((-1114 . -1105) 42014) ((-1082 . -265) 41993) ((-1081 . -265) 41944) ((-1075 . -265) 41895) ((-1037 . -265) 41874) ((-313 . -828) 41855) ((-929 . -157) T) ((-842 . -157) T) ((-547 . -1013) T) ((-546 . -1013) T) ((-631 . -21) T) ((-631 . -25) T) ((-447 . -1146) 41839) ((-447 . -1143) 41809) ((-392 . -261) 41737) ((-290 . -1025) 41587) ((-287 . -1025) T) ((-1114 . -34) 41553) ((-1114 . -91) 41519) ((-82 . -561) 41501) ((-89 . -97) 41479) ((-1191 . -124) T) ((-534 . -133) T) ((-534 . -135) 41461) ((-485 . -135) 41443) ((-485 . -133) T) ((-290 . -23) 41296) ((-39 . -316) 41270) ((-287 . -23) T) ((-1067 . -592) 41252) ((-751 . -589) 41102) ((-1178 . -977) T) ((-1067 . -347) 41084) ((-154 . -208) 41068) ((-544 . -460) 41050) ((-217 . -482) 40983) ((-1185 . -663) T) ((-1183 . -663) T) ((-1086 . -976) 40866) ((-1086 . -107) 40735) ((-753 . -970) T) ((-483 . -97) T) ((-47 . -583) 40695) ((-478 . -97) T) ((-476 . -97) T) ((-1175 . -976) 40665) ((-958 . -37) 40649) ((-753 . -210) T) ((-753 . -220) 40628) ((-507 . -261) 40607) ((-1175 . -107) 40572) ((-1138 . -208) 40556) ((-1157 . -654) 40453) ((-982 . -562) NIL) ((-982 . -561) 40435) ((-1150 . -654) 40276) ((-1129 . -654) 40072) ((-928 . -848) T) ((-640 . -561) 40041) ((-140 . -663) T) ((-1026 . -342) 40020) ((-929 . -482) NIL) ((-227 . -385) 39989) ((-226 . -385) 39958) ((-948 . -25) T) ((-948 . -21) T) ((-547 . -654) 39931) ((-546 . -654) 39828) ((-735 . -261) 39786) ((-122 . -97) 39764) ((-769 . -961) 39662) ((-154 . -764) 39641) ((-293 . -589) 39538) ((-751 . -33) T) ((-651 . -97) T) ((-1031 . -1025) T) ((-950 . -1119) T) ((-353 . -37) 39503) ((-328 . -25) T) ((-328 . -21) T) ((-147 . -97) T) ((-143 . -97) T) ((-329 . -1172) 39487) ((-326 . -1172) 39471) ((-318 . -1172) 39455) ((-154 . -323) 39434) ((-521 . -783) T) ((-464 . -783) T) ((-1031 . -23) T) ((-85 . -561) 39416) ((-638 . -282) T) ((-770 . -37) 39386) ((-763 . -37) 39356) ((-1151 . -124) T) ((-1059 . -263) 39335) ((-891 . -729) 39288) ((-891 . -730) 39241) ((-751 . -727) 39220) ((-112 . -282) T) ((-89 . -284) 39158) ((-615 . -33) T) ((-507 . -554) 39137) ((-47 . -25) T) ((-47 . -21) T) ((-751 . -730) 39088) ((-751 . -729) 39067) ((-638 . -946) T) ((-594 . -976) 39051) ((-891 . -663) 38950) ((-751 . -663) 38881) ((-891 . -446) 38834) ((-454 . -731) 38785) ((-454 . -728) 38736) ((-838 . -1172) 38723) ((-1086 . -970) T) ((-594 . -107) 38702) ((-1086 . -300) 38679) ((-1106 . -97) 38657) ((-1014 . -561) 38639) ((-638 . -506) T) ((-752 . -1013) T) ((-1175 . -970) T) ((-387 . -1013) T) ((-227 . -977) 38570) ((-226 . -977) 38501) ((-264 . -589) 38488) ((-544 . -261) 38463) ((-627 . -625) 38421) ((-890 . -561) 38403) ((-800 . -97) T) ((-672 . -561) 38385) ((-652 . -561) 38367) ((-1157 . -157) 38318) ((-1150 . -157) 38249) ((-1129 . -157) 38180) ((-636 . -783) T) ((-929 . -265) T) ((-426 . -561) 38162) ((-571 . -663) T) ((-58 . -1013) 38140) ((-222 . -139) 38124) ((-842 . -265) T) ((-948 . -937) T) ((-571 . -446) T) ((-649 . -1123) 38103) ((-547 . -157) 38082) ((-546 . -157) 38033) ((-1165 . -783) 38012) ((-649 . -513) 37923) ((-381 . -848) T) ((-381 . -756) 37902) ((-293 . -730) T) ((-293 . -663) T) ((-392 . -561) 37884) ((-392 . -562) 37792) ((-587 . -1058) 37776) ((-106 . -592) 37758) ((-122 . -284) 37696) ((-106 . -347) 37678) ((-158 . -282) T) ((-372 . -1119) T) ((-290 . -124) 37550) ((-287 . -124) T) ((-67 . -369) T) ((-106 . -119) T) ((-487 . -460) 37534) ((-595 . -1025) T) ((-544 . -19) 37516) ((-59 . -414) T) ((-59 . -369) T) ((-760 . -1013) T) ((-544 . -554) 37491) ((-450 . -961) 37451) ((-594 . -970) T) ((-595 . -23) T) ((-1178 . -1013) T) ((-752 . -654) 37300) ((-113 . -783) NIL) ((-1080 . -385) 37284) ((-1036 . -385) 37268) ((-787 . -385) 37252) ((-801 . -97) 37203) ((-1149 . -97) T) ((-1129 . -482) 36972) ((-1106 . -284) 36910) ((-286 . -561) 36892) ((-1128 . -97) T) ((-1015 . -1013) T) ((-1082 . -261) 36877) ((-1081 . -261) 36862) ((-264 . -663) T) ((-103 . -837) NIL) ((-627 . -561) 36794) ((-627 . -562) 36755) ((-996 . -589) 36665) ((-551 . -561) 36647) ((-507 . -562) NIL) ((-507 . -561) 36629) ((-1075 . -261) 36477) ((-458 . -976) 36427) ((-648 . -425) T) ((-479 . -477) 36406) ((-475 . -477) 36385) ((-195 . -976) 36335) ((-333 . -589) 36287) ((-327 . -589) 36239) ((-202 . -781) T) ((-319 . -589) 36191) ((-552 . -97) 36141) ((-454 . -342) 36120) ((-103 . -589) 36070) ((-458 . -107) 36004) ((-217 . -460) 35988) ((-317 . -135) 35970) ((-317 . -133) T) ((-154 . -344) 35941) ((-871 . -1163) 35925) ((-195 . -107) 35859) ((-800 . -284) 35824) ((-871 . -1013) 35774) ((-735 . -562) 35735) ((-735 . -561) 35717) ((-655 . -97) T) ((-305 . -1013) T) ((-1031 . -124) T) ((-651 . -37) 35687) ((-290 . -462) 35666) ((-469 . -1119) T) ((-1149 . -259) 35632) ((-1128 . -259) 35598) ((-301 . -139) 35582) ((-982 . -263) 35557) ((-1178 . -654) 35527) ((-1068 . -33) T) ((-1187 . -961) 35504) ((-441 . -561) 35486) ((-455 . -33) T) ((-355 . -961) 35470) ((-1080 . -977) T) ((-1036 . -977) T) ((-787 . -977) T) ((-981 . -781) T) ((-752 . -157) 35381) ((-487 . -261) 35358) ((-113 . -918) 35335) ((-1157 . -265) 35314) ((-1101 . -338) 35288) ((-1003 . -242) 35272) ((-447 . -97) T) ((-339 . -1013) T) ((-227 . -1013) T) ((-226 . -1013) T) ((-1150 . -265) 35223) ((-105 . -1013) T) ((-1129 . -265) 35174) ((-800 . -1060) 35152) ((-1082 . -927) 35118) ((-556 . -338) 35058) ((-1081 . -927) 35024) ((-556 . -206) 34971) ((-544 . -561) 34953) ((-544 . -562) NIL) ((-631 . -783) T) ((-448 . -206) 34903) ((-458 . -970) T) ((-1075 . -927) 34869) ((-86 . -413) T) ((-86 . -369) T) ((-195 . -970) T) ((-1037 . -927) 34835) ((-996 . -663) T) ((-649 . -1025) T) ((-547 . -265) 34814) ((-546 . -265) 34793) ((-458 . -220) T) ((-458 . -210) T) ((-195 . -220) T) ((-195 . -210) T) ((-1074 . -561) 34775) ((-800 . -37) 34727) ((-333 . -663) T) ((-327 . -663) T) ((-319 . -663) T) ((-103 . -730) T) ((-103 . -727) T) ((-487 . -1153) 34711) ((-103 . -663) T) ((-649 . -23) T) ((-1191 . -25) T) ((-447 . -259) 34677) ((-1191 . -21) T) ((-1128 . -284) 34616) ((-1084 . -97) T) ((-39 . -133) 34588) ((-39 . -135) 34560) ((-487 . -554) 34537) ((-1026 . -589) 34387) ((-552 . -284) 34325) ((-44 . -592) 34275) ((-44 . -607) 34225) ((-44 . -347) 34175) ((-1067 . -33) T) ((-799 . -781) NIL) ((-595 . -124) T) ((-456 . -561) 34157) ((-217 . -261) 34134) ((-588 . -33) T) ((-576 . -33) T) ((-1002 . -425) 34085) ((-752 . -482) 33959) ((-718 . -425) 33890) ((-716 . -425) 33841) ((-427 . -425) 33792) ((-880 . -385) 33776) ((-668 . -561) 33758) ((-227 . -654) 33700) ((-226 . -654) 33642) ((-668 . -562) 33503) ((-453 . -385) 33487) ((-313 . -277) T) ((-325 . -848) T) ((-925 . -97) 33465) ((-948 . -783) T) ((-58 . -482) 33398) ((-1128 . -1060) 33350) ((-929 . -261) NIL) ((-202 . -977) T) ((-353 . -764) T) ((-1026 . -33) T) ((-534 . -425) T) ((-485 . -425) T) ((-1132 . -1007) 33334) ((-1132 . -1013) 33312) ((-217 . -554) 33289) ((-1132 . -1009) 33246) ((-1082 . -561) 33228) ((-1081 . -561) 33210) ((-1075 . -561) 33192) ((-1075 . -562) NIL) ((-1037 . -561) 33174) ((-800 . -374) 33158) ((-497 . -97) T) ((-1149 . -37) 32999) ((-1128 . -37) 32813) ((-798 . -135) T) ((-534 . -376) T) ((-47 . -783) T) ((-485 . -376) T) ((-1151 . -21) T) ((-1151 . -25) T) ((-1026 . -727) 32792) ((-1026 . -730) 32743) ((-1026 . -729) 32722) ((-919 . -1013) T) ((-951 . -33) T) ((-791 . -1013) T) ((-1161 . -97) T) ((-1026 . -663) 32653) ((-605 . -97) T) ((-507 . -263) 32632) ((-1093 . -97) T) ((-449 . -33) T) ((-436 . -33) T) ((-329 . -97) T) ((-326 . -97) T) ((-318 . -97) T) ((-240 . -97) T) ((-224 . -97) T) ((-450 . -282) T) ((-981 . -977) T) ((-880 . -977) T) ((-290 . -583) 32540) ((-287 . -583) 32501) ((-453 . -977) T) ((-451 . -97) T) ((-410 . -561) 32483) ((-1080 . -1013) T) ((-1036 . -1013) T) ((-787 . -1013) T) ((-1050 . -97) T) ((-752 . -265) 32414) ((-890 . -976) 32297) ((-450 . -946) T) ((-672 . -976) 32267) ((-426 . -976) 32237) ((-1056 . -1032) 32221) ((-1015 . -482) 32154) ((-890 . -107) 32023) ((-838 . -97) T) ((-672 . -107) 31988) ((-57 . -97) 31938) ((-487 . -562) 31899) ((-487 . -561) 31811) ((-486 . -97) 31789) ((-484 . -97) 31739) ((-466 . -97) 31717) ((-465 . -97) 31667) ((-426 . -107) 31630) ((-227 . -157) 31609) ((-226 . -157) 31588) ((-392 . -976) 31562) ((-1114 . -899) 31524) ((-924 . -1025) T) ((-871 . -482) 31457) ((-458 . -731) T) ((-447 . -37) 31298) ((-392 . -107) 31265) ((-458 . -728) T) ((-925 . -284) 31203) ((-195 . -731) T) ((-195 . -728) T) ((-924 . -23) T) ((-649 . -124) T) ((-1128 . -374) 31173) ((-290 . -25) 31026) ((-154 . -385) 31010) ((-290 . -21) 30882) ((-287 . -25) T) ((-287 . -21) T) ((-793 . -342) T) ((-106 . -33) T) ((-454 . -589) 30732) ((-799 . -977) T) ((-544 . -263) 30707) ((-533 . -135) T) ((-521 . -135) T) ((-464 . -135) T) ((-1080 . -654) 30536) ((-1036 . -654) 30385) ((-1031 . -583) 30367) ((-787 . -654) 30337) ((-611 . -1119) T) ((-1 . -97) T) ((-217 . -561) 30089) ((-1138 . -385) 30073) ((-1093 . -284) 29877) ((-890 . -970) T) ((-672 . -970) T) ((-652 . -970) T) ((-587 . -1013) 29827) ((-974 . -589) 29811) ((-788 . -385) 29795) ((-479 . -97) T) ((-475 . -97) T) ((-224 . -284) 29782) ((-240 . -284) 29769) ((-890 . -300) 29748) ((-359 . -589) 29732) ((-451 . -284) 29536) ((-227 . -482) 29469) ((-611 . -961) 29367) ((-226 . -482) 29300) ((-1050 . -284) 29226) ((-755 . -1013) T) ((-735 . -976) 29210) ((-1157 . -261) 29195) ((-1150 . -261) 29180) ((-1129 . -261) 29028) ((-360 . -1013) T) ((-298 . -1013) T) ((-392 . -970) T) ((-154 . -977) T) ((-57 . -284) 28966) ((-735 . -107) 28945) ((-546 . -261) 28930) ((-486 . -284) 28868) ((-484 . -284) 28806) ((-466 . -284) 28744) ((-465 . -284) 28682) ((-392 . -210) 28661) ((-454 . -33) T) ((-929 . -562) 28591) ((-202 . -1013) T) ((-929 . -561) 28573) ((-897 . -561) 28555) ((-897 . -562) 28530) ((-842 . -561) 28512) ((-636 . -135) T) ((-638 . -848) T) ((-638 . -756) T) ((-401 . -561) 28494) ((-1031 . -21) T) ((-1031 . -25) T) ((-611 . -351) 28478) ((-112 . -848) T) ((-800 . -208) 28462) ((-76 . -1119) T) ((-122 . -121) 28446) ((-974 . -33) T) ((-1185 . -961) 28420) ((-1183 . -961) 28377) ((-1138 . -977) T) ((-788 . -977) T) ((-454 . -727) 28356) ((-329 . -1060) 28335) ((-326 . -1060) 28314) ((-318 . -1060) 28293) ((-454 . -730) 28244) ((-454 . -729) 28223) ((-204 . -33) T) ((-454 . -663) 28154) ((-58 . -460) 28138) ((-528 . -977) T) ((-1080 . -157) 28029) ((-1036 . -157) 27940) ((-981 . -1013) T) ((-1002 . -877) 27885) ((-880 . -1013) T) ((-753 . -589) 27836) ((-718 . -877) 27806) ((-650 . -1013) T) ((-716 . -877) 27773) ((-484 . -257) 27757) ((-611 . -828) 27716) ((-453 . -1013) T) ((-427 . -877) 27683) ((-77 . -1119) T) ((-329 . -37) 27648) ((-326 . -37) 27613) ((-318 . -37) 27578) ((-240 . -37) 27427) ((-224 . -37) 27276) ((-838 . -1060) T) ((-568 . -135) 27255) ((-568 . -133) 27234) ((-113 . -135) T) ((-113 . -133) NIL) ((-388 . -663) T) ((-735 . -970) T) ((-317 . -425) T) ((-1157 . -927) 27200) ((-1150 . -927) 27166) ((-1129 . -927) 27132) ((-838 . -37) 27097) ((-202 . -654) 27062) ((-39 . -383) 27034) ((-293 . -46) 27004) ((-924 . -124) T) ((-751 . -1119) T) ((-158 . -848) T) ((-317 . -376) T) ((-487 . -263) 26981) ((-44 . -33) T) ((-751 . -961) 26810) ((-603 . -97) T) ((-595 . -21) T) ((-595 . -25) T) ((-1015 . -460) 26794) ((-1128 . -208) 26764) ((-615 . -1119) T) ((-222 . -97) 26714) ((-799 . -1013) T) ((-1086 . -589) 26639) ((-981 . -654) 26626) ((-668 . -976) 26469) ((-1080 . -482) 26417) ((-880 . -654) 26266) ((-1036 . -482) 26218) ((-453 . -654) 26067) ((-65 . -561) 26049) ((-668 . -107) 25878) ((-871 . -460) 25862) ((-1175 . -589) 25822) ((-753 . -663) T) ((-1082 . -976) 25705) ((-1081 . -976) 25540) ((-1075 . -976) 25330) ((-1037 . -976) 25213) ((-928 . -1123) T) ((-1008 . -97) 25191) ((-751 . -351) 25161) ((-928 . -513) T) ((-1082 . -107) 25030) ((-1081 . -107) 24851) ((-1075 . -107) 24620) ((-1037 . -107) 24489) ((-1018 . -1016) 24453) ((-353 . -781) T) ((-1157 . -561) 24435) ((-1150 . -561) 24417) ((-1129 . -561) 24399) ((-1129 . -562) NIL) ((-217 . -263) 24376) ((-39 . -425) T) ((-202 . -157) T) ((-154 . -1013) T) ((-631 . -135) T) ((-631 . -133) NIL) ((-547 . -561) 24358) ((-546 . -561) 24340) ((-826 . -1013) T) ((-774 . -1013) T) ((-744 . -1013) T) ((-705 . -1013) T) ((-599 . -785) 24324) ((-616 . -1013) T) ((-751 . -828) 24257) ((-39 . -376) NIL) ((-1031 . -602) T) ((-799 . -654) 24202) ((-227 . -460) 24186) ((-226 . -460) 24170) ((-649 . -583) 24118) ((-594 . -589) 24092) ((-270 . -33) T) ((-668 . -970) T) ((-534 . -1172) 24079) ((-485 . -1172) 24056) ((-1138 . -1013) T) ((-1080 . -265) 23967) ((-1036 . -265) 23898) ((-981 . -157) T) ((-788 . -1013) T) ((-880 . -157) 23809) ((-718 . -1141) 23793) ((-587 . -482) 23726) ((-75 . -561) 23708) ((-668 . -300) 23673) ((-1086 . -663) T) ((-528 . -1013) T) ((-453 . -157) 23584) ((-222 . -284) 23522) ((-1051 . -1025) T) ((-68 . -561) 23504) ((-1175 . -663) T) ((-1082 . -970) T) ((-1081 . -970) T) ((-301 . -97) 23454) ((-1075 . -970) T) ((-1051 . -23) T) ((-1037 . -970) T) ((-89 . -1032) 23438) ((-794 . -1025) T) ((-1082 . -210) 23397) ((-1081 . -220) 23376) ((-1081 . -210) 23328) ((-1075 . -210) 23215) ((-1075 . -220) 23194) ((-293 . -828) 23100) ((-794 . -23) T) ((-154 . -654) 22928) ((-381 . -1123) T) ((-1014 . -342) T) ((-948 . -135) T) ((-928 . -337) T) ((-798 . -425) T) ((-871 . -261) 22905) ((-290 . -783) T) ((-287 . -783) NIL) ((-802 . -97) T) ((-649 . -25) T) ((-381 . -513) T) ((-649 . -21) T) ((-328 . -135) 22887) ((-328 . -133) T) ((-1056 . -1013) 22865) ((-426 . -657) T) ((-73 . -561) 22847) ((-110 . -783) T) ((-222 . -257) 22831) ((-217 . -976) 22729) ((-79 . -561) 22711) ((-672 . -342) 22664) ((-1084 . -764) T) ((-674 . -212) 22648) ((-1068 . -1119) T) ((-129 . -212) 22630) ((-217 . -107) 22521) ((-1138 . -654) 22350) ((-47 . -135) T) ((-799 . -157) T) ((-788 . -654) 22320) ((-455 . -1119) T) ((-880 . -482) 22267) ((-594 . -663) T) ((-528 . -654) 22254) ((-958 . -977) T) ((-453 . -482) 22197) ((-871 . -19) 22181) ((-871 . -554) 22158) ((-752 . -562) NIL) ((-752 . -561) 22140) ((-929 . -976) 22090) ((-387 . -561) 22072) ((-227 . -261) 22049) ((-226 . -261) 22026) ((-458 . -837) NIL) ((-290 . -29) 21996) ((-103 . -1119) T) ((-928 . -1025) T) ((-195 . -837) NIL) ((-842 . -976) 21948) ((-996 . -961) 21846) ((-929 . -107) 21780) ((-240 . -208) 21764) ((-674 . -632) 21748) ((-401 . -976) 21732) ((-353 . -977) T) ((-928 . -23) T) ((-842 . -107) 21670) ((-631 . -1108) NIL) ((-458 . -589) 21620) ((-103 . -812) 21602) ((-103 . -814) 21584) ((-631 . -1105) NIL) ((-195 . -589) 21534) ((-333 . -961) 21518) ((-327 . -961) 21502) ((-301 . -284) 21440) ((-319 . -961) 21424) ((-202 . -265) T) ((-401 . -107) 21403) ((-58 . -561) 21335) ((-154 . -157) T) ((-1031 . -783) T) ((-103 . -961) 21295) ((-820 . -1013) T) ((-770 . -977) T) ((-763 . -977) T) ((-631 . -34) NIL) ((-631 . -91) NIL) ((-287 . -918) 21256) ((-533 . -425) T) ((-521 . -425) T) ((-464 . -425) T) ((-381 . -337) T) ((-217 . -970) 21187) ((-1059 . -33) T) ((-450 . -848) T) ((-924 . -583) 21135) ((-227 . -554) 21112) ((-226 . -554) 21089) ((-996 . -351) 21073) ((-799 . -482) 20981) ((-217 . -210) 20934) ((-1067 . -1119) T) ((-760 . -561) 20916) ((-1186 . -1025) T) ((-1178 . -561) 20898) ((-1138 . -157) 20789) ((-103 . -351) 20771) ((-103 . -312) 20753) ((-981 . -265) T) ((-880 . -265) 20684) ((-735 . -342) 20663) ((-588 . -1119) T) ((-576 . -1119) T) ((-453 . -265) 20594) ((-528 . -157) T) ((-301 . -257) 20578) ((-1186 . -23) T) ((-1114 . -97) T) ((-1101 . -1013) T) ((-1003 . -1013) T) ((-992 . -1013) T) ((-81 . -561) 20560) ((-648 . -97) T) ((-329 . -323) 20539) ((-556 . -1013) T) ((-326 . -323) 20518) ((-318 . -323) 20497) ((-448 . -1013) T) ((-1093 . -206) 20447) ((-240 . -229) 20409) ((-1051 . -124) T) ((-556 . -558) 20385) ((-996 . -828) 20318) ((-929 . -970) T) ((-842 . -970) T) ((-448 . -558) 20297) ((-1075 . -728) NIL) ((-1075 . -731) NIL) ((-1015 . -562) 20258) ((-451 . -206) 20208) ((-1015 . -561) 20190) ((-929 . -220) T) ((-929 . -210) T) ((-401 . -970) T) ((-885 . -1013) 20140) ((-842 . -220) T) ((-794 . -124) T) ((-636 . -425) T) ((-776 . -1025) 20119) ((-103 . -828) NIL) ((-1114 . -259) 20085) ((-800 . -781) 20064) ((-1026 . -1119) T) ((-833 . -663) T) ((-154 . -482) 19976) ((-924 . -25) T) ((-833 . -446) T) ((-381 . -1025) T) ((-458 . -730) T) ((-458 . -727) T) ((-838 . -323) T) ((-458 . -663) T) ((-195 . -730) T) ((-195 . -727) T) ((-924 . -21) T) ((-195 . -663) T) ((-776 . -23) 19928) ((-293 . -282) 19907) ((-959 . -212) 19853) ((-381 . -23) T) ((-871 . -562) 19814) ((-871 . -561) 19726) ((-587 . -460) 19710) ((-44 . -935) 19660) ((-305 . -561) 19642) ((-1026 . -961) 19471) ((-544 . -592) 19453) ((-544 . -347) 19435) ((-317 . -1172) 19412) ((-951 . -1119) T) ((-799 . -265) T) ((-1138 . -482) 19360) ((-449 . -1119) T) ((-436 . -1119) T) ((-538 . -97) T) ((-1080 . -261) 19287) ((-568 . -425) 19266) ((-925 . -920) 19250) ((-1178 . -356) 19222) ((-113 . -425) T) ((-1100 . -97) T) ((-1006 . -1013) 19200) ((-958 . -1013) T) ((-821 . -783) T) ((-325 . -1123) T) ((-1157 . -976) 19083) ((-1026 . -351) 19053) ((-1150 . -976) 18888) ((-1129 . -976) 18678) ((-1157 . -107) 18547) ((-1150 . -107) 18368) ((-1129 . -107) 18137) ((-1114 . -284) 18124) ((-325 . -513) T) ((-339 . -561) 18106) ((-264 . -282) T) ((-547 . -976) 18079) ((-546 . -976) 17962) ((-335 . -1013) T) ((-296 . -1013) T) ((-227 . -561) 17923) ((-226 . -561) 17884) ((-928 . -124) T) ((-105 . -561) 17866) ((-579 . -23) T) ((-631 . -383) 17833) ((-555 . -23) T) ((-599 . -97) T) ((-547 . -107) 17804) ((-546 . -107) 17673) ((-353 . -1013) T) ((-310 . -97) T) ((-154 . -265) 17584) ((-1128 . -781) 17537) ((-651 . -977) T) ((-1056 . -482) 17470) ((-1026 . -828) 17403) ((-770 . -1013) T) ((-763 . -1013) T) ((-761 . -1013) T) ((-92 . -97) T) ((-132 . -783) T) ((-560 . -812) 17387) ((-106 . -1119) T) ((-1002 . -97) T) ((-982 . -33) T) ((-718 . -97) T) ((-716 . -97) T) ((-434 . -97) T) ((-427 . -97) T) ((-217 . -731) 17338) ((-217 . -728) 17289) ((-590 . -97) T) ((-1138 . -265) 17200) ((-605 . -578) 17184) ((-587 . -261) 17161) ((-958 . -654) 17145) ((-528 . -265) T) ((-890 . -589) 17070) ((-1186 . -124) T) ((-672 . -589) 17030) ((-652 . -589) 17017) ((-251 . -97) T) ((-426 . -589) 16947) ((-49 . -97) T) ((-534 . -97) T) ((-485 . -97) T) ((-1157 . -970) T) ((-1150 . -970) T) ((-1129 . -970) T) ((-1157 . -210) 16906) ((-296 . -654) 16888) ((-1150 . -220) 16867) ((-1150 . -210) 16819) ((-1129 . -210) 16706) ((-1129 . -220) 16685) ((-1114 . -37) 16582) ((-929 . -731) T) ((-547 . -970) T) ((-546 . -970) T) ((-929 . -728) T) ((-897 . -731) T) ((-897 . -728) T) ((-800 . -977) T) ((-798 . -797) 16566) ((-104 . -561) 16548) ((-631 . -425) T) ((-353 . -654) 16513) ((-392 . -589) 16487) ((-649 . -783) 16466) ((-648 . -37) 16431) ((-546 . -210) 16390) ((-39 . -661) 16362) ((-325 . -303) 16339) ((-325 . -337) T) ((-996 . -282) 16290) ((-269 . -1025) 16172) ((-1019 . -1119) T) ((-156 . -97) T) ((-1132 . -561) 16139) ((-776 . -124) 16091) ((-587 . -1153) 16075) ((-770 . -654) 16045) ((-763 . -654) 16015) ((-454 . -1119) T) ((-333 . -282) T) ((-327 . -282) T) ((-319 . -282) T) ((-587 . -554) 15992) ((-381 . -124) T) ((-487 . -607) 15976) ((-103 . -282) T) ((-269 . -23) 15860) ((-487 . -592) 15844) ((-631 . -376) NIL) ((-487 . -347) 15828) ((-266 . -561) 15810) ((-89 . -1013) 15788) ((-103 . -946) T) ((-521 . -131) T) ((-1165 . -139) 15772) ((-454 . -961) 15601) ((-1151 . -133) 15562) ((-1151 . -135) 15523) ((-974 . -1119) T) ((-919 . -561) 15505) ((-791 . -561) 15487) ((-752 . -976) 15330) ((-1002 . -284) 15317) ((-204 . -1119) T) ((-718 . -284) 15304) ((-716 . -284) 15291) ((-752 . -107) 15120) ((-427 . -284) 15107) ((-1080 . -562) NIL) ((-1080 . -561) 15089) ((-1036 . -561) 15071) ((-1036 . -562) 14819) ((-958 . -157) T) ((-787 . -561) 14801) ((-871 . -263) 14778) ((-556 . -482) 14561) ((-754 . -961) 14545) ((-448 . -482) 14337) ((-890 . -663) T) ((-672 . -663) T) ((-652 . -663) T) ((-325 . -1025) T) ((-1087 . -561) 14319) ((-200 . -97) T) ((-454 . -351) 14289) ((-483 . -1013) T) ((-478 . -1013) T) ((-476 . -1013) T) ((-735 . -589) 14263) ((-948 . -425) T) ((-885 . -482) 14196) ((-325 . -23) T) ((-579 . -124) T) ((-555 . -124) T) ((-328 . -425) T) ((-217 . -342) 14175) ((-353 . -157) T) ((-1149 . -977) T) ((-1128 . -977) T) ((-202 . -927) T) ((-636 . -361) T) ((-392 . -663) T) ((-638 . -1123) T) ((-1051 . -583) 14123) ((-533 . -797) 14107) ((-1068 . -1096) 14083) ((-638 . -513) T) ((-122 . -1013) 14061) ((-1178 . -976) 14045) ((-651 . -1013) T) ((-454 . -828) 13978) ((-599 . -37) 13948) ((-328 . -376) T) ((-290 . -135) 13927) ((-290 . -133) 13906) ((-112 . -513) T) ((-287 . -135) 13862) ((-287 . -133) 13818) ((-47 . -425) T) ((-147 . -1013) T) ((-143 . -1013) T) ((-1068 . -102) 13765) ((-718 . -1060) 13743) ((-627 . -33) T) ((-1178 . -107) 13722) ((-507 . -33) T) ((-455 . -102) 13706) ((-227 . -263) 13683) ((-226 . -263) 13660) ((-799 . -261) 13611) ((-44 . -1119) T) ((-752 . -970) T) ((-1086 . -46) 13588) ((-752 . -300) 13550) ((-1002 . -37) 13399) ((-752 . -210) 13378) ((-718 . -37) 13207) ((-716 . -37) 13056) ((-427 . -37) 12905) ((-587 . -562) 12866) ((-587 . -561) 12778) ((-534 . -1060) T) ((-485 . -1060) T) ((-1056 . -460) 12762) ((-1106 . -1013) 12740) ((-1051 . -25) T) ((-1051 . -21) T) ((-447 . -977) T) ((-1129 . -728) NIL) ((-1129 . -731) NIL) ((-924 . -783) 12719) ((-755 . -561) 12701) ((-794 . -21) T) ((-794 . -25) T) ((-735 . -663) T) ((-158 . -1123) T) ((-534 . -37) 12666) ((-485 . -37) 12631) ((-360 . -561) 12613) ((-298 . -561) 12595) ((-154 . -261) 12553) ((-61 . -1119) T) ((-108 . -97) T) ((-800 . -1013) T) ((-158 . -513) T) ((-651 . -654) 12523) ((-269 . -124) 12407) ((-202 . -561) 12389) ((-202 . -562) 12319) ((-928 . -583) 12258) ((-1178 . -970) T) ((-1031 . -135) T) ((-576 . -1096) 12233) ((-668 . -837) 12212) ((-544 . -33) T) ((-588 . -102) 12196) ((-576 . -102) 12142) ((-1138 . -261) 12069) ((-668 . -589) 11994) ((-270 . -1119) T) ((-1086 . -961) 11892) ((-1075 . -837) NIL) ((-981 . -562) 11807) ((-981 . -561) 11789) ((-317 . -97) T) ((-227 . -976) 11687) ((-226 . -976) 11585) ((-368 . -97) T) ((-880 . -561) 11567) ((-880 . -562) 11428) ((-650 . -561) 11410) ((-1176 . -1113) 11379) ((-453 . -561) 11361) ((-453 . -562) 11222) ((-224 . -385) 11206) ((-240 . -385) 11190) ((-227 . -107) 11081) ((-226 . -107) 10972) ((-1082 . -589) 10897) ((-1081 . -589) 10794) ((-1075 . -589) 10646) ((-1037 . -589) 10571) ((-325 . -124) T) ((-80 . -414) T) ((-80 . -369) T) ((-928 . -25) T) ((-928 . -21) T) ((-801 . -1013) 10522) ((-800 . -654) 10474) ((-353 . -265) T) ((-154 . -927) 10426) ((-631 . -361) T) ((-924 . -922) 10410) ((-638 . -1025) T) ((-631 . -151) 10392) ((-1149 . -1013) T) ((-1128 . -1013) T) ((-290 . -1105) 10371) ((-290 . -1108) 10350) ((-1073 . -97) T) ((-290 . -886) 10329) ((-126 . -1025) T) ((-112 . -1025) T) ((-552 . -1163) 10313) ((-638 . -23) T) ((-552 . -1013) 10263) ((-89 . -482) 10196) ((-158 . -337) T) ((-290 . -91) 10175) ((-290 . -34) 10154) ((-556 . -460) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-655 . -1013) T) ((-448 . -460) 10025) ((-381 . -583) 9973) ((-594 . -961) 9871) ((-885 . -460) 9855) ((-329 . -977) T) ((-326 . -977) T) ((-318 . -977) T) ((-240 . -977) T) ((-224 . -977) T) ((-799 . -562) NIL) ((-799 . -561) 9837) ((-1186 . -21) T) ((-528 . -927) T) ((-668 . -663) T) ((-1186 . -25) T) ((-227 . -970) 9768) ((-226 . -970) 9699) ((-70 . -1119) T) ((-227 . -210) 9652) ((-226 . -210) 9605) ((-39 . -97) T) ((-838 . -977) T) ((-1082 . -663) T) ((-1081 . -663) T) ((-1075 . -663) T) ((-1075 . -727) NIL) ((-1075 . -730) NIL) ((-849 . -97) T) ((-1037 . -663) T) ((-707 . -97) T) ((-612 . -97) T) ((-447 . -1013) T) ((-313 . -1025) T) ((-158 . -1025) T) ((-293 . -848) 9584) ((-1149 . -654) 9425) ((-800 . -157) T) ((-1128 . -654) 9239) ((-776 . -21) 9191) ((-776 . -25) 9143) ((-222 . -1058) 9127) ((-122 . -482) 9060) ((-381 . -25) T) ((-381 . -21) T) ((-313 . -23) T) ((-154 . -562) 8828) ((-154 . -561) 8810) ((-158 . -23) T) ((-587 . -263) 8787) ((-487 . -33) T) ((-826 . -561) 8769) ((-87 . -1119) T) ((-774 . -561) 8751) ((-744 . -561) 8733) ((-705 . -561) 8715) ((-616 . -561) 8697) ((-217 . -589) 8547) ((-1084 . -1013) T) ((-1080 . -976) 8370) ((-1059 . -1119) T) ((-1036 . -976) 8213) ((-787 . -976) 8197) ((-1080 . -107) 8006) ((-1036 . -107) 7835) ((-787 . -107) 7814) ((-1138 . -562) NIL) ((-1138 . -561) 7796) ((-317 . -1060) T) ((-788 . -561) 7778) ((-992 . -261) 7757) ((-78 . -1119) T) ((-929 . -837) NIL) ((-556 . -261) 7733) ((-1106 . -482) 7666) ((-458 . -1119) T) ((-528 . -561) 7648) ((-448 . -261) 7627) ((-195 . -1119) T) ((-1002 . -208) 7611) ((-264 . -848) T) ((-753 . -282) 7590) ((-798 . -97) T) ((-718 . -208) 7574) ((-929 . -589) 7524) ((-885 . -261) 7501) ((-842 . -589) 7453) ((-579 . -21) T) ((-579 . -25) T) ((-555 . -21) T) ((-317 . -37) 7418) ((-631 . -661) 7385) ((-458 . -812) 7367) ((-458 . -814) 7349) ((-447 . -654) 7190) ((-195 . -812) 7172) ((-62 . -1119) T) ((-195 . -814) 7154) ((-555 . -25) T) ((-401 . -589) 7128) ((-458 . -961) 7088) ((-800 . -482) 7000) ((-195 . -961) 6960) ((-217 . -33) T) ((-925 . -1013) 6938) ((-1149 . -157) 6869) ((-1128 . -157) 6800) ((-649 . -133) 6779) ((-649 . -135) 6758) ((-638 . -124) T) ((-128 . -438) 6735) ((-599 . -597) 6719) ((-1056 . -561) 6651) ((-112 . -124) T) ((-450 . -1123) T) ((-556 . -554) 6627) ((-448 . -554) 6606) ((-310 . -309) 6575) ((-497 . -1013) T) ((-450 . -513) T) ((-1080 . -970) T) ((-1036 . -970) T) ((-787 . -970) T) ((-217 . -727) 6554) ((-217 . -730) 6505) ((-217 . -729) 6484) ((-1080 . -300) 6461) ((-217 . -663) 6392) ((-885 . -19) 6376) ((-458 . -351) 6358) ((-458 . -312) 6340) ((-1036 . -300) 6312) ((-328 . -1172) 6289) ((-195 . -351) 6271) ((-195 . -312) 6253) ((-885 . -554) 6230) ((-1080 . -210) T) ((-605 . -1013) T) ((-1161 . -1013) T) ((-1093 . -1013) T) ((-1002 . -229) 6167) ((-329 . -1013) T) ((-326 . -1013) T) ((-318 . -1013) T) ((-240 . -1013) T) ((-224 . -1013) T) ((-82 . -1119) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1093 . -558) 6102) ((-451 . -1013) T) ((-1050 . -1013) T) ((-451 . -558) 6081) ((-227 . -731) 6032) ((-227 . -728) 5983) ((-226 . -731) 5934) ((-39 . -1060) NIL) ((-226 . -728) 5885) ((-996 . -848) 5836) ((-929 . -730) T) ((-929 . -727) T) ((-929 . -663) T) ((-897 . -730) T) ((-842 . -663) T) ((-89 . -460) 5820) ((-458 . -828) NIL) ((-838 . -1013) T) ((-202 . -976) 5785) ((-800 . -265) T) ((-195 . -828) NIL) ((-769 . -1025) 5764) ((-57 . -1013) 5714) ((-486 . -1013) 5692) ((-484 . -1013) 5642) ((-466 . -1013) 5620) ((-465 . -1013) 5570) ((-533 . -97) T) ((-521 . -97) T) ((-464 . -97) T) ((-447 . -157) 5501) ((-333 . -848) T) ((-327 . -848) T) ((-319 . -848) T) ((-202 . -107) 5457) ((-769 . -23) 5409) ((-401 . -663) T) ((-103 . -848) T) ((-39 . -37) 5354) ((-103 . -756) T) ((-534 . -323) T) ((-485 . -323) T) ((-1128 . -482) 5214) ((-290 . -425) 5193) ((-287 . -425) T) ((-770 . -261) 5172) ((-313 . -124) T) ((-158 . -124) T) ((-269 . -25) 5037) ((-269 . -21) 4921) ((-44 . -1096) 4900) ((-64 . -561) 4882) ((-820 . -561) 4864) ((-552 . -482) 4797) ((-44 . -102) 4747) ((-1015 . -399) 4731) ((-1015 . -342) 4710) ((-982 . -1119) T) ((-981 . -976) 4697) ((-880 . -976) 4540) ((-453 . -976) 4383) ((-605 . -654) 4367) ((-981 . -107) 4352) ((-880 . -107) 4181) ((-450 . -337) T) ((-329 . -654) 4133) ((-326 . -654) 4085) ((-318 . -654) 4037) ((-240 . -654) 3886) ((-224 . -654) 3735) ((-871 . -592) 3719) ((-453 . -107) 3548) ((-1166 . -97) T) ((-871 . -347) 3532) ((-1129 . -837) NIL) ((-72 . -561) 3514) ((-890 . -46) 3493) ((-566 . -1025) T) ((-1 . -1013) T) ((-636 . -97) T) ((-1165 . -97) 3443) ((-1157 . -589) 3368) ((-1150 . -589) 3265) ((-122 . -460) 3249) ((-1101 . -561) 3231) ((-1003 . -561) 3213) ((-364 . -23) T) ((-992 . -561) 3195) ((-85 . -1119) T) ((-1129 . -589) 3047) ((-838 . -654) 3012) ((-566 . -23) T) ((-556 . -561) 2994) ((-556 . -562) NIL) ((-448 . -562) NIL) ((-448 . -561) 2976) ((-479 . -1013) T) ((-475 . -1013) T) ((-325 . -25) T) ((-325 . -21) T) ((-123 . -284) 2914) ((-117 . -284) 2852) ((-547 . -589) 2839) ((-202 . -970) T) ((-546 . -589) 2764) ((-353 . -927) T) ((-202 . -220) T) ((-202 . -210) T) ((-885 . -562) 2725) ((-885 . -561) 2637) ((-798 . -37) 2624) ((-1149 . -265) 2575) ((-1128 . -265) 2526) ((-1031 . -425) T) ((-471 . -783) T) ((-290 . -1048) 2505) ((-924 . -135) 2484) ((-924 . -133) 2463) ((-464 . -284) 2450) ((-270 . -1096) 2429) ((-450 . -1025) T) ((-799 . -976) 2374) ((-568 . -97) T) ((-1106 . -460) 2358) ((-227 . -342) 2337) ((-226 . -342) 2316) ((-270 . -102) 2266) ((-981 . -970) T) ((-113 . -97) T) ((-880 . -970) T) ((-799 . -107) 2195) ((-450 . -23) T) ((-453 . -970) T) ((-981 . -210) T) ((-880 . -300) 2164) ((-453 . -300) 2121) ((-329 . -157) T) ((-326 . -157) T) ((-318 . -157) T) ((-240 . -157) 2032) ((-224 . -157) 1943) ((-890 . -961) 1841) ((-672 . -961) 1812) ((-1018 . -97) T) ((-1006 . -561) 1779) ((-958 . -561) 1761) ((-1157 . -663) T) ((-1150 . -663) T) ((-1129 . -727) NIL) ((-154 . -976) 1671) ((-1129 . -730) NIL) ((-838 . -157) T) ((-1129 . -663) T) ((-1176 . -139) 1655) ((-928 . -316) 1629) ((-925 . -482) 1562) ((-776 . -783) 1541) ((-521 . -1060) T) ((-447 . -265) 1492) ((-547 . -663) T) ((-335 . -561) 1474) ((-296 . -561) 1456) ((-392 . -961) 1354) ((-546 . -663) T) ((-381 . -783) 1305) ((-154 . -107) 1201) ((-769 . -124) 1153) ((-674 . -139) 1137) ((-1165 . -284) 1075) ((-458 . -282) T) ((-353 . -561) 1042) ((-487 . -935) 1026) ((-353 . -562) 940) ((-195 . -282) T) ((-129 . -139) 922) ((-651 . -261) 901) ((-458 . -946) T) ((-533 . -37) 888) ((-521 . -37) 875) ((-464 . -37) 840) ((-195 . -946) T) ((-799 . -970) T) ((-770 . -561) 822) ((-763 . -561) 804) ((-761 . -561) 786) ((-752 . -837) 765) ((-1187 . -1025) T) ((-1138 . -976) 588) ((-788 . -976) 572) ((-799 . -220) T) ((-799 . -210) NIL) ((-627 . -1119) T) ((-1187 . -23) T) ((-752 . -589) 497) ((-507 . -1119) T) ((-392 . -312) 481) ((-528 . -976) 468) ((-1138 . -107) 277) ((-638 . -583) 259) ((-788 . -107) 238) ((-355 . -23) T) ((-1093 . -482) 30)) \ No newline at end of file
+(((-604 . -1014) T) ((-240 . -483) 142376) ((-224 . -483) 142319) ((-529 . -107) 142304) ((-494 . -23) T) ((-222 . -1014) 142254) ((-113 . -285) 142211) ((-452 . -483) 142003) ((-632 . -97) T) ((-1051 . -483) 141922) ((-365 . -124) T) ((-1177 . -903) 141891) ((-553 . -461) 141875) ((-567 . -124) T) ((-756 . -780) T) ((-491 . -55) 141825) ((-57 . -483) 141758) ((-487 . -483) 141691) ((-393 . -829) 141650) ((-154 . -971) T) ((-485 . -483) 141583) ((-467 . -483) 141516) ((-466 . -483) 141449) ((-736 . -962) 141236) ((-637 . -37) 141201) ((-318 . -324) T) ((-1009 . -1008) 141185) ((-1009 . -1014) 141163) ((-154 . -220) 141114) ((-154 . -210) 141065) ((-1009 . -1010) 141023) ((-801 . -262) 140981) ((-202 . -732) T) ((-202 . -729) T) ((-632 . -260) NIL) ((-1060 . -1097) 140960) ((-382 . -919) 140944) ((-639 . -21) T) ((-639 . -25) T) ((-1179 . -590) 140918) ((-291 . -146) 140897) ((-291 . -131) 140876) ((-1060 . -102) 140826) ((-126 . -25) T) ((-39 . -208) 140803) ((-112 . -21) T) ((-112 . -25) T) ((-557 . -264) 140779) ((-449 . -264) 140758) ((-1139 . -971) T) ((-789 . -971) T) ((-736 . -313) 140742) ((-113 . -1061) NIL) ((-89 . -562) 140674) ((-451 . -124) T) ((-545 . -1120) T) ((-1139 . -301) 140651) ((-529 . -971) T) ((-1139 . -210) T) ((-604 . -655) 140635) ((-886 . -264) 140612) ((-58 . -33) T) ((-982 . -732) T) ((-982 . -729) T) ((-753 . -664) T) ((-669 . -46) 140577) ((-569 . -37) 140564) ((-330 . -266) T) ((-327 . -266) T) ((-319 . -266) T) ((-240 . -266) 140495) ((-224 . -266) 140426) ((-949 . -97) T) ((-388 . -664) T) ((-113 . -37) 140371) ((-388 . -447) T) ((-329 . -97) T) ((-1115 . -978) T) ((-649 . -978) T) ((-1083 . -46) 140348) ((-1082 . -46) 140318) ((-1076 . -46) 140295) ((-960 . -139) 140241) ((-839 . -266) T) ((-1038 . -46) 140213) ((-632 . -285) NIL) ((-484 . -562) 140195) ((-479 . -562) 140177) ((-477 . -562) 140159) ((-302 . -1014) 140109) ((-650 . -426) 140040) ((-47 . -97) T) ((-1150 . -262) 140025) ((-1129 . -262) 139945) ((-588 . -608) 139929) ((-588 . -593) 139913) ((-314 . -21) T) ((-314 . -25) T) ((-39 . -324) NIL) ((-158 . -21) T) ((-158 . -25) T) ((-588 . -348) 139897) ((-553 . -262) 139874) ((-363 . -97) T) ((-1032 . -131) T) ((-122 . -562) 139806) ((-803 . -1014) T) ((-600 . -386) 139790) ((-652 . -562) 139772) ((-147 . -562) 139754) ((-143 . -562) 139736) ((-1179 . -664) T) ((-1016 . -33) T) ((-800 . -732) NIL) ((-800 . -729) NIL) ((-791 . -784) T) ((-669 . -815) NIL) ((-1188 . -124) T) ((-356 . -124) T) ((-833 . -97) T) ((-669 . -962) 139614) ((-494 . -124) T) ((-1003 . -386) 139598) ((-926 . -461) 139582) ((-113 . -375) 139559) ((-1076 . -1120) 139538) ((-719 . -386) 139522) ((-717 . -386) 139506) ((-872 . -33) T) ((-632 . -1061) NIL) ((-227 . -590) 139343) ((-226 . -590) 139167) ((-754 . -849) 139146) ((-428 . -386) 139130) ((-553 . -19) 139114) ((-1056 . -1114) 139083) ((-1076 . -815) NIL) ((-1076 . -813) 139035) ((-553 . -555) 139012) ((-1107 . -562) 138944) ((-1084 . -562) 138926) ((-60 . -370) T) ((-1082 . -962) 138861) ((-1076 . -962) 138827) ((-632 . -37) 138777) ((-448 . -262) 138762) ((-669 . -352) 138746) ((-600 . -978) T) ((-1150 . -928) 138712) ((-1129 . -928) 138678) ((-983 . -1097) 138653) ((-801 . -563) 138461) ((-801 . -562) 138443) ((-1094 . -461) 138380) ((-393 . -947) 138359) ((-47 . -285) 138346) ((-983 . -102) 138292) ((-452 . -461) 138229) ((-488 . -1120) T) ((-1051 . -461) 138200) ((-1076 . -313) 138152) ((-1076 . -352) 138104) ((-412 . -97) T) ((-1003 . -978) T) ((-227 . -33) T) ((-226 . -33) T) ((-719 . -978) T) ((-717 . -978) T) ((-669 . -829) 138081) ((-428 . -978) T) ((-57 . -461) 138065) ((-959 . -977) 138039) ((-487 . -461) 138023) ((-485 . -461) 138007) ((-467 . -461) 137991) ((-466 . -461) 137975) ((-222 . -483) 137908) ((-959 . -107) 137875) ((-1083 . -829) 137788) ((-612 . -1026) T) ((-1082 . -829) 137694) ((-1076 . -829) 137527) ((-1038 . -829) 137511) ((-329 . -1061) T) ((-297 . -977) 137493) ((-227 . -728) 137472) ((-227 . -731) 137423) ((-227 . -730) 137402) ((-226 . -728) 137381) ((-226 . -731) 137332) ((-226 . -730) 137311) ((-49 . -978) T) ((-227 . -664) 137242) ((-226 . -664) 137173) ((-1115 . -1014) T) ((-612 . -23) T) ((-535 . -978) T) ((-486 . -978) T) ((-354 . -977) 137138) ((-297 . -107) 137113) ((-71 . -358) T) ((-71 . -370) T) ((-949 . -37) 137050) ((-632 . -375) 137032) ((-94 . -97) T) ((-649 . -1014) T) ((-929 . -133) 137004) ((-929 . -135) 136976) ((-354 . -107) 136932) ((-294 . -1124) 136911) ((-448 . -928) 136877) ((-329 . -37) 136842) ((-39 . -345) 136814) ((-802 . -562) 136686) ((-123 . -121) 136670) ((-117 . -121) 136654) ((-771 . -977) 136624) ((-770 . -21) 136576) ((-764 . -977) 136560) ((-770 . -25) 136512) ((-294 . -514) 136463) ((-522 . -765) T) ((-217 . -1120) T) ((-771 . -107) 136428) ((-764 . -107) 136407) ((-1150 . -562) 136389) ((-1129 . -562) 136371) ((-1129 . -563) 136044) ((-1081 . -838) 136023) ((-1037 . -838) 136002) ((-47 . -37) 135967) ((-1186 . -1026) T) ((-553 . -562) 135879) ((-553 . -563) 135840) ((-1184 . -1026) T) ((-217 . -962) 135669) ((-1081 . -590) 135594) ((-1037 . -590) 135519) ((-656 . -562) 135501) ((-788 . -590) 135475) ((-1186 . -23) T) ((-1184 . -23) T) ((-959 . -971) T) ((-1094 . -262) 135454) ((-154 . -343) 135405) ((-930 . -1120) T) ((-43 . -23) T) ((-452 . -262) 135384) ((-539 . -1014) T) ((-1056 . -1023) 135353) ((-1018 . -1017) 135305) ((-365 . -21) T) ((-365 . -25) T) ((-140 . -1026) T) ((-1192 . -97) T) ((-930 . -813) 135287) ((-930 . -815) 135269) ((-1115 . -655) 135166) ((-569 . -208) 135150) ((-567 . -21) T) ((-265 . -514) T) ((-567 . -25) T) ((-1101 . -1014) T) ((-649 . -655) 135115) ((-217 . -352) 135085) ((-930 . -962) 135045) ((-354 . -971) T) ((-200 . -978) T) ((-113 . -208) 135022) ((-57 . -262) 134999) ((-140 . -23) T) ((-485 . -262) 134976) ((-302 . -483) 134909) ((-466 . -262) 134886) ((-354 . -220) T) ((-354 . -210) T) ((-771 . -971) T) ((-764 . -971) T) ((-650 . -878) 134856) ((-639 . -784) T) ((-448 . -562) 134838) ((-764 . -210) 134817) ((-126 . -784) T) ((-600 . -1014) T) ((-1094 . -555) 134796) ((-508 . -1097) 134775) ((-311 . -1014) T) ((-294 . -338) 134754) ((-382 . -135) 134733) ((-382 . -133) 134712) ((-892 . -1026) 134611) ((-217 . -829) 134544) ((-752 . -1026) 134475) ((-596 . -786) 134459) ((-452 . -555) 134438) ((-508 . -102) 134388) ((-930 . -352) 134370) ((-930 . -313) 134352) ((-92 . -1014) T) ((-892 . -23) 134163) ((-451 . -21) T) ((-451 . -25) T) ((-752 . -23) 134034) ((-1085 . -562) 134016) ((-57 . -19) 134000) ((-1085 . -563) 133922) ((-1081 . -664) T) ((-1037 . -664) T) ((-485 . -19) 133906) ((-466 . -19) 133890) ((-57 . -555) 133867) ((-1003 . -1014) T) ((-830 . -97) 133845) ((-788 . -664) T) ((-719 . -1014) T) ((-485 . -555) 133822) ((-466 . -555) 133799) ((-717 . -1014) T) ((-717 . -985) 133766) ((-435 . -1014) T) ((-428 . -1014) T) ((-539 . -655) 133741) ((-591 . -1014) T) ((-930 . -829) NIL) ((-1158 . -46) 133718) ((-572 . -1026) T) ((-612 . -124) T) ((-1152 . -97) T) ((-1151 . -46) 133688) ((-1130 . -46) 133665) ((-1115 . -157) 133616) ((-997 . -1124) 133567) ((-251 . -1014) T) ((-83 . -415) T) ((-83 . -370) T) ((-1082 . -283) 133546) ((-1076 . -283) 133525) ((-49 . -1014) T) ((-997 . -514) 133476) ((-649 . -157) T) ((-547 . -46) 133453) ((-202 . -590) 133418) ((-535 . -1014) T) ((-486 . -1014) T) ((-334 . -1124) T) ((-328 . -1124) T) ((-320 . -1124) T) ((-459 . -757) T) ((-459 . -849) T) ((-294 . -1026) T) ((-103 . -1124) T) ((-314 . -784) T) ((-195 . -849) T) ((-195 . -757) T) ((-652 . -977) 133388) ((-334 . -514) T) ((-328 . -514) T) ((-320 . -514) T) ((-103 . -514) T) ((-600 . -655) 133358) ((-1076 . -947) NIL) ((-294 . -23) T) ((-65 . -1120) T) ((-926 . -562) 133290) ((-632 . -208) 133272) ((-652 . -107) 133237) ((-588 . -33) T) ((-222 . -461) 133221) ((-1016 . -1012) 133205) ((-156 . -1014) T) ((-881 . -838) 133184) ((-454 . -838) 133163) ((-1188 . -21) T) ((-1188 . -25) T) ((-1186 . -124) T) ((-1184 . -124) T) ((-1003 . -655) 133012) ((-982 . -590) 132999) ((-881 . -590) 132924) ((-498 . -562) 132906) ((-498 . -563) 132887) ((-719 . -655) 132716) ((-717 . -655) 132565) ((-1177 . -97) T) ((-994 . -97) T) ((-356 . -25) T) ((-356 . -21) T) ((-454 . -590) 132490) ((-435 . -655) 132461) ((-428 . -655) 132310) ((-914 . -97) T) ((-675 . -97) T) ((-494 . -25) T) ((-1130 . -1120) 132289) ((-1162 . -562) 132255) ((-1130 . -815) NIL) ((-1130 . -813) 132207) ((-129 . -97) T) ((-43 . -124) T) ((-1094 . -563) NIL) ((-1094 . -562) 132189) ((-1052 . -1035) 132134) ((-318 . -978) T) ((-606 . -562) 132116) ((-265 . -1026) T) ((-330 . -562) 132098) ((-327 . -562) 132080) ((-319 . -562) 132062) ((-240 . -563) 131810) ((-240 . -562) 131792) ((-224 . -562) 131774) ((-224 . -563) 131635) ((-968 . -1114) 131564) ((-830 . -285) 131502) ((-1192 . -1061) T) ((-1151 . -962) 131437) ((-1130 . -962) 131403) ((-1115 . -483) 131370) ((-1051 . -562) 131352) ((-756 . -664) T) ((-553 . -264) 131329) ((-535 . -655) 131294) ((-452 . -563) NIL) ((-452 . -562) 131276) ((-486 . -655) 131221) ((-291 . -97) T) ((-288 . -97) T) ((-265 . -23) T) ((-140 . -124) T) ((-361 . -664) T) ((-801 . -977) 131173) ((-839 . -562) 131155) ((-839 . -563) 131137) ((-801 . -107) 131075) ((-128 . -97) T) ((-110 . -97) T) ((-650 . -1142) 131059) ((-652 . -971) T) ((-632 . -324) NIL) ((-487 . -562) 130991) ((-354 . -732) T) ((-200 . -1014) T) ((-354 . -729) T) ((-202 . -731) T) ((-202 . -728) T) ((-57 . -563) 130952) ((-57 . -562) 130864) ((-202 . -664) T) ((-485 . -563) 130825) ((-485 . -562) 130737) ((-467 . -562) 130669) ((-466 . -563) 130630) ((-466 . -562) 130542) ((-997 . -338) 130493) ((-39 . -386) 130470) ((-75 . -1120) T) ((-800 . -838) NIL) ((-334 . -304) 130454) ((-334 . -338) T) ((-328 . -304) 130438) ((-328 . -338) T) ((-320 . -304) 130422) ((-320 . -338) T) ((-291 . -260) 130401) ((-103 . -338) T) ((-68 . -1120) T) ((-1130 . -313) 130353) ((-800 . -590) 130298) ((-1130 . -352) 130250) ((-892 . -124) 130105) ((-752 . -124) 129976) ((-886 . -593) 129960) ((-1003 . -157) 129871) ((-886 . -348) 129855) ((-982 . -731) T) ((-982 . -728) T) ((-719 . -157) 129746) ((-717 . -157) 129657) ((-753 . -46) 129619) ((-982 . -664) T) ((-302 . -461) 129603) ((-881 . -664) T) ((-428 . -157) 129514) ((-222 . -262) 129491) ((-454 . -664) T) ((-1177 . -285) 129429) ((-1158 . -829) 129342) ((-1151 . -829) 129248) ((-1150 . -977) 129083) ((-1130 . -829) 128916) ((-1129 . -977) 128724) ((-1115 . -266) 128703) ((-1056 . -139) 128687) ((-992 . -97) T) ((-856 . -883) T) ((-73 . -1120) T) ((-675 . -285) 128625) ((-154 . -838) 128578) ((-606 . -357) 128550) ((-30 . -883) T) ((-1 . -562) 128532) ((-1032 . -97) T) ((-997 . -23) T) ((-49 . -566) 128516) ((-997 . -1026) T) ((-929 . -384) 128488) ((-547 . -829) 128401) ((-413 . -97) T) ((-129 . -285) NIL) ((-801 . -971) T) ((-770 . -784) 128380) ((-79 . -1120) T) ((-649 . -266) T) ((-39 . -978) T) ((-535 . -157) T) ((-486 . -157) T) ((-480 . -562) 128362) ((-154 . -590) 128272) ((-476 . -562) 128254) ((-326 . -135) 128236) ((-326 . -133) T) ((-334 . -1026) T) ((-328 . -1026) T) ((-320 . -1026) T) ((-930 . -283) T) ((-843 . -283) T) ((-801 . -220) T) ((-103 . -1026) T) ((-801 . -210) 128215) ((-1150 . -107) 128036) ((-1129 . -107) 127825) ((-222 . -1154) 127809) ((-522 . -782) T) ((-334 . -23) T) ((-329 . -324) T) ((-291 . -285) 127796) ((-288 . -285) 127737) ((-328 . -23) T) ((-294 . -124) T) ((-320 . -23) T) ((-930 . -947) T) ((-103 . -23) T) ((-222 . -555) 127714) ((-1152 . -37) 127606) ((-1139 . -838) 127585) ((-108 . -1014) T) ((-960 . -97) T) ((-1139 . -590) 127510) ((-800 . -731) NIL) ((-789 . -590) 127484) ((-800 . -728) NIL) ((-753 . -815) NIL) ((-800 . -664) T) ((-1003 . -483) 127357) ((-719 . -483) 127305) ((-717 . -483) 127257) ((-529 . -590) 127244) ((-753 . -962) 127074) ((-428 . -483) 127017) ((-363 . -364) T) ((-58 . -1120) T) ((-567 . -784) 126996) ((-470 . -603) T) ((-1056 . -903) 126965) ((-929 . -426) T) ((-637 . -782) T) ((-479 . -729) T) ((-448 . -977) 126800) ((-318 . -1014) T) ((-288 . -1061) NIL) ((-265 . -124) T) ((-369 . -1014) T) ((-632 . -345) 126767) ((-799 . -978) T) ((-200 . -566) 126744) ((-302 . -262) 126721) ((-448 . -107) 126542) ((-1150 . -971) T) ((-1129 . -971) T) ((-753 . -352) 126526) ((-154 . -664) T) ((-596 . -97) T) ((-1150 . -220) 126505) ((-1150 . -210) 126457) ((-1129 . -210) 126362) ((-1129 . -220) 126341) ((-929 . -377) NIL) ((-612 . -584) 126289) ((-291 . -37) 126199) ((-288 . -37) 126128) ((-67 . -562) 126110) ((-294 . -463) 126076) ((-1094 . -264) 126055) ((-1027 . -1026) 125986) ((-81 . -1120) T) ((-59 . -562) 125968) ((-452 . -264) 125947) ((-1179 . -962) 125924) ((-1074 . -1014) T) ((-1027 . -23) 125795) ((-753 . -829) 125731) ((-1139 . -664) T) ((-1016 . -1120) T) ((-1003 . -266) 125662) ((-822 . -97) T) ((-719 . -266) 125573) ((-302 . -19) 125557) ((-57 . -264) 125534) ((-717 . -266) 125465) ((-789 . -664) T) ((-113 . -782) NIL) ((-485 . -264) 125442) ((-302 . -555) 125419) ((-466 . -264) 125396) ((-428 . -266) 125327) ((-960 . -285) 125178) ((-529 . -664) T) ((-604 . -562) 125160) ((-222 . -563) 125121) ((-222 . -562) 125033) ((-1057 . -33) T) ((-872 . -1120) T) ((-318 . -655) 124978) ((-612 . -25) T) ((-612 . -21) T) ((-448 . -971) T) ((-580 . -392) 124943) ((-556 . -392) 124908) ((-1032 . -1061) T) ((-535 . -266) T) ((-486 . -266) T) ((-1151 . -283) 124887) ((-448 . -210) 124839) ((-448 . -220) 124818) ((-1130 . -283) 124797) ((-997 . -124) T) ((-801 . -732) 124776) ((-132 . -97) T) ((-39 . -1014) T) ((-801 . -729) 124755) ((-588 . -936) 124739) ((-534 . -978) T) ((-522 . -978) T) ((-465 . -978) T) ((-382 . -426) T) ((-334 . -124) T) ((-291 . -375) 124723) ((-288 . -375) 124684) ((-328 . -124) T) ((-320 . -124) T) ((-1130 . -947) NIL) ((-1090 . -1014) T) ((-1009 . -562) 124651) ((-103 . -124) T) ((-1032 . -37) 124638) ((-850 . -1014) T) ((-708 . -1014) T) ((-613 . -1014) T) ((-639 . -135) T) ((-112 . -135) T) ((-1186 . -21) T) ((-1186 . -25) T) ((-1184 . -21) T) ((-1184 . -25) T) ((-606 . -977) 124622) ((-494 . -784) T) ((-470 . -784) T) ((-330 . -977) 124574) ((-327 . -977) 124526) ((-319 . -977) 124478) ((-227 . -1120) T) ((-226 . -1120) T) ((-240 . -977) 124321) ((-224 . -977) 124164) ((-606 . -107) 124143) ((-330 . -107) 124081) ((-327 . -107) 124019) ((-319 . -107) 123957) ((-240 . -107) 123786) ((-224 . -107) 123615) ((-754 . -1124) 123594) ((-569 . -386) 123578) ((-43 . -21) T) ((-43 . -25) T) ((-752 . -584) 123486) ((-754 . -514) 123465) ((-227 . -962) 123294) ((-226 . -962) 123123) ((-122 . -115) 123107) ((-839 . -977) 123072) ((-637 . -978) T) ((-650 . -97) T) ((-318 . -157) T) ((-140 . -21) T) ((-140 . -25) T) ((-86 . -562) 123054) ((-839 . -107) 123010) ((-39 . -655) 122955) ((-799 . -1014) T) ((-302 . -563) 122916) ((-302 . -562) 122828) ((-1129 . -729) 122781) ((-1129 . -732) 122734) ((-227 . -352) 122704) ((-226 . -352) 122674) ((-596 . -37) 122644) ((-557 . -33) T) ((-455 . -1026) 122575) ((-449 . -33) T) ((-1027 . -124) 122446) ((-892 . -25) 122257) ((-803 . -562) 122239) ((-892 . -21) 122194) ((-752 . -21) 122105) ((-752 . -25) 121957) ((-569 . -978) T) ((-1087 . -514) 121936) ((-1081 . -46) 121913) ((-330 . -971) T) ((-327 . -971) T) ((-455 . -23) 121784) ((-319 . -971) T) ((-240 . -971) T) ((-224 . -971) T) ((-1037 . -46) 121756) ((-113 . -978) T) ((-959 . -590) 121730) ((-886 . -33) T) ((-330 . -210) 121709) ((-330 . -220) T) ((-327 . -210) 121688) ((-224 . -301) 121645) ((-327 . -220) T) ((-319 . -210) 121624) ((-319 . -220) T) ((-240 . -301) 121596) ((-240 . -210) 121575) ((-1066 . -139) 121559) ((-227 . -829) 121492) ((-226 . -829) 121425) ((-999 . -784) T) ((-1133 . -1120) T) ((-389 . -1026) T) ((-975 . -23) T) ((-839 . -971) T) ((-297 . -590) 121407) ((-949 . -782) T) ((-1115 . -928) 121373) ((-1082 . -849) 121352) ((-1076 . -849) 121331) ((-839 . -220) T) ((-754 . -338) 121310) ((-360 . -23) T) ((-123 . -1014) 121288) ((-117 . -1014) 121266) ((-839 . -210) T) ((-1076 . -757) NIL) ((-354 . -590) 121231) ((-799 . -655) 121218) ((-968 . -139) 121183) ((-39 . -157) T) ((-632 . -386) 121165) ((-650 . -285) 121152) ((-771 . -590) 121112) ((-764 . -590) 121086) ((-294 . -25) T) ((-294 . -21) T) ((-600 . -262) 121065) ((-534 . -1014) T) ((-522 . -1014) T) ((-465 . -1014) T) ((-222 . -264) 121042) ((-288 . -208) 121003) ((-1081 . -815) NIL) ((-1037 . -815) 120862) ((-1081 . -962) 120745) ((-1037 . -962) 120630) ((-166 . -562) 120612) ((-788 . -962) 120510) ((-719 . -262) 120437) ((-754 . -1026) T) ((-959 . -664) T) ((-553 . -593) 120421) ((-968 . -903) 120350) ((-925 . -97) T) ((-754 . -23) T) ((-650 . -1061) 120328) ((-632 . -978) T) ((-553 . -348) 120312) ((-326 . -426) T) ((-318 . -266) T) ((-1167 . -1014) T) ((-374 . -97) T) ((-265 . -21) T) ((-265 . -25) T) ((-336 . -664) T) ((-637 . -1014) T) ((-336 . -447) T) ((-1115 . -562) 120294) ((-1081 . -352) 120278) ((-1037 . -352) 120262) ((-949 . -386) 120224) ((-129 . -206) 120206) ((-354 . -731) T) ((-354 . -728) T) ((-799 . -157) T) ((-354 . -664) T) ((-649 . -562) 120188) ((-650 . -37) 120017) ((-1166 . -1164) 120001) ((-326 . -377) T) ((-1166 . -1014) 119951) ((-534 . -655) 119938) ((-522 . -655) 119925) ((-465 . -655) 119890) ((-291 . -574) 119869) ((-771 . -664) T) ((-764 . -664) T) ((-588 . -1120) T) ((-997 . -584) 119817) ((-1081 . -829) 119761) ((-1037 . -829) 119745) ((-604 . -977) 119729) ((-103 . -584) 119711) ((-455 . -124) 119582) ((-1087 . -1026) T) ((-881 . -46) 119551) ((-569 . -1014) T) ((-604 . -107) 119530) ((-302 . -264) 119507) ((-454 . -46) 119464) ((-1087 . -23) T) ((-113 . -1014) T) ((-98 . -97) 119442) ((-1176 . -1026) T) ((-975 . -124) T) ((-949 . -978) T) ((-756 . -962) 119426) ((-929 . -662) 119398) ((-1176 . -23) T) ((-637 . -655) 119363) ((-539 . -562) 119345) ((-361 . -962) 119329) ((-329 . -978) T) ((-360 . -124) T) ((-299 . -962) 119313) ((-202 . -815) 119295) ((-930 . -849) T) ((-89 . -33) T) ((-930 . -757) T) ((-843 . -849) T) ((-459 . -1124) T) ((-1101 . -562) 119277) ((-1019 . -1014) T) ((-195 . -1124) T) ((-925 . -285) 119242) ((-202 . -962) 119202) ((-39 . -266) T) ((-997 . -21) T) ((-997 . -25) T) ((-1032 . -765) T) ((-459 . -514) T) ((-334 . -25) T) ((-195 . -514) T) ((-334 . -21) T) ((-328 . -25) T) ((-328 . -21) T) ((-652 . -590) 119162) ((-320 . -25) T) ((-320 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -978) T) ((-534 . -157) T) ((-522 . -157) T) ((-465 . -157) T) ((-600 . -562) 119144) ((-675 . -674) 119128) ((-311 . -562) 119110) ((-66 . -358) T) ((-66 . -370) T) ((-1016 . -102) 119094) ((-982 . -815) 119076) ((-881 . -815) 119001) ((-595 . -1026) T) ((-569 . -655) 118988) ((-454 . -815) NIL) ((-1056 . -97) T) ((-982 . -962) 118970) ((-92 . -562) 118952) ((-451 . -135) T) ((-881 . -962) 118834) ((-113 . -655) 118779) ((-595 . -23) T) ((-454 . -962) 118657) ((-1003 . -563) NIL) ((-1003 . -562) 118639) ((-719 . -563) NIL) ((-719 . -562) 118600) ((-717 . -563) 118235) ((-717 . -562) 118149) ((-1027 . -584) 118057) ((-435 . -562) 118039) ((-428 . -562) 118021) ((-428 . -563) 117882) ((-960 . -206) 117828) ((-122 . -33) T) ((-754 . -124) T) ((-801 . -838) 117807) ((-591 . -562) 117789) ((-330 . -1183) 117773) ((-327 . -1183) 117757) ((-319 . -1183) 117741) ((-123 . -483) 117674) ((-117 . -483) 117607) ((-480 . -729) T) ((-480 . -732) T) ((-479 . -731) T) ((-98 . -285) 117545) ((-199 . -97) 117523) ((-632 . -1014) T) ((-637 . -157) T) ((-801 . -590) 117475) ((-63 . -359) T) ((-251 . -562) 117457) ((-63 . -370) T) ((-881 . -352) 117441) ((-799 . -266) T) ((-49 . -562) 117423) ((-925 . -37) 117371) ((-535 . -562) 117353) ((-454 . -352) 117337) ((-535 . -563) 117319) ((-486 . -562) 117301) ((-839 . -1183) 117288) ((-800 . -1120) T) ((-639 . -426) T) ((-465 . -483) 117254) ((-459 . -338) T) ((-330 . -343) 117233) ((-327 . -343) 117212) ((-319 . -343) 117191) ((-195 . -338) T) ((-652 . -664) T) ((-112 . -426) T) ((-1187 . -1178) 117175) ((-800 . -813) 117152) ((-800 . -815) NIL) ((-892 . -784) 117051) ((-752 . -784) 117002) ((-596 . -598) 116986) ((-1107 . -33) T) ((-156 . -562) 116968) ((-1027 . -21) 116879) ((-1027 . -25) 116731) ((-800 . -962) 116708) ((-881 . -829) 116689) ((-1139 . -46) 116666) ((-839 . -343) T) ((-57 . -593) 116650) ((-485 . -593) 116634) ((-454 . -829) 116611) ((-69 . -415) T) ((-69 . -370) T) ((-466 . -593) 116595) ((-57 . -348) 116579) ((-569 . -157) T) ((-485 . -348) 116563) ((-466 . -348) 116547) ((-764 . -647) 116531) ((-1081 . -283) 116510) ((-1087 . -124) T) ((-113 . -157) T) ((-1056 . -285) 116448) ((-154 . -1120) T) ((-580 . -682) 116432) ((-556 . -682) 116416) ((-1176 . -124) T) ((-1151 . -849) 116395) ((-1130 . -849) 116374) ((-1130 . -757) NIL) ((-632 . -655) 116324) ((-1129 . -838) 116277) ((-949 . -1014) T) ((-800 . -352) 116254) ((-800 . -313) 116231) ((-834 . -1026) T) ((-154 . -813) 116215) ((-154 . -815) 116140) ((-459 . -1026) T) ((-329 . -1014) T) ((-195 . -1026) T) ((-74 . -415) T) ((-74 . -370) T) ((-154 . -962) 116038) ((-294 . -784) T) ((-1166 . -483) 115971) ((-1150 . -590) 115868) ((-1129 . -590) 115738) ((-801 . -731) 115717) ((-801 . -728) 115696) ((-801 . -664) T) ((-459 . -23) T) ((-200 . -562) 115678) ((-158 . -426) T) ((-199 . -285) 115616) ((-84 . -415) T) ((-84 . -370) T) ((-195 . -23) T) ((-1188 . -1181) 115595) ((-534 . -266) T) ((-522 . -266) T) ((-617 . -962) 115579) ((-465 . -266) T) ((-128 . -444) 115534) ((-47 . -1014) T) ((-650 . -208) 115518) ((-800 . -829) NIL) ((-1139 . -815) NIL) ((-818 . -97) T) ((-814 . -97) T) ((-363 . -1014) T) ((-154 . -352) 115502) ((-154 . -313) 115486) ((-1139 . -962) 115369) ((-789 . -962) 115267) ((-1052 . -97) T) ((-595 . -124) T) ((-113 . -483) 115175) ((-604 . -729) 115154) ((-604 . -732) 115133) ((-529 . -962) 115115) ((-270 . -1173) 115085) ((-795 . -97) T) ((-891 . -514) 115064) ((-1115 . -977) 114947) ((-455 . -584) 114855) ((-833 . -1014) T) ((-949 . -655) 114792) ((-649 . -977) 114757) ((-553 . -33) T) ((-1057 . -1120) T) ((-1115 . -107) 114626) ((-448 . -590) 114523) ((-329 . -655) 114468) ((-154 . -829) 114427) ((-637 . -266) T) ((-632 . -157) T) ((-649 . -107) 114383) ((-1192 . -978) T) ((-1139 . -352) 114367) ((-393 . -1124) 114345) ((-288 . -782) NIL) ((-393 . -514) T) ((-202 . -283) T) ((-1129 . -728) 114298) ((-1129 . -731) 114251) ((-1150 . -664) T) ((-1129 . -664) T) ((-47 . -655) 114216) ((-202 . -947) T) ((-326 . -1173) 114193) ((-1152 . -386) 114159) ((-656 . -664) T) ((-1139 . -829) 114103) ((-108 . -562) 114085) ((-108 . -563) 114067) ((-656 . -447) T) ((-455 . -21) 113978) ((-123 . -461) 113962) ((-117 . -461) 113946) ((-455 . -25) 113798) ((-569 . -266) T) ((-539 . -977) 113773) ((-412 . -1014) T) ((-982 . -283) T) ((-113 . -266) T) ((-1018 . -97) T) ((-929 . -97) T) ((-539 . -107) 113741) ((-1052 . -285) 113679) ((-1115 . -971) T) ((-982 . -947) T) ((-64 . -1120) T) ((-975 . -25) T) ((-975 . -21) T) ((-649 . -971) T) ((-360 . -21) T) ((-360 . -25) T) ((-632 . -483) NIL) ((-949 . -157) T) ((-649 . -220) T) ((-982 . -507) T) ((-472 . -97) T) ((-329 . -157) T) ((-318 . -562) 113661) ((-369 . -562) 113643) ((-448 . -664) T) ((-1032 . -782) T) ((-821 . -962) 113611) ((-103 . -784) T) ((-600 . -977) 113595) ((-459 . -124) T) ((-1152 . -978) T) ((-195 . -124) T) ((-1066 . -97) 113573) ((-94 . -1014) T) ((-222 . -608) 113557) ((-222 . -593) 113541) ((-600 . -107) 113520) ((-291 . -386) 113504) ((-222 . -348) 113488) ((-1069 . -212) 113435) ((-925 . -208) 113419) ((-72 . -1120) T) ((-47 . -157) T) ((-639 . -362) T) ((-639 . -131) T) ((-1187 . -97) T) ((-1003 . -977) 113262) ((-240 . -838) 113241) ((-224 . -838) 113220) ((-719 . -977) 113043) ((-717 . -977) 112886) ((-557 . -1120) T) ((-1074 . -562) 112868) ((-1003 . -107) 112697) ((-968 . -97) T) ((-449 . -1120) T) ((-435 . -977) 112668) ((-428 . -977) 112511) ((-606 . -590) 112495) ((-800 . -283) T) ((-719 . -107) 112304) ((-717 . -107) 112133) ((-330 . -590) 112085) ((-327 . -590) 112037) ((-319 . -590) 111989) ((-240 . -590) 111914) ((-224 . -590) 111839) ((-1068 . -784) T) ((-1004 . -962) 111823) ((-435 . -107) 111784) ((-428 . -107) 111613) ((-993 . -962) 111590) ((-926 . -33) T) ((-894 . -562) 111551) ((-886 . -1120) T) ((-122 . -936) 111535) ((-891 . -1026) T) ((-800 . -947) NIL) ((-673 . -1026) T) ((-653 . -1026) T) ((-1166 . -461) 111519) ((-1052 . -37) 111479) ((-891 . -23) T) ((-777 . -97) T) ((-754 . -21) T) ((-754 . -25) T) ((-673 . -23) T) ((-653 . -23) T) ((-106 . -603) T) ((-839 . -590) 111444) ((-535 . -977) 111409) ((-486 . -977) 111354) ((-204 . -55) 111312) ((-427 . -23) T) ((-382 . -97) T) ((-239 . -97) T) ((-632 . -266) T) ((-795 . -37) 111282) ((-535 . -107) 111238) ((-486 . -107) 111167) ((-393 . -1026) T) ((-291 . -978) 111058) ((-288 . -978) T) ((-600 . -971) T) ((-1192 . -1014) T) ((-154 . -283) 110989) ((-393 . -23) T) ((-39 . -562) 110971) ((-39 . -563) 110955) ((-103 . -919) 110937) ((-112 . -798) 110921) ((-47 . -483) 110887) ((-1107 . -936) 110871) ((-1090 . -562) 110853) ((-1094 . -33) T) ((-850 . -562) 110835) ((-1027 . -784) 110786) ((-708 . -562) 110768) ((-613 . -562) 110750) ((-1066 . -285) 110688) ((-452 . -33) T) ((-1007 . -1120) T) ((-451 . -426) T) ((-1003 . -971) T) ((-1051 . -33) T) ((-719 . -971) T) ((-717 . -971) T) ((-589 . -212) 110672) ((-577 . -212) 110618) ((-1139 . -283) 110597) ((-1003 . -301) 110558) ((-428 . -971) T) ((-1087 . -21) T) ((-1003 . -210) 110537) ((-719 . -301) 110514) ((-719 . -210) T) ((-717 . -301) 110486) ((-302 . -593) 110470) ((-669 . -1124) 110449) ((-1087 . -25) T) ((-57 . -33) T) ((-487 . -33) T) ((-485 . -33) T) ((-428 . -301) 110428) ((-302 . -348) 110412) ((-467 . -33) T) ((-466 . -33) T) ((-929 . -1061) NIL) ((-580 . -97) T) ((-556 . -97) T) ((-669 . -514) 110343) ((-330 . -664) T) ((-327 . -664) T) ((-319 . -664) T) ((-240 . -664) T) ((-224 . -664) T) ((-968 . -285) 110251) ((-830 . -1014) 110229) ((-49 . -971) T) ((-1176 . -21) T) ((-1176 . -25) T) ((-1083 . -514) 110208) ((-1082 . -1124) 110187) ((-535 . -971) T) ((-486 . -971) T) ((-1076 . -1124) 110166) ((-336 . -962) 110150) ((-297 . -962) 110134) ((-949 . -266) T) ((-354 . -815) 110116) ((-1082 . -514) 110067) ((-1076 . -514) 110018) ((-929 . -37) 109963) ((-736 . -1026) T) ((-839 . -664) T) ((-535 . -220) T) ((-535 . -210) T) ((-486 . -210) T) ((-486 . -220) T) ((-1038 . -514) 109942) ((-329 . -266) T) ((-589 . -633) 109926) ((-354 . -962) 109886) ((-1032 . -978) T) ((-98 . -121) 109870) ((-736 . -23) T) ((-1166 . -262) 109847) ((-382 . -285) 109812) ((-1186 . -1181) 109788) ((-1184 . -1181) 109767) ((-1152 . -1014) T) ((-799 . -562) 109749) ((-771 . -962) 109718) ((-182 . -724) T) ((-181 . -724) T) ((-180 . -724) T) ((-179 . -724) T) ((-178 . -724) T) ((-177 . -724) T) ((-176 . -724) T) ((-175 . -724) T) ((-174 . -724) T) ((-173 . -724) T) ((-465 . -928) T) ((-250 . -773) T) ((-249 . -773) T) ((-248 . -773) T) ((-247 . -773) T) ((-47 . -266) T) ((-246 . -773) T) ((-245 . -773) T) ((-244 . -773) T) ((-172 . -724) T) ((-561 . -784) T) ((-596 . -386) 109702) ((-106 . -784) T) ((-595 . -21) T) ((-595 . -25) T) ((-1187 . -37) 109672) ((-113 . -262) 109623) ((-1166 . -19) 109607) ((-1166 . -555) 109584) ((-1177 . -1014) T) ((-994 . -1014) T) ((-914 . -1014) T) ((-891 . -124) T) ((-675 . -1014) T) ((-673 . -124) T) ((-653 . -124) T) ((-480 . -730) T) ((-382 . -1061) 109562) ((-427 . -124) T) ((-480 . -731) T) ((-200 . -971) T) ((-270 . -97) 109345) ((-129 . -1014) T) ((-637 . -928) T) ((-89 . -1120) T) ((-123 . -562) 109277) ((-117 . -562) 109209) ((-1192 . -157) T) ((-1082 . -338) 109188) ((-1076 . -338) 109167) ((-291 . -1014) T) ((-393 . -124) T) ((-288 . -1014) T) ((-382 . -37) 109119) ((-1045 . -97) T) ((-1152 . -655) 109011) ((-596 . -978) T) ((-294 . -133) 108990) ((-294 . -135) 108969) ((-128 . -1014) T) ((-110 . -1014) T) ((-791 . -97) T) ((-534 . -562) 108951) ((-522 . -563) 108850) ((-522 . -562) 108832) ((-465 . -562) 108814) ((-465 . -563) 108759) ((-457 . -23) T) ((-455 . -784) 108710) ((-459 . -584) 108692) ((-893 . -562) 108674) ((-195 . -584) 108656) ((-202 . -379) T) ((-604 . -590) 108640) ((-1081 . -849) 108619) ((-669 . -1026) T) ((-326 . -97) T) ((-755 . -784) T) ((-669 . -23) T) ((-318 . -977) 108564) ((-1068 . -1067) T) ((-1057 . -102) 108548) ((-1083 . -1026) T) ((-1082 . -1026) T) ((-484 . -962) 108532) ((-1076 . -1026) T) ((-1038 . -1026) T) ((-318 . -107) 108461) ((-930 . -1124) T) ((-122 . -1120) T) ((-843 . -1124) T) ((-632 . -262) NIL) ((-1167 . -562) 108443) ((-1083 . -23) T) ((-1082 . -23) T) ((-930 . -514) T) ((-1076 . -23) T) ((-843 . -514) T) ((-1052 . -208) 108427) ((-225 . -562) 108409) ((-1038 . -23) T) ((-992 . -1014) T) ((-736 . -124) T) ((-291 . -655) 108319) ((-288 . -655) 108248) ((-637 . -562) 108230) ((-637 . -563) 108175) ((-382 . -375) 108159) ((-413 . -1014) T) ((-459 . -25) T) ((-459 . -21) T) ((-1032 . -1014) T) ((-195 . -25) T) ((-195 . -21) T) ((-650 . -386) 108143) ((-652 . -962) 108112) ((-1166 . -562) 108024) ((-1166 . -563) 107985) ((-1152 . -157) T) ((-222 . -33) T) ((-855 . -901) T) ((-1107 . -1120) T) ((-604 . -728) 107964) ((-604 . -731) 107943) ((-373 . -370) T) ((-491 . -97) 107921) ((-960 . -1014) T) ((-199 . -921) 107905) ((-474 . -97) T) ((-569 . -562) 107887) ((-44 . -784) NIL) ((-569 . -563) 107864) ((-960 . -559) 107839) ((-830 . -483) 107772) ((-318 . -971) T) ((-113 . -563) NIL) ((-113 . -562) 107754) ((-801 . -1120) T) ((-612 . -392) 107738) ((-612 . -1035) 107683) ((-470 . -139) 107665) ((-318 . -210) T) ((-318 . -220) T) ((-39 . -977) 107610) ((-801 . -813) 107594) ((-801 . -815) 107519) ((-650 . -978) T) ((-632 . -928) NIL) ((-1150 . -46) 107489) ((-1129 . -46) 107466) ((-1051 . -936) 107437) ((-202 . -849) T) ((-39 . -107) 107366) ((-801 . -962) 107233) ((-1032 . -655) 107220) ((-1019 . -562) 107202) ((-997 . -135) 107181) ((-997 . -133) 107132) ((-930 . -338) T) ((-294 . -1109) 107098) ((-354 . -283) T) ((-294 . -1106) 107064) ((-291 . -157) 107043) ((-288 . -157) T) ((-929 . -208) 107020) ((-843 . -338) T) ((-535 . -1183) 107007) ((-486 . -1183) 106984) ((-334 . -135) 106963) ((-334 . -133) 106914) ((-328 . -135) 106893) ((-328 . -133) 106844) ((-557 . -1097) 106820) ((-320 . -135) 106799) ((-320 . -133) 106750) ((-294 . -34) 106716) ((-449 . -1097) 106695) ((0 . |EnumerationCategory|) T) ((-294 . -91) 106661) ((-354 . -947) T) ((-103 . -135) T) ((-103 . -133) NIL) ((-44 . -212) 106611) ((-596 . -1014) T) ((-557 . -102) 106558) ((-457 . -124) T) ((-449 . -102) 106508) ((-217 . -1026) 106439) ((-801 . -352) 106423) ((-801 . -313) 106407) ((-217 . -23) 106278) ((-982 . -849) T) ((-982 . -757) T) ((-535 . -343) T) ((-486 . -343) T) ((-326 . -1061) T) ((-302 . -33) T) ((-43 . -392) 106262) ((-802 . -1120) T) ((-365 . -682) 106246) ((-1177 . -483) 106179) ((-669 . -124) T) ((-1158 . -514) 106158) ((-1151 . -1124) 106137) ((-1151 . -514) 106088) ((-675 . -483) 106021) ((-1130 . -1124) 106000) ((-1130 . -514) 105951) ((-822 . -1014) T) ((-132 . -778) T) ((-1129 . -1120) 105930) ((-1129 . -815) 105803) ((-1129 . -813) 105773) ((-491 . -285) 105711) ((-1083 . -124) T) ((-129 . -483) NIL) ((-1082 . -124) T) ((-1076 . -124) T) ((-1038 . -124) T) ((-949 . -928) T) ((-326 . -37) 105676) ((-930 . -1026) T) ((-843 . -1026) T) ((-80 . -562) 105658) ((-39 . -971) T) ((-799 . -977) 105645) ((-930 . -23) T) ((-801 . -829) 105604) ((-639 . -97) T) ((-929 . -324) NIL) ((-553 . -1120) T) ((-898 . -23) T) ((-843 . -23) T) ((-799 . -107) 105589) ((-402 . -1026) T) ((-448 . -46) 105559) ((-126 . -97) T) ((-39 . -210) 105531) ((-39 . -220) T) ((-112 . -97) T) ((-548 . -514) 105510) ((-547 . -514) 105489) ((-632 . -562) 105471) ((-632 . -563) 105379) ((-291 . -483) 105345) ((-288 . -483) 105237) ((-1150 . -962) 105221) ((-1129 . -962) 105010) ((-925 . -386) 104994) ((-402 . -23) T) ((-1032 . -157) T) ((-1152 . -266) T) ((-596 . -655) 104964) ((-132 . -1014) T) ((-47 . -928) T) ((-382 . -208) 104948) ((-271 . -212) 104898) ((-800 . -849) T) ((-800 . -757) NIL) ((-794 . -784) T) ((-1129 . -313) 104868) ((-1129 . -352) 104838) ((-199 . -1033) 104822) ((-1166 . -264) 104799) ((-1115 . -590) 104724) ((-891 . -21) T) ((-891 . -25) T) ((-673 . -21) T) ((-673 . -25) T) ((-653 . -21) T) ((-653 . -25) T) ((-649 . -590) 104689) ((-427 . -21) T) ((-427 . -25) T) ((-314 . -97) T) ((-158 . -97) T) ((-925 . -978) T) ((-799 . -971) T) ((-711 . -97) T) ((-1151 . -338) 104668) ((-1150 . -829) 104574) ((-1130 . -338) 104553) ((-1129 . -829) 104404) ((-949 . -562) 104386) ((-382 . -765) 104339) ((-1083 . -463) 104305) ((-154 . -849) 104236) ((-1082 . -463) 104202) ((-1076 . -463) 104168) ((-650 . -1014) T) ((-1038 . -463) 104134) ((-534 . -977) 104121) ((-522 . -977) 104108) ((-465 . -977) 104073) ((-291 . -266) 104052) ((-288 . -266) T) ((-329 . -562) 104034) ((-393 . -25) T) ((-393 . -21) T) ((-94 . -262) 104013) ((-534 . -107) 103998) ((-522 . -107) 103983) ((-465 . -107) 103939) ((-1085 . -815) 103906) ((-830 . -461) 103890) ((-47 . -562) 103872) ((-47 . -563) 103817) ((-217 . -124) 103688) ((-1139 . -849) 103667) ((-753 . -1124) 103646) ((-960 . -483) 103490) ((-363 . -562) 103472) ((-753 . -514) 103403) ((-539 . -590) 103378) ((-240 . -46) 103350) ((-224 . -46) 103307) ((-494 . -478) 103284) ((-926 . -1120) T) ((-637 . -977) 103249) ((-1158 . -1026) T) ((-1151 . -1026) T) ((-1130 . -1026) T) ((-929 . -345) 103221) ((-108 . -343) T) ((-448 . -829) 103127) ((-1158 . -23) T) ((-1151 . -23) T) ((-833 . -562) 103109) ((-89 . -102) 103093) ((-1115 . -664) T) ((-834 . -784) 103044) ((-639 . -1061) T) ((-637 . -107) 103000) ((-1130 . -23) T) ((-548 . -1026) T) ((-547 . -1026) T) ((-650 . -655) 102829) ((-649 . -664) T) ((-1032 . -266) T) ((-930 . -124) T) ((-459 . -784) T) ((-898 . -124) T) ((-843 . -124) T) ((-534 . -971) T) ((-195 . -784) T) ((-522 . -971) T) ((-736 . -25) T) ((-736 . -21) T) ((-465 . -971) T) ((-548 . -23) T) ((-318 . -1183) 102806) ((-294 . -426) 102785) ((-314 . -285) 102772) ((-547 . -23) T) ((-402 . -124) T) ((-600 . -590) 102746) ((-222 . -936) 102730) ((-801 . -283) T) ((-1188 . -1178) 102714) ((-639 . -37) 102701) ((-522 . -210) T) ((-465 . -220) T) ((-465 . -210) T) ((-708 . -729) T) ((-708 . -732) T) ((-1060 . -212) 102651) ((-1003 . -838) 102630) ((-112 . -37) 102617) ((-188 . -737) T) ((-187 . -737) T) ((-186 . -737) T) ((-185 . -737) T) ((-801 . -947) 102596) ((-1177 . -461) 102580) ((-719 . -838) 102559) ((-717 . -838) 102538) ((-1094 . -1120) T) ((-428 . -838) 102517) ((-675 . -461) 102501) ((-1003 . -590) 102426) ((-719 . -590) 102351) ((-569 . -977) 102338) ((-452 . -1120) T) ((-318 . -343) T) ((-129 . -461) 102320) ((-717 . -590) 102245) ((-1051 . -1120) T) ((-435 . -590) 102216) ((-240 . -815) 102075) ((-224 . -815) NIL) ((-113 . -977) 102020) ((-428 . -590) 101945) ((-606 . -962) 101922) ((-569 . -107) 101907) ((-330 . -962) 101891) ((-327 . -962) 101875) ((-319 . -962) 101859) ((-240 . -962) 101705) ((-224 . -962) 101583) ((-113 . -107) 101512) ((-57 . -1120) T) ((-487 . -1120) T) ((-485 . -1120) T) ((-467 . -1120) T) ((-466 . -1120) T) ((-412 . -562) 101494) ((-409 . -562) 101476) ((-3 . -97) T) ((-952 . -1114) 101445) ((-770 . -97) T) ((-628 . -55) 101403) ((-637 . -971) T) ((-49 . -590) 101377) ((-265 . -426) T) ((-450 . -1114) 101346) ((0 . -97) T) ((-535 . -590) 101311) ((-486 . -590) 101256) ((-48 . -97) T) ((-839 . -962) 101243) ((-637 . -220) T) ((-997 . -384) 101222) ((-669 . -584) 101170) ((-925 . -1014) T) ((-650 . -157) 101061) ((-459 . -919) 101043) ((-240 . -352) 101027) ((-224 . -352) 101011) ((-374 . -1014) T) ((-314 . -37) 100995) ((-951 . -97) 100973) ((-195 . -919) 100955) ((-158 . -37) 100887) ((-1150 . -283) 100866) ((-1129 . -283) 100845) ((-600 . -664) T) ((-94 . -562) 100827) ((-1076 . -584) 100779) ((-457 . -25) T) ((-457 . -21) T) ((-1129 . -947) 100732) ((-569 . -971) T) ((-354 . -379) T) ((-365 . -97) T) ((-240 . -829) 100678) ((-224 . -829) 100655) ((-113 . -971) T) ((-753 . -1026) T) ((-1003 . -664) T) ((-569 . -210) 100634) ((-567 . -97) T) ((-719 . -664) T) ((-717 . -664) T) ((-388 . -1026) T) ((-113 . -220) T) ((-39 . -343) NIL) ((-113 . -210) NIL) ((-428 . -664) T) ((-753 . -23) T) ((-669 . -25) T) ((-669 . -21) T) ((-641 . -784) T) ((-994 . -262) 100613) ((-76 . -371) T) ((-76 . -370) T) ((-632 . -977) 100563) ((-1158 . -124) T) ((-1151 . -124) T) ((-1130 . -124) T) ((-1052 . -386) 100547) ((-580 . -342) 100479) ((-556 . -342) 100411) ((-1066 . -1059) 100395) ((-98 . -1014) 100373) ((-1083 . -25) T) ((-1083 . -21) T) ((-1082 . -21) T) ((-925 . -655) 100321) ((-200 . -590) 100288) ((-632 . -107) 100222) ((-49 . -664) T) ((-1082 . -25) T) ((-326 . -324) T) ((-1076 . -21) T) ((-997 . -426) 100173) ((-1076 . -25) T) ((-650 . -483) 100121) ((-535 . -664) T) ((-486 . -664) T) ((-1038 . -21) T) ((-1038 . -25) T) ((-548 . -124) T) ((-547 . -124) T) ((-334 . -426) T) ((-328 . -426) T) ((-320 . -426) T) ((-448 . -283) 100100) ((-288 . -262) 100035) ((-103 . -426) T) ((-77 . -415) T) ((-77 . -370) T) ((-451 . -97) T) ((-1192 . -562) 100017) ((-1192 . -563) 99999) ((-997 . -377) 99978) ((-960 . -461) 99909) ((-522 . -732) T) ((-522 . -729) T) ((-983 . -212) 99855) ((-334 . -377) 99806) ((-328 . -377) 99757) ((-320 . -377) 99708) ((-1179 . -1026) T) ((-1179 . -23) T) ((-1168 . -97) T) ((-159 . -562) 99690) ((-1052 . -978) T) ((-612 . -682) 99674) ((-1087 . -133) 99653) ((-1087 . -135) 99632) ((-1056 . -1014) T) ((-1056 . -990) 99601) ((-67 . -1120) T) ((-949 . -977) 99538) ((-795 . -978) T) ((-217 . -584) 99446) ((-632 . -971) T) ((-329 . -977) 99391) ((-59 . -1120) T) ((-949 . -107) 99307) ((-830 . -562) 99239) ((-632 . -220) T) ((-632 . -210) NIL) ((-777 . -782) 99218) ((-637 . -732) T) ((-637 . -729) T) ((-929 . -386) 99195) ((-329 . -107) 99124) ((-354 . -849) T) ((-382 . -782) 99103) ((-650 . -266) 99014) ((-200 . -664) T) ((-1158 . -463) 98980) ((-1151 . -463) 98946) ((-1130 . -463) 98912) ((-291 . -928) 98891) ((-199 . -1014) 98869) ((-294 . -900) 98832) ((-100 . -97) T) ((-47 . -977) 98797) ((-1188 . -97) T) ((-356 . -97) T) ((-47 . -107) 98753) ((-930 . -584) 98735) ((-1152 . -562) 98717) ((-494 . -97) T) ((-470 . -97) T) ((-1045 . -1046) 98701) ((-140 . -1173) 98685) ((-222 . -1120) T) ((-1081 . -1124) 98664) ((-1037 . -1124) 98643) ((-217 . -21) 98554) ((-217 . -25) 98406) ((-123 . -115) 98390) ((-117 . -115) 98374) ((-43 . -682) 98358) ((-1081 . -514) 98269) ((-1037 . -514) 98200) ((-960 . -262) 98175) ((-753 . -124) T) ((-113 . -732) NIL) ((-113 . -729) NIL) ((-330 . -283) T) ((-327 . -283) T) ((-319 . -283) T) ((-1009 . -1120) T) ((-227 . -1026) 98106) ((-226 . -1026) 98037) ((-949 . -971) T) ((-929 . -978) T) ((-318 . -590) 97982) ((-567 . -37) 97966) ((-1177 . -562) 97928) ((-1177 . -563) 97889) ((-994 . -562) 97871) ((-949 . -220) T) ((-329 . -971) T) ((-752 . -1173) 97841) ((-227 . -23) T) ((-226 . -23) T) ((-914 . -562) 97823) ((-675 . -563) 97784) ((-675 . -562) 97766) ((-736 . -784) 97745) ((-925 . -483) 97657) ((-329 . -210) T) ((-329 . -220) T) ((-1069 . -139) 97604) ((-930 . -25) T) ((-129 . -562) 97586) ((-129 . -563) 97545) ((-839 . -283) T) ((-930 . -21) T) ((-898 . -25) T) ((-843 . -21) T) ((-843 . -25) T) ((-402 . -21) T) ((-402 . -25) T) ((-777 . -386) 97529) ((-47 . -971) T) ((-1186 . -1178) 97513) ((-1184 . -1178) 97497) ((-960 . -555) 97472) ((-291 . -563) 97333) ((-291 . -562) 97315) ((-288 . -563) NIL) ((-288 . -562) 97297) ((-47 . -220) T) ((-47 . -210) T) ((-596 . -262) 97258) ((-508 . -212) 97208) ((-128 . -562) 97190) ((-110 . -562) 97172) ((-451 . -37) 97137) ((-1188 . -1185) 97116) ((-1179 . -124) T) ((-1187 . -978) T) ((-999 . -97) T) ((-86 . -1120) T) ((-470 . -285) NIL) ((-926 . -102) 97100) ((-818 . -1014) T) ((-814 . -1014) T) ((-1166 . -593) 97084) ((-1166 . -348) 97068) ((-302 . -1120) T) ((-545 . -784) T) ((-1052 . -1014) T) ((-1052 . -974) 97008) ((-98 . -483) 96941) ((-856 . -562) 96923) ((-318 . -664) T) ((-30 . -562) 96905) ((-795 . -1014) T) ((-777 . -978) 96884) ((-39 . -590) 96829) ((-202 . -1124) T) ((-382 . -978) T) ((-1068 . -139) 96811) ((-925 . -266) 96762) ((-202 . -514) T) ((-294 . -1147) 96746) ((-294 . -1144) 96716) ((-1094 . -1097) 96695) ((-992 . -562) 96677) ((-589 . -139) 96661) ((-577 . -139) 96607) ((-1094 . -102) 96557) ((-452 . -1097) 96536) ((-459 . -135) T) ((-459 . -133) NIL) ((-1032 . -563) 96451) ((-413 . -562) 96433) ((-195 . -135) T) ((-195 . -133) NIL) ((-1032 . -562) 96415) ((-51 . -97) T) ((-1130 . -584) 96367) ((-452 . -102) 96317) ((-920 . -23) T) ((-1188 . -37) 96287) ((-1081 . -1026) T) ((-1037 . -1026) T) ((-982 . -1124) T) ((-788 . -1026) T) ((-881 . -1124) 96266) ((-454 . -1124) 96245) ((-669 . -784) 96224) ((-982 . -514) T) ((-881 . -514) 96155) ((-1081 . -23) T) ((-1037 . -23) T) ((-788 . -23) T) ((-454 . -514) 96086) ((-1052 . -655) 96018) ((-1056 . -483) 95951) ((-960 . -563) NIL) ((-960 . -562) 95933) ((-795 . -655) 95903) ((-1115 . -46) 95872) ((-227 . -124) T) ((-226 . -124) T) ((-1018 . -1014) T) ((-929 . -1014) T) ((-60 . -562) 95854) ((-1076 . -784) NIL) ((-949 . -729) T) ((-949 . -732) T) ((-1192 . -977) 95841) ((-1192 . -107) 95826) ((-799 . -590) 95813) ((-1158 . -25) T) ((-1158 . -21) T) ((-1151 . -21) T) ((-1151 . -25) T) ((-1130 . -21) T) ((-1130 . -25) T) ((-952 . -139) 95797) ((-801 . -757) 95776) ((-801 . -849) T) ((-650 . -262) 95703) ((-548 . -21) T) ((-548 . -25) T) ((-547 . -21) T) ((-39 . -664) T) ((-199 . -483) 95636) ((-547 . -25) T) ((-450 . -139) 95620) ((-437 . -139) 95604) ((-850 . -664) T) ((-708 . -730) T) ((-708 . -731) T) ((-472 . -1014) T) ((-708 . -664) T) ((-202 . -338) T) ((-1066 . -1014) 95582) ((-800 . -1124) T) ((-596 . -562) 95564) ((-800 . -514) T) ((-632 . -343) NIL) ((-334 . -1173) 95548) ((-612 . -97) T) ((-328 . -1173) 95532) ((-320 . -1173) 95516) ((-1187 . -1014) T) ((-488 . -784) 95495) ((-754 . -426) 95474) ((-968 . -1014) T) ((-968 . -990) 95403) ((-952 . -903) 95372) ((-756 . -1026) T) ((-929 . -655) 95317) ((-361 . -1026) T) ((-450 . -903) 95286) ((-437 . -903) 95255) ((-106 . -139) 95237) ((-71 . -562) 95219) ((-822 . -562) 95201) ((-997 . -662) 95180) ((-1192 . -971) T) ((-753 . -584) 95128) ((-270 . -978) 95071) ((-154 . -1124) 94976) ((-202 . -1026) T) ((-299 . -23) T) ((-1076 . -919) 94928) ((-777 . -1014) T) ((-1038 . -678) 94907) ((-1152 . -977) 94812) ((-1150 . -849) 94791) ((-799 . -664) T) ((-154 . -514) 94702) ((-1129 . -849) 94681) ((-534 . -590) 94668) ((-382 . -1014) T) ((-522 . -590) 94655) ((-239 . -1014) T) ((-465 . -590) 94620) ((-202 . -23) T) ((-1129 . -757) 94573) ((-1186 . -97) T) ((-329 . -1183) 94550) ((-1184 . -97) T) ((-1152 . -107) 94442) ((-132 . -562) 94424) ((-920 . -124) T) ((-43 . -97) T) ((-217 . -784) 94375) ((-1139 . -1124) 94354) ((-98 . -461) 94338) ((-1187 . -655) 94308) ((-1003 . -46) 94269) ((-982 . -1026) T) ((-881 . -1026) T) ((-123 . -33) T) ((-117 . -33) T) ((-719 . -46) 94246) ((-717 . -46) 94218) ((-1139 . -514) 94129) ((-329 . -343) T) ((-454 . -1026) T) ((-1081 . -124) T) ((-1037 . -124) T) ((-428 . -46) 94108) ((-800 . -338) T) ((-788 . -124) T) ((-140 . -97) T) ((-982 . -23) T) ((-881 . -23) T) ((-529 . -514) T) ((-753 . -25) T) ((-753 . -21) T) ((-1052 . -483) 94041) ((-539 . -962) 94025) ((-454 . -23) T) ((-326 . -978) T) ((-1115 . -829) 94006) ((-612 . -285) 93944) ((-1027 . -1173) 93914) ((-637 . -590) 93879) ((-929 . -157) T) ((-891 . -133) 93858) ((-580 . -1014) T) ((-556 . -1014) T) ((-891 . -135) 93837) ((-930 . -784) T) ((-673 . -135) 93816) ((-673 . -133) 93795) ((-898 . -784) T) ((-448 . -849) 93774) ((-291 . -977) 93684) ((-288 . -977) 93613) ((-925 . -262) 93571) ((-382 . -655) 93523) ((-639 . -782) T) ((-1152 . -971) T) ((-291 . -107) 93419) ((-288 . -107) 93332) ((-892 . -97) T) ((-752 . -97) 93143) ((-650 . -563) NIL) ((-650 . -562) 93125) ((-600 . -962) 93023) ((-1152 . -301) 92967) ((-960 . -264) 92942) ((-534 . -664) T) ((-522 . -731) T) ((-154 . -338) 92893) ((-522 . -728) T) ((-522 . -664) T) ((-465 . -664) T) ((-1056 . -461) 92877) ((-1003 . -815) NIL) ((-800 . -1026) T) ((-113 . -838) NIL) ((-1186 . -1185) 92853) ((-1184 . -1185) 92832) ((-719 . -815) NIL) ((-717 . -815) 92691) ((-1179 . -25) T) ((-1179 . -21) T) ((-1118 . -97) 92669) ((-1020 . -370) T) ((-569 . -590) 92656) ((-428 . -815) NIL) ((-616 . -97) 92634) ((-1003 . -962) 92463) ((-800 . -23) T) ((-719 . -962) 92325) ((-717 . -962) 92184) ((-113 . -590) 92129) ((-428 . -962) 92007) ((-591 . -962) 91991) ((-572 . -97) T) ((-199 . -461) 91975) ((-1166 . -33) T) ((-580 . -655) 91959) ((-556 . -655) 91943) ((-612 . -37) 91903) ((-294 . -97) T) ((-83 . -562) 91885) ((-49 . -962) 91869) ((-1032 . -977) 91856) ((-1003 . -352) 91840) ((-58 . -55) 91802) ((-637 . -731) T) ((-637 . -728) T) ((-535 . -962) 91789) ((-486 . -962) 91766) ((-637 . -664) T) ((-291 . -971) 91657) ((-299 . -124) T) ((-288 . -971) T) ((-154 . -1026) T) ((-719 . -352) 91641) ((-717 . -352) 91625) ((-44 . -139) 91575) ((-930 . -919) 91557) ((-428 . -352) 91541) ((-382 . -157) T) ((-291 . -220) 91520) ((-288 . -220) T) ((-288 . -210) NIL) ((-270 . -1014) 91303) ((-202 . -124) T) ((-1032 . -107) 91288) ((-154 . -23) T) ((-736 . -135) 91267) ((-736 . -133) 91246) ((-227 . -584) 91154) ((-226 . -584) 91062) ((-294 . -260) 91028) ((-1066 . -483) 90961) ((-1045 . -1014) T) ((-202 . -980) T) ((-752 . -285) 90899) ((-1003 . -829) 90834) ((-719 . -829) 90778) ((-717 . -829) 90762) ((-1186 . -37) 90732) ((-1184 . -37) 90702) ((-1139 . -1026) T) ((-789 . -1026) T) ((-428 . -829) 90679) ((-791 . -1014) T) ((-1139 . -23) T) ((-529 . -1026) T) ((-789 . -23) T) ((-569 . -664) T) ((-330 . -849) T) ((-327 . -849) T) ((-265 . -97) T) ((-319 . -849) T) ((-982 . -124) T) ((-881 . -124) T) ((-113 . -731) NIL) ((-113 . -728) NIL) ((-113 . -664) T) ((-632 . -838) NIL) ((-968 . -483) 90580) ((-454 . -124) T) ((-529 . -23) T) ((-616 . -285) 90518) ((-580 . -699) T) ((-556 . -699) T) ((-1130 . -784) NIL) ((-929 . -266) T) ((-227 . -21) T) ((-632 . -590) 90468) ((-326 . -1014) T) ((-227 . -25) T) ((-226 . -21) T) ((-226 . -25) T) ((-140 . -37) 90452) ((-2 . -97) T) ((-839 . -849) T) ((-455 . -1173) 90422) ((-200 . -962) 90399) ((-1032 . -971) T) ((-649 . -283) T) ((-270 . -655) 90341) ((-639 . -978) T) ((-459 . -426) T) ((-382 . -483) 90253) ((-195 . -426) T) ((-1032 . -210) T) ((-271 . -139) 90203) ((-925 . -563) 90164) ((-925 . -562) 90146) ((-916 . -562) 90128) ((-112 . -978) T) ((-596 . -977) 90112) ((-202 . -463) T) ((-374 . -562) 90094) ((-374 . -563) 90071) ((-975 . -1173) 90041) ((-596 . -107) 90020) ((-1052 . -461) 90004) ((-752 . -37) 89974) ((-61 . -415) T) ((-61 . -370) T) ((-1069 . -97) T) ((-800 . -124) T) ((-456 . -97) 89952) ((-1192 . -343) T) ((-997 . -97) T) ((-981 . -97) T) ((-326 . -655) 89897) ((-669 . -135) 89876) ((-669 . -133) 89855) ((-949 . -590) 89792) ((-491 . -1014) 89770) ((-334 . -97) T) ((-328 . -97) T) ((-320 . -97) T) ((-103 . -97) T) ((-474 . -1014) T) ((-329 . -590) 89715) ((-1081 . -584) 89663) ((-1037 . -584) 89611) ((-360 . -478) 89590) ((-770 . -782) 89569) ((-354 . -1124) T) ((-632 . -664) T) ((-314 . -978) T) ((-1130 . -919) 89521) ((-158 . -978) T) ((-98 . -562) 89453) ((-1083 . -133) 89432) ((-1083 . -135) 89411) ((-354 . -514) T) ((-1082 . -135) 89390) ((-1082 . -133) 89369) ((-1076 . -133) 89276) ((-382 . -266) T) ((-1076 . -135) 89183) ((-1038 . -135) 89162) ((-1038 . -133) 89141) ((-294 . -37) 88982) ((-154 . -124) T) ((-288 . -732) NIL) ((-288 . -729) NIL) ((-596 . -971) T) ((-47 . -590) 88947) ((-920 . -21) T) ((-123 . -936) 88931) ((-117 . -936) 88915) ((-920 . -25) T) ((-830 . -115) 88899) ((-1068 . -97) T) ((-753 . -784) 88878) ((-1139 . -124) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-789 . -124) T) ((-1037 . -25) T) ((-1037 . -21) T) ((-788 . -25) T) ((-788 . -21) T) ((-719 . -283) 88857) ((-589 . -97) 88835) ((-577 . -97) T) ((-1069 . -285) 88630) ((-529 . -124) T) ((-567 . -782) 88609) ((-1066 . -461) 88593) ((-1060 . -139) 88543) ((-1056 . -562) 88505) ((-1056 . -563) 88466) ((-949 . -728) T) ((-949 . -731) T) ((-949 . -664) T) ((-456 . -285) 88404) ((-427 . -392) 88374) ((-326 . -157) T) ((-265 . -37) 88361) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-318 . -962) 88338) ((-191 . -97) T) ((-190 . -97) T) ((-188 . -97) T) ((-187 . -97) T) ((-186 . -97) T) ((-185 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-650 . -977) 88161) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-329 . -664) T) ((-650 . -107) 87970) ((-612 . -208) 87954) ((-535 . -283) T) ((-486 . -283) T) ((-270 . -483) 87903) ((-103 . -285) NIL) ((-70 . -370) T) ((-1027 . -97) 87714) ((-770 . -386) 87698) ((-1032 . -732) T) ((-1032 . -729) T) ((-639 . -1014) T) ((-354 . -338) T) ((-154 . -463) 87676) ((-199 . -562) 87608) ((-126 . -1014) T) ((-112 . -1014) T) ((-47 . -664) T) ((-968 . -461) 87573) ((-129 . -400) 87555) ((-129 . -343) T) ((-952 . -97) T) ((-481 . -478) 87534) ((-450 . -97) T) ((-437 . -97) T) ((-959 . -1026) T) ((-1083 . -34) 87500) ((-1083 . -91) 87466) ((-1083 . -1109) 87432) ((-1083 . -1106) 87398) ((-1068 . -285) NIL) ((-87 . -371) T) ((-87 . -370) T) ((-997 . -1061) 87377) ((-1082 . -1106) 87343) ((-1082 . -1109) 87309) ((-959 . -23) T) ((-1082 . -91) 87275) ((-529 . -463) T) ((-1082 . -34) 87241) ((-1076 . -1106) 87207) ((-1076 . -1109) 87173) ((-1076 . -91) 87139) ((-336 . -1026) T) ((-334 . -1061) 87118) ((-328 . -1061) 87097) ((-320 . -1061) 87076) ((-1076 . -34) 87042) ((-1038 . -34) 87008) ((-1038 . -91) 86974) ((-103 . -1061) T) ((-1038 . -1109) 86940) ((-770 . -978) 86919) ((-589 . -285) 86857) ((-577 . -285) 86708) ((-1038 . -1106) 86674) ((-650 . -971) T) ((-982 . -584) 86656) ((-997 . -37) 86524) ((-881 . -584) 86472) ((-930 . -135) T) ((-930 . -133) NIL) ((-354 . -1026) T) ((-299 . -25) T) ((-297 . -23) T) ((-872 . -784) 86451) ((-650 . -301) 86428) ((-454 . -584) 86376) ((-39 . -962) 86266) ((-639 . -655) 86253) ((-650 . -210) T) ((-314 . -1014) T) ((-158 . -1014) T) ((-306 . -784) T) ((-393 . -426) 86203) ((-354 . -23) T) ((-334 . -37) 86168) ((-328 . -37) 86133) ((-320 . -37) 86098) ((-78 . -415) T) ((-78 . -370) T) ((-202 . -25) T) ((-202 . -21) T) ((-771 . -1026) T) ((-103 . -37) 86048) ((-764 . -1026) T) ((-711 . -1014) T) ((-112 . -655) 86035) ((-613 . -962) 86019) ((-561 . -97) T) ((-771 . -23) T) ((-764 . -23) T) ((-1066 . -262) 85996) ((-1027 . -285) 85934) ((-1016 . -212) 85918) ((-62 . -371) T) ((-62 . -370) T) ((-106 . -97) T) ((-39 . -352) 85895) ((-595 . -786) 85879) ((-982 . -21) T) ((-982 . -25) T) ((-752 . -208) 85849) ((-881 . -25) T) ((-881 . -21) T) ((-567 . -978) T) ((-454 . -25) T) ((-454 . -21) T) ((-952 . -285) 85787) ((-818 . -562) 85769) ((-814 . -562) 85751) ((-227 . -784) 85702) ((-226 . -784) 85653) ((-491 . -483) 85586) ((-800 . -584) 85563) ((-450 . -285) 85501) ((-437 . -285) 85439) ((-326 . -266) T) ((-1066 . -1154) 85423) ((-1052 . -562) 85385) ((-1052 . -563) 85346) ((-1050 . -97) T) ((-925 . -977) 85242) ((-39 . -829) 85194) ((-1066 . -555) 85171) ((-1192 . -590) 85158) ((-983 . -139) 85104) ((-801 . -1124) T) ((-925 . -107) 84986) ((-314 . -655) 84970) ((-795 . -562) 84952) ((-158 . -655) 84884) ((-382 . -262) 84842) ((-801 . -514) T) ((-103 . -375) 84824) ((-82 . -359) T) ((-82 . -370) T) ((-639 . -157) T) ((-94 . -664) T) ((-455 . -97) 84635) ((-94 . -447) T) ((-112 . -157) T) ((-1027 . -37) 84605) ((-154 . -584) 84553) ((-975 . -97) T) ((-800 . -25) T) ((-752 . -215) 84532) ((-800 . -21) T) ((-755 . -97) T) ((-389 . -97) T) ((-360 . -97) T) ((-106 . -285) NIL) ((-204 . -97) 84510) ((-123 . -1120) T) ((-117 . -1120) T) ((-959 . -124) T) ((-612 . -342) 84494) ((-925 . -971) T) ((-1139 . -584) 84442) ((-1018 . -562) 84424) ((-929 . -562) 84406) ((-484 . -23) T) ((-479 . -23) T) ((-318 . -283) T) ((-477 . -23) T) ((-297 . -124) T) ((-3 . -1014) T) ((-929 . -563) 84390) ((-925 . -220) 84369) ((-925 . -210) 84348) ((-1192 . -664) T) ((-1158 . -133) 84327) ((-770 . -1014) T) ((-1158 . -135) 84306) ((-1151 . -135) 84285) ((-1151 . -133) 84264) ((-1150 . -1124) 84243) ((-1130 . -133) 84150) ((-1130 . -135) 84057) ((-1129 . -1124) 84036) ((-354 . -124) T) ((-522 . -815) 84018) ((0 . -1014) T) ((-158 . -157) T) ((-154 . -21) T) ((-154 . -25) T) ((-48 . -1014) T) ((-1152 . -590) 83923) ((-1150 . -514) 83874) ((-652 . -1026) T) ((-1129 . -514) 83825) ((-522 . -962) 83807) ((-547 . -135) 83786) ((-547 . -133) 83765) ((-465 . -962) 83708) ((-85 . -359) T) ((-85 . -370) T) ((-801 . -338) T) ((-771 . -124) T) ((-764 . -124) T) ((-652 . -23) T) ((-472 . -562) 83690) ((-1188 . -978) T) ((-354 . -980) T) ((-951 . -1014) 83668) ((-830 . -33) T) ((-455 . -285) 83606) ((-1066 . -563) 83567) ((-1066 . -562) 83499) ((-1081 . -784) 83478) ((-44 . -97) T) ((-1037 . -784) 83457) ((-754 . -97) T) ((-1139 . -25) T) ((-1139 . -21) T) ((-789 . -25) T) ((-43 . -342) 83441) ((-789 . -21) T) ((-669 . -426) 83392) ((-1187 . -562) 83374) ((-529 . -25) T) ((-529 . -21) T) ((-365 . -1014) T) ((-975 . -285) 83312) ((-567 . -1014) T) ((-637 . -815) 83294) ((-1166 . -1120) T) ((-204 . -285) 83232) ((-132 . -343) T) ((-968 . -563) 83174) ((-968 . -562) 83117) ((-288 . -838) NIL) ((-637 . -962) 83062) ((-649 . -849) T) ((-448 . -1124) 83041) ((-1082 . -426) 83020) ((-1076 . -426) 82999) ((-305 . -97) T) ((-801 . -1026) T) ((-291 . -590) 82821) ((-288 . -590) 82750) ((-448 . -514) 82701) ((-314 . -483) 82667) ((-508 . -139) 82617) ((-39 . -283) T) ((-777 . -562) 82599) ((-639 . -266) T) ((-801 . -23) T) ((-354 . -463) T) ((-997 . -208) 82569) ((-481 . -97) T) ((-382 . -563) 82377) ((-382 . -562) 82359) ((-239 . -562) 82341) ((-112 . -266) T) ((-1152 . -664) T) ((-1150 . -338) 82320) ((-1129 . -338) 82299) ((-1177 . -33) T) ((-113 . -1120) T) ((-103 . -208) 82281) ((-1087 . -97) T) ((-451 . -1014) T) ((-491 . -461) 82265) ((-675 . -33) T) ((-455 . -37) 82235) ((-129 . -33) T) ((-113 . -813) 82212) ((-113 . -815) NIL) ((-569 . -962) 82097) ((-588 . -784) 82076) ((-1176 . -97) T) ((-271 . -97) T) ((-650 . -343) 82055) ((-113 . -962) 82032) ((-365 . -655) 82016) ((-567 . -655) 82000) ((-44 . -285) 81804) ((-753 . -133) 81783) ((-753 . -135) 81762) ((-1187 . -357) 81741) ((-756 . -784) T) ((-1168 . -1014) T) ((-1069 . -206) 81688) ((-361 . -784) 81667) ((-1158 . -1109) 81633) ((-1158 . -1106) 81599) ((-1151 . -1106) 81565) ((-484 . -124) T) ((-1151 . -1109) 81531) ((-1130 . -1106) 81497) ((-1130 . -1109) 81463) ((-1158 . -34) 81429) ((-1158 . -91) 81395) ((-580 . -562) 81364) ((-556 . -562) 81333) ((-202 . -784) T) ((-1151 . -91) 81299) ((-1151 . -34) 81265) ((-1150 . -1026) T) ((-1032 . -590) 81252) ((-1130 . -91) 81218) ((-1129 . -1026) T) ((-545 . -139) 81200) ((-997 . -324) 81179) ((-113 . -352) 81156) ((-113 . -313) 81133) ((-158 . -266) T) ((-1130 . -34) 81099) ((-799 . -283) T) ((-288 . -731) NIL) ((-288 . -728) NIL) ((-291 . -664) 80949) ((-288 . -664) T) ((-448 . -338) 80928) ((-334 . -324) 80907) ((-328 . -324) 80886) ((-320 . -324) 80865) ((-291 . -447) 80844) ((-1150 . -23) T) ((-1129 . -23) T) ((-656 . -1026) T) ((-652 . -124) T) ((-595 . -97) T) ((-451 . -655) 80809) ((-44 . -258) 80759) ((-100 . -1014) T) ((-66 . -562) 80741) ((-794 . -97) T) ((-569 . -829) 80700) ((-1188 . -1014) T) ((-356 . -1014) T) ((-80 . -1120) T) ((-982 . -784) T) ((-881 . -784) 80679) ((-113 . -829) NIL) ((-719 . -849) 80658) ((-651 . -784) T) ((-494 . -1014) T) ((-470 . -1014) T) ((-330 . -1124) T) ((-327 . -1124) T) ((-319 . -1124) T) ((-240 . -1124) 80637) ((-224 . -1124) 80616) ((-1027 . -208) 80586) ((-454 . -784) 80565) ((-1052 . -977) 80549) ((-365 . -699) T) ((-1068 . -765) T) ((-632 . -1120) T) ((-330 . -514) T) ((-327 . -514) T) ((-319 . -514) T) ((-240 . -514) 80480) ((-224 . -514) 80411) ((-1052 . -107) 80390) ((-427 . -682) 80360) ((-795 . -977) 80330) ((-754 . -37) 80272) ((-632 . -813) 80254) ((-632 . -815) 80236) ((-271 . -285) 80040) ((-839 . -1124) T) ((-612 . -386) 80024) ((-795 . -107) 79989) ((-632 . -962) 79934) ((-930 . -426) T) ((-839 . -514) T) ((-535 . -849) T) ((-448 . -1026) T) ((-486 . -849) T) ((-1066 . -264) 79911) ((-843 . -426) T) ((-63 . -562) 79893) ((-577 . -206) 79839) ((-448 . -23) T) ((-1032 . -731) T) ((-801 . -124) T) ((-1032 . -728) T) ((-1179 . -1181) 79818) ((-1032 . -664) T) ((-596 . -590) 79792) ((-270 . -562) 79534) ((-960 . -33) T) ((-752 . -782) 79513) ((-534 . -283) T) ((-522 . -283) T) ((-465 . -283) T) ((-1188 . -655) 79483) ((-632 . -352) 79465) ((-632 . -313) 79447) ((-451 . -157) T) ((-356 . -655) 79417) ((-800 . -784) NIL) ((-522 . -947) T) ((-465 . -947) T) ((-1045 . -562) 79399) ((-1027 . -215) 79378) ((-192 . -97) T) ((-1060 . -97) T) ((-69 . -562) 79360) ((-1052 . -971) T) ((-1087 . -37) 79257) ((-791 . -562) 79239) ((-522 . -507) T) ((-612 . -978) T) ((-669 . -878) 79192) ((-1052 . -210) 79171) ((-999 . -1014) T) ((-959 . -25) T) ((-959 . -21) T) ((-929 . -977) 79116) ((-834 . -97) T) ((-795 . -971) T) ((-632 . -829) NIL) ((-330 . -304) 79100) ((-330 . -338) T) ((-327 . -304) 79084) ((-327 . -338) T) ((-319 . -304) 79068) ((-319 . -338) T) ((-459 . -97) T) ((-1176 . -37) 79038) ((-491 . -626) 78988) ((-195 . -97) T) ((-949 . -962) 78870) ((-929 . -107) 78799) ((-1083 . -900) 78769) ((-1082 . -900) 78732) ((-488 . -139) 78716) ((-997 . -345) 78695) ((-326 . -562) 78677) ((-297 . -21) T) ((-329 . -962) 78654) ((-297 . -25) T) ((-1076 . -900) 78624) ((-1038 . -900) 78591) ((-74 . -562) 78573) ((-637 . -283) T) ((-154 . -784) 78552) ((-839 . -338) T) ((-354 . -25) T) ((-354 . -21) T) ((-839 . -304) 78539) ((-84 . -562) 78521) ((-637 . -947) T) ((-617 . -784) T) ((-1150 . -124) T) ((-1129 . -124) T) ((-830 . -936) 78505) ((-771 . -21) T) ((-47 . -962) 78448) ((-771 . -25) T) ((-764 . -25) T) ((-764 . -21) T) ((-1186 . -978) T) ((-1184 . -978) T) ((-596 . -664) T) ((-1187 . -977) 78432) ((-1139 . -784) 78411) ((-752 . -386) 78380) ((-98 . -115) 78364) ((-51 . -1014) T) ((-855 . -562) 78346) ((-800 . -919) 78323) ((-760 . -97) T) ((-1187 . -107) 78302) ((-595 . -37) 78272) ((-529 . -784) T) ((-330 . -1026) T) ((-327 . -1026) T) ((-319 . -1026) T) ((-240 . -1026) T) ((-224 . -1026) T) ((-569 . -283) 78251) ((-1060 . -285) 78055) ((-606 . -23) T) ((-455 . -208) 78025) ((-140 . -978) T) ((-330 . -23) T) ((-327 . -23) T) ((-319 . -23) T) ((-113 . -283) T) ((-240 . -23) T) ((-224 . -23) T) ((-929 . -971) T) ((-650 . -838) 78004) ((-929 . -210) 77976) ((-929 . -220) T) ((-113 . -947) NIL) ((-839 . -1026) T) ((-1151 . -426) 77955) ((-1130 . -426) 77934) ((-491 . -562) 77866) ((-650 . -590) 77791) ((-382 . -977) 77743) ((-474 . -562) 77725) ((-839 . -23) T) ((-459 . -285) NIL) ((-448 . -124) T) ((-195 . -285) NIL) ((-382 . -107) 77663) ((-752 . -978) 77594) ((-675 . -1012) 77578) ((-1150 . -463) 77544) ((-1129 . -463) 77510) ((-129 . -1012) 77492) ((-451 . -266) T) ((-1187 . -971) T) ((-983 . -97) T) ((-470 . -483) NIL) ((-641 . -97) T) ((-455 . -215) 77471) ((-1081 . -133) 77450) ((-1081 . -135) 77429) ((-1037 . -135) 77408) ((-1037 . -133) 77387) ((-580 . -977) 77371) ((-556 . -977) 77355) ((-612 . -1014) T) ((-612 . -974) 77295) ((-1083 . -1157) 77279) ((-1083 . -1144) 77256) ((-459 . -1061) T) ((-1082 . -1149) 77217) ((-1082 . -1144) 77187) ((-1082 . -1147) 77171) ((-195 . -1061) T) ((-318 . -849) T) ((-755 . -242) 77155) ((-580 . -107) 77134) ((-556 . -107) 77113) ((-1076 . -1128) 77074) ((-777 . -971) 77053) ((-1076 . -1144) 77030) ((-484 . -25) T) ((-465 . -278) T) ((-480 . -23) T) ((-479 . -25) T) ((-477 . -25) T) ((-476 . -23) T) ((-1076 . -1126) 77014) ((-382 . -971) T) ((-294 . -978) T) ((-632 . -283) T) ((-103 . -782) T) ((-382 . -220) T) ((-382 . -210) 76993) ((-650 . -664) T) ((-459 . -37) 76943) ((-195 . -37) 76893) ((-448 . -463) 76859) ((-1068 . -1054) T) ((-1015 . -97) T) ((-639 . -562) 76841) ((-639 . -563) 76756) ((-652 . -21) T) ((-652 . -25) T) ((-126 . -562) 76738) ((-112 . -562) 76720) ((-143 . -25) T) ((-1186 . -1014) T) ((-801 . -584) 76668) ((-1184 . -1014) T) ((-891 . -97) T) ((-673 . -97) T) ((-653 . -97) T) ((-427 . -97) T) ((-753 . -426) 76619) ((-43 . -1014) T) ((-1004 . -784) T) ((-606 . -124) T) ((-983 . -285) 76470) ((-612 . -655) 76454) ((-265 . -978) T) ((-330 . -124) T) ((-327 . -124) T) ((-319 . -124) T) ((-240 . -124) T) ((-224 . -124) T) ((-393 . -97) T) ((-140 . -1014) T) ((-44 . -206) 76404) ((-886 . -784) 76383) ((-925 . -590) 76321) ((-217 . -1173) 76291) ((-949 . -283) T) ((-270 . -977) 76213) ((-839 . -124) T) ((-39 . -849) T) ((-459 . -375) 76195) ((-329 . -283) T) ((-195 . -375) 76177) ((-997 . -386) 76161) ((-270 . -107) 76078) ((-801 . -25) T) ((-801 . -21) T) ((-314 . -562) 76060) ((-1152 . -46) 76004) ((-202 . -135) T) ((-158 . -562) 75986) ((-1027 . -782) 75965) ((-711 . -562) 75947) ((-557 . -212) 75894) ((-449 . -212) 75844) ((-1186 . -655) 75814) ((-47 . -283) T) ((-1184 . -655) 75784) ((-892 . -1014) T) ((-752 . -1014) 75595) ((-287 . -97) T) ((-830 . -1120) T) ((-47 . -947) T) ((-1129 . -584) 75503) ((-628 . -97) 75481) ((-43 . -655) 75465) ((-508 . -97) T) ((-65 . -358) T) ((-65 . -370) T) ((-604 . -23) T) ((-612 . -699) T) ((-1118 . -1014) 75443) ((-326 . -977) 75388) ((-616 . -1014) 75366) ((-982 . -135) T) ((-881 . -135) 75345) ((-881 . -133) 75324) ((-736 . -97) T) ((-140 . -655) 75308) ((-454 . -135) 75287) ((-454 . -133) 75266) ((-326 . -107) 75195) ((-997 . -978) T) ((-297 . -784) 75174) ((-1158 . -900) 75144) ((-572 . -1014) T) ((-1151 . -900) 75107) ((-480 . -124) T) ((-476 . -124) T) ((-271 . -206) 75057) ((-334 . -978) T) ((-328 . -978) T) ((-320 . -978) T) ((-270 . -971) 75000) ((-1130 . -900) 74970) ((-354 . -784) T) ((-103 . -978) T) ((-925 . -664) T) ((-799 . -849) T) ((-777 . -732) 74949) ((-777 . -729) 74928) ((-393 . -285) 74867) ((-442 . -97) T) ((-547 . -900) 74837) ((-294 . -1014) T) ((-382 . -732) 74816) ((-382 . -729) 74795) ((-470 . -461) 74777) ((-1152 . -962) 74743) ((-1150 . -21) T) ((-1150 . -25) T) ((-1129 . -21) T) ((-1129 . -25) T) ((-752 . -655) 74685) ((-637 . -379) T) ((-1177 . -1120) T) ((-1027 . -386) 74654) ((-929 . -343) NIL) ((-98 . -33) T) ((-675 . -1120) T) ((-43 . -699) T) ((-545 . -97) T) ((-75 . -371) T) ((-75 . -370) T) ((-595 . -598) 74638) ((-129 . -1120) T) ((-800 . -135) T) ((-800 . -133) NIL) ((-326 . -971) T) ((-68 . -358) T) ((-68 . -370) T) ((-1075 . -97) T) ((-612 . -483) 74571) ((-628 . -285) 74509) ((-891 . -37) 74406) ((-673 . -37) 74376) ((-508 . -285) 74180) ((-291 . -1120) T) ((-326 . -210) T) ((-326 . -220) T) ((-288 . -1120) T) ((-265 . -1014) T) ((-1089 . -562) 74162) ((-649 . -1124) T) ((-1066 . -593) 74146) ((-1115 . -514) 74125) ((-649 . -514) T) ((-291 . -813) 74109) ((-291 . -815) 74034) ((-288 . -813) 73995) ((-288 . -815) NIL) ((-736 . -285) 73960) ((-294 . -655) 73801) ((-299 . -298) 73778) ((-457 . -97) T) ((-448 . -25) T) ((-448 . -21) T) ((-393 . -37) 73752) ((-291 . -962) 73420) ((-202 . -1106) T) ((-202 . -1109) T) ((-3 . -562) 73402) ((-288 . -962) 73332) ((-2 . -1014) T) ((-2 . |RecordCategory|) T) ((-770 . -562) 73314) ((-1027 . -978) 73245) ((-534 . -849) T) ((-522 . -757) T) ((-522 . -849) T) ((-465 . -849) T) ((-128 . -962) 73229) ((-202 . -91) T) ((-154 . -135) 73208) ((-73 . -415) T) ((0 . -562) 73190) ((-73 . -370) T) ((-154 . -133) 73141) ((-202 . -34) T) ((-48 . -562) 73123) ((-451 . -978) T) ((-459 . -208) 73105) ((-456 . -896) 73089) ((-455 . -782) 73068) ((-195 . -208) 73050) ((-79 . -415) T) ((-79 . -370) T) ((-1056 . -33) T) ((-752 . -157) 73029) ((-669 . -97) T) ((-951 . -562) 72996) ((-470 . -262) 72971) ((-291 . -352) 72941) ((-288 . -352) 72902) ((-288 . -313) 72863) ((-1001 . -562) 72845) ((-753 . -878) 72792) ((-604 . -124) T) ((-1139 . -133) 72771) ((-1139 . -135) 72750) ((-1083 . -97) T) ((-1082 . -97) T) ((-1076 . -97) T) ((-1069 . -1014) T) ((-1038 . -97) T) ((-199 . -33) T) ((-265 . -655) 72737) ((-1069 . -559) 72713) ((-545 . -285) NIL) ((-456 . -1014) 72691) ((-365 . -562) 72673) ((-479 . -784) T) ((-1060 . -206) 72623) ((-1158 . -1157) 72607) ((-1158 . -1144) 72584) ((-1151 . -1149) 72545) ((-1151 . -1144) 72515) ((-1151 . -1147) 72499) ((-1130 . -1128) 72460) ((-1130 . -1144) 72437) ((-567 . -562) 72419) ((-1130 . -1126) 72403) ((-637 . -849) T) ((-1083 . -260) 72369) ((-1082 . -260) 72335) ((-1076 . -260) 72301) ((-997 . -1014) T) ((-981 . -1014) T) ((-47 . -278) T) ((-291 . -829) 72268) ((-288 . -829) NIL) ((-981 . -987) 72247) ((-1032 . -815) 72229) ((-736 . -37) 72213) ((-240 . -584) 72161) ((-224 . -584) 72109) ((-639 . -977) 72096) ((-547 . -1144) 72073) ((-1038 . -260) 72039) ((-294 . -157) 71970) ((-334 . -1014) T) ((-328 . -1014) T) ((-320 . -1014) T) ((-470 . -19) 71952) ((-1032 . -962) 71934) ((-1016 . -139) 71918) ((-103 . -1014) T) ((-112 . -977) 71905) ((-649 . -338) T) ((-470 . -555) 71880) ((-639 . -107) 71865) ((-411 . -97) T) ((-44 . -1059) 71815) ((-112 . -107) 71800) ((-580 . -658) T) ((-556 . -658) T) ((-752 . -483) 71733) ((-960 . -1120) T) ((-872 . -139) 71717) ((-488 . -97) 71667) ((-1003 . -1124) 71646) ((-451 . -562) 71598) ((-451 . -563) 71520) ((-60 . -1120) T) ((-719 . -1124) 71499) ((-717 . -1124) 71478) ((-1081 . -426) 71409) ((-1068 . -1014) T) ((-1052 . -590) 71383) ((-1003 . -514) 71314) ((-455 . -386) 71283) ((-569 . -849) 71262) ((-428 . -1124) 71241) ((-1037 . -426) 71192) ((-373 . -562) 71174) ((-616 . -483) 71107) ((-719 . -514) 71018) ((-717 . -514) 70949) ((-669 . -285) 70936) ((-606 . -25) T) ((-606 . -21) T) ((-428 . -514) 70867) ((-113 . -849) T) ((-113 . -757) NIL) ((-330 . -25) T) ((-330 . -21) T) ((-327 . -25) T) ((-327 . -21) T) ((-319 . -25) T) ((-319 . -21) T) ((-240 . -25) T) ((-240 . -21) T) ((-81 . -359) T) ((-81 . -370) T) ((-224 . -25) T) ((-224 . -21) T) ((-1168 . -562) 70849) ((-1115 . -1026) T) ((-1115 . -23) T) ((-1076 . -285) 70734) ((-1038 . -285) 70721) ((-795 . -590) 70681) ((-997 . -655) 70549) ((-872 . -907) 70533) ((-265 . -157) T) ((-839 . -21) T) ((-839 . -25) T) ((-801 . -784) 70484) ((-649 . -1026) T) ((-649 . -23) T) ((-589 . -1014) 70462) ((-577 . -559) 70437) ((-577 . -1014) T) ((-535 . -1124) T) ((-486 . -1124) T) ((-535 . -514) T) ((-486 . -514) T) ((-334 . -655) 70389) ((-328 . -655) 70341) ((-158 . -977) 70273) ((-314 . -977) 70257) ((-103 . -655) 70207) ((-158 . -107) 70118) ((-320 . -655) 70070) ((-314 . -107) 70049) ((-250 . -1014) T) ((-249 . -1014) T) ((-248 . -1014) T) ((-247 . -1014) T) ((-639 . -971) T) ((-246 . -1014) T) ((-245 . -1014) T) ((-244 . -1014) T) ((-191 . -1014) T) ((-190 . -1014) T) ((-188 . -1014) T) ((-154 . -1109) 70027) ((-154 . -1106) 70005) ((-187 . -1014) T) ((-186 . -1014) T) ((-112 . -971) T) ((-185 . -1014) T) ((-182 . -1014) T) ((-639 . -210) T) ((-181 . -1014) T) ((-180 . -1014) T) ((-179 . -1014) T) ((-178 . -1014) T) ((-177 . -1014) T) ((-176 . -1014) T) ((-175 . -1014) T) ((-174 . -1014) T) ((-173 . -1014) T) ((-172 . -1014) T) ((-217 . -97) 69816) ((-154 . -34) 69794) ((-154 . -91) 69772) ((-596 . -962) 69670) ((-455 . -978) 69601) ((-1027 . -1014) 69412) ((-1052 . -33) T) ((-612 . -461) 69396) ((-71 . -1120) T) ((-100 . -562) 69378) ((-1188 . -562) 69360) ((-356 . -562) 69342) ((-529 . -1109) T) ((-529 . -1106) T) ((-669 . -37) 69191) ((-494 . -562) 69173) ((-488 . -285) 69111) ((-470 . -562) 69093) ((-470 . -563) 69075) ((-1076 . -1061) NIL) ((-952 . -990) 69044) ((-952 . -1014) T) ((-930 . -97) T) ((-898 . -97) T) ((-843 . -97) T) ((-822 . -962) 69021) ((-1052 . -664) T) ((-929 . -590) 68966) ((-450 . -1014) T) ((-437 . -1014) T) ((-539 . -23) T) ((-529 . -34) T) ((-529 . -91) T) ((-402 . -97) T) ((-983 . -206) 68912) ((-1083 . -37) 68809) ((-795 . -664) T) ((-632 . -849) T) ((-480 . -25) T) ((-476 . -21) T) ((-476 . -25) T) ((-1082 . -37) 68650) ((-314 . -971) T) ((-1076 . -37) 68446) ((-997 . -157) T) ((-158 . -971) T) ((-1038 . -37) 68343) ((-650 . -46) 68320) ((-334 . -157) T) ((-328 . -157) T) ((-487 . -55) 68294) ((-467 . -55) 68244) ((-326 . -1183) 68221) ((-202 . -426) T) ((-294 . -266) 68172) ((-320 . -157) T) ((-158 . -220) T) ((-1129 . -784) 68071) ((-103 . -157) T) ((-801 . -919) 68055) ((-600 . -1026) T) ((-535 . -338) T) ((-535 . -304) 68042) ((-486 . -304) 68019) ((-486 . -338) T) ((-291 . -283) 67998) ((-288 . -283) T) ((-553 . -784) 67977) ((-1027 . -655) 67919) ((-488 . -258) 67903) ((-600 . -23) T) ((-393 . -208) 67887) ((-288 . -947) NIL) ((-311 . -23) T) ((-98 . -936) 67871) ((-44 . -35) 67850) ((-561 . -1014) T) ((-326 . -343) T) ((-465 . -27) T) ((-217 . -285) 67788) ((-1003 . -1026) T) ((-1187 . -590) 67762) ((-719 . -1026) T) ((-717 . -1026) T) ((-428 . -1026) T) ((-982 . -426) T) ((-881 . -426) 67713) ((-106 . -1014) T) ((-1003 . -23) T) ((-754 . -978) T) ((-719 . -23) T) ((-717 . -23) T) ((-454 . -426) 67664) ((-1069 . -483) 67447) ((-356 . -357) 67426) ((-1087 . -386) 67410) ((-435 . -23) T) ((-428 . -23) T) ((-456 . -483) 67343) ((-265 . -266) T) ((-999 . -562) 67325) ((-382 . -838) 67304) ((-49 . -1026) T) ((-949 . -849) T) ((-929 . -664) T) ((-650 . -815) NIL) ((-535 . -1026) T) ((-486 . -1026) T) ((-777 . -590) 67277) ((-1115 . -124) T) ((-1076 . -375) 67229) ((-930 . -285) NIL) ((-752 . -461) 67213) ((-329 . -849) T) ((-1066 . -33) T) ((-382 . -590) 67165) ((-49 . -23) T) ((-649 . -124) T) ((-650 . -962) 67048) ((-535 . -23) T) ((-103 . -483) NIL) ((-486 . -23) T) ((-154 . -384) 67019) ((-1050 . -1014) T) ((-1179 . -1178) 67003) ((-639 . -732) T) ((-639 . -729) T) ((-1032 . -283) T) ((-354 . -135) T) ((-256 . -562) 66985) ((-1129 . -919) 66955) ((-47 . -849) T) ((-616 . -461) 66939) ((-227 . -1173) 66909) ((-226 . -1173) 66879) ((-1085 . -784) T) ((-1027 . -157) 66858) ((-1032 . -947) T) ((-968 . -33) T) ((-771 . -135) 66837) ((-771 . -133) 66816) ((-675 . -102) 66800) ((-561 . -125) T) ((-455 . -1014) 66611) ((-1087 . -978) T) ((-800 . -426) T) ((-83 . -1120) T) ((-217 . -37) 66581) ((-129 . -102) 66563) ((-650 . -352) 66547) ((-1032 . -507) T) ((-365 . -977) 66531) ((-1187 . -664) T) ((-1081 . -878) 66501) ((-51 . -562) 66483) ((-1037 . -878) 66450) ((-595 . -386) 66434) ((-1176 . -978) T) ((-567 . -977) 66418) ((-604 . -25) T) ((-604 . -21) T) ((-1068 . -483) NIL) ((-1158 . -97) T) ((-1151 . -97) T) ((-365 . -107) 66397) ((-199 . -230) 66381) ((-1130 . -97) T) ((-975 . -1014) T) ((-930 . -1061) T) ((-975 . -974) 66321) ((-755 . -1014) T) ((-318 . -1124) T) ((-580 . -590) 66305) ((-567 . -107) 66284) ((-556 . -590) 66268) ((-548 . -97) T) ((-539 . -124) T) ((-547 . -97) T) ((-389 . -1014) T) ((-360 . -1014) T) ((-204 . -1014) 66246) ((-589 . -483) 66179) ((-577 . -483) 66023) ((-770 . -971) 66002) ((-588 . -139) 65986) ((-318 . -514) T) ((-650 . -829) 65930) ((-508 . -206) 65880) ((-1158 . -260) 65846) ((-997 . -266) 65797) ((-459 . -782) T) ((-200 . -1026) T) ((-1151 . -260) 65763) ((-1130 . -260) 65729) ((-930 . -37) 65679) ((-195 . -782) T) ((-1115 . -463) 65645) ((-843 . -37) 65597) ((-777 . -731) 65576) ((-777 . -728) 65555) ((-777 . -664) 65534) ((-334 . -266) T) ((-328 . -266) T) ((-320 . -266) T) ((-154 . -426) 65465) ((-402 . -37) 65449) ((-103 . -266) T) ((-200 . -23) T) ((-382 . -731) 65428) ((-382 . -728) 65407) ((-382 . -664) T) ((-470 . -264) 65382) ((-451 . -977) 65347) ((-600 . -124) T) ((-1027 . -483) 65280) ((-311 . -124) T) ((-154 . -377) 65259) ((-455 . -655) 65201) ((-752 . -262) 65178) ((-451 . -107) 65134) ((-595 . -978) T) ((-1139 . -426) 65065) ((-1003 . -124) T) ((-240 . -784) 65044) ((-224 . -784) 65023) ((-719 . -124) T) ((-717 . -124) T) ((-529 . -426) T) ((-975 . -655) 64965) ((-567 . -971) T) ((-952 . -483) 64898) ((-435 . -124) T) ((-428 . -124) T) ((-44 . -1014) T) ((-360 . -655) 64868) ((-754 . -1014) T) ((-450 . -483) 64801) ((-437 . -483) 64734) ((-427 . -342) 64704) ((-44 . -559) 64683) ((-291 . -278) T) ((-612 . -562) 64645) ((-57 . -784) 64624) ((-1130 . -285) 64509) ((-930 . -375) 64491) ((-752 . -555) 64468) ((-485 . -784) 64447) ((-466 . -784) 64426) ((-39 . -1124) T) ((-925 . -962) 64324) ((-49 . -124) T) ((-535 . -124) T) ((-486 . -124) T) ((-270 . -590) 64186) ((-318 . -304) 64163) ((-318 . -338) T) ((-297 . -298) 64140) ((-294 . -262) 64125) ((-39 . -514) T) ((-354 . -1106) T) ((-354 . -1109) T) ((-960 . -1097) 64100) ((-1094 . -212) 64050) ((-1076 . -208) 64002) ((-305 . -1014) T) ((-354 . -91) T) ((-354 . -34) T) ((-960 . -102) 63948) ((-451 . -971) T) ((-452 . -212) 63898) ((-1069 . -461) 63832) ((-1188 . -977) 63816) ((-356 . -977) 63800) ((-451 . -220) T) ((-753 . -97) T) ((-652 . -135) 63779) ((-652 . -133) 63758) ((-456 . -461) 63742) ((-457 . -310) 63711) ((-1188 . -107) 63690) ((-481 . -1014) T) ((-455 . -157) 63669) ((-925 . -352) 63653) ((-388 . -97) T) ((-356 . -107) 63632) ((-925 . -313) 63616) ((-255 . -910) 63600) ((-254 . -910) 63584) ((-1186 . -562) 63566) ((-1184 . -562) 63548) ((-106 . -483) NIL) ((-1081 . -1142) 63532) ((-788 . -786) 63516) ((-1087 . -1014) T) ((-98 . -1120) T) ((-881 . -878) 63477) ((-754 . -655) 63419) ((-1130 . -1061) NIL) ((-454 . -878) 63364) ((-982 . -131) T) ((-58 . -97) 63342) ((-43 . -562) 63324) ((-76 . -562) 63306) ((-326 . -590) 63251) ((-1176 . -1014) T) ((-480 . -784) T) ((-318 . -1026) T) ((-271 . -1014) T) ((-925 . -829) 63210) ((-271 . -559) 63189) ((-1158 . -37) 63086) ((-1151 . -37) 62927) ((-459 . -978) T) ((-1130 . -37) 62723) ((-195 . -978) T) ((-318 . -23) T) ((-140 . -562) 62705) ((-770 . -732) 62684) ((-770 . -729) 62663) ((-548 . -37) 62636) ((-547 . -37) 62533) ((-799 . -514) T) ((-200 . -124) T) ((-294 . -928) 62499) ((-77 . -562) 62481) ((-650 . -283) 62460) ((-270 . -664) 62363) ((-761 . -97) T) ((-794 . -778) T) ((-270 . -447) 62342) ((-1179 . -97) T) ((-39 . -338) T) ((-801 . -135) 62321) ((-801 . -133) 62300) ((-1068 . -461) 62282) ((-1188 . -971) T) ((-455 . -483) 62215) ((-1056 . -1120) T) ((-892 . -562) 62197) ((-589 . -461) 62181) ((-577 . -461) 62112) ((-752 . -562) 61864) ((-47 . -27) T) ((-1087 . -655) 61761) ((-595 . -1014) T) ((-411 . -339) 61735) ((-1016 . -97) T) ((-753 . -285) 61722) ((-794 . -1014) T) ((-1184 . -357) 61694) ((-975 . -483) 61627) ((-1069 . -262) 61603) ((-217 . -208) 61573) ((-1176 . -655) 61543) ((-754 . -157) 61522) ((-204 . -483) 61455) ((-567 . -732) 61434) ((-567 . -729) 61413) ((-1118 . -562) 61325) ((-199 . -1120) T) ((-616 . -562) 61257) ((-1066 . -936) 61241) ((-326 . -664) T) ((-872 . -97) 61191) ((-1130 . -375) 61143) ((-1027 . -461) 61127) ((-58 . -285) 61065) ((-306 . -97) T) ((-1115 . -21) T) ((-1115 . -25) T) ((-39 . -1026) T) ((-649 . -21) T) ((-572 . -562) 61047) ((-484 . -298) 61026) ((-649 . -25) T) ((-103 . -262) NIL) ((-850 . -1026) T) ((-39 . -23) T) ((-708 . -1026) T) ((-522 . -1124) T) ((-465 . -1124) T) ((-294 . -562) 61008) ((-930 . -208) 60990) ((-154 . -151) 60974) ((-534 . -514) T) ((-522 . -514) T) ((-465 . -514) T) ((-708 . -23) T) ((-1150 . -135) 60953) ((-1069 . -555) 60929) ((-1150 . -133) 60908) ((-952 . -461) 60892) ((-1129 . -133) 60817) ((-1129 . -135) 60742) ((-1179 . -1185) 60721) ((-450 . -461) 60705) ((-437 . -461) 60689) ((-491 . -33) T) ((-595 . -655) 60659) ((-108 . -895) T) ((-604 . -784) 60638) ((-1087 . -157) 60589) ((-340 . -97) T) ((-217 . -215) 60568) ((-227 . -97) T) ((-226 . -97) T) ((-1139 . -878) 60538) ((-105 . -97) T) ((-222 . -784) 60517) ((-753 . -37) 60366) ((-44 . -483) 60158) ((-1068 . -262) 60133) ((-192 . -1014) T) ((-1060 . -1014) T) ((-1060 . -559) 60112) ((-539 . -25) T) ((-539 . -21) T) ((-1016 . -285) 60050) ((-891 . -386) 60034) ((-637 . -1124) T) ((-577 . -262) 60009) ((-1003 . -584) 59957) ((-719 . -584) 59905) ((-717 . -584) 59853) ((-318 . -124) T) ((-265 . -562) 59835) ((-637 . -514) T) ((-834 . -1014) T) ((-799 . -1026) T) ((-428 . -584) 59783) ((-834 . -832) 59767) ((-354 . -426) T) ((-459 . -1014) T) ((-639 . -590) 59754) ((-872 . -285) 59692) ((-195 . -1014) T) ((-291 . -849) 59671) ((-288 . -849) T) ((-288 . -757) NIL) ((-365 . -658) T) ((-799 . -23) T) ((-112 . -590) 59658) ((-448 . -133) 59637) ((-393 . -386) 59621) ((-448 . -135) 59600) ((-106 . -461) 59582) ((-2 . -562) 59564) ((-1068 . -19) 59546) ((-1068 . -555) 59521) ((-600 . -21) T) ((-600 . -25) T) ((-545 . -1054) T) ((-1027 . -262) 59498) ((-311 . -25) T) ((-311 . -21) T) ((-465 . -338) T) ((-1179 . -37) 59468) ((-1052 . -1120) T) ((-577 . -555) 59443) ((-1003 . -25) T) ((-1003 . -21) T) ((-494 . -729) T) ((-494 . -732) T) ((-113 . -1124) T) ((-891 . -978) T) ((-569 . -514) T) ((-673 . -978) T) ((-653 . -978) T) ((-719 . -25) T) ((-719 . -21) T) ((-717 . -21) T) ((-717 . -25) T) ((-612 . -977) 59427) ((-435 . -25) T) ((-113 . -514) T) ((-435 . -21) T) ((-428 . -25) T) ((-428 . -21) T) ((-1052 . -962) 59325) ((-754 . -266) 59304) ((-760 . -1014) T) ((-894 . -895) T) ((-612 . -107) 59283) ((-271 . -483) 59075) ((-1186 . -977) 59059) ((-1184 . -977) 59043) ((-227 . -285) 58981) ((-226 . -285) 58919) ((-1133 . -97) 58897) ((-1069 . -563) NIL) ((-1069 . -562) 58879) ((-1150 . -1106) 58845) ((-1150 . -1109) 58811) ((-1130 . -208) 58763) ((-1129 . -1106) 58729) ((-1129 . -1109) 58695) ((-1052 . -352) 58679) ((-1032 . -757) T) ((-1032 . -849) T) ((-1027 . -555) 58656) ((-997 . -563) 58640) ((-456 . -562) 58572) ((-752 . -264) 58549) ((-557 . -139) 58496) ((-393 . -978) T) ((-459 . -655) 58446) ((-455 . -461) 58430) ((-302 . -784) 58409) ((-314 . -590) 58383) ((-49 . -21) T) ((-49 . -25) T) ((-195 . -655) 58333) ((-154 . -662) 58304) ((-158 . -590) 58236) ((-535 . -21) T) ((-535 . -25) T) ((-486 . -25) T) ((-486 . -21) T) ((-449 . -139) 58186) ((-997 . -562) 58168) ((-981 . -562) 58150) ((-920 . -97) T) ((-792 . -97) T) ((-736 . -386) 58114) ((-39 . -124) T) ((-637 . -338) T) ((-191 . -824) T) ((-639 . -731) T) ((-639 . -728) T) ((-534 . -1026) T) ((-522 . -1026) T) ((-465 . -1026) T) ((-639 . -664) T) ((-334 . -562) 58096) ((-328 . -562) 58078) ((-320 . -562) 58060) ((-64 . -371) T) ((-64 . -370) T) ((-103 . -563) 57990) ((-103 . -562) 57972) ((-190 . -824) T) ((-886 . -139) 57956) ((-1150 . -91) 57922) ((-708 . -124) T) ((-126 . -664) T) ((-112 . -664) T) ((-1150 . -34) 57888) ((-975 . -461) 57872) ((-534 . -23) T) ((-522 . -23) T) ((-465 . -23) T) ((-1129 . -91) 57838) ((-1129 . -34) 57804) ((-1081 . -97) T) ((-1037 . -97) T) ((-788 . -97) T) ((-204 . -461) 57788) ((-1186 . -107) 57767) ((-1184 . -107) 57746) ((-43 . -977) 57730) ((-1139 . -1142) 57714) ((-789 . -786) 57698) ((-1087 . -266) 57677) ((-106 . -262) 57652) ((-1052 . -829) 57611) ((-43 . -107) 57590) ((-612 . -971) T) ((-1090 . -1161) T) ((-1068 . -563) NIL) ((-1068 . -562) 57572) ((-983 . -559) 57547) ((-983 . -1014) T) ((-72 . -415) T) ((-72 . -370) T) ((-612 . -210) 57526) ((-140 . -977) 57510) ((-529 . -512) 57494) ((-330 . -135) 57473) ((-330 . -133) 57424) ((-327 . -135) 57403) ((-641 . -1014) T) ((-327 . -133) 57354) ((-319 . -135) 57333) ((-319 . -133) 57284) ((-240 . -133) 57263) ((-240 . -135) 57242) ((-227 . -37) 57212) ((-224 . -135) 57191) ((-113 . -338) T) ((-224 . -133) 57170) ((-226 . -37) 57140) ((-140 . -107) 57119) ((-929 . -962) 57009) ((-1076 . -782) NIL) ((-632 . -1124) T) ((-736 . -978) T) ((-637 . -1026) T) ((-1186 . -971) T) ((-1184 . -971) T) ((-1066 . -1120) T) ((-929 . -352) 56986) ((-839 . -133) T) ((-839 . -135) 56968) ((-799 . -124) T) ((-752 . -977) 56866) ((-632 . -514) T) ((-637 . -23) T) ((-589 . -562) 56798) ((-589 . -563) 56759) ((-577 . -563) NIL) ((-577 . -562) 56741) ((-459 . -157) T) ((-200 . -21) T) ((-195 . -157) T) ((-200 . -25) T) ((-448 . -1109) 56707) ((-448 . -1106) 56673) ((-250 . -562) 56655) ((-249 . -562) 56637) ((-248 . -562) 56619) ((-247 . -562) 56601) ((-246 . -562) 56583) ((-470 . -593) 56565) ((-245 . -562) 56547) ((-314 . -664) T) ((-244 . -562) 56529) ((-106 . -19) 56511) ((-158 . -664) T) ((-470 . -348) 56493) ((-191 . -562) 56475) ((-488 . -1059) 56459) ((-470 . -119) T) ((-106 . -555) 56434) ((-190 . -562) 56416) ((-448 . -34) 56382) ((-448 . -91) 56348) ((-188 . -562) 56330) ((-187 . -562) 56312) ((-186 . -562) 56294) ((-185 . -562) 56276) ((-182 . -562) 56258) ((-181 . -562) 56240) ((-180 . -562) 56222) ((-179 . -562) 56204) ((-178 . -562) 56186) ((-177 . -562) 56168) ((-176 . -562) 56150) ((-498 . -1017) 56102) ((-175 . -562) 56084) ((-174 . -562) 56066) ((-44 . -461) 56003) ((-173 . -562) 55985) ((-172 . -562) 55967) ((-752 . -107) 55858) ((-588 . -97) 55808) ((-455 . -262) 55785) ((-1027 . -562) 55537) ((-1015 . -1014) T) ((-968 . -1120) T) ((-569 . -1026) T) ((-1187 . -962) 55521) ((-1081 . -285) 55508) ((-1037 . -285) 55495) ((-113 . -1026) T) ((-756 . -97) T) ((-569 . -23) T) ((-1060 . -483) 55287) ((-361 . -97) T) ((-299 . -97) T) ((-929 . -829) 55239) ((-891 . -1014) T) ((-140 . -971) T) ((-113 . -23) T) ((-669 . -386) 55223) ((-673 . -1014) T) ((-653 . -1014) T) ((-641 . -125) T) ((-427 . -1014) T) ((-291 . -405) 55207) ((-382 . -1120) T) ((-952 . -563) 55168) ((-949 . -1124) T) ((-202 . -97) T) ((-952 . -562) 55130) ((-753 . -208) 55114) ((-949 . -514) T) ((-770 . -590) 55087) ((-329 . -1124) T) ((-450 . -562) 55049) ((-450 . -563) 55010) ((-437 . -563) 54971) ((-437 . -562) 54933) ((-382 . -813) 54917) ((-294 . -977) 54752) ((-382 . -815) 54677) ((-777 . -962) 54575) ((-459 . -483) NIL) ((-455 . -555) 54552) ((-329 . -514) T) ((-195 . -483) NIL) ((-801 . -426) T) ((-393 . -1014) T) ((-382 . -962) 54419) ((-294 . -107) 54240) ((-632 . -338) T) ((-202 . -260) T) ((-47 . -1124) T) ((-752 . -971) 54171) ((-534 . -124) T) ((-522 . -124) T) ((-465 . -124) T) ((-47 . -514) T) ((-1069 . -264) 54147) ((-1081 . -1061) 54125) ((-291 . -27) 54104) ((-982 . -97) T) ((-752 . -210) 54057) ((-217 . -782) 54036) ((-881 . -97) T) ((-651 . -97) T) ((-271 . -461) 53973) ((-454 . -97) T) ((-669 . -978) T) ((-561 . -562) 53955) ((-561 . -563) 53816) ((-382 . -352) 53800) ((-382 . -313) 53784) ((-1081 . -37) 53613) ((-1037 . -37) 53462) ((-788 . -37) 53432) ((-365 . -590) 53416) ((-588 . -285) 53354) ((-891 . -655) 53251) ((-199 . -102) 53235) ((-44 . -262) 53160) ((-673 . -655) 53130) ((-567 . -590) 53104) ((-287 . -1014) T) ((-265 . -977) 53091) ((-106 . -562) 53073) ((-106 . -563) 53055) ((-427 . -655) 53025) ((-753 . -229) 52964) ((-628 . -1014) 52942) ((-508 . -1014) T) ((-1083 . -978) T) ((-1082 . -978) T) ((-265 . -107) 52927) ((-1076 . -978) T) ((-1038 . -978) T) ((-508 . -559) 52906) ((-930 . -782) T) ((-204 . -626) 52864) ((-632 . -1026) T) ((-1115 . -678) 52840) ((-294 . -971) T) ((-318 . -25) T) ((-318 . -21) T) ((-382 . -829) 52799) ((-66 . -1120) T) ((-770 . -731) 52778) ((-393 . -655) 52752) ((-736 . -1014) T) ((-770 . -728) 52731) ((-637 . -124) T) ((-650 . -849) 52710) ((-632 . -23) T) ((-459 . -266) T) ((-770 . -664) 52689) ((-294 . -210) 52641) ((-294 . -220) 52620) ((-195 . -266) T) ((-949 . -338) T) ((-1150 . -426) 52599) ((-1129 . -426) 52578) ((-329 . -304) 52555) ((-329 . -338) T) ((-1050 . -562) 52537) ((-44 . -1154) 52487) ((-800 . -97) T) ((-588 . -258) 52471) ((-637 . -980) T) ((-451 . -590) 52436) ((-442 . -1014) T) ((-44 . -555) 52361) ((-1068 . -264) 52336) ((-39 . -584) 52275) ((-47 . -338) T) ((-1020 . -562) 52257) ((-1003 . -784) 52236) ((-577 . -264) 52211) ((-719 . -784) 52190) ((-717 . -784) 52169) ((-455 . -562) 51921) ((-217 . -386) 51890) ((-881 . -285) 51877) ((-428 . -784) 51856) ((-63 . -1120) T) ((-569 . -124) T) ((-454 . -285) 51843) ((-983 . -483) 51687) ((-265 . -971) T) ((-113 . -124) T) ((-427 . -699) T) ((-891 . -157) 51638) ((-997 . -977) 51548) ((-567 . -731) 51527) ((-545 . -1014) T) ((-567 . -728) 51506) ((-567 . -664) T) ((-271 . -262) 51485) ((-270 . -1120) T) ((-975 . -562) 51447) ((-975 . -563) 51408) ((-949 . -1026) T) ((-154 . -97) T) ((-251 . -784) T) ((-1075 . -1014) T) ((-755 . -562) 51390) ((-1027 . -264) 51367) ((-1016 . -206) 51351) ((-929 . -283) T) ((-736 . -655) 51335) ((-334 . -977) 51287) ((-329 . -1026) T) ((-328 . -977) 51239) ((-389 . -562) 51221) ((-360 . -562) 51203) ((-320 . -977) 51155) ((-204 . -562) 51087) ((-997 . -107) 50983) ((-949 . -23) T) ((-103 . -977) 50933) ((-827 . -97) T) ((-775 . -97) T) ((-745 . -97) T) ((-706 . -97) T) ((-617 . -97) T) ((-448 . -426) 50912) ((-393 . -157) T) ((-334 . -107) 50850) ((-328 . -107) 50788) ((-320 . -107) 50726) ((-227 . -208) 50696) ((-226 . -208) 50666) ((-329 . -23) T) ((-69 . -1120) T) ((-202 . -37) 50631) ((-103 . -107) 50565) ((-39 . -25) T) ((-39 . -21) T) ((-612 . -658) T) ((-154 . -260) 50543) ((-47 . -1026) T) ((-850 . -25) T) ((-708 . -25) T) ((-1060 . -461) 50480) ((-457 . -1014) T) ((-1188 . -590) 50454) ((-1139 . -97) T) ((-789 . -97) T) ((-217 . -978) 50385) ((-982 . -1061) T) ((-892 . -729) 50338) ((-356 . -590) 50322) ((-47 . -23) T) ((-892 . -732) 50275) ((-752 . -732) 50226) ((-752 . -729) 50177) ((-271 . -555) 50156) ((-451 . -664) T) ((-529 . -97) T) ((-800 . -285) 50113) ((-595 . -262) 50092) ((-108 . -603) T) ((-74 . -1120) T) ((-982 . -37) 50079) ((-606 . -349) 50058) ((-881 . -37) 49907) ((-669 . -1014) T) ((-454 . -37) 49756) ((-84 . -1120) T) ((-529 . -260) T) ((-1130 . -782) NIL) ((-1083 . -1014) T) ((-1082 . -1014) T) ((-1076 . -1014) T) ((-326 . -962) 49733) ((-997 . -971) T) ((-930 . -978) T) ((-44 . -562) 49715) ((-44 . -563) NIL) ((-843 . -978) T) ((-754 . -562) 49697) ((-1057 . -97) 49675) ((-997 . -220) 49626) ((-402 . -978) T) ((-334 . -971) T) ((-328 . -971) T) ((-340 . -339) 49603) ((-320 . -971) T) ((-227 . -215) 49582) ((-226 . -215) 49561) ((-105 . -339) 49535) ((-997 . -210) 49460) ((-1038 . -1014) T) ((-270 . -829) 49419) ((-103 . -971) T) ((-632 . -124) T) ((-393 . -483) 49261) ((-334 . -210) 49240) ((-334 . -220) T) ((-43 . -658) T) ((-328 . -210) 49219) ((-328 . -220) T) ((-320 . -210) 49198) ((-320 . -220) T) ((-154 . -285) 49163) ((-103 . -220) T) ((-103 . -210) T) ((-294 . -729) T) ((-799 . -21) T) ((-799 . -25) T) ((-382 . -283) T) ((-470 . -33) T) ((-106 . -264) 49138) ((-1027 . -977) 49036) ((-800 . -1061) NIL) ((-305 . -562) 49018) ((-382 . -947) 48997) ((-1027 . -107) 48888) ((-411 . -1014) T) ((-1188 . -664) T) ((-61 . -562) 48870) ((-800 . -37) 48815) ((-491 . -1120) T) ((-553 . -139) 48799) ((-481 . -562) 48781) ((-1139 . -285) 48768) ((-669 . -655) 48617) ((-494 . -730) T) ((-494 . -731) T) ((-522 . -584) 48599) ((-465 . -584) 48559) ((-330 . -426) T) ((-327 . -426) T) ((-319 . -426) T) ((-240 . -426) 48510) ((-488 . -1014) 48460) ((-224 . -426) 48411) ((-1060 . -262) 48390) ((-1087 . -562) 48372) ((-628 . -483) 48305) ((-891 . -266) 48284) ((-508 . -483) 48076) ((-1081 . -208) 48060) ((-154 . -1061) 48039) ((-1176 . -562) 48021) ((-1083 . -655) 47918) ((-1082 . -655) 47759) ((-821 . -97) T) ((-1076 . -655) 47555) ((-1038 . -655) 47452) ((-1066 . -615) 47436) ((-330 . -377) 47387) ((-327 . -377) 47338) ((-319 . -377) 47289) ((-949 . -124) T) ((-736 . -483) 47201) ((-271 . -563) NIL) ((-271 . -562) 47183) ((-839 . -426) T) ((-892 . -343) 47136) ((-752 . -343) 47115) ((-479 . -478) 47094) ((-477 . -478) 47073) ((-459 . -262) NIL) ((-455 . -264) 47050) ((-393 . -266) T) ((-329 . -124) T) ((-195 . -262) NIL) ((-632 . -463) NIL) ((-94 . -1026) T) ((-154 . -37) 46878) ((-1150 . -900) 46841) ((-1057 . -285) 46779) ((-1129 . -900) 46749) ((-839 . -377) T) ((-1027 . -971) 46680) ((-1152 . -514) T) ((-1060 . -555) 46659) ((-108 . -784) T) ((-983 . -461) 46590) ((-534 . -21) T) ((-534 . -25) T) ((-522 . -21) T) ((-522 . -25) T) ((-465 . -25) T) ((-465 . -21) T) ((-1139 . -1061) 46568) ((-1027 . -210) 46521) ((-47 . -124) T) ((-1102 . -97) T) ((-217 . -1014) 46332) ((-800 . -375) 46309) ((-1004 . -97) T) ((-993 . -97) T) ((-557 . -97) T) ((-449 . -97) T) ((-1139 . -37) 46138) ((-789 . -37) 46108) ((-669 . -157) 46019) ((-595 . -562) 46001) ((-529 . -37) 45988) ((-886 . -97) 45938) ((-794 . -562) 45920) ((-794 . -563) 45842) ((-545 . -483) NIL) ((-1158 . -978) T) ((-1151 . -978) T) ((-1130 . -978) T) ((-548 . -978) T) ((-547 . -978) T) ((-1192 . -1026) T) ((-1083 . -157) 45793) ((-1082 . -157) 45724) ((-1076 . -157) 45655) ((-1038 . -157) 45606) ((-930 . -1014) T) ((-898 . -1014) T) ((-843 . -1014) T) ((-1115 . -135) 45585) ((-736 . -734) 45569) ((-637 . -25) T) ((-637 . -21) T) ((-113 . -584) 45546) ((-639 . -815) 45528) ((-402 . -1014) T) ((-291 . -1124) 45507) ((-288 . -1124) T) ((-154 . -375) 45491) ((-1115 . -133) 45470) ((-448 . -900) 45433) ((-70 . -562) 45415) ((-103 . -732) T) ((-103 . -729) T) ((-291 . -514) 45394) ((-639 . -962) 45376) ((-288 . -514) T) ((-1192 . -23) T) ((-126 . -962) 45358) ((-455 . -977) 45256) ((-44 . -264) 45181) ((-217 . -655) 45123) ((-455 . -107) 45014) ((-1007 . -97) 44992) ((-959 . -97) T) ((-588 . -765) 44971) ((-669 . -483) 44914) ((-975 . -977) 44898) ((-569 . -21) T) ((-569 . -25) T) ((-983 . -262) 44873) ((-336 . -97) T) ((-297 . -97) T) ((-612 . -590) 44847) ((-360 . -977) 44831) ((-975 . -107) 44810) ((-753 . -386) 44794) ((-113 . -25) T) ((-87 . -562) 44776) ((-113 . -21) T) ((-557 . -285) 44571) ((-449 . -285) 44375) ((-1060 . -563) NIL) ((-360 . -107) 44354) ((-354 . -97) T) ((-192 . -562) 44336) ((-1060 . -562) 44318) ((-930 . -655) 44268) ((-1076 . -483) 44037) ((-843 . -655) 43989) ((-1038 . -483) 43959) ((-326 . -283) T) ((-1094 . -139) 43909) ((-886 . -285) 43847) ((-771 . -97) T) ((-402 . -655) 43831) ((-202 . -765) T) ((-764 . -97) T) ((-762 . -97) T) ((-452 . -139) 43781) ((-1150 . -1149) 43760) ((-1032 . -1124) T) ((-314 . -962) 43727) ((-1150 . -1144) 43697) ((-1150 . -1147) 43681) ((-1129 . -1128) 43660) ((-78 . -562) 43642) ((-834 . -562) 43624) ((-1129 . -1144) 43601) ((-1032 . -514) T) ((-850 . -784) T) ((-459 . -563) 43531) ((-459 . -562) 43513) ((-708 . -784) T) ((-354 . -260) T) ((-613 . -784) T) ((-1129 . -1126) 43497) ((-1152 . -1026) T) ((-195 . -563) 43427) ((-195 . -562) 43409) ((-983 . -555) 43384) ((-57 . -139) 43368) ((-485 . -139) 43352) ((-466 . -139) 43336) ((-334 . -1183) 43320) ((-328 . -1183) 43304) ((-320 . -1183) 43288) ((-291 . -338) 43267) ((-288 . -338) T) ((-455 . -971) 43198) ((-632 . -584) 43180) ((-1186 . -590) 43154) ((-1184 . -590) 43128) ((-1152 . -23) T) ((-628 . -461) 43112) ((-62 . -562) 43094) ((-1027 . -732) 43045) ((-1027 . -729) 42996) ((-508 . -461) 42933) ((-612 . -33) T) ((-455 . -210) 42886) ((-271 . -264) 42865) ((-217 . -157) 42844) ((-753 . -978) T) ((-43 . -590) 42802) ((-997 . -343) 42753) ((-669 . -266) 42684) ((-488 . -483) 42617) ((-754 . -977) 42568) ((-1003 . -133) 42547) ((-334 . -343) 42526) ((-328 . -343) 42505) ((-320 . -343) 42484) ((-1003 . -135) 42463) ((-800 . -208) 42440) ((-754 . -107) 42382) ((-719 . -133) 42361) ((-719 . -135) 42340) ((-240 . -878) 42307) ((-227 . -782) 42286) ((-224 . -878) 42231) ((-226 . -782) 42210) ((-717 . -133) 42189) ((-717 . -135) 42168) ((-140 . -590) 42142) ((-428 . -135) 42121) ((-428 . -133) 42100) ((-612 . -664) T) ((-760 . -562) 42082) ((-1158 . -1014) T) ((-1151 . -1014) T) ((-1130 . -1014) T) ((-1115 . -1109) 42048) ((-1115 . -1106) 42014) ((-1083 . -266) 41993) ((-1082 . -266) 41944) ((-1076 . -266) 41895) ((-1038 . -266) 41874) ((-314 . -829) 41855) ((-930 . -157) T) ((-843 . -157) T) ((-548 . -1014) T) ((-547 . -1014) T) ((-632 . -21) T) ((-632 . -25) T) ((-448 . -1147) 41839) ((-448 . -1144) 41809) ((-393 . -262) 41737) ((-291 . -1026) 41587) ((-288 . -1026) T) ((-1115 . -34) 41553) ((-1115 . -91) 41519) ((-82 . -562) 41501) ((-89 . -97) 41479) ((-1192 . -124) T) ((-535 . -133) T) ((-535 . -135) 41461) ((-486 . -135) 41443) ((-486 . -133) T) ((-291 . -23) 41296) ((-39 . -317) 41270) ((-288 . -23) T) ((-1068 . -593) 41252) ((-752 . -590) 41102) ((-1179 . -978) T) ((-1068 . -348) 41084) ((-154 . -208) 41068) ((-545 . -461) 41050) ((-217 . -483) 40983) ((-1186 . -664) T) ((-1184 . -664) T) ((-1087 . -977) 40866) ((-1087 . -107) 40735) ((-754 . -971) T) ((-484 . -97) T) ((-47 . -584) 40695) ((-479 . -97) T) ((-477 . -97) T) ((-1176 . -977) 40665) ((-959 . -37) 40649) ((-754 . -210) T) ((-754 . -220) 40628) ((-508 . -262) 40607) ((-1176 . -107) 40572) ((-1139 . -208) 40556) ((-1158 . -655) 40453) ((-983 . -563) NIL) ((-983 . -562) 40435) ((-1151 . -655) 40276) ((-1130 . -655) 40072) ((-929 . -849) T) ((-641 . -562) 40041) ((-140 . -664) T) ((-1027 . -343) 40020) ((-930 . -483) NIL) ((-227 . -386) 39989) ((-226 . -386) 39958) ((-949 . -25) T) ((-949 . -21) T) ((-548 . -655) 39931) ((-547 . -655) 39828) ((-736 . -262) 39786) ((-122 . -97) 39764) ((-770 . -962) 39662) ((-154 . -765) 39641) ((-294 . -590) 39538) ((-752 . -33) T) ((-652 . -97) T) ((-1032 . -1026) T) ((-951 . -1120) T) ((-354 . -37) 39503) ((-329 . -25) T) ((-329 . -21) T) ((-147 . -97) T) ((-143 . -97) T) ((-330 . -1173) 39487) ((-327 . -1173) 39471) ((-319 . -1173) 39455) ((-154 . -324) 39434) ((-522 . -784) T) ((-465 . -784) T) ((-1032 . -23) T) ((-85 . -562) 39416) ((-639 . -283) T) ((-771 . -37) 39386) ((-764 . -37) 39356) ((-1152 . -124) T) ((-1060 . -264) 39335) ((-892 . -730) 39288) ((-892 . -731) 39241) ((-752 . -728) 39220) ((-112 . -283) T) ((-89 . -285) 39158) ((-616 . -33) T) ((-508 . -555) 39137) ((-47 . -25) T) ((-47 . -21) T) ((-752 . -731) 39088) ((-752 . -730) 39067) ((-639 . -947) T) ((-595 . -977) 39051) ((-892 . -664) 38950) ((-752 . -664) 38881) ((-892 . -447) 38834) ((-455 . -732) 38785) ((-455 . -729) 38736) ((-839 . -1173) 38723) ((-1087 . -971) T) ((-595 . -107) 38702) ((-1087 . -301) 38679) ((-1107 . -97) 38657) ((-1015 . -562) 38639) ((-639 . -507) T) ((-753 . -1014) T) ((-1176 . -971) T) ((-388 . -1014) T) ((-227 . -978) 38570) ((-226 . -978) 38501) ((-265 . -590) 38488) ((-545 . -262) 38463) ((-628 . -626) 38421) ((-891 . -562) 38403) ((-801 . -97) T) ((-673 . -562) 38385) ((-653 . -562) 38367) ((-1158 . -157) 38318) ((-1151 . -157) 38249) ((-1130 . -157) 38180) ((-637 . -784) T) ((-930 . -266) T) ((-427 . -562) 38162) ((-572 . -664) T) ((-58 . -1014) 38140) ((-222 . -139) 38124) ((-843 . -266) T) ((-949 . -938) T) ((-572 . -447) T) ((-650 . -1124) 38103) ((-548 . -157) 38082) ((-547 . -157) 38033) ((-1166 . -784) 38012) ((-650 . -514) 37923) ((-382 . -849) T) ((-382 . -757) 37902) ((-294 . -731) T) ((-294 . -664) T) ((-393 . -562) 37884) ((-393 . -563) 37792) ((-588 . -1059) 37776) ((-106 . -593) 37758) ((-122 . -285) 37696) ((-106 . -348) 37678) ((-158 . -283) T) ((-373 . -1120) T) ((-291 . -124) 37550) ((-288 . -124) T) ((-67 . -370) T) ((-106 . -119) T) ((-488 . -461) 37534) ((-596 . -1026) T) ((-545 . -19) 37516) ((-59 . -415) T) ((-59 . -370) T) ((-761 . -1014) T) ((-545 . -555) 37491) ((-451 . -962) 37451) ((-595 . -971) T) ((-596 . -23) T) ((-1179 . -1014) T) ((-753 . -655) 37300) ((-113 . -784) NIL) ((-1081 . -386) 37284) ((-1037 . -386) 37268) ((-788 . -386) 37252) ((-802 . -97) 37203) ((-1150 . -97) T) ((-1130 . -483) 36972) ((-1107 . -285) 36910) ((-287 . -562) 36892) ((-1129 . -97) T) ((-1016 . -1014) T) ((-1083 . -262) 36877) ((-1082 . -262) 36862) ((-265 . -664) T) ((-103 . -838) NIL) ((-628 . -562) 36794) ((-628 . -563) 36755) ((-997 . -590) 36665) ((-552 . -562) 36647) ((-508 . -563) NIL) ((-508 . -562) 36629) ((-1076 . -262) 36477) ((-459 . -977) 36427) ((-649 . -426) T) ((-480 . -478) 36406) ((-476 . -478) 36385) ((-195 . -977) 36335) ((-334 . -590) 36287) ((-328 . -590) 36239) ((-202 . -782) T) ((-320 . -590) 36191) ((-553 . -97) 36141) ((-455 . -343) 36120) ((-103 . -590) 36070) ((-459 . -107) 36004) ((-217 . -461) 35988) ((-318 . -135) 35970) ((-318 . -133) T) ((-154 . -345) 35941) ((-872 . -1164) 35925) ((-195 . -107) 35859) ((-801 . -285) 35824) ((-872 . -1014) 35774) ((-736 . -563) 35735) ((-736 . -562) 35717) ((-656 . -97) T) ((-306 . -1014) T) ((-1032 . -124) T) ((-652 . -37) 35687) ((-291 . -463) 35666) ((-470 . -1120) T) ((-1150 . -260) 35632) ((-1129 . -260) 35598) ((-302 . -139) 35582) ((-983 . -264) 35557) ((-1179 . -655) 35527) ((-1069 . -33) T) ((-1188 . -962) 35504) ((-442 . -562) 35486) ((-456 . -33) T) ((-356 . -962) 35470) ((-1081 . -978) T) ((-1037 . -978) T) ((-788 . -978) T) ((-982 . -782) T) ((-753 . -157) 35381) ((-488 . -262) 35358) ((-113 . -919) 35335) ((-1158 . -266) 35314) ((-1102 . -339) 35288) ((-1004 . -242) 35272) ((-448 . -97) T) ((-340 . -1014) T) ((-227 . -1014) T) ((-226 . -1014) T) ((-1151 . -266) 35223) ((-105 . -1014) T) ((-1130 . -266) 35174) ((-801 . -1061) 35152) ((-1083 . -928) 35118) ((-557 . -339) 35058) ((-1082 . -928) 35024) ((-557 . -206) 34971) ((-545 . -562) 34953) ((-545 . -563) NIL) ((-632 . -784) T) ((-449 . -206) 34903) ((-459 . -971) T) ((-1076 . -928) 34869) ((-86 . -414) T) ((-86 . -370) T) ((-195 . -971) T) ((-1038 . -928) 34835) ((-997 . -664) T) ((-650 . -1026) T) ((-548 . -266) 34814) ((-547 . -266) 34793) ((-459 . -220) T) ((-459 . -210) T) ((-195 . -220) T) ((-195 . -210) T) ((-1075 . -562) 34775) ((-801 . -37) 34727) ((-334 . -664) T) ((-328 . -664) T) ((-320 . -664) T) ((-103 . -731) T) ((-103 . -728) T) ((-488 . -1154) 34711) ((-103 . -664) T) ((-650 . -23) T) ((-1192 . -25) T) ((-448 . -260) 34677) ((-1192 . -21) T) ((-1129 . -285) 34616) ((-1085 . -97) T) ((-39 . -133) 34588) ((-39 . -135) 34560) ((-488 . -555) 34537) ((-1027 . -590) 34387) ((-553 . -285) 34325) ((-44 . -593) 34275) ((-44 . -608) 34225) ((-44 . -348) 34175) ((-1068 . -33) T) ((-800 . -782) NIL) ((-596 . -124) T) ((-457 . -562) 34157) ((-217 . -262) 34134) ((-589 . -33) T) ((-577 . -33) T) ((-1003 . -426) 34085) ((-753 . -483) 33959) ((-719 . -426) 33890) ((-717 . -426) 33841) ((-428 . -426) 33792) ((-881 . -386) 33776) ((-669 . -562) 33758) ((-227 . -655) 33700) ((-226 . -655) 33642) ((-669 . -563) 33503) ((-454 . -386) 33487) ((-314 . -278) T) ((-326 . -849) T) ((-926 . -97) 33465) ((-949 . -784) T) ((-58 . -483) 33398) ((-1129 . -1061) 33350) ((-930 . -262) NIL) ((-202 . -978) T) ((-354 . -765) T) ((-1027 . -33) T) ((-535 . -426) T) ((-486 . -426) T) ((-1133 . -1008) 33334) ((-1133 . -1014) 33312) ((-217 . -555) 33289) ((-1133 . -1010) 33246) ((-1083 . -562) 33228) ((-1082 . -562) 33210) ((-1076 . -562) 33192) ((-1076 . -563) NIL) ((-1038 . -562) 33174) ((-801 . -375) 33158) ((-498 . -97) T) ((-1150 . -37) 32999) ((-1129 . -37) 32813) ((-799 . -135) T) ((-535 . -377) T) ((-47 . -784) T) ((-486 . -377) T) ((-1152 . -21) T) ((-1152 . -25) T) ((-1027 . -728) 32792) ((-1027 . -731) 32743) ((-1027 . -730) 32722) ((-920 . -1014) T) ((-952 . -33) T) ((-792 . -1014) T) ((-1162 . -97) T) ((-1027 . -664) 32653) ((-606 . -97) T) ((-508 . -264) 32632) ((-1094 . -97) T) ((-450 . -33) T) ((-437 . -33) T) ((-330 . -97) T) ((-327 . -97) T) ((-319 . -97) T) ((-240 . -97) T) ((-224 . -97) T) ((-451 . -283) T) ((-982 . -978) T) ((-881 . -978) T) ((-291 . -584) 32540) ((-288 . -584) 32501) ((-454 . -978) T) ((-452 . -97) T) ((-411 . -562) 32483) ((-1081 . -1014) T) ((-1037 . -1014) T) ((-788 . -1014) T) ((-1051 . -97) T) ((-753 . -266) 32414) ((-891 . -977) 32297) ((-451 . -947) T) ((-673 . -977) 32267) ((-427 . -977) 32237) ((-1057 . -1033) 32221) ((-1016 . -483) 32154) ((-891 . -107) 32023) ((-839 . -97) T) ((-673 . -107) 31988) ((-57 . -97) 31938) ((-488 . -563) 31899) ((-488 . -562) 31811) ((-487 . -97) 31789) ((-485 . -97) 31739) ((-467 . -97) 31717) ((-466 . -97) 31667) ((-427 . -107) 31630) ((-227 . -157) 31609) ((-226 . -157) 31588) ((-393 . -977) 31562) ((-1115 . -900) 31524) ((-925 . -1026) T) ((-872 . -483) 31457) ((-459 . -732) T) ((-448 . -37) 31298) ((-393 . -107) 31265) ((-459 . -729) T) ((-926 . -285) 31203) ((-195 . -732) T) ((-195 . -729) T) ((-925 . -23) T) ((-650 . -124) T) ((-1129 . -375) 31173) ((-291 . -25) 31026) ((-154 . -386) 31010) ((-291 . -21) 30882) ((-288 . -25) T) ((-288 . -21) T) ((-794 . -343) T) ((-106 . -33) T) ((-455 . -590) 30732) ((-800 . -978) T) ((-545 . -264) 30707) ((-534 . -135) T) ((-522 . -135) T) ((-465 . -135) T) ((-1081 . -655) 30536) ((-1037 . -655) 30385) ((-1032 . -584) 30367) ((-788 . -655) 30337) ((-612 . -1120) T) ((-1 . -97) T) ((-217 . -562) 30089) ((-1139 . -386) 30073) ((-1094 . -285) 29877) ((-891 . -971) T) ((-673 . -971) T) ((-653 . -971) T) ((-588 . -1014) 29827) ((-975 . -590) 29811) ((-789 . -386) 29795) ((-480 . -97) T) ((-476 . -97) T) ((-224 . -285) 29782) ((-240 . -285) 29769) ((-891 . -301) 29748) ((-360 . -590) 29732) ((-452 . -285) 29536) ((-227 . -483) 29469) ((-612 . -962) 29367) ((-226 . -483) 29300) ((-1051 . -285) 29226) ((-756 . -1014) T) ((-736 . -977) 29210) ((-1158 . -262) 29195) ((-1151 . -262) 29180) ((-1130 . -262) 29028) ((-361 . -1014) T) ((-299 . -1014) T) ((-393 . -971) T) ((-154 . -978) T) ((-57 . -285) 28966) ((-736 . -107) 28945) ((-547 . -262) 28930) ((-487 . -285) 28868) ((-485 . -285) 28806) ((-467 . -285) 28744) ((-466 . -285) 28682) ((-393 . -210) 28661) ((-455 . -33) T) ((-930 . -563) 28591) ((-202 . -1014) T) ((-930 . -562) 28573) ((-898 . -562) 28555) ((-898 . -563) 28530) ((-843 . -562) 28512) ((-637 . -135) T) ((-639 . -849) T) ((-639 . -757) T) ((-402 . -562) 28494) ((-1032 . -21) T) ((-1032 . -25) T) ((-612 . -352) 28478) ((-112 . -849) T) ((-801 . -208) 28462) ((-76 . -1120) T) ((-122 . -121) 28446) ((-975 . -33) T) ((-1186 . -962) 28420) ((-1184 . -962) 28377) ((-1139 . -978) T) ((-789 . -978) T) ((-455 . -728) 28356) ((-330 . -1061) 28335) ((-327 . -1061) 28314) ((-319 . -1061) 28293) ((-455 . -731) 28244) ((-455 . -730) 28223) ((-204 . -33) T) ((-455 . -664) 28154) ((-58 . -461) 28138) ((-529 . -978) T) ((-1081 . -157) 28029) ((-1037 . -157) 27940) ((-982 . -1014) T) ((-1003 . -878) 27885) ((-881 . -1014) T) ((-754 . -590) 27836) ((-719 . -878) 27806) ((-651 . -1014) T) ((-717 . -878) 27773) ((-485 . -258) 27757) ((-612 . -829) 27716) ((-454 . -1014) T) ((-428 . -878) 27683) ((-77 . -1120) T) ((-330 . -37) 27648) ((-327 . -37) 27613) ((-319 . -37) 27578) ((-240 . -37) 27427) ((-224 . -37) 27276) ((-839 . -1061) T) ((-569 . -135) 27255) ((-569 . -133) 27234) ((-113 . -135) T) ((-113 . -133) NIL) ((-389 . -664) T) ((-736 . -971) T) ((-318 . -426) T) ((-1158 . -928) 27200) ((-1151 . -928) 27166) ((-1130 . -928) 27132) ((-839 . -37) 27097) ((-202 . -655) 27062) ((-39 . -384) 27034) ((-294 . -46) 27004) ((-925 . -124) T) ((-752 . -1120) T) ((-158 . -849) T) ((-318 . -377) T) ((-488 . -264) 26981) ((-44 . -33) T) ((-752 . -962) 26810) ((-604 . -97) T) ((-596 . -21) T) ((-596 . -25) T) ((-1016 . -461) 26794) ((-1129 . -208) 26764) ((-616 . -1120) T) ((-222 . -97) 26714) ((-800 . -1014) T) ((-1087 . -590) 26639) ((-982 . -655) 26626) ((-669 . -977) 26469) ((-1081 . -483) 26417) ((-881 . -655) 26266) ((-1037 . -483) 26218) ((-454 . -655) 26067) ((-65 . -562) 26049) ((-669 . -107) 25878) ((-872 . -461) 25862) ((-1176 . -590) 25822) ((-754 . -664) T) ((-1083 . -977) 25705) ((-1082 . -977) 25540) ((-1076 . -977) 25330) ((-1038 . -977) 25213) ((-929 . -1124) T) ((-1009 . -97) 25191) ((-752 . -352) 25161) ((-929 . -514) T) ((-1083 . -107) 25030) ((-1082 . -107) 24851) ((-1076 . -107) 24620) ((-1038 . -107) 24489) ((-1019 . -1017) 24453) ((-354 . -782) T) ((-1158 . -562) 24435) ((-1151 . -562) 24417) ((-1130 . -562) 24399) ((-1130 . -563) NIL) ((-217 . -264) 24376) ((-39 . -426) T) ((-202 . -157) T) ((-154 . -1014) T) ((-632 . -135) T) ((-632 . -133) NIL) ((-548 . -562) 24358) ((-547 . -562) 24340) ((-827 . -1014) T) ((-775 . -1014) T) ((-745 . -1014) T) ((-706 . -1014) T) ((-600 . -786) 24324) ((-617 . -1014) T) ((-752 . -829) 24257) ((-39 . -377) NIL) ((-1032 . -603) T) ((-800 . -655) 24202) ((-227 . -461) 24186) ((-226 . -461) 24170) ((-650 . -584) 24118) ((-595 . -590) 24092) ((-271 . -33) T) ((-669 . -971) T) ((-535 . -1173) 24079) ((-486 . -1173) 24056) ((-1139 . -1014) T) ((-1081 . -266) 23967) ((-1037 . -266) 23898) ((-982 . -157) T) ((-789 . -1014) T) ((-881 . -157) 23809) ((-719 . -1142) 23793) ((-588 . -483) 23726) ((-75 . -562) 23708) ((-669 . -301) 23673) ((-1087 . -664) T) ((-529 . -1014) T) ((-454 . -157) 23584) ((-222 . -285) 23522) ((-1052 . -1026) T) ((-68 . -562) 23504) ((-1176 . -664) T) ((-1083 . -971) T) ((-1082 . -971) T) ((-302 . -97) 23454) ((-1076 . -971) T) ((-1052 . -23) T) ((-1038 . -971) T) ((-89 . -1033) 23438) ((-795 . -1026) T) ((-1083 . -210) 23397) ((-1082 . -220) 23376) ((-1082 . -210) 23328) ((-1076 . -210) 23215) ((-1076 . -220) 23194) ((-294 . -829) 23100) ((-795 . -23) T) ((-154 . -655) 22928) ((-382 . -1124) T) ((-1015 . -343) T) ((-949 . -135) T) ((-929 . -338) T) ((-799 . -426) T) ((-872 . -262) 22905) ((-291 . -784) T) ((-288 . -784) NIL) ((-803 . -97) T) ((-650 . -25) T) ((-382 . -514) T) ((-650 . -21) T) ((-329 . -135) 22887) ((-329 . -133) T) ((-1057 . -1014) 22865) ((-427 . -658) T) ((-73 . -562) 22847) ((-110 . -784) T) ((-222 . -258) 22831) ((-217 . -977) 22729) ((-79 . -562) 22711) ((-673 . -343) 22664) ((-1085 . -765) T) ((-675 . -212) 22648) ((-1069 . -1120) T) ((-129 . -212) 22630) ((-217 . -107) 22521) ((-1139 . -655) 22350) ((-47 . -135) T) ((-800 . -157) T) ((-789 . -655) 22320) ((-456 . -1120) T) ((-881 . -483) 22267) ((-595 . -664) T) ((-529 . -655) 22254) ((-959 . -978) T) ((-454 . -483) 22197) ((-872 . -19) 22181) ((-872 . -555) 22158) ((-753 . -563) NIL) ((-753 . -562) 22140) ((-930 . -977) 22090) ((-388 . -562) 22072) ((-227 . -262) 22049) ((-226 . -262) 22026) ((-459 . -838) NIL) ((-291 . -29) 21996) ((-103 . -1120) T) ((-929 . -1026) T) ((-195 . -838) NIL) ((-843 . -977) 21948) ((-997 . -962) 21846) ((-930 . -107) 21780) ((-240 . -208) 21764) ((-675 . -633) 21748) ((-402 . -977) 21732) ((-354 . -978) T) ((-929 . -23) T) ((-843 . -107) 21670) ((-632 . -1109) NIL) ((-459 . -590) 21620) ((-103 . -813) 21602) ((-103 . -815) 21584) ((-632 . -1106) NIL) ((-195 . -590) 21534) ((-334 . -962) 21518) ((-328 . -962) 21502) ((-302 . -285) 21440) ((-320 . -962) 21424) ((-202 . -266) T) ((-402 . -107) 21403) ((-58 . -562) 21335) ((-154 . -157) T) ((-1032 . -784) T) ((-103 . -962) 21295) ((-821 . -1014) T) ((-771 . -978) T) ((-764 . -978) T) ((-632 . -34) NIL) ((-632 . -91) NIL) ((-288 . -919) 21256) ((-534 . -426) T) ((-522 . -426) T) ((-465 . -426) T) ((-382 . -338) T) ((-217 . -971) 21187) ((-1060 . -33) T) ((-451 . -849) T) ((-925 . -584) 21135) ((-227 . -555) 21112) ((-226 . -555) 21089) ((-997 . -352) 21073) ((-800 . -483) 20981) ((-217 . -210) 20934) ((-1068 . -1120) T) ((-761 . -562) 20916) ((-1187 . -1026) T) ((-1179 . -562) 20898) ((-1139 . -157) 20789) ((-103 . -352) 20771) ((-103 . -313) 20753) ((-982 . -266) T) ((-881 . -266) 20684) ((-736 . -343) 20663) ((-589 . -1120) T) ((-577 . -1120) T) ((-454 . -266) 20594) ((-529 . -157) T) ((-302 . -258) 20578) ((-1187 . -23) T) ((-1115 . -97) T) ((-1102 . -1014) T) ((-1004 . -1014) T) ((-993 . -1014) T) ((-81 . -562) 20560) ((-649 . -97) T) ((-330 . -324) 20539) ((-557 . -1014) T) ((-327 . -324) 20518) ((-319 . -324) 20497) ((-449 . -1014) T) ((-1094 . -206) 20447) ((-240 . -229) 20409) ((-1052 . -124) T) ((-557 . -559) 20385) ((-997 . -829) 20318) ((-930 . -971) T) ((-843 . -971) T) ((-449 . -559) 20297) ((-1076 . -729) NIL) ((-1076 . -732) NIL) ((-1016 . -563) 20258) ((-452 . -206) 20208) ((-1016 . -562) 20190) ((-930 . -220) T) ((-930 . -210) T) ((-402 . -971) T) ((-886 . -1014) 20140) ((-843 . -220) T) ((-795 . -124) T) ((-637 . -426) T) ((-777 . -1026) 20119) ((-103 . -829) NIL) ((-1115 . -260) 20085) ((-801 . -782) 20064) ((-1027 . -1120) T) ((-834 . -664) T) ((-154 . -483) 19976) ((-925 . -25) T) ((-834 . -447) T) ((-382 . -1026) T) ((-459 . -731) T) ((-459 . -728) T) ((-839 . -324) T) ((-459 . -664) T) ((-195 . -731) T) ((-195 . -728) T) ((-925 . -21) T) ((-195 . -664) T) ((-777 . -23) 19928) ((-294 . -283) 19907) ((-960 . -212) 19853) ((-382 . -23) T) ((-872 . -563) 19814) ((-872 . -562) 19726) ((-588 . -461) 19710) ((-44 . -936) 19660) ((-306 . -562) 19642) ((-1027 . -962) 19471) ((-545 . -593) 19453) ((-545 . -348) 19435) ((-318 . -1173) 19412) ((-952 . -1120) T) ((-800 . -266) T) ((-1139 . -483) 19360) ((-450 . -1120) T) ((-437 . -1120) T) ((-539 . -97) T) ((-1081 . -262) 19287) ((-569 . -426) 19266) ((-926 . -921) 19250) ((-1179 . -357) 19222) ((-113 . -426) T) ((-1101 . -97) T) ((-1007 . -1014) 19200) ((-959 . -1014) T) ((-822 . -784) T) ((-326 . -1124) T) ((-1158 . -977) 19083) ((-1027 . -352) 19053) ((-1151 . -977) 18888) ((-1130 . -977) 18678) ((-1158 . -107) 18547) ((-1151 . -107) 18368) ((-1130 . -107) 18137) ((-1115 . -285) 18124) ((-326 . -514) T) ((-340 . -562) 18106) ((-265 . -283) T) ((-548 . -977) 18079) ((-547 . -977) 17962) ((-336 . -1014) T) ((-297 . -1014) T) ((-227 . -562) 17923) ((-226 . -562) 17884) ((-929 . -124) T) ((-105 . -562) 17866) ((-580 . -23) T) ((-632 . -384) 17833) ((-556 . -23) T) ((-600 . -97) T) ((-548 . -107) 17804) ((-547 . -107) 17673) ((-354 . -1014) T) ((-311 . -97) T) ((-154 . -266) 17584) ((-1129 . -782) 17537) ((-652 . -978) T) ((-1057 . -483) 17470) ((-1027 . -829) 17403) ((-771 . -1014) T) ((-764 . -1014) T) ((-762 . -1014) T) ((-92 . -97) T) ((-132 . -784) T) ((-561 . -813) 17387) ((-106 . -1120) T) ((-1003 . -97) T) ((-983 . -33) T) ((-719 . -97) T) ((-717 . -97) T) ((-435 . -97) T) ((-428 . -97) T) ((-217 . -732) 17338) ((-217 . -729) 17289) ((-591 . -97) T) ((-1139 . -266) 17200) ((-606 . -579) 17184) ((-588 . -262) 17161) ((-959 . -655) 17145) ((-529 . -266) T) ((-891 . -590) 17070) ((-1187 . -124) T) ((-673 . -590) 17030) ((-653 . -590) 17017) ((-251 . -97) T) ((-427 . -590) 16947) ((-49 . -97) T) ((-535 . -97) T) ((-486 . -97) T) ((-1158 . -971) T) ((-1151 . -971) T) ((-1130 . -971) T) ((-1158 . -210) 16906) ((-297 . -655) 16888) ((-1151 . -220) 16867) ((-1151 . -210) 16819) ((-1130 . -210) 16706) ((-1130 . -220) 16685) ((-1115 . -37) 16582) ((-930 . -732) T) ((-548 . -971) T) ((-547 . -971) T) ((-930 . -729) T) ((-898 . -732) T) ((-898 . -729) T) ((-801 . -978) T) ((-799 . -798) 16566) ((-104 . -562) 16548) ((-632 . -426) T) ((-354 . -655) 16513) ((-393 . -590) 16487) ((-650 . -784) 16466) ((-649 . -37) 16431) ((-547 . -210) 16390) ((-39 . -662) 16362) ((-326 . -304) 16339) ((-326 . -338) T) ((-997 . -283) 16290) ((-270 . -1026) 16172) ((-1020 . -1120) T) ((-156 . -97) T) ((-1133 . -562) 16139) ((-777 . -124) 16091) ((-588 . -1154) 16075) ((-771 . -655) 16045) ((-764 . -655) 16015) ((-455 . -1120) T) ((-334 . -283) T) ((-328 . -283) T) ((-320 . -283) T) ((-588 . -555) 15992) ((-382 . -124) T) ((-488 . -608) 15976) ((-103 . -283) T) ((-270 . -23) 15860) ((-488 . -593) 15844) ((-632 . -377) NIL) ((-488 . -348) 15828) ((-267 . -562) 15810) ((-89 . -1014) 15788) ((-103 . -947) T) ((-522 . -131) T) ((-1166 . -139) 15772) ((-455 . -962) 15601) ((-1152 . -133) 15562) ((-1152 . -135) 15523) ((-975 . -1120) T) ((-920 . -562) 15505) ((-792 . -562) 15487) ((-753 . -977) 15330) ((-1003 . -285) 15317) ((-204 . -1120) T) ((-719 . -285) 15304) ((-717 . -285) 15291) ((-753 . -107) 15120) ((-428 . -285) 15107) ((-1081 . -563) NIL) ((-1081 . -562) 15089) ((-1037 . -562) 15071) ((-1037 . -563) 14819) ((-959 . -157) T) ((-788 . -562) 14801) ((-872 . -264) 14778) ((-557 . -483) 14561) ((-755 . -962) 14545) ((-449 . -483) 14337) ((-891 . -664) T) ((-673 . -664) T) ((-653 . -664) T) ((-326 . -1026) T) ((-1088 . -562) 14319) ((-200 . -97) T) ((-455 . -352) 14289) ((-484 . -1014) T) ((-479 . -1014) T) ((-477 . -1014) T) ((-736 . -590) 14263) ((-949 . -426) T) ((-886 . -483) 14196) ((-326 . -23) T) ((-580 . -124) T) ((-556 . -124) T) ((-329 . -426) T) ((-217 . -343) 14175) ((-354 . -157) T) ((-1150 . -978) T) ((-1129 . -978) T) ((-202 . -928) T) ((-637 . -362) T) ((-393 . -664) T) ((-639 . -1124) T) ((-1052 . -584) 14123) ((-534 . -798) 14107) ((-1069 . -1097) 14083) ((-639 . -514) T) ((-122 . -1014) 14061) ((-1179 . -977) 14045) ((-652 . -1014) T) ((-455 . -829) 13978) ((-600 . -37) 13948) ((-329 . -377) T) ((-291 . -135) 13927) ((-291 . -133) 13906) ((-112 . -514) T) ((-288 . -135) 13862) ((-288 . -133) 13818) ((-47 . -426) T) ((-147 . -1014) T) ((-143 . -1014) T) ((-1069 . -102) 13765) ((-719 . -1061) 13743) ((-628 . -33) T) ((-1179 . -107) 13722) ((-508 . -33) T) ((-456 . -102) 13706) ((-227 . -264) 13683) ((-226 . -264) 13660) ((-800 . -262) 13611) ((-44 . -1120) T) ((-753 . -971) T) ((-1087 . -46) 13588) ((-753 . -301) 13550) ((-1003 . -37) 13399) ((-753 . -210) 13378) ((-719 . -37) 13207) ((-717 . -37) 13056) ((-428 . -37) 12905) ((-588 . -563) 12866) ((-588 . -562) 12778) ((-535 . -1061) T) ((-486 . -1061) T) ((-1057 . -461) 12762) ((-1107 . -1014) 12740) ((-1052 . -25) T) ((-1052 . -21) T) ((-448 . -978) T) ((-1130 . -729) NIL) ((-1130 . -732) NIL) ((-925 . -784) 12719) ((-756 . -562) 12701) ((-795 . -21) T) ((-795 . -25) T) ((-736 . -664) T) ((-158 . -1124) T) ((-535 . -37) 12666) ((-486 . -37) 12631) ((-361 . -562) 12613) ((-299 . -562) 12595) ((-154 . -262) 12553) ((-61 . -1120) T) ((-108 . -97) T) ((-801 . -1014) T) ((-158 . -514) T) ((-652 . -655) 12523) ((-270 . -124) 12407) ((-202 . -562) 12389) ((-202 . -563) 12319) ((-929 . -584) 12258) ((-1179 . -971) T) ((-1032 . -135) T) ((-577 . -1097) 12233) ((-669 . -838) 12212) ((-545 . -33) T) ((-589 . -102) 12196) ((-577 . -102) 12142) ((-1139 . -262) 12069) ((-669 . -590) 11994) ((-271 . -1120) T) ((-1087 . -962) 11892) ((-1076 . -838) NIL) ((-982 . -563) 11807) ((-982 . -562) 11789) ((-318 . -97) T) ((-227 . -977) 11687) ((-226 . -977) 11585) ((-369 . -97) T) ((-881 . -562) 11567) ((-881 . -563) 11428) ((-651 . -562) 11410) ((-1177 . -1114) 11379) ((-454 . -562) 11361) ((-454 . -563) 11222) ((-224 . -386) 11206) ((-240 . -386) 11190) ((-227 . -107) 11081) ((-226 . -107) 10972) ((-1083 . -590) 10897) ((-1082 . -590) 10794) ((-1076 . -590) 10646) ((-1038 . -590) 10571) ((-326 . -124) T) ((-80 . -415) T) ((-80 . -370) T) ((-929 . -25) T) ((-929 . -21) T) ((-802 . -1014) 10522) ((-801 . -655) 10474) ((-354 . -266) T) ((-154 . -928) 10426) ((-632 . -362) T) ((-925 . -923) 10410) ((-639 . -1026) T) ((-632 . -151) 10392) ((-1150 . -1014) T) ((-1129 . -1014) T) ((-291 . -1106) 10371) ((-291 . -1109) 10350) ((-1074 . -97) T) ((-291 . -887) 10329) ((-126 . -1026) T) ((-112 . -1026) T) ((-553 . -1164) 10313) ((-639 . -23) T) ((-553 . -1014) 10263) ((-89 . -483) 10196) ((-158 . -338) T) ((-291 . -91) 10175) ((-291 . -34) 10154) ((-557 . -461) 10088) ((-126 . -23) T) ((-112 . -23) T) ((-656 . -1014) T) ((-449 . -461) 10025) ((-382 . -584) 9973) ((-595 . -962) 9871) ((-886 . -461) 9855) ((-330 . -978) T) ((-327 . -978) T) ((-319 . -978) T) ((-240 . -978) T) ((-224 . -978) T) ((-800 . -563) NIL) ((-800 . -562) 9837) ((-1187 . -21) T) ((-529 . -928) T) ((-669 . -664) T) ((-1187 . -25) T) ((-227 . -971) 9768) ((-226 . -971) 9699) ((-70 . -1120) T) ((-227 . -210) 9652) ((-226 . -210) 9605) ((-39 . -97) T) ((-839 . -978) T) ((-1090 . -97) T) ((-1083 . -664) T) ((-1082 . -664) T) ((-1076 . -664) T) ((-1076 . -728) NIL) ((-1076 . -731) NIL) ((-850 . -97) T) ((-1038 . -664) T) ((-708 . -97) T) ((-613 . -97) T) ((-448 . -1014) T) ((-314 . -1026) T) ((-158 . -1026) T) ((-294 . -849) 9584) ((-1150 . -655) 9425) ((-801 . -157) T) ((-1129 . -655) 9239) ((-777 . -21) 9191) ((-777 . -25) 9143) ((-222 . -1059) 9127) ((-122 . -483) 9060) ((-382 . -25) T) ((-382 . -21) T) ((-314 . -23) T) ((-154 . -563) 8828) ((-154 . -562) 8810) ((-158 . -23) T) ((-588 . -264) 8787) ((-488 . -33) T) ((-827 . -562) 8769) ((-87 . -1120) T) ((-775 . -562) 8751) ((-745 . -562) 8733) ((-706 . -562) 8715) ((-617 . -562) 8697) ((-217 . -590) 8547) ((-1085 . -1014) T) ((-1081 . -977) 8370) ((-1060 . -1120) T) ((-1037 . -977) 8213) ((-788 . -977) 8197) ((-1081 . -107) 8006) ((-1037 . -107) 7835) ((-788 . -107) 7814) ((-1139 . -563) NIL) ((-1139 . -562) 7796) ((-318 . -1061) T) ((-789 . -562) 7778) ((-993 . -262) 7757) ((-78 . -1120) T) ((-930 . -838) NIL) ((-557 . -262) 7733) ((-1107 . -483) 7666) ((-459 . -1120) T) ((-529 . -562) 7648) ((-449 . -262) 7627) ((-195 . -1120) T) ((-1003 . -208) 7611) ((-265 . -849) T) ((-754 . -283) 7590) ((-799 . -97) T) ((-719 . -208) 7574) ((-930 . -590) 7524) ((-886 . -262) 7501) ((-843 . -590) 7453) ((-580 . -21) T) ((-580 . -25) T) ((-556 . -21) T) ((-318 . -37) 7418) ((-632 . -662) 7385) ((-459 . -813) 7367) ((-459 . -815) 7349) ((-448 . -655) 7190) ((-195 . -813) 7172) ((-62 . -1120) T) ((-195 . -815) 7154) ((-556 . -25) T) ((-402 . -590) 7128) ((-459 . -962) 7088) ((-801 . -483) 7000) ((-195 . -962) 6960) ((-217 . -33) T) ((-926 . -1014) 6938) ((-1150 . -157) 6869) ((-1129 . -157) 6800) ((-650 . -133) 6779) ((-650 . -135) 6758) ((-639 . -124) T) ((-128 . -439) 6735) ((-600 . -598) 6719) ((-1057 . -562) 6651) ((-112 . -124) T) ((-451 . -1124) T) ((-557 . -555) 6627) ((-449 . -555) 6606) ((-311 . -310) 6575) ((-498 . -1014) T) ((-451 . -514) T) ((-1081 . -971) T) ((-1037 . -971) T) ((-788 . -971) T) ((-217 . -728) 6554) ((-217 . -731) 6505) ((-217 . -730) 6484) ((-1081 . -301) 6461) ((-217 . -664) 6392) ((-886 . -19) 6376) ((-459 . -352) 6358) ((-459 . -313) 6340) ((-1037 . -301) 6312) ((-329 . -1173) 6289) ((-195 . -352) 6271) ((-195 . -313) 6253) ((-886 . -555) 6230) ((-1081 . -210) T) ((-606 . -1014) T) ((-1162 . -1014) T) ((-1094 . -1014) T) ((-1003 . -229) 6167) ((-330 . -1014) T) ((-327 . -1014) T) ((-319 . -1014) T) ((-240 . -1014) T) ((-224 . -1014) T) ((-82 . -1120) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-1094 . -559) 6102) ((-452 . -1014) T) ((-1051 . -1014) T) ((-452 . -559) 6081) ((-227 . -732) 6032) ((-227 . -729) 5983) ((-226 . -732) 5934) ((-39 . -1061) NIL) ((-226 . -729) 5885) ((-997 . -849) 5836) ((-930 . -731) T) ((-930 . -728) T) ((-930 . -664) T) ((-898 . -731) T) ((-843 . -664) T) ((-89 . -461) 5820) ((-459 . -829) NIL) ((-839 . -1014) T) ((-202 . -977) 5785) ((-801 . -266) T) ((-195 . -829) NIL) ((-770 . -1026) 5764) ((-57 . -1014) 5714) ((-487 . -1014) 5692) ((-485 . -1014) 5642) ((-467 . -1014) 5620) ((-466 . -1014) 5570) ((-534 . -97) T) ((-522 . -97) T) ((-465 . -97) T) ((-448 . -157) 5501) ((-334 . -849) T) ((-328 . -849) T) ((-320 . -849) T) ((-202 . -107) 5457) ((-770 . -23) 5409) ((-402 . -664) T) ((-103 . -849) T) ((-39 . -37) 5354) ((-103 . -757) T) ((-535 . -324) T) ((-486 . -324) T) ((-1129 . -483) 5214) ((-291 . -426) 5193) ((-288 . -426) T) ((-771 . -262) 5172) ((-314 . -124) T) ((-158 . -124) T) ((-270 . -25) 5037) ((-270 . -21) 4921) ((-44 . -1097) 4900) ((-64 . -562) 4882) ((-821 . -562) 4864) ((-553 . -483) 4797) ((-44 . -102) 4747) ((-1016 . -400) 4731) ((-1016 . -343) 4710) ((-983 . -1120) T) ((-982 . -977) 4697) ((-881 . -977) 4540) ((-454 . -977) 4383) ((-606 . -655) 4367) ((-982 . -107) 4352) ((-881 . -107) 4181) ((-451 . -338) T) ((-330 . -655) 4133) ((-327 . -655) 4085) ((-319 . -655) 4037) ((-240 . -655) 3886) ((-224 . -655) 3735) ((-872 . -593) 3719) ((-454 . -107) 3548) ((-1167 . -97) T) ((-872 . -348) 3532) ((-1130 . -838) NIL) ((-72 . -562) 3514) ((-891 . -46) 3493) ((-567 . -1026) T) ((-1 . -1014) T) ((-637 . -97) T) ((-1166 . -97) 3443) ((-1158 . -590) 3368) ((-1151 . -590) 3265) ((-122 . -461) 3249) ((-1102 . -562) 3231) ((-1004 . -562) 3213) ((-365 . -23) T) ((-993 . -562) 3195) ((-85 . -1120) T) ((-1130 . -590) 3047) ((-839 . -655) 3012) ((-567 . -23) T) ((-557 . -562) 2994) ((-557 . -563) NIL) ((-449 . -563) NIL) ((-449 . -562) 2976) ((-480 . -1014) T) ((-476 . -1014) T) ((-326 . -25) T) ((-326 . -21) T) ((-123 . -285) 2914) ((-117 . -285) 2852) ((-548 . -590) 2839) ((-202 . -971) T) ((-547 . -590) 2764) ((-354 . -928) T) ((-202 . -220) T) ((-202 . -210) T) ((-886 . -563) 2725) ((-886 . -562) 2637) ((-799 . -37) 2624) ((-1150 . -266) 2575) ((-1129 . -266) 2526) ((-1032 . -426) T) ((-472 . -784) T) ((-291 . -1049) 2505) ((-925 . -135) 2484) ((-925 . -133) 2463) ((-465 . -285) 2450) ((-271 . -1097) 2429) ((-451 . -1026) T) ((-800 . -977) 2374) ((-569 . -97) T) ((-1107 . -461) 2358) ((-227 . -343) 2337) ((-226 . -343) 2316) ((-271 . -102) 2266) ((-982 . -971) T) ((-113 . -97) T) ((-881 . -971) T) ((-800 . -107) 2195) ((-451 . -23) T) ((-454 . -971) T) ((-982 . -210) T) ((-881 . -301) 2164) ((-454 . -301) 2121) ((-330 . -157) T) ((-327 . -157) T) ((-319 . -157) T) ((-240 . -157) 2032) ((-224 . -157) 1943) ((-891 . -962) 1841) ((-673 . -962) 1812) ((-1019 . -97) T) ((-1007 . -562) 1779) ((-959 . -562) 1761) ((-1158 . -664) T) ((-1151 . -664) T) ((-1130 . -728) NIL) ((-154 . -977) 1671) ((-1130 . -731) NIL) ((-839 . -157) T) ((-1130 . -664) T) ((-1177 . -139) 1655) ((-929 . -317) 1629) ((-926 . -483) 1562) ((-777 . -784) 1541) ((-522 . -1061) T) ((-448 . -266) 1492) ((-548 . -664) T) ((-336 . -562) 1474) ((-297 . -562) 1456) ((-393 . -962) 1354) ((-547 . -664) T) ((-382 . -784) 1305) ((-154 . -107) 1201) ((-770 . -124) 1153) ((-675 . -139) 1137) ((-1166 . -285) 1075) ((-459 . -283) T) ((-354 . -562) 1042) ((-488 . -936) 1026) ((-354 . -563) 940) ((-195 . -283) T) ((-129 . -139) 922) ((-652 . -262) 901) ((-459 . -947) T) ((-534 . -37) 888) ((-522 . -37) 875) ((-465 . -37) 840) ((-195 . -947) T) ((-800 . -971) T) ((-771 . -562) 822) ((-764 . -562) 804) ((-762 . -562) 786) ((-753 . -838) 765) ((-1188 . -1026) T) ((-1139 . -977) 588) ((-789 . -977) 572) ((-800 . -220) T) ((-800 . -210) NIL) ((-628 . -1120) T) ((-1188 . -23) T) ((-753 . -590) 497) ((-508 . -1120) T) ((-393 . -313) 481) ((-529 . -977) 468) ((-1139 . -107) 277) ((-639 . -584) 259) ((-789 . -107) 238) ((-356 . -23) T) ((-1094 . -483) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 1896b473..5fa2086c 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3409817876)
-(4236 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3409939476)
+(4241 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -83,7 +83,7 @@
|ExtAlgBasis| |ElementaryFunction|
|ElementaryFunctionStructurePackage|
|ElementaryFunctionsUnivariateLaurentSeries|
- |ElementaryFunctionsUnivariatePuiseuxSeries|
+ |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression|
|ExtensibleLinearAggregate&| |ExtensibleLinearAggregate|
|ElementaryFunctionCategory&| |ElementaryFunctionCategory|
|EllipticFunctionsUnivariateTaylorSeries| |Eltable|
@@ -460,644 +460,645 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |Category| |makeSeries| |zeroDimensional?| GF2FG
- |maxint| |e02aef| |delta| |leadingBasisTerm| |palgextint| |simplify|
- |moebius| |hermite| |iiacos| |leftPower| |acscIfCan| |acschIfCan|
- |unrankImproperPartitions0| |clearDenominator| |lexico| |curryRight|
- |sort!| |mainSquareFreePart| |numerators| |iprint| |palgint| |minPol|
- |curry| |indices| |belong?| |groebnerIdeal| |sts2stst|
- |viewWriteDefault| |approximants| |leftGcd| |homogeneous?| |dmpToP|
- |jordanAlgebra?| |declare| |overset?| |infieldint| |cyclicGroup|
- |times!| |pushNewContour| |doubleDisc| |setCondition!| |nthExponent|
- |complexNumeric| |imagk| |gcdPrimitive| |basis| |lllp| |countable?|
- |OMsend| |hue| |OMreadFile| |completeEchelonBasis| |depth| |log|
- |s17adf| |stoseInternalLastSubResultant| |reducedQPowers| |f02agf|
- |numberOfCycles| |laurentIfCan| |zeroOf| |OMputEndObject|
- |algebraicOf| |monicDecomposeIfCan| |droot| |generalizedEigenvector|
- |kernels| |idealiserMatrix| |e01sff| |size?| |palgintegrate| |comment|
- |reducedForm| |swap| |shallowCopy| |simplifyExp|
- |rightMinimalPolynomial| |outputGeneral| |leaves|
- |differentialVariables| |univariate| |ceiling| |cAsech|
- |partialFraction| |compBound| |OMgetEndError| |tan2cot| |s18acf|
- |composite| |lambda| |cycleTail| |hyperelliptic| |lazyGintegrate|
- |fixedPoint| |atanIfCan| |showSummary| |retractIfCan| |quasiRegular|
- |polynomialZeros| |traceMatrix| |tensorProduct| |exactQuotient|
- |determinant| |virtualDegree| |hasPredicate?| |gcdprim| |nsqfree|
- |log2| |f01maf| |cyclicParents| |expandTrigProducts| |gderiv|
- |corrPoly| |principalIdeal| |extendIfCan| |prinb| |contract|
- |realRoots| |showAttributes| |f02axf| |f07fef| |normDeriv2| |c06fuf|
- |PDESolve| |genericRightNorm| |errorInfo| |partitions| |internal?|
- |primPartElseUnitCanonical!| |constantCoefficientRicDE|
- |deleteRoutine!| |indiceSubResultantEuclidean| |recoverAfterFail|
- |acothIfCan| |setButtonValue| |column| |factorPolynomial| |bernoulli|
- |OMopenFile| |polyRDE| |readIfCan!| |Is| |derivative| |alphanumeric?|
- |graphImage| |exptMod| BY |ratpart| |pushdown|
- |removeRoughlyRedundantFactorsInPol| |minColIndex| Y |e01saf| |birth|
- |top| |useEisensteinCriterion| |OMencodingUnknown| |style| |B1solve|
- |subNodeOf?| |bat1| |rule| |groebnerFactorize| |lfinfieldint|
- |continue| |matrix| |void| |rationalPoints| |node?|
- |expenseOfEvaluation| |heapSort| |cycleElt| |fractRadix|
- |splitConstant| |getRef| |primeFrobenius| |cycleEntry| |LiePoly|
- |divergence| |pattern| |qinterval| |chebyshevU| |setleft!| |formula|
- |generator| |hconcat| |anfactor| |OMgetFloat| |nextColeman|
- |leftRecip| |padicFraction| |content| |updateStatus!| |map| |maxrow|
- |internalSubQuasiComponent?| |enterPointData| |back| |normal01|
- |bivariateSLPEBR| |removeIrreducibleRedundantFactors| |newLine|
- |yCoordinates| |range| |tubeRadius| |fillPascalTriangle|
- |mapUnivariate| |Aleph| |f2df| |solve1| |primlimintfrac| |f2st| |int|
- |binomThmExpt| |makeCos| |tanh2trigh| |nrows|
- |genericLeftMinimalPolynomial| |simpsono| |genericLeftDiscriminant|
- |leftRemainder| |showTypeInOutput| ~= |bezoutDiscriminant|
- |dihedralGroup| |duplicates?| |op| |d03edf| |ncols| |remove|
- |setLabelValue| |boundOfCauchy| |cothIfCan| |nthCoef|
- |createLowComplexityTable| |cAcsc| |setelt!| |invertible?| |convert|
- |rightOne| |true| |extendedSubResultantGcd| |euclideanNormalForm|
- |factorList| |rootOf| |doubleFloatFormat| |stoseLastSubResultant|
- |empty?| |untab| |rightCharacteristicPolynomial| |last| |lfextlimint|
- |weights| |groebner| |assoc| |integralCoordinates| |maxPoints|
- |f02ajf| |tRange| |OMencodingBinary| |lo| |trigs2explogs| |pointData|
- |inverseIntegralMatrix| |match?| |insertBottom!| |graphs| |charClass|
- |intermediateResultsIF| |ramified?| |incr| |setrest!| |unitNormalize|
- |makeResult| |fortran| |cyclic?| |finiteBound| |llprop|
- |problemPoints| |rootBound| |lfintegrate| |overbar| |hi| |npcoef|
- |conjugate| |element?| |getZechTable| |float?| |subscriptedVariables|
- |repSq| |normalizeIfCan| |f04qaf| |cscIfCan| |unit| |quasiRegular?|
- |outputList| |retract| |LyndonBasis| |digamma| |coefficient|
- |lSpaceBasis| |palgRDE0| |recur| |symbol| |simplifyPower| |monomRDE|
- |tanSum| |dioSolve| |medialSet| |multiEuclidean| |e04ycf| |mathieu23|
- |tryFunctionalDecomposition| |more?| |removeDuplicates!| ~
- |monicCompleteDecompose| |relerror| |hdmpToDmp| |number?| |lintgcd|
- |relationsIdeal| |logpart| |string| |integer| |null| |outputForm|
- |setScreenResolution| |numberOfDivisors| |e01sef| |euler|
- |normInvertible?| |lllip| |transcendentalDecompose| |setProperty|
- |readLine!| |polygon| |e01bff| |rightFactorCandidate| |showRegion|
- |complexEigenvectors| |ScanRoman| |quasiAlgebraicSet| |symmetricPower|
- |UnVectorise| |OMgetBind| |rdregime| |cosIfCan| |lowerCase!| = |nand|
- |expintfldpoly| |noKaratsuba| |rootSimp| |eigenMatrix| |rootPower|
- |rowEchelonLocal| |distance| |segment| |fortranCompilerName|
- |tanh2coth| |setlast!| |cAcsch| |primitivePart| |open| |printInfo!|
- |hex| |checkRur| |clearCache| < |inspect| |monomialIntegrate|
- |getDatabase| |inverse| |debug3D| |level| |e01bhf| |c06gcf|
- |nthRootIfCan| > |primlimitedint| |toseInvertibleSet|
- |generalizedEigenvectors| |ListOfTerms| |interpret| |critB| |and?|
- |shiftLeft| <= |selectPolynomials| |splitDenominator|
- |viewDeltaXDefault| |characteristic| |leader| |explimitedint| |atoms|
- |lagrange| >= |expr| |zeroVector| |e02agf| |generate| |cycleLength|
- |f01rcf| |list| |script| |completeHensel| |makeGraphImage|
- |setMaxPoints| |spherical| |output| |setDifference| |bumprow|
- |stronglyReduce| |logIfCan| |critT| |roughUnitIdeal?| |removeCoshSq|
- |incrementBy| |setIntersection| |semiDegreeSubResultantEuclidean|
- |selectFiniteRoutines| |univariatePolynomialsGcds| |realZeros| |cSec|
- |OMread| |checkPrecision| |legendre| + |algint| |asimpson| |expand|
- |setUnion| |create| |equation| |localIntegralBasis|
- |OMunhandledSymbol| |semiResultantEuclideannaif| |variable| -
- |argument| |filterWhile| RF2UTS |pack!| |apply| |symmetricRemainder|
- |maxRowIndex| |setEpilogue!| / |HenselLift| |cCos| |filterUntil|
- |nil?| |multiplyCoefficients| |integralLastSubResultant|
- |viewDeltaYDefault| |mainKernel| |OMputString| |select| |size|
- |errorKind| |bindings| |tex| |mkIntegral| |reduction| |quadraticForm|
- |morphism| |f02aef| |ellipticCylindrical| |hasTopPredicate?| |t|
- |nodes| |weighted| |f02akf| |outputAsScript| |rationalApproximation|
- |makeFloatFunction| |factorFraction| |rootsOf| |expenseOfEvaluationIF|
- |setProperty!| |pascalTriangle| |d02bbf| |viewDefaults| |close|
- |triangulate| |contractSolve| |getVariableOrder| |specialTrigs|
- |clearTheSymbolTable| |setProperties!| |OMputApp| |idealSimplify|
- |cycles| |semiSubResultantGcdEuclidean2| |iisech| |insert| |shift|
- |minRowIndex| |linearPart| |graphCurves| |scopes| |palgLODE|
- |multiple?| |alternating| |condition| |fullPartialFraction|
- |explogs2trigs| |root?| |pomopo!| |midpoints| |getProperty|
- |makeRecord| SEGMENT |continuedFraction| |parametersOf| |xn|
- |meshPar2Var| |display| |associatedSystem| |mathieu12| |iiacosh|
- |module| |getProperties| |hexDigit?| |getMeasure| |d01anf|
- |newTypeLists| |safeCeiling| |perfectNthRoot| |usingTable?|
- |fractionFreeGauss!| |invertibleSet| |recolor| |gradient|
- |generalInfiniteProduct| |subResultantGcdEuclidean| |hermiteH|
- |infieldIntegrate| |f01qef| |secIfCan| |dimensions| |categoryFrame|
- |leftAlternative?| |leftMult| |subPolSet?| |s17dcf| |permutations|
- |commonDenominator| |integrate| |revert| |strongGenerators| |nullary|
- |f04maf| |nthExpon| |karatsuba| |genericLeftNorm| |paraboloidal|
- |bitLength| |enqueue!| |Lazard| |zeroDim?| |OMputBind| |Gamma|
- |polygon?| |input| |FormatRoman| |setErrorBound| |completeEval|
- |symmetricDifference| |addPoint2| |linSolve| |padecf| |tube| |super|
- |library| |rootRadius| |close!| |cCosh| |goto| |expint|
- |purelyAlgebraic?| |hasHi| |perfectSqrt| |identityMatrix| |member?|
- |result| |csch| |rightRank| |internalDecompose| |showTheSymbolTable|
- |optAttributes| |e02dff| |generic| |d02gbf| |asinh| |stopMusserTrials|
- |OMputInteger| |crushedSet| |objectOf| |lowerCase| |putColorInfo|
- |intersect| |acosh| |yCoord| |laurentRep| |mindeg| |iicsc|
- |bubbleSort!| |matrixGcd| |makeSUP| |atanh| |forLoop|
- |reduceBasisAtInfinity| |selectPDERoutines| |f04adf| |coordinates|
- |set| |eyeDistance| |nextIrreduciblePoly| |prime| |acoth|
- |factorSquareFreePolynomial| |removeSuperfluousCases|
- |linearDependenceOverZ| |OMencodingSGML| |iiatan| |linearDependence|
- |basisOfNucleus| |LazardQuotient| |asech| |eigenvector| |compile|
- LODO2FUN |realSolve| |generateIrredPoly| |id| |setPredicates|
- |meatAxe| |limitedIntegrate| |fractionPart| |leastPower| |associates?|
- |relativeApprox| |rationalPower| |head| |toroidal| |heap|
- |startTable!| |multiple| |iibinom| |pdf2df| |ptree| |measure|
- |minrank| |cycleRagits| |indiceSubResultant| |table| |prefixRagits|
- |parent| |reduceByQuasiMonic| |hitherPlane| |applyQuote| |edf2fi|
- |mapDown!| |upperCase?| |character?| |rightExtendedGcd| |imagJ| |new|
- |primitivePart!| |setchildren!| |linears| |f07adf|
- |exprHasWeightCosWXorSinWX| |innerSolve1| |var2Steps|
- |singularitiesOf| |quartic| |OMputEndError|
- |selectSumOfSquaresRoutines| |irreducibleFactor| |xCoord| |point?|
- |iipow| |cyclotomicDecomposition| |sumOfSquares| |constantIfCan|
- |semiIndiceSubResultantEuclidean| |curve| |initTable!|
- |basisOfLeftAnnihilator| |call| |tubePoints|
- |conditionsForIdempotents| |endOfFile?| |headReduce| |ruleset|
- |setFormula!| |youngGroup| |infinityNorm| |e04ucf| |symmetric?|
- |karatsubaOnce| |divide| |lazyPseudoRemainder| |show| |clipBoolean|
- |resetNew| |setImagSteps| |removeZero| |has?| |computeInt|
- |PollardSmallFactor| |vark| |commutativeEquality| |oddintegers|
- |wordInGenerators| |singular?| |df2ef| |sin?| |sinhcosh|
- |pointColorDefault| |lazy?| |reverse| |linearPolynomials| |coefChoose|
- |trace| |restorePrecision| |failed?| |numberOfIrreduciblePoly|
- |selectAndPolynomials| |suchThat| |scalarMatrix| |argumentListOf|
- |distribute| |every?| |resetAttributeButtons|
- |removeRoughlyRedundantFactorsInPols| |setright!| |plenaryPower|
- |hypergeometric0F1| |numberOfImproperPartitions| |nextPrime| |digit|
- |indicialEquationAtInfinity| |tower| |fortranLiteral| |lepol| |cCoth|
- |slash| |semicolonSeparate| |center| |polyPart| |unitCanonical|
- |innerint| |c06fpf| |iicot| |mesh| |initial| |upperCase|
- |reducedSystem| |d02ejf| |pointPlot| |printInfo| |increase| |ldf2vmf|
- |appendPoint| |red| |zeroMatrix| |left| |oneDimensionalArray| |expPot|
- |d01akf| |factor| |complex?| |completeHermite| |rationalFunction|
- |axesColorDefault| |rischNormalize| |OMgetError| |right| |cAcot|
- |LazardQuotient2| |sqrt| |linear?| |leadingIndex| |property|
- |resultantReduitEuclidean| |decreasePrecision| |iisin|
- |matrixConcat3D| |d02gaf| |real| |groebner?| |vconcat|
- |expextendedint| |listOfMonoms| |conjugates| |rk4f|
- |subResultantChain| |leftDiscriminant| |f02xef| |mathieu11| |imag|
- |squareMatrix| |any?| |SturmHabichtMultiple| |symbolTable| |getStream|
- |d01amf| |mathieu22| |setMaxPoints3D| |reseed| |green| |directProduct|
- |fTable| |equiv?| |interpolate| |leastMonomial| |nullity| |units|
- |multisect| |f01bsf| |subNode?| |OMReadError?| |trigs| |iifact|
- |commaSeparate| |multinomial| |superscript| |mapExpon|
- |withPredicates| |pushFortranOutputStack| |tanhIfCan| |iidprod|
- |dictionary| |explicitEntries?| |stripCommentsAndBlanks| |intChoose|
- |f02wef| |semiResultantReduitEuclidean| |destruct| |dimension|
- |regime| |exponential1| |popFortranOutputStack| |position!|
- |curveColorPalette| |sumOfDivisors| |addMatch| |invertibleElseSplit?|
- |optimize| |besselI| |OMputFloat| |insertMatch| |mirror|
- |subtractIfCan| |integralRepresents| |outputAsFortran| |even?|
- |uncouplingMatrices| |commutator| |poisson| |generalLambert|
- |fracPart| |makeSin| |moduloP| |setfirst!| |ocf2ocdf|
- |stoseInvertible?| |lieAlgebra?| |e02baf| |baseRDEsys|
- |leadingCoefficientRicDE| |list?| |space| |numericIfCan| |rightGcd|
- |sechIfCan| |code| |removeConstantTerm| |useNagFunctions|
- |nonSingularModel| |fullDisplay| |powmod| |OMgetSymbol|
- |doublyTransitive?| |basisOfRightNucleus| |clipParametric| |split|
- |sec2cos| |nil| |print| |showScalarValues| |ReduceOrder| |perspective|
- |toseInvertible?| |degree| |rootNormalize| |prime?| |normalDeriv|
- |leadingTerm| |innerEigenvectors| |viewport2D| |balancedFactorisation|
- |setClosed| |validExponential| |e02ddf| |approxSqrt| |OMgetVariable|
- |f04asf| |OMputError| |Lazard2| |graeffe| |rightDiscriminant| |lquo|
- |opeval| |setEmpty!| |pleskenSplit| |selectOrPolynomials|
- |integralDerivationMatrix| |rewriteIdealWithRemainder| |tanQ| |second|
- |possiblyInfinite?| |flexibleArray| |symmetricTensors|
- |seriesToOutputForm| |hdmpToP| |tableForDiscreteLogarithm| |index?|
- |acoshIfCan| |stopTableInvSet!| |palgLODE0| |third| |function| |rk4a|
- |transform| |e02zaf| |s14baf| |variable?| |iflist2Result|
- |hasSolution?| |interval| |complete| |tab| |normalizeAtInfinity|
- |distFact| |OMlistCDs| |squareFreePolynomial| |horizConcat| |s18aef|
- |orthonormalBasis| |airyBi| |s14abf| |nthFractionalTerm| |csc2sin|
- |deepestInitial| |tan2trig| |iisinh| |f02aff| |redmat| |cotIfCan|
- |meshPar1Var| |sizeLess?| |antisymmetric?| |halfExtendedResultant2|
- |rotate| |hexDigit| |s17aef| |iisec| |rightZero| |totalGroebner|
- |entry?| |d02bhf| |superHeight| |removeCosSq| |ddFact| |coleman|
- |c06ekf| |coerceListOfPairs| |pdf2ef| |vector| |groebgen| |row|
- |rightUnits| |zoom| |numberOfPrimitivePoly| |safetyMargin| |minGbasis|
- |extend| |testDim| |differentiate| |palgRDE| |modifyPointData|
- |separateDegrees| |totalDegree| |comparison| |jacobian| |myDegree|
- |bits| |top!| |ratPoly| |f04atf| |mapGen| |indicialEquations|
- |precision| |e02akf| |case| |getGraph| |linear| |closeComponent|
- |stopTable!| |cCsch| |constantOpIfCan| |legendreP| |setAdaptive3D|
- |setAdaptive| |signAround| |pmComplexintegrate| |exponential|
- |collect| |coerce| |makeFR| |zeroSquareMatrix| |genericLeftTrace|
- |argumentList!| |graphStates| |extractProperty| |OMcloseConn| |sample|
- |polynomial| |lprop| |construct| |pushuconst| |sdf2lst| |push!|
- |factorsOfDegree| |extensionDegree| |concat!|
- |createMultiplicationMatrix| |fortranInteger| |exists?| D
- |fortranLinkerArgs| |exponent| |stoseSquareFreePart| |f01rdf|
- |symbolTableOf| |normalizedDivide| |leftZero| |genericRightTraceForm|
- |palglimint0| |lcm| |normalise| |leftUnits| |s17def| |light|
- |denominator| |ptFunc| |exquo| |rightRankPolynomial| |imagI|
- |unaryFunction| |getMultiplicationMatrix| |c06gsf| |scalarTypeOf|
- |associator| |bright| |exactQuotient!| |div| |compactFraction|
- |positive?| |removeZeroes| |assign| |e04jaf| |printCode| |localAbs|
- |OMputObject| |empty| |solveLinearPolynomialEquationByFractions| |quo|
- |extendedEuclidean| |f02aaf| |subHeight| |gcd| |setProperties|
- |balancedBinaryTree| |coth2tanh| |OMgetType| |polyred| |imagi|
- |patternMatch| |compound?| |fractRagits| |union| |divideExponents|
- |rootSplit| |sorted?| |simplifyLog| |rquo| |rem| |sup| |or?|
- |degreeSubResultant| |limitedint| |false| |makeVariable| |OMgetAtp|
- |mapExponents| |OMputVariable| |rectangularMatrix| |eval| |iiatanh|
- |divisor| |wholeRadix| |pseudoQuotient| |d03eef| |first|
- |printStatement| |firstSubsetGray| |torsion?| |equivOperands|
- |SturmHabichtCoefficients| |noncommutativeJordanAlgebra?| |cyclotomic|
- |toScale| |nextSubsetGray| |rest| |polyRicDE| |elRow1!| |convergents|
- |bitTruth| |remainder| |radicalSolve| |sincos| |squareFree|
- |basisOfCentroid| |LyndonCoordinates| |internalIntegrate| |substitute|
- |box| |realElementary| |f01ref| |/\\| |Hausdorff| |compiledFunction|
- |divideIfCan| |any| |nthr| |OMserve| |integralMatrixAtInfinity|
- |setValue!| |removeDuplicates| |s19aaf| |Ci| |copies|
- |splitSquarefree| |cyclicEqual?| |cyclicEntries| |sn|
- |listYoungTableaus| |ord| |resultantEuclidean| |linGenPos|
- |localUnquote| |cylindrical| |rowEchLocal| |isList| |primes| |reflect|
- |hspace| |rootOfIrreduciblePoly| |e02bbf| |binaryFunction| |nthFlag|
- |normal?| |linearlyDependent?| |psolve| |resultantReduit|
- |create3Space| |move| |rightMult| |screenResolution3D|
- |stiffnessAndStabilityOfODEIF| |showIntensityFunctions|
- |basisOfCenter| |colorFunction| |f04faf| |rarrow| |euclideanGroebner|
- |modularGcd| |composites| |explicitlyFinite?| |setStatus| |setelt|
- |string?| |clearTheFTable| |numerator| |lazyVariations|
- |minimumDegree| |changeNameToObjf| |algintegrate| |collectQuasiMonic|
- |factor1| |numeric| |bandedJacobian| |invertIfCan| |coerceP| |minus!|
- |monomials| |bivariatePolynomials| |radical| |primintfldpoly| |plus|
- |not| |symmetricGroup| |infLex?| |wordsForStrongGenerators| |copy|
- |exprHasLogarithmicWeights| |mkPrim| |cRationalPower| |OMgetEndBind|
- |splitNodeOf!| |leaf?| |d02cjf| |rational?| |stoseInvertible?reg|
- |conjug| |c06gqf| |leftRank| |characteristicSerie| |postfix|
- |mainPrimitivePart| |properties| |writable?| |bernoulliB| |setPoly|
- |OMgetEndObject| ^= |parametric?| |numberOfMonomials|
- |basisOfRightNucloid| |Vectorise| |charthRoot| |ideal| |addPointLast|
- |tubePointsDefault| |listexp| |monomRDEsys| |makeYoungTableau|
- |autoCoerce| |c05pbf| |noLinearFactor?| |s17acf| |weierstrass|
- |branchPoint?| |max| |dfRange| |hasoln| |cAcos| |iicosh|
- |primitiveElement| |subscript| |taylorQuoByVar| |integers| |say|
- |clip| |nextNormalPoly| |pointSizeDefault| |escape| |rotatex| |cCot|
- |binomial| |f02fjf| |translate| |dAndcExp| |zag| |iiperm| |entries|
- |harmonic| |pseudoDivide| |curryLeft| |numberOfFractionalTerms|
- |leftCharacteristicPolynomial| |packageCall| |backOldPos| |invmod|
- |preprocess| |open?| |Nul| |iitan| |times| |powerSum| |alphabetic|
- |zeroDimPrime?| |polCase| |axes| |rightLcm| |adaptive3D?| |singRicDE|
- |meshFun2Var| |factorials| |setsubMatrix!| |split!| |iiexp| |term|
- |adaptive?| |OMputEndApp| |OMlistSymbols| |roughBase?| |quoByVar|
- |mapmult| |basisOfCommutingElements| |stronglyReduced?|
- |symmetricSquare| |rischDEsys| |expandLog| |tanNa| |replace| |length|
- |monom| |torsionIfCan| |unparse| |cyclicCopy| |generalSqFr| |lighting|
- |iiasec| |dflist| |scripts| |setAttributeButtonStep| |zeroDimPrimary?|
- |bat| |key| |f02adf| |coHeight| |integerBound| |tubeRadiusDefault|
- |octon| |selectfirst| |options| |rightFactorIfCan| |lineColorDefault|
- |common| |laplacian| |rotate!| |removeRedundantFactorsInContents|
- |norm| |elt| |gbasis| |e02daf| |nullary?| |binarySearchTree|
- |OMopenString| |wholePart| |po| |extractClosed| |filename|
- |OMputEndBind| |rdHack1| |const| |setPrologue!| |tanintegrate|
- |pr2dmp| |normFactors| |algebraic?| |brillhartTrials| |f07aef| |chvar|
- |over| |predicates| |expandPower| |not?| |mainContent| |BumInSepFFE|
- |extension| |sign| |setnext!| |changeVar| |HermiteIntegrate| |ref|
- |ldf2lst| |fglmIfCan| |parse| |pmintegrate| |cAtanh| |rightPower|
- |tanAn| |s01eaf| |s13acf| |cond| |iroot| |s17dgf| |OMreceive| |orbits|
- |intcompBasis| |e02def| |rombergo| |collectUnder| |cn| |minPoints3D|
- |setvalue!| |rightRecip| |sinh2csch| |polar| |lfunc| |lexGroebner|
- |fixedPointExquo| |blue| |ef2edf| |laplace| |addiag| |elliptic?|
- |symbol?| |deepestTail| |unary?| |stFunc2| |associatedEquations|
- |functionIsOscillatory| |possiblyNewVariety?| |finiteBasis| |dim|
- |squareFreeLexTriangular| |points| |initiallyReduced?|
- |basisOfMiddleNucleus| |commutative?| |read!| |critBonD| |totalLex|
- |queue| |multMonom| |dark| |degreeSubResultantEuclidean| |ffactor|
- |redPol| |quatern| |unvectorise| |intPatternMatch|
- |createGenericMatrix| |denominators| |parabolicCylindrical|
- |constantToUnaryFunction| |lfextendedint| |reify| |s21bdf| |iiacoth|
- |userOrdered?| |width| |mainDefiningPolynomial| |incrementKthElement|
- |startTableGcd!| |ran| |integral?| |moebiusMu| |addBadValue|
- |minIndex| |trapezoidalo| |stiffnessAndStabilityFactor| |minimize|
- |lyndon?| |transcendent?| |csubst| |newReduc| |fortranReal|
- |getSyntaxFormsFromFile| |diagonal| |OMputEndAtp| |rightExactQuotient|
- |bottom!| |OMgetBVar| |permutationRepresentation| |kovacic|
- |taylorRep| |polarCoordinates| |doubleResultant| |whatInfinity|
- |subresultantSequence| |nilFactor| |rightRemainder| |constant|
- |wreath| |identitySquareMatrix| |supDimElseRittWu?| |difference|
- |Frobenius| |lowerCase?| |s17agf| |front| |arity| |coordinate|
- |sizePascalTriangle| |squareFreePart| |rightUnit| |shuffle| |e02ajf|
- |f02awf| |henselFact| |perfectNthPower?| |s20adf| |exprToGenUPS|
- |routines| |optional| |outputFloating| |makingStats?| |paren|
- |polygamma| |iicsch| |definingInequation| |erf| |leftUnit| |setTex!|
- |scale| |elRow2!| |mightHaveRoots| |dequeue!| |viewSizeDefault|
- |e02bcf| |floor| |external?| |scaleRoots| |index| |finite?|
- |atrapezoidal| |remove!| |trace2PowMod| |closed?| |mdeg|
- |coefficients| |nary?| |iilog| |nextSublist| |c06frf| |sech2cosh|
- |cyclePartition| |nextsubResultant2| |drawToScale| |imagE| |dilog|
- |point| |numberOfComputedEntries| |lazyPrem| |iFTable| |bracket|
- |insertionSort!| |extract!| |expIfCan| |presub| |triangular?|
- |decimal| |sin| |edf2df| |search| |createNormalPrimitivePoly| |pair|
- |idealiser| |rational| |stop| |refine| |lambert| |yellow|
- |constantKernel| |cos| |tubePlot| |e04dgf| |leftFactorIfCan|
- |mainCharacterization| |characteristicSet| |\\/| |iisqrt3|
- |structuralConstants| |multiset| |iteratedInitials| |tan| |series|
- |leviCivitaSymbol| |checkForZero| |gcdcofactprim| |cycleSplit!|
- |certainlySubVariety?| |powerAssociative?| |recip| |integralMatrix|
- |f04mbf| |cot| |leftOne| |operators| |factorsOfCyclicGroupSize|
- |cAcoth| |connect| |mapUnivariateIfCan| |diagonals| |vectorise|
- |subspace| |sec| |fortranLiteralLine| |addmod| |orOperands|
- |explicitlyEmpty?| |aQuadratic| |goodPoint| |pquo| |edf2efi|
- |directSum| |csc| |numer| |identification| |maxColIndex| |equiv|
- |roughBasicSet| |returns| |cTanh| |eulerE| |probablyZeroDim?| |min|
- |asin| |denom| |c02aff| |KrullNumber| |andOperands| |mapSolve|
- |write!| |s19acf| |sizeMultiplication| |gcdPolynomial| |acos|
- |createMultiplicationTable| |constant?| |mulmod| |e02bdf|
- |numericalIntegration| |status| |ipow| |LiePolyIfCan|
- |OMconnOutDevice| |elements| |atan| |message| |pi| |factorByRecursion|
- |redpps| |d02kef| |round| |airyAi| |RittWuCompare| |Beta| |iicoth|
- |rewriteIdealWithQuasiMonicGenerators| |acot| |infinity| |rightTrim|
- |factorGroebnerBasis| |gcdcofact| |d01bbf| |trivialIdeal?|
- |unitsColorDefault| |selectOptimizationRoutines| |less?|
- |multiEuclideanTree| |gethi| |asec| |obj| |leftTrim| |makeCrit| |frst|
- |areEquivalent?| |truncate| |bag| |figureUnits| |drawCurves|
- |rightRegularRepresentation| |c02agf| |acsc| |plusInfinity| |cache|
- |iiacsc| |resultantnaif| |iitanh| |flexible?| |associatorDependence|
- |fibonacci| |monicModulo| |degreePartition|
- |selectIntegrationRoutines| |sinh| |compdegd| |minusInfinity|
- |generators| |name| |plotPolar| |cosSinInfo| |flagFactor| |shiftRoots|
- |monic?| |functionIsFracPolynomial?| |getGoodPrime| |cosh| |dom|
- |df2fi| |jacobiIdentity?| |tryFunctionalDecomposition?|
- |stosePrepareSubResAlgo| |ranges| |nextPrimitiveNormalPoly| |elem?|
- |An| |label| |thetaCoord| |tanh| |kernel| |inf| |mainVariable|
- |increasePrecision| |d01gaf| |ricDsolve| |rangeIsFinite|
- |OMputEndAttr| |unitNormal| |s13adf| |coth| |draw| |headRemainder|
- |pseudoRemainder| |sinhIfCan| |wholeRagits| |quasiMonicPolynomials|
- |s18dcf| |viewPosDefault| |testModulus| |d01alf| |sech| |in?| |pdct|
- |ScanArabic| |traverse| |consnewpol| |alternatingGroup| |lyndon|
- |realEigenvectors| |headReduced?| |initials| |imagK| |cubic| |iExquo|
- |s20acf| |romberg| |low| |basisOfRightAnnihilator| |singleFactorBound|
- |cartesian| |parabolic| |diag| |OMgetInteger| |numberOfComponents|
- |conditionP| |title| |makeObject| |inc| |child?| |quotedOperators|
- |wrregime| |mainVariables| |keys| |unitVector| |monicDivide|
- |OMputEndBVar| |getOperator| |e| |seriesSolve|
- |semiResultantEuclidean2| |increment| |check| |error| |jacobi|
- |setMinPoints| |solid| |Si| |coef| |c05adf| |resultantEuclideannaif|
- |setLegalFortranSourceExtensions| |pastel| |monicLeftDivide| |assert|
- |getButtonValue| |df2mf| |OMgetEndAtp| |clikeUniv| |complexRoots|
- |uniform01| |prod| |sturmVariationsOf| |alphabetic?| |fill!|
- |monicRightFactorIfCan| |edf2ef| |e04gcf| |notOperand| |extractIfCan|
- |knownInfBasis| |palglimint| |e01bgf| |palginfieldint|
- |infiniteProduct| |e04naf| |isAbsolutelyIrreducible?| |equality| |cup|
- |alphanumeric| |discriminant| |debug| |cot2trig| |select!| |unravel|
- |cPower| |inGroundField?| |option| |dimensionsOf| |magnitude|
- |charpol| |factorial| |e02bef| |SFunction| |mathieu24| |e02ahf|
- |changeName| |univariatePolynomials| |mkAnswer| |monicRightDivide|
- |primaryDecomp| |splitLinear| |localReal?| |currentSubProgram|
- |nextItem| |subresultantVector| |jordanAdmissible?| |node| |stirling1|
- |acotIfCan| |dimensionOfIrreducibleRepresentation|
- |toseLastSubResultant| |irreducibleRepresentation| |numFunEvals|
- |rotatey| |extendedint| |prindINFO| |kmax| |s19adf| |entry|
- |lazyPseudoDivide| |resultant| |stoseIntegralLastSubResultant|
- |inRadical?| |dec| |removeSinhSq| |mapdiv| |colorDef| |c06eaf|
- |taylor| |solveid| |fixedPoints| ** |cardinality| |prepareSubResAlgo|
- |quasiComponent| |expintegrate| |taylorIfCan| |infRittWu?| |laurent|
- |supRittWu?| |enterInCache| |float| |lazyEvaluate| |fixedDivisor|
- |outlineRender| |augment| |intensity| |redPo| |puiseux| |double?|
- |enumerate| |pow| |failed| |f01qcf| |lflimitedint| EQ |chebyshevT|
- |graphState| |normalize| |transpose| |modifyPoint| |extendedIntegrate|
- |integral| |infinite?| |complexElementary| |reorder|
- |normalizedAssociate| |asecIfCan| |inv| |rootPoly| |exprToXXP|
- |OMreadStr| |df2st| |omError| |powern| |rst| |definingEquations|
- |reduceLODE| |ground?| |prolateSpheroidal| |changeBase| |extractIndex|
- |startStats!| |d03faf| |removeSquaresIfCan| |prinpolINFO| |resize|
- |s13aaf| |ground| |fixPredicate| |ravel| |directory|
- |complexEigenvalues| |atom?| |var2StepsDefault| |resetVariableOrder|
- |makeViewport2D| |triangSolve| |leadingMonomial| |mvar|
- |binaryTournament| |eq?| |halfExtendedResultant1| |dequeue| |reshape|
- |iisqrt2| |useSingleFactorBound?| |satisfy?| |leadingCoefficient|
- |hessian| |lazyPquo| |removeSinSq| |zerosOf| |c06gbf| |copy!| |rowEch|
- UP2UTS |primitiveMonomials| |badNum| |identity| GE |maxrank|
- |OMParseError?| |stFuncN| |cschIfCan| |reductum| |prem| |minPoly| GT
- |OMgetEndAttr| |subResultantsChain| |contours| |middle| |children|
- |pile| |rank| |shufflein| |oddlambert| LE |e04mbf| |beauzamyBound|
- |prinshINFO| |startPolynomial| |bipolarCylindrical| |showTheIFTable|
- |mainValue| |createZechTable| LT |rightDivide| |uniform| |mpsode|
- |update| |scan| |bfEntry| |repeatUntilLoop| |complexZeros|
- |leftFactor| |subTriSet?| |represents| |GospersMethod| |zCoord|
- |elementary| |f02bjf| |shellSort| |eq| |topPredicate| |eigenvectors|
- |alternative?| |car| |pol| |univcase| |se2rfi| |d01aqf| |d01gbf|
- |iter| |lastSubResultantElseSplit| |findCycle| |lifting1| |OMgetApp|
- |cdr| |screenResolution| |completeSmith| |power| |sort| |iCompose|
- |internalLastSubResultant| |credPol| |getMatch| |fortranDoubleComplex|
- |aspFilename| |pushup| |complexForm| |wordInStrongGenerators|
- |showTheRoutinesTable| |autoReduced?| |tab1| |returnTypeOf|
- |OMsupportsSymbol?| |clipWithRanges| |chineseRemainder|
- |mainMonomials| |summation| |separant| |selectNonFiniteRoutines|
- |position| |nonQsign| |systemSizeIF| |midpoint| |SturmHabichtSequence|
- |karatsubaDivide| |countRealRootsMultiple| |exp1|
- |selectMultiDimensionalRoutines| |weight| |li|
- |createLowComplexityNormalBasis| |stoseInvertibleSetreg| |mix| |trim|
- |f04jgf| |randnum| |f01brf| |random| |cross| |listOfLists| |generic?|
- |topFortranOutputStack| |physicalLength| |createRandomElement|
- |OMconnInDevice| |isExpt| |inverseIntegralMatrixAtInfinity|
- |exponentialOrder| |exp| |cot2tan| |optional?| |pushdterm|
- |printStats!| |sturmSequence| |doubleRank| |critMTonD1|
- |semiSubResultantGcdEuclidean1| |diff| |generalTwoFactor|
- |mainCoefficients| |resetBadValues| |solve| |clipPointsDefault|
- |antisymmetricTensors| |complexNumericIfCan|
- |halfExtendedSubResultantGcd2| |iomode| |dihedral| |rk4qc| |cSinh|
- |modularGcdPrimitive| |reverse!| |OMmakeConn| |printTypes| |s17dhf|
- |generalizedContinuumHypothesisAssumed| |logical?| |s15aef|
- |clearTable!| |smith| |lazyPremWithDefault| |rules| |primitive?|
- |radix| |musserTrials| |prologue| |changeMeasure| |subst| |negative?|
- |reopen!| |factorSquareFree| |asinhIfCan| |stoseInvertible?sqfreg|
- |qfactor| |OMgetObject| |digits| |mainForm| |radPoly| |makeTerm|
- |evaluateInverse| |useSingleFactorBound| |lieAdmissible?|
- |solveLinearPolynomialEquationByRecursion| |fortranTypeOf| |besselK|
- UTS2UP |setOrder| |datalist| |d02raf| |reducedContinuedFraction|
- |chiSquare| |exprToUPS| |numberOfFactors| |trailingCoefficient|
- |makeViewport3D| |mapUp!| |primeFactor| |binding| |lyndonIfCan|
- |pointLists| |contains?| |implies| |insertTop!| |janko2| |iiacot|
- |supersub| |computeCycleEntry| |objects| |semiDiscriminantEuclidean|
- |blankSeparate| |complexLimit| |xor| |cAtan| |putGraph| |getlo|
- |OMsupportsCD?| |newSubProgram| |base| |algebraicCoefficients?|
- |mantissa| |d01apf| |overlabel| |OMbindTCP| |insertRoot!|
- |linearAssociatedOrder| |unrankImproperPartitions1| |critpOrder|
- |iiasech| |printHeader| |impliesOperands| |nextsousResultant2|
- |double| |reduced?| |leftTraceMatrix| |invmultisect| |cAsin|
- |scanOneDimSubspaces| |prefix| |vspace| |deleteProperty!|
- |prepareDecompose| |useEisensteinCriterion?|
- |characteristicPolynomial| |imaginary| |multiplyExponents| |getOrder|
- |positiveSolve| |outputMeasure| |denomLODE| |representationType|
- |solveInField| |rewriteSetWithReduction| |merge| |isPower| |brace|
- |ratDsolve| |crest| |updatF| |outputArgs| |selectODEIVPRoutines|
- |squareFreePrim| |zero?| |typeLists| |test|
- |unprotectedRemoveRedundantFactors| |direction| |tableau|
- |evenInfiniteProduct| |aQuartic| |sub| |getCode| |algebraicVariables|
- |partialDenominators| |currentCategoryFrame| |color|
- |factorSFBRlcUnit| |shallowExpand| |tanIfCan| |swapRows!| |inR?|
- |d01asf| |leftScalarTimes!| |setRow!| |branchIfCan| |shrinkable|
- |anticoord| |getBadValues| |setScreenResolution3D| |declare!|
- |inconsistent?| |univariateSolve| |divideIfCan!| |measure2Result|
- |s21bcf| |getPickedPoints| |initiallyReduce| |coord| |value|
- |exteriorDifferential| |definingPolynomial| |basisOfLeftNucloid|
- |realEigenvalues| |cons| |leftNorm| |calcRanges| |numberOfHues|
- |findBinding| |LagrangeInterpolation| |solveLinearlyOverQ|
- |externalList| |cAsec| |copyInto!| |selectsecond| |complexIntegrate|
- |createPrimitiveNormalPoly| |sylvesterMatrix| |UP2ifCan| |option?|
- |rspace| |limit| |freeOf?| |pushucoef| |makeEq| |messagePrint| |seed|
- |previous| |phiCoord| |extendedResultant| |diagonalProduct|
- |linkToFortran| |pToHdmp| |upDateBranches| |listRepresentation|
- |rightScalarTimes!| |sparsityIF| |rur| |tree| |irreducible?|
- |inrootof| |rewriteIdealWithHeadRemainder|
- |genericRightMinimalPolynomial| |#| |changeWeightLevel|
- |patternVariable| |besselY| |zero| |reciprocalPolynomial| |iidsum|
- |outputAsTex| |perfectSquare?| |reducedDiscriminant| |delete!|
- |duplicates| |order| |squareFreeFactors| |lazyIntegrate| |nthFactor|
- |iiGamma| |block| |adjoint| |And| |extractSplittingLeaf| |notelem|
- |createPrimitivePoly| |components| |antiAssociative?| |s15adf|
- |genericRightDiscriminant| |Or| |char| |rischDE| |goodnessOfFit| ^
- |primintegrate| |genus| |rightQuotient| |simpson| |roughSubIdeal?|
- |roughEqualIdeals?| |Not| |sum| |cAsinh| |binaryTree| |approxNthRoot|
- |eulerPhi| |limitPlus| |diagonalMatrix| |groebSolve|
- |ScanFloatIgnoreSpaces| |overlap|
- |generalizedContinuumHypothesisAssumed?| |ParCond| |rootKerSimp|
- |repeating| |domainOf| |indicialEquation| |toseSquareFreePart| |mat|
- |acosIfCan| |rationalPoint?| |dmpToHdmp| |lastSubResultantEuclidean|
- |retractable?| |createNormalElement| |laguerreL| |computeCycleLength|
- |lastSubResultant| |removeRedundantFactors| |RemainderList|
- |makeSketch| |purelyAlgebraicLeadingMonomial?| |rk4| |setMinPoints3D|
- |elliptic| |log10| |setFieldInfo| |sqfree| |lazyPseudoQuotient|
- |diophantineSystem| |permutation| |radicalEigenvector| |quadraticNorm|
- |moduleSum| |denomRicDE| |deref| |Zero| |extractTop!| |btwFact|
- |internalIntegrate0| |region| |randomLC| |members| |critMonD1|
- |getOperands| |stirling2| |One| |monomial?| |LyndonWordsList1|
- |OMclose| |internalInfRittWu?| |genericLeftTraceForm| |term?|
- |normalElement| |irreducibleFactors| |iiacsch| |exponents|
- |moreAlgebraic?| |curveColor| |arrayStack| |comp| |padicallyExpand|
- |lhs| |digit?| |drawStyle| |submod| |ScanFloatIgnoreSpacesIfCan|
- |decompose| |leadingIdeal| |numberOfOperations| |raisePolynomial|
- |rhs| |branchPointAtInfinity?| |upperCase!| |stoseInvertibleSet|
- |subset?| |ode2| |constructorName| |rCoord| |genericPosition| |hcrf|
- |conical| |numericalOptimization| |leftMinimalPolynomial| |e01sbf|
- |expressIdealMember| |semiResultantEuclidean1| |BasicMethod|
- |showAllElements| |s14aaf| |next| |computeBasis| |delay| |trunc|
- |bringDown| |monomialIntPoly| |setref| |listLoops| |radicalRoots|
- |bipolar| |qelt| |OMsetEncoding| |semiLastSubResultantEuclidean|
- |primPartElseUnitCanonical| |modularFactor| |viewThetaDefault|
- |bitCoef| |listBranches| |cyclic| |systemCommand| |safeFloor| |one?|
- |pToDmp| |divisorCascade| |lifting| |f04arf| |cyclicSubmodule|
- |neglist| |e01baf| |component| |FormatArabic| |firstNumer| |iiasinh|
- |cLog| |associative?| |setTopPredicate| |minimumExponent| |atanhIfCan|
- |f01qdf| |factors| |randomR| |maxPoints3D| |normal| |innerSolve|
- |discreteLog| |companionBlocks| |nonLinearPart| |tablePow|
- |normalDenom| |var1StepsDefault| |minordet| |palgint0| |interReduce|
- |setOfMinN| |viewpoint| |partition| |maximumExponent| |f04mcf|
- |setleaves!| |iicos| |append| |s18aff| |patternMatchTimes| |twist|
- |collectUpper| |factorset| |null?| |absolutelyIrreducible?|
- |algebraicSort| |processTemplate| |SturmHabicht| |sylvesterSequence|
- |nlde| |linearMatrix| NOT |internalAugment| |coshIfCan|
- |integralAtInfinity?| |delete| |iiabs| |coth2trigh| |doubleComplex?|
- |linearlyDependentOverZ?| |squareTop| |ode| |pureLex| |qqq| OR |terms|
- |decomposeFunc| |fi2df| |surface| |particularSolution| |argscript|
- |skewSFunction| |rroot| |rename| |oblateSpheroidal|
- |rewriteSetByReducingWithParticularGenerators| AND |bombieriNorm|
- |real?| |basisOfLeftNucleus| |sncndn| |integerIfCan|
- |createThreeSpace| |isTimes| |singularAtInfinity?| |allRootsOf|
- |nextPrimitivePoly| |leftRankPolynomial| |divisors| |leftDivide|
- |OMputAttr| |square?| |htrigs| |viewport3D| |find|
- |linearAssociatedExp| |schema| |totalfract| |nextPartition| |presuper|
- |substring?| |weakBiRank| |symbolIfCan| |isobaric?| |nthRoot|
- |OMgetEndApp| |removeSuperfluousQuasiComponents| |var1Steps|
- |kroneckerDelta| |leftTrace| |variationOfParameters| |mapCoef|
- |quotientByP| |cyclotomicFactorization| |abelianGroup| |c06fqf|
- |internalZeroSetSplit| |quickSort| |numberOfComposites|
- |complementaryBasis| |rootProduct| |showTheFTable| |Ei|
- |rationalIfCan| |hclf| |suffix?| |someBasis| |OMputAtp|
- |bandedHessian| |qroot| |minimalPolynomial| |s18def| |hMonic|
- |mergeFactors| |changeThreshhold| |csch2sinh| |sortConstraints|
- |diagonal?| |closedCurve?| |f07fdf| |s21bbf| |outputFixed|
- |ParCondList| |dmp2rfi| |partialNumerators| |cTan|
- |derivationCoordinates| |reverseLex| |aLinear| |prefix?| |xRange|
- |setColumn!| |extractPoint| |cAcosh| |UpTriBddDenomInv|
- |euclideanSize| |unit?| |evenlambert| |init| |printingInfo?| |reindex|
- |unmakeSUP| |eigenvalues| |att2Result| |yRange| |schwerpunkt|
- |generalPosition| |qPot| |integralBasis| |choosemon| |subCase?| |isOp|
- |factorAndSplit| |permanent| |sh| |matrixDimensions| |basicSet|
- |zRange| |integralBasisAtInfinity| |lazyResidueClass| |readable?|
- |permutationGroup| |s17akf| |symFunc| |numberOfNormalPoly| |sin2csc|
- |s17ahf| |lists| |eisensteinIrreducible?| |OMwrite| |returnType!|
- |tail| |parts| |subMatrix| |map!| * |modTree| |leastAffineMultiple|
- |leadingSupport| |elColumn2!| |key?| |powers| |socf2socdf| |sPol|
- |lift| |readLineIfCan!| |fprindINFO| |build| |totalDifferential|
- |swapColumns!| |qsetelt!| |leftExtendedGcd| |shanksDiscLogAlgorithm|
- |quotient| |discriminantEuclidean| |product| |s17aff| |flatten|
- |symmetricProduct| |plus!| |reduce| |constantLeft| |c06ebf| |s21baf|
- |lazyIrreducibleFactors| |biRank| |slex| |mergeDifference| |laguerre|
- |standardBasisOfCyclicSubmodule| |child| |infix| |OMputBVar|
- |movedPoints| |removeRoughlyRedundantFactorsInContents| |maxdeg|
- |algDsolve| |infix?| |interpretString| |f01mcf| |optpair|
- |showArrayValues| |leftQuotient| |minset| |getExplanations|
- |radicalSimplify| |mkcomm| |arguments| |clearFortranOutputStack|
- |algSplitSimple| |d01ajf| |mask| |OMgetAttr| |vertConcat|
- |approximate| |mainMonomial| |shade| |ODESolve| |leftLcm|
- |stoseInvertibleSetsqfreg| |oddInfiniteProduct| |e01bef| |e02adf|
- |minPoints| |aCubic| |stFunc1| |complex| |accuracyIF| |makeMulti|
- |power!| |sequences| |buildSyntax| |ode1| |rightTrace|
- |radicalOfLeftTraceForm| |endSubProgram| |push| |primextintfrac|
- |asinIfCan| |mr| |acsch| |createNormalPoly| |drawComplex|
- |setVariableOrder| |createPrimitiveElement| |odd?| |fmecg| |addPoint|
- |lexTriangular| |operator| |bsolve| |dominantTerm| |cap|
- |complexSolve| |swap!| |rename!| |roman| |triangularSystems| |reset|
- |cfirst| |fintegrate| |combineFeatureCompatibility|
- |radicalEigenvalues| |functionIsContinuousAtEndPoints| |geometric|
- |f02abf| |distdfact| |separateFactors| |OMconnectTCP| |writeLine!|
- |updatD| |coercePreimagesImages| |outerProduct| |viewZoomDefault|
- |rightAlternative?| |cycle| |principal?| |mesh?| |rotatez|
- |removeRedundantFactorsInPols| |linearAssociatedLog|
- |zeroSetSplitIntoTriangularSystems| |froot| |algebraicDecompose|
- |LowTriBddDenomInv| |write| |sayLength| |bezoutMatrix| |modulus|
- |antiCommutator| |OMUnknownCD?| |constantOperator| |pointColor|
- |antiCommutative?| |rightNorm| |cCsc| |stack| |integer?| |scripted?|
- |save| |imagj| |gramschmidt| |simpleBounds?| |ramifiedAtInfinity?|
- |saturate| |ridHack1| |extractBottom!| |currentEnv| |subSet| FG2F
- |maxIndex| |OMencodingXML| |badValues| |sumSquares| |nullSpace| |or|
- |internalSubPolSet?| |leadingExponent| |s17ajf|
- |regularRepresentation| |lookup| |predicate| |nor|
- |drawComplexVectorField| |logGamma| |bumptab1| |d01fcf| |epilogue|
- |s18adf| |purelyTranscendental?| |and| |transcendenceDegree|
- |chainSubResultants| |abs| |is?| |rowEchelon| |binary| |setRealSteps|
- |fortranLogical| |clearTheIFTable| |pop!| |positiveRemainder|
- |OMgetEndBVar| |sumOfKthPowerDivisors| |radicalEigenvectors| |latex|
- |applyRules| |setStatus!| |rangePascalTriangle| |f02bbf| |OMgetString|
- |initializeGroupForWordProblem| |solveRetract| |besselJ| |constDsolve|
- |rubiksGroup| |coerceImages| |nextNormalPrimitivePoly| |inHallBasis?|
- |expt| |cos2sec| |quadratic?| |lp| |univariatePolynomial| |dn|
- |monomial| |bivariate?| |separate| |tracePowMod| |wronskianMatrix| F
- |solveLinearPolynomialEquation| |c05nbf| |makeop| |tValues| |getCurve|
- |bumptab| |genericRightTrace| |univariate?| |lowerPolynomial| |pade|
- |varselect| |trueEqual| |universe| |countRealRoots|
- |firstUncouplingMatrix| |mainVariable?| |frobenius| |asechIfCan|
- |multivariate| |quasiMonic?| |isQuotient| |stopTableGcd!|
- |setClipValue| |fortranDouble| |createIrreduciblePoly|
- |bezoutResultant| |solid?| |implies?| |arg1| |showAll?|
- |addMatchRestricted| |clipSurface| |partialQuotients| |OMputSymbol|
- |exprHasAlgebraicWeight| |variables| |pair?| |mindegTerm|
- |getMultiplicationTable| |critM| |rightTraceMatrix| |decrease| |ksec|
- |root| |arg2| |e04fdf| |startTableInvSet!| |compose|
- |pointColorPalette| |repeating?| |s19abf| |varList| |computePowers|
- |dot| |mapMatrixIfCan| |mapBivariate| |firstDenom| |deepCopy|
- |halfExtendedSubResultantGcd1| |loopPoints| |complement| |palgextint0|
- |brillhartIrreducible?| |sinIfCan| |central?| |leftExactQuotient|
- |complexNormalize| |largest| |complexExpand| F2FG |normalForm|
- |constantRight| |c06ecf| |quoted?| |f04axf| |conditions| |whileLoop|
- |subResultantGcd| |showFortranOutputStack| |deriv| |aromberg|
- |prevPrime| |typeList| |twoFactor| |quadratic| |insert!| |ignore?|
- |zeroSetSplit| |leftRegularRepresentation| |sqfrFactor| |makeprod|
- |isPlus| |nodeOf?| |match| |adaptive| |subQuasiComponent?| |hash|
- |showClipRegion| |isMult| |controlPanel| |LyndonWordsList| |height|
- |cSin| |inverseColeman| |fortranCarriageReturn| |ratDenom| |totolex|
- |plot| |defineProperty| |concat| |numberOfVariables| |deepExpand|
- |merge!| |count| |high| |numberOfChildren| |unexpand| |quote|
- |replaceKthElement| |cExp| |s17dlf| |makeUnit| |setPosition|
- |operation| |baseRDE| |OMUnknownSymbol?| |shiftRight| |evaluate|
- |curve?| |setprevious!| |currentScope| |inverseLaplace| |e02dcf|
- |e01daf| |lex| |numFunEvals3D| |closedCurve| |trapezoidal|
- |normalized?| |exQuo| |cSech| |cosh2sech| |physicalLength!| |pole?|
- |bfKeys| |iiasin| |vedf2vef| |viewWriteAvailable| |highCommonTerms|
- |chiSquare1| |primextendedint| |orbit| |fortranCharacter|
- |solveLinear| |outputSpacing| |nextLatticePermutation|
- |fortranComplex| |e02gaf| |listConjugateBases| |viewPhiDefault|
- |factorOfDegree| |generalizedInverse| |bit?|
- |factorSquareFreeByRecursion| |nil| |infinite| |arbitraryExponent|
- |approximate| |complex| |shallowMutable| |canonical| |noetherian|
- |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
- |commutative|) \ No newline at end of file
+ |Record| |Union| |Category| |makeFloatFunction| |OMputFloat| |rquo|
+ |indicialEquation| |adaptive| |delta| |charClass| |upperCase?| |tab1|
+ |leadingSupport| |probablyZeroDim?| |iicosh| |sup| |factorFraction|
+ |insertMatch| |toseSquareFreePart| |constantToUnaryFunction|
+ |subQuasiComponent?| |intermediateResultsIF| |character?|
+ |returnTypeOf| |elColumn2!| |c02aff| |rootsOf| |mat|
+ |primitiveElement| |or?| |mirror| |lfextendedint| |showClipRegion|
+ |ramified?| |OMsupportsSymbol?| |rightExtendedGcd| |key?|
+ |KrullNumber| |subtractIfCan| |expenseOfEvaluationIF| |connect|
+ |declare| |subscript| |degreeSubResultant| |acosIfCan| |reify|
+ |isMult| |clipWithRanges| |setrest!| |complexNumeric| |imagJ|
+ |andOperands| |powers| |setProperty!| |integralRepresents|
+ |rationalPoint?| |limitedint| |taylorQuoByVar| |depth| |log| |s21bdf|
+ |controlPanel| |chineseRemainder| |primitivePart!| |socf2socdf|
+ |mapSolve| |pascalTriangle| |integers| |even?| |dmpToHdmp| |iiacoth|
+ |LyndonWordsList| |kernels| |setchildren!| |mainMonomials| |write!|
+ |sPol| |comment| |clip| |d02bbf| |uncouplingMatrices|
+ |lastSubResultantEuclidean| |cSin| |userOrdered?| |leaves| |summation|
+ |linears| |univariate| |s19acf| |readLineIfCan!| |nextNormalPoly|
+ |lambda| |viewDefaults| |commutator| |retractable?|
+ |mainDefiningPolynomial| |inverseColeman| |separant| |f07adf|
+ |sizeMultiplication| |fprindINFO| |showSummary| |retractIfCan|
+ |pointSizeDefault| |createNormalElement| |poisson|
+ |fortranCarriageReturn| |incrementKthElement| |expandPower|
+ |exprHasWeightCosWXorSinWX| |selectNonFiniteRoutines| |build|
+ |gcdPolynomial| |escape| |laguerreL| |generalLambert| |ratDenom|
+ |startTableGcd!| |mainContent| |innerSolve1| |nonQsign|
+ |totalDifferential| |createMultiplicationTable| |computeCycleLength|
+ |rotatex| |fracPart| |showAttributes| |ran| |totolex| |BumInSepFFE|
+ |systemSizeIF| |var2Steps| |swapColumns!| |constant?| |cCot| |makeSin|
+ |lastSubResultant| |integral?| |plot| |extension| |mulmod|
+ |leftExtendedGcd| |moduloP| |removeRedundantFactors| |moebiusMu|
+ |defineProperty| |sign| |powern| |shanksDiscLogAlgorithm| |e02bdf| BY
+ |setfirst!| |RemainderList| |addBadValue| |numberOfVariables|
+ |setnext!| |rst| Y |quotient| |numericalIntegration| |top|
+ |makeSketch| |ocf2ocdf| |deepExpand| |minIndex| |changeVar|
+ |definingEquations| |rule| |ipow| |discriminantEuclidean| |continue|
+ |matrix| |void| |trapezoidalo| |merge!| |HermiteIntegrate|
+ |reduceLODE| |product| |LiePolyIfCan| |anticoord|
+ |stiffnessAndStabilityFactor| |high| |ref| |prolateSpheroidal|
+ |pattern| |s17aff| |OMconnOutDevice| |formula| |generator|
+ |getBadValues| |minimize| |numberOfChildren| |changeBase|
+ |symmetricProduct| |elements| |setScreenResolution3D| |map| |lyndon?|
+ |unexpand| |extractIndex| |inconsistent?| |quote| |startStats!|
+ |tableForDiscreteLogarithm| |htrigs| |exponent| |nary?|
+ |univariateSolve| |replaceKthElement| |d03faf| |index?| |viewport3D|
+ |equivOperands| |iilog| |stoseSquareFreePart| |divideIfCan!| |nrows|
+ |cExp| |removeSquaresIfCan| |find| |acoshIfCan| ~= |measure2Result|
+ |SturmHabichtCoefficients| |f01rdf| |op| |nextSublist| |ncols|
+ |remove| |prinpolINFO| |linearAssociatedExp| |stopTableInvSet!|
+ |noncommutativeJordanAlgebra?| |c06frf| |symbolTableOf| |s21bcf|
+ |convert| |bivariate?| |true| |resize| |palgLODE0| |schema|
+ |cyclotomic| |normalizedDivide| |sech2cosh| |getPickedPoints|
+ |separate| |last| |s13aaf| |totalfract| |rk4a| |assoc| |toScale|
+ |leftZero| |cyclePartition| |lo| |initiallyReduce| |tracePowMod|
+ |decimal| |fixPredicate| |match?| |transform| |nextPartition|
+ |genericRightTraceForm| |coord| |nextsubResultant2| |incr| |edf2df|
+ |wronskianMatrix| |fortran| |complexEigenvalues| |e02zaf| |presuper|
+ |exteriorDifferential| |palglimint0| |drawToScale| |hi|
+ |createNormalPrimitivePoly| |solveLinearPolynomialEquation| |atom?|
+ |weakBiRank| |s14baf| |imagE| |normalise| |definingPolynomial|
+ |binomial| |idealiser| |c05nbf| |outputList| |retract|
+ |var2StepsDefault| |symbolIfCan| |variable?| |basisOfLeftNucloid|
+ |f02fjf| |symbol| |makeop| |rational| |resetVariableOrder| |isobaric?|
+ |iflist2Result| |dAndcExp| |realEigenvalues| |tValues| |refine|
+ |genericLeftTrace| ~ |makeViewport2D| |hasSolution?| |nthRoot|
+ |leftNorm| |null| |string| |zag| |integer| |getCurve| |lambert|
+ |argumentList!| |triangSolve| |interval| |OMgetEndApp| |iiperm|
+ |calcRanges| |yellow| |bumptab| |graphStates| |mvar| |complete|
+ |removeSuperfluousQuasiComponents| |numberOfHues| |entries|
+ |genericRightTrace| |constantKernel| |binaryTournament| |var1Steps|
+ |tab| = |harmonic| |findBinding| |tubePlot| |univariate?| |eq?|
+ |kroneckerDelta| |normalizeAtInfinity| |segment|
+ |LagrangeInterpolation| |pseudoDivide| |lowerPolynomial| |e04dgf|
+ |open| |halfExtendedResultant1| |leftTrace| |distFact| |clearCache| <
+ |curryLeft| |solveLinearlyOverQ| |leftFactorIfCan| |pade| |level|
+ |dequeue| |variationOfParameters| |OMlistCDs| > |externalList|
+ |varselect| |mainCharacterization| |interpret| |iisqrt2| |mapCoef|
+ |squareFreePolynomial| <= |cAsec| |trueEqual| |characteristicSet|
+ |leader| |useSingleFactorBound?| |horizConcat| |quotientByP| >= |expr|
+ |iisqrt3| |copyInto!| |generate| |universe| |list| |script| |satisfy?|
+ |cyclotomicFactorization| |s18aef| |output| |setDifference|
+ |selectsecond| |structuralConstants| |countRealRoots| |hessian|
+ |abelianGroup| |orthonormalBasis| |incrementBy| |complexIntegrate|
+ |setIntersection| |multiset| |firstUncouplingMatrix| |c06fqf|
+ |lazyPquo| |checkPrecision| |airyBi| + |createPrimitiveNormalPoly|
+ |expand| |setUnion| |mainVariable?| |equation| |removeSinSq| |s14abf|
+ |internalZeroSetSplit| |variable| - |sylvesterMatrix| |filterWhile|
+ |frobenius| |apply| |zerosOf| |quickSort| |nthFractionalTerm| /
+ |UP2ifCan| |filterUntil| |asechIfCan| |c06gbf| |numberOfComposites|
+ |csc2sin| |option?| |select| |size| |quasiMonic?| |bindings| |tex|
+ |copy!| |complementaryBasis| |deepestInitial| |rspace| |stopTableGcd!|
+ |rowEch| |t| |rootProduct| |tan2trig| |limit| |setClipValue| |ldf2lst|
+ UP2UTS |iisinh| |showTheFTable| |freeOf?| |fortranDouble| |close|
+ |transcendent?| |fglmIfCan| |badNum| |Ei| |f02aff| |pushucoef|
+ |createIrreduciblePoly| |csubst| |identity| |pmintegrate| |insert|
+ |shift| |redmat| |rationalIfCan| |makeEq| |bezoutResultant|
+ |condition| |newReduc| |cAtanh| |maxrank| |hclf| |cotIfCan| SEGMENT
+ |makeRecord| |messagePrint| |solid?| |fortranReal| |display|
+ |rightPower| |OMParseError?| |someBasis| |meshPar1Var| |seed|
+ |implies?| |getSyntaxFormsFromFile| |tanAn| |sizeLess?| |stFuncN|
+ |s17agf| |OMputAtp| |symmetricGroup| |phiCoord| |showAll?| |s01eaf|
+ |bandedHessian| |cschIfCan| |antisymmetric?| |front|
+ |extendedResultant| |infLex?| |addMatchRestricted| |s13acf| |arity|
+ |prem| |halfExtendedResultant2| |qroot| |wordsForStrongGenerators|
+ |diagonalProduct| |clipSurface| |iroot| |minPoly| |minimalPolynomial|
+ |rotate| |coordinate| |exprHasLogarithmicWeights| |linkToFortran|
+ |partialQuotients| |input| |s17dgf| |hexDigit| |OMgetEndAttr|
+ |sizePascalTriangle| |s18def| |mkPrim| |pToHdmp| |OMputSymbol|
+ |library| |subResultantsChain| |hMonic| |s17aef| |cRationalPower|
+ |upDateBranches| |exprHasAlgebraicWeight| |iisec| |contours|
+ |mergeFactors| |result| |csch| |OMgetEndBind| |listRepresentation|
+ |pair?| |middle| |rightZero| |changeThreshhold| |asinh|
+ |rightScalarTimes!| |splitNodeOf!| |mindegTerm| |children|
+ |totalGroebner| |csch2sinh| |acosh| |sparsityIF| |leaf?|
+ |getMultiplicationTable| |pile| |sortConstraints| |entry?| |atanh|
+ |d02cjf| |rur| |critM| |bernoulli| |set| |shufflein| |d02bhf|
+ |diagonal?| |acoth| |irreducible?| |rational?| |rightTraceMatrix|
+ |OMopenFile| |oddlambert| |superHeight| |closedCurve?| |asech|
+ |inrootof| |decrease| |stoseInvertible?reg| |compile| |id| |polyRDE|
+ |e04mbf| |f07fdf| |removeCosSq| |conjug|
+ |rewriteIdealWithHeadRemainder| |ksec| |readIfCan!| |beauzamyBound|
+ |ddFact| |s21bbf| |multiple| |e01bff| |genericRightMinimalPolynomial|
+ |c06gqf| |ptree| |measure| |root| |table| |Is| |prinshINFO|
+ |outputFixed| |coleman| |applyQuote| |rightFactorCandidate| |leftRank|
+ |numberOfComputedEntries| |changeWeightLevel| |e04fdf| |new|
+ |derivative| |startPolynomial| |c06ekf| |ParCondList| |showRegion|
+ |iteratedInitials| |patternVariable| |lazyPrem| |characteristicSerie|
+ |startTableInvSet!| |alphanumeric?| |coerceListOfPairs| |dmp2rfi|
+ |complexEigenvectors| |leviCivitaSymbol| |iFTable| |postfix| |besselY|
+ |compose| |call| |graphImage| |permutations| |acotIfCan|
+ |partialNumerators| |pdf2ef| |ruleset| |ScanRoman|
+ |reciprocalPolynomial| |checkForZero| |bracket| |mainPrimitivePart|
+ |pointColorPalette| |exptMod| |show|
+ |dimensionOfIrreducibleRepresentation| |commonDenominator| |cTan|
+ |groebgen| |quasiAlgebraicSet| |iidsum| |writable?| |gcdcofactprim|
+ |insertionSort!| |repeating?| |ratpart| |toseLastSubResultant|
+ |integrate| |derivationCoordinates| |row| |symmetricPower| |reverse|
+ |s19abf| |pushdown| |trace| |irreducibleRepresentation| |revert|
+ |rightUnits| |reverseLex| |suchThat| |UnVectorise| |setright!|
+ |unrankImproperPartitions1| |computePowers|
+ |removeRoughlyRedundantFactorsInPol| |strongGenerators| |numFunEvals|
+ |aLinear| |zoom| |OMgetBind| |critpOrder| |plenaryPower| |dot|
+ |rotatey| |minColIndex| |tower| |nullary| |setColumn!|
+ |numberOfPrimitivePoly| |hypergeometric0F1| |rdregime| |iiasech|
+ |center| |mapMatrixIfCan| |e01saf| |extendedint| |f04maf| |cosIfCan|
+ |numberOfImproperPartitions| |printHeader| |initial| |mapBivariate|
+ |prindINFO| |birth| |nthExpon| |printInfo| |exprToGenUPS| |viewpoint|
+ |lowerCase!| |nextPrime| |impliesOperands| |firstDenom| |left|
+ |useEisensteinCriterion| |kmax| |factor| |karatsuba| |partition|
+ |routines| |nand| |digit| |nextsousResultant2| |outputFloating|
+ |right| |deepCopy| |genericLeftNorm| |OMencodingUnknown| |s19adf|
+ |sqrt| |maximumExponent| |property| |expintfldpoly|
+ |indicialEquationAtInfinity| |reduced?| |paraboloidal| |style| |real|
+ |lazyPseudoDivide| |f04mcf| |makingStats?| |increasePrecision|
+ |noKaratsuba| |leftTraceMatrix| |fortranLiteral| |saturate| |bat|
+ |bitLength| |imag| |B1solve| |resultant| |fixedPointExquo|
+ |setleaves!| |paren| |symbolTable| |rootSimp| |lepol| |d01gaf|
+ |invmultisect| |f02adf| |ridHack1| |blue| |directProduct| |iicos|
+ |subNodeOf?| |enqueue!| |stoseIntegralLastSubResultant| |polygamma|
+ |units| |extractBottom!| |eigenMatrix| |cCoth| |cAsin| |ricDsolve|
+ |coHeight| |ef2edf| |bat1| |inRadical?| |Lazard| |iicsch| |s18aff|
+ |pushFortranOutputStack| |rootPower| |integerBound| |slash|
+ |scanOneDimSubspaces| |rangeIsFinite| |subSet| |groebnerFactorize|
+ |zeroDim?| |laplace| |destruct| |removeSinhSq| |patternMatchTimes|
+ |definingInequation| |popFortranOutputStack| FG2F |rowEchelonLocal|
+ |semicolonSeparate| |vspace| |OMputEndAttr| |tubeRadiusDefault|
+ |lfinfieldint| |optimize| |OMputBind| |addiag| |mapdiv| |leftUnit|
+ |twist| |outputAsFortran| |deleteProperty!| |distance| |polyPart|
+ |unitNormal| |maxIndex| |octon| |elliptic?| |rationalPoints| |Gamma|
+ |colorDef| |collectUpper| |setTex!| |unitCanonical|
+ |fortranCompilerName| |s13adf| |prepareDecompose| |OMencodingXML|
+ |selectfirst| |type| |c06eaf| |node?| |symbol?| |polygon?| |code|
+ |factorset| |innerint| |tanh2coth| |useEisensteinCriterion?|
+ |badValues| |headRemainder| |rightFactorIfCan| |expenseOfEvaluation|
+ |solveid| |FormatRoman| |deepestTail| |null?| |sumSquares| |nil|
+ |c06fpf| |setlast!| |print| |characteristicPolynomial|
+ |pseudoRemainder| |lineColorDefault| |unary?| |heapSort|
+ |setErrorBound| |fixedPoints| |absolutelyIrreducible?| |imaginary|
+ |cAcsch| |iicot| |laplacian| |sinhIfCan| |nullSpace| |cycleElt|
+ |completeEval| |cardinality| |bernoulliB| |algebraicSort| |rotate!|
+ |primitivePart| |mesh| |multiplyExponents| |wholeRagits|
+ |internalSubPolSet?| |setPoly| |fractRadix| |prepareSubResAlgo|
+ |symmetricDifference| |processTemplate| |second| |leadingExponent|
+ |printInfo!| |upperCase| |getOrder| |quasiMonicPolynomials|
+ |removeRedundantFactorsInContents| |splitConstant| |OMgetEndObject|
+ |addPoint2| |quasiComponent| |SturmHabicht| |third| |function| |hex|
+ |reducedSystem| |s17ajf| |positiveSolve| |s18dcf| |norm|
+ |expintegrate| |getRef| |linSolve| |parametric?| |sylvesterSequence|
+ |checkRur| |outputMeasure| |d02ejf| |regularRepresentation|
+ |viewPosDefault| |primeFrobenius| |numberOfMonomials| |padecf|
+ |taylorIfCan| |nlde| |inspect| |denomLODE| |pointPlot| |testModulus|
+ |lookup| |basisOfRightNucloid| |cycleEntry| |infRittWu?| |tube|
+ |linearMatrix| |monomialIntegrate| |increase| |representationType|
+ |nor| |d01alf| |LiePoly| |Vectorise| |super| |supRittWu?|
+ |internalAugment| |getDatabase| |ldf2vmf| |solveInField|
+ |drawComplexVectorField| |in?| |rootRadius| |divergence| |charthRoot|
+ |enterInCache| |coshIfCan| |vector| |inverse| |appendPoint|
+ |rewriteSetWithReduction| |logGamma| |pdct| |close!| |qinterval|
+ |ideal| |lazyEvaluate| |integralAtInfinity?| |differentiate| |debug3D|
+ |red| |merge| |ScanArabic| |bumptab1| |chebyshevU| |cCosh|
+ |fixedDivisor| |iiabs| |gbasis| |e01bhf| |zeroMatrix| |isPower|
+ |d01fcf| |traverse| |setleft!| |goto| |precision| |case| |linear|
+ |outlineRender| |coth2trigh| |oneDimensionalArray| |c06gcf|
+ |consnewpol| |ratDsolve| |e02daf| |epilogue| |hconcat| |expint|
+ |augment| |doubleComplex?| |coerce| |nullary?| |nthRootIfCan| |expPot|
+ |crest| |s18adf| |alternatingGroup| |anfactor| |purelyAlgebraic?|
+ |polynomial| |intensity| |construct| |linearlyDependentOverZ?|
+ |binarySearchTree| |primlimitedint| |updatF| |d01akf| |lyndon|
+ |purelyTranscendental?| |OMgetFloat| |redPo| |hasHi| |squareTop| D
+ |complex?| |toseInvertibleSet| |outputArgs| |realEigenvectors|
+ |OMopenString| |transcendenceDegree| |nextColeman| |double?|
+ |perfectSqrt| |ode| |lcm| |generalizedEigenvectors|
+ |chainSubResultants| |selectODEIVPRoutines| |completeHermite|
+ |wholePart| |headReduced?| |leftRecip| |exquo| |identityMatrix|
+ |enumerate| |pureLex| |squareFreePrim| |po| |ListOfTerms| |bright|
+ |rationalFunction| |abs| |initials| |div| |padicFraction| |pow|
+ |member?| |qqq| |critB| |is?| |zero?| |axesColorDefault| |imagK|
+ |extractClosed| |quo| |content| |rightRank| |f01qcf| |terms| |gcd|
+ |rischNormalize| |and?| |OMputEndBind| |typeLists| |rowEchelon|
+ |cubic| |updateStatus!| |lflimitedint| |internalDecompose|
+ |decomposeFunc| |union| |binary| |shiftLeft| |OMgetError|
+ |unprotectedRemoveRedundantFactors| |iExquo| |rdHack1| |rem| |maxrow|
+ |chebyshevT| |showTheSymbolTable| |fi2df| |false| |setRealSteps|
+ |cAcot| |selectPolynomials| |const| |direction| |s20acf| |eval|
+ |numberOfFractionalTerms| |internalSubQuasiComponent?| |optAttributes|
+ |graphState| |first| |surface| |fortranLogical| |splitDenominator|
+ |LazardQuotient2| |tableau| |romberg| |setPrologue!|
+ |leftCharacteristicPolynomial| |enterPointData| |e02dff| |normalize|
+ |rest| |particularSolution| |box| |tanintegrate| |viewDeltaXDefault|
+ |linear?| |evenInfiniteProduct| |clearTheIFTable| |low| |packageCall|
+ |back| |generic| |transpose| |substitute| |argscript|
+ |basisOfRightAnnihilator| |leadingIndex| |characteristic| |/\\|
+ |aQuartic| |pr2dmp| |pop!| |any| |backOldPos| |normal01| |d02gbf|
+ |modifyPoint| |removeDuplicates| |skewSFunction| |singleFactorBound|
+ |explimitedint| |sub| |resultantReduitEuclidean| |positiveRemainder|
+ |normFactors| |invmod| |bivariateSLPEBR| |stopMusserTrials|
+ |extendedIntegrate| |rroot| |cartesian| |atoms| |getCode|
+ |decreasePrecision| |OMgetEndBVar| |algebraic?| |preprocess|
+ |removeIrreducibleRedundantFactors| |OMputInteger| |integral| |rename|
+ |brillhartTrials| |lagrange| |iisin| |algebraicVariables| |parabolic|
+ |sumOfKthPowerDivisors| |newLine| |open?| |infinite?| |crushedSet|
+ |oblateSpheroidal| |partialDenominators| |zeroVector| |matrixConcat3D|
+ |diag| |f07aef| |radicalEigenvectors| |Nul| |yCoordinates| |objectOf|
+ |complexElementary| |rewriteSetByReducingWithParticularGenerators|
+ |setelt| |chvar| |e02agf| |d02gaf| |currentCategoryFrame|
+ |OMgetInteger| |latex| |range| |iitan| |reorder| |numeric| |lowerCase|
+ |bombieriNorm| |applyRules| |cycleLength| |groebner?| |color| |over|
+ |numberOfComponents| |powerSum| |putColorInfo| |plus| |not| |radical|
+ |normalizedAssociate| |copy| |real?| |linGenPos| |setAdaptive3D|
+ |f01rcf| |predicates| |vconcat| |factorSFBRlcUnit| |conditionP|
+ |setStatus!| |alphabetic| |asecIfCan| |intersect| |basisOfLeftNucleus|
+ |localUnquote| |setAdaptive| |properties| |completeHensel|
+ |shallowExpand| |expextendedint| |rangePascalTriangle| |child?|
+ |zeroDimPrime?| |rootPoly| |yCoord| |sncndn| ^= |signAround|
+ |cylindrical| |makeGraphImage| |listOfMonoms| |tanIfCan| |f02bbf|
+ |quotedOperators| |polCase| |exprToXXP| |laurentRep| |integerIfCan|
+ |autoCoerce| |pmComplexintegrate| |swapRows!| |rowEchLocal| |max|
+ |conjugates| |OMgetString| |wrregime| |OMreadStr| |mindeg|
+ |createThreeSpace| |exponential| |isList| |rk4f| |inR?|
+ |initializeGroupForWordProblem| |mainVariables| |say| |iicsc| |df2st|
+ |isTimes| |collect| |d01asf| |solveRetract| |primes|
+ |subResultantChain| |unitVector| |translate| |omError| |bubbleSort!|
+ |singularAtInfinity?| |makeFR| |reflect| |leftDiscriminant|
+ |leftScalarTimes!| |besselJ| |monicDivide| |allRootsOf| |setRow!|
+ |f02xef| |hspace| |constDsolve| |OMputEndBVar| |c05adf| |triangulate|
+ |times| |nextPrimitivePoly| |zeroSquareMatrix| |rootOfIrreduciblePoly|
+ |mathieu11| |branchIfCan| |rubiksGroup| |getOperator|
+ |resultantEuclideannaif| |contractSolve| |leftRankPolynomial|
+ |shrinkable| |squareMatrix| |seriesSolve| |coerceImages|
+ |setLegalFortranSourceExtensions| |getVariableOrder| |divisors|
+ |nextNormalPrimitivePoly| |semiResultantEuclidean2| |specialTrigs|
+ |pastel| |leftDivide| |singularitiesOf| |primitive?| |inHallBasis?|
+ |increment| |monicLeftDivide| |clearTheSymbolTable| |replace| |length|
+ |monom| |OMputAttr| |radix| |quartic| |expt| |check| |getButtonValue|
+ |setProperties!| |scripts| |square?| |musserTrials| |OMputEndError|
+ |key| |jacobi| |cos2sec| |df2mf| |OMputApp|
+ |selectSumOfSquaresRoutines| |prologue| |options| |quadratic?|
+ |setMinPoints| |common| |OMgetEndAtp| |idealSimplify| |e01sbf|
+ |stoseInvertible?| |elt| |irreducibleFactor| |changeMeasure| |solid|
+ |univariatePolynomial| |cycles| |clikeUniv| |lieAlgebra?|
+ |expressIdealMember| |filename| |xCoord| |negative?| |dn| |Si|
+ |complexRoots| |semiSubResultantGcdEuclidean2| |e02baf|
+ |semiResultantEuclidean1| |reopen!| |point?| |iisech| |uniform01|
+ |BasicMethod| |baseRDEsys| |iipow| |not?| |factorSquareFree|
+ |factorByRecursion| |setVariableOrder| |prod| |minRowIndex|
+ |leadingCoefficientRicDE| |showAllElements| |cyclotomicDecomposition|
+ |asinhIfCan| |parse| |createPrimitiveElement| |redpps| |linearPart|
+ |sturmVariationsOf| |s14aaf| |list?| |cond| |sumOfSquares|
+ |stoseInvertible?sqfreg| |d02kef| |odd?| |alphabetic?| |graphCurves|
+ |space| |computeBasis| |cn| |qfactor| |constantIfCan| |round| |fmecg|
+ |scopes| |fill!| |numericIfCan| |delay| |OMgetObject|
+ |semiIndiceSubResultantEuclidean| |airyAi| |addPoint|
+ |factorsOfDegree| |palgLODE| |monicRightFactorIfCan| |rightGcd|
+ |trunc| |lexTriangular| |digits| |curve| |dim| |RittWuCompare|
+ |edf2ef| |multiple?| |extensionDegree| |bringDown| |sechIfCan|
+ |mainForm| |initTable!| |operator| |Beta| |alternating| |e04gcf|
+ |concat!| |removeConstantTerm| |monomialIntPoly|
+ |basisOfLeftAnnihilator| |radPoly| |iicoth| |bsolve|
+ |createMultiplicationMatrix| |fullPartialFraction| |notOperand| |axes|
+ |useNagFunctions| |setref| |tubePoints| |makeTerm| |width|
+ |cycleSplit!| |rewriteIdealWithQuasiMonicGenerators| |dominantTerm|
+ |fortranInteger| |explogs2trigs| |extractIfCan| |rightLcm|
+ |nonSingularModel| |listLoops| |cap| |conditionsForIdempotents|
+ |evaluateInverse| |factorGroebnerBasis| |certainlySubVariety?|
+ |knownInfBasis| |exists?| |root?| |adaptive3D?| |fullDisplay|
+ |radicalRoots| |powerAssociative?| |useSingleFactorBound| |endOfFile?|
+ |complexSolve| |gcdcofact| |pomopo!| |palglimint| |fortranLinkerArgs|
+ |singRicDE| |bipolar| |powmod| |constant| |lieAdmissible?| |swap!|
+ |headReduce| |d01bbf| |recip| |meshFun2Var| |e01bgf| |midpoints|
+ |OMsetEncoding| |OMgetSymbol| |setFormula!|
+ |solveLinearPolynomialEquationByRecursion| |trivialIdeal?| |rename!|
+ |factorials| |getProperty| |palginfieldint| |doublyTransitive?|
+ |semiLastSubResultantEuclidean| |youngGroup| |fortranTypeOf|
+ |optional| |roman| |unitsColorDefault| |continuedFraction|
+ |infiniteProduct| |basisOfRightNucleus| |primPartElseUnitCanonical|
+ |erf| |infinityNorm| |e02bbf| |besselK| |selectOptimizationRoutines|
+ |triangularSystems| |e04naf| |parametersOf| |clipParametric|
+ |modularFactor| |binaryFunction| |index| |e04ucf| UTS2UP |less?|
+ |cfirst| |xn| |isAbsolutelyIrreducible?| |split| |viewThetaDefault|
+ |multiEuclideanTree| |symmetric?| |setOrder| |nthFlag| |fintegrate|
+ |equality| |meshPar2Var| |bitCoef| |sec2cos| |dilog| |point|
+ |combineFeatureCompatibility| |d02raf| |karatsubaOnce| |gethi|
+ |normal?| |associatedSystem| |cup| |getVariable| |listBranches|
+ |showScalarValues| |reducedContinuedFraction| |sin| |makeCrit|
+ |search| |pair| |divide| |linearlyDependent?| |radicalEigenvalues|
+ |stop| |alphanumeric| |getConstant| |mathieu12| |cyclic| |ReduceOrder|
+ |cos| |functionIsContinuousAtEndPoints| |lazyPseudoRemainder|
+ |chiSquare| |frst| |psolve| |\\/| |iiacosh| |discriminant| |safeFloor|
+ |perspective| |tan| |series| |clipBoolean| |exprToUPS|
+ |resultantReduit| |areEquivalent?| |geometric| |callForm?| |module|
+ |cot2trig| |one?| |toseInvertible?| |cot| |numberOfFactors| |f02abf|
+ |resetNew| |create3Space| |truncate| |select!| |getProperties|
+ |pToDmp| |degree| |sec| |bag| |setImagSteps| |trailingCoefficient|
+ |distdfact| |move| |unravel| |hexDigit?| |divisorCascade|
+ |rootNormalize| |csc| |numer| |removeZero| |makeViewport3D|
+ |figureUnits| |separateFactors| |cPower| |getMeasure| |lifting|
+ |prime?| |min| |asin| |denom| |mapUp!| |has?| |OMconnectTCP|
+ |drawCurves| |d01anf| |inGroundField?| |normalDeriv| |f04arf| |acos|
+ |computeInt| |primeFactor| |rightRegularRepresentation| |writeLine!|
+ |modularGcd| |status| |dimensionsOf| |newTypeLists| |leadingTerm|
+ |cyclicSubmodule| |atan| |binding| |pi| |PollardSmallFactor| |message|
+ |updatD| |c02agf| |composites| |safeCeiling| |magnitude| |neglist|
+ |innerEigenvectors| |acot| |infinity| |rightTrim| |vark| |lyndonIfCan|
+ |iiacsc| |coercePreimagesImages| |explicitlyFinite?| |charpol|
+ |perfectNthRoot| |e01baf| |viewport2D| |asec| |obj| |leftTrim|
+ |pointLists| |commutativeEquality| |resultantnaif| |viewZoomDefault|
+ |setStatus| |factorial| |usingTable?| |balancedFactorisation|
+ |component| |acsc| |plusInfinity| |cache| |contains?| |oddintegers|
+ |iitanh| |rightAlternative?| |string?| |fractionFreeGauss!| |e02bef|
+ |FormatArabic| |setClosed| |sinh| |insertTop!| |minusInfinity|
+ |wordInGenerators| |name| |flexible?| |cycle| |clearTheFTable|
+ |SFunction| |invertibleSet| |validExponential| |firstNumer| |cosh|
+ |dom| |singular?| |janko2| |principal?| |associatorDependence|
+ |numerator| |recolor| |iiasinh| |mathieu24| |e02ddf| |label| |tanh|
+ |kernel| |iiacot| |df2ef| |fibonacci| |mesh?| |lazyVariations|
+ |gradient| |e02ahf| |approxSqrt| |cLog| |coth| |draw| |sin?|
+ |supersub| |rotatez| |monicModulo| |minimumDegree| |changeName|
+ |generalInfiniteProduct| |associative?| |OMgetVariable| |sech|
+ |computeCycleEntry| |sinhcosh| |degreePartition|
+ |removeRedundantFactorsInPols| |subResultantGcdEuclidean|
+ |univariatePolynomials| |f04asf| |setTopPredicate|
+ |semiDiscriminantEuclidean| |pointColorDefault| |linearAssociatedLog|
+ |selectIntegrationRoutines| |mkAnswer| |hermiteH| |minimumExponent|
+ |OMputError| |lazy?| |blankSeparate| |compdegd|
+ |zeroSetSplitIntoTriangularSystems| |infieldIntegrate| |Lazard2|
+ |monicRightDivide| |atanhIfCan| |title| |makeObject| |inc|
+ |complexLimit| |linearPolynomials| |generators| |froot| |graeffe|
+ |primaryDecomp| |f01qef| |f01qdf| |keys| |e| |cAtan| |coefChoose|
+ |plotPolar| |algebraicDecompose| |error| |splitLinear| |secIfCan|
+ |rightDiscriminant| |factors| |coef| |restorePrecision| |putGraph|
+ |LowTriBddDenomInv| |cosSinInfo| |simplifyExp| |assert| |localReal?|
+ |dimensions| |randomR| |lquo| |getlo| |failed?| |sayLength|
+ |flagFactor| |rightMinimalPolynomial| |categoryFrame|
+ |currentSubProgram| |opeval| |maxPoints3D| |getGraph|
+ |numberOfIrreduciblePoly| |OMsupportsCD?| |bezoutMatrix| |shiftRoots|
+ |outputGeneral| |leftAlternative?| |nextItem| |innerSolve| |setEmpty!|
+ |selectAndPolynomials| |closeComponent| |newSubProgram| |modulus|
+ |debug| |monic?| |differentialVariables| |pleskenSplit| |leftMult|
+ |subresultantVector| |option| |discreteLog| |unitNormalize|
+ |stopTable!| |algebraicCoefficients?| |scalarMatrix|
+ |functionIsFracPolynomial?| |antiCommutator| |ceiling|
+ |jordanAdmissible?| |subPolSet?| |selectOrPolynomials|
+ |companionBlocks| |makeResult| |cCsch| |d01apf| |argumentListOf|
+ |OMUnknownCD?| |getGoodPrime| |cAsech| |node| |stirling1| |s17dcf|
+ |nonLinearPart| |integralDerivationMatrix| |cyclic?| |distribute|
+ |overlabel| |constantOperator| |df2fi| |partialFraction| |entry|
+ |tablePow| |rewriteIdealWithRemainder| |finiteBound| |pointColor|
+ |every?| |OMbindTCP| |jacobiIdentity?| |dec| |compBound| |taylor|
+ |tanQ| |normalDenom| ** |llprop| |resetAttributeButtons| |insertRoot!|
+ |antiCommutative?| |tryFunctionalDecomposition?| |OMgetEndError|
+ |laurent| |possiblyInfinite?| |var1StepsDefault| |float|
+ |problemPoints| |constantOpIfCan| |linearAssociatedOrder|
+ |removeRoughlyRedundantFactorsInPols| |rightNorm|
+ |stosePrepareSubResAlgo| |tan2cot| |puiseux| |flexibleArray|
+ |minordet| |rootBound| |failed| |legendreP| |ranges| |cCsc| EQ
+ |s18acf| |palgint0| |symmetricTensors| |scale| |lfintegrate|
+ |basisOfCentroid| |midpoint| |nextPrimitiveNormalPoly| |integer?|
+ |composite| |inv| |seriesToOutputForm| |elRow2!| |interReduce|
+ |overbar| |LyndonCoordinates| |SturmHabichtSequence| |elem?|
+ |scripted?| |cycleTail| |ground?| |hdmpToP| |mightHaveRoots|
+ |setOfMinN| |npcoef| |internalIntegrate| |karatsubaDivide| |An|
+ |imagj| |hyperelliptic| |ground| |squareFreePart| |ravel|
+ |realElementary| |conjugate| |directory| |countRealRootsMultiple|
+ |thetaCoord| |gramschmidt| |lazyGintegrate| |leadingMonomial|
+ |purelyAlgebraicLeadingMonomial?| |rightUnit| |exp1| |element?|
+ |reshape| |f01ref| |simpleBounds?| |inf| |fixedPoint|
+ |leadingCoefficient| |rk4| |shuffle| |getZechTable|
+ |selectMultiDimensionalRoutines| |Hausdorff| |ramifiedAtInfinity?|
+ |mainVariable| |atanIfCan| |primitiveMonomials| |setMinPoints3D|
+ |e02ajf| GE |float?| |weight| |compiledFunction| |quasiRegular|
+ |extractProperty| |reductum| |elliptic| |f02awf| GT
+ |subscriptedVariables| |createLowComplexityNormalBasis| |divideIfCan|
+ |plus!| |polynomialZeros| |OMcloseConn| |rank| |log10| |henselFact| LE
+ |repSq| |nthr| |stoseInvertibleSetreg| |constantLeft| |traceMatrix|
+ |sample| |setFieldInfo| |perfectNthPower?| |makeSeries| LT
+ |normalizeIfCan| |OMserve| |mix| |update| |c06ebf| |tensorProduct|
+ |lprop| |sqfree| |s20adf| |integralMatrixAtInfinity| |f04qaf|
+ |zeroDimensional?| |trim| |s21baf| |pushuconst| |exactQuotient|
+ |lazyPseudoQuotient| |eq| |s17dlf| GF2FG |cscIfCan| |car| |f04jgf|
+ |setValue!| |lazyIrreducibleFactors| |sdf2lst| |determinant| |iter|
+ |diophantineSystem| |makeUnit| |unit| |maxint| |cdr| |s19aaf|
+ |randnum| |biRank| |sort| |virtualDegree| |push!| |permutation|
+ |setPosition| |quasiRegular?| |e02aef| |f01brf| |slex| |hasPredicate?|
+ |radicalEigenvector| |baseRDE| |LyndonBasis| |leadingBasisTerm|
+ |cross| |mergeDifference| |gcdprim| |quadraticNorm| |OMUnknownSymbol?|
+ |palgextint| |digamma| |listOfLists| |position| |laguerre| |nsqfree|
+ |moduleSum| |shiftRight| |coefficient| |generic?| |simplify|
+ |standardBasisOfCyclicSubmodule| |li| |log2| |denomRicDE| |evaluate|
+ |lSpaceBasis| |topFortranOutputStack| |moebius| |child| |random|
+ |f01maf| |deref| |curve?| |palgRDE0| |physicalLength| |hermite|
+ |infix| |diagonal| |cyclicParents| |extractTop!| |exp| |setprevious!|
+ |recur| |iiacos| |createRandomElement| |OMputBVar| |OMputEndAtp|
+ |expandTrigProducts| |btwFact| |currentScope| |simplifyPower|
+ |leftPower| |OMconnInDevice| |movedPoints| |rightExactQuotient|
+ |gderiv| |internalIntegrate0| |inverseLaplace| |monomRDE| |isExpt|
+ |acscIfCan| |removeRoughlyRedundantFactorsInContents| |bottom!|
+ |corrPoly| |region| |e02dcf| |tanSum|
+ |inverseIntegralMatrixAtInfinity| |acschIfCan| |maxdeg| |OMgetBVar|
+ |principalIdeal| |randomLC| |rules| |e01daf| |dioSolve|
+ |exponentialOrder| |unrankImproperPartitions0| |algDsolve| |subst|
+ |permutationRepresentation| |extendIfCan| |members| |lex| |medialSet|
+ |cot2tan| |interpretString| |kovacic| |prinb| |critMonD1|
+ |numFunEvals3D| |multiEuclidean| |optional?| |integralMatrix| |f01mcf|
+ |taylorRep| |contract| |getOperands| |closedCurve| |datalist| |e04ycf|
+ |pushdterm| |optpair| |polarCoordinates| |realRoots| |stirling2|
+ |trapezoidal| |mathieu23| |printStats!| |showArrayValues|
+ |doubleResultant| |f02axf| |implies| |stFunc2| |monomial?|
+ |normalized?| |tryFunctionalDecomposition| |sturmSequence|
+ |leftQuotient| |objects| |whatInfinity| |f07fef| |associatedEquations|
+ |xor| |LyndonWordsList1| |exQuo| |more?| |doubleRank| |minset| |base|
+ |subresultantSequence| |mantissa| |normDeriv2| |functionIsOscillatory|
+ |OMclose| |cSech| |removeDuplicates!| |critMTonD1| |getExplanations|
+ |nilFactor| |c06fuf| |nextSubsetGray| |possiblyNewVariety?| |double|
+ |internalInfRittWu?| |cosh2sech| |monicCompleteDecompose|
+ |semiSubResultantGcdEuclidean1| |radicalSimplify| |prefix|
+ |rightRemainder| |PDESolve| |finiteBasis| |genericLeftTraceForm|
+ |polyRicDE| |physicalLength!| |relerror| |diff| |mkcomm| |wreath|
+ |genericRightNorm| |squareFreeLexTriangular| |elRow1!| |term?| |pole?|
+ |hdmpToDmp| |brace| |cAcoth| |generalTwoFactor|
+ |clearFortranOutputStack| |identitySquareMatrix| |errorInfo| |points|
+ |convergents| |normalElement| |bfKeys| |test| |copies| |number?|
+ |mainCoefficients| |algSplitSimple| |supDimElseRittWu?| |partitions|
+ |initiallyReduced?| |bitTruth| |irreducibleFactors| |iiasin|
+ |splitSquarefree| |lintgcd| |resetBadValues| |d01ajf| |difference|
+ |internal?| |basisOfMiddleNucleus| |iiacsch| |remainder| |vedf2vef|
+ |cyclicEqual?| |relationsIdeal| |declare!| |solve| |OMgetAttr|
+ |Frobenius| |primPartElseUnitCanonical!| |exponents| |radicalSolve|
+ |viewWriteAvailable| |cyclicEntries| |logpart| |value|
+ |clipPointsDefault| |vertConcat| |lowerCase?|
+ |constantCoefficientRicDE| |cons| |moreAlgebraic?| |sincos|
+ |highCommonTerms| |sn| |outputForm| |antisymmetricTensors|
+ |mainMonomial| |deleteRoutine!| |curveColor| |squareFree| |chiSquare1|
+ |listYoungTableaus| |setScreenResolution| |complexNumericIfCan|
+ |shade| |indiceSubResultantEuclidean| |arrayStack| |primextendedint|
+ |ord| |numberOfDivisors| |halfExtendedSubResultantGcd2| |ODESolve|
+ |previous| |recoverAfterFail| |padicallyExpand| |orbit|
+ |resultantEuclidean| |e01sef| |iomode| |leftLcm| |acothIfCan|
+ |drawStyle| |fortranCharacter| |tree| |euler| |dihedral|
+ |stoseInvertibleSetsqfreg| |setsubMatrix!| |setButtonValue| |#|
+ |submod| |solveLinear| |zero| |normInvertible?| |rk4qc|
+ |oddInfiniteProduct| |split!| |column| |ScanFloatIgnoreSpacesIfCan|
+ |outputSpacing| |lllip| |cSinh| |e01bef| |iiexp| |factorPolynomial|
+ |decompose| |nextLatticePermutation| |And| |transcendentalDecompose|
+ |modularGcdPrimitive| |e02adf| |term| |fortranComplex| |leadingIdeal|
+ |leftUnits| |Or| |setProperty| |char| |reverse!| ^ |minPoints|
+ |adaptive?| |clearDenominator| |numberOfOperations| |e02gaf| |s17def|
+ |Not| |sum| |readLine!| |OMmakeConn| |aCubic| |OMputEndApp| |lexico|
+ |raisePolynomial| |listConjugateBases| |light| |polygon| |printTypes|
+ |stFunc1| |curryRight| |OMlistSymbols| |branchPointAtInfinity?|
+ |denominator| |viewPhiDefault| |s17dhf| |accuracyIF| |sort!|
+ |roughBase?| |upperCase!| |factorOfDegree| |ptFunc| |tubeRadius| |Ci|
+ |generalizedContinuumHypothesisAssumed| |makeMulti| |quoByVar|
+ |mainSquareFreePart| |stoseInvertibleSet| |rightRankPolynomial|
+ |generalizedInverse| |fillPascalTriangle| |logical?| |numerators|
+ |power!| |mapmult| |OMreceive| |subset?| |bit?| |imagI|
+ |mapUnivariate| |s15aef| |basisOfCommutingElements| |sequences|
+ |iprint| |orbits| |Zero| |ode2| |unaryFunction|
+ |factorSquareFreeByRecursion| |Aleph| |clearTable!| |palgint|
+ |buildSyntax| |intcompBasis| |stronglyReduced?| |setMaxPoints| |One|
+ |rCoord| |getMultiplicationMatrix| |f2df| |smith| |minPol| |ode1|
+ |symmetricSquare| |e02def| |spherical| |genericPosition| |c06gsf|
+ |solve1| |digit?| |comp| |lazyPremWithDefault| |lhs| |rightTrace|
+ |curry| |rischDEsys| |rombergo| |bumprow| |hcrf| |scalarTypeOf|
+ |primlimintfrac| |rhs| |radicalOfLeftTraceForm| |indices| |expandLog|
+ |collectUnder| |stronglyReduce| |constructorName| |conical|
+ |associator| |f2st| |bipolarCylindrical| |matrixGcd| |belong?|
+ |endSubProgram| |tanNa| |minPoints3D| |logIfCan|
+ |numericalOptimization| |exactQuotient!| |next| |int| |showTheIFTable|
+ |makeSUP| |push| |groebnerIdeal| |torsionIfCan| |setvalue!| |critT|
+ |leftMinimalPolynomial| |qelt| |binomThmExpt| |forLoop| |mainValue|
+ |unparse| |primextintfrac| |rightRecip| |sts2stst| |roughUnitIdeal?|
+ |systemCommand| |makeCos| |reduceBasisAtInfinity| |createZechTable|
+ |asinIfCan| |cyclicCopy| |sinh2csch| |viewWriteDefault| |any?|
+ |removeCoshSq| |dequeue!| |outputAsTex| |tanh2trigh| |rightDivide|
+ |selectPDERoutines| |approximants| |createNormalPoly| |polar|
+ |generalSqFr| |perfectSquare?| |semiDegreeSubResultantEuclidean|
+ |SturmHabichtMultiple| |viewSizeDefault| |normal|
+ |genericLeftMinimalPolynomial| |f04adf| |uniform| |drawComplex|
+ |lfunc| |getStream| |lighting| |leftGcd| |e02bcf|
+ |selectFiniteRoutines| |compactFraction| |reducedDiscriminant|
+ |simpsono| |coordinates| |mpsode| |homogeneous?| |iiasec| |delete!|
+ |append| |lexGroebner| |d01amf| |univariatePolynomialsGcds| |floor|
+ |positive?| |safetyMargin| |genericLeftDiscriminant| |scan|
+ |eyeDistance| |bivariatePolynomials| |extractPoint| |dflist| NOT
+ |delete| |dmpToP| |duplicates| |realZeros| |mathieu22| |removeZeroes|
+ |bfEntry| |leftRemainder| |nextIrreduciblePoly| |minGbasis|
+ |primintfldpoly| |cAcosh| OR |setAttributeButtonStep| |jordanAlgebra?|
+ |cSec| |assign| |setMaxPoints3D| |order| |showTypeInOutput|
+ |repeatUntilLoop| |prime| |UpTriBddDenomInv| |extend| AND
+ |zeroDimPrimary?| |overset?| |e04jaf| |OMread| |squareFreeFactors|
+ |reseed| |bezoutDiscriminant| |complexZeros|
+ |factorSquareFreePolynomial| |euclideanSize| |testDim| |green|
+ |infieldint| |rightMult| |legendre| |printCode| |lazyIntegrate|
+ |halfExtendedSubResultantGcd1| |unit?| |dihedralGroup| |leftFactor|
+ |removeSuperfluousCases| |palgRDE| |substring?| |localAbs|
+ |cyclicGroup| |algint| |screenResolution3D| |fTable| |nthFactor|
+ |loopPoints| |duplicates?| |subTriSet?| |linearDependenceOverZ|
+ |evenlambert| |modifyPointData| |stiffnessAndStabilityOfODEIF|
+ |times!| |iiGamma| |asimpson| |OMputObject| |equiv?| |complement|
+ |separateDegrees| |d03edf| |represents| |OMencodingSGML| |suffix?|
+ |printingInfo?| |block| |pushNewContour| |create|
+ |showIntensityFunctions| |interpolate| |empty| |palgextint0|
+ |setLabelValue| |iiatan| |GospersMethod| |reindex| |totalDegree|
+ |doubleDisc| |basisOfCenter| |localIntegralBasis| |adjoint|
+ |leastMonomial| |brillhartIrreducible?| |comparison| |boundOfCauchy|
+ |linearDependence| |zCoord| |prefix?| |unmakeSUP| |xRange|
+ |colorFunction| |setCondition!| |external?| |OMunhandledSymbol|
+ |nullity| |extractSplittingLeaf| |sinIfCan| |init| |cothIfCan|
+ |basisOfNucleus| |elementary| |eigenvalues| |jacobian| |yRange|
+ |nthExponent| |scaleRoots| |f04faf| |semiResultantEuclideannaif|
+ |notelem| |multisect| |central?| |nthCoef| |f02bjf| |LazardQuotient|
+ |att2Result| |myDegree| |zRange| |createPrimitivePoly| |imagk|
+ |argument| |rarrow| |f01bsf| |finite?| |schwerpunkt|
+ |leftExactQuotient| |makeVariable| |lists| |eigenvector|
+ |createLowComplexityTable| |shellSort| |tail| |bits| |parts| |map!| *
+ |euclideanGroebner| |gcdPrimitive| RF2UTS |atrapezoidal| |components|
+ |subNode?| |complexNormalize| |OMgetAtp| |cAcsc| |lift| |topPredicate|
+ LODO2FUN |top!| |generalPosition| |qsetelt!| |basis|
+ |antiAssociative?| |pack!| |OMReadError?| |remove!| |largest|
+ |mapExponents| |flatten| |setelt!| |reduce| |eigenvectors| |realSolve|
+ |ratPoly| |qPot| |trace2PowMod| |lllp| |symmetricRemainder|
+ |solveLinearPolynomialEquationByFractions| |s15adf| |trigs|
+ |complexExpand| |OMputVariable| |alternative?| |invertible?|
+ |generateIrredPoly| |f04atf| |infix?| |integralBasis| |countable?|
+ |iifact| |extendedEuclidean| |maxRowIndex| |genericRightDiscriminant|
+ |closed?| F2FG |arguments| |rightOne| |pol| |mask| |setPredicates|
+ |choosemon| |mapGen| |f02aaf| |approximate| |OMsend| |setEpilogue!|
+ |commaSeparate| |rischDE| |mdeg| |normalForm|
+ |extendedSubResultantGcd| |univcase| |meatAxe| |indicialEquations|
+ |subCase?| |multinomial| |complex| |hue| |HenselLift| |goodnessOfFit|
+ |subHeight| |coefficients| |constantRight| |euclideanNormalForm|
+ |limitedIntegrate| |e02akf| |se2rfi| |isOp| |mr| |acsch| |OMreadFile|
+ |setProperties| |cCos| |primintegrate| |superscript| |c06ecf|
+ |factorList| |d01aqf| |fractionPart| |factorAndSplit|
+ |mapUnivariateIfCan| |balancedBinaryTree| |completeEchelonBasis|
+ |changeNameToObjf| |nil?| |genus| |mapExpon| |quoted?| |reset|
+ |rootOf| |leastPower| |d01gbf| |permanent| |diagonals| |s17adf|
+ |multiplyCoefficients| |rightQuotient| |withPredicates| |coth2tanh|
+ |algintegrate| |f04axf| |doubleFloatFormat| |outerProduct|
+ |associates?| |lastSubResultantElseSplit| |vectorise| |sh| |whileLoop|
+ |stoseInternalLastSubResultant| |integralLastSubResultant| |simpson|
+ |OMgetType| |tanhIfCan| |collectQuasiMonic| |write|
+ |stoseLastSubResultant| |relativeApprox| |findCycle|
+ |matrixDimensions| |subspace| |iidprod| |save| |reducedQPowers|
+ |stack| |addPointLast| |viewDeltaYDefault| |polyred| |roughSubIdeal?|
+ |factor1| |subResultantGcd| |empty?| |lifting1| |rationalPower|
+ |fortranLiteralLine| |basicSet| |dictionary| |currentEnv| |f02agf|
+ |mainKernel| |tubePointsDefault| |imagi| |roughEqualIdeals?|
+ |showFortranOutputStack| |bandedJacobian| |or| |untab| |OMgetApp|
+ |head| |integralBasisAtInfinity| |addmod| |predicate| |cAsinh|
+ |numberOfCycles| |listexp| |OMputString| |explicitEntries?|
+ |patternMatch| |invertIfCan| |deriv| |rightCharacteristicPolynomial|
+ |and| |toroidal| |screenResolution| |orOperands| |lazyResidueClass|
+ |laurentIfCan| |binaryTree| |errorKind| |compound?|
+ |stripCommentsAndBlanks| |coerceP| |aromberg| |lfextlimint| |heap|
+ |completeSmith| |readable?| |explicitlyEmpty?| |zeroOf| |mkIntegral|
+ |commutative?| |approxNthRoot| |intChoose| |fractRagits| |minus!|
+ |prevPrime| |weights| |startTable!| |power| |permutationGroup|
+ |aQuadratic| |read!| |OMputEndObject| |lp| |reduction| |monomial|
+ |eulerPhi| |f02wef| |monomials| |typeList| |groebner| F |iibinom|
+ |iCompose| |goodPoint| |s17akf| |algebraicOf| |critBonD|
+ |quadraticForm| |semiResultantReduitEuclidean| |limitPlus| |twoFactor|
+ |integralCoordinates| |pdf2df| |internalLastSubResultant| |pquo|
+ |symFunc| |morphism| |monomRDEsys| |multivariate|
+ |monicDecomposeIfCan| |totalLex| |isQuotient| |diagonalMatrix|
+ |dimension| |quadratic| |droot| |credPol| |maxPoints| |arg1| |minrank|
+ |edf2efi| |numberOfNormalPoly| |extract!| |rectangularMatrix| |f02aef|
+ |variables| |makeYoungTableau| |queue| |groebSolve| |regime| |insert!|
+ |ellipticCylindrical| |arg2| |f02ajf| |getMatch| |cycleRagits|
+ |directSum| |sin2csc| |iiatanh| |generalizedEigenvector| |multMonom|
+ |varList| |c05pbf| |expIfCan| |ScanFloatIgnoreSpaces| |exponential1|
+ |ignore?| |tRange| |fortranDoubleComplex| |indiceSubResultant|
+ |identification| |s17ahf| |position!| |divisor| |noLinearFactor?|
+ |idealiserMatrix| |dark| |hasTopPredicate?| |presub| |overlap|
+ |zeroSetSplit| |f04mbf| |aspFilename| |OMencodingBinary|
+ |prefixRagits| |conditions| |eisensteinIrreducible?| |maxColIndex|
+ |generalizedContinuumHypothesisAssumed?| |wholeRadix| |e01sff|
+ |s17acf| |degreeSubResultantEuclidean| |nodes| |curveColorPalette|
+ |triangular?| |size?| |leftRegularRepresentation| |leftOne| |ffactor|
+ |trigs2explogs| |pushup| |parent| |match| |OMwrite| |equiv| |hash|
+ |pseudoQuotient| |sumOfDivisors| |weierstrass| |height| |weighted|
+ |ParCond| |divideExponents| |sqfrFactor| |rootSplit| |operators|
+ |complexForm| |pointData| |reduceByQuasiMonic| |concat|
+ |roughBasicSet| |returnType!| |count| |d03eef| |branchPoint?|
+ |palgintegrate| |redPol| |f02akf| |rootKerSimp| |addMatch| |makeprod|
+ |operation| |inverseIntegralMatrix| |factorsOfCyclicGroupSize|
+ |wordInStrongGenerators| |hitherPlane| |returns| |subMatrix|
+ |reducedForm| |printStatement| |dfRange| |sorted?| |quatern|
+ |outputAsScript| |invertibleElseSplit?| |repeating|
+ |createGenericMatrix| |isPlus| |insertBottom!| |edf2fi|
+ |showTheRoutinesTable| |modTree| |cTanh| |domainOf| |firstSubsetGray|
+ |swap| |rationalApproximation| |hasoln| |unvectorise| |besselI|
+ |simplifyLog| |denominators| |nodeOf?| |mapDown!| |graphs|
+ |parabolicCylindrical| |autoReduced?| |leastAffineMultiple| |eulerE|
+ |intPatternMatch| |torsion?| |cAcos| |shallowCopy| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index d6655bf6..82e18229 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4899 +1,4903 @@
-(3136382 . 3409817897)
-((-2299 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1216 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-2396 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-1132 (-521)) |#2|) 34)) (-3288 (($ $) 59)) (-3859 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3236 (((-521) (-1 (-108) |#2|) $) 22) (((-521) |#2| $) NIL) (((-521) |#2| $ (-521)) 71)) (-3831 (((-587 |#2|) $) 13)) (-3389 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3833 (($ (-1 |#2| |#2|) $) 29)) (-1393 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1696 (($ |#2| $ (-521)) NIL) (($ $ $ (-521)) 50)) (-3733 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-1936 (((-108) (-1 (-108) |#2|) $) 21)) (-2550 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) NIL) (($ $ (-1132 (-521))) 49)) (-3694 (($ $ (-521)) 56) (($ $ (-1132 (-521))) 55)) (-4163 (((-707) (-1 (-108) |#2|) $) 26) (((-707) |#2| $) NIL)) (-3448 (($ $ $ (-521)) 52)) (-2420 (($ $) 51)) (-2234 (($ (-587 |#2|)) 53)) (-4159 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-587 $)) 62)) (-2223 (((-791) $) 69)) (-2006 (((-108) (-1 (-108) |#2|) $) 20)) (-1549 (((-108) $ $) 70)) (-1569 (((-108) $ $) 73)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -3448 (|#1| |#1| |#1| (-521))) (-15 -2299 ((-108) |#1|)) (-15 -3389 (|#1| |#1| |#1|)) (-15 -3236 ((-521) |#2| |#1| (-521))) (-15 -3236 ((-521) |#2| |#1|)) (-15 -3236 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -2299 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3389 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2396 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -3694 (|#1| |#1| (-1132 (-521)))) (-15 -3694 (|#1| |#1| (-521))) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -3733 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2550 (|#2| |#1| (-521))) (-15 -2550 (|#2| |#1| (-521) |#2|)) (-15 -2396 (|#2| |#1| (-521) |#2|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2420 (|#1| |#1|))) (-19 |#2|) (-1119)) (T -18))
-NIL
-(-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3288 (|#1| |#1|)) (-15 -3448 (|#1| |#1| |#1| (-521))) (-15 -2299 ((-108) |#1|)) (-15 -3389 (|#1| |#1| |#1|)) (-15 -3236 ((-521) |#2| |#1| (-521))) (-15 -3236 ((-521) |#2| |#1|)) (-15 -3236 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -2299 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3389 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2396 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -3694 (|#1| |#1| (-1132 (-521)))) (-15 -3694 (|#1| |#1| (-521))) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -3733 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2550 (|#2| |#1| (-521))) (-15 -2550 (|#2| |#1| (-521) |#2|)) (-15 -2396 (|#2| |#1| (-521) |#2|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2420 (|#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-3288 (($ $) 90 (|has| $ (-6 -4234)))) (-1924 (($ $) 100)) (-2354 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3236 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 87 (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 86 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 42 (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2995 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1588 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 82 (|has| |#1| (-783)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-19 |#1|) (-1196) (-1119)) (T -19))
-NIL
-(-13 (-347 |t#1|) (-10 -7 (-6 -4234)))
-(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-1119) . T))
-((-2057 (((-3 $ "failed") $ $) 12)) (-1639 (($ $) NIL) (($ $ $) 9)) (* (($ (-849) $) NIL) (($ (-707) $) 16) (($ (-521) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -2057 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -2057 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20)))
-(((-21) (-1196)) (T -21))
-((-1639 (*1 *1 *1) (-4 *1 (-21))) (-1639 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-521)))))
-(-13 (-124) (-10 -8 (-15 -1639 ($ $)) (-15 -1639 ($ $ $)) (-15 * ($ (-521) $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-3398 (((-108) $) 10)) (-2231 (($) 15)) (* (($ (-849) $) 14) (($ (-707) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-707) |#1|)) (-15 -3398 ((-108) |#1|)) (-15 -2231 (|#1|)) (-15 * (|#1| (-849) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-707) |#1|)) (-15 -3398 ((-108) |#1|)) (-15 -2231 (|#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15)))
-(((-23) (-1196)) (T -23))
-((-3562 (*1 *1) (-4 *1 (-23))) (-2231 (*1 *1) (-4 *1 (-23))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-707)))))
-(-13 (-25) (-10 -8 (-15 (-3562) ($) -2682) (-15 -2231 ($) -2682) (-15 -3398 ((-108) $)) (-15 * ($ (-707) $))))
-(((-25) . T) ((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((* (($ (-849) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-849) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13)))
-(((-25) (-1196)) (T -25))
-((-1628 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-849)))))
-(-13 (-1013) (-10 -8 (-15 -1628 ($ $ $)) (-15 * ($ (-849) $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-3144 (((-587 $) (-880 $)) 29) (((-587 $) (-1080 $)) 16) (((-587 $) (-1080 $) (-1084)) 20)) (-1260 (($ (-880 $)) 27) (($ (-1080 $)) 11) (($ (-1080 $) (-1084)) 54)) (-1678 (((-587 $) (-880 $)) 30) (((-587 $) (-1080 $)) 18) (((-587 $) (-1080 $) (-1084)) 19)) (-1444 (($ (-880 $)) 28) (($ (-1080 $)) 13) (($ (-1080 $) (-1084)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3144 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3144 ((-587 |#1|) (-1080 |#1|))) (-15 -3144 ((-587 |#1|) (-880 |#1|))) (-15 -1260 (|#1| (-1080 |#1|) (-1084))) (-15 -1260 (|#1| (-1080 |#1|))) (-15 -1260 (|#1| (-880 |#1|))) (-15 -1678 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -1678 ((-587 |#1|) (-1080 |#1|))) (-15 -1678 ((-587 |#1|) (-880 |#1|))) (-15 -1444 (|#1| (-1080 |#1|) (-1084))) (-15 -1444 (|#1| (-1080 |#1|))) (-15 -1444 (|#1| (-880 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3144 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3144 ((-587 |#1|) (-1080 |#1|))) (-15 -3144 ((-587 |#1|) (-880 |#1|))) (-15 -1260 (|#1| (-1080 |#1|) (-1084))) (-15 -1260 (|#1| (-1080 |#1|))) (-15 -1260 (|#1| (-880 |#1|))) (-15 -1678 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -1678 ((-587 |#1|) (-1080 |#1|))) (-15 -1678 ((-587 |#1|) (-880 |#1|))) (-15 -1444 (|#1| (-1080 |#1|) (-1084))) (-15 -1444 (|#1| (-1080 |#1|))) (-15 -1444 (|#1| (-880 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3144 (((-587 $) (-880 $)) 80) (((-587 $) (-1080 $)) 79) (((-587 $) (-1080 $) (-1084)) 78)) (-1260 (($ (-880 $)) 83) (($ (-1080 $)) 82) (($ (-1080 $) (-1084)) 81)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-1984 (($ $) 92)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-1678 (((-587 $) (-880 $)) 86) (((-587 $) (-1080 $)) 85) (((-587 $) (-1080 $) (-1084)) 84)) (-1444 (($ (-880 $)) 89) (($ (-1080 $)) 88) (($ (-1080 $) (-1084)) 87)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2100 (((-108) $) 71)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 91)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 64)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 90)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
-(((-27) (-1196)) (T -27))
-((-1444 (*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27)))) (-1444 (*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27)))) (-1444 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1678 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27)))) (-1260 (*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27)))) (-1260 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27)) (-5 *2 (-587 *1)))))
-(-13 (-337) (-927) (-10 -8 (-15 -1444 ($ (-880 $))) (-15 -1444 ($ (-1080 $))) (-15 -1444 ($ (-1080 $) (-1084))) (-15 -1678 ((-587 $) (-880 $))) (-15 -1678 ((-587 $) (-1080 $))) (-15 -1678 ((-587 $) (-1080 $) (-1084))) (-15 -1260 ($ (-880 $))) (-15 -1260 ($ (-1080 $))) (-15 -1260 ($ (-1080 $) (-1084))) (-15 -3144 ((-587 $) (-880 $))) (-15 -3144 ((-587 $) (-1080 $))) (-15 -3144 ((-587 $) (-1080 $) (-1084)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-927) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-3144 (((-587 $) (-880 $)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-1080 $) (-1084)) 50) (((-587 $) $) 19) (((-587 $) $ (-1084)) 41)) (-1260 (($ (-880 $)) NIL) (($ (-1080 $)) NIL) (($ (-1080 $) (-1084)) 52) (($ $) 17) (($ $ (-1084)) 37)) (-1678 (((-587 $) (-880 $)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-1080 $) (-1084)) 48) (((-587 $) $) 15) (((-587 $) $ (-1084)) 43)) (-1444 (($ (-880 $)) NIL) (($ (-1080 $)) NIL) (($ (-1080 $) (-1084)) NIL) (($ $) 12) (($ $ (-1084)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3144 ((-587 |#1|) |#1| (-1084))) (-15 -1260 (|#1| |#1| (-1084))) (-15 -3144 ((-587 |#1|) |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -1678 ((-587 |#1|) |#1| (-1084))) (-15 -1444 (|#1| |#1| (-1084))) (-15 -1678 ((-587 |#1|) |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -3144 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3144 ((-587 |#1|) (-1080 |#1|))) (-15 -3144 ((-587 |#1|) (-880 |#1|))) (-15 -1260 (|#1| (-1080 |#1|) (-1084))) (-15 -1260 (|#1| (-1080 |#1|))) (-15 -1260 (|#1| (-880 |#1|))) (-15 -1678 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -1678 ((-587 |#1|) (-1080 |#1|))) (-15 -1678 ((-587 |#1|) (-880 |#1|))) (-15 -1444 (|#1| (-1080 |#1|) (-1084))) (-15 -1444 (|#1| (-1080 |#1|))) (-15 -1444 (|#1| (-880 |#1|)))) (-29 |#2|) (-13 (-783) (-513))) (T -28))
-NIL
-(-10 -8 (-15 -3144 ((-587 |#1|) |#1| (-1084))) (-15 -1260 (|#1| |#1| (-1084))) (-15 -3144 ((-587 |#1|) |#1|)) (-15 -1260 (|#1| |#1|)) (-15 -1678 ((-587 |#1|) |#1| (-1084))) (-15 -1444 (|#1| |#1| (-1084))) (-15 -1678 ((-587 |#1|) |#1|)) (-15 -1444 (|#1| |#1|)) (-15 -3144 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -3144 ((-587 |#1|) (-1080 |#1|))) (-15 -3144 ((-587 |#1|) (-880 |#1|))) (-15 -1260 (|#1| (-1080 |#1|) (-1084))) (-15 -1260 (|#1| (-1080 |#1|))) (-15 -1260 (|#1| (-880 |#1|))) (-15 -1678 ((-587 |#1|) (-1080 |#1|) (-1084))) (-15 -1678 ((-587 |#1|) (-1080 |#1|))) (-15 -1678 ((-587 |#1|) (-880 |#1|))) (-15 -1444 (|#1| (-1080 |#1|) (-1084))) (-15 -1444 (|#1| (-1080 |#1|))) (-15 -1444 (|#1| (-880 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3144 (((-587 $) (-880 $)) 80) (((-587 $) (-1080 $)) 79) (((-587 $) (-1080 $) (-1084)) 78) (((-587 $) $) 126) (((-587 $) $ (-1084)) 124)) (-1260 (($ (-880 $)) 83) (($ (-1080 $)) 82) (($ (-1080 $) (-1084)) 81) (($ $) 127) (($ $ (-1084)) 125)) (-3398 (((-108) $) 16)) (-4085 (((-587 (-1084)) $) 201)) (-1280 (((-381 (-1080 $)) $ (-560 $)) 233 (|has| |#1| (-513)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-1946 (((-587 (-560 $)) $) 164)) (-2057 (((-3 $ "failed") $ $) 19)) (-3304 (($ $ (-587 (-560 $)) (-587 $)) 154) (($ $ (-587 (-269 $))) 153) (($ $ (-269 $)) 152)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-1984 (($ $) 92)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-1678 (((-587 $) (-880 $)) 86) (((-587 $) (-1080 $)) 85) (((-587 $) (-1080 $) (-1084)) 84) (((-587 $) $) 130) (((-587 $) $ (-1084)) 128)) (-1444 (($ (-880 $)) 89) (($ (-1080 $)) 88) (($ (-1080 $) (-1084)) 87) (($ $) 131) (($ $ (-1084)) 129)) (-1296 (((-3 (-880 |#1|) "failed") $) 251 (|has| |#1| (-970))) (((-3 (-381 (-880 |#1|)) "failed") $) 235 (|has| |#1| (-513))) (((-3 |#1| "failed") $) 197) (((-3 (-521) "failed") $) 195 (|has| |#1| (-961 (-521)))) (((-3 (-1084) "failed") $) 188) (((-3 (-560 $) "failed") $) 139) (((-3 (-381 (-521)) "failed") $) 123 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-1496 (((-880 |#1|) $) 252 (|has| |#1| (-970))) (((-381 (-880 |#1|)) $) 236 (|has| |#1| (-513))) ((|#1| $) 198) (((-521) $) 194 (|has| |#1| (-961 (-521)))) (((-1084) $) 189) (((-560 $) $) 140) (((-381 (-521)) $) 122 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-2302 (($ $ $) 55)) (-1961 (((-627 |#1|) (-627 $)) 241 (|has| |#1| (-970))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 240 (|has| |#1| (-970))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 121 (-3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (((-627 (-521)) (-627 $)) 120 (-3703 (-4009 (|has| |#1| (-970)) (|has| |#1| (-583 (-521)))) (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2100 (((-108) $) 71)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 193 (|has| |#1| (-814 (-353)))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 192 (|has| |#1| (-814 (-521))))) (-2707 (($ (-587 $)) 158) (($ $) 157)) (-2788 (((-587 (-110)) $) 165)) (-3928 (((-110) (-110)) 166)) (-3637 (((-108) $) 31)) (-3924 (((-108) $) 186 (|has| $ (-961 (-521))))) (-2399 (($ $) 218 (|has| |#1| (-970)))) (-2807 (((-1036 |#1| (-560 $)) $) 217 (|has| |#1| (-970)))) (-3743 (($ $ (-521)) 91)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-3159 (((-1080 $) (-560 $)) 183 (|has| $ (-970)))) (-2816 (($ $ $) 137)) (-2459 (($ $ $) 136)) (-1393 (($ (-1 $ $) (-560 $)) 172)) (-1656 (((-3 (-560 $) "failed") $) 162)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-1266 (((-587 (-560 $)) $) 163)) (-2911 (($ (-110) (-587 $)) 171) (($ (-110) $) 170)) (-3722 (((-3 (-587 $) "failed") $) 212 (|has| |#1| (-1025)))) (-3390 (((-3 (-2 (|:| |val| $) (|:| -2246 (-521))) "failed") $) 221 (|has| |#1| (-970)))) (-4141 (((-3 (-587 $) "failed") $) 214 (|has| |#1| (-25)))) (-4148 (((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3262 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-1084)) 220 (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-110)) 219 (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $) 213 (|has| |#1| (-1025)))) (-4013 (((-108) $ (-1084)) 169) (((-108) $ (-110)) 168)) (-3100 (($ $) 70)) (-4151 (((-707) $) 161)) (-4146 (((-1031) $) 10)) (-3110 (((-108) $) 199)) (-3120 ((|#1| $) 200)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-3457 (((-108) $ (-1084)) 174) (((-108) $ $) 173)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2060 (((-108) $) 185 (|has| $ (-961 (-521))))) (-2313 (($ $ (-1084) (-707) (-1 $ $)) 225 (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ (-587 $))) 224 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) 223 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) 222 (|has| |#1| (-970))) (($ $ (-587 (-110)) (-587 $) (-1084)) 211 (|has| |#1| (-562 (-497)))) (($ $ (-110) $ (-1084)) 210 (|has| |#1| (-562 (-497)))) (($ $) 209 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084))) 208 (|has| |#1| (-562 (-497)))) (($ $ (-1084)) 207 (|has| |#1| (-562 (-497)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-587 $))) 181) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 180) (($ $ (-587 (-110)) (-587 (-1 $ $))) 179) (($ $ (-1084) (-1 $ $)) 178) (($ $ (-1084) (-1 $ (-587 $))) 177) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 176) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 175) (($ $ (-587 $) (-587 $)) 146) (($ $ $ $) 145) (($ $ (-269 $)) 144) (($ $ (-587 (-269 $))) 143) (($ $ (-587 (-560 $)) (-587 $)) 142) (($ $ (-560 $) $) 141)) (-3794 (((-707) $) 58)) (-2550 (($ (-110) (-587 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-1935 (($ $ $) 160) (($ $) 159)) (-2193 (($ $ (-1084)) 249 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 248 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 247 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) 246 (|has| |#1| (-970)))) (-2259 (($ $) 228 (|has| |#1| (-513)))) (-2818 (((-1036 |#1| (-560 $)) $) 227 (|has| |#1| (-513)))) (-3436 (($ $) 184 (|has| $ (-970)))) (-1438 (((-497) $) 255 (|has| |#1| (-562 (-497)))) (($ (-392 $)) 226 (|has| |#1| (-513))) (((-820 (-353)) $) 191 (|has| |#1| (-562 (-820 (-353))))) (((-820 (-521)) $) 190 (|has| |#1| (-562 (-820 (-521)))))) (-1484 (($ $ $) 254 (|has| |#1| (-446)))) (-2062 (($ $ $) 253 (|has| |#1| (-446)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ (-880 |#1|)) 250 (|has| |#1| (-970))) (($ (-381 (-880 |#1|))) 234 (|has| |#1| (-513))) (($ (-381 (-880 (-381 |#1|)))) 232 (|has| |#1| (-513))) (($ (-880 (-381 |#1|))) 231 (|has| |#1| (-513))) (($ (-381 |#1|)) 230 (|has| |#1| (-513))) (($ (-1036 |#1| (-560 $))) 216 (|has| |#1| (-970))) (($ |#1|) 196) (($ (-1084)) 187) (($ (-560 $)) 138)) (-2446 (((-3 $ "failed") $) 239 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-2342 (($ (-587 $)) 156) (($ $) 155)) (-1224 (((-108) (-110)) 167)) (-1842 (((-108) $ $) 39)) (-1862 (($ (-1084) (-587 $)) 206) (($ (-1084) $ $ $ $) 205) (($ (-1084) $ $ $) 204) (($ (-1084) $ $) 203) (($ (-1084) $) 202)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-1084)) 245 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 244 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 243 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) 242 (|has| |#1| (-970)))) (-1597 (((-108) $ $) 134)) (-1579 (((-108) $ $) 133)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 135)) (-1569 (((-108) $ $) 132)) (-1648 (($ $ $) 64) (($ (-1036 |#1| (-560 $)) (-1036 |#1| (-560 $))) 229 (|has| |#1| (-513)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 90)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-157))) (($ |#1| $) 237 (|has| |#1| (-157)))))
-(((-29 |#1|) (-1196) (-13 (-783) (-513))) (T -29))
-((-1444 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-513))))) (-1678 (*1 *2 *1) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))) (-1444 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-513))))) (-1678 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))) (-1260 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-513))))) (-3144 (*1 *2 *1) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))) (-1260 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-513))))) (-3144 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-404 |t#1|) (-10 -8 (-15 -1444 ($ $)) (-15 -1678 ((-587 $) $)) (-15 -1444 ($ $ (-1084))) (-15 -1678 ((-587 $) $ (-1084))) (-15 -1260 ($ $)) (-15 -3144 ((-587 $) $)) (-15 -1260 ($ $ (-1084))) (-15 -3144 ((-587 $) $ (-1084)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-820 (-353))) |has| |#1| (-562 (-820 (-353)))) ((-562 (-820 (-521))) |has| |#1| (-562 (-820 (-521)))) ((-220) . T) ((-265) . T) ((-282) . T) ((-284 $) . T) ((-277) . T) ((-337) . T) ((-351 |#1|) |has| |#1| (-970)) ((-374 |#1|) . T) ((-385 |#1|) . T) ((-404 |#1|) . T) ((-425) . T) ((-446) |has| |#1| (-446)) ((-482 (-560 $) $) . T) ((-482 $ $) . T) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) |has| |#1| (-157)) ((-589 $) . T) ((-583 (-521)) -12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) ((-583 |#1|) |has| |#1| (-970)) ((-654 #0#) . T) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) . T) ((-663) . T) ((-783) . T) ((-828 (-1084)) |has| |#1| (-970)) ((-814 (-353)) |has| |#1| (-814 (-353))) ((-814 (-521)) |has| |#1| (-814 (-521))) ((-812 |#1|) . T) ((-848) . T) ((-927) . T) ((-961 (-381 (-521))) -3703 (|has| |#1| (-961 (-381 (-521)))) (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) ((-961 (-381 (-880 |#1|))) |has| |#1| (-513)) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 (-560 $)) . T) ((-961 (-880 |#1|)) |has| |#1| (-970)) ((-961 (-1084)) . T) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) |has| |#1| (-157)) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1119) . T) ((-1123) . T))
-((-3803 (((-1008 (-202)) $) NIL)) (-3789 (((-1008 (-202)) $) NIL)) (-2760 (($ $ (-202)) 123)) (-3546 (($ (-880 (-521)) (-1084) (-1084) (-1008 (-381 (-521))) (-1008 (-381 (-521)))) 85)) (-3633 (((-587 (-587 (-871 (-202)))) $) 135)) (-2223 (((-791) $) 147)))
-(((-30) (-13 (-882) (-10 -8 (-15 -3546 ($ (-880 (-521)) (-1084) (-1084) (-1008 (-381 (-521))) (-1008 (-381 (-521))))) (-15 -2760 ($ $ (-202)))))) (T -30))
-((-3546 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-880 (-521))) (-5 *3 (-1084)) (-5 *4 (-1008 (-381 (-521)))) (-5 *1 (-30)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30)))))
-(-13 (-882) (-10 -8 (-15 -3546 ($ (-880 (-521)) (-1084) (-1084) (-1008 (-381 (-521))) (-1008 (-381 (-521))))) (-15 -2760 ($ $ (-202)))))
-((-1444 ((|#2| (-1080 |#2|) (-1084)) 42)) (-3928 (((-110) (-110)) 55)) (-3159 (((-1080 |#2|) (-560 |#2|)) 131 (|has| |#1| (-961 (-521))))) (-2593 ((|#2| |#1| (-521)) 110 (|has| |#1| (-961 (-521))))) (-3475 ((|#2| (-1080 |#2|) |#2|) 30)) (-1264 (((-791) (-587 |#2|)) 86)) (-3436 ((|#2| |#2|) 127 (|has| |#1| (-961 (-521))))) (-1224 (((-108) (-110)) 18)) (** ((|#2| |#2| (-381 (-521))) 91 (|has| |#1| (-961 (-521))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -1444 (|#2| (-1080 |#2|) (-1084))) (-15 -3928 ((-110) (-110))) (-15 -1224 ((-108) (-110))) (-15 -3475 (|#2| (-1080 |#2|) |#2|)) (-15 -1264 ((-791) (-587 |#2|))) (IF (|has| |#1| (-961 (-521))) (PROGN (-15 ** (|#2| |#2| (-381 (-521)))) (-15 -3159 ((-1080 |#2|) (-560 |#2|))) (-15 -3436 (|#2| |#2|)) (-15 -2593 (|#2| |#1| (-521)))) |%noBranch|)) (-13 (-783) (-513)) (-404 |#1|)) (T -31))
-((-2593 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-4 *2 (-404 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-961 *4)) (-4 *3 (-13 (-783) (-513))))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-961 (-521))) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-31 *3 *2)) (-4 *2 (-404 *3)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-560 *5)) (-4 *5 (-404 *4)) (-4 *4 (-961 (-521))) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-1080 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-961 (-521))) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-31 *4 *2)) (-4 *2 (-404 *4)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-791)) (-5 *1 (-31 *4 *5)))) (-3475 (*1 *2 *3 *2) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-31 *4 *2)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-404 *4)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-31 *3 *4)) (-4 *4 (-404 *3)))) (-1444 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *2)) (-5 *4 (-1084)) (-4 *2 (-404 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-783) (-513))))))
-(-10 -7 (-15 -1444 (|#2| (-1080 |#2|) (-1084))) (-15 -3928 ((-110) (-110))) (-15 -1224 ((-108) (-110))) (-15 -3475 (|#2| (-1080 |#2|) |#2|)) (-15 -1264 ((-791) (-587 |#2|))) (IF (|has| |#1| (-961 (-521))) (PROGN (-15 ** (|#2| |#2| (-381 (-521)))) (-15 -3159 ((-1080 |#2|) (-560 |#2|))) (-15 -3436 (|#2| |#2|)) (-15 -2593 (|#2| |#1| (-521)))) |%noBranch|))
-((-1269 (((-108) $ (-707)) 16)) (-2231 (($) 10)) (-1513 (((-108) $ (-707)) 15)) (-2859 (((-108) $ (-707)) 14)) (-3133 (((-108) $ $) 8)) (-1447 (((-108) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -2231 (|#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707))) (-15 -1447 ((-108) |#1|)) (-15 -3133 ((-108) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -2231 (|#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707))) (-15 -1447 ((-108) |#1|)) (-15 -3133 ((-108) |#1| |#1|)))
-((-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-1513 (((-108) $ (-707)) 9)) (-2859 (((-108) $ (-707)) 10)) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2420 (($ $) 13)) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-33) (-1196)) (T -33))
-((-3133 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2420 (*1 *1 *1) (-4 *1 (-33))) (-2280 (*1 *1) (-4 *1 (-33))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2859 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))) (-1513 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))) (-1269 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))) (-2231 (*1 *1) (-4 *1 (-33))) (-3478 (*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-33)) (-5 *2 (-707)))))
-(-13 (-1119) (-10 -8 (-15 -3133 ((-108) $ $)) (-15 -2420 ($ $)) (-15 -2280 ($)) (-15 -1447 ((-108) $)) (-15 -2859 ((-108) $ (-707))) (-15 -1513 ((-108) $ (-707))) (-15 -1269 ((-108) $ (-707))) (-15 -2231 ($) -2682) (IF (|has| $ (-6 -4233)) (-15 -3478 ((-707) $)) |%noBranch|)))
-(((-1119) . T))
-((-1811 (($ $) 11)) (-1795 (($ $) 10)) (-1830 (($ $) 9)) (-3919 (($ $) 8)) (-1821 (($ $) 7)) (-1803 (($ $) 6)))
-(((-34) (-1196)) (T -34))
-((-1811 (*1 *1 *1) (-4 *1 (-34))) (-1795 (*1 *1 *1) (-4 *1 (-34))) (-1830 (*1 *1 *1) (-4 *1 (-34))) (-3919 (*1 *1 *1) (-4 *1 (-34))) (-1821 (*1 *1 *1) (-4 *1 (-34))) (-1803 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -1803 ($ $)) (-15 -1821 ($ $)) (-15 -3919 ($ $)) (-15 -1830 ($ $)) (-15 -1795 ($ $)) (-15 -1811 ($ $))))
-((-1422 (((-108) $ $) 19 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-3434 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 125)) (-2135 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 148)) (-3830 (($ $) 146)) (-1857 (($) 72) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 71)) (-3933 (((-1170) $ |#1| |#1|) 99 (|has| $ (-6 -4234))) (((-1170) $ (-521) (-521)) 178 (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) 159 (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1216 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 200 (|has| $ (-6 -4234))) (($ $) 199 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2603 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 134 (|has| $ (-6 -4234)))) (-1471 (($ $ $) 155 (|has| $ (-6 -4234)))) (-1561 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 157 (|has| $ (-6 -4234)))) (-2068 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 153 (|has| $ (-6 -4234)))) (-2396 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 189 (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-1132 (-521)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 160 (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "last" (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 158 (|has| $ (-6 -4234))) (($ $ "rest" $) 156 (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "first" (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 154 (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "value" (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 133 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 132 (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 45 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 216)) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 55 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 175 (|has| $ (-6 -4233)))) (-2124 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 147)) (-2754 (((-3 |#2| "failed") |#1| $) 61)) (-2231 (($) 7 T CONST)) (-3288 (($ $) 201 (|has| $ (-6 -4234)))) (-1924 (($ $) 211)) (-2329 (($ $ (-707)) 142) (($ $) 140)) (-1514 (($ $) 214 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-2354 (($ $) 58 (-3703 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233))) (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 46 (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 220) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 215 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 54 (|has| $ (-6 -4233))) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 174 (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 56 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 53 (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 52 (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 176 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 173 (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 172 (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 190 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 88) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) 188)) (-2125 (((-108) $) 192)) (-3236 (((-521) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 208) (((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 207 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) (((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) 206 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 30 (|has| $ (-6 -4233))) (((-587 |#2|) $) 79 (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 114 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 123)) (-1368 (((-108) $ $) 131 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-1869 (($ (-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 169)) (-1513 (((-108) $ (-707)) 9)) (-2658 ((|#1| $) 96 (|has| |#1| (-783))) (((-521) $) 180 (|has| (-521) (-783)))) (-2816 (($ $ $) 198 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-4162 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3389 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 29 (|has| $ (-6 -4233))) (((-587 |#2|) $) 80 (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 115 (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233)))) (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-3989 ((|#1| $) 95 (|has| |#1| (-783))) (((-521) $) 181 (|has| (-521) (-783)))) (-2459 (($ $ $) 197 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 34 (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4234))) (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 110 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 109)) (-1604 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 225)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 128)) (-2426 (((-108) $) 124)) (-4024 (((-1067) $) 22 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-1450 (($ $ (-707)) 145) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 143)) (-2964 (((-587 |#1|) $) 63)) (-3839 (((-108) |#1| $) 64)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 39)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 40) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) 219) (($ $ $ (-521)) 218)) (-1696 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) 162) (($ $ $ (-521)) 161)) (-1223 (((-587 |#1|) $) 93) (((-587 (-521)) $) 183)) (-2131 (((-108) |#1| $) 92) (((-108) (-521) $) 184)) (-4146 (((-1031) $) 21 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2319 ((|#2| $) 97 (|has| |#1| (-783))) (($ $ (-707)) 139) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 137)) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 51) (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 171)) (-2995 (($ $ |#2|) 98 (|has| $ (-6 -4234))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 179 (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 41)) (-2394 (((-108) $) 191)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 32 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 112 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) 26 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 25 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 24 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 23 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 86 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 84 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) 83 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 121 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 120 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 119 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) 118 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 182 (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2481 (((-587 |#2|) $) 91) (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 185)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 187) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) 186) (($ $ (-1132 (-521))) 165) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "first") 138) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "value") 126)) (-1557 (((-521) $ $) 129)) (-2036 (($) 49) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 48)) (-3488 (($ $ (-521)) 222) (($ $ (-1132 (-521))) 221)) (-3694 (($ $ (-521)) 164) (($ $ (-1132 (-521))) 163)) (-1475 (((-108) $) 127)) (-1290 (($ $) 151)) (-2780 (($ $) 152 (|has| $ (-6 -4234)))) (-1602 (((-707) $) 150)) (-1376 (($ $) 149)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 31 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-707) |#2| $) 81 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 113 (|has| $ (-6 -4233)))) (-3448 (($ $ $ (-521)) 202 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497)))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 50) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 170)) (-2240 (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 224) (($ $ $) 223)) (-4159 (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 168) (($ (-587 $)) 167) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 136) (($ $ $) 135)) (-2223 (((-791) $) 18 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791)))))) (-3165 (((-587 $) $) 122)) (-2960 (((-108) $ $) 130 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 42)) (-1454 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") |#1| $) 108)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 33 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 111 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 195 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1579 (((-108) $ $) 194 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1549 (((-108) $ $) 20 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-1588 (((-108) $ $) 196 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1569 (((-108) $ $) 193 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-35 |#1| |#2|) (-1196) (-1013) (-1013)) (T -35))
-((-1454 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| -2535 *3) (|:| -3050 *4))))))
-(-13 (-1096 |t#1| |t#2|) (-607 (-2 (|:| -2535 |t#1|) (|:| -3050 |t#2|))) (-10 -8 (-15 -1454 ((-3 (-2 (|:| -2535 |t#1|) (|:| -3050 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((-97) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783))) ((-561 (-791)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-561 (-791))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791)))) ((-139 #1=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((-562 (-497)) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))) ((-206 #0#) . T) ((-212 #0#) . T) ((-261 #2=(-521) #1#) . T) ((-261 |#1| |#2|) . T) ((-263 #2# #1#) . T) ((-263 |#1| |#2|) . T) ((-284 #1#) -12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-257 #1#) . T) ((-347 #1#) . T) ((-460 #1#) . T) ((-460 |#2|) . T) ((-554 #2# #1#) . T) ((-554 |#1| |#2|) . T) ((-482 #1# #1#) -12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-558 |#1| |#2|) . T) ((-592 #1#) . T) ((-607 #1#) . T) ((-783) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)) ((-935 #1#) . T) ((-1013) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783))) ((-1058 #1#) . T) ((-1096 |#1| |#2|) . T) ((-1119) . T) ((-1153 #1#) . T))
-((-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-37 |#2|) (-157)) (T -36))
-NIL
-(-10 -8 (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-37 |#1|) (-1196) (-157)) (T -37))
-((-2223 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157)))))
-(-13 (-970) (-654 |t#1|) (-10 -8 (-15 -2223 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2090 (((-392 |#1|) |#1|) 38)) (-1974 (((-392 |#1|) |#1|) 27) (((-392 |#1|) |#1| (-587 (-47))) 30)) (-2087 (((-108) |#1|) 54)))
-(((-38 |#1|) (-10 -7 (-15 -1974 ((-392 |#1|) |#1| (-587 (-47)))) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2090 ((-392 |#1|) |#1|)) (-15 -2087 ((-108) |#1|))) (-1141 (-47))) (T -38))
-((-2087 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))) (-2090 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-47))) (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))))
-(-10 -7 (-15 -1974 ((-392 |#1|) |#1| (-587 (-47)))) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2090 ((-392 |#1|) |#1|)) (-15 -2087 ((-108) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1402 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| (-381 |#2|) (-337)))) (-1954 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-3795 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-1299 (((-627 (-381 |#2|)) (-1165 $)) NIL) (((-627 (-381 |#2|))) NIL)) (-1927 (((-381 |#2|) $) NIL)) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-381 |#2|) (-323)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2337 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-2165 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-1659 (((-707)) NIL (|has| (-381 |#2|) (-342)))) (-3723 (((-108)) NIL)) (-1918 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-3 (-381 |#2|) "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-381 (-521)) $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-381 |#2|) $) NIL)) (-3190 (($ (-1165 (-381 |#2|)) (-1165 $)) NIL) (($ (-1165 (-381 |#2|))) 57) (($ (-1165 |#2|) |#2|) 124)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-381 |#2|) (-323)))) (-2302 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3998 (((-627 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-381 |#2|))) (|:| |vec| (-1165 (-381 |#2|)))) (-627 $) (-1165 $)) NIL) (((-627 (-381 |#2|)) (-627 $)) NIL)) (-1813 (((-1165 $) (-1165 $)) NIL)) (-3859 (($ |#3|) NIL) (((-3 $ "failed") (-381 |#3|)) NIL (|has| (-381 |#2|) (-337)))) (-2783 (((-3 $ "failed") $) NIL)) (-1367 (((-587 (-587 |#1|))) NIL (|has| |#1| (-342)))) (-3536 (((-108) |#1| |#1|) NIL)) (-3167 (((-849)) NIL)) (-3254 (($) NIL (|has| (-381 |#2|) (-342)))) (-3982 (((-108)) NIL)) (-1469 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2282 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| (-381 |#2|) (-337)))) (-1563 (($ $) NIL)) (-2464 (($) NIL (|has| (-381 |#2|) (-323)))) (-3299 (((-108) $) NIL (|has| (-381 |#2|) (-323)))) (-1375 (($ $ (-707)) NIL (|has| (-381 |#2|) (-323))) (($ $) NIL (|has| (-381 |#2|) (-323)))) (-2100 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-3490 (((-849) $) NIL (|has| (-381 |#2|) (-323))) (((-769 (-849)) $) NIL (|has| (-381 |#2|) (-323)))) (-3637 (((-108) $) NIL)) (-2955 (((-707)) NIL)) (-2147 (((-1165 $) (-1165 $)) 100)) (-2549 (((-381 |#2|) $) NIL)) (-2083 (((-587 (-880 |#1|)) (-1084)) NIL (|has| |#1| (-337)))) (-3035 (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-3769 ((|#3| $) NIL (|has| (-381 |#2|) (-337)))) (-3999 (((-849) $) NIL (|has| (-381 |#2|) (-342)))) (-3843 ((|#3| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-4024 (((-1067) $) NIL)) (-3001 (((-1170) (-707)) 78)) (-3263 (((-627 (-381 |#2|))) 51)) (-1463 (((-627 (-381 |#2|))) 44)) (-3100 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2058 (($ (-1165 |#2|) |#2|) 125)) (-2352 (((-627 (-381 |#2|))) 45)) (-2784 (((-627 (-381 |#2|))) 43)) (-2121 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1455 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 63)) (-3817 (((-1165 $)) 42)) (-3807 (((-1165 $)) 41)) (-3693 (((-108) $) NIL)) (-2655 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3797 (($) NIL (|has| (-381 |#2|) (-323)) CONST)) (-2723 (($ (-849)) NIL (|has| (-381 |#2|) (-342)))) (-1291 (((-3 |#2| "failed")) NIL)) (-4146 (((-1031) $) NIL)) (-3511 (((-707)) NIL)) (-1384 (($) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| (-381 |#2|) (-337)))) (-2286 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-381 |#2|) (-323)))) (-1974 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-381 |#2|) (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| (-381 |#2|) (-337)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-3794 (((-707) $) NIL (|has| (-381 |#2|) (-337)))) (-2550 ((|#1| $ |#1| |#1|) NIL)) (-3550 (((-3 |#2| "failed")) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-3011 (((-381 |#2|) (-1165 $)) NIL) (((-381 |#2|)) 39)) (-3660 (((-707) $) NIL (|has| (-381 |#2|) (-323))) (((-3 (-707) "failed") $ $) NIL (|has| (-381 |#2|) (-323)))) (-2193 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-3785 (((-627 (-381 |#2|)) (-1165 $) (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337)))) (-3436 ((|#3|) 50)) (-3923 (($) NIL (|has| (-381 |#2|) (-323)))) (-1816 (((-1165 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) (-1165 $) (-1165 $)) NIL) (((-1165 (-381 |#2|)) $) 58) (((-627 (-381 |#2|)) (-1165 $)) 101)) (-1438 (((-1165 (-381 |#2|)) $) NIL) (($ (-1165 (-381 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-381 |#2|) (-323)))) (-3758 (((-1165 $) (-1165 $)) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 |#2|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| (-381 |#2|) (-961 (-381 (-521)))) (|has| (-381 |#2|) (-337)))) (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2446 (($ $) NIL (|has| (-381 |#2|) (-323))) (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-133)))) (-3379 ((|#3| $) NIL)) (-1592 (((-707)) NIL)) (-3598 (((-108)) 37)) (-2458 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-1245 (((-1165 $)) 91)) (-1842 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-3888 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3683 (((-108)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (-3562 (($) 16 T CONST)) (-3572 (($) 26 T CONST)) (-2244 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 |#2|)) NIL) (($ (-381 |#2|) $) NIL) (($ (-381 (-521)) $) NIL (|has| (-381 |#2|) (-337))) (($ $ (-381 (-521))) NIL (|has| (-381 |#2|) (-337)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3|) (-10 -7 (-15 -3001 ((-1170) (-707))))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) |#3|) (T -39))
-((-3001 (*1 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *2 (-1170)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1141 (-381 *5))) (-14 *7 *6))))
-(-13 (-316 |#1| |#2| |#3|) (-10 -7 (-15 -3001 ((-1170) (-707)))))
-((-2298 ((|#2| |#2|) 47)) (-1553 ((|#2| |#2|) 117 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-783)) (|has| |#1| (-961 (-521)))))) (-3759 ((|#2| |#2|) 86 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-783)) (|has| |#1| (-961 (-521)))))) (-1555 ((|#2| |#2|) 87 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-783)) (|has| |#1| (-961 (-521)))))) (-3529 ((|#2| (-110) |#2| (-707)) 74 (-12 (|has| |#2| (-404 |#1|)) (|has| |#1| (-425)) (|has| |#1| (-783)) (|has| |#1| (-961 (-521)))))) (-2203 (((-1080 |#2|) |#2|) 44)) (-4155 ((|#2| |#2| (-587 (-560 |#2|))) 17) ((|#2| |#2| (-587 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -2298 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4155 (|#2| |#2| |#2|)) (-15 -4155 (|#2| |#2| (-587 |#2|))) (-15 -4155 (|#2| |#2| (-587 (-560 |#2|)))) (-15 -2203 ((-1080 |#2|) |#2|)) (IF (|has| |#1| (-783)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-961 (-521))) (IF (|has| |#2| (-404 |#1|)) (PROGN (-15 -1555 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -3529 (|#2| (-110) |#2| (-707)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-513) (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 |#1| (-560 $)) $)) (-15 -2818 ((-1036 |#1| (-560 $)) $)) (-15 -2223 ($ (-1036 |#1| (-560 $))))))) (T -40))
-((-3529 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-707)) (-4 *5 (-425)) (-4 *5 (-783)) (-4 *5 (-961 (-521))) (-4 *5 (-513)) (-5 *1 (-40 *5 *2)) (-4 *2 (-404 *5)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *5 (-560 $)) $)) (-15 -2818 ((-1036 *5 (-560 $)) $)) (-15 -2223 ($ (-1036 *5 (-560 $))))))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-783)) (-4 *3 (-961 (-521))) (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $)) (-15 -2818 ((-1036 *3 (-560 $)) $)) (-15 -2223 ($ (-1036 *3 (-560 $))))))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-783)) (-4 *3 (-961 (-521))) (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $)) (-15 -2818 ((-1036 *3 (-560 $)) $)) (-15 -2223 ($ (-1036 *3 (-560 $))))))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-783)) (-4 *3 (-961 (-521))) (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $)) (-15 -2818 ((-1036 *3 (-560 $)) $)) (-15 -2223 ($ (-1036 *3 (-560 $))))))))) (-2203 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-1080 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *4 (-560 $)) $)) (-15 -2818 ((-1036 *4 (-560 $)) $)) (-15 -2223 ($ (-1036 *4 (-560 $))))))))) (-4155 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-560 *2))) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *4 (-560 $)) $)) (-15 -2818 ((-1036 *4 (-560 $)) $)) (-15 -2223 ($ (-1036 *4 (-560 $))))))) (-4 *4 (-513)) (-5 *1 (-40 *4 *2)))) (-4155 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *4 (-560 $)) $)) (-15 -2818 ((-1036 *4 (-560 $)) $)) (-15 -2223 ($ (-1036 *4 (-560 $))))))) (-4 *4 (-513)) (-5 *1 (-40 *4 *2)))) (-4155 (*1 *2 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $)) (-15 -2818 ((-1036 *3 (-560 $)) $)) (-15 -2223 ($ (-1036 *3 (-560 $))))))))) (-4155 (*1 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $)) (-15 -2818 ((-1036 *3 (-560 $)) $)) (-15 -2223 ($ (-1036 *3 (-560 $))))))))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-337) (-277) (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $)) (-15 -2818 ((-1036 *3 (-560 $)) $)) (-15 -2223 ($ (-1036 *3 (-560 $))))))))))
-(-10 -7 (-15 -2298 (|#2| |#2|)) (-15 -4155 (|#2| |#2|)) (-15 -4155 (|#2| |#2| |#2|)) (-15 -4155 (|#2| |#2| (-587 |#2|))) (-15 -4155 (|#2| |#2| (-587 (-560 |#2|)))) (-15 -2203 ((-1080 |#2|) |#2|)) (IF (|has| |#1| (-783)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-961 (-521))) (IF (|has| |#2| (-404 |#1|)) (PROGN (-15 -1555 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -3529 (|#2| (-110) |#2| (-707)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1974 (((-392 (-1080 |#3|)) (-1080 |#3|) (-587 (-47))) 22) (((-392 |#3|) |#3| (-587 (-47))) 18)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1974 ((-392 |#3|) |#3| (-587 (-47)))) (-15 -1974 ((-392 (-1080 |#3|)) (-1080 |#3|) (-587 (-47))))) (-783) (-729) (-877 (-47) |#2| |#1|)) (T -41))
-((-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-47))) (-4 *5 (-783)) (-4 *6 (-729)) (-4 *7 (-877 (-47) *6 *5)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-47))) (-4 *5 (-783)) (-4 *6 (-729)) (-5 *2 (-392 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-877 (-47) *6 *5)))))
-(-10 -7 (-15 -1974 ((-392 |#3|) |#3| (-587 (-47)))) (-15 -1974 ((-392 (-1080 |#3|)) (-1080 |#3|) (-587 (-47)))))
-((-3740 (((-707) |#2|) 65)) (-1788 (((-707) |#2|) 68)) (-3913 (((-587 |#2|)) 33)) (-2432 (((-707) |#2|) 67)) (-3271 (((-707) |#2|) 64)) (-3864 (((-707) |#2|) 66)) (-2444 (((-587 (-627 |#1|))) 60)) (-2088 (((-587 |#2|)) 55)) (-2949 (((-587 |#2|) |#2|) 43)) (-1828 (((-587 |#2|)) 57)) (-2627 (((-587 |#2|)) 56)) (-3437 (((-587 (-627 |#1|))) 48)) (-3718 (((-587 |#2|)) 54)) (-1891 (((-587 |#2|) |#2|) 42)) (-2515 (((-587 |#2|)) 50)) (-2338 (((-587 (-627 |#1|))) 61)) (-2387 (((-587 |#2|)) 59)) (-1245 (((-1165 |#2|) (-1165 |#2|)) 84 (|has| |#1| (-282)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2432 ((-707) |#2|)) (-15 -1788 ((-707) |#2|)) (-15 -3271 ((-707) |#2|)) (-15 -3740 ((-707) |#2|)) (-15 -3864 ((-707) |#2|)) (-15 -2515 ((-587 |#2|))) (-15 -1891 ((-587 |#2|) |#2|)) (-15 -2949 ((-587 |#2|) |#2|)) (-15 -3718 ((-587 |#2|))) (-15 -2088 ((-587 |#2|))) (-15 -2627 ((-587 |#2|))) (-15 -1828 ((-587 |#2|))) (-15 -2387 ((-587 |#2|))) (-15 -3437 ((-587 (-627 |#1|)))) (-15 -2444 ((-587 (-627 |#1|)))) (-15 -2338 ((-587 (-627 |#1|)))) (-15 -3913 ((-587 |#2|))) (IF (|has| |#1| (-282)) (-15 -1245 ((-1165 |#2|) (-1165 |#2|))) |%noBranch|)) (-513) (-391 |#1|)) (T -42))
-((-1245 (*1 *2 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-391 *3)) (-4 *3 (-282)) (-4 *3 (-513)) (-5 *1 (-42 *3 *4)))) (-3913 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2338 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2444 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-3437 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2387 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-1828 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2627 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2088 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-3718 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-2949 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-1891 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-2515 (*1 *2) (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-391 *3)))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-3271 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))) (-2432 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3)) (-4 *3 (-391 *4)))))
-(-10 -7 (-15 -2432 ((-707) |#2|)) (-15 -1788 ((-707) |#2|)) (-15 -3271 ((-707) |#2|)) (-15 -3740 ((-707) |#2|)) (-15 -3864 ((-707) |#2|)) (-15 -2515 ((-587 |#2|))) (-15 -1891 ((-587 |#2|) |#2|)) (-15 -2949 ((-587 |#2|) |#2|)) (-15 -3718 ((-587 |#2|))) (-15 -2088 ((-587 |#2|))) (-15 -2627 ((-587 |#2|))) (-15 -1828 ((-587 |#2|))) (-15 -2387 ((-587 |#2|))) (-15 -3437 ((-587 (-627 |#1|)))) (-15 -2444 ((-587 (-627 |#1|)))) (-15 -2338 ((-587 (-627 |#1|)))) (-15 -3913 ((-587 |#2|))) (IF (|has| |#1| (-282)) (-15 -1245 ((-1165 |#2|) (-1165 |#2|))) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1493 (((-3 $ "failed")) NIL (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2772 (((-1165 (-627 |#1|)) (-1165 $)) NIL) (((-1165 (-627 |#1|))) 24)) (-3765 (((-1165 $)) 50)) (-2231 (($) NIL T CONST)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (|has| |#1| (-513)))) (-2695 (((-3 $ "failed")) NIL (|has| |#1| (-513)))) (-4090 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) NIL)) (-3912 ((|#1| $) NIL)) (-2872 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-2604 (((-3 $ "failed") $) NIL (|has| |#1| (-513)))) (-2262 (((-1080 (-880 |#1|))) NIL (|has| |#1| (-337)))) (-2588 (($ $ (-849)) NIL)) (-3973 ((|#1| $) NIL)) (-1276 (((-1080 |#1|) $) NIL (|has| |#1| (-513)))) (-2115 ((|#1| (-1165 $)) NIL) ((|#1|) NIL)) (-1449 (((-1080 |#1|) $) NIL)) (-3953 (((-108)) 86)) (-3190 (($ (-1165 |#1|) (-1165 $)) NIL) (($ (-1165 |#1|)) NIL)) (-2783 (((-3 $ "failed") $) 14 (|has| |#1| (-513)))) (-3167 (((-849)) 51)) (-2782 (((-108)) NIL)) (-1940 (($ $ (-849)) NIL)) (-2325 (((-108)) NIL)) (-2071 (((-108)) NIL)) (-3318 (((-108)) 88)) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (|has| |#1| (-513)))) (-2712 (((-3 $ "failed")) NIL (|has| |#1| (-513)))) (-3370 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) NIL)) (-3748 ((|#1| $) NIL)) (-4138 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-1389 (((-3 $ "failed") $) NIL (|has| |#1| (-513)))) (-3726 (((-1080 (-880 |#1|))) NIL (|has| |#1| (-337)))) (-1209 (($ $ (-849)) NIL)) (-3440 ((|#1| $) NIL)) (-3609 (((-1080 |#1|) $) NIL (|has| |#1| (-513)))) (-2001 ((|#1| (-1165 $)) NIL) ((|#1|) NIL)) (-2486 (((-1080 |#1|) $) NIL)) (-1743 (((-108)) 85)) (-4024 (((-1067) $) NIL)) (-1232 (((-108)) 92)) (-3037 (((-108)) 91)) (-2901 (((-108)) 93)) (-4146 (((-1031) $) NIL)) (-2880 (((-108)) 87)) (-2550 ((|#1| $ (-521)) 53)) (-1816 (((-1165 |#1|) $ (-1165 $)) 47) (((-627 |#1|) (-1165 $) (-1165 $)) NIL) (((-1165 |#1|) $) 28) (((-627 |#1|) (-1165 $)) NIL)) (-1438 (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL)) (-1894 (((-587 (-880 |#1|)) (-1165 $)) NIL) (((-587 (-880 |#1|))) NIL)) (-2062 (($ $ $) NIL)) (-2628 (((-108)) 83)) (-2223 (((-791) $) 68) (($ (-1165 |#1|)) 22)) (-1245 (((-1165 $)) 44)) (-2881 (((-587 (-1165 |#1|))) NIL (|has| |#1| (-513)))) (-2268 (($ $ $ $) NIL)) (-3650 (((-108)) 81)) (-1644 (($ (-627 |#1|) $) 18)) (-3968 (($ $ $) NIL)) (-3972 (((-108)) 84)) (-3502 (((-108)) 82)) (-3199 (((-108)) 80)) (-3562 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1051 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-391 |#1|) (-589 (-1051 |#2| |#1|)) (-10 -8 (-15 -2223 ($ (-1165 |#1|))))) (-337) (-849) (-587 (-1084)) (-1165 (-627 |#1|))) (T -43))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-14 *6 (-1165 (-627 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))))))
-(-13 (-391 |#1|) (-589 (-1051 |#2| |#1|)) (-10 -8 (-15 -2223 ($ (-1165 |#1|)))))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3434 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-2135 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-3830 (($ $) NIL)) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234))) (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1216 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783))))) (-3215 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2603 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234)))) (-1471 (($ $ $) 27 (|has| $ (-6 -4234)))) (-1561 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234)))) (-2068 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 29 (|has| $ (-6 -4234)))) (-2396 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-1132 (-521)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "last" (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234))) (($ $ "rest" $) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "first" (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "value" (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2124 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-2754 (((-3 |#2| "failed") |#1| $) 37)) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2329 (($ $ (-707)) NIL) (($ $) 24)) (-1514 (($ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) NIL)) (-2125 (((-108) $) NIL)) (-3236 (((-521) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) (((-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 18 (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 18 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-1869 (($ (-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783))) (((-521) $) 32 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-4162 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3389 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783))) (((-521) $) 34 (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-1604 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1278 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2426 (((-108) $) NIL)) (-4024 (((-1067) $) 42 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1450 (($ $ (-707)) NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-2964 (((-587 |#1|) $) 20)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1696 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 |#1|) $) NIL) (((-587 (-521)) $) NIL)) (-2131 (((-108) |#1| $) NIL) (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783))) (($ $ (-707)) NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 23)) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-2394 (((-108) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2481 (((-587 |#2|) $) NIL) (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 17)) (-1447 (((-108) $) 16)) (-2280 (($) 13)) (-2550 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ (-521)) NIL) (($ $ (-1132 (-521))) NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "first") NIL) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $ "value") NIL)) (-1557 (((-521) $ $) NIL)) (-2036 (($) 12) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3488 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-1475 (((-108) $) NIL)) (-1290 (($ $) NIL)) (-2780 (($ $) NIL (|has| $ (-6 -4234)))) (-1602 (((-707) $) NIL)) (-1376 (($ $) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2240 (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL) (($ $ $) NIL)) (-4159 (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL) (($ (-587 $)) NIL) (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 25) (($ $ $) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-1454 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") |#1| $) 44)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1588 (((-108) $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-783)))) (-3478 (((-707) $) 22 (|has| $ (-6 -4233)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1013) (-1013)) (T -44))
+(3137825 . 3409939498)
+((-4187 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-3537 (($ (-1 (-108) |#2| |#2|) $) 17) (($ $) NIL)) (-2379 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-1133 (-522)) |#2|) 34)) (-3509 (($ $) 59)) (-3864 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 41) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3238 (((-522) (-1 (-108) |#2|) $) 22) (((-522) |#2| $) NIL) (((-522) |#2| $ (-522)) 71)) (-3837 (((-588 |#2|) $) 13)) (-2160 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3838 (($ (-1 |#2| |#2|) $) 29)) (-1391 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 45)) (-1661 (($ |#2| $ (-522)) NIL) (($ $ $ (-522)) 50)) (-1414 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3053 (((-108) (-1 (-108) |#2|) $) 21)) (-2545 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) NIL) (($ $ (-1133 (-522))) 49)) (-3696 (($ $ (-522)) 56) (($ $ (-1133 (-522))) 55)) (-4168 (((-708) (-1 (-108) |#2|) $) 26) (((-708) |#2| $) NIL)) (-1577 (($ $ $ (-522)) 52)) (-2404 (($ $) 51)) (-2201 (($ (-588 |#2|)) 53)) (-4165 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-588 $)) 62)) (-2190 (((-792) $) 69)) (-3648 (((-108) (-1 (-108) |#2|) $) 20)) (-1531 (((-108) $ $) 70)) (-1549 (((-108) $ $) 73)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1531 ((-108) |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3537 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -1577 (|#1| |#1| |#1| (-522))) (-15 -4187 ((-108) |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -3238 ((-522) |#2| |#1| (-522))) (-15 -3238 ((-522) |#2| |#1|)) (-15 -3238 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -4187 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2160 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2379 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -3696 (|#1| |#1| (-1133 (-522)))) (-15 -3696 (|#1| |#1| (-522))) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4165 (|#1| (-588 |#1|))) (-15 -4165 (|#1| |#1| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -1414 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2545 (|#2| |#1| (-522))) (-15 -2545 (|#2| |#1| (-522) |#2|)) (-15 -2379 (|#2| |#1| (-522) |#2|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -3837 ((-588 |#2|) |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|))) (-19 |#2|) (-1120)) (T -18))
+NIL
+(-10 -8 (-15 -1531 ((-108) |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -3537 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -1577 (|#1| |#1| |#1| (-522))) (-15 -4187 ((-108) |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -3238 ((-522) |#2| |#1| (-522))) (-15 -3238 ((-522) |#2| |#1|)) (-15 -3238 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -4187 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2160 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2379 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -3696 (|#1| |#1| (-1133 (-522)))) (-15 -3696 (|#1| |#1| (-522))) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4165 (|#1| (-588 |#1|))) (-15 -4165 (|#1| |#1| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -1414 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2545 (|#2| |#1| (-522))) (-15 -2545 (|#2| |#1| (-522) |#2|)) (-15 -2379 (|#2| |#1| (-522) |#2|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -3837 ((-588 |#2|) |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3509 (($ $) 90 (|has| $ (-6 -4239)))) (-1862 (($ $) 100)) (-2333 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 51)) (-3238 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 87 (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 42 (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2602 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 70)) (-4165 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-19 |#1|) (-1197) (-1120)) (T -19))
+NIL
+(-13 (-348 |t#1|) (-10 -7 (-6 -4239)))
+(((-33) . T) ((-97) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T))
+((-1233 (((-3 $ "failed") $ $) 12)) (-1612 (($ $) NIL) (($ $ $) 9)) (* (($ (-850) $) NIL) (($ (-708) $) 16) (($ (-522) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1233 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1233 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20)))
+(((-21) (-1197)) (T -21))
+((-1612 (*1 *1 *1) (-4 *1 (-21))) (-1612 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-522)))))
+(-13 (-124) (-10 -8 (-15 -1612 ($ $)) (-15 -1612 ($ $ $)) (-15 * ($ (-522) $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-2250 (((-108) $) 10)) (-3175 (($) 15)) (* (($ (-850) $) 14) (($ (-708) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-708) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 -3175 (|#1|)) (-15 * (|#1| (-850) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-708) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 -3175 (|#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15)))
+(((-23) (-1197)) (T -23))
+((-3566 (*1 *1) (-4 *1 (-23))) (-3175 (*1 *1) (-4 *1 (-23))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-708)))))
+(-13 (-25) (-10 -8 (-15 (-3566) ($) -2677) (-15 -3175 ($) -2677) (-15 -2250 ((-108) $)) (-15 * ($ (-708) $))))
+(((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((* (($ (-850) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-850) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13)))
+(((-25) (-1197)) (T -25))
+((-1602 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-850)))))
+(-13 (-1014) (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ (-850) $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1617 (((-588 $) (-881 $)) 29) (((-588 $) (-1081 $)) 16) (((-588 $) (-1081 $) (-1085)) 20)) (-4032 (($ (-881 $)) 27) (($ (-1081 $)) 11) (($ (-1081 $) (-1085)) 54)) (-1221 (((-588 $) (-881 $)) 30) (((-588 $) (-1081 $)) 18) (((-588 $) (-1081 $) (-1085)) 19)) (-3944 (($ (-881 $)) 28) (($ (-1081 $)) 13) (($ (-1081 $) (-1085)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -1617 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1617 ((-588 |#1|) (-1081 |#1|))) (-15 -1617 ((-588 |#1|) (-881 |#1|))) (-15 -4032 (|#1| (-1081 |#1|) (-1085))) (-15 -4032 (|#1| (-1081 |#1|))) (-15 -4032 (|#1| (-881 |#1|))) (-15 -1221 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1221 ((-588 |#1|) (-1081 |#1|))) (-15 -1221 ((-588 |#1|) (-881 |#1|))) (-15 -3944 (|#1| (-1081 |#1|) (-1085))) (-15 -3944 (|#1| (-1081 |#1|))) (-15 -3944 (|#1| (-881 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -1617 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1617 ((-588 |#1|) (-1081 |#1|))) (-15 -1617 ((-588 |#1|) (-881 |#1|))) (-15 -4032 (|#1| (-1081 |#1|) (-1085))) (-15 -4032 (|#1| (-1081 |#1|))) (-15 -4032 (|#1| (-881 |#1|))) (-15 -1221 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1221 ((-588 |#1|) (-1081 |#1|))) (-15 -1221 ((-588 |#1|) (-881 |#1|))) (-15 -3944 (|#1| (-1081 |#1|) (-1085))) (-15 -3944 (|#1| (-1081 |#1|))) (-15 -3944 (|#1| (-881 |#1|))))
+((-1416 (((-108) $ $) 7)) (-1617 (((-588 $) (-881 $)) 80) (((-588 $) (-1081 $)) 79) (((-588 $) (-1081 $) (-1085)) 78)) (-4032 (($ (-881 $)) 83) (($ (-1081 $)) 82) (($ (-1081 $) (-1085)) 81)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1929 (($ $) 92)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-1221 (((-588 $) (-881 $)) 86) (((-588 $) (-1081 $)) 85) (((-588 $) (-1081 $) (-1085)) 84)) (-3944 (($ (-881 $)) 89) (($ (-1081 $)) 88) (($ (-1081 $) (-1085)) 87)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2813 (((-108) $) 71)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 91)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 90)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66)))
+(((-27) (-1197)) (T -27))
+((-3944 (*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27)))) (-3944 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-1221 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27)))) (-4032 (*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27)))) (-4032 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27)) (-5 *2 (-588 *1)))))
+(-13 (-338) (-928) (-10 -8 (-15 -3944 ($ (-881 $))) (-15 -3944 ($ (-1081 $))) (-15 -3944 ($ (-1081 $) (-1085))) (-15 -1221 ((-588 $) (-881 $))) (-15 -1221 ((-588 $) (-1081 $))) (-15 -1221 ((-588 $) (-1081 $) (-1085))) (-15 -4032 ($ (-881 $))) (-15 -4032 ($ (-1081 $))) (-15 -4032 ($ (-1081 $) (-1085))) (-15 -1617 ((-588 $) (-881 $))) (-15 -1617 ((-588 $) (-1081 $))) (-15 -1617 ((-588 $) (-1081 $) (-1085)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-928) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-1617 (((-588 $) (-881 $)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-1081 $) (-1085)) 50) (((-588 $) $) 19) (((-588 $) $ (-1085)) 41)) (-4032 (($ (-881 $)) NIL) (($ (-1081 $)) NIL) (($ (-1081 $) (-1085)) 52) (($ $) 17) (($ $ (-1085)) 37)) (-1221 (((-588 $) (-881 $)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-1081 $) (-1085)) 48) (((-588 $) $) 15) (((-588 $) $ (-1085)) 43)) (-3944 (($ (-881 $)) NIL) (($ (-1081 $)) NIL) (($ (-1081 $) (-1085)) NIL) (($ $) 12) (($ $ (-1085)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -1617 ((-588 |#1|) |#1| (-1085))) (-15 -4032 (|#1| |#1| (-1085))) (-15 -1617 ((-588 |#1|) |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -1221 ((-588 |#1|) |#1| (-1085))) (-15 -3944 (|#1| |#1| (-1085))) (-15 -1221 ((-588 |#1|) |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -1617 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1617 ((-588 |#1|) (-1081 |#1|))) (-15 -1617 ((-588 |#1|) (-881 |#1|))) (-15 -4032 (|#1| (-1081 |#1|) (-1085))) (-15 -4032 (|#1| (-1081 |#1|))) (-15 -4032 (|#1| (-881 |#1|))) (-15 -1221 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1221 ((-588 |#1|) (-1081 |#1|))) (-15 -1221 ((-588 |#1|) (-881 |#1|))) (-15 -3944 (|#1| (-1081 |#1|) (-1085))) (-15 -3944 (|#1| (-1081 |#1|))) (-15 -3944 (|#1| (-881 |#1|)))) (-29 |#2|) (-13 (-784) (-514))) (T -28))
+NIL
+(-10 -8 (-15 -1617 ((-588 |#1|) |#1| (-1085))) (-15 -4032 (|#1| |#1| (-1085))) (-15 -1617 ((-588 |#1|) |#1|)) (-15 -4032 (|#1| |#1|)) (-15 -1221 ((-588 |#1|) |#1| (-1085))) (-15 -3944 (|#1| |#1| (-1085))) (-15 -1221 ((-588 |#1|) |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -1617 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1617 ((-588 |#1|) (-1081 |#1|))) (-15 -1617 ((-588 |#1|) (-881 |#1|))) (-15 -4032 (|#1| (-1081 |#1|) (-1085))) (-15 -4032 (|#1| (-1081 |#1|))) (-15 -4032 (|#1| (-881 |#1|))) (-15 -1221 ((-588 |#1|) (-1081 |#1|) (-1085))) (-15 -1221 ((-588 |#1|) (-1081 |#1|))) (-15 -1221 ((-588 |#1|) (-881 |#1|))) (-15 -3944 (|#1| (-1081 |#1|) (-1085))) (-15 -3944 (|#1| (-1081 |#1|))) (-15 -3944 (|#1| (-881 |#1|))))
+((-1416 (((-108) $ $) 7)) (-1617 (((-588 $) (-881 $)) 80) (((-588 $) (-1081 $)) 79) (((-588 $) (-1081 $) (-1085)) 78) (((-588 $) $) 126) (((-588 $) $ (-1085)) 124)) (-4032 (($ (-881 $)) 83) (($ (-1081 $)) 82) (($ (-1081 $) (-1085)) 81) (($ $) 127) (($ $ (-1085)) 125)) (-2250 (((-108) $) 16)) (-4090 (((-588 (-1085)) $) 201)) (-1282 (((-382 (-1081 $)) $ (-561 $)) 233 (|has| |#1| (-514)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1886 (((-588 (-561 $)) $) 164)) (-1233 (((-3 $ "failed") $ $) 19)) (-3305 (($ $ (-588 (-561 $)) (-588 $)) 154) (($ $ (-588 (-270 $))) 153) (($ $ (-270 $)) 152)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1929 (($ $) 92)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-1221 (((-588 $) (-881 $)) 86) (((-588 $) (-1081 $)) 85) (((-588 $) (-1081 $) (-1085)) 84) (((-588 $) $) 130) (((-588 $) $ (-1085)) 128)) (-3944 (($ (-881 $)) 89) (($ (-1081 $)) 88) (($ (-1081 $) (-1085)) 87) (($ $) 131) (($ $ (-1085)) 129)) (-1297 (((-3 (-881 |#1|) "failed") $) 251 (|has| |#1| (-971))) (((-3 (-382 (-881 |#1|)) "failed") $) 235 (|has| |#1| (-514))) (((-3 |#1| "failed") $) 197) (((-3 (-522) "failed") $) 195 (|has| |#1| (-962 (-522)))) (((-3 (-1085) "failed") $) 188) (((-3 (-561 $) "failed") $) 139) (((-3 (-382 (-522)) "failed") $) 123 (-3708 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-1484 (((-881 |#1|) $) 252 (|has| |#1| (-971))) (((-382 (-881 |#1|)) $) 236 (|has| |#1| (-514))) ((|#1| $) 198) (((-522) $) 194 (|has| |#1| (-962 (-522)))) (((-1085) $) 189) (((-561 $) $) 140) (((-382 (-522)) $) 122 (-3708 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-2277 (($ $ $) 55)) (-2096 (((-628 |#1|) (-628 $)) 241 (|has| |#1| (-971))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 240 (|has| |#1| (-971))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 121 (-3708 (-4015 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (-4015 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (((-628 (-522)) (-628 $)) 120 (-3708 (-4015 (|has| |#1| (-971)) (|has| |#1| (-584 (-522)))) (-4015 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2813 (((-108) $) 71)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 193 (|has| |#1| (-815 (-354)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 192 (|has| |#1| (-815 (-522))))) (-1953 (($ (-588 $)) 158) (($ $) 157)) (-4161 (((-588 (-110)) $) 165)) (-2626 (((-110) (-110)) 166)) (-2782 (((-108) $) 31)) (-2591 (((-108) $) 186 (|has| $ (-962 (-522))))) (-2902 (($ $) 218 (|has| |#1| (-971)))) (-2805 (((-1037 |#1| (-561 $)) $) 217 (|has| |#1| (-971)))) (-1504 (($ $ (-522)) 91)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1711 (((-1081 $) (-561 $)) 183 (|has| $ (-971)))) (-2814 (($ $ $) 137)) (-2446 (($ $ $) 136)) (-1391 (($ (-1 $ $) (-561 $)) 172)) (-3993 (((-3 (-561 $) "failed") $) 162)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-1267 (((-588 (-561 $)) $) 163)) (-2909 (($ (-110) (-588 $)) 171) (($ (-110) $) 170)) (-2462 (((-3 (-588 $) "failed") $) 212 (|has| |#1| (-1026)))) (-2170 (((-3 (-2 (|:| |val| $) (|:| -1400 (-522))) "failed") $) 221 (|has| |#1| (-971)))) (-4193 (((-3 (-588 $) "failed") $) 214 (|has| |#1| (-25)))) (-1241 (((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3285 (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-1085)) 220 (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-110)) 219 (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $) 213 (|has| |#1| (-1026)))) (-2249 (((-108) $ (-1085)) 169) (((-108) $ (-110)) 168)) (-3098 (($ $) 70)) (-4155 (((-708) $) 161)) (-4151 (((-1032) $) 10)) (-3108 (((-108) $) 199)) (-3118 ((|#1| $) 200)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-1648 (((-108) $ (-1085)) 174) (((-108) $ $) 173)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-1263 (((-108) $) 185 (|has| $ (-962 (-522))))) (-2289 (($ $ (-1085) (-708) (-1 $ $)) 225 (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ (-588 $))) 224 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) 223 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) 222 (|has| |#1| (-971))) (($ $ (-588 (-110)) (-588 $) (-1085)) 211 (|has| |#1| (-563 (-498)))) (($ $ (-110) $ (-1085)) 210 (|has| |#1| (-563 (-498)))) (($ $) 209 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085))) 208 (|has| |#1| (-563 (-498)))) (($ $ (-1085)) 207 (|has| |#1| (-563 (-498)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-588 $))) 181) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 180) (($ $ (-588 (-110)) (-588 (-1 $ $))) 179) (($ $ (-1085) (-1 $ $)) 178) (($ $ (-1085) (-1 $ (-588 $))) 177) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 176) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 175) (($ $ (-588 $) (-588 $)) 146) (($ $ $ $) 145) (($ $ (-270 $)) 144) (($ $ (-588 (-270 $))) 143) (($ $ (-588 (-561 $)) (-588 $)) 142) (($ $ (-561 $) $) 141)) (-3730 (((-708) $) 58)) (-2545 (($ (-110) (-588 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-3043 (($ $ $) 160) (($ $) 159)) (-2157 (($ $ (-1085)) 249 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 248 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 247 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) 246 (|has| |#1| (-971)))) (-3533 (($ $) 228 (|has| |#1| (-514)))) (-2816 (((-1037 |#1| (-561 $)) $) 227 (|has| |#1| (-514)))) (-1479 (($ $) 184 (|has| $ (-971)))) (-1431 (((-498) $) 255 (|has| |#1| (-563 (-498)))) (($ (-393 $)) 226 (|has| |#1| (-514))) (((-821 (-354)) $) 191 (|has| |#1| (-563 (-821 (-354))))) (((-821 (-522)) $) 190 (|has| |#1| (-563 (-821 (-522)))))) (-3122 (($ $ $) 254 (|has| |#1| (-447)))) (-1288 (($ $ $) 253 (|has| |#1| (-447)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ (-881 |#1|)) 250 (|has| |#1| (-971))) (($ (-382 (-881 |#1|))) 234 (|has| |#1| (-514))) (($ (-382 (-881 (-382 |#1|)))) 232 (|has| |#1| (-514))) (($ (-881 (-382 |#1|))) 231 (|has| |#1| (-514))) (($ (-382 |#1|)) 230 (|has| |#1| (-514))) (($ (-1037 |#1| (-561 $))) 216 (|has| |#1| (-971))) (($ |#1|) 196) (($ (-1085)) 187) (($ (-561 $)) 138)) (-2143 (((-3 $ "failed") $) 239 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-2308 (($ (-588 $)) 156) (($ $) 155)) (-3614 (((-108) (-110)) 167)) (-3958 (((-108) $ $) 39)) (-1805 (($ (-1085) (-588 $)) 206) (($ (-1085) $ $ $ $) 205) (($ (-1085) $ $ $) 204) (($ (-1085) $ $) 203) (($ (-1085) $) 202)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-1085)) 245 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 244 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 243 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) 242 (|has| |#1| (-971)))) (-1574 (((-108) $ $) 134)) (-1558 (((-108) $ $) 133)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 135)) (-1549 (((-108) $ $) 132)) (-1620 (($ $ $) 64) (($ (-1037 |#1| (-561 $)) (-1037 |#1| (-561 $))) 229 (|has| |#1| (-514)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 90)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-157))) (($ |#1| $) 237 (|has| |#1| (-157)))))
+(((-29 |#1|) (-1197) (-13 (-784) (-514))) (T -29))
+((-3944 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514))))) (-1221 (*1 *2 *1) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514))))) (-1221 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *4)))) (-4032 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514))))) (-1617 (*1 *2 *1) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514))))) (-1617 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-405 |t#1|) (-10 -8 (-15 -3944 ($ $)) (-15 -1221 ((-588 $) $)) (-15 -3944 ($ $ (-1085))) (-15 -1221 ((-588 $) $ (-1085))) (-15 -4032 ($ $)) (-15 -1617 ((-588 $) $)) (-15 -4032 ($ $ (-1085))) (-15 -1617 ((-588 $) $ (-1085)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-220) . T) ((-266) . T) ((-283) . T) ((-285 $) . T) ((-278) . T) ((-338) . T) ((-352 |#1|) |has| |#1| (-971)) ((-375 |#1|) . T) ((-386 |#1|) . T) ((-405 |#1|) . T) ((-426) . T) ((-447) |has| |#1| (-447)) ((-483 (-561 $) $) . T) ((-483 $ $) . T) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) |has| |#1| (-157)) ((-590 $) . T) ((-584 (-522)) -12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) ((-584 |#1|) |has| |#1| (-971)) ((-655 #0#) . T) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) . T) ((-664) . T) ((-784) . T) ((-829 (-1085)) |has| |#1| (-971)) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-849) . T) ((-928) . T) ((-962 (-382 (-522))) -3708 (|has| |#1| (-962 (-382 (-522)))) (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) ((-962 (-382 (-881 |#1|))) |has| |#1| (-514)) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 (-561 $)) . T) ((-962 (-881 |#1|)) |has| |#1| (-971)) ((-962 (-1085)) . T) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) |has| |#1| (-157)) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1120) . T) ((-1124) . T))
+((-3808 (((-1009 (-202)) $) NIL)) (-3794 (((-1009 (-202)) $) NIL)) (-1499 (($ $ (-202)) 123)) (-1356 (($ (-881 (-522)) (-1085) (-1085) (-1009 (-382 (-522))) (-1009 (-382 (-522)))) 85)) (-2745 (((-588 (-588 (-872 (-202)))) $) 135)) (-2190 (((-792) $) 147)))
+(((-30) (-13 (-883) (-10 -8 (-15 -1356 ($ (-881 (-522)) (-1085) (-1085) (-1009 (-382 (-522))) (-1009 (-382 (-522))))) (-15 -1499 ($ $ (-202)))))) (T -30))
+((-1356 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-881 (-522))) (-5 *3 (-1085)) (-5 *4 (-1009 (-382 (-522)))) (-5 *1 (-30)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30)))))
+(-13 (-883) (-10 -8 (-15 -1356 ($ (-881 (-522)) (-1085) (-1085) (-1009 (-382 (-522))) (-1009 (-382 (-522))))) (-15 -1499 ($ $ (-202)))))
+((-3944 ((|#2| (-1081 |#2|) (-1085)) 42)) (-2626 (((-110) (-110)) 55)) (-1711 (((-1081 |#2|) (-561 |#2|)) 131 (|has| |#1| (-962 (-522))))) (-1710 ((|#2| |#1| (-522)) 110 (|has| |#1| (-962 (-522))))) (-1777 ((|#2| (-1081 |#2|) |#2|) 30)) (-4080 (((-792) (-588 |#2|)) 86)) (-1479 ((|#2| |#2|) 127 (|has| |#1| (-962 (-522))))) (-3614 (((-108) (-110)) 18)) (** ((|#2| |#2| (-382 (-522))) 91 (|has| |#1| (-962 (-522))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -3944 (|#2| (-1081 |#2|) (-1085))) (-15 -2626 ((-110) (-110))) (-15 -3614 ((-108) (-110))) (-15 -1777 (|#2| (-1081 |#2|) |#2|)) (-15 -4080 ((-792) (-588 |#2|))) (IF (|has| |#1| (-962 (-522))) (PROGN (-15 ** (|#2| |#2| (-382 (-522)))) (-15 -1711 ((-1081 |#2|) (-561 |#2|))) (-15 -1479 (|#2| |#2|)) (-15 -1710 (|#2| |#1| (-522)))) |%noBranch|)) (-13 (-784) (-514)) (-405 |#1|)) (T -31))
+((-1710 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-4 *2 (-405 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-962 *4)) (-4 *3 (-13 (-784) (-514))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-962 (-522))) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-31 *3 *2)) (-4 *2 (-405 *3)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-561 *5)) (-4 *5 (-405 *4)) (-4 *4 (-962 (-522))) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-1081 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-962 (-522))) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-31 *4 *2)) (-4 *2 (-405 *4)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-792)) (-5 *1 (-31 *4 *5)))) (-1777 (*1 *2 *3 *2) (-12 (-5 *3 (-1081 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-31 *4 *2)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-405 *4)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-31 *3 *4)) (-4 *4 (-405 *3)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *2)) (-5 *4 (-1085)) (-4 *2 (-405 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-784) (-514))))))
+(-10 -7 (-15 -3944 (|#2| (-1081 |#2|) (-1085))) (-15 -2626 ((-110) (-110))) (-15 -3614 ((-108) (-110))) (-15 -1777 (|#2| (-1081 |#2|) |#2|)) (-15 -4080 ((-792) (-588 |#2|))) (IF (|has| |#1| (-962 (-522))) (PROGN (-15 ** (|#2| |#2| (-382 (-522)))) (-15 -1711 ((-1081 |#2|) (-561 |#2|))) (-15 -1479 (|#2| |#2|)) (-15 -1710 (|#2| |#1| (-522)))) |%noBranch|))
+((-4141 (((-108) $ (-708)) 16)) (-3175 (($) 10)) (-3352 (((-108) $ (-708)) 15)) (-2720 (((-108) $ (-708)) 14)) (-1536 (((-108) $ $) 8)) (-3985 (((-108) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -3175 (|#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708))) (-15 -3985 ((-108) |#1|)) (-15 -1536 ((-108) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -3175 (|#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708))) (-15 -3985 ((-108) |#1|)) (-15 -1536 ((-108) |#1| |#1|)))
+((-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-3352 (((-108) $ (-708)) 9)) (-2720 (((-108) $ (-708)) 10)) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2404 (($ $) 13)) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-33) (-1197)) (T -33))
+((-1536 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2404 (*1 *1 *1) (-4 *1 (-33))) (-3775 (*1 *1) (-4 *1 (-33))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) (-3352 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) (-4141 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))) (-3175 (*1 *1) (-4 *1 (-33))) (-3480 (*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-33)) (-5 *2 (-708)))))
+(-13 (-1120) (-10 -8 (-15 -1536 ((-108) $ $)) (-15 -2404 ($ $)) (-15 -3775 ($)) (-15 -3985 ((-108) $)) (-15 -2720 ((-108) $ (-708))) (-15 -3352 ((-108) $ (-708))) (-15 -4141 ((-108) $ (-708))) (-15 -3175 ($) -2677) (IF (|has| $ (-6 -4238)) (-15 -3480 ((-708) $)) |%noBranch|)))
+(((-1120) . T))
+((-1759 (($ $) 11)) (-1745 (($ $) 10)) (-1776 (($ $) 9)) (-3924 (($ $) 8)) (-1768 (($ $) 7)) (-1752 (($ $) 6)))
+(((-34) (-1197)) (T -34))
+((-1759 (*1 *1 *1) (-4 *1 (-34))) (-1745 (*1 *1 *1) (-4 *1 (-34))) (-1776 (*1 *1 *1) (-4 *1 (-34))) (-3924 (*1 *1 *1) (-4 *1 (-34))) (-1768 (*1 *1 *1) (-4 *1 (-34))) (-1752 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -1752 ($ $)) (-15 -1768 ($ $)) (-15 -3924 ($ $)) (-15 -1776 ($ $)) (-15 -1745 ($ $)) (-15 -1759 ($ $))))
+((-1416 (((-108) $ $) 19 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3435 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 125)) (-2093 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 148)) (-3835 (($ $) 146)) (-1800 (($) 72) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 71)) (-2679 (((-1171) $ |#1| |#1|) 99 (|has| $ (-6 -4239))) (((-1171) $ (-522) (-522)) 178 (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) 159 (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3537 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 200 (|has| $ (-6 -4239))) (($ $) 199 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-4141 (((-108) $ (-708)) 8)) (-3628 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 134 (|has| $ (-6 -4239)))) (-1243 (($ $ $) 155 (|has| $ (-6 -4239)))) (-2049 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 157 (|has| $ (-6 -4239)))) (-1346 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 153 (|has| $ (-6 -4239)))) (-2379 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 189 (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-1133 (-522)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 160 (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "last" (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 158 (|has| $ (-6 -4239))) (($ $ "rest" $) 156 (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "first" (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 154 (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "value" (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 133 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 132 (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 45 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 216)) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 55 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 175 (|has| $ (-6 -4238)))) (-2081 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 147)) (-2750 (((-3 |#2| "failed") |#1| $) 61)) (-3175 (($) 7 T CONST)) (-3509 (($ $) 201 (|has| $ (-6 -4239)))) (-1862 (($ $) 211)) (-2306 (($ $ (-708)) 142) (($ $) 140)) (-3362 (($ $) 214 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-2333 (($ $) 58 (-3708 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238))) (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 46 (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 220) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 215 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 54 (|has| $ (-6 -4238))) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 174 (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 56 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 53 (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 52 (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 176 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 173 (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 172 (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 190 (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) 88) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) 188)) (-3069 (((-108) $) 192)) (-3238 (((-522) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 208) (((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 207 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) (((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) 206 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 30 (|has| $ (-6 -4238))) (((-588 |#2|) $) 79 (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 114 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 123)) (-2030 (((-108) $ $) 131 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-1811 (($ (-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 169)) (-3352 (((-108) $ (-708)) 9)) (-1359 ((|#1| $) 96 (|has| |#1| (-784))) (((-522) $) 180 (|has| (-522) (-784)))) (-2814 (($ $ $) 198 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1369 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-2160 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 29 (|has| $ (-6 -4238))) (((-588 |#2|) $) 80 (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 115 (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238)))) (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-2014 ((|#1| $) 95 (|has| |#1| (-784))) (((-522) $) 181 (|has| (-522) (-784)))) (-2446 (($ $ $) 197 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 34 (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4239))) (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 110 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 109)) (-1580 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 225)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 128)) (-1754 (((-108) $) 124)) (-2385 (((-1068) $) 22 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1442 (($ $ (-708)) 145) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 143)) (-2966 (((-588 |#1|) $) 63)) (-1231 (((-108) |#1| $) 64)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 39)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 40) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) 219) (($ $ $ (-522)) 218)) (-1661 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) 162) (($ $ $ (-522)) 161)) (-3604 (((-588 |#1|) $) 93) (((-588 (-522)) $) 183)) (-1405 (((-108) |#1| $) 92) (((-108) (-522) $) 184)) (-4151 (((-1032) $) 21 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-2294 ((|#2| $) 97 (|has| |#1| (-784))) (($ $ (-708)) 139) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 137)) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 51) (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 171)) (-2602 (($ $ |#2|) 98 (|has| $ (-6 -4239))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 179 (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 41)) (-2855 (((-108) $) 191)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 32 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 112 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) 26 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 25 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 24 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 23 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 86 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 84 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) 83 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 121 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 120 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 119 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) 118 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 182 (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1525 (((-588 |#2|) $) 91) (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 185)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 187) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) 186) (($ $ (-1133 (-522))) 165) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "first") 138) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "value") 126)) (-2011 (((-522) $ $) 129)) (-3990 (($) 49) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 48)) (-3681 (($ $ (-522)) 222) (($ $ (-1133 (-522))) 221)) (-3696 (($ $ (-522)) 164) (($ $ (-1133 (-522))) 163)) (-3042 (((-108) $) 127)) (-3107 (($ $) 151)) (-2646 (($ $) 152 (|has| $ (-6 -4239)))) (-2393 (((-708) $) 150)) (-2122 (($ $) 149)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 31 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-708) |#2| $) 81 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 113 (|has| $ (-6 -4238)))) (-1577 (($ $ $ (-522)) 202 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498)))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 50) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 170)) (-2630 (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 224) (($ $ $) 223)) (-4165 (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 168) (($ (-588 $)) 167) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 136) (($ $ $) 135)) (-2190 (((-792) $) 18 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792)))))) (-1749 (((-588 $) $) 122)) (-2425 (((-108) $ $) 130 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 42)) (-1446 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") |#1| $) 108)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 33 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 111 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 195 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1558 (((-108) $ $) 194 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1531 (((-108) $ $) 20 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1566 (((-108) $ $) 196 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1549 (((-108) $ $) 193 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-35 |#1| |#2|) (-1197) (-1014) (-1014)) (T -35))
+((-1446 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| -2530 *3) (|:| -3048 *4))))))
+(-13 (-1097 |t#1| |t#2|) (-608 (-2 (|:| -2530 |t#1|) (|:| -3048 |t#2|))) (-10 -8 (-15 -1446 ((-3 (-2 (|:| -2530 |t#1|) (|:| -3048 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((-97) -3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784))) ((-562 (-792)) -3708 (|has| |#2| (-1014)) (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792)))) ((-139 #1=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((-563 (-498)) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))) ((-206 #0#) . T) ((-212 #0#) . T) ((-262 #2=(-522) #1#) . T) ((-262 |#1| |#2|) . T) ((-264 #2# #1#) . T) ((-264 |#1| |#2|) . T) ((-285 #1#) -12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-258 #1#) . T) ((-348 #1#) . T) ((-461 #1#) . T) ((-461 |#2|) . T) ((-555 #2# #1#) . T) ((-555 |#1| |#2|) . T) ((-483 #1# #1#) -12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-559 |#1| |#2|) . T) ((-593 #1#) . T) ((-608 #1#) . T) ((-784) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)) ((-936 #1#) . T) ((-1014) -3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784))) ((-1059 #1#) . T) ((-1097 |#1| |#2|) . T) ((-1120) . T) ((-1154 #1#) . T))
+((-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-37 |#2|) (-157)) (T -36))
+NIL
+(-10 -8 (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-37 |#1|) (-1197) (-157)) (T -37))
+((-2190 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157)))))
+(-13 (-971) (-655 |t#1|) (-10 -8 (-15 -2190 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2724 (((-393 |#1|) |#1|) 38)) (-1916 (((-393 |#1|) |#1|) 27) (((-393 |#1|) |#1| (-588 (-47))) 30)) (-2695 (((-108) |#1|) 54)))
+(((-38 |#1|) (-10 -7 (-15 -1916 ((-393 |#1|) |#1| (-588 (-47)))) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2724 ((-393 |#1|) |#1|)) (-15 -2695 ((-108) |#1|))) (-1142 (-47))) (T -38))
+((-2695 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) (-2724 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-47))) (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))))
+(-10 -7 (-15 -1916 ((-393 |#1|) |#1| (-588 (-47)))) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2724 ((-393 |#1|) |#1|)) (-15 -2695 ((-108) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2375 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| (-382 |#2|) (-338)))) (-2022 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3739 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3174 (((-628 (-382 |#2|)) (-1166 $)) NIL) (((-628 (-382 |#2|))) NIL)) (-1865 (((-382 |#2|) $) NIL)) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-382 |#2|) (-324)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3450 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-1687 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-1629 (((-708)) NIL (|has| (-382 |#2|) (-343)))) (-2472 (((-108)) NIL)) (-2898 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-3 (-382 |#2|) "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-382 (-522)) $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-382 |#2|) $) NIL)) (-3766 (($ (-1166 (-382 |#2|)) (-1166 $)) NIL) (($ (-1166 (-382 |#2|))) 57) (($ (-1166 |#2|) |#2|) 124)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-382 |#2|) (-324)))) (-2277 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2109 (((-628 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-382 |#2|))) (|:| |vec| (-1166 (-382 |#2|)))) (-628 $) (-1166 $)) NIL) (((-628 (-382 |#2|)) (-628 $)) NIL)) (-3642 (((-1166 $) (-1166 $)) NIL)) (-3864 (($ |#3|) NIL) (((-3 $ "failed") (-382 |#3|)) NIL (|has| (-382 |#2|) (-338)))) (-2682 (((-3 $ "failed") $) NIL)) (-2017 (((-588 (-588 |#1|))) NIL (|has| |#1| (-343)))) (-1250 (((-108) |#1| |#1|) NIL)) (-3166 (((-850)) NIL)) (-3255 (($) NIL (|has| (-382 |#2|) (-343)))) (-3144 (((-108)) NIL)) (-1228 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2254 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| (-382 |#2|) (-338)))) (-2071 (($ $) NIL)) (-1223 (($) NIL (|has| (-382 |#2|) (-324)))) (-2511 (((-108) $) NIL (|has| (-382 |#2|) (-324)))) (-2111 (($ $ (-708)) NIL (|has| (-382 |#2|) (-324))) (($ $) NIL (|has| (-382 |#2|) (-324)))) (-2813 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3714 (((-850) $) NIL (|has| (-382 |#2|) (-324))) (((-770 (-850)) $) NIL (|has| (-382 |#2|) (-324)))) (-2782 (((-108) $) NIL)) (-2397 (((-708)) NIL)) (-1538 (((-1166 $) (-1166 $)) 100)) (-2100 (((-382 |#2|) $) NIL)) (-2653 (((-588 (-881 |#1|)) (-1085)) NIL (|has| |#1| (-338)))) (-3004 (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-1712 ((|#3| $) NIL (|has| (-382 |#2|) (-338)))) (-2120 (((-850) $) NIL (|has| (-382 |#2|) (-343)))) (-3849 ((|#3| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2385 (((-1068) $) NIL)) (-2660 (((-1171) (-708)) 78)) (-3293 (((-628 (-382 |#2|))) 51)) (-4178 (((-628 (-382 |#2|))) 44)) (-3098 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-1249 (($ (-1166 |#2|) |#2|) 125)) (-3189 (((-628 (-382 |#2|))) 45)) (-3319 (((-628 (-382 |#2|))) 43)) (-3041 (((-2 (|:| |num| (-628 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-4066 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 63)) (-4003 (((-1166 $)) 42)) (-3882 (((-1166 $)) 41)) (-2156 (((-108) $) NIL)) (-1332 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3802 (($) NIL (|has| (-382 |#2|) (-324)) CONST)) (-2717 (($ (-850)) NIL (|has| (-382 |#2|) (-343)))) (-3117 (((-3 |#2| "failed")) NIL)) (-4151 (((-1032) $) NIL)) (-3940 (((-708)) NIL)) (-1383 (($) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| (-382 |#2|) (-338)))) (-2259 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-382 |#2|) (-324)))) (-1916 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-382 |#2|) (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-2232 (((-3 $ "failed") $ $) NIL (|has| (-382 |#2|) (-338)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-3730 (((-708) $) NIL (|has| (-382 |#2|) (-338)))) (-2545 ((|#1| $ |#1| |#1|) NIL)) (-3157 (((-3 |#2| "failed")) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-2769 (((-382 |#2|) (-1166 $)) NIL) (((-382 |#2|)) 39)) (-3018 (((-708) $) NIL (|has| (-382 |#2|) (-324))) (((-3 (-708) "failed") $ $) NIL (|has| (-382 |#2|) (-324)))) (-2157 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1859 (((-628 (-382 |#2|)) (-1166 $) (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338)))) (-1479 ((|#3|) 50)) (-2581 (($) NIL (|has| (-382 |#2|) (-324)))) (-3677 (((-1166 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) (-1166 $) (-1166 $)) NIL) (((-1166 (-382 |#2|)) $) 58) (((-628 (-382 |#2|)) (-1166 $)) 101)) (-1431 (((-1166 (-382 |#2|)) $) NIL) (($ (-1166 (-382 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-382 |#2|) (-324)))) (-1634 (((-1166 $) (-1166 $)) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 |#2|)) NIL) (($ (-382 (-522))) NIL (-3708 (|has| (-382 |#2|) (-962 (-382 (-522)))) (|has| (-382 |#2|) (-338)))) (($ $) NIL (|has| (-382 |#2|) (-338)))) (-2143 (($ $) NIL (|has| (-382 |#2|) (-324))) (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-133)))) (-2051 ((|#3| $) NIL)) (-2323 (((-708)) NIL)) (-3532 (((-108)) 37)) (-4170 (((-108) |#1|) 49) (((-108) |#2|) 131)) (-3855 (((-1166 $)) 91)) (-3958 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-3406 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2058 (((-108)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (-3566 (($) 16 T CONST)) (-3577 (($) 26 T CONST)) (-2213 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 |#2|)) NIL) (($ (-382 |#2|) $) NIL) (($ (-382 (-522)) $) NIL (|has| (-382 |#2|) (-338))) (($ $ (-382 (-522))) NIL (|has| (-382 |#2|) (-338)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-317 |#1| |#2| |#3|) (-10 -7 (-15 -2660 ((-1171) (-708))))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) |#3|) (T -39))
+((-2660 (*1 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *2 (-1171)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1142 (-382 *5))) (-14 *7 *6))))
+(-13 (-317 |#1| |#2| |#3|) (-10 -7 (-15 -2660 ((-1171) (-708)))))
+((-4160 ((|#2| |#2|) 47)) (-1955 ((|#2| |#2|) 117 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-1640 ((|#2| |#2|) 86 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-1982 ((|#2| |#2|) 87 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-4174 ((|#2| (-110) |#2| (-708)) 74 (-12 (|has| |#2| (-405 |#1|)) (|has| |#1| (-426)) (|has| |#1| (-784)) (|has| |#1| (-962 (-522)))))) (-3867 (((-1081 |#2|) |#2|) 44)) (-1311 ((|#2| |#2| (-588 (-561 |#2|))) 17) ((|#2| |#2| (-588 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -4160 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -1311 (|#2| |#2| |#2|)) (-15 -1311 (|#2| |#2| (-588 |#2|))) (-15 -1311 (|#2| |#2| (-588 (-561 |#2|)))) (-15 -3867 ((-1081 |#2|) |#2|)) (IF (|has| |#1| (-784)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-962 (-522))) (IF (|has| |#2| (-405 |#1|)) (PROGN (-15 -1982 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -4174 (|#2| (-110) |#2| (-708)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-514) (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 |#1| (-561 $)) $)) (-15 -2816 ((-1037 |#1| (-561 $)) $)) (-15 -2190 ($ (-1037 |#1| (-561 $))))))) (T -40))
+((-4174 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-708)) (-4 *5 (-426)) (-4 *5 (-784)) (-4 *5 (-962 (-522))) (-4 *5 (-514)) (-5 *1 (-40 *5 *2)) (-4 *2 (-405 *5)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *5 (-561 $)) $)) (-15 -2816 ((-1037 *5 (-561 $)) $)) (-15 -2190 ($ (-1037 *5 (-561 $))))))))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $)) (-15 -2816 ((-1037 *3 (-561 $)) $)) (-15 -2190 ($ (-1037 *3 (-561 $))))))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $)) (-15 -2816 ((-1037 *3 (-561 $)) $)) (-15 -2190 ($ (-1037 *3 (-561 $))))))))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522))) (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $)) (-15 -2816 ((-1037 *3 (-561 $)) $)) (-15 -2190 ($ (-1037 *3 (-561 $))))))))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-1081 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *4 (-561 $)) $)) (-15 -2816 ((-1037 *4 (-561 $)) $)) (-15 -2190 ($ (-1037 *4 (-561 $))))))))) (-1311 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-561 *2))) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *4 (-561 $)) $)) (-15 -2816 ((-1037 *4 (-561 $)) $)) (-15 -2190 ($ (-1037 *4 (-561 $))))))) (-4 *4 (-514)) (-5 *1 (-40 *4 *2)))) (-1311 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *4 (-561 $)) $)) (-15 -2816 ((-1037 *4 (-561 $)) $)) (-15 -2190 ($ (-1037 *4 (-561 $))))))) (-4 *4 (-514)) (-5 *1 (-40 *4 *2)))) (-1311 (*1 *2 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $)) (-15 -2816 ((-1037 *3 (-561 $)) $)) (-15 -2190 ($ (-1037 *3 (-561 $))))))))) (-1311 (*1 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $)) (-15 -2816 ((-1037 *3 (-561 $)) $)) (-15 -2190 ($ (-1037 *3 (-561 $))))))))) (-4160 (*1 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-338) (-278) (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $)) (-15 -2816 ((-1037 *3 (-561 $)) $)) (-15 -2190 ($ (-1037 *3 (-561 $))))))))))
+(-10 -7 (-15 -4160 (|#2| |#2|)) (-15 -1311 (|#2| |#2|)) (-15 -1311 (|#2| |#2| |#2|)) (-15 -1311 (|#2| |#2| (-588 |#2|))) (-15 -1311 (|#2| |#2| (-588 (-561 |#2|)))) (-15 -3867 ((-1081 |#2|) |#2|)) (IF (|has| |#1| (-784)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-962 (-522))) (IF (|has| |#2| (-405 |#1|)) (PROGN (-15 -1982 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -4174 (|#2| (-110) |#2| (-708)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-1916 (((-393 (-1081 |#3|)) (-1081 |#3|) (-588 (-47))) 22) (((-393 |#3|) |#3| (-588 (-47))) 18)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-393 |#3|) |#3| (-588 (-47)))) (-15 -1916 ((-393 (-1081 |#3|)) (-1081 |#3|) (-588 (-47))))) (-784) (-730) (-878 (-47) |#2| |#1|)) (T -41))
+((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *7 (-878 (-47) *6 *5)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730)) (-5 *2 (-393 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-878 (-47) *6 *5)))))
+(-10 -7 (-15 -1916 ((-393 |#3|) |#3| (-588 (-47)))) (-15 -1916 ((-393 (-1081 |#3|)) (-1081 |#3|) (-588 (-47)))))
+((-1475 (((-708) |#2|) 65)) (-2256 (((-708) |#2|) 68)) (-3603 (((-588 |#2|)) 33)) (-1807 (((-708) |#2|) 67)) (-3353 (((-708) |#2|) 64)) (-3215 (((-708) |#2|) 66)) (-2121 (((-588 (-628 |#1|))) 60)) (-2704 (((-588 |#2|)) 55)) (-2321 (((-588 |#2|) |#2|) 43)) (-3804 (((-588 |#2|)) 57)) (-3419 (((-588 |#2|)) 56)) (-1488 (((-588 (-628 |#1|))) 48)) (-2417 (((-588 |#2|)) 54)) (-2633 (((-588 |#2|) |#2|) 42)) (-3562 (((-588 |#2|)) 50)) (-3093 (((-588 (-628 |#1|))) 61)) (-3783 (((-588 |#2|)) 59)) (-3855 (((-1166 |#2|) (-1166 |#2|)) 84 (|has| |#1| (-283)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -1807 ((-708) |#2|)) (-15 -2256 ((-708) |#2|)) (-15 -3353 ((-708) |#2|)) (-15 -1475 ((-708) |#2|)) (-15 -3215 ((-708) |#2|)) (-15 -3562 ((-588 |#2|))) (-15 -2633 ((-588 |#2|) |#2|)) (-15 -2321 ((-588 |#2|) |#2|)) (-15 -2417 ((-588 |#2|))) (-15 -2704 ((-588 |#2|))) (-15 -3419 ((-588 |#2|))) (-15 -3804 ((-588 |#2|))) (-15 -3783 ((-588 |#2|))) (-15 -1488 ((-588 (-628 |#1|)))) (-15 -2121 ((-588 (-628 |#1|)))) (-15 -3093 ((-588 (-628 |#1|)))) (-15 -3603 ((-588 |#2|))) (IF (|has| |#1| (-283)) (-15 -3855 ((-1166 |#2|) (-1166 |#2|))) |%noBranch|)) (-514) (-392 |#1|)) (T -42))
+((-3855 (*1 *2 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-392 *3)) (-4 *3 (-283)) (-4 *3 (-514)) (-5 *1 (-42 *3 *4)))) (-3603 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3093 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2121 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-1488 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3783 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3804 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3419 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2704 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2417 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-2321 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-2633 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-3562 (*1 *2) (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-392 *3)))) (-3215 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-1475 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-3353 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-2256 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))) (-1807 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3)) (-4 *3 (-392 *4)))))
+(-10 -7 (-15 -1807 ((-708) |#2|)) (-15 -2256 ((-708) |#2|)) (-15 -3353 ((-708) |#2|)) (-15 -1475 ((-708) |#2|)) (-15 -3215 ((-708) |#2|)) (-15 -3562 ((-588 |#2|))) (-15 -2633 ((-588 |#2|) |#2|)) (-15 -2321 ((-588 |#2|) |#2|)) (-15 -2417 ((-588 |#2|))) (-15 -2704 ((-588 |#2|))) (-15 -3419 ((-588 |#2|))) (-15 -3804 ((-588 |#2|))) (-15 -3783 ((-588 |#2|))) (-15 -1488 ((-588 (-628 |#1|)))) (-15 -2121 ((-588 (-628 |#1|)))) (-15 -3093 ((-588 (-628 |#1|)))) (-15 -3603 ((-588 |#2|))) (IF (|has| |#1| (-283)) (-15 -3855 ((-1166 |#2|) (-1166 |#2|))) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3210 (((-3 $ "failed")) NIL (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1588 (((-1166 (-628 |#1|)) (-1166 $)) NIL) (((-1166 (-628 |#1|))) 24)) (-1681 (((-1166 $)) 50)) (-3175 (($) NIL T CONST)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (|has| |#1| (-514)))) (-3130 (((-3 $ "failed")) NIL (|has| |#1| (-514)))) (-1771 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) NIL)) (-3594 ((|#1| $) NIL)) (-2828 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#1| (-514)))) (-3549 (((-1081 (-881 |#1|))) NIL (|has| |#1| (-338)))) (-1679 (($ $ (-850)) NIL)) (-3076 ((|#1| $) NIL)) (-2992 (((-1081 |#1|) $) NIL (|has| |#1| (-514)))) (-2975 ((|#1| (-1166 $)) NIL) ((|#1|) NIL)) (-4014 (((-1081 |#1|) $) NIL)) (-2878 (((-108)) 86)) (-3766 (($ (-1166 |#1|) (-1166 $)) NIL) (($ (-1166 |#1|)) NIL)) (-2682 (((-3 $ "failed") $) 14 (|has| |#1| (-514)))) (-3166 (((-850)) 51)) (-2666 (((-108)) NIL)) (-1882 (($ $ (-850)) NIL)) (-1427 (((-108)) NIL)) (-2552 (((-108)) NIL)) (-2678 (((-108)) 88)) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (|has| |#1| (-514)))) (-2007 (((-3 $ "failed")) NIL (|has| |#1| (-514)))) (-1943 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) NIL)) (-1546 ((|#1| $) NIL)) (-4142 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-2231 (((-3 $ "failed") $) NIL (|has| |#1| (-514)))) (-2497 (((-1081 (-881 |#1|))) NIL (|has| |#1| (-338)))) (-3277 (($ $ (-850)) NIL)) (-1505 ((|#1| $) NIL)) (-3630 (((-1081 |#1|) $) NIL (|has| |#1| (-514)))) (-2475 ((|#1| (-1166 $)) NIL) ((|#1|) NIL)) (-2302 (((-1081 |#1|) $) NIL)) (-3003 (((-108)) 85)) (-2385 (((-1068) $) NIL)) (-3710 (((-108)) 92)) (-3026 (((-108)) 91)) (-3055 (((-108)) 93)) (-4151 (((-1032) $) NIL)) (-2889 (((-108)) 87)) (-2545 ((|#1| $ (-522)) 53)) (-3677 (((-1166 |#1|) $ (-1166 $)) 47) (((-628 |#1|) (-1166 $) (-1166 $)) NIL) (((-1166 |#1|) $) 28) (((-628 |#1|) (-1166 $)) NIL)) (-1431 (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL)) (-2656 (((-588 (-881 |#1|)) (-1166 $)) NIL) (((-588 (-881 |#1|))) NIL)) (-1288 (($ $ $) NIL)) (-4034 (((-108)) 83)) (-2190 (((-792) $) 68) (($ (-1166 |#1|)) 22)) (-3855 (((-1166 $)) 44)) (-2901 (((-588 (-1166 |#1|))) NIL (|has| |#1| (-514)))) (-3610 (($ $ $ $) NIL)) (-2928 (((-108)) 81)) (-1616 (($ (-628 |#1|) $) 18)) (-3024 (($ $ $) NIL)) (-3065 (((-108)) 84)) (-3856 (((-108)) 82)) (-3877 (((-108)) 80)) (-3566 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1052 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-392 |#1|) (-590 (-1052 |#2| |#1|)) (-10 -8 (-15 -2190 ($ (-1166 |#1|))))) (-338) (-850) (-588 (-1085)) (-1166 (-628 |#1|))) (T -43))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-14 *6 (-1166 (-628 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))))))
+(-13 (-392 |#1|) (-590 (-1052 |#2| |#1|)) (-10 -8 (-15 -2190 ($ (-1166 |#1|)))))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3435 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-2093 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3835 (($ $) NIL)) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239))) (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3537 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784))))) (-3216 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-3628 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239)))) (-1243 (($ $ $) 27 (|has| $ (-6 -4239)))) (-2049 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239)))) (-1346 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 29 (|has| $ (-6 -4239)))) (-2379 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-1133 (-522)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "last" (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239))) (($ $ "rest" $) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "first" (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "value" (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2081 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-2750 (((-3 |#2| "failed") |#1| $) 37)) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2306 (($ $ (-708)) NIL) (($ $) 24)) (-3362 (($ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 47) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) NIL)) (-3069 (((-108) $) NIL)) (-3238 (((-522) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) (((-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 18 (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 18 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-1811 (($ (-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784))) (((-522) $) 32 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1369 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-2160 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784))) (((-522) $) 34 (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-1580 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1279 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-1754 (((-108) $) NIL)) (-2385 (((-1068) $) 42 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1442 (($ $ (-708)) NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-2966 (((-588 |#1|) $) 20)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-1661 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 |#1|) $) NIL) (((-588 (-522)) $) NIL)) (-1405 (((-108) |#1| $) NIL) (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784))) (($ $ (-708)) NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 23)) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-2855 (((-108) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1525 (((-588 |#2|) $) NIL) (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 17)) (-3985 (((-108) $) 16)) (-3775 (($) 13)) (-2545 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ (-522)) NIL) (($ $ (-1133 (-522))) NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "first") NIL) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $ "value") NIL)) (-2011 (((-522) $ $) NIL)) (-3990 (($) 12) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3681 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3042 (((-108) $) NIL)) (-3107 (($ $) NIL)) (-2646 (($ $) NIL (|has| $ (-6 -4239)))) (-2393 (((-708) $) NIL)) (-2122 (($ $) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2630 (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL) (($ $ $) NIL)) (-4165 (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL) (($ (-588 $)) NIL) (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 25) (($ $ $) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-1446 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") |#1| $) 44)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1566 (((-108) $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-784)))) (-3480 (((-708) $) 22 (|has| $ (-6 -4238)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1014) (-1014)) (T -44))
NIL
(-35 |#1| |#2|)
-((-3573 (((-108) $) 12)) (-1393 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-381 (-521)) $) 24) (($ $ (-381 (-521))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -3573 ((-108) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|))) (-46 |#2| |#3|) (-970) (-728)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -3573 ((-108) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-3573 (((-108) $) 62)) (-4044 (($ |#1| |#2|) 61)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-2098 ((|#2| $) 64)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1499 ((|#1| $ |#2|) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-46 |#1| |#2|) (-1196) (-970) (-728)) (T -46))
-((-3140 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-108)))) (-4044 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-1499 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *2 (-337)))))
-(-13 (-970) (-107 |t#1| |t#1|) (-10 -8 (-15 -3140 (|t#1| $)) (-15 -3130 ($ $)) (-15 -2098 (|t#2| $)) (-15 -1393 ($ (-1 |t#1| |t#1|) $)) (-15 -3573 ((-108) $)) (-15 -4044 ($ |t#1| |t#2|)) (-15 -3157 ($ $)) (-15 -1499 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-337)) (-15 -1648 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-6 (-157)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-513)) (-6 (-513)) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (-6 (-37 (-381 (-521)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-265) |has| |#1| (-513)) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3144 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-880 $)) NIL)) (-1260 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-880 $)) NIL)) (-3398 (((-108) $) 11)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-1946 (((-587 (-560 $)) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3304 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-1984 (($ $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-1678 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-880 $)) NIL)) (-1444 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-880 $)) NIL)) (-1296 (((-3 (-560 $) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL)) (-1496 (((-560 $) $) NIL) (((-521) $) NIL) (((-381 (-521)) $) NIL)) (-2302 (($ $ $) NIL)) (-1961 (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-381 (-521)))) (|:| |vec| (-1165 (-381 (-521))))) (-627 $) (-1165 $)) NIL) (((-627 (-381 (-521))) (-627 $)) NIL)) (-3859 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2707 (($ $) NIL) (($ (-587 $)) NIL)) (-2788 (((-587 (-110)) $) NIL)) (-3928 (((-110) (-110)) NIL)) (-3637 (((-108) $) 14)) (-3924 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2807 (((-1036 (-521) (-560 $)) $) NIL)) (-3743 (($ $ (-521)) NIL)) (-2549 (((-1080 $) (-1080 $) (-560 $)) NIL) (((-1080 $) (-1080 $) (-587 (-560 $))) NIL) (($ $ (-560 $)) NIL) (($ $ (-587 (-560 $))) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3159 (((-1080 $) (-560 $)) NIL (|has| $ (-970)))) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 $ $) (-560 $)) NIL)) (-1656 (((-3 (-560 $) "failed") $) NIL)) (-2254 (($ (-587 $)) NIL) (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) NIL)) (-2911 (($ (-110) $) NIL) (($ (-110) (-587 $)) NIL)) (-4013 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) NIL)) (-3100 (($ $) NIL)) (-4151 (((-707) $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3457 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2060 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2313 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3794 (((-707) $) NIL)) (-2550 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-1935 (($ $) NIL) (($ $ $) NIL)) (-2193 (($ $ (-707)) NIL) (($ $) NIL)) (-2818 (((-1036 (-521) (-560 $)) $) NIL)) (-3436 (($ $) NIL (|has| $ (-970)))) (-1438 (((-353) $) NIL) (((-202) $) NIL) (((-154 (-353)) $) NIL)) (-2223 (((-791) $) NIL) (($ (-560 $)) NIL) (($ (-381 (-521))) NIL) (($ $) NIL) (($ (-521)) NIL) (($ (-1036 (-521) (-560 $))) NIL)) (-1592 (((-707)) NIL)) (-2342 (($ $) NIL) (($ (-587 $)) NIL)) (-1224 (((-108) (-110)) NIL)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-521)) NIL) (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3562 (($) 7 T CONST)) (-3572 (($) 12 T CONST)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 16)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL)) (-1639 (($ $ $) 15) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-381 (-521))) NIL) (($ $ (-521)) NIL) (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (* (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ $ $) NIL) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-47) (-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2223 ($ (-1036 (-521) (-560 $)))) (-15 -2807 ((-1036 (-521) (-560 $)) $)) (-15 -2818 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -2549 ((-1080 $) (-1080 $) (-560 $))) (-15 -2549 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -2549 ($ $ (-560 $))) (-15 -2549 ($ $ (-587 (-560 $))))))) (T -47))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47)))) (-3859 (*1 *1 *1) (-5 *1 (-47))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-560 (-47))) (-5 *1 (-47)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-587 (-560 (-47)))) (-5 *1 (-47)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-560 (-47))) (-5 *1 (-47)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-47)))) (-5 *1 (-47)))))
-(-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2223 ($ (-1036 (-521) (-560 $)))) (-15 -2807 ((-1036 (-521) (-560 $)) $)) (-15 -2818 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -2549 ((-1080 $) (-1080 $) (-560 $))) (-15 -2549 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -2549 ($ $ (-560 $))) (-15 -2549 ($ $ (-587 (-560 $))))))
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 7)) (-1549 (((-108) $ $) NIL)))
-(((-48) (-1013)) (T -48))
-NIL
-(-1013)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 60)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3539 (((-108) $) 20)) (-1296 (((-3 |#1| "failed") $) 23)) (-1496 ((|#1| $) 24)) (-3157 (($ $) 27)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3140 ((|#1| $) 21)) (-1203 (($ $) 49)) (-4024 (((-1067) $) NIL)) (-1230 (((-108) $) 28)) (-4146 (((-1031) $) NIL)) (-1384 (($ (-707)) 47)) (-3265 (($ (-587 (-521))) 48)) (-2098 (((-707) $) 29)) (-2223 (((-791) $) 63) (($ (-521)) 44) (($ |#1|) 42)) (-1499 ((|#1| $ $) 19)) (-1592 (((-707)) 46)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 30 T CONST)) (-3572 (($) 14 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 40)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-565 |#1|) (-961 |#1|) (-10 -8 (-15 -3140 (|#1| $)) (-15 -1203 ($ $)) (-15 -3157 ($ $)) (-15 -1499 (|#1| $ $)) (-15 -1384 ($ (-707))) (-15 -3265 ($ (-587 (-521)))) (-15 -1230 ((-108) $)) (-15 -3539 ((-108) $)) (-15 -2098 ((-707) $)) (-15 -1393 ($ (-1 |#1| |#1|) $)))) (-970) (-587 (-1084))) (T -49))
-((-3140 (*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084))))) (-1203 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084))))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084))))) (-1499 (*1 *2 *1 *1) (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084))))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-3265 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-1230 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-49 *3 *4)) (-14 *4 (-587 (-1084))))))
-(-13 (-565 |#1|) (-961 |#1|) (-10 -8 (-15 -3140 (|#1| $)) (-15 -1203 ($ $)) (-15 -3157 ($ $)) (-15 -1499 (|#1| $ $)) (-15 -1384 ($ (-707))) (-15 -3265 ($ (-587 (-521)))) (-15 -1230 ((-108) $)) (-15 -3539 ((-108) $)) (-15 -2098 ((-707) $)) (-15 -1393 ($ (-1 |#1| |#1|) $))))
-((-3539 (((-108) (-51)) 13)) (-1296 (((-3 |#1| "failed") (-51)) 21)) (-1496 ((|#1| (-51)) 22)) (-2223 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2223 ((-51) |#1|)) (-15 -1296 ((-3 |#1| "failed") (-51))) (-15 -3539 ((-108) (-51))) (-15 -1496 (|#1| (-51)))) (-1119)) (T -50))
-((-1496 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1119)))) (-1296 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119)))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1119)))))
-(-10 -7 (-15 -2223 ((-51) |#1|)) (-15 -1296 ((-3 |#1| "failed") (-51))) (-15 -3539 ((-108) (-51))) (-15 -1496 (|#1| (-51))))
-((-1422 (((-108) $ $) NIL)) (-1421 (((-1067) (-108)) 25)) (-1799 (((-791) $) 24)) (-2863 (((-710) $) 12)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3531 (((-791) $) 16)) (-2899 (((-1017) $) 14)) (-2223 (((-791) $) 32)) (-2349 (($ (-1017) (-710)) 33)) (-1549 (((-108) $ $) 18)))
-(((-51) (-13 (-1013) (-10 -8 (-15 -2349 ($ (-1017) (-710))) (-15 -3531 ((-791) $)) (-15 -1799 ((-791) $)) (-15 -2899 ((-1017) $)) (-15 -2863 ((-710) $)) (-15 -1421 ((-1067) (-108)))))) (T -51))
-((-2349 (*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-710)) (-5 *1 (-51)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-51)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1067)) (-5 *1 (-51)))))
-(-13 (-1013) (-10 -8 (-15 -2349 ($ (-1017) (-710))) (-15 -3531 ((-791) $)) (-15 -1799 ((-791) $)) (-15 -2899 ((-1017) $)) (-15 -2863 ((-710) $)) (-15 -1421 ((-1067) (-108)))))
-((-1644 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1644 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-970) (-589 |#1|) (-785 |#1|)) (T -52))
-((-1644 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-589 *5)) (-4 *5 (-970)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-785 *5)))))
-(-10 -7 (-15 -1644 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2366 ((|#3| |#3| (-587 (-1084))) 35)) (-4025 ((|#3| (-587 (-992 |#1| |#2| |#3|)) |#3| (-849)) 22) ((|#3| (-587 (-992 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4025 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3|)) (-15 -4025 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3| (-849))) (-15 -2366 (|#3| |#3| (-587 (-1084))))) (-1013) (-13 (-970) (-814 |#1|) (-783) (-562 (-820 |#1|))) (-13 (-404 |#2|) (-814 |#1|) (-562 (-820 |#1|)))) (T -53))
-((-2366 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))))) (-4025 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-587 (-992 *5 *6 *2))) (-5 *4 (-849)) (-4 *5 (-1013)) (-4 *6 (-13 (-970) (-814 *5) (-783) (-562 (-820 *5)))) (-4 *2 (-13 (-404 *6) (-814 *5) (-562 (-820 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-4025 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-992 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4)))) (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -4025 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3|)) (-15 -4025 (|#3| (-587 (-992 |#1| |#2| |#3|)) |#3| (-849))) (-15 -2366 (|#3| |#3| (-587 (-1084)))))
-((-1269 (((-108) $ (-707)) 23)) (-3419 (($ $ (-521) |#3|) 45)) (-3790 (($ $ (-521) |#4|) 49)) (-2185 ((|#3| $ (-521)) 58)) (-3831 (((-587 |#2|) $) 30)) (-1513 (((-108) $ (-707)) 25)) (-1785 (((-108) |#2| $) 53)) (-3833 (($ (-1 |#2| |#2|) $) 37)) (-1393 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2859 (((-108) $ (-707)) 24)) (-2995 (($ $ |#2|) 34)) (-1936 (((-108) (-1 (-108) |#2|) $) 19)) (-2550 ((|#2| $ (-521) (-521)) NIL) ((|#2| $ (-521) (-521) |#2|) 27)) (-4163 (((-707) (-1 (-108) |#2|) $) 28) (((-707) |#2| $) 55)) (-2420 (($ $) 33)) (-1335 ((|#4| $ (-521)) 61)) (-2223 (((-791) $) 66)) (-2006 (((-108) (-1 (-108) |#2|) $) 18)) (-1549 (((-108) $ $) 52)) (-3478 (((-707) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3790 (|#1| |#1| (-521) |#4|)) (-15 -3419 (|#1| |#1| (-521) |#3|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -1335 (|#4| |#1| (-521))) (-15 -2185 (|#3| |#1| (-521))) (-15 -2550 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) (-521))) (-15 -2995 (|#1| |#1| |#2|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1785 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707))) (-15 -2420 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1119) (-347 |#2|) (-347 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3790 (|#1| |#1| (-521) |#4|)) (-15 -3419 (|#1| |#1| (-521) |#3|)) (-15 -3831 ((-587 |#2|) |#1|)) (-15 -1335 (|#4| |#1| (-521))) (-15 -2185 (|#3| |#1| (-521))) (-15 -2550 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) (-521))) (-15 -2995 (|#1| |#1| |#2|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1785 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707))) (-15 -2420 (|#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) (-521) |#1|) 44)) (-3419 (($ $ (-521) |#2|) 42)) (-3790 (($ $ (-521) |#3|) 41)) (-2231 (($) 7 T CONST)) (-2185 ((|#2| $ (-521)) 46)) (-3849 ((|#1| $ (-521) (-521) |#1|) 43)) (-3626 ((|#1| $ (-521) (-521)) 48)) (-3831 (((-587 |#1|) $) 30)) (-1416 (((-707) $) 51)) (-1869 (($ (-707) (-707) |#1|) 57)) (-1428 (((-707) $) 50)) (-1513 (((-108) $ (-707)) 9)) (-1698 (((-521) $) 55)) (-1350 (((-521) $) 53)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1646 (((-521) $) 54)) (-2809 (((-521) $) 52)) (-3833 (($ (-1 |#1| |#1|) $) 34)) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) 56)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) (-521)) 49) ((|#1| $ (-521) (-521) |#1|) 47)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1335 ((|#3| $ (-521)) 45)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-55 |#1| |#2| |#3|) (-1196) (-1119) (-347 |t#1|) (-347 |t#1|)) (T -55))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1869 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-707)) (-4 *3 (-1119)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2995 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-521)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-707)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-707)))) (-2550 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-1119)))) (-3626 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-1119)))) (-2550 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)))) (-2185 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1119)) (-4 *5 (-347 *4)) (-4 *2 (-347 *4)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1119)) (-4 *5 (-347 *4)) (-4 *2 (-347 *4)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-587 *3)))) (-2396 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)))) (-3849 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-347 *2)) (-4 *5 (-347 *2)))) (-3419 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-347 *4)) (-4 *5 (-347 *4)))) (-3790 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1119)) (-4 *5 (-347 *4)) (-4 *3 (-347 *4)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1393 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1393 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
-(-13 (-460 |t#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -1869 ($ (-707) (-707) |t#1|)) (-15 -2995 ($ $ |t#1|)) (-15 -1698 ((-521) $)) (-15 -1646 ((-521) $)) (-15 -1350 ((-521) $)) (-15 -2809 ((-521) $)) (-15 -1416 ((-707) $)) (-15 -1428 ((-707) $)) (-15 -2550 (|t#1| $ (-521) (-521))) (-15 -3626 (|t#1| $ (-521) (-521))) (-15 -2550 (|t#1| $ (-521) (-521) |t#1|)) (-15 -2185 (|t#2| $ (-521))) (-15 -1335 (|t#3| $ (-521))) (-15 -3831 ((-587 |t#1|) $)) (-15 -2396 (|t#1| $ (-521) (-521) |t#1|)) (-15 -3849 (|t#1| $ (-521) (-521) |t#1|)) (-15 -3419 ($ $ (-521) |t#2|)) (-15 -3790 ($ $ (-521) |t#3|)) (-15 -1393 ($ (-1 |t#1| |t#1|) $)) (-15 -3833 ($ (-1 |t#1| |t#1|) $)) (-15 -1393 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1393 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-3184 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1393 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -3184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1393 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1119) (-1119)) (T -56))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-56 *5 *2)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -3184 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1393 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) |#1|) 11 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1971 (($ (-587 |#1|)) 13) (($ (-707) |#1|) 14)) (-1869 (($ (-707) |#1|) 9)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 7)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1971 ($ (-587 |#1|))) (-15 -1971 ($ (-707) |#1|)))) (-1119)) (T -57))
-((-1971 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-57 *3)))) (-1971 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-57 *3)) (-4 *3 (-1119)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -1971 ($ (-587 |#1|))) (-15 -1971 ($ (-707) |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3419 (($ $ (-521) (-57 |#1|)) NIL)) (-3790 (($ $ (-521) (-57 |#1|)) NIL)) (-2231 (($) NIL T CONST)) (-2185 (((-57 |#1|) $ (-521)) NIL)) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-1416 (((-707) $) NIL)) (-1869 (($ (-707) (-707) |#1|) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-1698 (((-521) $) NIL)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1646 (((-521) $) NIL)) (-2809 (((-521) $) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-1335 (((-57 |#1|) $ (-521)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4234))) (-1119)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4234)))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 69) (((-3 $ "failed") (-1165 (-290 (-521)))) 58) (((-3 $ "failed") (-1165 (-880 (-353)))) 91) (((-3 $ "failed") (-1165 (-880 (-521)))) 80) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 47) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 36)) (-1496 (($ (-1165 (-290 (-353)))) 65) (($ (-1165 (-290 (-521)))) 54) (($ (-1165 (-880 (-353)))) 87) (($ (-1165 (-880 (-521)))) 76) (($ (-1165 (-381 (-880 (-353))))) 43) (($ (-1165 (-381 (-880 (-521))))) 29)) (-2059 (((-1170) $) 118)) (-2223 (((-791) $) 111) (($ (-587 (-304))) 100) (($ (-304)) 94) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 97) (($ (-1165 (-313 (-2234 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2234) (-636)))) 28)))
-(((-59 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2234) (-636))))))) (-1084)) (T -59))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2234) (-636)))) (-5 *1 (-59 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2234) (-636)))))))
-((-2059 (((-1170) $) 48) (((-1170)) 49)) (-2223 (((-791) $) 45)))
-(((-60 |#1|) (-13 (-369) (-10 -7 (-15 -2059 ((-1170))))) (-1084)) (T -60))
-((-2059 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-60 *3)) (-14 *3 (-1084)))))
-(-13 (-369) (-10 -7 (-15 -2059 ((-1170)))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 142) (((-3 $ "failed") (-1165 (-290 (-521)))) 132) (((-3 $ "failed") (-1165 (-880 (-353)))) 163) (((-3 $ "failed") (-1165 (-880 (-521)))) 152) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 121) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 110)) (-1496 (($ (-1165 (-290 (-353)))) 138) (($ (-1165 (-290 (-521)))) 128) (($ (-1165 (-880 (-353)))) 159) (($ (-1165 (-880 (-521)))) 148) (($ (-1165 (-381 (-880 (-353))))) 117) (($ (-1165 (-381 (-880 (-521))))) 103)) (-2059 (((-1170) $) 96)) (-2223 (((-791) $) 90) (($ (-587 (-304))) 28) (($ (-304)) 34) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 31) (($ (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636)))) 88)))
-(((-61 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636))))))) (-1084)) (T -61))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636)))) (-5 *1 (-61 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636)))))))
-((-1296 (((-3 $ "failed") (-290 (-353))) 36) (((-3 $ "failed") (-290 (-521))) 41) (((-3 $ "failed") (-880 (-353))) 46) (((-3 $ "failed") (-880 (-521))) 51) (((-3 $ "failed") (-381 (-880 (-353)))) 31) (((-3 $ "failed") (-381 (-880 (-521)))) 26)) (-1496 (($ (-290 (-353))) 34) (($ (-290 (-521))) 39) (($ (-880 (-353))) 44) (($ (-880 (-521))) 49) (($ (-381 (-880 (-353)))) 29) (($ (-381 (-880 (-521)))) 23)) (-2059 (((-1170) $) 73)) (-2223 (((-791) $) 66) (($ (-587 (-304))) 57) (($ (-304)) 63) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 60) (($ (-313 (-2234 (QUOTE X)) (-2234) (-636))) 22)))
-(((-62 |#1|) (-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234 (QUOTE X)) (-2234) (-636)))))) (-1084)) (T -62))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-313 (-2234 (QUOTE X)) (-2234) (-636))) (-5 *1 (-62 *3)) (-14 *3 (-1084)))))
-(-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234 (QUOTE X)) (-2234) (-636))))))
-((-1296 (((-3 $ "failed") (-627 (-290 (-353)))) 100) (((-3 $ "failed") (-627 (-290 (-521)))) 89) (((-3 $ "failed") (-627 (-880 (-353)))) 122) (((-3 $ "failed") (-627 (-880 (-521)))) 111) (((-3 $ "failed") (-627 (-381 (-880 (-353))))) 78) (((-3 $ "failed") (-627 (-381 (-880 (-521))))) 67)) (-1496 (($ (-627 (-290 (-353)))) 96) (($ (-627 (-290 (-521)))) 85) (($ (-627 (-880 (-353)))) 118) (($ (-627 (-880 (-521)))) 107) (($ (-627 (-381 (-880 (-353))))) 74) (($ (-627 (-381 (-880 (-521))))) 60)) (-2059 (((-1170) $) 130)) (-2223 (((-791) $) 124) (($ (-587 (-304))) 27) (($ (-304)) 33) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 30) (($ (-627 (-313 (-2234) (-2234 (QUOTE X) (QUOTE HESS)) (-636)))) 53)))
-(((-63 |#1|) (-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234) (-2234 (QUOTE X) (QUOTE HESS)) (-636))))))) (-1084)) (T -63))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2234) (-2234 (QUOTE X) (QUOTE HESS)) (-636)))) (-5 *1 (-63 *3)) (-14 *3 (-1084)))))
-(-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234) (-2234 (QUOTE X) (QUOTE HESS)) (-636)))))))
-((-1296 (((-3 $ "failed") (-290 (-353))) 54) (((-3 $ "failed") (-290 (-521))) 59) (((-3 $ "failed") (-880 (-353))) 64) (((-3 $ "failed") (-880 (-521))) 69) (((-3 $ "failed") (-381 (-880 (-353)))) 49) (((-3 $ "failed") (-381 (-880 (-521)))) 44)) (-1496 (($ (-290 (-353))) 52) (($ (-290 (-521))) 57) (($ (-880 (-353))) 62) (($ (-880 (-521))) 67) (($ (-381 (-880 (-353)))) 47) (($ (-381 (-880 (-521)))) 41)) (-2059 (((-1170) $) 78)) (-2223 (((-791) $) 72) (($ (-587 (-304))) 27) (($ (-304)) 33) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 30) (($ (-313 (-2234) (-2234 (QUOTE XC)) (-636))) 38)))
-(((-64 |#1|) (-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234) (-2234 (QUOTE XC)) (-636)))))) (-1084)) (T -64))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-313 (-2234) (-2234 (QUOTE XC)) (-636))) (-5 *1 (-64 *3)) (-14 *3 (-1084)))))
-(-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234) (-2234 (QUOTE XC)) (-636))))))
-((-2059 (((-1170) $) 63)) (-2223 (((-791) $) 57) (($ (-627 (-636))) 49) (($ (-587 (-304))) 48) (($ (-304)) 55) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 53)))
-(((-65 |#1|) (-357) (-1084)) (T -65))
-NIL
-(-357)
-((-2059 (((-1170) $) 64)) (-2223 (((-791) $) 58) (($ (-627 (-636))) 50) (($ (-587 (-304))) 49) (($ (-304)) 52) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 55)))
-(((-66 |#1|) (-357) (-1084)) (T -66))
-NIL
-(-357)
-((-2059 (((-1170) $) NIL) (((-1170)) 32)) (-2223 (((-791) $) NIL)))
-(((-67 |#1|) (-13 (-369) (-10 -7 (-15 -2059 ((-1170))))) (-1084)) (T -67))
-((-2059 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-67 *3)) (-14 *3 (-1084)))))
-(-13 (-369) (-10 -7 (-15 -2059 ((-1170)))))
-((-2059 (((-1170) $) 68)) (-2223 (((-791) $) 62) (($ (-627 (-636))) 53) (($ (-587 (-304))) 56) (($ (-304)) 59) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 52)))
-(((-68 |#1|) (-357) (-1084)) (T -68))
-NIL
-(-357)
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 98) (((-3 $ "failed") (-1165 (-290 (-521)))) 87) (((-3 $ "failed") (-1165 (-880 (-353)))) 119) (((-3 $ "failed") (-1165 (-880 (-521)))) 108) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 76) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 65)) (-1496 (($ (-1165 (-290 (-353)))) 94) (($ (-1165 (-290 (-521)))) 83) (($ (-1165 (-880 (-353)))) 115) (($ (-1165 (-880 (-521)))) 104) (($ (-1165 (-381 (-880 (-353))))) 72) (($ (-1165 (-381 (-880 (-521))))) 58)) (-2059 (((-1170) $) 133)) (-2223 (((-791) $) 127) (($ (-587 (-304))) 122) (($ (-304)) 125) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 50) (($ (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))) 51)))
-(((-69 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636))))))) (-1084)) (T -69))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))) (-5 *1 (-69 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))))))
-((-2059 (((-1170) $) 32) (((-1170)) 31)) (-2223 (((-791) $) 35)))
-(((-70 |#1|) (-13 (-369) (-10 -7 (-15 -2059 ((-1170))))) (-1084)) (T -70))
-((-2059 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-70 *3)) (-14 *3 (-1084)))))
-(-13 (-369) (-10 -7 (-15 -2059 ((-1170)))))
-((-2059 (((-1170) $) 62)) (-2223 (((-791) $) 56) (($ (-627 (-636))) 47) (($ (-587 (-304))) 50) (($ (-304)) 53) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 46)))
-(((-71 |#1|) (-357) (-1084)) (T -71))
-NIL
-(-357)
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 119) (((-3 $ "failed") (-1165 (-290 (-521)))) 108) (((-3 $ "failed") (-1165 (-880 (-353)))) 141) (((-3 $ "failed") (-1165 (-880 (-521)))) 130) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 98) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 87)) (-1496 (($ (-1165 (-290 (-353)))) 115) (($ (-1165 (-290 (-521)))) 104) (($ (-1165 (-880 (-353)))) 137) (($ (-1165 (-880 (-521)))) 126) (($ (-1165 (-381 (-880 (-353))))) 94) (($ (-1165 (-381 (-880 (-521))))) 80)) (-2059 (((-1170) $) 73)) (-2223 (((-791) $) 27) (($ (-587 (-304))) 63) (($ (-304)) 59) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 66) (($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))) 60)))
-(((-72 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636))))))) (-1084)) (T -72))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))) (-5 *1 (-72 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 125) (((-3 $ "failed") (-1165 (-290 (-521)))) 114) (((-3 $ "failed") (-1165 (-880 (-353)))) 147) (((-3 $ "failed") (-1165 (-880 (-521)))) 136) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 103) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 92)) (-1496 (($ (-1165 (-290 (-353)))) 121) (($ (-1165 (-290 (-521)))) 110) (($ (-1165 (-880 (-353)))) 143) (($ (-1165 (-880 (-521)))) 132) (($ (-1165 (-381 (-880 (-353))))) 99) (($ (-1165 (-381 (-880 (-521))))) 85)) (-2059 (((-1170) $) 78)) (-2223 (((-791) $) 70) (($ (-587 (-304))) NIL) (($ (-304)) NIL) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) NIL) (($ (-1165 (-313 (-2234 (QUOTE X) (QUOTE EPS)) (-2234 (QUOTE -1351)) (-636)))) 65)))
-(((-73 |#1| |#2| |#3|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X) (QUOTE EPS)) (-2234 (QUOTE -1351)) (-636))))))) (-1084) (-1084) (-1084)) (T -73))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE X) (QUOTE EPS)) (-2234 (QUOTE -1351)) (-636)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084)) (-14 *5 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X) (QUOTE EPS)) (-2234 (QUOTE -1351)) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 129) (((-3 $ "failed") (-1165 (-290 (-521)))) 118) (((-3 $ "failed") (-1165 (-880 (-353)))) 151) (((-3 $ "failed") (-1165 (-880 (-521)))) 140) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 107) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 96)) (-1496 (($ (-1165 (-290 (-353)))) 125) (($ (-1165 (-290 (-521)))) 114) (($ (-1165 (-880 (-353)))) 147) (($ (-1165 (-880 (-521)))) 136) (($ (-1165 (-381 (-880 (-353))))) 103) (($ (-1165 (-381 (-880 (-521))))) 89)) (-2059 (((-1170) $) 82)) (-2223 (((-791) $) 74) (($ (-587 (-304))) NIL) (($ (-304)) NIL) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) NIL) (($ (-1165 (-313 (-2234 (QUOTE EPS)) (-2234 (QUOTE YA) (QUOTE YB)) (-636)))) 69)))
-(((-74 |#1| |#2| |#3|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE EPS)) (-2234 (QUOTE YA) (QUOTE YB)) (-636))))))) (-1084) (-1084) (-1084)) (T -74))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE EPS)) (-2234 (QUOTE YA) (QUOTE YB)) (-636)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084)) (-14 *5 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE EPS)) (-2234 (QUOTE YA) (QUOTE YB)) (-636)))))))
-((-1296 (((-3 $ "failed") (-290 (-353))) 77) (((-3 $ "failed") (-290 (-521))) 82) (((-3 $ "failed") (-880 (-353))) 87) (((-3 $ "failed") (-880 (-521))) 92) (((-3 $ "failed") (-381 (-880 (-353)))) 72) (((-3 $ "failed") (-381 (-880 (-521)))) 67)) (-1496 (($ (-290 (-353))) 75) (($ (-290 (-521))) 80) (($ (-880 (-353))) 85) (($ (-880 (-521))) 90) (($ (-381 (-880 (-353)))) 70) (($ (-381 (-880 (-521)))) 64)) (-2059 (((-1170) $) 61)) (-2223 (((-791) $) 49) (($ (-587 (-304))) 45) (($ (-304)) 55) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 53) (($ (-313 (-2234) (-2234 (QUOTE X)) (-636))) 46)))
-(((-75 |#1|) (-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234) (-2234 (QUOTE X)) (-636)))))) (-1084)) (T -75))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-313 (-2234) (-2234 (QUOTE X)) (-636))) (-5 *1 (-75 *3)) (-14 *3 (-1084)))))
-(-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234) (-2234 (QUOTE X)) (-636))))))
-((-1296 (((-3 $ "failed") (-290 (-353))) 41) (((-3 $ "failed") (-290 (-521))) 46) (((-3 $ "failed") (-880 (-353))) 51) (((-3 $ "failed") (-880 (-521))) 56) (((-3 $ "failed") (-381 (-880 (-353)))) 36) (((-3 $ "failed") (-381 (-880 (-521)))) 31)) (-1496 (($ (-290 (-353))) 39) (($ (-290 (-521))) 44) (($ (-880 (-353))) 49) (($ (-880 (-521))) 54) (($ (-381 (-880 (-353)))) 34) (($ (-381 (-880 (-521)))) 28)) (-2059 (((-1170) $) 77)) (-2223 (((-791) $) 71) (($ (-587 (-304))) 62) (($ (-304)) 68) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 65) (($ (-313 (-2234) (-2234 (QUOTE X)) (-636))) 27)))
-(((-76 |#1|) (-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234) (-2234 (QUOTE X)) (-636)))))) (-1084)) (T -76))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-313 (-2234) (-2234 (QUOTE X)) (-636))) (-5 *1 (-76 *3)) (-14 *3 (-1084)))))
-(-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234) (-2234 (QUOTE X)) (-636))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 84) (((-3 $ "failed") (-1165 (-290 (-521)))) 73) (((-3 $ "failed") (-1165 (-880 (-353)))) 106) (((-3 $ "failed") (-1165 (-880 (-521)))) 95) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 62) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 51)) (-1496 (($ (-1165 (-290 (-353)))) 80) (($ (-1165 (-290 (-521)))) 69) (($ (-1165 (-880 (-353)))) 102) (($ (-1165 (-880 (-521)))) 91) (($ (-1165 (-381 (-880 (-353))))) 58) (($ (-1165 (-381 (-880 (-521))))) 44)) (-2059 (((-1170) $) 122)) (-2223 (((-791) $) 116) (($ (-587 (-304))) 109) (($ (-304)) 36) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 112) (($ (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636)))) 37)))
-(((-77 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636))))))) (-1084)) (T -77))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636)))) (-5 *1 (-77 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE XC)) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 137) (((-3 $ "failed") (-1165 (-290 (-521)))) 126) (((-3 $ "failed") (-1165 (-880 (-353)))) 158) (((-3 $ "failed") (-1165 (-880 (-521)))) 147) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 116) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 105)) (-1496 (($ (-1165 (-290 (-353)))) 133) (($ (-1165 (-290 (-521)))) 122) (($ (-1165 (-880 (-353)))) 154) (($ (-1165 (-880 (-521)))) 143) (($ (-1165 (-381 (-880 (-353))))) 112) (($ (-1165 (-381 (-880 (-521))))) 98)) (-2059 (((-1170) $) 91)) (-2223 (((-791) $) 85) (($ (-587 (-304))) 76) (($ (-304)) 83) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 81) (($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))) 77)))
-(((-78 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636))))))) (-1084)) (T -78))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))) (-5 *1 (-78 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 73) (((-3 $ "failed") (-1165 (-290 (-521)))) 62) (((-3 $ "failed") (-1165 (-880 (-353)))) 95) (((-3 $ "failed") (-1165 (-880 (-521)))) 84) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 51) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 40)) (-1496 (($ (-1165 (-290 (-353)))) 69) (($ (-1165 (-290 (-521)))) 58) (($ (-1165 (-880 (-353)))) 91) (($ (-1165 (-880 (-521)))) 80) (($ (-1165 (-381 (-880 (-353))))) 47) (($ (-1165 (-381 (-880 (-521))))) 33)) (-2059 (((-1170) $) 121)) (-2223 (((-791) $) 115) (($ (-587 (-304))) 106) (($ (-304)) 112) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 110) (($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))) 32)))
-(((-79 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636))))))) (-1084)) (T -79))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))) (-5 *1 (-79 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234) (-2234 (QUOTE X)) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 90) (((-3 $ "failed") (-1165 (-290 (-521)))) 79) (((-3 $ "failed") (-1165 (-880 (-353)))) 112) (((-3 $ "failed") (-1165 (-880 (-521)))) 101) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 68) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 57)) (-1496 (($ (-1165 (-290 (-353)))) 86) (($ (-1165 (-290 (-521)))) 75) (($ (-1165 (-880 (-353)))) 108) (($ (-1165 (-880 (-521)))) 97) (($ (-1165 (-381 (-880 (-353))))) 64) (($ (-1165 (-381 (-880 (-521))))) 50)) (-2059 (((-1170) $) 43)) (-2223 (((-791) $) 36) (($ (-587 (-304))) 26) (($ (-304)) 29) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 32) (($ (-1165 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636)))) 27)))
-(((-80 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636))))))) (-1084)) (T -80))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636)))) (-5 *1 (-80 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636)))))))
-((-1296 (((-3 $ "failed") (-627 (-290 (-353)))) 103) (((-3 $ "failed") (-627 (-290 (-521)))) 92) (((-3 $ "failed") (-627 (-880 (-353)))) 125) (((-3 $ "failed") (-627 (-880 (-521)))) 114) (((-3 $ "failed") (-627 (-381 (-880 (-353))))) 82) (((-3 $ "failed") (-627 (-381 (-880 (-521))))) 71)) (-1496 (($ (-627 (-290 (-353)))) 99) (($ (-627 (-290 (-521)))) 88) (($ (-627 (-880 (-353)))) 121) (($ (-627 (-880 (-521)))) 110) (($ (-627 (-381 (-880 (-353))))) 78) (($ (-627 (-381 (-880 (-521))))) 64)) (-2059 (((-1170) $) 57)) (-2223 (((-791) $) 43) (($ (-587 (-304))) 50) (($ (-304)) 39) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 47) (($ (-627 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636)))) 40)))
-(((-81 |#1|) (-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636))))))) (-1084)) (T -81))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636)))) (-5 *1 (-81 *3)) (-14 *3 (-1084)))))
-(-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234 (QUOTE X) (QUOTE -1351)) (-2234) (-636)))))))
-((-1296 (((-3 $ "failed") (-627 (-290 (-353)))) 103) (((-3 $ "failed") (-627 (-290 (-521)))) 92) (((-3 $ "failed") (-627 (-880 (-353)))) 124) (((-3 $ "failed") (-627 (-880 (-521)))) 113) (((-3 $ "failed") (-627 (-381 (-880 (-353))))) 81) (((-3 $ "failed") (-627 (-381 (-880 (-521))))) 70)) (-1496 (($ (-627 (-290 (-353)))) 99) (($ (-627 (-290 (-521)))) 88) (($ (-627 (-880 (-353)))) 120) (($ (-627 (-880 (-521)))) 109) (($ (-627 (-381 (-880 (-353))))) 77) (($ (-627 (-381 (-880 (-521))))) 63)) (-2059 (((-1170) $) 56)) (-2223 (((-791) $) 50) (($ (-587 (-304))) 44) (($ (-304)) 47) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 40) (($ (-627 (-313 (-2234 (QUOTE X)) (-2234) (-636)))) 41)))
-(((-82 |#1|) (-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234 (QUOTE X)) (-2234) (-636))))))) (-1084)) (T -82))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2234 (QUOTE X)) (-2234) (-636)))) (-5 *1 (-82 *3)) (-14 *3 (-1084)))))
-(-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234 (QUOTE X)) (-2234) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 99) (((-3 $ "failed") (-1165 (-290 (-521)))) 88) (((-3 $ "failed") (-1165 (-880 (-353)))) 121) (((-3 $ "failed") (-1165 (-880 (-521)))) 110) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 77) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 66)) (-1496 (($ (-1165 (-290 (-353)))) 95) (($ (-1165 (-290 (-521)))) 84) (($ (-1165 (-880 (-353)))) 117) (($ (-1165 (-880 (-521)))) 106) (($ (-1165 (-381 (-880 (-353))))) 73) (($ (-1165 (-381 (-880 (-521))))) 59)) (-2059 (((-1170) $) 45)) (-2223 (((-791) $) 39) (($ (-587 (-304))) 48) (($ (-304)) 35) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 51) (($ (-1165 (-313 (-2234 (QUOTE X)) (-2234) (-636)))) 36)))
-(((-83 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X)) (-2234) (-636))))))) (-1084)) (T -83))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE X)) (-2234) (-636)))) (-5 *1 (-83 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X)) (-2234) (-636)))))))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 74) (((-3 $ "failed") (-1165 (-290 (-521)))) 63) (((-3 $ "failed") (-1165 (-880 (-353)))) 96) (((-3 $ "failed") (-1165 (-880 (-521)))) 85) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 52) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 41)) (-1496 (($ (-1165 (-290 (-353)))) 70) (($ (-1165 (-290 (-521)))) 59) (($ (-1165 (-880 (-353)))) 92) (($ (-1165 (-880 (-521)))) 81) (($ (-1165 (-381 (-880 (-353))))) 48) (($ (-1165 (-381 (-880 (-521))))) 34)) (-2059 (((-1170) $) 122)) (-2223 (((-791) $) 116) (($ (-587 (-304))) 107) (($ (-304)) 113) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 111) (($ (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))) 33)))
-(((-84 |#1|) (-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636))))))) (-1084)) (T -84))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))) (-5 *1 (-84 *3)) (-14 *3 (-1084)))))
-(-13 (-414) (-10 -8 (-15 -2223 ($ (-1165 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))))))
-((-1296 (((-3 $ "failed") (-627 (-290 (-353)))) 105) (((-3 $ "failed") (-627 (-290 (-521)))) 94) (((-3 $ "failed") (-627 (-880 (-353)))) 127) (((-3 $ "failed") (-627 (-880 (-521)))) 116) (((-3 $ "failed") (-627 (-381 (-880 (-353))))) 83) (((-3 $ "failed") (-627 (-381 (-880 (-521))))) 72)) (-1496 (($ (-627 (-290 (-353)))) 101) (($ (-627 (-290 (-521)))) 90) (($ (-627 (-880 (-353)))) 123) (($ (-627 (-880 (-521)))) 112) (($ (-627 (-381 (-880 (-353))))) 79) (($ (-627 (-381 (-880 (-521))))) 65)) (-2059 (((-1170) $) 58)) (-2223 (((-791) $) 52) (($ (-587 (-304))) 42) (($ (-304)) 49) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 47) (($ (-627 (-313 (-2234 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2234) (-636)))) 43)))
-(((-85 |#1|) (-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2234) (-636))))))) (-1084)) (T -85))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-627 (-313 (-2234 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2234) (-636)))) (-5 *1 (-85 *3)) (-14 *3 (-1084)))))
-(-13 (-358) (-10 -8 (-15 -2223 ($ (-627 (-313 (-2234 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2234) (-636)))))))
-((-2059 (((-1170) $) 44)) (-2223 (((-791) $) 38) (($ (-1165 (-636))) 88) (($ (-587 (-304))) 29) (($ (-304)) 35) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 32)))
-(((-86 |#1|) (-413) (-1084)) (T -86))
-NIL
-(-413)
-((-1296 (((-3 $ "failed") (-290 (-353))) 42) (((-3 $ "failed") (-290 (-521))) 47) (((-3 $ "failed") (-880 (-353))) 52) (((-3 $ "failed") (-880 (-521))) 57) (((-3 $ "failed") (-381 (-880 (-353)))) 37) (((-3 $ "failed") (-381 (-880 (-521)))) 32)) (-1496 (($ (-290 (-353))) 40) (($ (-290 (-521))) 45) (($ (-880 (-353))) 50) (($ (-880 (-521))) 55) (($ (-381 (-880 (-353)))) 35) (($ (-381 (-880 (-521)))) 29)) (-2059 (((-1170) $) 88)) (-2223 (((-791) $) 82) (($ (-587 (-304))) 76) (($ (-304)) 79) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 73) (($ (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636))) 28)))
-(((-87 |#1|) (-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636)))))) (-1084)) (T -87))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636))) (-5 *1 (-87 *3)) (-14 *3 (-1084)))))
-(-13 (-370) (-10 -8 (-15 -2223 ($ (-313 (-2234 (QUOTE X)) (-2234 (QUOTE -1351)) (-636))))))
-((-2061 (((-1165 (-627 |#1|)) (-627 |#1|)) 55)) (-1719 (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 (-587 (-849))))) |#2| (-849)) 45)) (-2619 (((-2 (|:| |minor| (-587 (-849))) (|:| -3196 |#2|) (|:| |minors| (-587 (-587 (-849)))) (|:| |ops| (-587 |#2|))) |#2| (-849)) 63 (|has| |#1| (-337)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -1719 ((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 (-587 (-849))))) |#2| (-849))) (-15 -2061 ((-1165 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-337)) (-15 -2619 ((-2 (|:| |minor| (-587 (-849))) (|:| -3196 |#2|) (|:| |minors| (-587 (-587 (-849)))) (|:| |ops| (-587 |#2|))) |#2| (-849))) |%noBranch|)) (-513) (-597 |#1|)) (T -88))
-((-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |minor| (-587 (-849))) (|:| -3196 *3) (|:| |minors| (-587 (-587 (-849)))) (|:| |ops| (-587 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-597 *5)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-627 *4)) (-4 *5 (-597 *4)))) (-1719 (*1 *2 *3 *4) (-12 (-4 *5 (-513)) (-5 *2 (-2 (|:| -3534 (-627 *5)) (|:| |vec| (-1165 (-587 (-849)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-597 *5)))))
-(-10 -7 (-15 -1719 ((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 (-587 (-849))))) |#2| (-849))) (-15 -2061 ((-1165 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-337)) (-15 -2619 ((-2 (|:| |minor| (-587 (-849))) (|:| -3196 |#2|) (|:| |minors| (-587 (-587 (-849)))) (|:| |ops| (-587 |#2|))) |#2| (-849))) |%noBranch|))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1354 ((|#1| $) 35)) (-1269 (((-108) $ (-707)) NIL)) (-2231 (($) NIL T CONST)) (-2237 ((|#1| |#1| $) 30)) (-4019 ((|#1| $) 28)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1570 ((|#1| $) NIL)) (-4135 (($ |#1| $) 31)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2747 ((|#1| $) 29)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 16)) (-2280 (($) 39)) (-1252 (((-707) $) 26)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 15)) (-2223 (((-791) $) 25 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) NIL)) (-3585 (($ (-587 |#1|)) 37)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 13 (|has| |#1| (-1013)))) (-3478 (((-707) $) 10 (|has| $ (-6 -4233)))))
-(((-89 |#1|) (-13 (-1032 |#1|) (-10 -8 (-15 -3585 ($ (-587 |#1|))))) (-1013)) (T -89))
-((-3585 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-89 *3)))))
-(-13 (-1032 |#1|) (-10 -8 (-15 -3585 ($ (-587 |#1|)))))
-((-2862 (($ $) 10)) (-2874 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -2874 (|#1| |#1|)) (-15 -2862 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -2874 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)))
-((-2838 (($ $) 11)) (-2817 (($ $) 10)) (-2862 (($ $) 9)) (-2874 (($ $) 8)) (-2850 (($ $) 7)) (-2827 (($ $) 6)))
-(((-91) (-1196)) (T -91))
-((-2838 (*1 *1 *1) (-4 *1 (-91))) (-2817 (*1 *1 *1) (-4 *1 (-91))) (-2862 (*1 *1 *1) (-4 *1 (-91))) (-2874 (*1 *1 *1) (-4 *1 (-91))) (-2850 (*1 *1 *1) (-4 *1 (-91))) (-2827 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -2827 ($ $)) (-15 -2850 ($ $)) (-15 -2874 ($ $)) (-15 -2862 ($ $)) (-15 -2817 ($ $)) (-15 -2838 ($ $))))
-((-1422 (((-108) $ $) NIL)) (-1334 (((-353) (-1067) (-353)) 42) (((-353) (-1067) (-1067) (-353)) 41)) (-2532 (((-353) (-353)) 33)) (-1937 (((-1170)) 36)) (-4024 (((-1067) $) NIL)) (-1965 (((-353) (-1067) (-1067)) 46) (((-353) (-1067)) 48)) (-4146 (((-1031) $) NIL)) (-2986 (((-353) (-1067) (-1067)) 47)) (-4091 (((-353) (-1067) (-1067)) 49) (((-353) (-1067)) 50)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-92) (-13 (-1013) (-10 -7 (-15 -1965 ((-353) (-1067) (-1067))) (-15 -1965 ((-353) (-1067))) (-15 -4091 ((-353) (-1067) (-1067))) (-15 -4091 ((-353) (-1067))) (-15 -2986 ((-353) (-1067) (-1067))) (-15 -1937 ((-1170))) (-15 -2532 ((-353) (-353))) (-15 -1334 ((-353) (-1067) (-353))) (-15 -1334 ((-353) (-1067) (-1067) (-353))) (-6 -4233)))) (T -92))
-((-1965 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-4091 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-2986 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))) (-1937 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-92)))) (-2532 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-92)))) (-1334 (*1 *2 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92)))) (-1334 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92)))))
-(-13 (-1013) (-10 -7 (-15 -1965 ((-353) (-1067) (-1067))) (-15 -1965 ((-353) (-1067))) (-15 -4091 ((-353) (-1067) (-1067))) (-15 -4091 ((-353) (-1067))) (-15 -2986 ((-353) (-1067) (-1067))) (-15 -1937 ((-1170))) (-15 -2532 ((-353) (-353))) (-15 -1334 ((-353) (-1067) (-353))) (-15 -1334 ((-353) (-1067) (-1067) (-353))) (-6 -4233)))
-NIL
-(((-93) (-1196)) (T -93))
-NIL
-(-13 (-10 -7 (-6 -4233) (-6 (-4235 "*")) (-6 -4234) (-6 -4230) (-6 -4228) (-6 -4227) (-6 -4226) (-6 -4231) (-6 -4225) (-6 -4224) (-6 -4223) (-6 -4222) (-6 -4221) (-6 -4229) (-6 -4232) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4220)))
-((-1422 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-1666 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-521))) 22)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 14)) (-4146 (((-1031) $) NIL)) (-2550 ((|#1| $ |#1|) 11)) (-1484 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2223 (((-791) $) 20)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 8 T CONST)) (-1549 (((-108) $ $) 10)) (-1648 (($ $ $) NIL)) (** (($ $ (-849)) 28) (($ $ (-707)) NIL) (($ $ (-521)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-446) (-261 |#1| |#1|) (-10 -8 (-15 -1666 ($ (-1 |#1| |#1|))) (-15 -1666 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1666 ($ (-1 |#1| |#1| (-521)))))) (-970)) (T -94))
-((-1666 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3)))) (-1666 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3)))) (-1666 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-94 *3)))))
-(-13 (-446) (-261 |#1| |#1|) (-10 -8 (-15 -1666 ($ (-1 |#1| |#1|))) (-15 -1666 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1666 ($ (-1 |#1| |#1| (-521))))))
-((-2105 (((-392 |#2|) |#2| (-587 |#2|)) 10) (((-392 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -2105 ((-392 |#2|) |#2| |#2|)) (-15 -2105 ((-392 |#2|) |#2| (-587 |#2|)))) (-13 (-425) (-135)) (-1141 |#1|)) (T -95))
-((-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-13 (-425) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-95 *5 *3)))) (-2105 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-425) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -2105 ((-392 |#2|) |#2| |#2|)) (-15 -2105 ((-392 |#2|) |#2| (-587 |#2|))))
-((-1422 (((-108) $ $) 10)))
-(((-96 |#1|) (-10 -8 (-15 -1422 ((-108) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -1422 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-1549 (((-108) $ $) 6)))
-(((-97) (-1196)) (T -97))
-((-1422 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
-(-13 (-10 -8 (-15 -1549 ((-108) $ $)) (-15 -1422 ((-108) $ $))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) 13 (|has| $ (-6 -4234)))) (-1939 (($ $ $) NIL (|has| $ (-6 -4234)))) (-1382 (($ $ $) NIL (|has| $ (-6 -4234)))) (-3674 (($ $ (-587 |#1|)) 15)) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1981 (($ $) 11)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3038 (($ $ |#1| $) 17)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3332 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1864 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|)) 35)) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1970 (($ $) 10)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) 12)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 9)) (-2280 (($) 16)) (-2550 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1557 (((-521) $ $) NIL)) (-1475 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2288 (($ (-707) |#1|) 19)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -2288 ($ (-707) |#1|)) (-15 -3674 ($ $ (-587 |#1|))) (-15 -3332 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3332 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1864 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1864 ($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -98))
-((-2288 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-98 *3)) (-4 *3 (-1013)))) (-3674 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3)))) (-3332 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1013)))) (-3332 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3)))) (-1864 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-98 *2)))) (-1864 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-587 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-98 *2)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -2288 ($ (-707) |#1|)) (-15 -3674 ($ $ (-587 |#1|))) (-15 -3332 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3332 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1864 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1864 ($ $ |#1| (-1 (-587 |#1|) |#1| |#1| |#1|)))))
-((-3452 ((|#3| |#2| |#2|) 29)) (-4075 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4235 "*"))))) (-3966 ((|#3| |#2| |#2|) 30)) (-1423 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4235 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3452 (|#3| |#2| |#2|)) (-15 -3966 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4235 "*"))) (PROGN (-15 -4075 (|#1| |#2| |#2|)) (-15 -1423 (|#1| |#2|))) |%noBranch|)) (-970) (-1141 |#1|) (-625 |#1| |#4| |#5|) (-347 |#1|) (-347 |#1|)) (T -99))
-((-1423 (*1 *2 *3) (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2)) (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2)) (-4 *4 (-625 *2 *5 *6)))) (-4075 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2)) (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2)) (-4 *4 (-625 *2 *5 *6)))) (-3966 (*1 *2 *3 *3) (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)))) (-3452 (*1 *2 *3 *3) (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)))))
-(-10 -7 (-15 -3452 (|#3| |#2| |#2|)) (-15 -3966 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4235 "*"))) (PROGN (-15 -4075 (|#1| |#2| |#2|)) (-15 -1423 (|#1| |#2|))) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-4194 (((-587 (-1084))) 32)) (-3185 (((-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202)))) (-1084)) 35)) (-1549 (((-108) $ $) NIL)))
-(((-100) (-13 (-1013) (-10 -7 (-15 -4194 ((-587 (-1084)))) (-15 -3185 ((-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202)))) (-1084))) (-6 -4233)))) (T -100))
-((-4194 (*1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-100)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202))))) (-5 *1 (-100)))))
-(-13 (-1013) (-10 -7 (-15 -4194 ((-587 (-1084)))) (-15 -3185 ((-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202))) (|:| |singularities| (-1065 (-202)))) (-1084))) (-6 -4233)))
-((-2869 (($ (-587 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| (-587 |#2|)))) (-102 |#2|) (-1119)) (T -101))
-NIL
-(-10 -8 (-15 -2869 (|#1| (-587 |#2|))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-102 |#1|) (-1196) (-1119)) (T -102))
-((-2869 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-102 *3)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))) (-4135 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))))
-(-13 (-460 |t#1|) (-10 -8 (-6 -4234) (-15 -2869 ($ (-587 |t#1|))) (-15 -2747 (|t#1| $)) (-15 -4135 ($ |t#1| $)) (-15 -1570 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-521) $) NIL (|has| (-521) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-521) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-521) (-961 (-521))))) (-1496 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-521) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| (-521) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-521) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-521) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-521) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-3305 (((-108) $) NIL (|has| (-521) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-521) (-783)))) (-1393 (($ (-1 (-521) (-521)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) NIL)) (-2720 (((-521) $) NIL (|has| (-521) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-521) $) NIL)) (-1438 (((-820 (-521)) $) NIL (|has| (-521) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-521) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 7) (($ (-521)) NIL) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL) (((-929 2) $) 9)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-837))) (|has| (-521) (-133))))) (-1592 (((-707)) NIL)) (-1281 (((-521) $) NIL (|has| (-521) (-506)))) (-4015 (($ (-381 (-521))) 8)) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL (|has| (-521) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1648 (($ $ $) NIL) (($ (-521) (-521)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL)))
-(((-103) (-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -2223 ((-929 2) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -4015 ($ (-381 (-521))))))) (T -103))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-929 2)) (-5 *1 (-103)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103)))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103)))))
-(-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -2223 ((-929 2) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -4015 ($ (-381 (-521))))))
-((-2436 (((-587 (-892)) $) 13)) (-2890 (((-1084) $) 10)) (-2223 (((-791) $) 22)) (-3334 (($ (-1084) (-587 (-892))) 14)))
-(((-104) (-13 (-561 (-791)) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -2436 ((-587 (-892)) $)) (-15 -3334 ($ (-1084) (-587 (-892))))))) (T -104))
-((-2890 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-104)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-587 (-892))) (-5 *1 (-104)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-892))) (-5 *1 (-104)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -2436 ((-587 (-892)) $)) (-15 -3334 ($ (-1084) (-587 (-892))))))
-((-1422 (((-108) $ $) NIL)) (-2823 (((-1031) $ (-1031)) 23)) (-3306 (($ $ (-1067)) 17)) (-1340 (((-3 (-1031) "failed") $) 22)) (-2629 (((-1031) $) 20)) (-2047 (((-1031) $ (-1031)) 25)) (-3236 (((-1031) $) 24)) (-1564 (($ (-362)) NIL) (($ (-362) (-1067)) 16)) (-2890 (((-362) $) NIL)) (-4024 (((-1067) $) NIL)) (-3283 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1777 (($ $) 18)) (-1549 (((-108) $ $) NIL)))
-(((-105) (-13 (-338 (-362) (-1031)) (-10 -8 (-15 -1340 ((-3 (-1031) "failed") $)) (-15 -3236 ((-1031) $)) (-15 -2047 ((-1031) $ (-1031)))))) (T -105))
-((-1340 (*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-105)))) (-3236 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-105)))) (-2047 (*1 *2 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-105)))))
-(-13 (-338 (-362) (-1031)) (-10 -8 (-15 -1340 ((-3 (-1031) "failed") $)) (-15 -3236 ((-1031) $)) (-15 -2047 ((-1031) $ (-1031)))))
-((-1422 (((-108) $ $) NIL)) (-1515 (($ $) NIL)) (-3348 (($ $ $) NIL)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) $) NIL (|has| (-108) (-783))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1216 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-108) (-783)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-3215 (($ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2396 (((-108) $ (-1132 (-521)) (-108)) NIL (|has| $ (-6 -4234))) (((-108) $ (-521) (-108)) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-1429 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3859 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3849 (((-108) $ (-521) (-108)) NIL (|has| $ (-6 -4234)))) (-3626 (((-108) $ (-521)) NIL)) (-3236 (((-521) (-108) $ (-521)) NIL (|has| (-108) (-1013))) (((-521) (-108) $) NIL (|has| (-108) (-1013))) (((-521) (-1 (-108) (-108)) $) NIL)) (-3831 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-3994 (($ $ $) NIL)) (-2416 (($ $) NIL)) (-4001 (($ $ $) NIL)) (-1869 (($ (-707) (-108)) 8)) (-1550 (($ $ $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL)) (-3389 (($ $ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3568 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL)) (-3833 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1696 (($ $ $ (-521)) NIL) (($ (-108) $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-108) $) NIL (|has| (-521) (-783)))) (-3733 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2995 (($ $ (-108)) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-108)) (-587 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-269 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-587 (-269 (-108)))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2481 (((-587 (-108)) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 (($ $ (-1132 (-521))) NIL) (((-108) $ (-521)) NIL) (((-108) $ (-521) (-108)) NIL)) (-3694 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-4163 (((-707) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013)))) (((-707) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-108) (-562 (-497))))) (-2234 (($ (-587 (-108))) NIL)) (-4159 (($ (-587 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2223 (((-791) $) NIL)) (-2201 (($ (-707) (-108)) 9)) (-2006 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-4009 (($ $ $) NIL)) (-3509 (($ $) NIL)) (-2770 (($ $ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-2345 (($ $ $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-106) (-13 (-119) (-10 -8 (-15 -2201 ($ (-707) (-108)))))) (T -106))
-((-2201 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-108)) (-5 *1 (-106)))))
-(-13 (-119) (-10 -8 (-15 -2201 ($ (-707) (-108)))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-107 |#1| |#2|) (-1196) (-970) (-970)) (T -107))
-NIL
-(-13 (-589 |t#1|) (-976 |t#2|) (-10 -7 (-6 -4228) (-6 -4227)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-976 |#2|) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-1515 (($ $) 12)) (-3348 (($ $ $) 17)) (-1440 (($) 8 T CONST)) (-3400 (((-108) $) 7)) (-1659 (((-707)) 26)) (-3254 (($) 32)) (-3994 (($ $ $) 15)) (-2416 (($ $) 10)) (-4001 (($ $ $) 18)) (-1550 (($ $ $) 19)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-3999 (((-849) $) 31)) (-4024 (((-1067) $) NIL)) (-2723 (($ (-849)) 30)) (-3338 (($ $ $) 21)) (-4146 (((-1031) $) NIL)) (-2307 (($) 9 T CONST)) (-2810 (($ $ $) 22)) (-1438 (((-497) $) 38)) (-2223 (((-791) $) 41)) (-4009 (($ $ $) 13)) (-3509 (($ $) 11)) (-2770 (($ $ $) 16)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 20)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 24)) (-2345 (($ $ $) 14)))
-(((-108) (-13 (-783) (-342) (-602) (-894) (-562 (-497)) (-10 -8 (-15 -1440 ($) -2682) (-15 -2307 ($) -2682) (-15 -3509 ($ $)) (-15 -3348 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -4001 ($ $ $)) (-15 -3400 ((-108) $))))) (T -108))
-((-1440 (*1 *1) (-5 *1 (-108))) (-2307 (*1 *1) (-5 *1 (-108))) (-3509 (*1 *1 *1) (-5 *1 (-108))) (-3348 (*1 *1 *1 *1) (-5 *1 (-108))) (-1550 (*1 *1 *1 *1) (-5 *1 (-108))) (-4001 (*1 *1 *1 *1) (-5 *1 (-108))) (-3400 (*1 *1 *1) (-5 *1 (-108))))
-(-13 (-783) (-342) (-602) (-894) (-562 (-497)) (-10 -8 (-15 -1440 ($) -2682) (-15 -2307 ($) -2682) (-15 -3509 ($ $)) (-15 -3348 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -4001 ($ $ $)) (-15 -3400 ((-108) $))))
-((-4177 (((-3 (-1 |#1| (-587 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-587 |#1|))) 11) (((-3 |#1| "failed") (-110) (-587 |#1|)) 20)) (-1342 (((-3 (-587 (-1 |#1| (-587 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-587 (-1 |#1| (-587 |#1|)))) 26)) (-3970 (((-110) |#1|) 54 (|has| |#1| (-783)))) (-2215 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-783)))))
-(((-109 |#1|) (-10 -7 (-15 -4177 ((-3 |#1| "failed") (-110) (-587 |#1|))) (-15 -4177 ((-110) (-110) (-1 |#1| (-587 |#1|)))) (-15 -4177 ((-110) (-110) (-1 |#1| |#1|))) (-15 -4177 ((-3 (-1 |#1| (-587 |#1|)) "failed") (-110))) (-15 -1342 ((-110) (-110) (-587 (-1 |#1| (-587 |#1|))))) (-15 -1342 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1342 ((-3 (-587 (-1 |#1| (-587 |#1|))) "failed") (-110))) (IF (|has| |#1| (-783)) (PROGN (-15 -3970 ((-110) |#1|)) (-15 -2215 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1013)) (T -109))
-((-2215 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1013)) (-4 *2 (-783)) (-5 *1 (-109 *2)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-783)) (-4 *3 (-1013)))) (-1342 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-1 *4 (-587 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1013)))) (-1342 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-1342 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 (-1 *4 (-587 *4)))) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-4177 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-587 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1013)))) (-4177 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-4177 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-587 *4))) (-4 *4 (-1013)) (-5 *1 (-109 *4)))) (-4177 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-587 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1013)))))
-(-10 -7 (-15 -4177 ((-3 |#1| "failed") (-110) (-587 |#1|))) (-15 -4177 ((-110) (-110) (-1 |#1| (-587 |#1|)))) (-15 -4177 ((-110) (-110) (-1 |#1| |#1|))) (-15 -4177 ((-3 (-1 |#1| (-587 |#1|)) "failed") (-110))) (-15 -1342 ((-110) (-110) (-587 (-1 |#1| (-587 |#1|))))) (-15 -1342 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1342 ((-3 (-587 (-1 |#1| (-587 |#1|))) "failed") (-110))) (IF (|has| |#1| (-783)) (PROGN (-15 -3970 ((-110) |#1|)) (-15 -2215 ((-3 |#1| "failed") (-110)))) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-3245 (((-707) $) 68) (($ $ (-707)) 30)) (-2617 (((-108) $) 32)) (-1534 (($ $ (-1067) (-710)) 26)) (-2287 (($ $ (-44 (-1067) (-710))) 13)) (-1987 (((-3 (-710) "failed") $ (-1067)) 24)) (-2436 (((-44 (-1067) (-710)) $) 12)) (-3928 (($ (-1084)) 15) (($ (-1084) (-707)) 20)) (-2553 (((-108) $) 31)) (-2731 (((-108) $) 33)) (-2890 (((-1084) $) 8)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4013 (((-108) $ (-1084)) 10)) (-1765 (($ $ (-1 (-497) (-587 (-497)))) 50) (((-3 (-1 (-497) (-587 (-497))) "failed") $) 54)) (-4146 (((-1031) $) NIL)) (-1911 (((-108) $ (-1067)) 29)) (-3008 (($ $ (-1 (-108) $ $)) 35)) (-1718 (((-3 (-1 (-791) (-587 (-791))) "failed") $) 52) (($ $ (-1 (-791) (-587 (-791)))) 41) (($ $ (-1 (-791) (-791))) 43)) (-3376 (($ $ (-1067)) 45)) (-2420 (($ $) 61)) (-2198 (($ $ (-1 (-108) $ $)) 36)) (-2223 (((-791) $) 48)) (-2985 (($ $ (-1067)) 27)) (-2691 (((-3 (-707) "failed") $) 56)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 67)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 73)))
-(((-110) (-13 (-783) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -2436 ((-44 (-1067) (-710)) $)) (-15 -2420 ($ $)) (-15 -3928 ($ (-1084))) (-15 -3928 ($ (-1084) (-707))) (-15 -2691 ((-3 (-707) "failed") $)) (-15 -2553 ((-108) $)) (-15 -2617 ((-108) $)) (-15 -2731 ((-108) $)) (-15 -3245 ((-707) $)) (-15 -3245 ($ $ (-707))) (-15 -3008 ($ $ (-1 (-108) $ $))) (-15 -2198 ($ $ (-1 (-108) $ $))) (-15 -1718 ((-3 (-1 (-791) (-587 (-791))) "failed") $)) (-15 -1718 ($ $ (-1 (-791) (-587 (-791))))) (-15 -1718 ($ $ (-1 (-791) (-791)))) (-15 -1765 ($ $ (-1 (-497) (-587 (-497))))) (-15 -1765 ((-3 (-1 (-497) (-587 (-497))) "failed") $)) (-15 -4013 ((-108) $ (-1084))) (-15 -1911 ((-108) $ (-1067))) (-15 -2985 ($ $ (-1067))) (-15 -3376 ($ $ (-1067))) (-15 -1987 ((-3 (-710) "failed") $ (-1067))) (-15 -1534 ($ $ (-1067) (-710))) (-15 -2287 ($ $ (-44 (-1067) (-710))))))) (T -110))
-((-2890 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-110)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))) (-2420 (*1 *1 *1) (-5 *1 (-110))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-110)))) (-3928 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *1 (-110)))) (-2691 (*1 *2 *1) (|partial| -12 (-5 *2 (-707)) (-5 *1 (-110)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-110)))) (-3245 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-110)))) (-3008 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1718 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-791) (-587 (-791)))) (-5 *1 (-110)))) (-1718 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-587 (-791)))) (-5 *1 (-110)))) (-1718 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-791))) (-5 *1 (-110)))) (-1765 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110)))) (-1765 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-110)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2985 (*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110)))) (-3376 (*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110)))) (-1987 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-710)) (-5 *1 (-110)))) (-1534 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-710)) (-5 *1 (-110)))) (-2287 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))))
-(-13 (-783) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -2436 ((-44 (-1067) (-710)) $)) (-15 -2420 ($ $)) (-15 -3928 ($ (-1084))) (-15 -3928 ($ (-1084) (-707))) (-15 -2691 ((-3 (-707) "failed") $)) (-15 -2553 ((-108) $)) (-15 -2617 ((-108) $)) (-15 -2731 ((-108) $)) (-15 -3245 ((-707) $)) (-15 -3245 ($ $ (-707))) (-15 -3008 ($ $ (-1 (-108) $ $))) (-15 -2198 ($ $ (-1 (-108) $ $))) (-15 -1718 ((-3 (-1 (-791) (-587 (-791))) "failed") $)) (-15 -1718 ($ $ (-1 (-791) (-587 (-791))))) (-15 -1718 ($ $ (-1 (-791) (-791)))) (-15 -1765 ($ $ (-1 (-497) (-587 (-497))))) (-15 -1765 ((-3 (-1 (-497) (-587 (-497))) "failed") $)) (-15 -4013 ((-108) $ (-1084))) (-15 -1911 ((-108) $ (-1067))) (-15 -2985 ($ $ (-1067))) (-15 -3376 ($ $ (-1067))) (-15 -1987 ((-3 (-710) "failed") $ (-1067))) (-15 -1534 ($ $ (-1067) (-710))) (-15 -2287 ($ $ (-44 (-1067) (-710))))))
-((-2538 (((-521) |#2|) 36)))
-(((-111 |#1| |#2|) (-10 -7 (-15 -2538 ((-521) |#2|))) (-13 (-337) (-961 (-381 (-521)))) (-1141 |#1|)) (T -111))
-((-2538 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-961 (-381 *2)))) (-5 *2 (-521)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -2538 ((-521) |#2|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $ (-521)) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-4093 (($ (-1080 (-521)) (-521)) NIL)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3751 (($ $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-3490 (((-707) $) NIL)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3967 (((-521)) NIL)) (-2067 (((-521) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2191 (($ $ (-521)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3312 (((-1065 (-521)) $) NIL)) (-2145 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL)) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL)) (-3893 (((-521) $ (-521)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
-(((-112 |#1|) (-797 |#1|) (-521)) (T -112))
-NIL
-(-797 |#1|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-112 |#1|) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-112 |#1|) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-112 |#1|) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-112 |#1|) (-961 (-521))))) (-1496 (((-112 |#1|) $) NIL) (((-1084) $) NIL (|has| (-112 |#1|) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-112 |#1|) (-961 (-521)))) (((-521) $) NIL (|has| (-112 |#1|) (-961 (-521))))) (-2274 (($ $) NIL) (($ (-521) $) NIL)) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-112 |#1|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-112 |#1|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-112 |#1|))) (|:| |vec| (-1165 (-112 |#1|)))) (-627 $) (-1165 $)) NIL) (((-627 (-112 |#1|)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-112 |#1|) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| (-112 |#1|) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-112 |#1|) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-112 |#1|) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-112 |#1|) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1060)))) (-3305 (((-108) $) NIL (|has| (-112 |#1|) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-112 |#1|) (-783)))) (-2459 (($ $ $) NIL (|has| (-112 |#1|) (-783)))) (-1393 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-112 |#1|) (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-112 |#1|) (-282)))) (-2720 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-112 |#1|) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-112 |#1|)) (-587 (-112 |#1|))) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-269 (-112 |#1|))) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-587 (-269 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-284 (-112 |#1|)))) (($ $ (-587 (-1084)) (-587 (-112 |#1|))) NIL (|has| (-112 |#1|) (-482 (-1084) (-112 |#1|)))) (($ $ (-1084) (-112 |#1|)) NIL (|has| (-112 |#1|) (-482 (-1084) (-112 |#1|))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-261 (-112 |#1|) (-112 |#1|))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-707)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-112 |#1|) $) NIL)) (-1438 (((-820 (-521)) $) NIL (|has| (-112 |#1|) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-112 |#1|) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-112 |#1|) (-562 (-497)))) (((-353) $) NIL (|has| (-112 |#1|) (-946))) (((-202) $) NIL (|has| (-112 |#1|) (-946)))) (-1714 (((-158 (-381 (-521))) $) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-112 |#1|)) NIL) (($ (-1084)) NIL (|has| (-112 |#1|) (-961 (-1084))))) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-837))) (|has| (-112 |#1|) (-133))))) (-1592 (((-707)) NIL)) (-1281 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-506)))) (-1842 (((-108) $ $) NIL)) (-3893 (((-381 (-521)) $ (-521)) NIL)) (-4012 (($ $) NIL (|has| (-112 |#1|) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-112 |#1|) (-828 (-1084)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-707)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-112 |#1|) (-783)))) (-1648 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
-(((-113 |#1|) (-13 (-918 (-112 |#1|)) (-10 -8 (-15 -3893 ((-381 (-521)) $ (-521))) (-15 -1714 ((-158 (-381 (-521))) $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $)))) (-521)) (T -113))
-((-3893 (*1 *2 *1 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-521)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-113 *3)) (-14 *3 (-521)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-521)))) (-2274 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-113 *3)) (-14 *3 *2))))
-(-13 (-918 (-112 |#1|)) (-10 -8 (-15 -3893 ((-381 (-521)) $ (-521))) (-15 -1714 ((-158 (-381 (-521))) $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $))))
-((-2396 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1671 (((-587 $) $) 27)) (-1368 (((-108) $ $) 32)) (-1785 (((-108) |#2| $) 36)) (-1278 (((-587 |#2|) $) 22)) (-2426 (((-108) $) 16)) (-2550 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1475 (((-108) $) 45)) (-2223 (((-791) $) 41)) (-3165 (((-587 $) $) 28)) (-1549 (((-108) $ $) 34)) (-3478 (((-707) $) 43)))
-(((-114 |#1| |#2|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -2396 (|#1| |#1| "right" |#1|)) (-15 -2396 (|#1| |#1| "left" |#1|)) (-15 -2550 (|#1| |#1| "right")) (-15 -2550 (|#1| |#1| "left")) (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -1368 ((-108) |#1| |#1|)) (-15 -1278 ((-587 |#2|) |#1|)) (-15 -1475 ((-108) |#1|)) (-15 -2550 (|#2| |#1| "value")) (-15 -2426 ((-108) |#1|)) (-15 -1671 ((-587 |#1|) |#1|)) (-15 -3165 ((-587 |#1|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1785 ((-108) |#2| |#1|)) (-15 -3478 ((-707) |#1|))) (-115 |#2|) (-1119)) (T -114))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -2396 (|#1| |#1| "right" |#1|)) (-15 -2396 (|#1| |#1| "left" |#1|)) (-15 -2550 (|#1| |#1| "right")) (-15 -2550 (|#1| |#1| "left")) (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -1368 ((-108) |#1| |#1|)) (-15 -1278 ((-587 |#2|) |#1|)) (-15 -1475 ((-108) |#1|)) (-15 -2550 (|#2| |#1| "value")) (-15 -2426 ((-108) |#1|)) (-15 -1671 ((-587 |#1|) |#1|)) (-15 -3165 ((-587 |#1|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1785 ((-108) |#2| |#1|)) (-15 -3478 ((-707) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1939 (($ $ $) 52 (|has| $ (-6 -4234)))) (-1382 (($ $ $) 54 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) (($ $ "left" $) 55 (|has| $ (-6 -4234))) (($ $ "right" $) 53 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2231 (($) 7 T CONST)) (-1981 (($ $) 57)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-1970 (($ $) 59)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1557 (((-521) $ $) 44)) (-1475 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-115 |#1|) (-1196) (-1119)) (T -115))
-((-1970 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-2396 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-1382 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))) (-2396 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3)) (-4 *3 (-1119)))) (-1939 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))))
-(-13 (-935 |t#1|) (-10 -8 (-15 -1970 ($ $)) (-15 -2550 ($ $ "left")) (-15 -1981 ($ $)) (-15 -2550 ($ $ "right")) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2396 ($ $ "left" $)) (-15 -1382 ($ $ $)) (-15 -2396 ($ $ "right" $)) (-15 -1939 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-2455 (((-108) |#1|) 24)) (-2568 (((-707) (-707)) 23) (((-707)) 22)) (-4112 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
-(((-116 |#1|) (-10 -7 (-15 -4112 ((-108) |#1|)) (-15 -4112 ((-108) |#1| (-108))) (-15 -2568 ((-707))) (-15 -2568 ((-707) (-707))) (-15 -2455 ((-108) |#1|))) (-1141 (-521))) (T -116))
-((-2455 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-2568 (*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-2568 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-4112 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
-(-10 -7 (-15 -4112 ((-108) |#1|)) (-15 -4112 ((-108) |#1| (-108))) (-15 -2568 ((-707))) (-15 -2568 ((-707) (-707))) (-15 -2455 ((-108) |#1|)))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) 15)) (-2090 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1939 (($ $ $) 18 (|has| $ (-6 -4234)))) (-1382 (($ $ $) 20 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1981 (($ $) 17)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3038 (($ $ |#1| $) 23)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1970 (($ $) 19)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3360 (($ |#1| $) 24)) (-4135 (($ |#1| $) 10)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 14)) (-2280 (($) 8)) (-2550 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1557 (((-521) $ $) NIL)) (-1475 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2554 (($ (-587 |#1|)) 12)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -2554 ($ (-587 |#1|))) (-15 -4135 ($ |#1| $)) (-15 -3360 ($ |#1| $)) (-15 -2090 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-783)) (T -117))
-((-2554 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-117 *3)))) (-4135 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783)))) (-3360 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783)))) (-2090 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-783)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -2554 ($ (-587 |#1|))) (-15 -4135 ($ |#1| $)) (-15 -3360 ($ |#1| $)) (-15 -2090 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1515 (($ $) 14)) (-2416 (($ $) 11)) (-4001 (($ $ $) 24)) (-1550 (($ $ $) 22)) (-3509 (($ $) 12)) (-2770 (($ $ $) 20)) (-2345 (($ $ $) 18)))
-(((-118 |#1|) (-10 -8 (-15 -4001 (|#1| |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -2770 (|#1| |#1| |#1|))) (-119)) (T -118))
-NIL
-(-10 -8 (-15 -4001 (|#1| |#1| |#1|)) (-15 -1550 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -2770 (|#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-1515 (($ $) 104)) (-3348 (($ $ $) 25)) (-3933 (((-1170) $ (-521) (-521)) 67 (|has| $ (-6 -4234)))) (-2299 (((-108) $) 99 (|has| (-108) (-783))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1216 (($ $) 103 (-12 (|has| (-108) (-783)) (|has| $ (-6 -4234)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4234)))) (-3215 (($ $) 98 (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-1269 (((-108) $ (-707)) 38)) (-2396 (((-108) $ (-1132 (-521)) (-108)) 89 (|has| $ (-6 -4234))) (((-108) $ (-521) (-108)) 55 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4233)))) (-2231 (($) 39 T CONST)) (-3288 (($ $) 101 (|has| $ (-6 -4234)))) (-1924 (($ $) 91)) (-2354 (($ $) 69 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4233))) (($ (-108) $) 70 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-3859 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-3849 (((-108) $ (-521) (-108)) 54 (|has| $ (-6 -4234)))) (-3626 (((-108) $ (-521)) 56)) (-3236 (((-521) (-108) $ (-521)) 96 (|has| (-108) (-1013))) (((-521) (-108) $) 95 (|has| (-108) (-1013))) (((-521) (-1 (-108) (-108)) $) 94)) (-3831 (((-587 (-108)) $) 46 (|has| $ (-6 -4233)))) (-3994 (($ $ $) 26)) (-2416 (($ $) 31)) (-4001 (($ $ $) 28)) (-1869 (($ (-707) (-108)) 78)) (-1550 (($ $ $) 29)) (-1513 (((-108) $ (-707)) 37)) (-2658 (((-521) $) 64 (|has| (-521) (-783)))) (-2816 (($ $ $) 13)) (-3389 (($ $ $) 97 (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-3568 (((-587 (-108)) $) 47 (|has| $ (-6 -4233)))) (-1785 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 63 (|has| (-521) (-783)))) (-2459 (($ $ $) 14)) (-3833 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2859 (((-108) $ (-707)) 36)) (-4024 (((-1067) $) 9)) (-1696 (($ $ $ (-521)) 88) (($ (-108) $ (-521)) 87)) (-1223 (((-587 (-521)) $) 61)) (-2131 (((-108) (-521) $) 60)) (-4146 (((-1031) $) 10)) (-2319 (((-108) $) 65 (|has| (-521) (-783)))) (-3733 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-2995 (($ $ (-108)) 66 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-108)) (-587 (-108))) 53 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-269 (-108))) 51 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-587 (-269 (-108)))) 50 (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))))) (-3133 (((-108) $ $) 32)) (-2174 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2481 (((-587 (-108)) $) 59)) (-1447 (((-108) $) 35)) (-2280 (($) 34)) (-2550 (($ $ (-1132 (-521))) 84) (((-108) $ (-521)) 58) (((-108) $ (-521) (-108)) 57)) (-3694 (($ $ (-1132 (-521))) 86) (($ $ (-521)) 85)) (-4163 (((-707) (-108) $) 48 (-12 (|has| (-108) (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4233)))) (-3448 (($ $ $ (-521)) 100 (|has| $ (-6 -4234)))) (-2420 (($ $) 33)) (-1438 (((-497) $) 68 (|has| (-108) (-562 (-497))))) (-2234 (($ (-587 (-108))) 77)) (-4159 (($ (-587 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2223 (((-791) $) 11)) (-2006 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4233)))) (-4009 (($ $ $) 27)) (-3509 (($ $) 30)) (-2770 (($ $ $) 106)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-2345 (($ $ $) 105)) (-3478 (((-707) $) 40 (|has| $ (-6 -4233)))))
-(((-119) (-1196)) (T -119))
-((-2416 (*1 *1 *1) (-4 *1 (-119))) (-3509 (*1 *1 *1) (-4 *1 (-119))) (-1550 (*1 *1 *1 *1) (-4 *1 (-119))) (-4001 (*1 *1 *1 *1) (-4 *1 (-119))) (-4009 (*1 *1 *1 *1) (-4 *1 (-119))) (-3994 (*1 *1 *1 *1) (-4 *1 (-119))) (-3348 (*1 *1 *1 *1) (-4 *1 (-119))))
-(-13 (-783) (-602) (-19 (-108)) (-10 -8 (-15 -2416 ($ $)) (-15 -3509 ($ $)) (-15 -1550 ($ $ $)) (-15 -4001 ($ $ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -3348 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-561 (-791)) . T) ((-139 #0=(-108)) . T) ((-562 (-497)) |has| (-108) (-562 (-497))) ((-261 #1=(-521) #0#) . T) ((-263 #1# #0#) . T) ((-284 #0#) -12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))) ((-347 #0#) . T) ((-460 #0#) . T) ((-554 #1# #0#) . T) ((-482 #0# #0#) -12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))) ((-592 #0#) . T) ((-602) . T) ((-19 #0#) . T) ((-783) . T) ((-1013) . T) ((-1119) . T))
-((-3833 (($ (-1 |#2| |#2|) $) 22)) (-2420 (($ $) 16)) (-3478 (((-707) $) 24)))
-(((-120 |#1| |#2|) (-10 -8 (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -2420 (|#1| |#1|))) (-121 |#2|) (-1013)) (T -120))
-NIL
-(-10 -8 (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -2420 (|#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1939 (($ $ $) 52 (|has| $ (-6 -4234)))) (-1382 (($ $ $) 54 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) (($ $ "left" $) 55 (|has| $ (-6 -4234))) (($ $ "right" $) 53 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2231 (($) 7 T CONST)) (-1981 (($ $) 57)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-3038 (($ $ |#1| $) 60)) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-1970 (($ $) 59)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1557 (((-521) $ $) 44)) (-1475 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-121 |#1|) (-1196) (-1013)) (T -121))
-((-3038 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1013)))))
-(-13 (-115 |t#1|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -3038 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-115 |#1|) . T) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) 15)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) 19 (|has| $ (-6 -4234)))) (-1939 (($ $ $) 20 (|has| $ (-6 -4234)))) (-1382 (($ $ $) 18 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1981 (($ $) 21)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3038 (($ $ |#1| $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1970 (($ $) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4135 (($ |#1| $) 10)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 14)) (-2280 (($) 8)) (-2550 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1557 (((-521) $ $) NIL)) (-1475 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 17)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3132 (($ (-587 |#1|)) 12)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4234) (-15 -3132 ($ (-587 |#1|))) (-15 -4135 ($ |#1| $)))) (-783)) (T -122))
-((-3132 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-122 *3)))) (-4135 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-783)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4234) (-15 -3132 ($ (-587 |#1|))) (-15 -4135 ($ |#1| $))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) 24)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) 26 (|has| $ (-6 -4234)))) (-1939 (($ $ $) 30 (|has| $ (-6 -4234)))) (-1382 (($ $ $) 28 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1981 (($ $) 20)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3038 (($ $ |#1| $) 15)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1970 (($ $) 19)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) 21)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 18)) (-2280 (($) 11)) (-2550 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1557 (((-521) $ $) NIL)) (-1475 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3519 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 10 (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -3519 ($ |#1|)) (-15 -3519 ($ $ |#1| $)))) (-1013)) (T -123))
-((-3519 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013)))) (-3519 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013)))))
-(-13 (-121 |#1|) (-10 -8 (-15 -3519 ($ |#1|)) (-15 -3519 ($ $ |#1| $))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15)))
-(((-124) (-1196)) (T -124))
-((-2057 (*1 *1 *1 *1) (|partial| -4 *1 (-124))))
-(-13 (-23) (-10 -8 (-15 -2057 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-4172 (((-1170) $ (-707)) 19)) (-3236 (((-707) $) 20)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)))
-(((-125) (-1196)) (T -125))
-((-3236 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-707)))) (-4172 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-707)) (-5 *2 (-1170)))))
-(-13 (-783) (-10 -8 (-15 -3236 ((-707) $)) (-15 -4172 ((-1170) $ (-707)))))
-(((-97) . T) ((-561 (-791)) . T) ((-783) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-707) "failed") $) 38)) (-1496 (((-707) $) 36)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) 26)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3527 (((-108)) 39)) (-3292 (((-108) (-108)) 41)) (-2724 (((-108) $) 23)) (-1247 (((-108) $) 35)) (-2223 (((-791) $) 22) (($ (-707)) 14)) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3562 (($) 12 T CONST)) (-3572 (($) 11 T CONST)) (-1407 (($ (-707)) 15)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 24)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 25)) (-1639 (((-3 $ "failed") $ $) 29)) (-1628 (($ $ $) 27)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL) (($ $ $) 34)) (* (($ (-707) $) 32) (($ (-849) $) NIL) (($ $ $) 30)))
-(((-126) (-13 (-783) (-23) (-663) (-961 (-707)) (-10 -8 (-6 (-4235 "*")) (-15 -1639 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1407 ($ (-707))) (-15 -2724 ((-108) $)) (-15 -1247 ((-108) $)) (-15 -3527 ((-108))) (-15 -3292 ((-108) (-108)))))) (T -126))
-((-1639 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-126)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3527 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
-(-13 (-783) (-23) (-663) (-961 (-707)) (-10 -8 (-6 (-4235 "*")) (-15 -1639 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1407 ($ (-707))) (-15 -2724 ((-108) $)) (-15 -1247 ((-108) $)) (-15 -3527 ((-108))) (-15 -3292 ((-108) (-108)))))
-((-3136 (((-128 |#1| |#2| |#4|) (-587 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-1393 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18)))
-(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3136 ((-128 |#1| |#2| |#4|) (-587 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1393 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-521) (-707) (-157) (-157)) (T -127))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521)) (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521)) (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3136 ((-128 |#1| |#2| |#4|) (-587 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1393 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|))))
-((-1422 (((-108) $ $) NIL)) (-3015 (($ (-587 |#3|)) 39)) (-3091 (($ $) 98) (($ $ (-521) (-521)) 97)) (-2231 (($) 17)) (-1296 (((-3 |#3| "failed") $) 59)) (-1496 ((|#3| $) NIL)) (-3799 (($ $ (-587 (-521))) 99)) (-3122 (((-587 |#3|) $) 35)) (-3167 (((-707) $) 43)) (-3854 (($ $ $) 92)) (-2777 (($) 42)) (-4024 (((-1067) $) NIL)) (-3747 (($) 16)) (-4146 (((-1031) $) NIL)) (-2550 ((|#3| $) 45) ((|#3| $ (-521)) 46) ((|#3| $ (-521) (-521)) 47) ((|#3| $ (-521) (-521) (-521)) 48) ((|#3| $ (-521) (-521) (-521) (-521)) 49) ((|#3| $ (-587 (-521))) 51)) (-2098 (((-707) $) 44)) (-1316 (($ $ (-521) $ (-521)) 93) (($ $ (-521) (-521)) 95)) (-2223 (((-791) $) 66) (($ |#3|) 67) (($ (-217 |#2| |#3|)) 74) (($ (-1051 |#2| |#3|)) 77) (($ (-587 |#3|)) 52) (($ (-587 $)) 57)) (-3562 (($) 68 T CONST)) (-3572 (($) 69 T CONST)) (-1549 (((-108) $ $) 79)) (-1639 (($ $) 85) (($ $ $) 83)) (-1628 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-521)) 88) (($ (-521) $) 87) (($ $ $) 94)))
-(((-128 |#1| |#2| |#3|) (-13 (-438 |#3| (-707)) (-443 (-521) (-707)) (-10 -8 (-15 -2223 ($ (-217 |#2| |#3|))) (-15 -2223 ($ (-1051 |#2| |#3|))) (-15 -2223 ($ (-587 |#3|))) (-15 -2223 ($ (-587 $))) (-15 -3167 ((-707) $)) (-15 -2550 (|#3| $)) (-15 -2550 (|#3| $ (-521))) (-15 -2550 (|#3| $ (-521) (-521))) (-15 -2550 (|#3| $ (-521) (-521) (-521))) (-15 -2550 (|#3| $ (-521) (-521) (-521) (-521))) (-15 -2550 (|#3| $ (-587 (-521)))) (-15 -3854 ($ $ $)) (-15 * ($ $ $)) (-15 -1316 ($ $ (-521) $ (-521))) (-15 -1316 ($ $ (-521) (-521))) (-15 -3091 ($ $)) (-15 -3091 ($ $ (-521) (-521))) (-15 -3799 ($ $ (-587 (-521)))) (-15 -3747 ($)) (-15 -2777 ($)) (-15 -3122 ((-587 |#3|) $)) (-15 -3015 ($ (-587 |#3|))) (-15 -2231 ($)))) (-521) (-707) (-157)) (T -128))
-((-3854 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1051 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 *2) (-4 *5 (-157)))) (-2550 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-521)) (-14 *4 (-707)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2550 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2550 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2550 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-707)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-521))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-521)) (-14 *5 (-707)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-1316 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-707)) (-4 *5 (-157)))) (-1316 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-707)) (-4 *5 (-157)))) (-3091 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-3091 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-707)) (-4 *5 (-157)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157)))) (-3747 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-2777 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-587 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521)) (-14 *4 (-707)))) (-2231 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707)) (-4 *4 (-157)))))
-(-13 (-438 |#3| (-707)) (-443 (-521) (-707)) (-10 -8 (-15 -2223 ($ (-217 |#2| |#3|))) (-15 -2223 ($ (-1051 |#2| |#3|))) (-15 -2223 ($ (-587 |#3|))) (-15 -2223 ($ (-587 $))) (-15 -3167 ((-707) $)) (-15 -2550 (|#3| $)) (-15 -2550 (|#3| $ (-521))) (-15 -2550 (|#3| $ (-521) (-521))) (-15 -2550 (|#3| $ (-521) (-521) (-521))) (-15 -2550 (|#3| $ (-521) (-521) (-521) (-521))) (-15 -2550 (|#3| $ (-587 (-521)))) (-15 -3854 ($ $ $)) (-15 * ($ $ $)) (-15 -1316 ($ $ (-521) $ (-521))) (-15 -1316 ($ $ (-521) (-521))) (-15 -3091 ($ $)) (-15 -3091 ($ $ (-521) (-521))) (-15 -3799 ($ $ (-587 (-521)))) (-15 -3747 ($)) (-15 -2777 ($)) (-15 -3122 ((-587 |#3|) $)) (-15 -3015 ($ (-587 |#3|))) (-15 -2231 ($))))
-((-1422 (((-108) $ $) NIL)) (-1960 (($) 15 T CONST)) (-4062 (($) NIL (|has| (-132) (-342)))) (-2296 (($ $ $) 17) (($ $ (-132)) NIL) (($ (-132) $) NIL)) (-1769 (($ $ $) NIL)) (-3601 (((-108) $ $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| (-132) (-342)))) (-1817 (($) NIL) (($ (-587 (-132))) NIL)) (-3014 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2726 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (($ (-132) $) 51 (|has| $ (-6 -4233)))) (-1429 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (($ (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3254 (($) NIL (|has| (-132) (-342)))) (-3831 (((-587 (-132)) $) 60 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2816 (((-132) $) NIL (|has| (-132) (-783)))) (-3568 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-132) $) 26 (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2459 (((-132) $) NIL (|has| (-132) (-783)))) (-3833 (($ (-1 (-132) (-132)) $) 59 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-132) (-132)) $) 55)) (-1800 (($) 16 T CONST)) (-3999 (((-849) $) NIL (|has| (-132) (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1802 (($ $ $) 29)) (-1570 (((-132) $) 52)) (-4135 (($ (-132) $) 50)) (-2723 (($ (-849)) NIL (|has| (-132) (-342)))) (-2169 (($) 14 T CONST)) (-4146 (((-1031) $) NIL)) (-3733 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2747 (((-132) $) 53)) (-1936 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-132)) (-587 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-269 (-132)))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 48)) (-1944 (($) 13 T CONST)) (-2686 (($ $ $) 31) (($ $ (-132)) NIL)) (-2036 (($ (-587 (-132))) NIL) (($) NIL)) (-4163 (((-707) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (((-707) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-1067) $) 36) (((-497) $) NIL (|has| (-132) (-562 (-497)))) (((-587 (-132)) $) 34)) (-2234 (($ (-587 (-132))) NIL)) (-4110 (($ $) 32 (|has| (-132) (-342)))) (-2223 (((-791) $) 46)) (-1467 (($ (-1067)) 12) (($ (-587 (-132))) 43)) (-3064 (((-707) $) NIL)) (-3391 (($) 49) (($ (-587 (-132))) NIL)) (-2869 (($ (-587 (-132))) NIL)) (-2006 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3010 (($) 19 T CONST)) (-2496 (($) 18 T CONST)) (-1549 (((-108) $ $) 22)) (-1569 (((-108) $ $) NIL)) (-3478 (((-707) $) 47 (|has| $ (-6 -4233)))))
-(((-129) (-13 (-1013) (-562 (-1067)) (-399 (-132)) (-562 (-587 (-132))) (-10 -8 (-15 -1467 ($ (-1067))) (-15 -1467 ($ (-587 (-132)))) (-15 -1944 ($) -2682) (-15 -2169 ($) -2682) (-15 -1960 ($) -2682) (-15 -1800 ($) -2682) (-15 -2496 ($) -2682) (-15 -3010 ($) -2682)))) (T -129))
-((-1467 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-129)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-587 (-132))) (-5 *1 (-129)))) (-1944 (*1 *1) (-5 *1 (-129))) (-2169 (*1 *1) (-5 *1 (-129))) (-1960 (*1 *1) (-5 *1 (-129))) (-1800 (*1 *1) (-5 *1 (-129))) (-2496 (*1 *1) (-5 *1 (-129))) (-3010 (*1 *1) (-5 *1 (-129))))
-(-13 (-1013) (-562 (-1067)) (-399 (-132)) (-562 (-587 (-132))) (-10 -8 (-15 -1467 ($ (-1067))) (-15 -1467 ($ (-587 (-132)))) (-15 -1944 ($) -2682) (-15 -2169 ($) -2682) (-15 -1960 ($) -2682) (-15 -1800 ($) -2682) (-15 -2496 ($) -2682) (-15 -3010 ($) -2682)))
-((-1590 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1748 ((|#1| |#3|) 9)) (-1213 ((|#3| |#3|) 15)))
-(((-130 |#1| |#2| |#3|) (-10 -7 (-15 -1748 (|#1| |#3|)) (-15 -1213 (|#3| |#3|)) (-15 -1590 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-513) (-918 |#1|) (-347 |#2|)) (T -130))
-((-1590 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) (-4 *3 (-347 *5)))) (-1213 (*1 *2 *2) (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-130 *3 *4 *2)) (-4 *2 (-347 *4)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-130 *2 *4 *3)) (-4 *3 (-347 *4)))))
-(-10 -7 (-15 -1748 (|#1| |#3|)) (-15 -1213 (|#3| |#3|)) (-15 -1590 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3556 (($ $ $) 8)) (-3022 (($ $) 7)) (-2475 (($ $ $) 6)))
-(((-131) (-1196)) (T -131))
-((-3556 (*1 *1 *1 *1) (-4 *1 (-131))) (-3022 (*1 *1 *1) (-4 *1 (-131))) (-2475 (*1 *1 *1 *1) (-4 *1 (-131))))
-(-13 (-10 -8 (-15 -2475 ($ $ $)) (-15 -3022 ($ $)) (-15 -3556 ($ $ $))))
-((-1422 (((-108) $ $) NIL)) (-1865 (((-108) $) 38)) (-1960 (($ $) 50)) (-2076 (($) 25)) (-1659 (((-707)) 16)) (-3254 (($) 24)) (-4167 (($) 26)) (-2363 (((-521) $) 21)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-2688 (((-108) $) 40)) (-1800 (($ $) 51)) (-3999 (((-849) $) 22)) (-4024 (((-1067) $) 46)) (-2723 (($ (-849)) 20)) (-1724 (((-108) $) 36)) (-4146 (((-1031) $) NIL)) (-2472 (($) 27)) (-3589 (((-108) $) 34)) (-2223 (((-791) $) 29)) (-3506 (($ (-521)) 18) (($ (-1067)) 49)) (-1343 (((-108) $) 44)) (-2994 (((-108) $) 42)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 13)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 14)))
-(((-132) (-13 (-777) (-10 -8 (-15 -2363 ((-521) $)) (-15 -3506 ($ (-521))) (-15 -3506 ($ (-1067))) (-15 -2076 ($)) (-15 -4167 ($)) (-15 -2472 ($)) (-15 -1960 ($ $)) (-15 -1800 ($ $)) (-15 -3589 ((-108) $)) (-15 -1724 ((-108) $)) (-15 -2994 ((-108) $)) (-15 -1865 ((-108) $)) (-15 -2688 ((-108) $)) (-15 -1343 ((-108) $))))) (T -132))
-((-2363 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-132)))) (-3506 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-132)))) (-3506 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-132)))) (-2076 (*1 *1) (-5 *1 (-132))) (-4167 (*1 *1) (-5 *1 (-132))) (-2472 (*1 *1) (-5 *1 (-132))) (-1960 (*1 *1 *1) (-5 *1 (-132))) (-1800 (*1 *1 *1) (-5 *1 (-132))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(-13 (-777) (-10 -8 (-15 -2363 ((-521) $)) (-15 -3506 ($ (-521))) (-15 -3506 ($ (-1067))) (-15 -2076 ($)) (-15 -4167 ($)) (-15 -2472 ($)) (-15 -1960 ($ $)) (-15 -1800 ($ $)) (-15 -3589 ((-108) $)) (-15 -1724 ((-108) $)) (-15 -2994 ((-108) $)) (-15 -1865 ((-108) $)) (-15 -2688 ((-108) $)) (-15 -1343 ((-108) $))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-2446 (((-3 $ "failed") $) 35)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-133) (-1196)) (T -133))
-((-2446 (*1 *1 *1) (|partial| -4 *1 (-133))))
-(-13 (-970) (-10 -8 (-15 -2446 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3379 ((|#1| (-627 |#1|) |#1|) 17)))
-(((-134 |#1|) (-10 -7 (-15 -3379 (|#1| (-627 |#1|) |#1|))) (-157)) (T -134))
-((-3379 (*1 *2 *3 *2) (-12 (-5 *3 (-627 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2)))))
-(-10 -7 (-15 -3379 (|#1| (-627 |#1|) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-135) (-1196)) (T -135))
-NIL
-(-13 (-970))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3101 (((-2 (|:| -2246 (-707)) (|:| -2979 (-381 |#2|)) (|:| |radicand| |#2|)) (-381 |#2|) (-707)) 70)) (-3314 (((-3 (-2 (|:| |radicand| (-381 |#2|)) (|:| |deg| (-707))) "failed") |#3|) 52)) (-1663 (((-2 (|:| -2979 (-381 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2802 ((|#1| |#3| |#3|) 40)) (-2313 ((|#3| |#3| (-381 |#2|) (-381 |#2|)) 19)) (-2570 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| |deg| (-707))) |#3| |#3|) 49)))
-(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -1663 ((-2 (|:| -2979 (-381 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3314 ((-3 (-2 (|:| |radicand| (-381 |#2|)) (|:| |deg| (-707))) "failed") |#3|)) (-15 -3101 ((-2 (|:| -2246 (-707)) (|:| -2979 (-381 |#2|)) (|:| |radicand| |#2|)) (-381 |#2|) (-707))) (-15 -2802 (|#1| |#3| |#3|)) (-15 -2313 (|#3| |#3| (-381 |#2|) (-381 |#2|))) (-15 -2570 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| |deg| (-707))) |#3| |#3|))) (-1123) (-1141 |#1|) (-1141 (-381 |#2|))) (T -136))
-((-2570 (*1 *2 *3 *3) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-381 *5)) (|:| |c2| (-381 *5)) (|:| |deg| (-707)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))) (-2313 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-381 *5)) (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1141 *3)))) (-2802 (*1 *2 *3 *3) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-1123)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-1141 (-381 *4))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-381 *6)) (-4 *5 (-1123)) (-4 *6 (-1141 *5)) (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *3) (|:| |radicand| *6))) (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-707)) (-4 *7 (-1141 *3)))) (-3314 (*1 *2 *3) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| |radicand| (-381 *5)) (|:| |deg| (-707)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))) (-1663 (*1 *2 *3) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -2979 (-381 *5)) (|:| |poly| *3))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
-(-10 -7 (-15 -1663 ((-2 (|:| -2979 (-381 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3314 ((-3 (-2 (|:| |radicand| (-381 |#2|)) (|:| |deg| (-707))) "failed") |#3|)) (-15 -3101 ((-2 (|:| -2246 (-707)) (|:| -2979 (-381 |#2|)) (|:| |radicand| |#2|)) (-381 |#2|) (-707))) (-15 -2802 (|#1| |#3| |#3|)) (-15 -2313 (|#3| |#3| (-381 |#2|) (-381 |#2|))) (-15 -2570 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| |deg| (-707))) |#3| |#3|)))
-((-4050 (((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|)) 32)))
-(((-137 |#1| |#2|) (-10 -7 (-15 -4050 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|)))) (-506) (-151 |#1|)) (T -137))
-((-4050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5)) (-4 *5 (-151 *4)) (-4 *4 (-506)) (-5 *1 (-137 *4 *5)))))
-(-10 -7 (-15 -4050 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|))))
-((-1658 (($ (-1 (-108) |#2|) $) 29)) (-2354 (($ $) 36)) (-1429 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3859 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3733 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-1936 (((-108) (-1 (-108) |#2|) $) 16)) (-4163 (((-707) (-1 (-108) |#2|) $) 13) (((-707) |#2| $) NIL)) (-2006 (((-108) (-1 (-108) |#2|) $) 15)) (-3478 (((-707) $) 11)))
-(((-138 |#1| |#2|) (-10 -8 (-15 -2354 (|#1| |#1|)) (-15 -1429 (|#1| |#2| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1658 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1429 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3733 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3478 ((-707) |#1|))) (-139 |#2|) (-1119)) (T -138))
-NIL
-(-10 -8 (-15 -2354 (|#1| |#1|)) (-15 -1429 (|#1| |#2| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1658 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1429 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3733 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3478 ((-707) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-1658 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2354 (($ $) 41 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233))) (($ |#1| $) 42 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 40 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 49)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-139 |#1|) (-1196) (-1119)) (T -139))
-((-2234 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-139 *3)))) (-3733 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-3859 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-3859 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3)) (-4 *3 (-1119)))) (-1658 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3)) (-4 *3 (-1119)))) (-3859 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)))) (-1429 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))) (-2354 (*1 *1 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))))
-(-13 (-460 |t#1|) (-10 -8 (-15 -2234 ($ (-587 |t#1|))) (-15 -3733 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4233)) (PROGN (-15 -3859 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3859 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1429 ($ (-1 (-108) |t#1|) $)) (-15 -1658 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3859 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1429 ($ |t#1| $)) (-15 -2354 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) 86)) (-3637 (((-108) $) NIL)) (-4044 (($ |#2| (-587 (-849))) 57)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2969 (($ (-849)) 48)) (-2043 (((-126)) 23)) (-2223 (((-791) $) 69) (($ (-521)) 46) (($ |#2|) 47)) (-1499 ((|#2| $ (-587 (-849))) 59)) (-1592 (((-707)) 20)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 40 T CONST)) (-3572 (($) 44 T CONST)) (-1549 (((-108) $ $) 26)) (-1648 (($ $ |#2|) NIL)) (-1639 (($ $) 34) (($ $ $) 32)) (-1628 (($ $ $) 30)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-140 |#1| |#2| |#3|) (-13 (-970) (-37 |#2|) (-1172 |#2|) (-10 -8 (-15 -2969 ($ (-849))) (-15 -4044 ($ |#2| (-587 (-849)))) (-15 -1499 (|#2| $ (-587 (-849)))) (-15 -2783 ((-3 $ "failed") $)))) (-849) (-337) (-919 |#1| |#2|)) (T -140))
-((-2783 (*1 *1 *1) (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-849)) (-4 *3 (-337)) (-14 *4 (-919 *2 *3)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-337)) (-14 *5 (-919 *3 *4)))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-849))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-849)) (-4 *2 (-337)) (-14 *5 (-919 *4 *2)))) (-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-849))) (-4 *2 (-337)) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-849)) (-14 *5 (-919 *4 *2)))))
-(-13 (-970) (-37 |#2|) (-1172 |#2|) (-10 -8 (-15 -2969 ($ (-849))) (-15 -4044 ($ |#2| (-587 (-849)))) (-15 -1499 (|#2| $ (-587 (-849)))) (-15 -2783 ((-3 $ "failed") $))))
-((-3230 (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-871 (-202)))) (-202) (-202) (-202) (-202)) 38)) (-2089 (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855) (-381 (-521)) (-381 (-521))) 63) (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855)) 64)) (-2469 (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-871 (-202))))) 67) (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-871 (-202)))) 66) (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855) (-381 (-521)) (-381 (-521))) 58) (((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855)) 59)))
-(((-141) (-10 -7 (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855))) (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855) (-381 (-521)) (-381 (-521)))) (-15 -2089 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855))) (-15 -2089 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855) (-381 (-521)) (-381 (-521)))) (-15 -3230 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-871 (-202)))) (-202) (-202) (-202) (-202))) (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-871 (-202))))) (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-871 (-202)))))))) (T -141))
-((-2469 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)) (-5 *3 (-587 (-587 (-871 (-202))))))) (-2469 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)) (-5 *3 (-587 (-871 (-202)))))) (-3230 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-202)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 *4)))) (|:| |xValues| (-1008 *4)) (|:| |yValues| (-1008 *4)))) (-5 *1 (-141)) (-5 *3 (-587 (-587 (-871 *4)))))) (-2089 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-381 (-521))) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))) (-2469 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-381 (-521))) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202))))) (-5 *1 (-141)))))
-(-10 -7 (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855))) (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855) (-381 (-521)) (-381 (-521)))) (-15 -2089 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855))) (-15 -2089 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-855) (-381 (-521)) (-381 (-521)))) (-15 -3230 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-871 (-202)))) (-202) (-202) (-202) (-202))) (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-871 (-202))))) (-15 -2469 ((-2 (|:| |brans| (-587 (-587 (-871 (-202))))) (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))) (-587 (-587 (-871 (-202)))))))
-((-3187 (((-587 (-154 |#2|)) |#1| |#2|) 45)))
-(((-142 |#1| |#2|) (-10 -7 (-15 -3187 ((-587 (-154 |#2|)) |#1| |#2|))) (-1141 (-154 (-521))) (-13 (-337) (-781))) (T -142))
-((-3187 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-154 *4))) (-5 *1 (-142 *3 *4)) (-4 *3 (-1141 (-154 (-521)))) (-4 *4 (-13 (-337) (-781))))))
-(-10 -7 (-15 -3187 ((-587 (-154 |#2|)) |#1| |#2|)))
-((-1422 (((-108) $ $) NIL)) (-2762 (($) 16)) (-1968 (($) 15)) (-3442 (((-849)) 23)) (-4024 (((-1067) $) NIL)) (-1249 (((-521) $) 20)) (-4146 (((-1031) $) NIL)) (-2014 (($) 17)) (-3411 (($ (-521)) 24)) (-2223 (((-791) $) 30)) (-2610 (($) 18)) (-1549 (((-108) $ $) 14)) (-1628 (($ $ $) 13)) (* (($ (-849) $) 22) (($ (-202) $) 8)))
-(((-143) (-13 (-25) (-10 -8 (-15 * ($ (-849) $)) (-15 * ($ (-202) $)) (-15 -1628 ($ $ $)) (-15 -1968 ($)) (-15 -2762 ($)) (-15 -2014 ($)) (-15 -2610 ($)) (-15 -1249 ((-521) $)) (-15 -3442 ((-849))) (-15 -3411 ($ (-521)))))) (T -143))
-((-1628 (*1 *1 *1 *1) (-5 *1 (-143))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-143)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143)))) (-1968 (*1 *1) (-5 *1 (-143))) (-2762 (*1 *1) (-5 *1 (-143))) (-2014 (*1 *1) (-5 *1 (-143))) (-2610 (*1 *1) (-5 *1 (-143))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-143)))) (-3442 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-143)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-143)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-849) $)) (-15 * ($ (-202) $)) (-15 -1628 ($ $ $)) (-15 -1968 ($)) (-15 -2762 ($)) (-15 -2014 ($)) (-15 -2610 ($)) (-15 -1249 ((-521) $)) (-15 -3442 ((-849))) (-15 -3411 ($ (-521)))))
-((-3233 ((|#2| |#2| (-1006 |#2|)) 87) ((|#2| |#2| (-1084)) 67)) (-3854 ((|#2| |#2| (-1006 |#2|)) 86) ((|#2| |#2| (-1084)) 66)) (-3556 ((|#2| |#2| |#2|) 27)) (-3928 (((-110) (-110)) 97)) (-2834 ((|#2| (-587 |#2|)) 116)) (-1884 ((|#2| (-587 |#2|)) 134)) (-2480 ((|#2| (-587 |#2|)) 124)) (-2027 ((|#2| |#2|) 122)) (-3484 ((|#2| (-587 |#2|)) 109)) (-2035 ((|#2| (-587 |#2|)) 110)) (-1850 ((|#2| (-587 |#2|)) 132)) (-2504 ((|#2| |#2| (-1084)) 54) ((|#2| |#2|) 53)) (-3022 ((|#2| |#2|) 23)) (-2475 ((|#2| |#2| |#2|) 26)) (-1224 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38)))
-(((-144 |#1| |#2|) (-10 -7 (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2475 (|#2| |#2| |#2|)) (-15 -3556 (|#2| |#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -2504 (|#2| |#2|)) (-15 -2504 (|#2| |#2| (-1084))) (-15 -3233 (|#2| |#2| (-1084))) (-15 -3233 (|#2| |#2| (-1006 |#2|))) (-15 -3854 (|#2| |#2| (-1084))) (-15 -3854 (|#2| |#2| (-1006 |#2|))) (-15 -2027 (|#2| |#2|)) (-15 -1850 (|#2| (-587 |#2|))) (-15 -2480 (|#2| (-587 |#2|))) (-15 -1884 (|#2| (-587 |#2|))) (-15 -3484 (|#2| (-587 |#2|))) (-15 -2035 (|#2| (-587 |#2|))) (-15 -2834 (|#2| (-587 |#2|)))) (-13 (-783) (-513)) (-404 |#1|)) (T -144))
-((-2834 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-513))))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-513))))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-513))))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-513))))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-513))))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-783) (-513))))) (-2027 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-3854 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2)))) (-3854 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2)) (-4 *2 (-404 *4)))) (-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2)))) (-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2)) (-4 *2 (-404 *4)))) (-2504 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2)) (-4 *2 (-404 *4)))) (-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-3556 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-2475 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2)) (-4 *2 (-404 *3)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *4)) (-4 *4 (-404 *3)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-144 *4 *5)) (-4 *5 (-404 *4)))))
-(-10 -7 (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2475 (|#2| |#2| |#2|)) (-15 -3556 (|#2| |#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -2504 (|#2| |#2|)) (-15 -2504 (|#2| |#2| (-1084))) (-15 -3233 (|#2| |#2| (-1084))) (-15 -3233 (|#2| |#2| (-1006 |#2|))) (-15 -3854 (|#2| |#2| (-1084))) (-15 -3854 (|#2| |#2| (-1006 |#2|))) (-15 -2027 (|#2| |#2|)) (-15 -1850 (|#2| (-587 |#2|))) (-15 -2480 (|#2| (-587 |#2|))) (-15 -1884 (|#2| (-587 |#2|))) (-15 -3484 (|#2| (-587 |#2|))) (-15 -2035 (|#2| (-587 |#2|))) (-15 -2834 (|#2| (-587 |#2|))))
-((-3571 ((|#1| |#1| |#1|) 52)) (-3039 ((|#1| |#1| |#1|) 49)) (-3556 ((|#1| |#1| |#1|) 43)) (-3671 ((|#1| |#1|) 34)) (-2029 ((|#1| |#1| (-587 |#1|)) 42)) (-3022 ((|#1| |#1|) 36)) (-2475 ((|#1| |#1| |#1|) 39)))
-(((-145 |#1|) (-10 -7 (-15 -2475 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -2029 (|#1| |#1| (-587 |#1|))) (-15 -3671 (|#1| |#1|)) (-15 -3556 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|))) (-506)) (T -145))
-((-3571 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-3039 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-3556 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-3671 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-2029 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-506)) (-5 *1 (-145 *2)))) (-3022 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))) (-2475 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
-(-10 -7 (-15 -2475 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -2029 (|#1| |#1| (-587 |#1|))) (-15 -3671 (|#1| |#1|)) (-15 -3556 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)))
-((-3233 (($ $ (-1084)) 12) (($ $ (-1006 $)) 11)) (-3854 (($ $ (-1084)) 10) (($ $ (-1006 $)) 9)) (-3556 (($ $ $) 8)) (-2504 (($ $) 14) (($ $ (-1084)) 13)) (-3022 (($ $) 7)) (-2475 (($ $ $) 6)))
-(((-146) (-1196)) (T -146))
-((-2504 (*1 *1 *1) (-4 *1 (-146))) (-2504 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))) (-3233 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146)))) (-3854 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))) (-3854 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146)))))
-(-13 (-131) (-10 -8 (-15 -2504 ($ $)) (-15 -2504 ($ $ (-1084))) (-15 -3233 ($ $ (-1084))) (-15 -3233 ($ $ (-1006 $))) (-15 -3854 ($ $ (-1084))) (-15 -3854 ($ $ (-1006 $)))))
+((-3340 (((-108) $) 12)) (-1391 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-382 (-522)) $) 24) (($ $ (-382 (-522))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -3340 ((-108) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-46 |#2| |#3|) (-971) (-729)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -3340 ((-108) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-3340 (((-108) $) 62)) (-4049 (($ |#1| |#2|) 61)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2793 ((|#2| $) 64)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3243 ((|#1| $ |#2|) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-46 |#1| |#2|) (-1197) (-971) (-729)) (T -46))
+((-3138 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-108)))) (-4049 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-3243 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *2 (-338)))))
+(-13 (-971) (-107 |t#1| |t#1|) (-10 -8 (-15 -3138 (|t#1| $)) (-15 -3128 ($ $)) (-15 -2793 (|t#2| $)) (-15 -1391 ($ (-1 |t#1| |t#1|) $)) (-15 -3340 ((-108) $)) (-15 -4049 ($ |t#1| |t#2|)) (-15 -3156 ($ $)) (-15 -3243 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-338)) (-15 -1620 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-6 (-157)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-514)) (-6 (-514)) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (-6 (-37 (-382 (-522)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-266) |has| |#1| (-514)) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1617 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-4032 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-2250 (((-108) $) 11)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1886 (((-588 (-561 $)) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3305 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1929 (($ $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-1221 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-3944 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-1297 (((-3 (-561 $) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL)) (-1484 (((-561 $) $) NIL) (((-522) $) NIL) (((-382 (-522)) $) NIL)) (-2277 (($ $ $) NIL)) (-2096 (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-382 (-522)))) (|:| |vec| (-1166 (-382 (-522))))) (-628 $) (-1166 $)) NIL) (((-628 (-382 (-522))) (-628 $)) NIL)) (-3864 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-1953 (($ $) NIL) (($ (-588 $)) NIL)) (-4161 (((-588 (-110)) $) NIL)) (-2626 (((-110) (-110)) NIL)) (-2782 (((-108) $) 14)) (-2591 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2805 (((-1037 (-522) (-561 $)) $) NIL)) (-1504 (($ $ (-522)) NIL)) (-2100 (((-1081 $) (-1081 $) (-561 $)) NIL) (((-1081 $) (-1081 $) (-588 (-561 $))) NIL) (($ $ (-561 $)) NIL) (($ $ (-588 (-561 $))) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1711 (((-1081 $) (-561 $)) NIL (|has| $ (-971)))) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 $ $) (-561 $)) NIL)) (-3993 (((-3 (-561 $) "failed") $) NIL)) (-2224 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-1267 (((-588 (-561 $)) $) NIL)) (-2909 (($ (-110) $) NIL) (($ (-110) (-588 $)) NIL)) (-2249 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) NIL)) (-3098 (($ $) NIL)) (-4155 (((-708) $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ (-588 $)) NIL) (($ $ $) NIL)) (-1648 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1263 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2289 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3730 (((-708) $) NIL)) (-2545 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-2157 (($ $ (-708)) NIL) (($ $) NIL)) (-2816 (((-1037 (-522) (-561 $)) $) NIL)) (-1479 (($ $) NIL (|has| $ (-971)))) (-1431 (((-354) $) NIL) (((-202) $) NIL) (((-154 (-354)) $) NIL)) (-2190 (((-792) $) NIL) (($ (-561 $)) NIL) (($ (-382 (-522))) NIL) (($ $) NIL) (($ (-522)) NIL) (($ (-1037 (-522) (-561 $))) NIL)) (-2323 (((-708)) NIL)) (-2308 (($ $) NIL) (($ (-588 $)) NIL)) (-3614 (((-108) (-110)) NIL)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-522)) NIL) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3566 (($) 7 T CONST)) (-3577 (($) 12 T CONST)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 16)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $ $) 15) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-382 (-522))) NIL) (($ $ (-522)) NIL) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ $ $) NIL) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-47) (-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2190 ($ (-1037 (-522) (-561 $)))) (-15 -2805 ((-1037 (-522) (-561 $)) $)) (-15 -2816 ((-1037 (-522) (-561 $)) $)) (-15 -3864 ($ $)) (-15 -2100 ((-1081 $) (-1081 $) (-561 $))) (-15 -2100 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -2100 ($ $ (-561 $))) (-15 -2100 ($ $ (-588 (-561 $))))))) (T -47))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47)))) (-3864 (*1 *1 *1) (-5 *1 (-47))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-561 (-47))) (-5 *1 (-47)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-588 (-561 (-47)))) (-5 *1 (-47)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-561 (-47))) (-5 *1 (-47)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-47)))) (-5 *1 (-47)))))
+(-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2190 ($ (-1037 (-522) (-561 $)))) (-15 -2805 ((-1037 (-522) (-561 $)) $)) (-15 -2816 ((-1037 (-522) (-561 $)) $)) (-15 -3864 ($ $)) (-15 -2100 ((-1081 $) (-1081 $) (-561 $))) (-15 -2100 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -2100 ($ $ (-561 $))) (-15 -2100 ($ $ (-588 (-561 $))))))
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 7)) (-1531 (((-108) $ $) NIL)))
+(((-48) (-1014)) (T -48))
+NIL
+(-1014)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 60)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1289 (((-108) $) 20)) (-1297 (((-3 |#1| "failed") $) 23)) (-1484 ((|#1| $) 24)) (-3156 (($ $) 27)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3138 ((|#1| $) 21)) (-3229 (($ $) 49)) (-2385 (((-1068) $) NIL)) (-3679 (((-108) $) 28)) (-4151 (((-1032) $) NIL)) (-1383 (($ (-708)) 47)) (-3266 (($ (-588 (-522))) 48)) (-2793 (((-708) $) 29)) (-2190 (((-792) $) 63) (($ (-522)) 44) (($ |#1|) 42)) (-3243 ((|#1| $ $) 19)) (-2323 (((-708)) 46)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 30 T CONST)) (-3577 (($) 14 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 40)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-566 |#1|) (-962 |#1|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -3229 ($ $)) (-15 -3156 ($ $)) (-15 -3243 (|#1| $ $)) (-15 -1383 ($ (-708))) (-15 -3266 ($ (-588 (-522)))) (-15 -3679 ((-108) $)) (-15 -1289 ((-108) $)) (-15 -2793 ((-708) $)) (-15 -1391 ($ (-1 |#1| |#1|) $)))) (-971) (-588 (-1085))) (T -49))
+((-3138 (*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085))))) (-3229 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))))) (-3243 (*1 *2 *1 *1) (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085))))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-3266 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-49 *3 *4)) (-14 *4 (-588 (-1085))))))
+(-13 (-566 |#1|) (-962 |#1|) (-10 -8 (-15 -3138 (|#1| $)) (-15 -3229 ($ $)) (-15 -3156 ($ $)) (-15 -3243 (|#1| $ $)) (-15 -1383 ($ (-708))) (-15 -3266 ($ (-588 (-522)))) (-15 -3679 ((-108) $)) (-15 -1289 ((-108) $)) (-15 -2793 ((-708) $)) (-15 -1391 ($ (-1 |#1| |#1|) $))))
+((-1289 (((-108) (-51)) 13)) (-1297 (((-3 |#1| "failed") (-51)) 21)) (-1484 ((|#1| (-51)) 22)) (-2190 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2190 ((-51) |#1|)) (-15 -1297 ((-3 |#1| "failed") (-51))) (-15 -1289 ((-108) (-51))) (-15 -1484 (|#1| (-51)))) (-1120)) (T -50))
+((-1484 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1120)))) (-1297 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1120)))))
+(-10 -7 (-15 -2190 ((-51) |#1|)) (-15 -1297 ((-3 |#1| "failed") (-51))) (-15 -1289 ((-108) (-51))) (-15 -1484 (|#1| (-51))))
+((-1416 (((-108) $ $) NIL)) (-3715 (((-1068) (-108)) 25)) (-2376 (((-792) $) 24)) (-2861 (((-711) $) 12)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-4199 (((-792) $) 16)) (-2897 (((-1018) $) 14)) (-2190 (((-792) $) 32)) (-2328 (($ (-1018) (-711)) 33)) (-1531 (((-108) $ $) 18)))
+(((-51) (-13 (-1014) (-10 -8 (-15 -2328 ($ (-1018) (-711))) (-15 -4199 ((-792) $)) (-15 -2376 ((-792) $)) (-15 -2897 ((-1018) $)) (-15 -2861 ((-711) $)) (-15 -3715 ((-1068) (-108)))))) (T -51))
+((-2328 (*1 *1 *2 *3) (-12 (-5 *2 (-1018)) (-5 *3 (-711)) (-5 *1 (-51)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-51)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-711)) (-5 *1 (-51)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1068)) (-5 *1 (-51)))))
+(-13 (-1014) (-10 -8 (-15 -2328 ($ (-1018) (-711))) (-15 -4199 ((-792) $)) (-15 -2376 ((-792) $)) (-15 -2897 ((-1018) $)) (-15 -2861 ((-711) $)) (-15 -3715 ((-1068) (-108)))))
+((-1616 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1616 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-971) (-590 |#1|) (-786 |#1|)) (T -52))
+((-1616 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-971)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-786 *5)))))
+(-10 -7 (-15 -1616 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2418 ((|#3| |#3| (-588 (-1085))) 35)) (-2392 ((|#3| (-588 (-993 |#1| |#2| |#3|)) |#3| (-850)) 22) ((|#3| (-588 (-993 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2392 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3|)) (-15 -2392 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3| (-850))) (-15 -2418 (|#3| |#3| (-588 (-1085))))) (-1014) (-13 (-971) (-815 |#1|) (-784) (-563 (-821 |#1|))) (-13 (-405 |#2|) (-815 |#1|) (-563 (-821 |#1|)))) (T -53))
+((-2418 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) (-2392 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-588 (-993 *5 *6 *2))) (-5 *4 (-850)) (-4 *5 (-1014)) (-4 *6 (-13 (-971) (-815 *5) (-784) (-563 (-821 *5)))) (-4 *2 (-13 (-405 *6) (-815 *5) (-563 (-821 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2392 (*1 *2 *3 *2) (-12 (-5 *3 (-588 (-993 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -2392 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3|)) (-15 -2392 (|#3| (-588 (-993 |#1| |#2| |#3|)) |#3| (-850))) (-15 -2418 (|#3| |#3| (-588 (-1085)))))
+((-4141 (((-108) $ (-708)) 23)) (-2480 (($ $ (-522) |#3|) 45)) (-1888 (($ $ (-522) |#4|) 49)) (-1860 ((|#3| $ (-522)) 58)) (-3837 (((-588 |#2|) $) 30)) (-3352 (((-108) $ (-708)) 25)) (-2246 (((-108) |#2| $) 53)) (-3838 (($ (-1 |#2| |#2|) $) 37)) (-1391 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-2720 (((-108) $ (-708)) 24)) (-2602 (($ $ |#2|) 34)) (-3053 (((-108) (-1 (-108) |#2|) $) 19)) (-2545 ((|#2| $ (-522) (-522)) NIL) ((|#2| $ (-522) (-522) |#2|) 27)) (-4168 (((-708) (-1 (-108) |#2|) $) 28) (((-708) |#2| $) 55)) (-2404 (($ $) 33)) (-3488 ((|#4| $ (-522)) 61)) (-2190 (((-792) $) 66)) (-3648 (((-108) (-1 (-108) |#2|) $) 18)) (-1531 (((-108) $ $) 52)) (-3480 (((-708) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1888 (|#1| |#1| (-522) |#4|)) (-15 -2480 (|#1| |#1| (-522) |#3|)) (-15 -3837 ((-588 |#2|) |#1|)) (-15 -3488 (|#4| |#1| (-522))) (-15 -1860 (|#3| |#1| (-522))) (-15 -2545 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) (-522))) (-15 -2602 (|#1| |#1| |#2|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2246 ((-108) |#2| |#1|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708))) (-15 -2404 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1120) (-348 |#2|) (-348 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1888 (|#1| |#1| (-522) |#4|)) (-15 -2480 (|#1| |#1| (-522) |#3|)) (-15 -3837 ((-588 |#2|) |#1|)) (-15 -3488 (|#4| |#1| (-522))) (-15 -1860 (|#3| |#1| (-522))) (-15 -2545 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) (-522))) (-15 -2602 (|#1| |#1| |#2|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2246 ((-108) |#2| |#1|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708))) (-15 -2404 (|#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) (-522) |#1|) 44)) (-2480 (($ $ (-522) |#2|) 42)) (-1888 (($ $ (-522) |#3|) 41)) (-3175 (($) 7 T CONST)) (-1860 ((|#2| $ (-522)) 46)) (-3854 ((|#1| $ (-522) (-522) |#1|) 43)) (-3631 ((|#1| $ (-522) (-522)) 48)) (-3837 (((-588 |#1|) $) 30)) (-1411 (((-708) $) 51)) (-1811 (($ (-708) (-708) |#1|) 57)) (-1422 (((-708) $) 50)) (-3352 (((-108) $ (-708)) 9)) (-2575 (((-522) $) 55)) (-1885 (((-522) $) 53)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3886 (((-522) $) 54)) (-4132 (((-522) $) 52)) (-3838 (($ (-1 |#1| |#1|) $) 34)) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) 56)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) (-522)) 49) ((|#1| $ (-522) (-522) |#1|) 47)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-3488 ((|#3| $ (-522)) 45)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-55 |#1| |#2| |#3|) (-1197) (-1120) (-348 |t#1|) (-348 |t#1|)) (T -55))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1811 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-708)) (-4 *3 (-1120)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2602 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-522)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-708)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-708)))) (-2545 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-1120)))) (-3631 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-1120)))) (-2545 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1120)) (-4 *5 (-348 *4)) (-4 *2 (-348 *4)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1120)) (-4 *5 (-348 *4)) (-4 *2 (-348 *4)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-588 *3)))) (-2379 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) (-3854 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120)) (-4 *4 (-348 *2)) (-4 *5 (-348 *2)))) (-2480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1120)) (-4 *3 (-348 *4)) (-4 *5 (-348 *4)))) (-1888 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1120)) (-4 *5 (-348 *4)) (-4 *3 (-348 *4)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1391 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))))
+(-13 (-461 |t#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -1811 ($ (-708) (-708) |t#1|)) (-15 -2602 ($ $ |t#1|)) (-15 -2575 ((-522) $)) (-15 -3886 ((-522) $)) (-15 -1885 ((-522) $)) (-15 -4132 ((-522) $)) (-15 -1411 ((-708) $)) (-15 -1422 ((-708) $)) (-15 -2545 (|t#1| $ (-522) (-522))) (-15 -3631 (|t#1| $ (-522) (-522))) (-15 -2545 (|t#1| $ (-522) (-522) |t#1|)) (-15 -1860 (|t#2| $ (-522))) (-15 -3488 (|t#3| $ (-522))) (-15 -3837 ((-588 |t#1|) $)) (-15 -2379 (|t#1| $ (-522) (-522) |t#1|)) (-15 -3854 (|t#1| $ (-522) (-522) |t#1|)) (-15 -2480 ($ $ (-522) |t#2|)) (-15 -1888 ($ $ (-522) |t#3|)) (-15 -1391 ($ (-1 |t#1| |t#1|) $)) (-15 -3838 ($ (-1 |t#1| |t#1|) $)) (-15 -1391 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1391 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-3690 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3864 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1391 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -3690 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1391 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1120) (-1120)) (T -56))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-56 *5 *2)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -3690 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1391 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) |#1|) 11 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2180 (($ (-588 |#1|)) 13) (($ (-708) |#1|) 14)) (-1811 (($ (-708) |#1|) 9)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 7)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2180 ($ (-588 |#1|))) (-15 -2180 ($ (-708) |#1|)))) (-1120)) (T -57))
+((-2180 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-57 *3)))) (-2180 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-57 *3)) (-4 *3 (-1120)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -2180 ($ (-588 |#1|))) (-15 -2180 ($ (-708) |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) (-522) |#1|) NIL)) (-2480 (($ $ (-522) (-57 |#1|)) NIL)) (-1888 (($ $ (-522) (-57 |#1|)) NIL)) (-3175 (($) NIL T CONST)) (-1860 (((-57 |#1|) $ (-522)) NIL)) (-3854 ((|#1| $ (-522) (-522) |#1|) NIL)) (-3631 ((|#1| $ (-522) (-522)) NIL)) (-3837 (((-588 |#1|) $) NIL)) (-1411 (((-708) $) NIL)) (-1811 (($ (-708) (-708) |#1|) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-2575 (((-522) $) NIL)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3886 (((-522) $) NIL)) (-4132 (((-522) $) NIL)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-3488 (((-57 |#1|) $ (-522)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4239))) (-1120)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4239)))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 69) (((-3 $ "failed") (-1166 (-291 (-522)))) 58) (((-3 $ "failed") (-1166 (-881 (-354)))) 91) (((-3 $ "failed") (-1166 (-881 (-522)))) 80) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 47) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 36)) (-1484 (($ (-1166 (-291 (-354)))) 65) (($ (-1166 (-291 (-522)))) 54) (($ (-1166 (-881 (-354)))) 87) (($ (-1166 (-881 (-522)))) 76) (($ (-1166 (-382 (-881 (-354))))) 43) (($ (-1166 (-382 (-881 (-522))))) 29)) (-2009 (((-1171) $) 118)) (-2190 (((-792) $) 111) (($ (-588 (-305))) 100) (($ (-305)) 94) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 97) (($ (-1166 (-314 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-637)))) 28)))
+(((-59 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-637))))))) (-1085)) (T -59))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-637)))) (-5 *1 (-59 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2201) (-637)))))))
+((-2009 (((-1171) $) 48) (((-1171)) 49)) (-2190 (((-792) $) 45)))
+(((-60 |#1|) (-13 (-370) (-10 -7 (-15 -2009 ((-1171))))) (-1085)) (T -60))
+((-2009 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-60 *3)) (-14 *3 (-1085)))))
+(-13 (-370) (-10 -7 (-15 -2009 ((-1171)))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 142) (((-3 $ "failed") (-1166 (-291 (-522)))) 132) (((-3 $ "failed") (-1166 (-881 (-354)))) 163) (((-3 $ "failed") (-1166 (-881 (-522)))) 152) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 121) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 110)) (-1484 (($ (-1166 (-291 (-354)))) 138) (($ (-1166 (-291 (-522)))) 128) (($ (-1166 (-881 (-354)))) 159) (($ (-1166 (-881 (-522)))) 148) (($ (-1166 (-382 (-881 (-354))))) 117) (($ (-1166 (-382 (-881 (-522))))) 103)) (-2009 (((-1171) $) 96)) (-2190 (((-792) $) 90) (($ (-588 (-305))) 28) (($ (-305)) 34) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 31) (($ (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637)))) 88)))
+(((-61 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637))))))) (-1085)) (T -61))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637)))) (-5 *1 (-61 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637)))))))
+((-1297 (((-3 $ "failed") (-291 (-354))) 36) (((-3 $ "failed") (-291 (-522))) 41) (((-3 $ "failed") (-881 (-354))) 46) (((-3 $ "failed") (-881 (-522))) 51) (((-3 $ "failed") (-382 (-881 (-354)))) 31) (((-3 $ "failed") (-382 (-881 (-522)))) 26)) (-1484 (($ (-291 (-354))) 34) (($ (-291 (-522))) 39) (($ (-881 (-354))) 44) (($ (-881 (-522))) 49) (($ (-382 (-881 (-354)))) 29) (($ (-382 (-881 (-522)))) 23)) (-2009 (((-1171) $) 73)) (-2190 (((-792) $) 66) (($ (-588 (-305))) 57) (($ (-305)) 63) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 60) (($ (-314 (-2201 (QUOTE X)) (-2201) (-637))) 22)))
+(((-62 |#1|) (-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201 (QUOTE X)) (-2201) (-637)))))) (-1085)) (T -62))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-314 (-2201 (QUOTE X)) (-2201) (-637))) (-5 *1 (-62 *3)) (-14 *3 (-1085)))))
+(-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201 (QUOTE X)) (-2201) (-637))))))
+((-1297 (((-3 $ "failed") (-628 (-291 (-354)))) 100) (((-3 $ "failed") (-628 (-291 (-522)))) 89) (((-3 $ "failed") (-628 (-881 (-354)))) 122) (((-3 $ "failed") (-628 (-881 (-522)))) 111) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 78) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 67)) (-1484 (($ (-628 (-291 (-354)))) 96) (($ (-628 (-291 (-522)))) 85) (($ (-628 (-881 (-354)))) 118) (($ (-628 (-881 (-522)))) 107) (($ (-628 (-382 (-881 (-354))))) 74) (($ (-628 (-382 (-881 (-522))))) 60)) (-2009 (((-1171) $) 130)) (-2190 (((-792) $) 124) (($ (-588 (-305))) 27) (($ (-305)) 33) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 30) (($ (-628 (-314 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-637)))) 53)))
+(((-63 |#1|) (-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-637))))))) (-1085)) (T -63))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-637)))) (-5 *1 (-63 *3)) (-14 *3 (-1085)))))
+(-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201) (-2201 (QUOTE X) (QUOTE HESS)) (-637)))))))
+((-1297 (((-3 $ "failed") (-291 (-354))) 54) (((-3 $ "failed") (-291 (-522))) 59) (((-3 $ "failed") (-881 (-354))) 64) (((-3 $ "failed") (-881 (-522))) 69) (((-3 $ "failed") (-382 (-881 (-354)))) 49) (((-3 $ "failed") (-382 (-881 (-522)))) 44)) (-1484 (($ (-291 (-354))) 52) (($ (-291 (-522))) 57) (($ (-881 (-354))) 62) (($ (-881 (-522))) 67) (($ (-382 (-881 (-354)))) 47) (($ (-382 (-881 (-522)))) 41)) (-2009 (((-1171) $) 78)) (-2190 (((-792) $) 72) (($ (-588 (-305))) 27) (($ (-305)) 33) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 30) (($ (-314 (-2201) (-2201 (QUOTE XC)) (-637))) 38)))
+(((-64 |#1|) (-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201) (-2201 (QUOTE XC)) (-637)))))) (-1085)) (T -64))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-314 (-2201) (-2201 (QUOTE XC)) (-637))) (-5 *1 (-64 *3)) (-14 *3 (-1085)))))
+(-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201) (-2201 (QUOTE XC)) (-637))))))
+((-2009 (((-1171) $) 63)) (-2190 (((-792) $) 57) (($ (-628 (-637))) 49) (($ (-588 (-305))) 48) (($ (-305)) 55) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 53)))
+(((-65 |#1|) (-358) (-1085)) (T -65))
+NIL
+(-358)
+((-2009 (((-1171) $) 64)) (-2190 (((-792) $) 58) (($ (-628 (-637))) 50) (($ (-588 (-305))) 49) (($ (-305)) 52) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 55)))
+(((-66 |#1|) (-358) (-1085)) (T -66))
+NIL
+(-358)
+((-2009 (((-1171) $) NIL) (((-1171)) 32)) (-2190 (((-792) $) NIL)))
+(((-67 |#1|) (-13 (-370) (-10 -7 (-15 -2009 ((-1171))))) (-1085)) (T -67))
+((-2009 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-67 *3)) (-14 *3 (-1085)))))
+(-13 (-370) (-10 -7 (-15 -2009 ((-1171)))))
+((-2009 (((-1171) $) 68)) (-2190 (((-792) $) 62) (($ (-628 (-637))) 53) (($ (-588 (-305))) 56) (($ (-305)) 59) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 52)))
+(((-68 |#1|) (-358) (-1085)) (T -68))
+NIL
+(-358)
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 98) (((-3 $ "failed") (-1166 (-291 (-522)))) 87) (((-3 $ "failed") (-1166 (-881 (-354)))) 119) (((-3 $ "failed") (-1166 (-881 (-522)))) 108) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 76) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 65)) (-1484 (($ (-1166 (-291 (-354)))) 94) (($ (-1166 (-291 (-522)))) 83) (($ (-1166 (-881 (-354)))) 115) (($ (-1166 (-881 (-522)))) 104) (($ (-1166 (-382 (-881 (-354))))) 72) (($ (-1166 (-382 (-881 (-522))))) 58)) (-2009 (((-1171) $) 133)) (-2190 (((-792) $) 127) (($ (-588 (-305))) 122) (($ (-305)) 125) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 50) (($ (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))) 51)))
+(((-69 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637))))))) (-1085)) (T -69))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))) (-5 *1 (-69 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))))))
+((-2009 (((-1171) $) 32) (((-1171)) 31)) (-2190 (((-792) $) 35)))
+(((-70 |#1|) (-13 (-370) (-10 -7 (-15 -2009 ((-1171))))) (-1085)) (T -70))
+((-2009 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-70 *3)) (-14 *3 (-1085)))))
+(-13 (-370) (-10 -7 (-15 -2009 ((-1171)))))
+((-2009 (((-1171) $) 62)) (-2190 (((-792) $) 56) (($ (-628 (-637))) 47) (($ (-588 (-305))) 50) (($ (-305)) 53) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 46)))
+(((-71 |#1|) (-358) (-1085)) (T -71))
+NIL
+(-358)
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 119) (((-3 $ "failed") (-1166 (-291 (-522)))) 108) (((-3 $ "failed") (-1166 (-881 (-354)))) 141) (((-3 $ "failed") (-1166 (-881 (-522)))) 130) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 98) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 87)) (-1484 (($ (-1166 (-291 (-354)))) 115) (($ (-1166 (-291 (-522)))) 104) (($ (-1166 (-881 (-354)))) 137) (($ (-1166 (-881 (-522)))) 126) (($ (-1166 (-382 (-881 (-354))))) 94) (($ (-1166 (-382 (-881 (-522))))) 80)) (-2009 (((-1171) $) 73)) (-2190 (((-792) $) 27) (($ (-588 (-305))) 63) (($ (-305)) 59) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 66) (($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))) 60)))
+(((-72 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637))))))) (-1085)) (T -72))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))) (-5 *1 (-72 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 125) (((-3 $ "failed") (-1166 (-291 (-522)))) 114) (((-3 $ "failed") (-1166 (-881 (-354)))) 147) (((-3 $ "failed") (-1166 (-881 (-522)))) 136) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 103) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 92)) (-1484 (($ (-1166 (-291 (-354)))) 121) (($ (-1166 (-291 (-522)))) 110) (($ (-1166 (-881 (-354)))) 143) (($ (-1166 (-881 (-522)))) 132) (($ (-1166 (-382 (-881 (-354))))) 99) (($ (-1166 (-382 (-881 (-522))))) 85)) (-2009 (((-1171) $) 78)) (-2190 (((-792) $) 70) (($ (-588 (-305))) NIL) (($ (-305)) NIL) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) NIL) (($ (-1166 (-314 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1352)) (-637)))) 65)))
+(((-73 |#1| |#2| |#3|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1352)) (-637))))))) (-1085) (-1085) (-1085)) (T -73))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1352)) (-637)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085)) (-14 *5 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X) (QUOTE EPS)) (-2201 (QUOTE -1352)) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 129) (((-3 $ "failed") (-1166 (-291 (-522)))) 118) (((-3 $ "failed") (-1166 (-881 (-354)))) 151) (((-3 $ "failed") (-1166 (-881 (-522)))) 140) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 107) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 96)) (-1484 (($ (-1166 (-291 (-354)))) 125) (($ (-1166 (-291 (-522)))) 114) (($ (-1166 (-881 (-354)))) 147) (($ (-1166 (-881 (-522)))) 136) (($ (-1166 (-382 (-881 (-354))))) 103) (($ (-1166 (-382 (-881 (-522))))) 89)) (-2009 (((-1171) $) 82)) (-2190 (((-792) $) 74) (($ (-588 (-305))) NIL) (($ (-305)) NIL) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) NIL) (($ (-1166 (-314 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-637)))) 69)))
+(((-74 |#1| |#2| |#3|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-637))))))) (-1085) (-1085) (-1085)) (T -74))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-637)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085)) (-14 *5 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE EPS)) (-2201 (QUOTE YA) (QUOTE YB)) (-637)))))))
+((-1297 (((-3 $ "failed") (-291 (-354))) 77) (((-3 $ "failed") (-291 (-522))) 82) (((-3 $ "failed") (-881 (-354))) 87) (((-3 $ "failed") (-881 (-522))) 92) (((-3 $ "failed") (-382 (-881 (-354)))) 72) (((-3 $ "failed") (-382 (-881 (-522)))) 67)) (-1484 (($ (-291 (-354))) 75) (($ (-291 (-522))) 80) (($ (-881 (-354))) 85) (($ (-881 (-522))) 90) (($ (-382 (-881 (-354)))) 70) (($ (-382 (-881 (-522)))) 64)) (-2009 (((-1171) $) 61)) (-2190 (((-792) $) 49) (($ (-588 (-305))) 45) (($ (-305)) 55) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 53) (($ (-314 (-2201) (-2201 (QUOTE X)) (-637))) 46)))
+(((-75 |#1|) (-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201) (-2201 (QUOTE X)) (-637)))))) (-1085)) (T -75))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-314 (-2201) (-2201 (QUOTE X)) (-637))) (-5 *1 (-75 *3)) (-14 *3 (-1085)))))
+(-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201) (-2201 (QUOTE X)) (-637))))))
+((-1297 (((-3 $ "failed") (-291 (-354))) 41) (((-3 $ "failed") (-291 (-522))) 46) (((-3 $ "failed") (-881 (-354))) 51) (((-3 $ "failed") (-881 (-522))) 56) (((-3 $ "failed") (-382 (-881 (-354)))) 36) (((-3 $ "failed") (-382 (-881 (-522)))) 31)) (-1484 (($ (-291 (-354))) 39) (($ (-291 (-522))) 44) (($ (-881 (-354))) 49) (($ (-881 (-522))) 54) (($ (-382 (-881 (-354)))) 34) (($ (-382 (-881 (-522)))) 28)) (-2009 (((-1171) $) 77)) (-2190 (((-792) $) 71) (($ (-588 (-305))) 62) (($ (-305)) 68) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 65) (($ (-314 (-2201) (-2201 (QUOTE X)) (-637))) 27)))
+(((-76 |#1|) (-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201) (-2201 (QUOTE X)) (-637)))))) (-1085)) (T -76))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-314 (-2201) (-2201 (QUOTE X)) (-637))) (-5 *1 (-76 *3)) (-14 *3 (-1085)))))
+(-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201) (-2201 (QUOTE X)) (-637))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 84) (((-3 $ "failed") (-1166 (-291 (-522)))) 73) (((-3 $ "failed") (-1166 (-881 (-354)))) 106) (((-3 $ "failed") (-1166 (-881 (-522)))) 95) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 62) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 51)) (-1484 (($ (-1166 (-291 (-354)))) 80) (($ (-1166 (-291 (-522)))) 69) (($ (-1166 (-881 (-354)))) 102) (($ (-1166 (-881 (-522)))) 91) (($ (-1166 (-382 (-881 (-354))))) 58) (($ (-1166 (-382 (-881 (-522))))) 44)) (-2009 (((-1171) $) 122)) (-2190 (((-792) $) 116) (($ (-588 (-305))) 109) (($ (-305)) 36) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 112) (($ (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637)))) 37)))
+(((-77 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637))))))) (-1085)) (T -77))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637)))) (-5 *1 (-77 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE XC)) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 137) (((-3 $ "failed") (-1166 (-291 (-522)))) 126) (((-3 $ "failed") (-1166 (-881 (-354)))) 158) (((-3 $ "failed") (-1166 (-881 (-522)))) 147) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 116) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 105)) (-1484 (($ (-1166 (-291 (-354)))) 133) (($ (-1166 (-291 (-522)))) 122) (($ (-1166 (-881 (-354)))) 154) (($ (-1166 (-881 (-522)))) 143) (($ (-1166 (-382 (-881 (-354))))) 112) (($ (-1166 (-382 (-881 (-522))))) 98)) (-2009 (((-1171) $) 91)) (-2190 (((-792) $) 85) (($ (-588 (-305))) 76) (($ (-305)) 83) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 81) (($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))) 77)))
+(((-78 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637))))))) (-1085)) (T -78))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))) (-5 *1 (-78 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 73) (((-3 $ "failed") (-1166 (-291 (-522)))) 62) (((-3 $ "failed") (-1166 (-881 (-354)))) 95) (((-3 $ "failed") (-1166 (-881 (-522)))) 84) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 51) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 40)) (-1484 (($ (-1166 (-291 (-354)))) 69) (($ (-1166 (-291 (-522)))) 58) (($ (-1166 (-881 (-354)))) 91) (($ (-1166 (-881 (-522)))) 80) (($ (-1166 (-382 (-881 (-354))))) 47) (($ (-1166 (-382 (-881 (-522))))) 33)) (-2009 (((-1171) $) 121)) (-2190 (((-792) $) 115) (($ (-588 (-305))) 106) (($ (-305)) 112) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 110) (($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))) 32)))
+(((-79 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637))))))) (-1085)) (T -79))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))) (-5 *1 (-79 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201) (-2201 (QUOTE X)) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 90) (((-3 $ "failed") (-1166 (-291 (-522)))) 79) (((-3 $ "failed") (-1166 (-881 (-354)))) 112) (((-3 $ "failed") (-1166 (-881 (-522)))) 101) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 68) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 57)) (-1484 (($ (-1166 (-291 (-354)))) 86) (($ (-1166 (-291 (-522)))) 75) (($ (-1166 (-881 (-354)))) 108) (($ (-1166 (-881 (-522)))) 97) (($ (-1166 (-382 (-881 (-354))))) 64) (($ (-1166 (-382 (-881 (-522))))) 50)) (-2009 (((-1171) $) 43)) (-2190 (((-792) $) 36) (($ (-588 (-305))) 26) (($ (-305)) 29) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 32) (($ (-1166 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637)))) 27)))
+(((-80 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637))))))) (-1085)) (T -80))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637)))) (-5 *1 (-80 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637)))))))
+((-1297 (((-3 $ "failed") (-628 (-291 (-354)))) 103) (((-3 $ "failed") (-628 (-291 (-522)))) 92) (((-3 $ "failed") (-628 (-881 (-354)))) 125) (((-3 $ "failed") (-628 (-881 (-522)))) 114) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 82) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 71)) (-1484 (($ (-628 (-291 (-354)))) 99) (($ (-628 (-291 (-522)))) 88) (($ (-628 (-881 (-354)))) 121) (($ (-628 (-881 (-522)))) 110) (($ (-628 (-382 (-881 (-354))))) 78) (($ (-628 (-382 (-881 (-522))))) 64)) (-2009 (((-1171) $) 57)) (-2190 (((-792) $) 43) (($ (-588 (-305))) 50) (($ (-305)) 39) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 47) (($ (-628 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637)))) 40)))
+(((-81 |#1|) (-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637))))))) (-1085)) (T -81))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637)))) (-5 *1 (-81 *3)) (-14 *3 (-1085)))))
+(-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201 (QUOTE X) (QUOTE -1352)) (-2201) (-637)))))))
+((-1297 (((-3 $ "failed") (-628 (-291 (-354)))) 103) (((-3 $ "failed") (-628 (-291 (-522)))) 92) (((-3 $ "failed") (-628 (-881 (-354)))) 124) (((-3 $ "failed") (-628 (-881 (-522)))) 113) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 81) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 70)) (-1484 (($ (-628 (-291 (-354)))) 99) (($ (-628 (-291 (-522)))) 88) (($ (-628 (-881 (-354)))) 120) (($ (-628 (-881 (-522)))) 109) (($ (-628 (-382 (-881 (-354))))) 77) (($ (-628 (-382 (-881 (-522))))) 63)) (-2009 (((-1171) $) 56)) (-2190 (((-792) $) 50) (($ (-588 (-305))) 44) (($ (-305)) 47) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 40) (($ (-628 (-314 (-2201 (QUOTE X)) (-2201) (-637)))) 41)))
+(((-82 |#1|) (-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201 (QUOTE X)) (-2201) (-637))))))) (-1085)) (T -82))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2201 (QUOTE X)) (-2201) (-637)))) (-5 *1 (-82 *3)) (-14 *3 (-1085)))))
+(-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201 (QUOTE X)) (-2201) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 99) (((-3 $ "failed") (-1166 (-291 (-522)))) 88) (((-3 $ "failed") (-1166 (-881 (-354)))) 121) (((-3 $ "failed") (-1166 (-881 (-522)))) 110) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 77) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 66)) (-1484 (($ (-1166 (-291 (-354)))) 95) (($ (-1166 (-291 (-522)))) 84) (($ (-1166 (-881 (-354)))) 117) (($ (-1166 (-881 (-522)))) 106) (($ (-1166 (-382 (-881 (-354))))) 73) (($ (-1166 (-382 (-881 (-522))))) 59)) (-2009 (((-1171) $) 45)) (-2190 (((-792) $) 39) (($ (-588 (-305))) 48) (($ (-305)) 35) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 51) (($ (-1166 (-314 (-2201 (QUOTE X)) (-2201) (-637)))) 36)))
+(((-83 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X)) (-2201) (-637))))))) (-1085)) (T -83))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE X)) (-2201) (-637)))) (-5 *1 (-83 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X)) (-2201) (-637)))))))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 74) (((-3 $ "failed") (-1166 (-291 (-522)))) 63) (((-3 $ "failed") (-1166 (-881 (-354)))) 96) (((-3 $ "failed") (-1166 (-881 (-522)))) 85) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 52) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 41)) (-1484 (($ (-1166 (-291 (-354)))) 70) (($ (-1166 (-291 (-522)))) 59) (($ (-1166 (-881 (-354)))) 92) (($ (-1166 (-881 (-522)))) 81) (($ (-1166 (-382 (-881 (-354))))) 48) (($ (-1166 (-382 (-881 (-522))))) 34)) (-2009 (((-1171) $) 122)) (-2190 (((-792) $) 116) (($ (-588 (-305))) 107) (($ (-305)) 113) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 111) (($ (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))) 33)))
+(((-84 |#1|) (-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637))))))) (-1085)) (T -84))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))) (-5 *1 (-84 *3)) (-14 *3 (-1085)))))
+(-13 (-415) (-10 -8 (-15 -2190 ($ (-1166 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))))))
+((-1297 (((-3 $ "failed") (-628 (-291 (-354)))) 105) (((-3 $ "failed") (-628 (-291 (-522)))) 94) (((-3 $ "failed") (-628 (-881 (-354)))) 127) (((-3 $ "failed") (-628 (-881 (-522)))) 116) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 83) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 72)) (-1484 (($ (-628 (-291 (-354)))) 101) (($ (-628 (-291 (-522)))) 90) (($ (-628 (-881 (-354)))) 123) (($ (-628 (-881 (-522)))) 112) (($ (-628 (-382 (-881 (-354))))) 79) (($ (-628 (-382 (-881 (-522))))) 65)) (-2009 (((-1171) $) 58)) (-2190 (((-792) $) 52) (($ (-588 (-305))) 42) (($ (-305)) 49) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 47) (($ (-628 (-314 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-637)))) 43)))
+(((-85 |#1|) (-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-637))))))) (-1085)) (T -85))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-628 (-314 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-637)))) (-5 *1 (-85 *3)) (-14 *3 (-1085)))))
+(-13 (-359) (-10 -8 (-15 -2190 ($ (-628 (-314 (-2201 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2201) (-637)))))))
+((-2009 (((-1171) $) 44)) (-2190 (((-792) $) 38) (($ (-1166 (-637))) 88) (($ (-588 (-305))) 29) (($ (-305)) 35) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 32)))
+(((-86 |#1|) (-414) (-1085)) (T -86))
+NIL
+(-414)
+((-1297 (((-3 $ "failed") (-291 (-354))) 42) (((-3 $ "failed") (-291 (-522))) 47) (((-3 $ "failed") (-881 (-354))) 52) (((-3 $ "failed") (-881 (-522))) 57) (((-3 $ "failed") (-382 (-881 (-354)))) 37) (((-3 $ "failed") (-382 (-881 (-522)))) 32)) (-1484 (($ (-291 (-354))) 40) (($ (-291 (-522))) 45) (($ (-881 (-354))) 50) (($ (-881 (-522))) 55) (($ (-382 (-881 (-354)))) 35) (($ (-382 (-881 (-522)))) 29)) (-2009 (((-1171) $) 88)) (-2190 (((-792) $) 82) (($ (-588 (-305))) 76) (($ (-305)) 79) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 73) (($ (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637))) 28)))
+(((-87 |#1|) (-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637)))))) (-1085)) (T -87))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637))) (-5 *1 (-87 *3)) (-14 *3 (-1085)))))
+(-13 (-371) (-10 -8 (-15 -2190 ($ (-314 (-2201 (QUOTE X)) (-2201 (QUOTE -1352)) (-637))))))
+((-1275 (((-1166 (-628 |#1|)) (-628 |#1|)) 55)) (-2742 (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 (-588 (-850))))) |#2| (-850)) 45)) (-3348 (((-2 (|:| |minor| (-588 (-850))) (|:| -3197 |#2|) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 |#2|))) |#2| (-850)) 63 (|has| |#1| (-338)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -2742 ((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 (-588 (-850))))) |#2| (-850))) (-15 -1275 ((-1166 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-338)) (-15 -3348 ((-2 (|:| |minor| (-588 (-850))) (|:| -3197 |#2|) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 |#2|))) |#2| (-850))) |%noBranch|)) (-514) (-598 |#1|)) (T -88))
+((-3348 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |minor| (-588 (-850))) (|:| -3197 *3) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5)))) (-1275 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-628 *4)) (-4 *5 (-598 *4)))) (-2742 (*1 *2 *3 *4) (-12 (-4 *5 (-514)) (-5 *2 (-2 (|:| -1222 (-628 *5)) (|:| |vec| (-1166 (-588 (-850)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5)))))
+(-10 -7 (-15 -2742 ((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 (-588 (-850))))) |#2| (-850))) (-15 -1275 ((-1166 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-338)) (-15 -3348 ((-2 (|:| |minor| (-588 (-850))) (|:| -3197 |#2|) (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 |#2|))) |#2| (-850))) |%noBranch|))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1355 ((|#1| $) 35)) (-4141 (((-108) $ (-708)) NIL)) (-3175 (($) NIL T CONST)) (-3218 ((|#1| |#1| $) 30)) (-2327 ((|#1| $) 28)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2116 ((|#1| $) NIL)) (-4095 (($ |#1| $) 31)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-4087 ((|#1| $) 29)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 16)) (-3775 (($) 39)) (-1253 (((-708) $) 26)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 15)) (-2190 (((-792) $) 25 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) NIL)) (-3457 (($ (-588 |#1|)) 37)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 13 (|has| |#1| (-1014)))) (-3480 (((-708) $) 10 (|has| $ (-6 -4238)))))
+(((-89 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -3457 ($ (-588 |#1|))))) (-1014)) (T -89))
+((-3457 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-89 *3)))))
+(-13 (-1033 |#1|) (-10 -8 (-15 -3457 ($ (-588 |#1|)))))
+((-2860 (($ $) 10)) (-2872 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -2872 (|#1| |#1|)) (-15 -2860 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -2872 (|#1| |#1|)) (-15 -2860 (|#1| |#1|)))
+((-2836 (($ $) 11)) (-2815 (($ $) 10)) (-2860 (($ $) 9)) (-2872 (($ $) 8)) (-2848 (($ $) 7)) (-2825 (($ $) 6)))
+(((-91) (-1197)) (T -91))
+((-2836 (*1 *1 *1) (-4 *1 (-91))) (-2815 (*1 *1 *1) (-4 *1 (-91))) (-2860 (*1 *1 *1) (-4 *1 (-91))) (-2872 (*1 *1 *1) (-4 *1 (-91))) (-2848 (*1 *1 *1) (-4 *1 (-91))) (-2825 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -2825 ($ $)) (-15 -2848 ($ $)) (-15 -2872 ($ $)) (-15 -2860 ($ $)) (-15 -2815 ($ $)) (-15 -2836 ($ $))))
+((-1416 (((-108) $ $) NIL)) (-3479 (((-354) (-1068) (-354)) 42) (((-354) (-1068) (-1068) (-354)) 41)) (-3709 (((-354) (-354)) 33)) (-3063 (((-1171)) 36)) (-2385 (((-1068) $) NIL)) (-2127 (((-354) (-1068) (-1068)) 46) (((-354) (-1068)) 48)) (-4151 (((-1032) $) NIL)) (-2524 (((-354) (-1068) (-1068)) 47)) (-1778 (((-354) (-1068) (-1068)) 49) (((-354) (-1068)) 50)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-92) (-13 (-1014) (-10 -7 (-15 -2127 ((-354) (-1068) (-1068))) (-15 -2127 ((-354) (-1068))) (-15 -1778 ((-354) (-1068) (-1068))) (-15 -1778 ((-354) (-1068))) (-15 -2524 ((-354) (-1068) (-1068))) (-15 -3063 ((-1171))) (-15 -3709 ((-354) (-354))) (-15 -3479 ((-354) (-1068) (-354))) (-15 -3479 ((-354) (-1068) (-1068) (-354))) (-6 -4238)))) (T -92))
+((-2127 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-1778 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-2524 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))) (-3063 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-92)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-92)))) (-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92)))) (-3479 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92)))))
+(-13 (-1014) (-10 -7 (-15 -2127 ((-354) (-1068) (-1068))) (-15 -2127 ((-354) (-1068))) (-15 -1778 ((-354) (-1068) (-1068))) (-15 -1778 ((-354) (-1068))) (-15 -2524 ((-354) (-1068) (-1068))) (-15 -3063 ((-1171))) (-15 -3709 ((-354) (-354))) (-15 -3479 ((-354) (-1068) (-354))) (-15 -3479 ((-354) (-1068) (-1068) (-354))) (-6 -4238)))
+NIL
+(((-93) (-1197)) (T -93))
+NIL
+(-13 (-10 -7 (-6 -4238) (-6 (-4240 "*")) (-6 -4239) (-6 -4235) (-6 -4233) (-6 -4232) (-6 -4231) (-6 -4236) (-6 -4230) (-6 -4229) (-6 -4228) (-6 -4227) (-6 -4226) (-6 -4234) (-6 -4237) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4225)))
+((-1416 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-4071 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-522))) 22)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 14)) (-4151 (((-1032) $) NIL)) (-2545 ((|#1| $ |#1|) 11)) (-3122 (($ $ $) NIL)) (-1288 (($ $ $) NIL)) (-2190 (((-792) $) 20)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3577 (($) 8 T CONST)) (-1531 (((-108) $ $) 10)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) 28) (($ $ (-708)) NIL) (($ $ (-522)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-447) (-262 |#1| |#1|) (-10 -8 (-15 -4071 ($ (-1 |#1| |#1|))) (-15 -4071 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4071 ($ (-1 |#1| |#1| (-522)))))) (-971)) (T -94))
+((-4071 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3)))) (-4071 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-94 *3)))))
+(-13 (-447) (-262 |#1| |#1|) (-10 -8 (-15 -4071 ($ (-1 |#1| |#1|))) (-15 -4071 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4071 ($ (-1 |#1| |#1| (-522))))))
+((-2870 (((-393 |#2|) |#2| (-588 |#2|)) 10) (((-393 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -2870 ((-393 |#2|) |#2| |#2|)) (-15 -2870 ((-393 |#2|) |#2| (-588 |#2|)))) (-13 (-426) (-135)) (-1142 |#1|)) (T -95))
+((-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-13 (-426) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-95 *5 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-426) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -2870 ((-393 |#2|) |#2| |#2|)) (-15 -2870 ((-393 |#2|) |#2| (-588 |#2|))))
+((-1416 (((-108) $ $) 10)))
+(((-96 |#1|) (-10 -8 (-15 -1416 ((-108) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -1416 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-1531 (((-108) $ $) 6)))
+(((-97) (-1197)) (T -97))
+((-1416 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-1531 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
+(-13 (-10 -8 (-15 -1531 ((-108) $ $)) (-15 -1416 ((-108) $ $))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) 13 (|has| $ (-6 -4239)))) (-1872 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2173 (($ $ $) NIL (|has| $ (-6 -4239)))) (-1952 (($ $ (-588 |#1|)) 15)) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1924 (($ $) 11)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3037 (($ $ |#1| $) 17)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2817 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-4209 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-588 |#1|) |#1| |#1| |#1|)) 35)) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1913 (($ $) 10)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) 12)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 9)) (-3775 (($) 16)) (-2545 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2011 (((-522) $ $) NIL)) (-3042 (((-108) $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3936 (($ (-708) |#1|) 19)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3936 ($ (-708) |#1|)) (-15 -1952 ($ $ (-588 |#1|))) (-15 -2817 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2817 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4209 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4209 ($ $ |#1| (-1 (-588 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -98))
+((-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-98 *3)) (-4 *3 (-1014)))) (-1952 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1014)))) (-2817 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3)))) (-4209 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-98 *2)))) (-4209 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-588 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-98 *2)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3936 ($ (-708) |#1|)) (-15 -1952 ($ $ (-588 |#1|))) (-15 -2817 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2817 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4209 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4209 ($ $ |#1| (-1 (-588 |#1|) |#1| |#1| |#1|)))))
+((-1613 ((|#3| |#2| |#2|) 29)) (-1666 ((|#1| |#2| |#2|) 37 (|has| |#1| (-6 (-4240 "*"))))) (-3000 ((|#3| |#2| |#2|) 30)) (-3727 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4240 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1613 (|#3| |#2| |#2|)) (-15 -3000 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4240 "*"))) (PROGN (-15 -1666 (|#1| |#2| |#2|)) (-15 -3727 (|#1| |#2|))) |%noBranch|)) (-971) (-1142 |#1|) (-626 |#1| |#4| |#5|) (-348 |#1|) (-348 |#1|)) (T -99))
+((-3727 (*1 *2 *3) (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2)) (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2)) (-4 *4 (-626 *2 *5 *6)))) (-1666 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2)) (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2)) (-4 *4 (-626 *2 *5 *6)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)))) (-1613 (*1 *2 *3 *3) (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)))))
+(-10 -7 (-15 -1613 (|#3| |#2| |#2|)) (-15 -3000 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4240 "*"))) (PROGN (-15 -1666 (|#1| |#2| |#2|)) (-15 -3727 (|#1| |#2|))) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3401 (((-588 (-1085))) 32)) (-3702 (((-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202)))) (-1085)) 35)) (-1531 (((-108) $ $) NIL)))
+(((-100) (-13 (-1014) (-10 -7 (-15 -3401 ((-588 (-1085)))) (-15 -3702 ((-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202)))) (-1085))) (-6 -4238)))) (T -100))
+((-3401 (*1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-100)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202))))) (-5 *1 (-100)))))
+(-13 (-1014) (-10 -7 (-15 -3401 ((-588 (-1085)))) (-15 -3702 ((-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202))) (|:| |singularities| (-1066 (-202)))) (-1085))) (-6 -4238)))
+((-2795 (($ (-588 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -2795 (|#1| (-588 |#2|)))) (-102 |#2|) (-1120)) (T -101))
+NIL
+(-10 -8 (-15 -2795 (|#1| (-588 |#2|))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-102 |#1|) (-1197) (-1120)) (T -102))
+((-2795 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-102 *3)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))) (-4095 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))))
+(-13 (-461 |t#1|) (-10 -8 (-6 -4239) (-15 -2795 ($ (-588 |t#1|))) (-15 -4087 (|t#1| $)) (-15 -4095 ($ |t#1| $)) (-15 -2116 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-522) $) NIL (|has| (-522) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-522) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-522) (-962 (-522))))) (-1484 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-522) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| (-522) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-522) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-2556 (((-108) $) NIL (|has| (-522) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-522) (-784)))) (-1391 (($ (-1 (-522) (-522)) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-522) (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) NIL)) (-3686 (((-522) $) NIL (|has| (-522) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-522) $) NIL)) (-1431 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 7) (($ (-522)) NIL) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL) (((-930 2) $) 9)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2323 (((-708)) NIL)) (-3025 (((-522) $) NIL (|has| (-522) (-507)))) (-2271 (($ (-382 (-522))) 8)) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL (|has| (-522) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1620 (($ $ $) NIL) (($ (-522) (-522)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL)))
+(((-103) (-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -2190 ((-930 2) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -2271 ($ (-382 (-522))))))) (T -103))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-930 2)) (-5 *1 (-103)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))) (-2271 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103)))))
+(-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -2190 ((-930 2) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -2271 ($ (-382 (-522))))))
+((-2420 (((-588 (-893)) $) 13)) (-2888 (((-1085) $) 10)) (-2190 (((-792) $) 22)) (-2837 (($ (-1085) (-588 (-893))) 14)))
+(((-104) (-13 (-562 (-792)) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -2420 ((-588 (-893)) $)) (-15 -2837 ($ (-1085) (-588 (-893))))))) (T -104))
+((-2888 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-104)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-588 (-893))) (-5 *1 (-104)))) (-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-104)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -2420 ((-588 (-893)) $)) (-15 -2837 ($ (-1085) (-588 (-893))))))
+((-1416 (((-108) $ $) NIL)) (-1270 (((-1032) $ (-1032)) 23)) (-2563 (($ $ (-1068)) 17)) (-1789 (((-3 (-1032) "failed") $) 22)) (-4045 (((-1032) $) 20)) (-4117 (((-1032) $ (-1032)) 25)) (-3238 (((-1032) $) 24)) (-1544 (($ (-363)) NIL) (($ (-363) (-1068)) 16)) (-2888 (((-363) $) NIL)) (-2385 (((-1068) $) NIL)) (-3469 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-2152 (($ $) 18)) (-1531 (((-108) $ $) NIL)))
+(((-105) (-13 (-339 (-363) (-1032)) (-10 -8 (-15 -1789 ((-3 (-1032) "failed") $)) (-15 -3238 ((-1032) $)) (-15 -4117 ((-1032) $ (-1032)))))) (T -105))
+((-1789 (*1 *2 *1) (|partial| -12 (-5 *2 (-1032)) (-5 *1 (-105)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-105)))) (-4117 (*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-105)))))
+(-13 (-339 (-363) (-1032)) (-10 -8 (-15 -1789 ((-3 (-1032) "failed") $)) (-15 -3238 ((-1032) $)) (-15 -4117 ((-1032) $ (-1032)))))
+((-1416 (((-108) $ $) NIL)) (-1501 (($ $) NIL)) (-3349 (($ $ $) NIL)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) $) NIL (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-3537 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-108) (-784)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-3216 (($ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-2379 (((-108) $ (-1133 (-522)) (-108)) NIL (|has| $ (-6 -4239))) (((-108) $ (-522) (-108)) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1423 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-3864 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-3854 (((-108) $ (-522) (-108)) NIL (|has| $ (-6 -4239)))) (-3631 (((-108) $ (-522)) NIL)) (-3238 (((-522) (-108) $ (-522)) NIL (|has| (-108) (-1014))) (((-522) (-108) $) NIL (|has| (-108) (-1014))) (((-522) (-1 (-108) (-108)) $) NIL)) (-3837 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-3999 (($ $ $) NIL)) (-2401 (($ $) NIL)) (-2129 (($ $ $) NIL)) (-1811 (($ (-708) (-108)) 8)) (-1920 (($ $ $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL)) (-2160 (($ $ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3308 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL)) (-3838 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-1661 (($ $ $ (-522)) NIL) (($ (-108) $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-108) $) NIL (|has| (-522) (-784)))) (-1414 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2602 (($ $ (-108)) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-108)) (-588 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-270 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-588 (-270 (-108)))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1525 (((-588 (-108)) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 (($ $ (-1133 (-522))) NIL) (((-108) $ (-522)) NIL) (((-108) $ (-522) (-108)) NIL)) (-3696 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-4168 (((-708) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014)))) (((-708) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-108) (-563 (-498))))) (-2201 (($ (-588 (-108))) NIL)) (-4165 (($ (-588 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2190 (((-792) $) NIL)) (-3836 (($ (-708) (-108)) 9)) (-3648 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-4015 (($ $ $) NIL)) (-3510 (($ $) NIL)) (-2767 (($ $ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-2324 (($ $ $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-106) (-13 (-119) (-10 -8 (-15 -3836 ($ (-708) (-108)))))) (T -106))
+((-3836 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-108)) (-5 *1 (-106)))))
+(-13 (-119) (-10 -8 (-15 -3836 ($ (-708) (-108)))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-107 |#1| |#2|) (-1197) (-971) (-971)) (T -107))
+NIL
+(-13 (-590 |t#1|) (-977 |t#2|) (-10 -7 (-6 -4233) (-6 -4232)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-977 |#2|) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1501 (($ $) 12)) (-3349 (($ $ $) 17)) (-1433 (($) 8 T CONST)) (-3402 (((-108) $) 7)) (-1629 (((-708)) 26)) (-3255 (($) 32)) (-3999 (($ $ $) 15)) (-2401 (($ $) 10)) (-2129 (($ $ $) 18)) (-1920 (($ $ $) 19)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2120 (((-850) $) 31)) (-2385 (((-1068) $) NIL)) (-2717 (($ (-850)) 30)) (-3338 (($ $ $) 21)) (-4151 (((-1032) $) NIL)) (-2282 (($) 9 T CONST)) (-4150 (($ $ $) 22)) (-1431 (((-498) $) 38)) (-2190 (((-792) $) 41)) (-4015 (($ $ $) 13)) (-3510 (($ $) 11)) (-2767 (($ $ $) 16)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 24)) (-2324 (($ $ $) 14)))
+(((-108) (-13 (-784) (-343) (-603) (-895) (-563 (-498)) (-10 -8 (-15 -1433 ($) -2677) (-15 -2282 ($) -2677) (-15 -3510 ($ $)) (-15 -3349 ($ $ $)) (-15 -1920 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -3402 ((-108) $))))) (T -108))
+((-1433 (*1 *1) (-5 *1 (-108))) (-2282 (*1 *1) (-5 *1 (-108))) (-3510 (*1 *1 *1) (-5 *1 (-108))) (-3349 (*1 *1 *1 *1) (-5 *1 (-108))) (-1920 (*1 *1 *1 *1) (-5 *1 (-108))) (-2129 (*1 *1 *1 *1) (-5 *1 (-108))) (-3402 (*1 *1 *1) (-5 *1 (-108))))
+(-13 (-784) (-343) (-603) (-895) (-563 (-498)) (-10 -8 (-15 -1433 ($) -2677) (-15 -2282 ($) -2677) (-15 -3510 ($ $)) (-15 -3349 ($ $ $)) (-15 -1920 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -3402 ((-108) $))))
+((-3250 (((-3 (-1 |#1| (-588 |#1|)) "failed") (-110)) 18) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-588 |#1|))) 11) (((-3 |#1| "failed") (-110) (-588 |#1|)) 20)) (-1812 (((-3 (-588 (-1 |#1| (-588 |#1|))) "failed") (-110)) 24) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-588 (-1 |#1| (-588 |#1|)))) 26)) (-3045 (((-110) |#1|) 54 (|has| |#1| (-784)))) (-3073 (((-3 |#1| "failed") (-110)) 49 (|has| |#1| (-784)))))
+(((-109 |#1|) (-10 -7 (-15 -3250 ((-3 |#1| "failed") (-110) (-588 |#1|))) (-15 -3250 ((-110) (-110) (-1 |#1| (-588 |#1|)))) (-15 -3250 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3250 ((-3 (-1 |#1| (-588 |#1|)) "failed") (-110))) (-15 -1812 ((-110) (-110) (-588 (-1 |#1| (-588 |#1|))))) (-15 -1812 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1812 ((-3 (-588 (-1 |#1| (-588 |#1|))) "failed") (-110))) (IF (|has| |#1| (-784)) (PROGN (-15 -3045 ((-110) |#1|)) (-15 -3073 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1014)) (T -109))
+((-3073 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1014)) (-4 *2 (-784)) (-5 *1 (-109 *2)))) (-3045 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-784)) (-4 *3 (-1014)))) (-1812 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-1 *4 (-588 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1014)))) (-1812 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-1812 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 (-1 *4 (-588 *4)))) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-3250 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-588 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1014)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-588 *4))) (-4 *4 (-1014)) (-5 *1 (-109 *4)))) (-3250 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-588 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1014)))))
+(-10 -7 (-15 -3250 ((-3 |#1| "failed") (-110) (-588 |#1|))) (-15 -3250 ((-110) (-110) (-1 |#1| (-588 |#1|)))) (-15 -3250 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3250 ((-3 (-1 |#1| (-588 |#1|)) "failed") (-110))) (-15 -1812 ((-110) (-110) (-588 (-1 |#1| (-588 |#1|))))) (-15 -1812 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1812 ((-3 (-588 (-1 |#1| (-588 |#1|))) "failed") (-110))) (IF (|has| |#1| (-784)) (PROGN (-15 -3045 ((-110) |#1|)) (-15 -3073 ((-3 |#1| "failed") (-110)))) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-3152 (((-708) $) 68) (($ $ (-708)) 30)) (-2054 (((-108) $) 32)) (-3507 (($ $ (-1068) (-711)) 26)) (-3926 (($ $ (-44 (-1068) (-711))) 13)) (-1931 (((-3 (-711) "failed") $ (-1068)) 24)) (-2420 (((-44 (-1068) (-711)) $) 12)) (-2626 (($ (-1085)) 15) (($ (-1085) (-708)) 20)) (-2191 (((-108) $) 31)) (-1401 (((-108) $) 33)) (-2888 (((-1085) $) 8)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-2249 (((-108) $ (-1085)) 10)) (-1718 (($ $ (-1 (-498) (-588 (-498)))) 50) (((-3 (-1 (-498) (-588 (-498))) "failed") $) 54)) (-4151 (((-1032) $) NIL)) (-2818 (((-108) $ (-1068)) 29)) (-2731 (($ $ (-1 (-108) $ $)) 35)) (-1678 (((-3 (-1 (-792) (-588 (-792))) "failed") $) 52) (($ $ (-1 (-792) (-588 (-792)))) 41) (($ $ (-1 (-792) (-792))) 43)) (-2010 (($ $ (-1068)) 45)) (-2404 (($ $) 61)) (-3788 (($ $ (-1 (-108) $ $)) 36)) (-2190 (((-792) $) 48)) (-2983 (($ $ (-1068)) 27)) (-1703 (((-3 (-708) "failed") $) 56)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 67)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 73)))
+(((-110) (-13 (-784) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -2420 ((-44 (-1068) (-711)) $)) (-15 -2404 ($ $)) (-15 -2626 ($ (-1085))) (-15 -2626 ($ (-1085) (-708))) (-15 -1703 ((-3 (-708) "failed") $)) (-15 -2191 ((-108) $)) (-15 -2054 ((-108) $)) (-15 -1401 ((-108) $)) (-15 -3152 ((-708) $)) (-15 -3152 ($ $ (-708))) (-15 -2731 ($ $ (-1 (-108) $ $))) (-15 -3788 ($ $ (-1 (-108) $ $))) (-15 -1678 ((-3 (-1 (-792) (-588 (-792))) "failed") $)) (-15 -1678 ($ $ (-1 (-792) (-588 (-792))))) (-15 -1678 ($ $ (-1 (-792) (-792)))) (-15 -1718 ($ $ (-1 (-498) (-588 (-498))))) (-15 -1718 ((-3 (-1 (-498) (-588 (-498))) "failed") $)) (-15 -2249 ((-108) $ (-1085))) (-15 -2818 ((-108) $ (-1068))) (-15 -2983 ($ $ (-1068))) (-15 -2010 ($ $ (-1068))) (-15 -1931 ((-3 (-711) "failed") $ (-1068))) (-15 -3507 ($ $ (-1068) (-711))) (-15 -3926 ($ $ (-44 (-1068) (-711))))))) (T -110))
+((-2888 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-110)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110)))) (-2404 (*1 *1 *1) (-5 *1 (-110))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-110)))) (-2626 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *1 (-110)))) (-1703 (*1 *2 *1) (|partial| -12 (-5 *2 (-708)) (-5 *1 (-110)))) (-2191 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-110)))) (-3152 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-110)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1678 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-792))) (-5 *1 (-110)))) (-1718 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110)))) (-1718 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110)))) (-2249 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2818 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2983 (*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110)))) (-2010 (*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110)))) (-1931 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-711)) (-5 *1 (-110)))) (-3507 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-711)) (-5 *1 (-110)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110)))))
+(-13 (-784) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -2420 ((-44 (-1068) (-711)) $)) (-15 -2404 ($ $)) (-15 -2626 ($ (-1085))) (-15 -2626 ($ (-1085) (-708))) (-15 -1703 ((-3 (-708) "failed") $)) (-15 -2191 ((-108) $)) (-15 -2054 ((-108) $)) (-15 -1401 ((-108) $)) (-15 -3152 ((-708) $)) (-15 -3152 ($ $ (-708))) (-15 -2731 ($ $ (-1 (-108) $ $))) (-15 -3788 ($ $ (-1 (-108) $ $))) (-15 -1678 ((-3 (-1 (-792) (-588 (-792))) "failed") $)) (-15 -1678 ($ $ (-1 (-792) (-588 (-792))))) (-15 -1678 ($ $ (-1 (-792) (-792)))) (-15 -1718 ($ $ (-1 (-498) (-588 (-498))))) (-15 -1718 ((-3 (-1 (-498) (-588 (-498))) "failed") $)) (-15 -2249 ((-108) $ (-1085))) (-15 -2818 ((-108) $ (-1068))) (-15 -2983 ($ $ (-1068))) (-15 -2010 ($ $ (-1068))) (-15 -1931 ((-3 (-711) "failed") $ (-1068))) (-15 -3507 ($ $ (-1068) (-711))) (-15 -3926 ($ $ (-44 (-1068) (-711))))))
+((-1983 (((-522) |#2|) 36)))
+(((-111 |#1| |#2|) (-10 -7 (-15 -1983 ((-522) |#2|))) (-13 (-338) (-962 (-382 (-522)))) (-1142 |#1|)) (T -111))
+((-1983 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-962 (-382 *2)))) (-5 *2 (-522)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -1983 ((-522) |#2|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $ (-522)) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-1799 (($ (-1081 (-522)) (-522)) NIL)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1573 (($ $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-3714 (((-708) $) NIL)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3010 (((-522)) NIL)) (-1337 (((-522) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3719 (($ $ (-522)) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2615 (((-1066 (-522)) $) NIL)) (-1522 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL)) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL)) (-3898 (((-522) $ (-522)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL)))
+(((-112 |#1|) (-798 |#1|) (-522)) (T -112))
+NIL
+(-798 |#1|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-112 |#1|) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-112 |#1|) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-112 |#1|) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-112 |#1|) (-962 (-522))))) (-1484 (((-112 |#1|) $) NIL) (((-1085) $) NIL (|has| (-112 |#1|) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-112 |#1|) (-962 (-522)))) (((-522) $) NIL (|has| (-112 |#1|) (-962 (-522))))) (-3701 (($ $) NIL) (($ (-522) $) NIL)) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-112 |#1|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-112 |#1|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-112 |#1|))) (|:| |vec| (-1166 (-112 |#1|)))) (-628 $) (-1166 $)) NIL) (((-628 (-112 |#1|)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-112 |#1|) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| (-112 |#1|) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-112 |#1|) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-112 |#1|) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-112 |#1|) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1061)))) (-2556 (((-108) $) NIL (|has| (-112 |#1|) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-112 |#1|) (-784)))) (-2446 (($ $ $) NIL (|has| (-112 |#1|) (-784)))) (-1391 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-112 |#1|) (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-112 |#1|) (-283)))) (-3686 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-112 |#1|) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-112 |#1|)) (-588 (-112 |#1|))) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-270 (-112 |#1|))) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-588 (-270 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-285 (-112 |#1|)))) (($ $ (-588 (-1085)) (-588 (-112 |#1|))) NIL (|has| (-112 |#1|) (-483 (-1085) (-112 |#1|)))) (($ $ (-1085) (-112 |#1|)) NIL (|has| (-112 |#1|) (-483 (-1085) (-112 |#1|))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-262 (-112 |#1|) (-112 |#1|))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-708)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-112 |#1|) $) NIL)) (-1431 (((-821 (-522)) $) NIL (|has| (-112 |#1|) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-112 |#1|) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-112 |#1|) (-563 (-498)))) (((-354) $) NIL (|has| (-112 |#1|) (-947))) (((-202) $) NIL (|has| (-112 |#1|) (-947)))) (-2702 (((-158 (-382 (-522))) $) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-112 |#1|)) NIL) (($ (-1085)) NIL (|has| (-112 |#1|) (-962 (-1085))))) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-112 |#1|) (-838))) (|has| (-112 |#1|) (-133))))) (-2323 (((-708)) NIL)) (-3025 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-507)))) (-3958 (((-108) $ $) NIL)) (-3898 (((-382 (-522)) $ (-522)) NIL)) (-2241 (($ $) NIL (|has| (-112 |#1|) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL (|has| (-112 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-112 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-112 |#1|) (-829 (-1085)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-708)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-112 |#1|) (-784)))) (-1620 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
+(((-113 |#1|) (-13 (-919 (-112 |#1|)) (-10 -8 (-15 -3898 ((-382 (-522)) $ (-522))) (-15 -2702 ((-158 (-382 (-522))) $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $)))) (-522)) (T -113))
+((-3898 (*1 *2 *1 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-113 *4)) (-14 *4 *3) (-5 *3 (-522)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-113 *3)) (-14 *3 (-522)))) (-3701 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-522)))) (-3701 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-113 *3)) (-14 *3 *2))))
+(-13 (-919 (-112 |#1|)) (-10 -8 (-15 -3898 ((-382 (-522)) $ (-522))) (-15 -2702 ((-158 (-382 (-522))) $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $))))
+((-2379 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-4138 (((-588 $) $) 27)) (-2030 (((-108) $ $) 32)) (-2246 (((-108) |#2| $) 36)) (-1279 (((-588 |#2|) $) 22)) (-1754 (((-108) $) 16)) (-2545 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3042 (((-108) $) 45)) (-2190 (((-792) $) 41)) (-1749 (((-588 $) $) 28)) (-1531 (((-108) $ $) 34)) (-3480 (((-708) $) 43)))
+(((-114 |#1| |#2|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -2379 (|#1| |#1| "right" |#1|)) (-15 -2379 (|#1| |#1| "left" |#1|)) (-15 -2545 (|#1| |#1| "right")) (-15 -2545 (|#1| |#1| "left")) (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -2030 ((-108) |#1| |#1|)) (-15 -1279 ((-588 |#2|) |#1|)) (-15 -3042 ((-108) |#1|)) (-15 -2545 (|#2| |#1| "value")) (-15 -1754 ((-108) |#1|)) (-15 -4138 ((-588 |#1|) |#1|)) (-15 -1749 ((-588 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2246 ((-108) |#2| |#1|)) (-15 -3480 ((-708) |#1|))) (-115 |#2|) (-1120)) (T -114))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -2379 (|#1| |#1| "right" |#1|)) (-15 -2379 (|#1| |#1| "left" |#1|)) (-15 -2545 (|#1| |#1| "right")) (-15 -2545 (|#1| |#1| "left")) (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -2030 ((-108) |#1| |#1|)) (-15 -1279 ((-588 |#2|) |#1|)) (-15 -3042 ((-108) |#1|)) (-15 -2545 (|#2| |#1| "value")) (-15 -1754 ((-108) |#1|)) (-15 -4138 ((-588 |#1|) |#1|)) (-15 -1749 ((-588 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2246 ((-108) |#2| |#1|)) (-15 -3480 ((-708) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1872 (($ $ $) 52 (|has| $ (-6 -4239)))) (-2173 (($ $ $) 54 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) (($ $ "left" $) 55 (|has| $ (-6 -4239))) (($ $ "right" $) 53 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3175 (($) 7 T CONST)) (-1924 (($ $) 57)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-1913 (($ $) 59)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2011 (((-522) $ $) 44)) (-3042 (((-108) $) 46)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-115 |#1|) (-1197) (-1120)) (T -115))
+((-1913 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-1924 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-2379 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-2173 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120)))) (-2379 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3)) (-4 *3 (-1120)))) (-1872 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120)))))
+(-13 (-936 |t#1|) (-10 -8 (-15 -1913 ($ $)) (-15 -2545 ($ $ "left")) (-15 -1924 ($ $)) (-15 -2545 ($ $ "right")) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2379 ($ $ "left" $)) (-15 -2173 ($ $ $)) (-15 -2379 ($ $ "right" $)) (-15 -1872 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-4119 (((-108) |#1|) 24)) (-2357 (((-708) (-708)) 23) (((-708)) 22)) (-3787 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
+(((-116 |#1|) (-10 -7 (-15 -3787 ((-108) |#1|)) (-15 -3787 ((-108) |#1| (-108))) (-15 -2357 ((-708))) (-15 -2357 ((-708) (-708))) (-15 -4119 ((-108) |#1|))) (-1142 (-522))) (T -116))
+((-4119 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-2357 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-3787 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))) (-3787 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))))
+(-10 -7 (-15 -3787 ((-108) |#1|)) (-15 -3787 ((-108) |#1| (-108))) (-15 -2357 ((-708))) (-15 -2357 ((-708) (-708))) (-15 -4119 ((-108) |#1|)))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) 15)) (-2724 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1872 (($ $ $) 18 (|has| $ (-6 -4239)))) (-2173 (($ $ $) 20 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1924 (($ $) 17)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3037 (($ $ |#1| $) 23)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1913 (($ $) 19)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3064 (($ |#1| $) 24)) (-4095 (($ |#1| $) 10)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 14)) (-3775 (($) 8)) (-2545 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2011 (((-522) $ $) NIL)) (-3042 (((-108) $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2203 (($ (-588 |#1|)) 12)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2203 ($ (-588 |#1|))) (-15 -4095 ($ |#1| $)) (-15 -3064 ($ |#1| $)) (-15 -2724 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-784)) (T -117))
+((-2203 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-117 *3)))) (-4095 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) (-3064 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))) (-2724 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-784)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2203 ($ (-588 |#1|))) (-15 -4095 ($ |#1| $)) (-15 -3064 ($ |#1| $)) (-15 -2724 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1501 (($ $) 14)) (-2401 (($ $) 11)) (-2129 (($ $ $) 24)) (-1920 (($ $ $) 22)) (-3510 (($ $) 12)) (-2767 (($ $ $) 20)) (-2324 (($ $ $) 18)))
+(((-118 |#1|) (-10 -8 (-15 -2129 (|#1| |#1| |#1|)) (-15 -1920 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -2324 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|))) (-119)) (T -118))
+NIL
+(-10 -8 (-15 -2129 (|#1| |#1| |#1|)) (-15 -1920 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1|)) (-15 -2401 (|#1| |#1|)) (-15 -1501 (|#1| |#1|)) (-15 -2324 (|#1| |#1| |#1|)) (-15 -2767 (|#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-1501 (($ $) 104)) (-3349 (($ $ $) 25)) (-2679 (((-1171) $ (-522) (-522)) 67 (|has| $ (-6 -4239)))) (-4187 (((-108) $) 99 (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-3537 (($ $) 103 (-12 (|has| (-108) (-784)) (|has| $ (-6 -4239)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4239)))) (-3216 (($ $) 98 (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-4141 (((-108) $ (-708)) 38)) (-2379 (((-108) $ (-1133 (-522)) (-108)) 89 (|has| $ (-6 -4239))) (((-108) $ (-522) (-108)) 55 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4238)))) (-3175 (($) 39 T CONST)) (-3509 (($ $) 101 (|has| $ (-6 -4239)))) (-1862 (($ $) 91)) (-2333 (($ $) 69 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4238))) (($ (-108) $) 70 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-3864 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-3854 (((-108) $ (-522) (-108)) 54 (|has| $ (-6 -4239)))) (-3631 (((-108) $ (-522)) 56)) (-3238 (((-522) (-108) $ (-522)) 96 (|has| (-108) (-1014))) (((-522) (-108) $) 95 (|has| (-108) (-1014))) (((-522) (-1 (-108) (-108)) $) 94)) (-3837 (((-588 (-108)) $) 46 (|has| $ (-6 -4238)))) (-3999 (($ $ $) 26)) (-2401 (($ $) 31)) (-2129 (($ $ $) 28)) (-1811 (($ (-708) (-108)) 78)) (-1920 (($ $ $) 29)) (-3352 (((-108) $ (-708)) 37)) (-1359 (((-522) $) 64 (|has| (-522) (-784)))) (-2814 (($ $ $) 13)) (-2160 (($ $ $) 97 (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-3308 (((-588 (-108)) $) 47 (|has| $ (-6 -4238)))) (-2246 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 63 (|has| (-522) (-784)))) (-2446 (($ $ $) 14)) (-3838 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2720 (((-108) $ (-708)) 36)) (-2385 (((-1068) $) 9)) (-1661 (($ $ $ (-522)) 88) (($ (-108) $ (-522)) 87)) (-3604 (((-588 (-522)) $) 61)) (-1405 (((-108) (-522) $) 60)) (-4151 (((-1032) $) 10)) (-2294 (((-108) $) 65 (|has| (-522) (-784)))) (-1414 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-2602 (($ $ (-108)) 66 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-108)) (-588 (-108))) 53 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-270 (-108))) 51 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-588 (-270 (-108)))) 50 (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))))) (-1536 (((-108) $ $) 32)) (-1758 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1525 (((-588 (-108)) $) 59)) (-3985 (((-108) $) 35)) (-3775 (($) 34)) (-2545 (($ $ (-1133 (-522))) 84) (((-108) $ (-522)) 58) (((-108) $ (-522) (-108)) 57)) (-3696 (($ $ (-1133 (-522))) 86) (($ $ (-522)) 85)) (-4168 (((-708) (-108) $) 48 (-12 (|has| (-108) (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4238)))) (-1577 (($ $ $ (-522)) 100 (|has| $ (-6 -4239)))) (-2404 (($ $) 33)) (-1431 (((-498) $) 68 (|has| (-108) (-563 (-498))))) (-2201 (($ (-588 (-108))) 77)) (-4165 (($ (-588 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-2190 (((-792) $) 11)) (-3648 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4238)))) (-4015 (($ $ $) 27)) (-3510 (($ $) 30)) (-2767 (($ $ $) 106)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-2324 (($ $ $) 105)) (-3480 (((-708) $) 40 (|has| $ (-6 -4238)))))
+(((-119) (-1197)) (T -119))
+((-2401 (*1 *1 *1) (-4 *1 (-119))) (-3510 (*1 *1 *1) (-4 *1 (-119))) (-1920 (*1 *1 *1 *1) (-4 *1 (-119))) (-2129 (*1 *1 *1 *1) (-4 *1 (-119))) (-4015 (*1 *1 *1 *1) (-4 *1 (-119))) (-3999 (*1 *1 *1 *1) (-4 *1 (-119))) (-3349 (*1 *1 *1 *1) (-4 *1 (-119))))
+(-13 (-784) (-603) (-19 (-108)) (-10 -8 (-15 -2401 ($ $)) (-15 -3510 ($ $)) (-15 -1920 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -3349 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 #0=(-108)) . T) ((-563 (-498)) |has| (-108) (-563 (-498))) ((-262 #1=(-522) #0#) . T) ((-264 #1# #0#) . T) ((-285 #0#) -12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))) ((-348 #0#) . T) ((-461 #0#) . T) ((-555 #1# #0#) . T) ((-483 #0# #0#) -12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))) ((-593 #0#) . T) ((-603) . T) ((-19 #0#) . T) ((-784) . T) ((-1014) . T) ((-1120) . T))
+((-3838 (($ (-1 |#2| |#2|) $) 22)) (-2404 (($ $) 16)) (-3480 (((-708) $) 24)))
+(((-120 |#1| |#2|) (-10 -8 (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -2404 (|#1| |#1|))) (-121 |#2|) (-1014)) (T -120))
+NIL
+(-10 -8 (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -2404 (|#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1872 (($ $ $) 52 (|has| $ (-6 -4239)))) (-2173 (($ $ $) 54 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) (($ $ "left" $) 55 (|has| $ (-6 -4239))) (($ $ "right" $) 53 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3175 (($) 7 T CONST)) (-1924 (($ $) 57)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3037 (($ $ |#1| $) 60)) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-1913 (($ $) 59)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2011 (((-522) $ $) 44)) (-3042 (((-108) $) 46)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-121 |#1|) (-1197) (-1014)) (T -121))
+((-3037 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1014)))))
+(-13 (-115 |t#1|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -3037 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-115 |#1|) . T) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) 15)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) 19 (|has| $ (-6 -4239)))) (-1872 (($ $ $) 20 (|has| $ (-6 -4239)))) (-2173 (($ $ $) 18 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1924 (($ $) 21)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3037 (($ $ |#1| $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1913 (($ $) NIL)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4095 (($ |#1| $) 10)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 14)) (-3775 (($) 8)) (-2545 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2011 (((-522) $ $) NIL)) (-3042 (((-108) $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 17)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1528 (($ (-588 |#1|)) 12)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4239) (-15 -1528 ($ (-588 |#1|))) (-15 -4095 ($ |#1| $)))) (-784)) (T -122))
+((-1528 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-122 *3)))) (-4095 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-784)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4239) (-15 -1528 ($ (-588 |#1|))) (-15 -4095 ($ |#1| $))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) 24)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) 26 (|has| $ (-6 -4239)))) (-1872 (($ $ $) 30 (|has| $ (-6 -4239)))) (-2173 (($ $ $) 28 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1924 (($ $) 20)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3037 (($ $ |#1| $) 15)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1913 (($ $) 19)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) 21)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 18)) (-3775 (($) 11)) (-2545 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2011 (((-522) $ $) NIL)) (-3042 (((-108) $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-4021 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 10 (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -4021 ($ |#1|)) (-15 -4021 ($ $ |#1| $)))) (-1014)) (T -123))
+((-4021 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014)))) (-4021 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014)))))
+(-13 (-121 |#1|) (-10 -8 (-15 -4021 ($ |#1|)) (-15 -4021 ($ $ |#1| $))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15)))
+(((-124) (-1197)) (T -124))
+((-1233 (*1 *1 *1 *1) (|partial| -4 *1 (-124))))
+(-13 (-23) (-10 -8 (-15 -1233 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-3220 (((-1171) $ (-708)) 19)) (-3238 (((-708) $) 20)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-125) (-1197)) (T -125))
+((-3238 (*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-708)))) (-3220 (*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-708)) (-5 *2 (-1171)))))
+(-13 (-784) (-10 -8 (-15 -3238 ((-708) $)) (-15 -3220 ((-1171) $ (-708)))))
+(((-97) . T) ((-562 (-792)) . T) ((-784) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-708) "failed") $) 38)) (-1484 (((-708) $) 36)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) 26)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-4133 (((-108)) 39)) (-3544 (((-108) (-108)) 41)) (-3827 (((-108) $) 23)) (-3883 (((-108) $) 35)) (-2190 (((-792) $) 22) (($ (-708)) 14)) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3566 (($) 12 T CONST)) (-3577 (($) 11 T CONST)) (-3570 (($ (-708)) 15)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 24)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 25)) (-1612 (((-3 $ "failed") $ $) 29)) (-1602 (($ $ $) 27)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ $ $) 34)) (* (($ (-708) $) 32) (($ (-850) $) NIL) (($ $ $) 30)))
+(((-126) (-13 (-784) (-23) (-664) (-962 (-708)) (-10 -8 (-6 (-4240 "*")) (-15 -1612 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3570 ($ (-708))) (-15 -3827 ((-108) $)) (-15 -3883 ((-108) $)) (-15 -4133 ((-108))) (-15 -3544 ((-108) (-108)))))) (T -126))
+((-1612 (*1 *1 *1 *1) (|partial| -5 *1 (-126))) (** (*1 *1 *1 *1) (-5 *1 (-126))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-126)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-4133 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(-13 (-784) (-23) (-664) (-962 (-708)) (-10 -8 (-6 (-4240 "*")) (-15 -1612 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3570 ($ (-708))) (-15 -3827 ((-108) $)) (-15 -3883 ((-108) $)) (-15 -4133 ((-108))) (-15 -3544 ((-108) (-108)))))
+((-3133 (((-128 |#1| |#2| |#4|) (-588 |#4|) (-128 |#1| |#2| |#3|)) 14)) (-1391 (((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)) 18)))
+(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3133 ((-128 |#1| |#2| |#4|) (-588 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1391 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|)))) (-522) (-708) (-157) (-157)) (T -127))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522)) (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522)) (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157)) (-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3133 ((-128 |#1| |#2| |#4|) (-588 |#4|) (-128 |#1| |#2| |#3|))) (-15 -1391 ((-128 |#1| |#2| |#4|) (-1 |#4| |#3|) (-128 |#1| |#2| |#3|))))
+((-1416 (((-108) $ $) NIL)) (-2800 (($ (-588 |#3|)) 39)) (-2318 (($ $) 98) (($ $ (-522) (-522)) 97)) (-3175 (($) 17)) (-1297 (((-3 |#3| "failed") $) 59)) (-1484 ((|#3| $) NIL)) (-3780 (($ $ (-588 (-522))) 99)) (-3120 (((-588 |#3|) $) 35)) (-3166 (((-708) $) 43)) (-1372 (($ $ $) 92)) (-1826 (($) 42)) (-2385 (((-1068) $) NIL)) (-1537 (($) 16)) (-4151 (((-1032) $) NIL)) (-2545 ((|#3| $) 45) ((|#3| $ (-522)) 46) ((|#3| $ (-522) (-522)) 47) ((|#3| $ (-522) (-522) (-522)) 48) ((|#3| $ (-522) (-522) (-522) (-522)) 49) ((|#3| $ (-588 (-522))) 51)) (-2793 (((-708) $) 44)) (-3322 (($ $ (-522) $ (-522)) 93) (($ $ (-522) (-522)) 95)) (-2190 (((-792) $) 66) (($ |#3|) 67) (($ (-217 |#2| |#3|)) 74) (($ (-1052 |#2| |#3|)) 77) (($ (-588 |#3|)) 52) (($ (-588 $)) 57)) (-3566 (($) 68 T CONST)) (-3577 (($) 69 T CONST)) (-1531 (((-108) $ $) 79)) (-1612 (($ $) 85) (($ $ $) 83)) (-1602 (($ $ $) 81)) (* (($ |#3| $) 90) (($ $ |#3|) 91) (($ $ (-522)) 88) (($ (-522) $) 87) (($ $ $) 94)))
+(((-128 |#1| |#2| |#3|) (-13 (-439 |#3| (-708)) (-444 (-522) (-708)) (-10 -8 (-15 -2190 ($ (-217 |#2| |#3|))) (-15 -2190 ($ (-1052 |#2| |#3|))) (-15 -2190 ($ (-588 |#3|))) (-15 -2190 ($ (-588 $))) (-15 -3166 ((-708) $)) (-15 -2545 (|#3| $)) (-15 -2545 (|#3| $ (-522))) (-15 -2545 (|#3| $ (-522) (-522))) (-15 -2545 (|#3| $ (-522) (-522) (-522))) (-15 -2545 (|#3| $ (-522) (-522) (-522) (-522))) (-15 -2545 (|#3| $ (-588 (-522)))) (-15 -1372 ($ $ $)) (-15 * ($ $ $)) (-15 -3322 ($ $ (-522) $ (-522))) (-15 -3322 ($ $ (-522) (-522))) (-15 -2318 ($ $)) (-15 -2318 ($ $ (-522) (-522))) (-15 -3780 ($ $ (-588 (-522)))) (-15 -1537 ($)) (-15 -1826 ($)) (-15 -3120 ((-588 |#3|) $)) (-15 -2800 ($ (-588 |#3|))) (-15 -3175 ($)))) (-522) (-708) (-157)) (T -128))
+((-1372 (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1052 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 *2) (-4 *5 (-157)))) (-2545 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-522)) (-14 *4 (-708)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2545 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2545 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2545 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-708)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-588 (-522))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2)) (-14 *4 (-522)) (-14 *5 (-708)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-3322 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-708)) (-4 *5 (-157)))) (-3322 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-708)) (-4 *5 (-157)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-2318 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-708)) (-4 *5 (-157)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) (-1537 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-1826 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-588 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157)))) (-2800 (*1 *1 *2) (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522)) (-14 *4 (-708)))) (-3175 (*1 *1) (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708)) (-4 *4 (-157)))))
+(-13 (-439 |#3| (-708)) (-444 (-522) (-708)) (-10 -8 (-15 -2190 ($ (-217 |#2| |#3|))) (-15 -2190 ($ (-1052 |#2| |#3|))) (-15 -2190 ($ (-588 |#3|))) (-15 -2190 ($ (-588 $))) (-15 -3166 ((-708) $)) (-15 -2545 (|#3| $)) (-15 -2545 (|#3| $ (-522))) (-15 -2545 (|#3| $ (-522) (-522))) (-15 -2545 (|#3| $ (-522) (-522) (-522))) (-15 -2545 (|#3| $ (-522) (-522) (-522) (-522))) (-15 -2545 (|#3| $ (-588 (-522)))) (-15 -1372 ($ $ $)) (-15 * ($ $ $)) (-15 -3322 ($ $ (-522) $ (-522))) (-15 -3322 ($ $ (-522) (-522))) (-15 -2318 ($ $)) (-15 -2318 ($ $ (-522) (-522))) (-15 -3780 ($ $ (-588 (-522)))) (-15 -1537 ($)) (-15 -1826 ($)) (-15 -3120 ((-588 |#3|) $)) (-15 -2800 ($ (-588 |#3|))) (-15 -3175 ($))))
+((-1416 (((-108) $ $) NIL)) (-2084 (($) 15 T CONST)) (-1579 (($) NIL (|has| (-132) (-343)))) (-2270 (($ $ $) 17) (($ $ (-132)) NIL) (($ (-132) $) NIL)) (-2079 (($ $ $) NIL)) (-3557 (((-108) $ $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| (-132) (-343)))) (-1764 (($) NIL) (($ (-588 (-132))) NIL)) (-2790 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-3859 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (($ (-132) $) 51 (|has| $ (-6 -4238)))) (-1423 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (($ (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-3864 (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-3255 (($) NIL (|has| (-132) (-343)))) (-3837 (((-588 (-132)) $) 60 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-2814 (((-132) $) NIL (|has| (-132) (-784)))) (-3308 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-132) $) 26 (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2446 (((-132) $) NIL (|has| (-132) (-784)))) (-3838 (($ (-1 (-132) (-132)) $) 59 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-132) (-132)) $) 55)) (-2390 (($) 16 T CONST)) (-2120 (((-850) $) NIL (|has| (-132) (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-2416 (($ $ $) 29)) (-2116 (((-132) $) 52)) (-4095 (($ (-132) $) 50)) (-2717 (($ (-850)) NIL (|has| (-132) (-343)))) (-1720 (($) 14 T CONST)) (-4151 (((-1032) $) NIL)) (-1414 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-4087 (((-132) $) 53)) (-3053 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-132)) (-588 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-270 (-132)))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 48)) (-1921 (($) 13 T CONST)) (-3417 (($ $ $) 31) (($ $ (-132)) NIL)) (-3990 (($ (-588 (-132))) NIL) (($) NIL)) (-4168 (((-708) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (((-708) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-1068) $) 36) (((-498) $) NIL (|has| (-132) (-563 (-498)))) (((-588 (-132)) $) 34)) (-2201 (($ (-588 (-132))) NIL)) (-3763 (($ $) 32 (|has| (-132) (-343)))) (-2190 (((-792) $) 46)) (-1204 (($ (-1068)) 12) (($ (-588 (-132))) 43)) (-2067 (((-708) $) NIL)) (-3392 (($) 49) (($ (-588 (-132))) NIL)) (-2795 (($ (-588 (-132))) NIL)) (-3648 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2756 (($) 19 T CONST)) (-2414 (($) 18 T CONST)) (-1531 (((-108) $ $) 22)) (-1549 (((-108) $ $) NIL)) (-3480 (((-708) $) 47 (|has| $ (-6 -4238)))))
+(((-129) (-13 (-1014) (-563 (-1068)) (-400 (-132)) (-563 (-588 (-132))) (-10 -8 (-15 -1204 ($ (-1068))) (-15 -1204 ($ (-588 (-132)))) (-15 -1921 ($) -2677) (-15 -1720 ($) -2677) (-15 -2084 ($) -2677) (-15 -2390 ($) -2677) (-15 -2414 ($) -2677) (-15 -2756 ($) -2677)))) (T -129))
+((-1204 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-129)))) (-1204 (*1 *1 *2) (-12 (-5 *2 (-588 (-132))) (-5 *1 (-129)))) (-1921 (*1 *1) (-5 *1 (-129))) (-1720 (*1 *1) (-5 *1 (-129))) (-2084 (*1 *1) (-5 *1 (-129))) (-2390 (*1 *1) (-5 *1 (-129))) (-2414 (*1 *1) (-5 *1 (-129))) (-2756 (*1 *1) (-5 *1 (-129))))
+(-13 (-1014) (-563 (-1068)) (-400 (-132)) (-563 (-588 (-132))) (-10 -8 (-15 -1204 ($ (-1068))) (-15 -1204 ($ (-588 (-132)))) (-15 -1921 ($) -2677) (-15 -1720 ($) -2677) (-15 -2084 ($) -2677) (-15 -2390 ($) -2677) (-15 -2414 ($) -2677) (-15 -2756 ($) -2677)))
+((-2297 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1847 ((|#1| |#3|) 9)) (-3513 ((|#3| |#3|) 15)))
+(((-130 |#1| |#2| |#3|) (-10 -7 (-15 -1847 (|#1| |#3|)) (-15 -3513 (|#3| |#3|)) (-15 -2297 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-514) (-919 |#1|) (-348 |#2|)) (T -130))
+((-2297 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3)) (-4 *3 (-348 *5)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-130 *3 *4 *2)) (-4 *2 (-348 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-130 *2 *4 *3)) (-4 *3 (-348 *4)))))
+(-10 -7 (-15 -1847 (|#1| |#3|)) (-15 -3513 (|#3| |#3|)) (-15 -2297 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3219 (($ $ $) 8)) (-2868 (($ $) 7)) (-1480 (($ $ $) 6)))
+(((-131) (-1197)) (T -131))
+((-3219 (*1 *1 *1 *1) (-4 *1 (-131))) (-2868 (*1 *1 *1) (-4 *1 (-131))) (-1480 (*1 *1 *1 *1) (-4 *1 (-131))))
+(-13 (-10 -8 (-15 -1480 ($ $ $)) (-15 -2868 ($ $)) (-15 -3219 ($ $ $))))
+((-1416 (((-108) $ $) NIL)) (-1205 (((-108) $) 38)) (-2084 (($ $) 50)) (-2594 (($) 25)) (-1629 (((-708)) 16)) (-3255 (($) 24)) (-1396 (($) 26)) (-3459 (((-522) $) 21)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3438 (((-108) $) 40)) (-2390 (($ $) 51)) (-2120 (((-850) $) 22)) (-2385 (((-1068) $) 46)) (-2717 (($ (-850)) 20)) (-2801 (((-108) $) 36)) (-4151 (((-1032) $) NIL)) (-1308 (($) 27)) (-3590 (((-108) $) 34)) (-2190 (((-792) $) 29)) (-3508 (($ (-522)) 18) (($ (-1068)) 49)) (-1822 (((-108) $) 44)) (-2592 (((-108) $) 42)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 13)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 14)))
+(((-132) (-13 (-778) (-10 -8 (-15 -3459 ((-522) $)) (-15 -3508 ($ (-522))) (-15 -3508 ($ (-1068))) (-15 -2594 ($)) (-15 -1396 ($)) (-15 -1308 ($)) (-15 -2084 ($ $)) (-15 -2390 ($ $)) (-15 -3590 ((-108) $)) (-15 -2801 ((-108) $)) (-15 -2592 ((-108) $)) (-15 -1205 ((-108) $)) (-15 -3438 ((-108) $)) (-15 -1822 ((-108) $))))) (T -132))
+((-3459 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-132)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-132)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-132)))) (-2594 (*1 *1) (-5 *1 (-132))) (-1396 (*1 *1) (-5 *1 (-132))) (-1308 (*1 *1) (-5 *1 (-132))) (-2084 (*1 *1 *1) (-5 *1 (-132))) (-2390 (*1 *1 *1) (-5 *1 (-132))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1205 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(-13 (-778) (-10 -8 (-15 -3459 ((-522) $)) (-15 -3508 ($ (-522))) (-15 -3508 ($ (-1068))) (-15 -2594 ($)) (-15 -1396 ($)) (-15 -1308 ($)) (-15 -2084 ($ $)) (-15 -2390 ($ $)) (-15 -3590 ((-108) $)) (-15 -2801 ((-108) $)) (-15 -2592 ((-108) $)) (-15 -1205 ((-108) $)) (-15 -3438 ((-108) $)) (-15 -1822 ((-108) $))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2143 (((-3 $ "failed") $) 35)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-133) (-1197)) (T -133))
+((-2143 (*1 *1 *1) (|partial| -4 *1 (-133))))
+(-13 (-971) (-10 -8 (-15 -2143 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2051 ((|#1| (-628 |#1|) |#1|) 17)))
+(((-134 |#1|) (-10 -7 (-15 -2051 (|#1| (-628 |#1|) |#1|))) (-157)) (T -134))
+((-2051 (*1 *2 *3 *2) (-12 (-5 *3 (-628 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2)))))
+(-10 -7 (-15 -2051 (|#1| (-628 |#1|) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-135) (-1197)) (T -135))
+NIL
+(-13 (-971))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2427 (((-2 (|:| -1400 (-708)) (|:| -2977 (-382 |#2|)) (|:| |radicand| |#2|)) (-382 |#2|) (-708)) 70)) (-2634 (((-3 (-2 (|:| |radicand| (-382 |#2|)) (|:| |deg| (-708))) "failed") |#3|) 52)) (-4033 (((-2 (|:| -2977 (-382 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4058 ((|#1| |#3| |#3|) 40)) (-2289 ((|#3| |#3| (-382 |#2|) (-382 |#2|)) 19)) (-2380 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| |deg| (-708))) |#3| |#3|) 49)))
+(((-136 |#1| |#2| |#3|) (-10 -7 (-15 -4033 ((-2 (|:| -2977 (-382 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2634 ((-3 (-2 (|:| |radicand| (-382 |#2|)) (|:| |deg| (-708))) "failed") |#3|)) (-15 -2427 ((-2 (|:| -1400 (-708)) (|:| -2977 (-382 |#2|)) (|:| |radicand| |#2|)) (-382 |#2|) (-708))) (-15 -4058 (|#1| |#3| |#3|)) (-15 -2289 (|#3| |#3| (-382 |#2|) (-382 |#2|))) (-15 -2380 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| |deg| (-708))) |#3| |#3|))) (-1124) (-1142 |#1|) (-1142 (-382 |#2|))) (T -136))
+((-2380 (*1 *2 *3 *3) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-382 *5)) (|:| |c2| (-382 *5)) (|:| |deg| (-708)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))) (-2289 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-382 *5)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1142 *3)))) (-4058 (*1 *2 *3 *3) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-1124)) (-5 *1 (-136 *2 *4 *3)) (-4 *3 (-1142 (-382 *4))))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-382 *6)) (-4 *5 (-1124)) (-4 *6 (-1142 *5)) (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *3) (|:| |radicand| *6))) (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-708)) (-4 *7 (-1142 *3)))) (-2634 (*1 *2 *3) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| |radicand| (-382 *5)) (|:| |deg| (-708)))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -2977 (-382 *5)) (|:| |poly| *3))) (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))))
+(-10 -7 (-15 -4033 ((-2 (|:| -2977 (-382 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2634 ((-3 (-2 (|:| |radicand| (-382 |#2|)) (|:| |deg| (-708))) "failed") |#3|)) (-15 -2427 ((-2 (|:| -1400 (-708)) (|:| -2977 (-382 |#2|)) (|:| |radicand| |#2|)) (-382 |#2|) (-708))) (-15 -4058 (|#1| |#3| |#3|)) (-15 -2289 (|#3| |#3| (-382 |#2|) (-382 |#2|))) (-15 -2380 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| |deg| (-708))) |#3| |#3|)))
+((-1473 (((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)) 32)))
+(((-137 |#1| |#2|) (-10 -7 (-15 -1473 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)))) (-507) (-151 |#1|)) (T -137))
+((-1473 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5)) (-4 *5 (-151 *4)) (-4 *4 (-507)) (-5 *1 (-137 *4 *5)))))
+(-10 -7 (-15 -1473 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|))))
+((-1628 (($ (-1 (-108) |#2|) $) 29)) (-2333 (($ $) 36)) (-1423 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3864 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1414 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3053 (((-108) (-1 (-108) |#2|) $) 16)) (-4168 (((-708) (-1 (-108) |#2|) $) 13) (((-708) |#2| $) NIL)) (-3648 (((-108) (-1 (-108) |#2|) $) 15)) (-3480 (((-708) $) 11)))
+(((-138 |#1| |#2|) (-10 -8 (-15 -2333 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1414 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3480 ((-708) |#1|))) (-139 |#2|) (-1120)) (T -138))
+NIL
+(-10 -8 (-15 -2333 (|#1| |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1423 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1414 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3480 ((-708) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-1628 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2333 (($ $) 41 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238))) (($ |#1| $) 42 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 40 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 49)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-139 |#1|) (-1197) (-1120)) (T -139))
+((-2201 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-139 *3)))) (-1414 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-3864 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-3864 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3)) (-4 *3 (-1120)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3)) (-4 *3 (-1120)))) (-3864 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)))) (-1423 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) (-2333 (*1 *1 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))))
+(-13 (-461 |t#1|) (-10 -8 (-15 -2201 ($ (-588 |t#1|))) (-15 -1414 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4238)) (PROGN (-15 -3864 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3864 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1423 ($ (-1 (-108) |t#1|) $)) (-15 -1628 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3864 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1423 ($ |t#1| $)) (-15 -2333 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) 86)) (-2782 (((-108) $) NIL)) (-4049 (($ |#2| (-588 (-850))) 57)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2967 (($ (-850)) 48)) (-4078 (((-126)) 23)) (-2190 (((-792) $) 69) (($ (-522)) 46) (($ |#2|) 47)) (-3243 ((|#2| $ (-588 (-850))) 59)) (-2323 (((-708)) 20)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 40 T CONST)) (-3577 (($) 44 T CONST)) (-1531 (((-108) $ $) 26)) (-1620 (($ $ |#2|) NIL)) (-1612 (($ $) 34) (($ $ $) 32)) (-1602 (($ $ $) 30)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-140 |#1| |#2| |#3|) (-13 (-971) (-37 |#2|) (-1173 |#2|) (-10 -8 (-15 -2967 ($ (-850))) (-15 -4049 ($ |#2| (-588 (-850)))) (-15 -3243 (|#2| $ (-588 (-850)))) (-15 -2682 ((-3 $ "failed") $)))) (-850) (-338) (-920 |#1| |#2|)) (T -140))
+((-2682 (*1 *1 *1) (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-850)) (-4 *3 (-338)) (-14 *4 (-920 *2 *3)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-338)) (-14 *5 (-920 *3 *4)))) (-4049 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-850))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) (-4 *2 (-338)) (-14 *5 (-920 *4 *2)))) (-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-588 (-850))) (-4 *2 (-338)) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850)) (-14 *5 (-920 *4 *2)))))
+(-13 (-971) (-37 |#2|) (-1173 |#2|) (-10 -8 (-15 -2967 ($ (-850))) (-15 -4049 ($ |#2| (-588 (-850)))) (-15 -3243 (|#2| $ (-588 (-850)))) (-15 -2682 ((-3 $ "failed") $))))
+((-1242 (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))) (-202) (-202) (-202) (-202)) 38)) (-2714 (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522))) 63) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856)) 64)) (-1273 (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202))))) 67) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-872 (-202)))) 66) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522))) 58) (((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856)) 59)))
+(((-141) (-10 -7 (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -2714 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -2714 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -1242 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))) (-202) (-202) (-202) (-202))) (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-872 (-202))))) (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))))))) (T -141))
+((-1273 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 (-202))))))) (-1273 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)) (-5 *3 (-588 (-872 (-202)))))) (-1242 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-202)) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 *4)))) (|:| |xValues| (-1009 *4)) (|:| |yValues| (-1009 *4)))) (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 *4)))))) (-2714 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522))) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))) (-1273 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522))) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202))))) (-5 *1 (-141)))))
+(-10 -7 (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -2714 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856))) (-15 -2714 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-856) (-382 (-522)) (-382 (-522)))) (-15 -1242 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))) (-202) (-202) (-202) (-202))) (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-872 (-202))))) (-15 -1273 ((-2 (|:| |brans| (-588 (-588 (-872 (-202))))) (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))) (-588 (-588 (-872 (-202)))))))
+((-3728 (((-588 (-154 |#2|)) |#1| |#2|) 45)))
+(((-142 |#1| |#2|) (-10 -7 (-15 -3728 ((-588 (-154 |#2|)) |#1| |#2|))) (-1142 (-154 (-522))) (-13 (-338) (-782))) (T -142))
+((-3728 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-154 *4))) (-5 *1 (-142 *3 *4)) (-4 *3 (-1142 (-154 (-522)))) (-4 *4 (-13 (-338) (-782))))))
+(-10 -7 (-15 -3728 ((-588 (-154 |#2|)) |#1| |#2|)))
+((-1416 (((-108) $ $) NIL)) (-1518 (($) 16)) (-2159 (($) 15)) (-1524 (((-850)) 23)) (-2385 (((-1068) $) NIL)) (-3912 (((-522) $) 20)) (-4151 (((-1032) $) NIL)) (-3732 (($) 17)) (-2395 (($ (-522)) 24)) (-2190 (((-792) $) 30)) (-1961 (($) 18)) (-1531 (((-108) $ $) 14)) (-1602 (($ $ $) 13)) (* (($ (-850) $) 22) (($ (-202) $) 8)))
+(((-143) (-13 (-25) (-10 -8 (-15 * ($ (-850) $)) (-15 * ($ (-202) $)) (-15 -1602 ($ $ $)) (-15 -2159 ($)) (-15 -1518 ($)) (-15 -3732 ($)) (-15 -1961 ($)) (-15 -3912 ((-522) $)) (-15 -1524 ((-850))) (-15 -2395 ($ (-522)))))) (T -143))
+((-1602 (*1 *1 *1 *1) (-5 *1 (-143))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143)))) (-2159 (*1 *1) (-5 *1 (-143))) (-1518 (*1 *1) (-5 *1 (-143))) (-3732 (*1 *1) (-5 *1 (-143))) (-1961 (*1 *1) (-5 *1 (-143))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-143)))) (-1524 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-143)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-143)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-850) $)) (-15 * ($ (-202) $)) (-15 -1602 ($ $ $)) (-15 -2159 ($)) (-15 -1518 ($)) (-15 -3732 ($)) (-15 -1961 ($)) (-15 -3912 ((-522) $)) (-15 -1524 ((-850))) (-15 -2395 ($ (-522)))))
+((-1280 ((|#2| |#2| (-1007 |#2|)) 87) ((|#2| |#2| (-1085)) 67)) (-1372 ((|#2| |#2| (-1007 |#2|)) 86) ((|#2| |#2| (-1085)) 66)) (-3219 ((|#2| |#2| |#2|) 27)) (-2626 (((-110) (-110)) 97)) (-1363 ((|#2| (-588 |#2|)) 116)) (-2569 ((|#2| (-588 |#2|)) 134)) (-1516 ((|#2| (-588 |#2|)) 124)) (-3884 ((|#2| |#2|) 122)) (-1851 ((|#2| (-588 |#2|)) 109)) (-3975 ((|#2| (-588 |#2|)) 110)) (-4056 ((|#2| (-588 |#2|)) 132)) (-2692 ((|#2| |#2| (-1085)) 54) ((|#2| |#2|) 53)) (-2868 ((|#2| |#2|) 23)) (-1480 ((|#2| |#2| |#2|) 26)) (-3614 (((-108) (-110)) 47)) (** ((|#2| |#2| |#2|) 38)))
+(((-144 |#1| |#2|) (-10 -7 (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -1480 (|#2| |#2| |#2|)) (-15 -3219 (|#2| |#2| |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2692 (|#2| |#2| (-1085))) (-15 -1280 (|#2| |#2| (-1085))) (-15 -1280 (|#2| |#2| (-1007 |#2|))) (-15 -1372 (|#2| |#2| (-1085))) (-15 -1372 (|#2| |#2| (-1007 |#2|))) (-15 -3884 (|#2| |#2|)) (-15 -4056 (|#2| (-588 |#2|))) (-15 -1516 (|#2| (-588 |#2|))) (-15 -2569 (|#2| (-588 |#2|))) (-15 -1851 (|#2| (-588 |#2|))) (-15 -3975 (|#2| (-588 |#2|))) (-15 -1363 (|#2| (-588 |#2|)))) (-13 (-784) (-514)) (-405 |#1|)) (T -144))
+((-1363 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-1516 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-4056 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2)) (-4 *4 (-13 (-784) (-514))))) (-3884 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) (-4 *2 (-405 *4)))) (-1280 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)))) (-1280 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) (-4 *2 (-405 *4)))) (-2692 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2)) (-4 *2 (-405 *4)))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-3219 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-1480 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2)) (-4 *2 (-405 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *4)) (-4 *4 (-405 *3)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-144 *4 *5)) (-4 *5 (-405 *4)))))
+(-10 -7 (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -1480 (|#2| |#2| |#2|)) (-15 -3219 (|#2| |#2| |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2692 (|#2| |#2| (-1085))) (-15 -1280 (|#2| |#2| (-1085))) (-15 -1280 (|#2| |#2| (-1007 |#2|))) (-15 -1372 (|#2| |#2| (-1085))) (-15 -1372 (|#2| |#2| (-1007 |#2|))) (-15 -3884 (|#2| |#2|)) (-15 -4056 (|#2| (-588 |#2|))) (-15 -1516 (|#2| (-588 |#2|))) (-15 -2569 (|#2| (-588 |#2|))) (-15 -1851 (|#2| (-588 |#2|))) (-15 -3975 (|#2| (-588 |#2|))) (-15 -1363 (|#2| (-588 |#2|))))
+((-3331 ((|#1| |#1| |#1|) 52)) (-3038 ((|#1| |#1| |#1|) 49)) (-3219 ((|#1| |#1| |#1|) 43)) (-1918 ((|#1| |#1|) 34)) (-3910 ((|#1| |#1| (-588 |#1|)) 42)) (-2868 ((|#1| |#1|) 36)) (-1480 ((|#1| |#1| |#1|) 39)))
+(((-145 |#1|) (-10 -7 (-15 -1480 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -3910 (|#1| |#1| (-588 |#1|))) (-15 -1918 (|#1| |#1|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -3038 (|#1| |#1| |#1|)) (-15 -3331 (|#1| |#1| |#1|))) (-507)) (T -145))
+((-3331 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-3038 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-3219 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-1918 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-3910 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-507)) (-5 *1 (-145 *2)))) (-2868 (*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))) (-1480 (*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))))
+(-10 -7 (-15 -1480 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -3910 (|#1| |#1| (-588 |#1|))) (-15 -1918 (|#1| |#1|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -3038 (|#1| |#1| |#1|)) (-15 -3331 (|#1| |#1| |#1|)))
+((-1280 (($ $ (-1085)) 12) (($ $ (-1007 $)) 11)) (-1372 (($ $ (-1085)) 10) (($ $ (-1007 $)) 9)) (-3219 (($ $ $) 8)) (-2692 (($ $) 14) (($ $ (-1085)) 13)) (-2868 (($ $) 7)) (-1480 (($ $ $) 6)))
+(((-146) (-1197)) (T -146))
+((-2692 (*1 *1 *1) (-4 *1 (-146))) (-2692 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) (-1280 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146)))))
+(-13 (-131) (-10 -8 (-15 -2692 ($ $)) (-15 -2692 ($ $ (-1085))) (-15 -1280 ($ $ (-1085))) (-15 -1280 ($ $ (-1007 $))) (-15 -1372 ($ $ (-1085))) (-15 -1372 ($ $ (-1007 $)))))
(((-131) . T))
-((-1422 (((-108) $ $) NIL)) (-3885 (($ (-521)) 13) (($ $ $) 14)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 17)) (-1549 (((-108) $ $) 9)))
-(((-147) (-13 (-1013) (-10 -8 (-15 -3885 ($ (-521))) (-15 -3885 ($ $ $))))) (T -147))
-((-3885 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-147)))) (-3885 (*1 *1 *1 *1) (-5 *1 (-147))))
-(-13 (-1013) (-10 -8 (-15 -3885 ($ (-521))) (-15 -3885 ($ $ $))))
-((-3928 (((-110) (-1084)) 97)))
-(((-148) (-10 -7 (-15 -3928 ((-110) (-1084))))) (T -148))
-((-3928 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-110)) (-5 *1 (-148)))))
-(-10 -7 (-15 -3928 ((-110) (-1084))))
-((-1273 ((|#3| |#3|) 20)))
-(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1273 (|#3| |#3|))) (-970) (-1141 |#1|) (-1141 |#2|)) (T -149))
-((-1273 (*1 *2 *2) (-12 (-4 *3 (-970)) (-4 *4 (-1141 *3)) (-5 *1 (-149 *3 *4 *2)) (-4 *2 (-1141 *4)))))
-(-10 -7 (-15 -1273 (|#3| |#3|)))
-((-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 216)) (-1927 ((|#2| $) 96)) (-2910 (($ $) 243)) (-2775 (($ $) 237)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 40)) (-2886 (($ $) 241)) (-2752 (($ $) 235)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1496 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 138)) (-2302 (($ $ $) 221)) (-1961 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 154) (((-627 |#2|) (-627 $)) 148)) (-3859 (($ (-1080 |#2|)) 119) (((-3 $ "failed") (-381 (-1080 |#2|))) NIL)) (-2783 (((-3 $ "failed") $) 208)) (-3762 (((-3 (-381 (-521)) "failed") $) 198)) (-2428 (((-108) $) 193)) (-2758 (((-381 (-521)) $) 196)) (-3167 (((-849)) 89)) (-2282 (($ $ $) 223)) (-2676 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2840 (($) 232)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 185) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 190)) (-2549 ((|#2| $) 94)) (-3769 (((-1080 |#2|) $) 121)) (-1393 (($ (-1 |#2| |#2|) $) 102)) (-1253 (($ $) 234)) (-3843 (((-1080 |#2|) $) 120)) (-3100 (($ $) 201)) (-3380 (($) 97)) (-1822 (((-392 (-1080 $)) (-1080 $)) 88)) (-1336 (((-392 (-1080 $)) (-1080 $)) 57)) (-2261 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3265 (($ $) 233)) (-3794 (((-707) $) 218)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 227)) (-3011 ((|#2| (-1165 $)) NIL) ((|#2|) 91)) (-2193 (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-3436 (((-1080 |#2|)) 114)) (-2898 (($ $) 242)) (-2764 (($ $) 236)) (-1816 (((-1165 |#2|) $ (-1165 $)) 127) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $) 110) (((-627 |#2|) (-1165 $)) NIL)) (-1438 (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) (((-1080 |#2|) $) NIL) (($ (-1080 |#2|)) NIL) (((-820 (-521)) $) 176) (((-820 (-353)) $) 180) (((-154 (-353)) $) 166) (((-154 (-202)) $) 161) (((-497) $) 172)) (-1484 (($ $) 98)) (-2223 (((-791) $) 137) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-381 (-521))) NIL) (($ $) NIL)) (-3379 (((-1080 |#2|) $) 23)) (-1592 (((-707)) 100)) (-1811 (($ $) 246)) (-2838 (($ $) 240)) (-1795 (($ $) 244)) (-2817 (($ $) 238)) (-1640 ((|#2| $) 231)) (-1803 (($ $) 245)) (-2827 (($ $) 239)) (-4012 (($ $) 156)) (-1549 (((-108) $ $) 104)) (-1569 (((-108) $ $) 192)) (-1639 (($ $) 106) (($ $ $) NIL)) (-1628 (($ $ $) 105)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-381 (-521))) 265) (($ $ $) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2223 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2919 ((-2 (|:| -1493 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3794 ((-707) |#1|)) (-15 -1904 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -2282 (|#1| |#1| |#1|)) (-15 -2302 (|#1| |#1| |#1|)) (-15 -3100 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1438 ((-154 (-202)) |#1|)) (-15 -1438 ((-154 (-353)) |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -2752 (|#1| |#1|)) (-15 -2764 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2838 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2840 (|#1|)) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -1336 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1822 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -2676 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -4012 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1484 (|#1| |#1|)) (-15 -3380 (|#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3859 ((-3 |#1| "failed") (-381 (-1080 |#2|)))) (-15 -3843 ((-1080 |#2|) |#1|)) (-15 -1438 (|#1| (-1080 |#2|))) (-15 -3859 (|#1| (-1080 |#2|))) (-15 -3436 ((-1080 |#2|))) (-15 -1961 ((-627 |#2|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1438 ((-1080 |#2|) |#1|)) (-15 -3011 (|#2|)) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -3769 ((-1080 |#2|) |#1|)) (-15 -3379 ((-1080 |#2|) |#1|)) (-15 -3011 (|#2| (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -2549 (|#2| |#1|)) (-15 -1927 (|#2| |#1|)) (-15 -3167 ((-849))) (-15 -2223 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-151 |#2|) (-157)) (T -150))
-((-1592 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3167 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-849)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3011 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) (-3436 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1080 *4)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))))
-(-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2223 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2919 ((-2 (|:| -1493 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3794 ((-707) |#1|)) (-15 -1904 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -2282 (|#1| |#1| |#1|)) (-15 -2302 (|#1| |#1| |#1|)) (-15 -3100 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1438 ((-154 (-202)) |#1|)) (-15 -1438 ((-154 (-353)) |#1|)) (-15 -2775 (|#1| |#1|)) (-15 -2752 (|#1| |#1|)) (-15 -2764 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2838 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2840 (|#1|)) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -1336 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1822 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -2676 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -4012 (|#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1484 (|#1| |#1|)) (-15 -3380 (|#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3859 ((-3 |#1| "failed") (-381 (-1080 |#2|)))) (-15 -3843 ((-1080 |#2|) |#1|)) (-15 -1438 (|#1| (-1080 |#2|))) (-15 -3859 (|#1| (-1080 |#2|))) (-15 -3436 ((-1080 |#2|))) (-15 -1961 ((-627 |#2|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1438 ((-1080 |#2|) |#1|)) (-15 -3011 (|#2|)) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -3769 ((-1080 |#2|) |#1|)) (-15 -3379 ((-1080 |#2|) |#1|)) (-15 -3011 (|#2| (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -2549 (|#2| |#1|)) (-15 -1927 (|#2| |#1|)) (-15 -3167 ((-849))) (-15 -2223 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 93 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-1954 (($ $) 94 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-3795 (((-108) $) 96 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-1299 (((-627 |#1|) (-1165 $)) 46) (((-627 |#1|)) 61)) (-1927 ((|#1| $) 52)) (-2910 (($ $) 228 (|has| |#1| (-1105)))) (-2775 (($ $) 211 (|has| |#1| (-1105)))) (-2130 (((-1093 (-849) (-707)) (-521)) 147 (|has| |#1| (-323)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2150 (((-392 (-1080 $)) (-1080 $)) 242 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-2694 (($ $) 113 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-2337 (((-392 $) $) 114 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-1984 (($ $) 241 (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 245 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-2165 (((-108) $ $) 104 (|has| |#1| (-282)))) (-1659 (((-707)) 87 (|has| |#1| (-342)))) (-2886 (($ $) 227 (|has| |#1| (-1105)))) (-2752 (($ $) 212 (|has| |#1| (-1105)))) (-2932 (($ $) 226 (|has| |#1| (-1105)))) (-2796 (($ $) 213 (|has| |#1| (-1105)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 169 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 167 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 166)) (-1496 (((-521) $) 170 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 168 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 165)) (-3190 (($ (-1165 |#1|) (-1165 $)) 48) (($ (-1165 |#1|)) 64)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-323)))) (-2302 (($ $ $) 108 (|has| |#1| (-282)))) (-3998 (((-627 |#1|) $ (-1165 $)) 53) (((-627 |#1|) $) 59)) (-1961 (((-627 (-521)) (-627 $)) 164 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 163 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 162) (((-627 |#1|) (-627 $)) 161)) (-3859 (($ (-1080 |#1|)) 158) (((-3 $ "failed") (-381 (-1080 |#1|))) 155 (|has| |#1| (-337)))) (-2783 (((-3 $ "failed") $) 34)) (-1993 ((|#1| $) 253)) (-3762 (((-3 (-381 (-521)) "failed") $) 246 (|has| |#1| (-506)))) (-2428 (((-108) $) 248 (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) 247 (|has| |#1| (-506)))) (-3167 (((-849)) 54)) (-3254 (($) 90 (|has| |#1| (-342)))) (-2282 (($ $ $) 107 (|has| |#1| (-282)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 102 (|has| |#1| (-282)))) (-2464 (($) 149 (|has| |#1| (-323)))) (-3299 (((-108) $) 150 (|has| |#1| (-323)))) (-1375 (($ $ (-707)) 141 (|has| |#1| (-323))) (($ $) 140 (|has| |#1| (-323)))) (-2100 (((-108) $) 115 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-2676 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-979)) (|has| |#1| (-1105))))) (-2840 (($) 238 (|has| |#1| (-1105)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 261 (|has| |#1| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 260 (|has| |#1| (-814 (-353))))) (-3490 (((-849) $) 152 (|has| |#1| (-323))) (((-769 (-849)) $) 138 (|has| |#1| (-323)))) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 240 (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-2549 ((|#1| $) 51)) (-3035 (((-3 $ "failed") $) 142 (|has| |#1| (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 111 (|has| |#1| (-282)))) (-3769 (((-1080 |#1|) $) 44 (|has| |#1| (-337)))) (-2816 (($ $ $) 207 (|has| |#1| (-783)))) (-2459 (($ $ $) 206 (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) 262)) (-3999 (((-849) $) 89 (|has| |#1| (-342)))) (-1253 (($ $) 235 (|has| |#1| (-1105)))) (-3843 (((-1080 |#1|) $) 156)) (-2254 (($ (-587 $)) 100 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (($ $ $) 99 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-4024 (((-1067) $) 9)) (-3100 (($ $) 116 (|has| |#1| (-337)))) (-3797 (($) 143 (|has| |#1| (-323)) CONST)) (-2723 (($ (-849)) 88 (|has| |#1| (-342)))) (-3380 (($) 257)) (-2004 ((|#1| $) 254)) (-4146 (((-1031) $) 10)) (-1384 (($) 160)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 101 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-2286 (($ (-587 $)) 98 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (($ $ $) 97 (-3703 (|has| |#1| (-282)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 146 (|has| |#1| (-323)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 244 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-1336 (((-392 (-1080 $)) (-1080 $)) 243 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-1974 (((-392 $) $) 112 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-282))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 109 (|has| |#1| (-282)))) (-2261 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 92 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 103 (|has| |#1| (-282)))) (-3265 (($ $) 236 (|has| |#1| (-1105)))) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) 268 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 266 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 265 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 264 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 263 (|has| |#1| (-482 (-1084) |#1|)))) (-3794 (((-707) $) 105 (|has| |#1| (-282)))) (-2550 (($ $ |#1|) 269 (|has| |#1| (-261 |#1| |#1|)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 106 (|has| |#1| (-282)))) (-3011 ((|#1| (-1165 $)) 47) ((|#1|) 60)) (-3660 (((-707) $) 151 (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) 139 (|has| |#1| (-323)))) (-2193 (($ $ (-1 |#1| |#1|) (-707)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-587 (-1084)) (-587 (-707))) 130 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 131 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 132 (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) 133 (|has| |#1| (-828 (-1084)))) (($ $ (-707)) 135 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))))) (($ $) 137 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337)))))) (-3785 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-337)))) (-3436 (((-1080 |#1|)) 159)) (-1787 (($ $) 225 (|has| |#1| (-1105)))) (-2806 (($ $) 214 (|has| |#1| (-1105)))) (-3923 (($) 148 (|has| |#1| (-323)))) (-2921 (($ $) 224 (|has| |#1| (-1105)))) (-2786 (($ $) 215 (|has| |#1| (-1105)))) (-2898 (($ $) 223 (|has| |#1| (-1105)))) (-2764 (($ $) 216 (|has| |#1| (-1105)))) (-1816 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49) (((-1165 |#1|) $) 66) (((-627 |#1|) (-1165 $)) 65)) (-1438 (((-1165 |#1|) $) 63) (($ (-1165 |#1|)) 62) (((-1080 |#1|) $) 171) (($ (-1080 |#1|)) 157) (((-820 (-521)) $) 259 (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) 258 (|has| |#1| (-562 (-820 (-353))))) (((-154 (-353)) $) 210 (|has| |#1| (-946))) (((-154 (-202)) $) 209 (|has| |#1| (-946))) (((-497) $) 208 (|has| |#1| (-562 (-497))))) (-1484 (($ $) 256)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 145 (-3703 (-4009 (|has| $ (-133)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))) (|has| |#1| (-323))))) (-3905 (($ |#1| |#1|) 255)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ (-381 (-521))) 86 (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521)))))) (($ $) 91 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-2446 (($ $) 144 (|has| |#1| (-323))) (((-3 $ "failed") $) 43 (-3703 (-4009 (|has| $ (-133)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))) (|has| |#1| (-133))))) (-3379 (((-1080 |#1|) $) 45)) (-1592 (((-707)) 29)) (-1245 (((-1165 $)) 67)) (-1811 (($ $) 234 (|has| |#1| (-1105)))) (-2838 (($ $) 222 (|has| |#1| (-1105)))) (-1842 (((-108) $ $) 95 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))) (-1795 (($ $) 233 (|has| |#1| (-1105)))) (-2817 (($ $) 221 (|has| |#1| (-1105)))) (-1830 (($ $) 232 (|has| |#1| (-1105)))) (-2862 (($ $) 220 (|has| |#1| (-1105)))) (-1640 ((|#1| $) 250 (|has| |#1| (-1105)))) (-3919 (($ $) 231 (|has| |#1| (-1105)))) (-2874 (($ $) 219 (|has| |#1| (-1105)))) (-1821 (($ $) 230 (|has| |#1| (-1105)))) (-2850 (($ $) 218 (|has| |#1| (-1105)))) (-1803 (($ $) 229 (|has| |#1| (-1105)))) (-2827 (($ $) 217 (|has| |#1| (-1105)))) (-4012 (($ $) 251 (|has| |#1| (-979)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 117 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-1 |#1| |#1|) (-707)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-587 (-1084)) (-587 (-707))) 126 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 127 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 128 (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) 129 (|has| |#1| (-828 (-1084)))) (($ $ (-707)) 134 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))))) (($ $) 136 (-3703 (-4009 (|has| |#1| (-337)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4009 (|has| |#1| (-210)) (|has| |#1| (-337)))))) (-1597 (((-108) $ $) 204 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 203 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 205 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 202 (|has| |#1| (-783)))) (-1648 (($ $ $) 121 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-381 (-521))) 239 (-12 (|has| |#1| (-927)) (|has| |#1| (-1105)))) (($ $ $) 237 (|has| |#1| (-1105))) (($ $ (-521)) 118 (|has| |#1| (-337)))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-381 (-521)) $) 120 (|has| |#1| (-337))) (($ $ (-381 (-521))) 119 (|has| |#1| (-337)))))
-(((-151 |#1|) (-1196) (-157)) (T -151))
-((-2549 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3380 (*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3905 (*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-4012 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-979)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1105)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-979)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-3762 (*1 *2 *1) (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))))
-(-13 (-661 |t#1| (-1080 |t#1|)) (-385 |t#1|) (-208 |t#1|) (-312 |t#1|) (-374 |t#1|) (-812 |t#1|) (-351 |t#1|) (-157) (-10 -8 (-6 -3905) (-15 -3380 ($)) (-15 -1484 ($ $)) (-15 -3905 ($ |t#1| |t#1|)) (-15 -2004 (|t#1| $)) (-15 -1993 (|t#1| $)) (-15 -2549 (|t#1| $)) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-6 (-513)) (-15 -2261 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-282)) (-6 (-282)) |%noBranch|) (IF (|has| |t#1| (-6 -4232)) (-6 -4232) |%noBranch|) (IF (|has| |t#1| (-6 -4229)) (-6 -4229) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-337)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-946)) (PROGN (-6 (-562 (-154 (-202)))) (-6 (-562 (-154 (-353))))) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -4012 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-1105)) (-15 -1640 (|t#1| $)) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -2676 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-837)) (IF (|has| |t#1| (-282)) (-6 (-837)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-37 |#1|) . T) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-34) |has| |#1| (-1105)) ((-91) |has| |#1| (-1105)) ((-97) . T) ((-107 #0# #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-323)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) . T) ((-562 (-154 (-202))) |has| |#1| (-946)) ((-562 (-154 (-353))) |has| |#1| (-946)) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-820 (-353))) |has| |#1| (-562 (-820 (-353)))) ((-562 (-820 (-521))) |has| |#1| (-562 (-820 (-521)))) ((-562 #1=(-1080 |#1|)) . T) ((-208 |#1|) . T) ((-210) -3703 (|has| |#1| (-323)) (|has| |#1| (-210))) ((-220) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-259) |has| |#1| (-1105)) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-282) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-337) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-376) |has| |#1| (-323)) ((-342) -3703 (|has| |#1| (-342)) (|has| |#1| (-323))) ((-323) |has| |#1| (-323)) ((-344 |#1| #1#) . T) ((-383 |#1| #1#) . T) ((-312 |#1|) . T) ((-351 |#1|) . T) ((-374 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-462) |has| |#1| (-1105)) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-589 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-654 |#1|) . T) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-661 |#1| #1#) . T) ((-663) . T) ((-783) |has| |#1| (-783)) ((-828 (-1084)) |has| |#1| (-828 (-1084))) ((-814 (-353)) |has| |#1| (-814 (-353))) ((-814 (-521)) |has| |#1| (-814 (-521))) ((-812 |#1|) . T) ((-837) -12 (|has| |#1| (-282)) (|has| |#1| (-837))) ((-848) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (|has| |#1| (-282))) ((-927) -12 (|has| |#1| (-927)) (|has| |#1| (-1105))) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-323)) ((-1105) |has| |#1| (-1105)) ((-1108) |has| |#1| (-1105)) ((-1119) . T) ((-1123) -3703 (|has| |#1| (-323)) (|has| |#1| (-337)) (-12 (|has| |#1| (-282)) (|has| |#1| (-837)))))
-((-1974 (((-392 |#2|) |#2|) 63)))
-(((-152 |#1| |#2|) (-10 -7 (-15 -1974 ((-392 |#2|) |#2|))) (-282) (-1141 (-154 |#1|))) (T -152))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-152 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
-(-10 -7 (-15 -1974 ((-392 |#2|) |#2|)))
-((-1393 (((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)) 14)))
-(((-153 |#1| |#2|) (-10 -7 (-15 -1393 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) (-157) (-157)) (T -153))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6)))))
-(-10 -7 (-15 -1393 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 33)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-513))))) (-1954 (($ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-513))))) (-3795 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-513))))) (-1299 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) NIL)) (-1927 ((|#1| $) NIL)) (-2910 (($ $) NIL (|has| |#1| (-1105)))) (-2775 (($ $) NIL (|has| |#1| (-1105)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| |#1| (-323)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-2694 (($ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-2337 (((-392 $) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-1984 (($ $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-282)))) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-2886 (($ $) NIL (|has| |#1| (-1105)))) (-2752 (($ $) NIL (|has| |#1| (-1105)))) (-2932 (($ $) NIL (|has| |#1| (-1105)))) (-2796 (($ $) NIL (|has| |#1| (-1105)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3190 (($ (-1165 |#1|) (-1165 $)) NIL) (($ (-1165 |#1|)) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)))) (-2302 (($ $ $) NIL (|has| |#1| (-282)))) (-3998 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-3859 (($ (-1080 |#1|)) NIL) (((-3 $ "failed") (-381 (-1080 |#1|))) NIL (|has| |#1| (-337)))) (-2783 (((-3 $ "failed") $) NIL)) (-1993 ((|#1| $) 13)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-506)))) (-2428 (((-108) $) NIL (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) NIL (|has| |#1| (-506)))) (-3167 (((-849)) NIL)) (-3254 (($) NIL (|has| |#1| (-342)))) (-2282 (($ $ $) NIL (|has| |#1| (-282)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-282)))) (-2464 (($) NIL (|has| |#1| (-323)))) (-3299 (((-108) $) NIL (|has| |#1| (-323)))) (-1375 (($ $ (-707)) NIL (|has| |#1| (-323))) (($ $) NIL (|has| |#1| (-323)))) (-2100 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-2676 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-979)) (|has| |#1| (-1105))))) (-2840 (($) NIL (|has| |#1| (-1105)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| |#1| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| |#1| (-814 (-353))))) (-3490 (((-849) $) NIL (|has| |#1| (-323))) (((-769 (-849)) $) NIL (|has| |#1| (-323)))) (-3637 (((-108) $) 35)) (-3743 (($ $ (-521)) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-1105))))) (-2549 ((|#1| $) 46)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-282)))) (-3769 (((-1080 |#1|) $) NIL (|has| |#1| (-337)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-1253 (($ $) NIL (|has| |#1| (-1105)))) (-3843 (((-1080 |#1|) $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-282))) (($ $ $) NIL (|has| |#1| (-282)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-3797 (($) NIL (|has| |#1| (-323)) CONST)) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-3380 (($) NIL)) (-2004 ((|#1| $) 15)) (-4146 (((-1031) $) NIL)) (-1384 (($) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-282)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-282))) (($ $ $) NIL (|has| |#1| (-282)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| |#1| (-323)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#1| (-282)) (|has| |#1| (-837))))) (-1974 (((-392 $) $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-337))))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-282))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-282)))) (-2261 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 47 (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-513))))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-282)))) (-3265 (($ $) NIL (|has| |#1| (-1105)))) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-3794 (((-707) $) NIL (|has| |#1| (-282)))) (-2550 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-282)))) (-3011 ((|#1| (-1165 $)) NIL) ((|#1|) NIL)) (-3660 (((-707) $) NIL (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) NIL (|has| |#1| (-323)))) (-2193 (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-3785 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-3436 (((-1080 |#1|)) NIL)) (-1787 (($ $) NIL (|has| |#1| (-1105)))) (-2806 (($ $) NIL (|has| |#1| (-1105)))) (-3923 (($) NIL (|has| |#1| (-323)))) (-2921 (($ $) NIL (|has| |#1| (-1105)))) (-2786 (($ $) NIL (|has| |#1| (-1105)))) (-2898 (($ $) NIL (|has| |#1| (-1105)))) (-2764 (($ $) NIL (|has| |#1| (-1105)))) (-1816 (((-1165 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) (-1165 $) (-1165 $)) NIL) (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-1438 (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) (((-1080 |#1|) $) NIL) (($ (-1080 |#1|)) NIL) (((-820 (-521)) $) NIL (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| |#1| (-562 (-820 (-353))))) (((-154 (-353)) $) NIL (|has| |#1| (-946))) (((-154 (-202)) $) NIL (|has| |#1| (-946))) (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-1484 (($ $) 45)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-323))))) (-3905 (($ |#1| |#1|) 37)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) 36) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-513))))) (-2446 (($ $) NIL (|has| |#1| (-323))) (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-3379 (((-1080 |#1|) $) NIL)) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL)) (-1811 (($ $) NIL (|has| |#1| (-1105)))) (-2838 (($ $) NIL (|has| |#1| (-1105)))) (-1842 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-282)) (|has| |#1| (-837))) (|has| |#1| (-513))))) (-1795 (($ $) NIL (|has| |#1| (-1105)))) (-2817 (($ $) NIL (|has| |#1| (-1105)))) (-1830 (($ $) NIL (|has| |#1| (-1105)))) (-2862 (($ $) NIL (|has| |#1| (-1105)))) (-1640 ((|#1| $) NIL (|has| |#1| (-1105)))) (-3919 (($ $) NIL (|has| |#1| (-1105)))) (-2874 (($ $) NIL (|has| |#1| (-1105)))) (-1821 (($ $) NIL (|has| |#1| (-1105)))) (-2850 (($ $) NIL (|has| |#1| (-1105)))) (-1803 (($ $) NIL (|has| |#1| (-1105)))) (-2827 (($ $) NIL (|has| |#1| (-1105)))) (-4012 (($ $) NIL (|has| |#1| (-979)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 28 T CONST)) (-3572 (($) 30 T CONST)) (-3828 (((-1067) $) 23 (|has| |#1| (-764))) (((-1067) $ (-108)) 25 (|has| |#1| (-764))) (((-1170) (-758) $) 26 (|has| |#1| (-764))) (((-1170) (-758) $ (-108)) 27 (|has| |#1| (-764)))) (-2244 (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 39)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-381 (-521))) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-1105)))) (($ $ $) NIL (|has| |#1| (-1105))) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-337))) (($ $ (-381 (-521))) NIL (|has| |#1| (-337)))))
-(((-154 |#1|) (-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|))) (-157)) (T -154))
-NIL
-(-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|)))
-((-1438 (((-820 |#1|) |#3|) 22)))
-(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1438 ((-820 |#1|) |#3|))) (-1013) (-13 (-562 (-820 |#1|)) (-157)) (-151 |#2|)) (T -155))
-((-1438 (*1 *2 *3) (-12 (-4 *5 (-13 (-562 *2) (-157))) (-5 *2 (-820 *4)) (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-151 *5)))))
-(-10 -7 (-15 -1438 ((-820 |#1|) |#3|)))
-((-1422 (((-108) $ $) NIL)) (-4076 (((-108) $) 9)) (-2977 (((-108) $ (-108)) 11)) (-1869 (($) 12)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2420 (($ $) 13)) (-2223 (((-791) $) 17)) (-2728 (((-108) $) 8)) (-1684 (((-108) $ (-108)) 10)) (-1549 (((-108) $ $) NIL)))
-(((-156) (-13 (-1013) (-10 -8 (-15 -1869 ($)) (-15 -2728 ((-108) $)) (-15 -4076 ((-108) $)) (-15 -1684 ((-108) $ (-108))) (-15 -2977 ((-108) $ (-108))) (-15 -2420 ($ $))))) (T -156))
-((-1869 (*1 *1) (-5 *1 (-156))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1684 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2977 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2420 (*1 *1 *1) (-5 *1 (-156))))
-(-13 (-1013) (-10 -8 (-15 -1869 ($)) (-15 -2728 ((-108) $)) (-15 -4076 ((-108) $)) (-15 -1684 ((-108) $ (-108))) (-15 -2977 ((-108) $ (-108))) (-15 -2420 ($ $))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-157) (-1196)) (T -157))
-NIL
-(-13 (-970) (-107 $ $) (-10 -7 (-6 (-4235 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 ((|#1| $) 75)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL)) (-1272 (($ $) 19)) (-3326 (($ |#1| (-1065 |#1|)) 48)) (-2783 (((-3 $ "failed") $) 117)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-4082 (((-1065 |#1|) $) 82)) (-3783 (((-1065 |#1|) $) 79)) (-3409 (((-1065 |#1|) $) 80)) (-3637 (((-108) $) NIL)) (-1218 (((-1065 |#1|) $) 88)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2254 (($ (-587 $)) NIL) (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ (-587 $)) NIL) (($ $ $) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2191 (($ $ (-521)) 91)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2642 (((-1065 |#1|) $) 89)) (-2332 (((-1065 (-381 |#1|)) $) 13)) (-1714 (($ (-381 |#1|)) 17) (($ |#1| (-1065 |#1|) (-1065 |#1|)) 38)) (-2145 (($ $) 93)) (-2223 (((-791) $) 127) (($ (-521)) 51) (($ |#1|) 52) (($ (-381 |#1|)) 36) (($ (-381 (-521))) NIL) (($ $) NIL)) (-1592 (((-707)) 64)) (-1842 (((-108) $ $) NIL)) (-1228 (((-1065 (-381 |#1|)) $) 18)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 25 T CONST)) (-3572 (($) 28 T CONST)) (-1549 (((-108) $ $) 35)) (-1648 (($ $ $) 115)) (-1639 (($ $) 106) (($ $ $) 103)) (-1628 (($ $ $) 101)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-381 |#1|) $) 111) (($ $ (-381 |#1|)) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL)))
-(((-158 |#1|) (-13 (-37 |#1|) (-37 (-381 |#1|)) (-337) (-10 -8 (-15 -1714 ($ (-381 |#1|))) (-15 -1714 ($ |#1| (-1065 |#1|) (-1065 |#1|))) (-15 -3326 ($ |#1| (-1065 |#1|))) (-15 -3783 ((-1065 |#1|) $)) (-15 -3409 ((-1065 |#1|) $)) (-15 -4082 ((-1065 |#1|) $)) (-15 -2556 (|#1| $)) (-15 -1272 ($ $)) (-15 -1228 ((-1065 (-381 |#1|)) $)) (-15 -2332 ((-1065 (-381 |#1|)) $)) (-15 -1218 ((-1065 |#1|) $)) (-15 -2642 ((-1065 |#1|) $)) (-15 -2191 ($ $ (-521))) (-15 -2145 ($ $)))) (-282)) (T -158))
-((-1714 (*1 *1 *2) (-12 (-5 *2 (-381 *3)) (-4 *3 (-282)) (-5 *1 (-158 *3)))) (-1714 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2)))) (-3326 (*1 *1 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2556 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))) (-1272 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))) (-1228 (*1 *2 *1) (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-1218 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-158 *3)) (-4 *3 (-282)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))))
-(-13 (-37 |#1|) (-37 (-381 |#1|)) (-337) (-10 -8 (-15 -1714 ($ (-381 |#1|))) (-15 -1714 ($ |#1| (-1065 |#1|) (-1065 |#1|))) (-15 -3326 ($ |#1| (-1065 |#1|))) (-15 -3783 ((-1065 |#1|) $)) (-15 -3409 ((-1065 |#1|) $)) (-15 -4082 ((-1065 |#1|) $)) (-15 -2556 (|#1| $)) (-15 -1272 ($ $)) (-15 -1228 ((-1065 (-381 |#1|)) $)) (-15 -2332 ((-1065 (-381 |#1|)) $)) (-15 -1218 ((-1065 |#1|) $)) (-15 -2642 ((-1065 |#1|) $)) (-15 -2191 ($ $ (-521))) (-15 -2145 ($ $))))
-((-3915 (($ (-104) $) 13)) (-3443 (((-3 (-104) "failed") (-1084) $) 12)) (-2223 (((-791) $) 16)) (-1661 (((-587 (-104)) $) 7)))
-(((-159) (-13 (-561 (-791)) (-10 -8 (-15 -1661 ((-587 (-104)) $)) (-15 -3915 ($ (-104) $)) (-15 -3443 ((-3 (-104) "failed") (-1084) $))))) (T -159))
-((-1661 (*1 *2 *1) (-12 (-5 *2 (-587 (-104))) (-5 *1 (-159)))) (-3915 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))) (-3443 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-159)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -1661 ((-587 (-104)) $)) (-15 -3915 ($ (-104) $)) (-15 -3443 ((-3 (-104) "failed") (-1084) $))))
-((-1846 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 40)) (-1609 (((-871 |#1|) (-871 |#1|)) 19)) (-3111 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 36)) (-2606 (((-871 |#1|) (-871 |#1|)) 17)) (-1757 (((-871 |#1|) (-871 |#1|)) 25)) (-2643 (((-871 |#1|) (-871 |#1|)) 24)) (-2952 (((-871 |#1|) (-871 |#1|)) 23)) (-3713 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 37)) (-1668 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 35)) (-3550 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 34)) (-2367 (((-871 |#1|) (-871 |#1|)) 18)) (-3607 (((-1 (-871 |#1|) (-871 |#1|)) |#1| |#1|) 43)) (-2951 (((-871 |#1|) (-871 |#1|)) 8)) (-3175 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 39)) (-3625 (((-1 (-871 |#1|) (-871 |#1|)) |#1|) 38)))
-(((-160 |#1|) (-10 -7 (-15 -2951 ((-871 |#1|) (-871 |#1|))) (-15 -2606 ((-871 |#1|) (-871 |#1|))) (-15 -2367 ((-871 |#1|) (-871 |#1|))) (-15 -1609 ((-871 |#1|) (-871 |#1|))) (-15 -2952 ((-871 |#1|) (-871 |#1|))) (-15 -2643 ((-871 |#1|) (-871 |#1|))) (-15 -1757 ((-871 |#1|) (-871 |#1|))) (-15 -3550 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1668 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3111 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3713 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3625 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3175 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1846 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3607 ((-1 (-871 |#1|) (-871 |#1|)) |#1| |#1|))) (-13 (-337) (-1105) (-927))) (T -160))
-((-3607 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3175 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3625 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3713 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1668 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-3550 (*1 *2 *3) (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-337) (-1105) (-927))))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927))) (-5 *1 (-160 *3)))))
-(-10 -7 (-15 -2951 ((-871 |#1|) (-871 |#1|))) (-15 -2606 ((-871 |#1|) (-871 |#1|))) (-15 -2367 ((-871 |#1|) (-871 |#1|))) (-15 -1609 ((-871 |#1|) (-871 |#1|))) (-15 -2952 ((-871 |#1|) (-871 |#1|))) (-15 -2643 ((-871 |#1|) (-871 |#1|))) (-15 -1757 ((-871 |#1|) (-871 |#1|))) (-15 -3550 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1668 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3111 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3713 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3625 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3175 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -1846 ((-1 (-871 |#1|) (-871 |#1|)) |#1|)) (-15 -3607 ((-1 (-871 |#1|) (-871 |#1|)) |#1| |#1|)))
-((-3379 ((|#2| |#3|) 27)))
-(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -3379 (|#2| |#3|))) (-157) (-1141 |#1|) (-661 |#1| |#2|)) (T -161))
-((-3379 (*1 *2 *3) (-12 (-4 *4 (-157)) (-4 *2 (-1141 *4)) (-5 *1 (-161 *4 *2 *3)) (-4 *3 (-661 *4 *2)))))
-(-10 -7 (-15 -3379 (|#2| |#3|)))
-((-2293 (((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)) 47 (|has| (-880 |#2|) (-814 |#1|)))))
-(((-162 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-880 |#2|) (-814 |#1|)) (-15 -2293 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-814 |#1|) (-157)) (-151 |#2|)) (T -162))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-4 *3 (-151 *6)) (-4 (-880 *6) (-814 *5)) (-4 *6 (-13 (-814 *5) (-157))) (-5 *1 (-162 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-880 |#2|) (-814 |#1|)) (-15 -2293 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) |%noBranch|))
-((-2860 (((-587 |#1|) (-587 |#1|) |#1|) 36)) (-3835 (((-587 |#1|) |#1| (-587 |#1|)) 19)) (-3231 (((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|)) 31) ((|#1| (-587 |#1|) (-587 |#1|)) 29)))
-(((-163 |#1|) (-10 -7 (-15 -3835 ((-587 |#1|) |#1| (-587 |#1|))) (-15 -3231 (|#1| (-587 |#1|) (-587 |#1|))) (-15 -3231 ((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|))) (-15 -2860 ((-587 |#1|) (-587 |#1|) |#1|))) (-282)) (T -163))
-((-2860 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))) (-3231 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-587 *4))) (-5 *2 (-587 *4)) (-4 *4 (-282)) (-5 *1 (-163 *4)))) (-3231 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-163 *2)) (-4 *2 (-282)))) (-3835 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))))
-(-10 -7 (-15 -3835 ((-587 |#1|) |#1| (-587 |#1|))) (-15 -3231 (|#1| (-587 |#1|) (-587 |#1|))) (-15 -3231 ((-587 |#1|) (-587 (-587 |#1|)) (-587 |#1|))) (-15 -2860 ((-587 |#1|) (-587 |#1|) |#1|)))
-((-3174 (((-2 (|:| |start| |#2|) (|:| -3655 (-392 |#2|))) |#2|) 61)) (-1767 ((|#1| |#1|) 54)) (-3804 (((-154 |#1|) |#2|) 83)) (-1776 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-3483 ((|#2| |#2|) 82)) (-2119 (((-392 |#2|) |#2| |#1|) 113) (((-392 |#2|) |#2| |#1| (-108)) 80)) (-2549 ((|#1| |#2|) 112)) (-2114 ((|#2| |#2|) 119)) (-1974 (((-392 |#2|) |#2|) 134) (((-392 |#2|) |#2| |#1|) 32) (((-392 |#2|) |#2| |#1| (-108)) 133)) (-3639 (((-587 (-2 (|:| -3655 (-587 |#2|)) (|:| -2974 |#1|))) |#2| |#2|) 132) (((-587 (-2 (|:| -3655 (-587 |#2|)) (|:| -2974 |#1|))) |#2| |#2| (-108)) 75)) (-3187 (((-587 (-154 |#1|)) |#2| |#1|) 40) (((-587 (-154 |#1|)) |#2|) 41)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -3187 ((-587 (-154 |#1|)) |#2|)) (-15 -3187 ((-587 (-154 |#1|)) |#2| |#1|)) (-15 -3639 ((-587 (-2 (|:| -3655 (-587 |#2|)) (|:| -2974 |#1|))) |#2| |#2| (-108))) (-15 -3639 ((-587 (-2 (|:| -3655 (-587 |#2|)) (|:| -2974 |#1|))) |#2| |#2|)) (-15 -1974 ((-392 |#2|) |#2| |#1| (-108))) (-15 -1974 ((-392 |#2|) |#2| |#1|)) (-15 -1974 ((-392 |#2|) |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -2549 (|#1| |#2|)) (-15 -2119 ((-392 |#2|) |#2| |#1| (-108))) (-15 -2119 ((-392 |#2|) |#2| |#1|)) (-15 -3483 (|#2| |#2|)) (-15 -1776 (|#1| |#2| |#1|)) (-15 -1776 (|#1| |#2|)) (-15 -3804 ((-154 |#1|) |#2|)) (-15 -1767 (|#1| |#1|)) (-15 -3174 ((-2 (|:| |start| |#2|) (|:| -3655 (-392 |#2|))) |#2|))) (-13 (-337) (-781)) (-1141 (-154 |#1|))) (T -164))
-((-3174 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-2 (|:| |start| *3) (|:| -3655 (-392 *3)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-1767 (*1 *2 *2) (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-3804 (*1 *2 *3) (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) (-4 *4 (-13 (-337) (-781))) (-4 *3 (-1141 *2)))) (-1776 (*1 *2 *3) (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-1776 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-781))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1141 (-154 *3))))) (-2119 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-2549 (*1 *2 *3) (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1141 (-154 *2))))) (-2114 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-781))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1141 (-154 *3))))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-1974 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-1974 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3639 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-587 (-2 (|:| -3655 (-587 *3)) (|:| -2974 *4)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3639 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-337) (-781))) (-5 *2 (-587 (-2 (|:| -3655 (-587 *3)) (|:| -2974 *5)))) (-5 *1 (-164 *5 *3)) (-4 *3 (-1141 (-154 *5))))) (-3187 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))) (-3187 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
-(-10 -7 (-15 -3187 ((-587 (-154 |#1|)) |#2|)) (-15 -3187 ((-587 (-154 |#1|)) |#2| |#1|)) (-15 -3639 ((-587 (-2 (|:| -3655 (-587 |#2|)) (|:| -2974 |#1|))) |#2| |#2| (-108))) (-15 -3639 ((-587 (-2 (|:| -3655 (-587 |#2|)) (|:| -2974 |#1|))) |#2| |#2|)) (-15 -1974 ((-392 |#2|) |#2| |#1| (-108))) (-15 -1974 ((-392 |#2|) |#2| |#1|)) (-15 -1974 ((-392 |#2|) |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -2549 (|#1| |#2|)) (-15 -2119 ((-392 |#2|) |#2| |#1| (-108))) (-15 -2119 ((-392 |#2|) |#2| |#1|)) (-15 -3483 (|#2| |#2|)) (-15 -1776 (|#1| |#2| |#1|)) (-15 -1776 (|#1| |#2|)) (-15 -3804 ((-154 |#1|) |#2|)) (-15 -1767 (|#1| |#1|)) (-15 -3174 ((-2 (|:| |start| |#2|) (|:| -3655 (-392 |#2|))) |#2|)))
-((-1371 (((-3 |#2| "failed") |#2|) 14)) (-3542 (((-707) |#2|) 16)) (-3343 ((|#2| |#2| |#2|) 18)))
-(((-165 |#1| |#2|) (-10 -7 (-15 -1371 ((-3 |#2| "failed") |#2|)) (-15 -3542 ((-707) |#2|)) (-15 -3343 (|#2| |#2| |#2|))) (-1119) (-614 |#1|)) (T -165))
-((-3343 (*1 *2 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2)) (-4 *2 (-614 *3)))) (-3542 (*1 *2 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-707)) (-5 *1 (-165 *4 *3)) (-4 *3 (-614 *4)))) (-1371 (*1 *2 *2) (|partial| -12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2)) (-4 *2 (-614 *3)))))
-(-10 -7 (-15 -1371 ((-3 |#2| "failed") |#2|)) (-15 -3542 ((-707) |#2|)) (-15 -3343 (|#2| |#2| |#2|)))
-((-3603 (((-1084) $) 9)) (-2223 (((-791) $) 13)) (-3886 (((-587 (-1089)) $) 11)))
-(((-166) (-13 (-561 (-791)) (-10 -8 (-15 -3603 ((-1084) $)) (-15 -3886 ((-587 (-1089)) $))))) (T -166))
-((-3603 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-166)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-166)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -3603 ((-1084) $)) (-15 -3886 ((-587 (-1089)) $))))
-((-2026 ((|#2| |#2|) 28)) (-3717 (((-108) |#2|) 19)) (-1993 (((-290 |#1|) |#2|) 12)) (-2004 (((-290 |#1|) |#2|) 14)) (-4116 ((|#2| |#2| (-1084)) 68) ((|#2| |#2|) 69)) (-3223 (((-154 (-290 |#1|)) |#2|) 9)) (-3096 ((|#2| |#2| (-1084)) 65) ((|#2| |#2|) 58)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -4116 (|#2| |#2|)) (-15 -4116 (|#2| |#2| (-1084))) (-15 -3096 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1084))) (-15 -1993 ((-290 |#1|) |#2|)) (-15 -2004 ((-290 |#1|) |#2|)) (-15 -3717 ((-108) |#2|)) (-15 -2026 (|#2| |#2|)) (-15 -3223 ((-154 (-290 |#1|)) |#2|))) (-13 (-513) (-783) (-961 (-521))) (-13 (-27) (-1105) (-404 (-154 |#1|)))) (T -167))
-((-3223 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-154 (-290 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-2026 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3)))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-108)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-2004 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-290 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-290 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3)))))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4)))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3)))))))
-(-10 -7 (-15 -4116 (|#2| |#2|)) (-15 -4116 (|#2| |#2| (-1084))) (-15 -3096 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1084))) (-15 -1993 ((-290 |#1|) |#2|)) (-15 -2004 ((-290 |#1|) |#2|)) (-15 -3717 ((-108) |#2|)) (-15 -2026 (|#2| |#2|)) (-15 -3223 ((-154 (-290 |#1|)) |#2|)))
-((-2409 (((-1165 (-627 (-880 |#1|))) (-1165 (-627 |#1|))) 22)) (-2223 (((-1165 (-627 (-381 (-880 |#1|)))) (-1165 (-627 |#1|))) 30)))
-(((-168 |#1|) (-10 -7 (-15 -2409 ((-1165 (-627 (-880 |#1|))) (-1165 (-627 |#1|)))) (-15 -2223 ((-1165 (-627 (-381 (-880 |#1|)))) (-1165 (-627 |#1|))))) (-157)) (T -168))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157)) (-5 *2 (-1165 (-627 (-381 (-880 *4))))) (-5 *1 (-168 *4)))) (-2409 (*1 *2 *3) (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157)) (-5 *2 (-1165 (-627 (-880 *4)))) (-5 *1 (-168 *4)))))
-(-10 -7 (-15 -2409 ((-1165 (-627 (-880 |#1|))) (-1165 (-627 |#1|)))) (-15 -2223 ((-1165 (-627 (-381 (-880 |#1|)))) (-1165 (-627 |#1|)))))
-((-2683 (((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521)))) 66)) (-3710 (((-1086 (-381 (-521))) (-587 (-521)) (-587 (-521))) 74)) (-2495 (((-1086 (-381 (-521))) (-521)) 40)) (-1466 (((-1086 (-381 (-521))) (-521)) 52)) (-2313 (((-381 (-521)) (-1086 (-381 (-521)))) 62)) (-3193 (((-1086 (-381 (-521))) (-521)) 32)) (-3284 (((-1086 (-381 (-521))) (-521)) 48)) (-3634 (((-1086 (-381 (-521))) (-521)) 46)) (-3009 (((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521)))) 60)) (-2145 (((-1086 (-381 (-521))) (-521)) 25)) (-3931 (((-381 (-521)) (-1086 (-381 (-521))) (-1086 (-381 (-521)))) 64)) (-1704 (((-1086 (-381 (-521))) (-521)) 30)) (-3024 (((-1086 (-381 (-521))) (-587 (-521))) 71)))
-(((-169) (-10 -7 (-15 -2145 ((-1086 (-381 (-521))) (-521))) (-15 -2495 ((-1086 (-381 (-521))) (-521))) (-15 -3193 ((-1086 (-381 (-521))) (-521))) (-15 -1704 ((-1086 (-381 (-521))) (-521))) (-15 -3634 ((-1086 (-381 (-521))) (-521))) (-15 -3284 ((-1086 (-381 (-521))) (-521))) (-15 -1466 ((-1086 (-381 (-521))) (-521))) (-15 -3931 ((-381 (-521)) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -3009 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -2313 ((-381 (-521)) (-1086 (-381 (-521))))) (-15 -2683 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -3024 ((-1086 (-381 (-521))) (-587 (-521)))) (-15 -3710 ((-1086 (-381 (-521))) (-587 (-521)) (-587 (-521)))))) (T -169))
-((-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-2683 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521))) (-5 *1 (-169)))) (-3009 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))) (-3931 (*1 *2 *3 *3) (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521))) (-5 *1 (-169)))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-3284 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-3634 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-1704 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-3193 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-2495 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
-(-10 -7 (-15 -2145 ((-1086 (-381 (-521))) (-521))) (-15 -2495 ((-1086 (-381 (-521))) (-521))) (-15 -3193 ((-1086 (-381 (-521))) (-521))) (-15 -1704 ((-1086 (-381 (-521))) (-521))) (-15 -3634 ((-1086 (-381 (-521))) (-521))) (-15 -3284 ((-1086 (-381 (-521))) (-521))) (-15 -1466 ((-1086 (-381 (-521))) (-521))) (-15 -3931 ((-381 (-521)) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -3009 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -2313 ((-381 (-521)) (-1086 (-381 (-521))))) (-15 -2683 ((-1086 (-381 (-521))) (-1086 (-381 (-521))) (-1086 (-381 (-521))))) (-15 -3024 ((-1086 (-381 (-521))) (-587 (-521)))) (-15 -3710 ((-1086 (-381 (-521))) (-587 (-521)) (-587 (-521)))))
-((-3752 (((-392 (-1080 (-521))) (-521)) 28)) (-1885 (((-587 (-1080 (-521))) (-521)) 23)) (-2326 (((-1080 (-521)) (-521)) 21)))
-(((-170) (-10 -7 (-15 -1885 ((-587 (-1080 (-521))) (-521))) (-15 -2326 ((-1080 (-521)) (-521))) (-15 -3752 ((-392 (-1080 (-521))) (-521))))) (T -170))
-((-3752 (*1 *2 *3) (-12 (-5 *2 (-392 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))) (-2326 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-170)) (-5 *3 (-521)))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-587 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))))
-(-10 -7 (-15 -1885 ((-587 (-1080 (-521))) (-521))) (-15 -2326 ((-1080 (-521)) (-521))) (-15 -3752 ((-392 (-1080 (-521))) (-521))))
-((-1877 (((-1065 (-202)) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 101)) (-2236 (((-587 (-1067)) (-1065 (-202))) NIL)) (-2917 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77)) (-1478 (((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-776 (-202)))) NIL)) (-2583 (((-587 (-1067)) (-587 (-202))) NIL)) (-3351 (((-202) (-1008 (-776 (-202)))) 22)) (-2861 (((-202) (-1008 (-776 (-202)))) 23)) (-2620 (((-353) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 93)) (-3942 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 40)) (-3104 (((-1067) (-202)) NIL)) (-2028 (((-1067) (-587 (-1067))) 19)) (-3027 (((-959) (-1084) (-1084) (-959)) 12)))
-(((-171) (-10 -7 (-15 -2917 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3942 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3351 ((-202) (-1008 (-776 (-202))))) (-15 -2861 ((-202) (-1008 (-776 (-202))))) (-15 -2620 ((-353) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-776 (-202))))) (-15 -1877 ((-1065 (-202)) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3104 ((-1067) (-202))) (-15 -2583 ((-587 (-1067)) (-587 (-202)))) (-15 -2236 ((-587 (-1067)) (-1065 (-202)))) (-15 -2028 ((-1067) (-587 (-1067)))) (-15 -3027 ((-959) (-1084) (-1084) (-959))))) (T -171))
-((-3027 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-171)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-171)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-171)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-171)))) (-1478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084)) (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-171)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-171)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-171)))) (-2917 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-171)))))
-(-10 -7 (-15 -2917 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3942 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3351 ((-202) (-1008 (-776 (-202))))) (-15 -2861 ((-202) (-1008 (-776 (-202))))) (-15 -2620 ((-353) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-776 (-202))))) (-15 -1877 ((-1065 (-202)) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3104 ((-1067) (-202))) (-15 -2583 ((-587 (-1067)) (-587 (-202)))) (-15 -2236 ((-587 (-1067)) (-1065 (-202)))) (-15 -2028 ((-1067) (-587 (-1067)))) (-15 -3027 ((-959) (-1084) (-1084) (-959))))
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 53) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 28) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-172) (-723)) (T -172))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 58) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-173) (-723)) (T -173))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 67) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-174) (-723)) (T -174))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 54) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 30) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-175) (-723)) (T -175))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 65) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 35) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-176) (-723)) (T -176))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 71) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-177) (-723)) (T -177))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 78) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 43) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-178) (-723)) (T -178))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 68) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-179) (-723)) (T -179))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 62)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-180) (-723)) (T -180))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 60)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 32)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-181) (-723)) (T -181))
-NIL
-(-723)
-((-1422 (((-108) $ $) NIL)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 89) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-182) (-723)) (T -182))
-NIL
-(-723)
-((-1874 (((-3 (-2 (|:| -1426 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 81)) (-2421 (((-521) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 39)) (-4084 (((-3 (-587 (-202)) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 69)))
-(((-183) (-10 -7 (-15 -1874 ((-3 (-2 (|:| -1426 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -4084 ((-3 (-587 (-202)) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2421 ((-521) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -183))
-((-2421 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-521)) (-5 *1 (-183)))) (-4084 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-183)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1426 (-110)) (|:| |w| (-202)))) (-5 *1 (-183)))))
-(-10 -7 (-15 -1874 ((-3 (-2 (|:| -1426 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -4084 ((-3 (-587 (-202)) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2421 ((-521) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
-((-3238 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-2385 (((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 128)) (-2660 (((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-627 (-290 (-202)))) 88)) (-3471 (((-353) (-627 (-290 (-202)))) 111)) (-2199 (((-627 (-290 (-202))) (-1165 (-290 (-202))) (-587 (-1084))) 108)) (-1468 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-1679 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-2313 (((-627 (-290 (-202))) (-627 (-290 (-202))) (-587 (-1084)) (-1165 (-290 (-202)))) 100)) (-3940 (((-353) (-353) (-587 (-353))) 105) (((-353) (-353) (-353)) 103)) (-3906 (((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)))
-(((-184) (-10 -7 (-15 -3940 ((-353) (-353) (-353))) (-15 -3940 ((-353) (-353) (-587 (-353)))) (-15 -3471 ((-353) (-627 (-290 (-202))))) (-15 -2199 ((-627 (-290 (-202))) (-1165 (-290 (-202))) (-587 (-1084)))) (-15 -2313 ((-627 (-290 (-202))) (-627 (-290 (-202))) (-587 (-1084)) (-1165 (-290 (-202))))) (-15 -2660 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-627 (-290 (-202))))) (-15 -2385 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3238 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1679 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3906 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1468 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -184))
-((-1468 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353)))) (-5 *1 (-184)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-627 (-290 (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353)))) (-5 *1 (-184)))) (-2313 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-627 (-290 (-202)))) (-5 *3 (-587 (-1084))) (-5 *4 (-1165 (-290 (-202)))) (-5 *1 (-184)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084))) (-5 *2 (-627 (-290 (-202)))) (-5 *1 (-184)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-627 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-353))) (-5 *2 (-353)) (-5 *1 (-184)))) (-3940 (*1 *2 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-184)))))
-(-10 -7 (-15 -3940 ((-353) (-353) (-353))) (-15 -3940 ((-353) (-353) (-587 (-353)))) (-15 -3471 ((-353) (-627 (-290 (-202))))) (-15 -2199 ((-627 (-290 (-202))) (-1165 (-290 (-202))) (-587 (-1084)))) (-15 -2313 ((-627 (-290 (-202))) (-627 (-290 (-202))) (-587 (-1084)) (-1165 (-290 (-202))))) (-15 -2660 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-627 (-290 (-202))))) (-15 -2385 ((-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3238 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1679 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3906 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1468 ((-353) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
-((-1422 (((-108) $ $) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3896 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1549 (((-108) $ $) NIL)))
-(((-185) (-736)) (T -185))
-NIL
-(-736)
-((-1422 (((-108) $ $) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3896 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1549 (((-108) $ $) NIL)))
-(((-186) (-736)) (T -186))
-NIL
-(-736)
-((-1422 (((-108) $ $) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3896 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 64)) (-1549 (((-108) $ $) NIL)))
-(((-187) (-736)) (T -187))
-NIL
-(-736)
-((-1422 (((-108) $ $) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3896 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 73)) (-1549 (((-108) $ $) NIL)))
-(((-188) (-736)) (T -188))
-NIL
-(-736)
-((-4101 (((-587 (-1084)) (-1084) (-707)) 22)) (-1488 (((-290 (-202)) (-290 (-202))) 29)) (-2614 (((-108) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 67)) (-4114 (((-108) (-202) (-202) (-587 (-290 (-202)))) 43)))
-(((-189) (-10 -7 (-15 -4101 ((-587 (-1084)) (-1084) (-707))) (-15 -1488 ((-290 (-202)) (-290 (-202)))) (-15 -4114 ((-108) (-202) (-202) (-587 (-290 (-202))))) (-15 -2614 ((-108) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))))) (T -189))
-((-2614 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *2 (-108)) (-5 *1 (-189)))) (-4114 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-587 (-290 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-189)))) (-1488 (*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-189)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-587 (-1084))) (-5 *1 (-189)) (-5 *3 (-1084)))))
-(-10 -7 (-15 -4101 ((-587 (-1084)) (-1084) (-707))) (-15 -1488 ((-290 (-202)) (-290 (-202)))) (-15 -4114 ((-108) (-202) (-202) (-587 (-290 (-202))))) (-15 -2614 ((-108) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))))
-((-1422 (((-108) $ $) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 17)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1323 (((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 55)) (-1549 (((-108) $ $) NIL)))
-(((-190) (-823)) (T -190))
-NIL
-(-823)
-((-1422 (((-108) $ $) NIL)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 12)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1323 (((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-191) (-823)) (T -191))
-NIL
-(-823)
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2084 (((-1170) $) 36) (((-1170) $ (-849) (-849)) 38)) (-2550 (($ $ (-915)) 19) (((-222 (-1067)) $ (-1084)) 15)) (-1718 (((-1170) $) 34)) (-2223 (((-791) $) 31) (($ (-587 |#1|)) 8)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $ $) 27)) (-1628 (($ $ $) 22)))
-(((-192 |#1|) (-13 (-1013) (-10 -8 (-15 -2550 ($ $ (-915))) (-15 -2550 ((-222 (-1067)) $ (-1084))) (-15 -1628 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -2223 ($ (-587 |#1|))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $)) (-15 -2084 ((-1170) $ (-849) (-849))))) (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $))))) (T -192))
-((-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-915)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $))))))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-222 (-1067))) (-5 *1 (-192 *4)) (-4 *4 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ *3)) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $))))))) (-1628 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $))))))) (-1639 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $))))))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $))))) (-5 *1 (-192 *3)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 (*2 $)) (-15 -2084 (*2 $))))))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 (*2 $)) (-15 -2084 (*2 $))))))) (-2084 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1170)) (-5 *1 (-192 *4)) (-4 *4 (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 (*2 $)) (-15 -2084 (*2 $))))))))
-(-13 (-1013) (-10 -8 (-15 -2550 ($ $ (-915))) (-15 -2550 ((-222 (-1067)) $ (-1084))) (-15 -1628 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -2223 ($ (-587 |#1|))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $)) (-15 -2084 ((-1170) $ (-849) (-849)))))
-((-2677 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2677 (|#2| |#4| (-1 |#2| |#2|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -193))
-((-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-337)) (-4 *6 (-1141 (-381 *2))) (-4 *2 (-1141 *5)) (-5 *1 (-193 *5 *2 *6 *3)) (-4 *3 (-316 *5 *2 *6)))))
-(-10 -7 (-15 -2677 (|#2| |#4| (-1 |#2| |#2|))))
-((-4047 ((|#2| |#2| (-707) |#2|) 41)) (-2727 ((|#2| |#2| (-707) |#2|) 37)) (-3946 (((-587 |#2|) (-587 (-2 (|:| |deg| (-707)) (|:| -2992 |#2|)))) 57)) (-2196 (((-587 (-2 (|:| |deg| (-707)) (|:| -2992 |#2|))) |#2|) 52)) (-3474 (((-108) |#2|) 49)) (-3307 (((-392 |#2|) |#2|) 76)) (-1974 (((-392 |#2|) |#2|) 75)) (-1345 ((|#2| |#2| (-707) |#2|) 35)) (-3945 (((-2 (|:| |cont| |#1|) (|:| -3655 (-587 (-2 (|:| |irr| |#2|) (|:| -3083 (-521)))))) |#2| (-108)) 68)))
-(((-194 |#1| |#2|) (-10 -7 (-15 -1974 ((-392 |#2|) |#2|)) (-15 -3307 ((-392 |#2|) |#2|)) (-15 -3945 ((-2 (|:| |cont| |#1|) (|:| -3655 (-587 (-2 (|:| |irr| |#2|) (|:| -3083 (-521)))))) |#2| (-108))) (-15 -2196 ((-587 (-2 (|:| |deg| (-707)) (|:| -2992 |#2|))) |#2|)) (-15 -3946 ((-587 |#2|) (-587 (-2 (|:| |deg| (-707)) (|:| -2992 |#2|))))) (-15 -1345 (|#2| |#2| (-707) |#2|)) (-15 -2727 (|#2| |#2| (-707) |#2|)) (-15 -4047 (|#2| |#2| (-707) |#2|)) (-15 -3474 ((-108) |#2|))) (-323) (-1141 |#1|)) (T -194))
-((-3474 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))) (-4047 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1141 *4)))) (-2727 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1141 *4)))) (-1345 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1141 *4)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |deg| (-707)) (|:| -2992 *5)))) (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *2 (-587 *5)) (-5 *1 (-194 *4 *5)))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -2992 *3)))) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-323)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521))))))) (-5 *1 (-194 *5 *3)) (-4 *3 (-1141 *5)))) (-3307 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -1974 ((-392 |#2|) |#2|)) (-15 -3307 ((-392 |#2|) |#2|)) (-15 -3945 ((-2 (|:| |cont| |#1|) (|:| -3655 (-587 (-2 (|:| |irr| |#2|) (|:| -3083 (-521)))))) |#2| (-108))) (-15 -2196 ((-587 (-2 (|:| |deg| (-707)) (|:| -2992 |#2|))) |#2|)) (-15 -3946 ((-587 |#2|) (-587 (-2 (|:| |deg| (-707)) (|:| -2992 |#2|))))) (-15 -1345 (|#2| |#2| (-707) |#2|)) (-15 -2727 (|#2| |#2| (-707) |#2|)) (-15 -4047 (|#2| |#2| (-707) |#2|)) (-15 -3474 ((-108) |#2|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-521) $) NIL (|has| (-521) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-521) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-521) (-961 (-521))))) (-1496 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-521) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| (-521) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-521) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-521) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-521) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-3305 (((-108) $) NIL (|has| (-521) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-521) (-783)))) (-1393 (($ (-1 (-521) (-521)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) NIL)) (-2720 (((-521) $) NIL (|has| (-521) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-521) $) NIL)) (-2751 (($ (-381 (-521))) 8)) (-1438 (((-820 (-521)) $) NIL (|has| (-521) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-521) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 7) (($ (-521)) NIL) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL) (((-929 10) $) 9)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-837))) (|has| (-521) (-133))))) (-1592 (((-707)) NIL)) (-1281 (((-521) $) NIL (|has| (-521) (-506)))) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL (|has| (-521) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1648 (($ $ $) NIL) (($ (-521) (-521)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL)))
-(((-195) (-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -2223 ((-929 10) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -2751 ($ (-381 (-521))))))) (T -195))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-929 10)) (-5 *1 (-195)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))))
-(-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -2223 ((-929 10) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -2751 ($ (-381 (-521))))))
-((-1749 (((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-776 |#2|)) (-1067)) 27) (((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-776 |#2|))) 23)) (-1955 (((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084) (-776 |#2|) (-776 |#2|) (-108)) 16)))
-(((-196 |#1| |#2|) (-10 -7 (-15 -1749 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-776 |#2|)))) (-15 -1749 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-776 |#2|)) (-1067))) (-15 -1955 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084) (-776 |#2|) (-776 |#2|) (-108)))) (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-886) (-29 |#1|))) (T -196))
-((-1955 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1084)) (-5 *6 (-108)) (-4 *7 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-4 *3 (-13 (-1105) (-886) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-587 (-776 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *7 *3)) (-5 *5 (-776 *3)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-776 *3))) (-5 *5 (-1067)) (-4 *3 (-13 (-1105) (-886) (-29 *6))) (-4 *6 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-587 (-776 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6 *3)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-776 *3))) (-4 *3 (-13 (-1105) (-886) (-29 *5))) (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-587 (-776 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5 *3)))))
-(-10 -7 (-15 -1749 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-776 |#2|)))) (-15 -1749 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1006 (-776 |#2|)) (-1067))) (-15 -1955 ((-3 (|:| |f1| (-776 |#2|)) (|:| |f2| (-587 (-776 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1084) (-776 |#2|) (-776 |#2|) (-108))))
-((-1749 (((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-381 (-880 |#1|)))) (-1067)) 44) (((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-381 (-880 |#1|))))) 41) (((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-290 |#1|))) (-1067)) 45) (((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-290 |#1|)))) 17)))
-(((-197 |#1|) (-10 -7 (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-290 |#1|))))) (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-290 |#1|))) (-1067))) (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-381 (-880 |#1|)))))) (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-381 (-880 |#1|)))) (-1067)))) (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (T -197))
-((-1749 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-776 (-381 (-880 *6))))) (-5 *5 (-1067)) (-5 *3 (-381 (-880 *6))) (-4 *6 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-776 (-290 *6))) (|:| |f2| (-587 (-776 (-290 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-776 (-381 (-880 *5))))) (-5 *3 (-381 (-880 *5))) (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-776 (-290 *5))) (|:| |f2| (-587 (-776 (-290 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-381 (-880 *6))) (-5 *4 (-1006 (-776 (-290 *6)))) (-5 *5 (-1067)) (-4 *6 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-776 (-290 *6))) (|:| |f2| (-587 (-776 (-290 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1006 (-776 (-290 *5)))) (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |f1| (-776 (-290 *5))) (|:| |f2| (-587 (-776 (-290 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))))
-(-10 -7 (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-290 |#1|))))) (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-290 |#1|))) (-1067))) (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-381 (-880 |#1|)))))) (-15 -1749 ((-3 (|:| |f1| (-776 (-290 |#1|))) (|:| |f2| (-587 (-776 (-290 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-381 (-880 |#1|)) (-1006 (-776 (-381 (-880 |#1|)))) (-1067))))
-((-3859 (((-2 (|:| -3201 (-1080 |#1|)) (|:| |deg| (-849))) (-1080 |#1|)) 21)) (-1631 (((-587 (-290 |#2|)) (-290 |#2|) (-849)) 43)))
-(((-198 |#1| |#2|) (-10 -7 (-15 -3859 ((-2 (|:| -3201 (-1080 |#1|)) (|:| |deg| (-849))) (-1080 |#1|))) (-15 -1631 ((-587 (-290 |#2|)) (-290 |#2|) (-849)))) (-970) (-13 (-513) (-783))) (T -198))
-((-1631 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *6 (-13 (-513) (-783))) (-5 *2 (-587 (-290 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-290 *6)) (-4 *5 (-970)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-2 (|:| -3201 (-1080 *4)) (|:| |deg| (-849)))) (-5 *1 (-198 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-13 (-513) (-783))))))
-(-10 -7 (-15 -3859 ((-2 (|:| -3201 (-1080 |#1|)) (|:| |deg| (-849))) (-1080 |#1|))) (-15 -1631 ((-587 (-290 |#2|)) (-290 |#2|) (-849))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2202 ((|#1| $) NIL)) (-1354 ((|#1| $) 25)) (-1269 (((-108) $ (-707)) NIL)) (-2231 (($) NIL T CONST)) (-2547 (($ $) NIL)) (-3288 (($ $) 31)) (-2237 ((|#1| |#1| $) NIL)) (-4019 ((|#1| $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-2522 (((-707) $) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1570 ((|#1| $) NIL)) (-3339 ((|#1| |#1| $) 28)) (-1465 ((|#1| |#1| $) 30)) (-4135 (($ |#1| $) NIL)) (-4151 (((-707) $) 27)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2690 ((|#1| $) NIL)) (-3563 ((|#1| $) 26)) (-3985 ((|#1| $) 24)) (-2747 ((|#1| $) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1759 ((|#1| |#1| $) NIL)) (-1447 (((-108) $) 9)) (-2280 (($) NIL)) (-2717 ((|#1| $) NIL)) (-3135 (($) NIL) (($ (-587 |#1|)) 16)) (-1252 (((-707) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2671 ((|#1| $) 13)) (-2869 (($ (-587 |#1|)) NIL)) (-1397 ((|#1| $) NIL)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-199 |#1|) (-13 (-230 |#1|) (-10 -8 (-15 -3135 ($ (-587 |#1|))))) (-1013)) (T -199))
-((-3135 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-199 *3)))))
-(-13 (-230 |#1|) (-10 -8 (-15 -3135 ($ (-587 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-3847 (($ (-290 |#1|)) 23)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3539 (((-108) $) NIL)) (-1296 (((-3 (-290 |#1|) "failed") $) NIL)) (-1496 (((-290 |#1|) $) NIL)) (-3157 (($ $) 31)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-1393 (($ (-1 (-290 |#1|) (-290 |#1|)) $) NIL)) (-3140 (((-290 |#1|) $) NIL)) (-1203 (($ $) 30)) (-4024 (((-1067) $) NIL)) (-1230 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1384 (($ (-707)) NIL)) (-3435 (($ $) 32)) (-2098 (((-521) $) NIL)) (-2223 (((-791) $) 57) (($ (-521)) NIL) (($ (-290 |#1|)) NIL)) (-1499 (((-290 |#1|) $ $) NIL)) (-1592 (((-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 25 T CONST)) (-3572 (($) 50 T CONST)) (-1549 (((-108) $ $) 28)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 19)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 24) (($ (-290 |#1|) $) 18)))
-(((-200 |#1| |#2|) (-13 (-565 (-290 |#1|)) (-961 (-290 |#1|)) (-10 -8 (-15 -3140 ((-290 |#1|) $)) (-15 -1203 ($ $)) (-15 -3157 ($ $)) (-15 -1499 ((-290 |#1|) $ $)) (-15 -1384 ($ (-707))) (-15 -1230 ((-108) $)) (-15 -3539 ((-108) $)) (-15 -2098 ((-521) $)) (-15 -1393 ($ (-1 (-290 |#1|) (-290 |#1|)) $)) (-15 -3847 ($ (-290 |#1|))) (-15 -3435 ($ $)))) (-13 (-970) (-783)) (-587 (-1084))) (T -200))
-((-3140 (*1 *2 *1) (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084))))) (-1203 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-783))) (-14 *3 (-587 (-1084))))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-783))) (-14 *3 (-587 (-1084))))) (-1499 (*1 *2 *1 *1) (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084))))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084))))) (-1230 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084))))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084))))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084))))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-290 *3) (-290 *3))) (-4 *3 (-13 (-970) (-783))) (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084))))) (-3847 (*1 *1 *2) (-12 (-5 *2 (-290 *3)) (-4 *3 (-13 (-970) (-783))) (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084))))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-783))) (-14 *3 (-587 (-1084))))))
-(-13 (-565 (-290 |#1|)) (-961 (-290 |#1|)) (-10 -8 (-15 -3140 ((-290 |#1|) $)) (-15 -1203 ($ $)) (-15 -3157 ($ $)) (-15 -1499 ((-290 |#1|) $ $)) (-15 -1384 ($ (-707))) (-15 -1230 ((-108) $)) (-15 -3539 ((-108) $)) (-15 -2098 ((-521) $)) (-15 -1393 ($ (-1 (-290 |#1|) (-290 |#1|)) $)) (-15 -3847 ($ (-290 |#1|))) (-15 -3435 ($ $))))
-((-4136 (((-108) (-1067)) 22)) (-1912 (((-3 (-776 |#2|) "failed") (-560 |#2|) |#2| (-776 |#2|) (-776 |#2|) (-108)) 32)) (-2778 (((-3 (-108) "failed") (-1080 |#2|) (-776 |#2|) (-776 |#2|) (-108)) 73) (((-3 (-108) "failed") (-880 |#1|) (-1084) (-776 |#2|) (-776 |#2|) (-108)) 74)))
-(((-201 |#1| |#2|) (-10 -7 (-15 -4136 ((-108) (-1067))) (-15 -1912 ((-3 (-776 |#2|) "failed") (-560 |#2|) |#2| (-776 |#2|) (-776 |#2|) (-108))) (-15 -2778 ((-3 (-108) "failed") (-880 |#1|) (-1084) (-776 |#2|) (-776 |#2|) (-108))) (-15 -2778 ((-3 (-108) "failed") (-1080 |#2|) (-776 |#2|) (-776 |#2|) (-108)))) (-13 (-425) (-783) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-29 |#1|))) (T -201))
-((-2778 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1080 *6)) (-5 *4 (-776 *6)) (-4 *6 (-13 (-1105) (-29 *5))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-201 *5 *6)))) (-2778 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-880 *6)) (-5 *4 (-1084)) (-5 *5 (-776 *7)) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-4 *7 (-13 (-1105) (-29 *6))) (-5 *1 (-201 *6 *7)))) (-1912 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-776 *4)) (-5 *3 (-560 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1105) (-29 *6))) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-201 *6 *4)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1105) (-29 *4))))))
-(-10 -7 (-15 -4136 ((-108) (-1067))) (-15 -1912 ((-3 (-776 |#2|) "failed") (-560 |#2|) |#2| (-776 |#2|) (-776 |#2|) (-108))) (-15 -2778 ((-3 (-108) "failed") (-880 |#1|) (-1084) (-776 |#2|) (-776 |#2|) (-108))) (-15 -2778 ((-3 (-108) "failed") (-1080 |#2|) (-776 |#2|) (-776 |#2|) (-108))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 89)) (-2556 (((-521) $) 99)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2868 (($ $) NIL)) (-2910 (($ $) 77)) (-2775 (($ $) 65)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-1984 (($ $) 56)) (-2165 (((-108) $ $) NIL)) (-2886 (($ $) 75)) (-2752 (($ $) 63)) (-2578 (((-521) $) 116)) (-2932 (($ $) 80)) (-2796 (($ $) 67)) (-2231 (($) NIL T CONST)) (-2844 (($ $) NIL)) (-1296 (((-3 (-521) "failed") $) 115) (((-3 (-381 (-521)) "failed") $) 112)) (-1496 (((-521) $) 113) (((-381 (-521)) $) 110)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) 92)) (-1675 (((-381 (-521)) $ (-707)) 108) (((-381 (-521)) $ (-707) (-707)) 107)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2207 (((-849)) 29) (((-849) (-849)) NIL (|has| $ (-6 -4224)))) (-2273 (((-108) $) NIL)) (-2840 (($) 39)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL)) (-3490 (((-521) $) 35)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL)) (-2549 (($ $) NIL)) (-3305 (((-108) $) 88)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) 53) (($) 34 (-12 (-2416 (|has| $ (-6 -4216))) (-2416 (|has| $ (-6 -4224)))))) (-2459 (($ $ $) 52) (($) 33 (-12 (-2416 (|has| $ (-6 -4216))) (-2416 (|has| $ (-6 -4224)))))) (-3356 (((-521) $) 27)) (-1307 (($ $) 30)) (-3551 (($ $) 57)) (-1253 (($ $) 62)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-2914 (((-849) (-521)) NIL (|has| $ (-6 -4224)))) (-4146 (((-1031) $) NIL) (((-521) $) 90)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL)) (-2720 (($ $) NIL)) (-3073 (($ (-521) (-521)) NIL) (($ (-521) (-521) (-849)) 100)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2246 (((-521) $) 28)) (-3243 (($) 38)) (-3265 (($ $) 61)) (-3794 (((-707) $) NIL)) (-1445 (((-1067) (-1067)) 8)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3312 (((-849)) NIL) (((-849) (-849)) NIL (|has| $ (-6 -4224)))) (-2193 (($ $ (-707)) NIL) (($ $) 93)) (-1989 (((-849) (-521)) NIL (|has| $ (-6 -4224)))) (-1787 (($ $) 78)) (-2806 (($ $) 68)) (-2921 (($ $) 79)) (-2786 (($ $) 66)) (-2898 (($ $) 76)) (-2764 (($ $) 64)) (-1438 (((-353) $) 104) (((-202) $) 101) (((-820 (-353)) $) NIL) (((-497) $) 45)) (-2223 (((-791) $) 42) (($ (-521)) 60) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-521)) 60) (($ (-381 (-521))) NIL)) (-1592 (((-707)) NIL)) (-1281 (($ $) NIL)) (-2201 (((-849)) 32) (((-849) (-849)) NIL (|has| $ (-6 -4224)))) (-3354 (((-849)) 25)) (-1811 (($ $) 83)) (-2838 (($ $) 71) (($ $ $) 109)) (-1842 (((-108) $ $) NIL)) (-1795 (($ $) 81)) (-2817 (($ $) 69)) (-1830 (($ $) 86)) (-2862 (($ $) 74)) (-3919 (($ $) 84)) (-2874 (($ $) 72)) (-1821 (($ $) 85)) (-2850 (($ $) 73)) (-1803 (($ $) 82)) (-2827 (($ $) 70)) (-4012 (($ $) 117)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 36 T CONST)) (-3572 (($) 37 T CONST)) (-3828 (((-1067) $) 19) (((-1067) $ (-108)) 21) (((-1170) (-758) $) 22) (((-1170) (-758) $ (-108)) 23)) (-1763 (($ $) 96)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-2847 (($ $ $) 98)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 54)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 46)) (-1648 (($ $ $) 87) (($ $ (-521)) 55)) (-1639 (($ $) 47) (($ $ $) 49)) (-1628 (($ $ $) 48)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 58) (($ $ (-381 (-521))) 128) (($ $ $) 59)) (* (($ (-849) $) 31) (($ (-707) $) NIL) (($ (-521) $) 51) (($ $ $) 50) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-202) (-13 (-378) (-210) (-764) (-1105) (-562 (-497)) (-10 -8 (-15 -1648 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3243 ($)) (-15 -4146 ((-521) $)) (-15 -1307 ($ $)) (-15 -3551 ($ $)) (-15 -2838 ($ $ $)) (-15 -1763 ($ $)) (-15 -2847 ($ $ $)) (-15 -1445 ((-1067) (-1067))) (-15 -1675 ((-381 (-521)) $ (-707))) (-15 -1675 ((-381 (-521)) $ (-707) (-707)))))) (T -202))
-((** (*1 *1 *1 *1) (-5 *1 (-202))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-202)))) (-3243 (*1 *1) (-5 *1 (-202))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-202)))) (-1307 (*1 *1 *1) (-5 *1 (-202))) (-3551 (*1 *1 *1) (-5 *1 (-202))) (-2838 (*1 *1 *1 *1) (-5 *1 (-202))) (-1763 (*1 *1 *1) (-5 *1 (-202))) (-2847 (*1 *1 *1 *1) (-5 *1 (-202))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-202)))) (-1675 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202)))) (-1675 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202)))))
-(-13 (-378) (-210) (-764) (-1105) (-562 (-497)) (-10 -8 (-15 -1648 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3243 ($)) (-15 -4146 ((-521) $)) (-15 -1307 ($ $)) (-15 -3551 ($ $)) (-15 -2838 ($ $ $)) (-15 -1763 ($ $)) (-15 -2847 ($ $ $)) (-15 -1445 ((-1067) (-1067))) (-15 -1675 ((-381 (-521)) $ (-707))) (-15 -1675 ((-381 (-521)) $ (-707) (-707)))))
-((-2708 (((-154 (-202)) (-707) (-154 (-202))) 11) (((-202) (-707) (-202)) 12)) (-4003 (((-154 (-202)) (-154 (-202))) 13) (((-202) (-202)) 14)) (-1941 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 19) (((-202) (-202) (-202)) 22)) (-1498 (((-154 (-202)) (-154 (-202))) 25) (((-202) (-202)) 24)) (-3481 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 43) (((-202) (-202) (-202)) 35)) (-3321 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 48) (((-202) (-202) (-202)) 45)) (-4032 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 15) (((-202) (-202) (-202)) 16)) (-2053 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 17) (((-202) (-202) (-202)) 18)) (-2154 (((-154 (-202)) (-154 (-202))) 60) (((-202) (-202)) 59)) (-2845 (((-202) (-202)) 54) (((-154 (-202)) (-154 (-202))) 58)) (-1763 (((-154 (-202)) (-154 (-202))) 7) (((-202) (-202)) 9)) (-2847 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 30) (((-202) (-202) (-202)) 26)))
-(((-203) (-10 -7 (-15 -1763 ((-202) (-202))) (-15 -1763 ((-154 (-202)) (-154 (-202)))) (-15 -2847 ((-202) (-202) (-202))) (-15 -2847 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -4003 ((-202) (-202))) (-15 -4003 ((-154 (-202)) (-154 (-202)))) (-15 -1498 ((-202) (-202))) (-15 -1498 ((-154 (-202)) (-154 (-202)))) (-15 -2708 ((-202) (-707) (-202))) (-15 -2708 ((-154 (-202)) (-707) (-154 (-202)))) (-15 -4032 ((-202) (-202) (-202))) (-15 -4032 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3481 ((-202) (-202) (-202))) (-15 -3481 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2053 ((-202) (-202) (-202))) (-15 -2053 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3321 ((-202) (-202) (-202))) (-15 -3321 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2845 ((-154 (-202)) (-154 (-202)))) (-15 -2845 ((-202) (-202))) (-15 -2154 ((-202) (-202))) (-15 -2154 ((-154 (-202)) (-154 (-202)))) (-15 -1941 ((-202) (-202) (-202))) (-15 -1941 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))) (T -203))
-((-1941 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1941 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2845 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3321 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3321 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2053 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2053 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-3481 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3481 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-4032 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-4032 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2708 (*1 *2 *3 *2) (-12 (-5 *2 (-154 (-202))) (-5 *3 (-707)) (-5 *1 (-203)))) (-2708 (*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-707)) (-5 *1 (-203)))) (-1498 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1498 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2847 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2847 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))))
-(-10 -7 (-15 -1763 ((-202) (-202))) (-15 -1763 ((-154 (-202)) (-154 (-202)))) (-15 -2847 ((-202) (-202) (-202))) (-15 -2847 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -4003 ((-202) (-202))) (-15 -4003 ((-154 (-202)) (-154 (-202)))) (-15 -1498 ((-202) (-202))) (-15 -1498 ((-154 (-202)) (-154 (-202)))) (-15 -2708 ((-202) (-707) (-202))) (-15 -2708 ((-154 (-202)) (-707) (-154 (-202)))) (-15 -4032 ((-202) (-202) (-202))) (-15 -4032 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3481 ((-202) (-202) (-202))) (-15 -3481 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2053 ((-202) (-202) (-202))) (-15 -2053 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -3321 ((-202) (-202) (-202))) (-15 -3321 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2845 ((-154 (-202)) (-154 (-202)))) (-15 -2845 ((-202) (-202))) (-15 -2154 ((-202) (-202))) (-15 -2154 ((-154 (-202)) (-154 (-202)))) (-15 -1941 ((-202) (-202) (-202))) (-15 -1941 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3482 (($ (-707) (-707)) NIL)) (-3892 (($ $ $) NIL)) (-3091 (($ (-1165 |#1|)) NIL) (($ $) NIL)) (-2477 (($ |#1| |#1| |#1|) 32)) (-1902 (((-108) $) NIL)) (-3415 (($ $ (-521) (-521)) NIL)) (-3848 (($ $ (-521) (-521)) NIL)) (-3832 (($ $ (-521) (-521) (-521) (-521)) NIL)) (-3699 (($ $) NIL)) (-3730 (((-108) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2505 (($ $ (-521) (-521) $) NIL)) (-2396 ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) NIL)) (-3419 (($ $ (-521) (-1165 |#1|)) NIL)) (-3790 (($ $ (-521) (-1165 |#1|)) NIL)) (-2714 (($ |#1| |#1| |#1|) 31)) (-1933 (($ (-707) |#1|) NIL)) (-2231 (($) NIL T CONST)) (-4014 (($ $) NIL (|has| |#1| (-282)))) (-2185 (((-1165 |#1|) $ (-521)) NIL)) (-3957 (($ |#1|) 30)) (-3045 (($ |#1|) 29)) (-2473 (($ |#1|) 28)) (-3167 (((-707) $) NIL (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-2020 (((-707) $) NIL (|has| |#1| (-513)))) (-3993 (((-587 (-1165 |#1|)) $) NIL (|has| |#1| (-513)))) (-1416 (((-707) $) NIL)) (-1869 (($ (-707) (-707) |#1|) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-3666 ((|#1| $) NIL (|has| |#1| (-6 (-4235 "*"))))) (-1698 (((-521) $) NIL)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1646 (((-521) $) NIL)) (-2809 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#1|))) 10)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3256 (((-587 (-587 |#1|)) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1573 (((-3 $ "failed") $) NIL (|has| |#1| (-337)))) (-3151 (($) 11)) (-2151 (($ $ $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521))) NIL)) (-3523 (($ (-587 |#1|)) NIL) (($ (-587 $)) NIL)) (-3776 (((-108) $) NIL)) (-1302 ((|#1| $) NIL (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-1335 (((-1165 |#1|) $ (-521)) NIL)) (-2223 (($ (-1165 |#1|)) NIL) (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2166 (((-108) $) NIL)) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-521) $) NIL) (((-1165 |#1|) $ (-1165 |#1|)) 14) (((-1165 |#1|) (-1165 |#1|) $) NIL) (((-871 |#1|) $ (-871 |#1|)) 20)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-204 |#1|) (-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 * ((-871 |#1|) $ (-871 |#1|))) (-15 -3151 ($)) (-15 -2473 ($ |#1|)) (-15 -3045 ($ |#1|)) (-15 -3957 ($ |#1|)) (-15 -2714 ($ |#1| |#1| |#1|)) (-15 -2477 ($ |#1| |#1| |#1|)))) (-13 (-337) (-1105))) (T -204))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105))) (-5 *1 (-204 *3)))) (-3151 (*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-2473 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-3045 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-3957 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-2714 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))) (-2477 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
-(-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 * ((-871 |#1|) $ (-871 |#1|))) (-15 -3151 ($)) (-15 -2473 ($ |#1|)) (-15 -3045 ($ |#1|)) (-15 -3957 ($ |#1|)) (-15 -2714 ($ |#1| |#1| |#1|)) (-15 -2477 ($ |#1| |#1| |#1|))))
-((-3014 (($ (-1 (-108) |#2|) $) 16)) (-2726 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-2036 (($) NIL) (($ (-587 |#2|)) 11)) (-1549 (((-108) $ $) 22)))
-(((-205 |#1| |#2|) (-10 -8 (-15 -3014 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2726 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2726 (|#1| |#2| |#1|)) (-15 -2036 (|#1| (-587 |#2|))) (-15 -2036 (|#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-206 |#2|) (-1013)) (T -205))
-NIL
-(-10 -8 (-15 -3014 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2726 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2726 (|#1| |#2| |#1|)) (-15 -2036 (|#1| (-587 |#2|))) (-15 -2036 (|#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-3014 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2354 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2036 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 50)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-206 |#1|) (-1196) (-1013)) (T -206))
+((-1416 (((-108) $ $) NIL)) (-3384 (($ (-522)) 13) (($ $ $) 14)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 17)) (-1531 (((-108) $ $) 9)))
+(((-147) (-13 (-1014) (-10 -8 (-15 -3384 ($ (-522))) (-15 -3384 ($ $ $))))) (T -147))
+((-3384 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-147)))) (-3384 (*1 *1 *1 *1) (-5 *1 (-147))))
+(-13 (-1014) (-10 -8 (-15 -3384 ($ (-522))) (-15 -3384 ($ $ $))))
+((-2626 (((-110) (-1085)) 97)))
+(((-148) (-10 -7 (-15 -2626 ((-110) (-1085))))) (T -148))
+((-2626 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-148)))))
+(-10 -7 (-15 -2626 ((-110) (-1085))))
+((-4201 ((|#3| |#3|) 20)))
+(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -4201 (|#3| |#3|))) (-971) (-1142 |#1|) (-1142 |#2|)) (T -149))
+((-4201 (*1 *2 *2) (-12 (-4 *3 (-971)) (-4 *4 (-1142 *3)) (-5 *1 (-149 *3 *4 *2)) (-4 *2 (-1142 *4)))))
+(-10 -7 (-15 -4201 (|#3| |#3|)))
+((-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 216)) (-1865 ((|#2| $) 96)) (-2908 (($ $) 243)) (-2772 (($ $) 237)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 40)) (-2884 (($ $) 241)) (-2748 (($ $) 235)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 140)) (-1484 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 138)) (-2277 (($ $ $) 221)) (-2096 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 154) (((-628 |#2|) (-628 $)) 148)) (-3864 (($ (-1081 |#2|)) 119) (((-3 $ "failed") (-382 (-1081 |#2|))) NIL)) (-2682 (((-3 $ "failed") $) 208)) (-1664 (((-3 (-382 (-522)) "failed") $) 198)) (-1770 (((-108) $) 193)) (-1492 (((-382 (-522)) $) 196)) (-3166 (((-850)) 89)) (-2254 (($ $ $) 223)) (-3329 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 259)) (-2838 (($) 232)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 185) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 190)) (-2100 ((|#2| $) 94)) (-1712 (((-1081 |#2|) $) 121)) (-1391 (($ (-1 |#2| |#2|) $) 102)) (-1254 (($ $) 234)) (-3849 (((-1081 |#2|) $) 120)) (-3098 (($ $) 201)) (-2059 (($) 97)) (-3729 (((-393 (-1081 $)) (-1081 $)) 88)) (-3495 (((-393 (-1081 $)) (-1081 $)) 57)) (-2232 (((-3 $ "failed") $ |#2|) 203) (((-3 $ "failed") $ $) 206)) (-3266 (($ $) 233)) (-3730 (((-708) $) 218)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 227)) (-2769 ((|#2| (-1166 $)) NIL) ((|#2|) 91)) (-2157 (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-1479 (((-1081 |#2|)) 114)) (-2896 (($ $) 242)) (-2761 (($ $) 236)) (-3677 (((-1166 |#2|) $ (-1166 $)) 127) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $) 110) (((-628 |#2|) (-1166 $)) NIL)) (-1431 (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-1081 |#2|) $) NIL) (($ (-1081 |#2|)) NIL) (((-821 (-522)) $) 176) (((-821 (-354)) $) 180) (((-154 (-354)) $) 166) (((-154 (-202)) $) 161) (((-498) $) 172)) (-3122 (($ $) 98)) (-2190 (((-792) $) 137) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-382 (-522))) NIL) (($ $) NIL)) (-2051 (((-1081 |#2|) $) 23)) (-2323 (((-708)) 100)) (-1759 (($ $) 246)) (-2836 (($ $) 240)) (-1745 (($ $) 244)) (-2815 (($ $) 238)) (-3824 ((|#2| $) 231)) (-1752 (($ $) 245)) (-2825 (($ $) 239)) (-2241 (($ $) 156)) (-1531 (((-108) $ $) 104)) (-1549 (((-108) $ $) 192)) (-1612 (($ $) 106) (($ $ $) NIL)) (-1602 (($ $ $) 105)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-382 (-522))) 265) (($ $ $) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 112) (($ $ $) 141) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2190 (|#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2013 ((-2 (|:| -3210 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -3730 ((-708) |#1|)) (-15 -2752 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -2254 (|#1| |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1431 ((-154 (-202)) |#1|)) (-15 -1431 ((-154 (-354)) |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3266 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2838 (|#1|)) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -3495 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3729 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -3329 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3824 (|#2| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3122 (|#1| |#1|)) (-15 -2059 (|#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -3864 ((-3 |#1| "failed") (-382 (-1081 |#2|)))) (-15 -3849 ((-1081 |#2|) |#1|)) (-15 -1431 (|#1| (-1081 |#2|))) (-15 -3864 (|#1| (-1081 |#2|))) (-15 -1479 ((-1081 |#2|))) (-15 -2096 ((-628 |#2|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1431 ((-1081 |#2|) |#1|)) (-15 -2769 (|#2|)) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -1712 ((-1081 |#2|) |#1|)) (-15 -2051 ((-1081 |#2|) |#1|)) (-15 -2769 (|#2| (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2100 (|#2| |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -3166 ((-850))) (-15 -2190 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-151 |#2|) (-157)) (T -150))
+((-2323 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-3166 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-850)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))) (-2769 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2)))) (-1479 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1081 *4)) (-5 *1 (-150 *3 *4)) (-4 *3 (-151 *4)))))
+(-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2190 (|#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2013 ((-2 (|:| -3210 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -3730 ((-708) |#1|)) (-15 -2752 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -2254 (|#1| |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1431 ((-154 (-202)) |#1|)) (-15 -1431 ((-154 (-354)) |#1|)) (-15 -2772 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3266 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2838 (|#1|)) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -3495 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3729 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -3329 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3824 (|#2| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3122 (|#1| |#1|)) (-15 -2059 (|#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -3864 ((-3 |#1| "failed") (-382 (-1081 |#2|)))) (-15 -3849 ((-1081 |#2|) |#1|)) (-15 -1431 (|#1| (-1081 |#2|))) (-15 -3864 (|#1| (-1081 |#2|))) (-15 -1479 ((-1081 |#2|))) (-15 -2096 ((-628 |#2|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1431 ((-1081 |#2|) |#1|)) (-15 -2769 (|#2|)) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -1712 ((-1081 |#2|) |#1|)) (-15 -2051 ((-1081 |#2|) |#1|)) (-15 -2769 (|#2| (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2100 (|#2| |#1|)) (-15 -1865 (|#2| |#1|)) (-15 -3166 ((-850))) (-15 -2190 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 93 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2022 (($ $) 94 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-3739 (((-108) $) 96 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-3174 (((-628 |#1|) (-1166 $)) 46) (((-628 |#1|)) 61)) (-1865 ((|#1| $) 52)) (-2908 (($ $) 228 (|has| |#1| (-1106)))) (-2772 (($ $) 211 (|has| |#1| (-1106)))) (-1398 (((-1094 (-850) (-708)) (-522)) 147 (|has| |#1| (-324)))) (-1233 (((-3 $ "failed") $ $) 19)) (-1565 (((-393 (-1081 $)) (-1081 $)) 242 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-3119 (($ $) 113 (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3450 (((-393 $) $) 114 (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-1929 (($ $) 241 (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 245 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-1687 (((-108) $ $) 104 (|has| |#1| (-283)))) (-1629 (((-708)) 87 (|has| |#1| (-343)))) (-2884 (($ $) 227 (|has| |#1| (-1106)))) (-2748 (($ $) 212 (|has| |#1| (-1106)))) (-2930 (($ $) 226 (|has| |#1| (-1106)))) (-2794 (($ $) 213 (|has| |#1| (-1106)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 169 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 167 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 166)) (-1484 (((-522) $) 170 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 168 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 165)) (-3766 (($ (-1166 |#1|) (-1166 $)) 48) (($ (-1166 |#1|)) 64)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-324)))) (-2277 (($ $ $) 108 (|has| |#1| (-283)))) (-2109 (((-628 |#1|) $ (-1166 $)) 53) (((-628 |#1|) $) 59)) (-2096 (((-628 (-522)) (-628 $)) 164 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 163 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 162) (((-628 |#1|) (-628 $)) 161)) (-3864 (($ (-1081 |#1|)) 158) (((-3 $ "failed") (-382 (-1081 |#1|))) 155 (|has| |#1| (-338)))) (-2682 (((-3 $ "failed") $) 34)) (-1937 ((|#1| $) 253)) (-1664 (((-3 (-382 (-522)) "failed") $) 246 (|has| |#1| (-507)))) (-1770 (((-108) $) 248 (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) 247 (|has| |#1| (-507)))) (-3166 (((-850)) 54)) (-3255 (($) 90 (|has| |#1| (-343)))) (-2254 (($ $ $) 107 (|has| |#1| (-283)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 102 (|has| |#1| (-283)))) (-1223 (($) 149 (|has| |#1| (-324)))) (-2511 (((-108) $) 150 (|has| |#1| (-324)))) (-2111 (($ $ (-708)) 141 (|has| |#1| (-324))) (($ $) 140 (|has| |#1| (-324)))) (-2813 (((-108) $) 115 (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3329 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-980)) (|has| |#1| (-1106))))) (-2838 (($) 238 (|has| |#1| (-1106)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 261 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 260 (|has| |#1| (-815 (-354))))) (-3714 (((-850) $) 152 (|has| |#1| (-324))) (((-770 (-850)) $) 138 (|has| |#1| (-324)))) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 240 (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-2100 ((|#1| $) 51)) (-3004 (((-3 $ "failed") $) 142 (|has| |#1| (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 111 (|has| |#1| (-283)))) (-1712 (((-1081 |#1|) $) 44 (|has| |#1| (-338)))) (-2814 (($ $ $) 207 (|has| |#1| (-784)))) (-2446 (($ $ $) 206 (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) 262)) (-2120 (((-850) $) 89 (|has| |#1| (-343)))) (-1254 (($ $) 235 (|has| |#1| (-1106)))) (-3849 (((-1081 |#1|) $) 156)) (-2224 (($ (-588 $)) 100 (-3708 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (($ $ $) 99 (-3708 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2385 (((-1068) $) 9)) (-3098 (($ $) 116 (|has| |#1| (-338)))) (-3802 (($) 143 (|has| |#1| (-324)) CONST)) (-2717 (($ (-850)) 88 (|has| |#1| (-343)))) (-2059 (($) 257)) (-1948 ((|#1| $) 254)) (-4151 (((-1032) $) 10)) (-1383 (($) 160)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 101 (-3708 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2259 (($ (-588 $)) 98 (-3708 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (($ $ $) 97 (-3708 (|has| |#1| (-283)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 146 (|has| |#1| (-324)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 244 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-3495 (((-393 (-1081 $)) (-1081 $)) 243 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-1916 (((-393 $) $) 112 (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-283))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 109 (|has| |#1| (-283)))) (-2232 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 92 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 103 (|has| |#1| (-283)))) (-3266 (($ $) 236 (|has| |#1| (-1106)))) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) 268 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 266 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 265 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 264 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 263 (|has| |#1| (-483 (-1085) |#1|)))) (-3730 (((-708) $) 105 (|has| |#1| (-283)))) (-2545 (($ $ |#1|) 269 (|has| |#1| (-262 |#1| |#1|)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 106 (|has| |#1| (-283)))) (-2769 ((|#1| (-1166 $)) 47) ((|#1|) 60)) (-3018 (((-708) $) 151 (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) 139 (|has| |#1| (-324)))) (-2157 (($ $ (-1 |#1| |#1|) (-708)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-588 (-1085)) (-588 (-708))) 130 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 131 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 132 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 133 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 135 (-3708 (-4015 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4015 (|has| |#1| (-210)) (|has| |#1| (-338))))) (($ $) 137 (-3708 (-4015 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4015 (|has| |#1| (-210)) (|has| |#1| (-338)))))) (-1859 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-338)))) (-1479 (((-1081 |#1|)) 159)) (-1738 (($ $) 225 (|has| |#1| (-1106)))) (-2804 (($ $) 214 (|has| |#1| (-1106)))) (-2581 (($) 148 (|has| |#1| (-324)))) (-2919 (($ $) 224 (|has| |#1| (-1106)))) (-2784 (($ $) 215 (|has| |#1| (-1106)))) (-2896 (($ $) 223 (|has| |#1| (-1106)))) (-2761 (($ $) 216 (|has| |#1| (-1106)))) (-3677 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49) (((-1166 |#1|) $) 66) (((-628 |#1|) (-1166 $)) 65)) (-1431 (((-1166 |#1|) $) 63) (($ (-1166 |#1|)) 62) (((-1081 |#1|) $) 171) (($ (-1081 |#1|)) 157) (((-821 (-522)) $) 259 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 258 (|has| |#1| (-563 (-821 (-354))))) (((-154 (-354)) $) 210 (|has| |#1| (-947))) (((-154 (-202)) $) 209 (|has| |#1| (-947))) (((-498) $) 208 (|has| |#1| (-563 (-498))))) (-3122 (($ $) 256)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 145 (-3708 (-4015 (|has| $ (-133)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (|has| |#1| (-324))))) (-3911 (($ |#1| |#1|) 255)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ (-382 (-522))) 86 (-3708 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522)))))) (($ $) 91 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-2143 (($ $) 144 (|has| |#1| (-324))) (((-3 $ "failed") $) 43 (-3708 (-4015 (|has| $ (-133)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))) (|has| |#1| (-133))))) (-2051 (((-1081 |#1|) $) 45)) (-2323 (((-708)) 29)) (-3855 (((-1166 $)) 67)) (-1759 (($ $) 234 (|has| |#1| (-1106)))) (-2836 (($ $) 222 (|has| |#1| (-1106)))) (-3958 (((-108) $ $) 95 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))) (-1745 (($ $) 233 (|has| |#1| (-1106)))) (-2815 (($ $) 221 (|has| |#1| (-1106)))) (-1776 (($ $) 232 (|has| |#1| (-1106)))) (-2860 (($ $) 220 (|has| |#1| (-1106)))) (-3824 ((|#1| $) 250 (|has| |#1| (-1106)))) (-3924 (($ $) 231 (|has| |#1| (-1106)))) (-2872 (($ $) 219 (|has| |#1| (-1106)))) (-1768 (($ $) 230 (|has| |#1| (-1106)))) (-2848 (($ $) 218 (|has| |#1| (-1106)))) (-1752 (($ $) 229 (|has| |#1| (-1106)))) (-2825 (($ $) 217 (|has| |#1| (-1106)))) (-2241 (($ $) 251 (|has| |#1| (-980)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 117 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-1 |#1| |#1|) (-708)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-588 (-1085)) (-588 (-708))) 126 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 127 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 128 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 129 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 134 (-3708 (-4015 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4015 (|has| |#1| (-210)) (|has| |#1| (-338))))) (($ $) 136 (-3708 (-4015 (|has| |#1| (-338)) (|has| |#1| (-210))) (|has| |#1| (-210)) (-4015 (|has| |#1| (-210)) (|has| |#1| (-338)))))) (-1574 (((-108) $ $) 204 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 203 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 205 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 202 (|has| |#1| (-784)))) (-1620 (($ $ $) 121 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-382 (-522))) 239 (-12 (|has| |#1| (-928)) (|has| |#1| (-1106)))) (($ $ $) 237 (|has| |#1| (-1106))) (($ $ (-522)) 118 (|has| |#1| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-382 (-522)) $) 120 (|has| |#1| (-338))) (($ $ (-382 (-522))) 119 (|has| |#1| (-338)))))
+(((-151 |#1|) (-1197) (-157)) (T -151))
+((-2100 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2059 (*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3122 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-3911 (*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))) (-2232 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-2241 (*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1106)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-980)) (-4 *3 (-1106)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))))
+(-13 (-662 |t#1| (-1081 |t#1|)) (-386 |t#1|) (-208 |t#1|) (-313 |t#1|) (-375 |t#1|) (-813 |t#1|) (-352 |t#1|) (-157) (-10 -8 (-6 -3911) (-15 -2059 ($)) (-15 -3122 ($ $)) (-15 -3911 ($ |t#1| |t#1|)) (-15 -1948 (|t#1| $)) (-15 -1937 (|t#1| $)) (-15 -2100 (|t#1| $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-6 (-514)) (-15 -2232 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-6 -4237)) (-6 -4237) |%noBranch|) (IF (|has| |t#1| (-6 -4234)) (-6 -4234) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-947)) (PROGN (-6 (-563 (-154 (-202)))) (-6 (-563 (-154 (-354))))) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -2241 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-1106)) (-15 -3824 (|t#1| $)) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -3329 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-838)) (IF (|has| |t#1| (-283)) (-6 (-838)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-37 |#1|) . T) ((-37 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-34) |has| |#1| (-1106)) ((-91) |has| |#1| (-1106)) ((-97) . T) ((-107 #0# #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3708 (|has| |#1| (-324)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 (-154 (-202))) |has| |#1| (-947)) ((-563 (-154 (-354))) |has| |#1| (-947)) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-563 #1=(-1081 |#1|)) . T) ((-208 |#1|) . T) ((-210) -3708 (|has| |#1| (-324)) (|has| |#1| (-210))) ((-220) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-260) |has| |#1| (-1106)) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-266) -3708 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-283) -3708 (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-338) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-377) |has| |#1| (-324)) ((-343) -3708 (|has| |#1| (-343)) (|has| |#1| (-324))) ((-324) |has| |#1| (-324)) ((-345 |#1| #1#) . T) ((-384 |#1| #1#) . T) ((-313 |#1|) . T) ((-352 |#1|) . T) ((-375 |#1|) . T) ((-386 |#1|) . T) ((-426) -3708 (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-463) |has| |#1| (-1106)) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-514) -3708 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-590 #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-655 |#1|) . T) ((-655 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-662 |#1| #1#) . T) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-838) -12 (|has| |#1| (-283)) (|has| |#1| (-838))) ((-849) -3708 (|has| |#1| (-324)) (|has| |#1| (-338)) (|has| |#1| (-283))) ((-928) -12 (|has| |#1| (-928)) (|has| |#1| (-1106))) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-324)) ((-1106) |has| |#1| (-1106)) ((-1109) |has| |#1| (-1106)) ((-1120) . T) ((-1124) -3708 (|has| |#1| (-324)) (|has| |#1| (-338)) (-12 (|has| |#1| (-283)) (|has| |#1| (-838)))))
+((-1916 (((-393 |#2|) |#2|) 63)))
+(((-152 |#1| |#2|) (-10 -7 (-15 -1916 ((-393 |#2|) |#2|))) (-283) (-1142 (-154 |#1|))) (T -152))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-152 *4 *3)) (-4 *3 (-1142 (-154 *4))))))
+(-10 -7 (-15 -1916 ((-393 |#2|) |#2|)))
+((-1391 (((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)) 14)))
+(((-153 |#1| |#2|) (-10 -7 (-15 -1391 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|)))) (-157) (-157)) (T -153))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6)))))
+(-10 -7 (-15 -1391 ((-154 |#2|) (-1 |#2| |#1|) (-154 |#1|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 33)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-2022 (($ $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-3739 (((-108) $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-3174 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) NIL)) (-1865 ((|#1| $) NIL)) (-2908 (($ $) NIL (|has| |#1| (-1106)))) (-2772 (($ $) NIL (|has| |#1| (-1106)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-324)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-3119 (($ $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3450 (((-393 $) $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-1929 (($ $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-283)))) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-2884 (($ $) NIL (|has| |#1| (-1106)))) (-2748 (($ $) NIL (|has| |#1| (-1106)))) (-2930 (($ $) NIL (|has| |#1| (-1106)))) (-2794 (($ $) NIL (|has| |#1| (-1106)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3766 (($ (-1166 |#1|) (-1166 $)) NIL) (($ (-1166 |#1|)) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-324)))) (-2277 (($ $ $) NIL (|has| |#1| (-283)))) (-2109 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3864 (($ (-1081 |#1|)) NIL) (((-3 $ "failed") (-382 (-1081 |#1|))) NIL (|has| |#1| (-338)))) (-2682 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 13)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-507)))) (-1770 (((-108) $) NIL (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) NIL (|has| |#1| (-507)))) (-3166 (((-850)) NIL)) (-3255 (($) NIL (|has| |#1| (-343)))) (-2254 (($ $ $) NIL (|has| |#1| (-283)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-283)))) (-1223 (($) NIL (|has| |#1| (-324)))) (-2511 (((-108) $) NIL (|has| |#1| (-324)))) (-2111 (($ $ (-708)) NIL (|has| |#1| (-324))) (($ $) NIL (|has| |#1| (-324)))) (-2813 (((-108) $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3329 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-980)) (|has| |#1| (-1106))))) (-2838 (($) NIL (|has| |#1| (-1106)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| |#1| (-815 (-354))))) (-3714 (((-850) $) NIL (|has| |#1| (-324))) (((-770 (-850)) $) NIL (|has| |#1| (-324)))) (-2782 (((-108) $) 35)) (-1504 (($ $ (-522)) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-1106))))) (-2100 ((|#1| $) 46)) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-283)))) (-1712 (((-1081 |#1|) $) NIL (|has| |#1| (-338)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-1254 (($ $) NIL (|has| |#1| (-1106)))) (-3849 (((-1081 |#1|) $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-283))) (($ $ $) NIL (|has| |#1| (-283)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-3802 (($) NIL (|has| |#1| (-324)) CONST)) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-2059 (($) NIL)) (-1948 ((|#1| $) 15)) (-4151 (((-1032) $) NIL)) (-1383 (($) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-283)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-283))) (($ $ $) NIL (|has| |#1| (-283)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| |#1| (-324)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#1| (-283)) (|has| |#1| (-838))))) (-1916 (((-393 $) $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-338))))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-283))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-283)))) (-2232 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 47 (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-283)))) (-3266 (($ $) NIL (|has| |#1| (-1106)))) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-3730 (((-708) $) NIL (|has| |#1| (-283)))) (-2545 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-283)))) (-2769 ((|#1| (-1166 $)) NIL) ((|#1|) NIL)) (-3018 (((-708) $) NIL (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) NIL (|has| |#1| (-324)))) (-2157 (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1859 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1479 (((-1081 |#1|)) NIL)) (-1738 (($ $) NIL (|has| |#1| (-1106)))) (-2804 (($ $) NIL (|has| |#1| (-1106)))) (-2581 (($) NIL (|has| |#1| (-324)))) (-2919 (($ $) NIL (|has| |#1| (-1106)))) (-2784 (($ $) NIL (|has| |#1| (-1106)))) (-2896 (($ $) NIL (|has| |#1| (-1106)))) (-2761 (($ $) NIL (|has| |#1| (-1106)))) (-3677 (((-1166 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) (-1166 $) (-1166 $)) NIL) (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-1431 (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-1081 |#1|) $) NIL) (($ (-1081 |#1|)) NIL) (((-821 (-522)) $) NIL (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#1| (-563 (-821 (-354))))) (((-154 (-354)) $) NIL (|has| |#1| (-947))) (((-154 (-202)) $) NIL (|has| |#1| (-947))) (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-3122 (($ $) 45)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-324))))) (-3911 (($ |#1| |#1|) 37)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) 36) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-2143 (($ $) NIL (|has| |#1| (-324))) (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2051 (((-1081 |#1|) $) NIL)) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL)) (-1759 (($ $) NIL (|has| |#1| (-1106)))) (-2836 (($ $) NIL (|has| |#1| (-1106)))) (-3958 (((-108) $ $) NIL (-3708 (-12 (|has| |#1| (-283)) (|has| |#1| (-838))) (|has| |#1| (-514))))) (-1745 (($ $) NIL (|has| |#1| (-1106)))) (-2815 (($ $) NIL (|has| |#1| (-1106)))) (-1776 (($ $) NIL (|has| |#1| (-1106)))) (-2860 (($ $) NIL (|has| |#1| (-1106)))) (-3824 ((|#1| $) NIL (|has| |#1| (-1106)))) (-3924 (($ $) NIL (|has| |#1| (-1106)))) (-2872 (($ $) NIL (|has| |#1| (-1106)))) (-1768 (($ $) NIL (|has| |#1| (-1106)))) (-2848 (($ $) NIL (|has| |#1| (-1106)))) (-1752 (($ $) NIL (|has| |#1| (-1106)))) (-2825 (($ $) NIL (|has| |#1| (-1106)))) (-2241 (($ $) NIL (|has| |#1| (-980)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 28 T CONST)) (-3577 (($) 30 T CONST)) (-4149 (((-1068) $) 23 (|has| |#1| (-765))) (((-1068) $ (-108)) 25 (|has| |#1| (-765))) (((-1171) (-759) $) 26 (|has| |#1| (-765))) (((-1171) (-759) $ (-108)) 27 (|has| |#1| (-765)))) (-2213 (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 39)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-382 (-522))) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-1106)))) (($ $ $) NIL (|has| |#1| (-1106))) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-338))) (($ $ (-382 (-522))) NIL (|has| |#1| (-338)))))
+(((-154 |#1|) (-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) (-157)) (T -154))
+NIL
+(-13 (-151 |#1|) (-10 -7 (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|)))
+((-1431 (((-821 |#1|) |#3|) 22)))
+(((-155 |#1| |#2| |#3|) (-10 -7 (-15 -1431 ((-821 |#1|) |#3|))) (-1014) (-13 (-563 (-821 |#1|)) (-157)) (-151 |#2|)) (T -155))
+((-1431 (*1 *2 *3) (-12 (-4 *5 (-13 (-563 *2) (-157))) (-5 *2 (-821 *4)) (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-151 *5)))))
+(-10 -7 (-15 -1431 ((-821 |#1|) |#3|)))
+((-1416 (((-108) $ $) NIL)) (-1676 (((-108) $) 9)) (-2548 (((-108) $ (-108)) 11)) (-1811 (($) 12)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2404 (($ $) 13)) (-2190 (((-792) $) 17)) (-3888 (((-108) $) 8)) (-1650 (((-108) $ (-108)) 10)) (-1531 (((-108) $ $) NIL)))
+(((-156) (-13 (-1014) (-10 -8 (-15 -1811 ($)) (-15 -3888 ((-108) $)) (-15 -1676 ((-108) $)) (-15 -1650 ((-108) $ (-108))) (-15 -2548 ((-108) $ (-108))) (-15 -2404 ($ $))))) (T -156))
+((-1811 (*1 *1) (-5 *1 (-156))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-1650 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2548 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))) (-2404 (*1 *1 *1) (-5 *1 (-156))))
+(-13 (-1014) (-10 -8 (-15 -1811 ($)) (-15 -3888 ((-108) $)) (-15 -1676 ((-108) $)) (-15 -1650 ((-108) $ (-108))) (-15 -2548 ((-108) $ (-108))) (-15 -2404 ($ $))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-157) (-1197)) (T -157))
+NIL
+(-13 (-971) (-107 $ $) (-10 -7 (-6 (-4240 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 ((|#1| $) 75)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-4184 (($ $) 19)) (-2747 (($ |#1| (-1066 |#1|)) 48)) (-2682 (((-3 $ "failed") $) 117)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-1717 (((-1066 |#1|) $) 82)) (-1835 (((-1066 |#1|) $) 79)) (-2368 (((-1066 |#1|) $) 80)) (-2782 (((-108) $) NIL)) (-3553 (((-1066 |#1|) $) 88)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2224 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ (-588 $)) NIL) (($ $ $) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-3719 (($ $ (-522)) 91)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-4207 (((-1066 |#1|) $) 89)) (-3399 (((-1066 (-382 |#1|)) $) 13)) (-2702 (($ (-382 |#1|)) 17) (($ |#1| (-1066 |#1|) (-1066 |#1|)) 38)) (-1522 (($ $) 93)) (-2190 (((-792) $) 127) (($ (-522)) 51) (($ |#1|) 52) (($ (-382 |#1|)) 36) (($ (-382 (-522))) NIL) (($ $) NIL)) (-2323 (((-708)) 64)) (-3958 (((-108) $ $) NIL)) (-3655 (((-1066 (-382 |#1|)) $) 18)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 25 T CONST)) (-3577 (($) 28 T CONST)) (-1531 (((-108) $ $) 35)) (-1620 (($ $ $) 115)) (-1612 (($ $) 106) (($ $ $) 103)) (-1602 (($ $ $) 101)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-382 |#1|) $) 111) (($ $ (-382 |#1|)) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL)))
+(((-158 |#1|) (-13 (-37 |#1|) (-37 (-382 |#1|)) (-338) (-10 -8 (-15 -2702 ($ (-382 |#1|))) (-15 -2702 ($ |#1| (-1066 |#1|) (-1066 |#1|))) (-15 -2747 ($ |#1| (-1066 |#1|))) (-15 -1835 ((-1066 |#1|) $)) (-15 -2368 ((-1066 |#1|) $)) (-15 -1717 ((-1066 |#1|) $)) (-15 -2229 (|#1| $)) (-15 -4184 ($ $)) (-15 -3655 ((-1066 (-382 |#1|)) $)) (-15 -3399 ((-1066 (-382 |#1|)) $)) (-15 -3553 ((-1066 |#1|) $)) (-15 -4207 ((-1066 |#1|) $)) (-15 -3719 ($ $ (-522))) (-15 -1522 ($ $)))) (-283)) (T -158))
+((-2702 (*1 *1 *2) (-12 (-5 *2 (-382 *3)) (-4 *3 (-283)) (-5 *1 (-158 *3)))) (-2702 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2)))) (-2747 (*1 *1 *2 *3) (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-2229 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))) (-4184 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-4207 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-158 *3)) (-4 *3 (-283)))) (-1522 (*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))))
+(-13 (-37 |#1|) (-37 (-382 |#1|)) (-338) (-10 -8 (-15 -2702 ($ (-382 |#1|))) (-15 -2702 ($ |#1| (-1066 |#1|) (-1066 |#1|))) (-15 -2747 ($ |#1| (-1066 |#1|))) (-15 -1835 ((-1066 |#1|) $)) (-15 -2368 ((-1066 |#1|) $)) (-15 -1717 ((-1066 |#1|) $)) (-15 -2229 (|#1| $)) (-15 -4184 ($ $)) (-15 -3655 ((-1066 (-382 |#1|)) $)) (-15 -3399 ((-1066 (-382 |#1|)) $)) (-15 -3553 ((-1066 |#1|) $)) (-15 -4207 ((-1066 |#1|) $)) (-15 -3719 ($ $ (-522))) (-15 -1522 ($ $))))
+((-3625 (($ (-104) $) 13)) (-1533 (((-3 (-104) "failed") (-1085) $) 12)) (-2190 (((-792) $) 16)) (-1631 (((-588 (-104)) $) 7)))
+(((-159) (-13 (-562 (-792)) (-10 -8 (-15 -1631 ((-588 (-104)) $)) (-15 -3625 ($ (-104) $)) (-15 -1533 ((-3 (-104) "failed") (-1085) $))))) (T -159))
+((-1631 (*1 *2 *1) (-12 (-5 *2 (-588 (-104))) (-5 *1 (-159)))) (-3625 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))) (-1533 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-159)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -1631 ((-588 (-104)) $)) (-15 -3625 ($ (-104) $)) (-15 -1533 ((-3 (-104) "failed") (-1085) $))))
+((-4016 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 40)) (-3586 (((-872 |#1|) (-872 |#1|)) 19)) (-1378 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 36)) (-3657 (((-872 |#1|) (-872 |#1|)) 17)) (-1935 (((-872 |#1|) (-872 |#1|)) 25)) (-4211 (((-872 |#1|) (-872 |#1|)) 24)) (-2361 (((-872 |#1|) (-872 |#1|)) 23)) (-2367 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 37)) (-4096 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 35)) (-3157 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 34)) (-2432 (((-872 |#1|) (-872 |#1|)) 18)) (-3609 (((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|) 43)) (-2346 (((-872 |#1|) (-872 |#1|)) 8)) (-3612 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 39)) (-2675 (((-1 (-872 |#1|) (-872 |#1|)) |#1|) 38)))
+(((-160 |#1|) (-10 -7 (-15 -2346 ((-872 |#1|) (-872 |#1|))) (-15 -3657 ((-872 |#1|) (-872 |#1|))) (-15 -2432 ((-872 |#1|) (-872 |#1|))) (-15 -3586 ((-872 |#1|) (-872 |#1|))) (-15 -2361 ((-872 |#1|) (-872 |#1|))) (-15 -4211 ((-872 |#1|) (-872 |#1|))) (-15 -1935 ((-872 |#1|) (-872 |#1|))) (-15 -3157 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -4096 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1378 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -2367 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -2675 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3612 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -4016 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3609 ((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|))) (-13 (-338) (-1106) (-928))) (T -160))
+((-3609 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-4016 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3612 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-2675 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-2367 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-1378 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-4096 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-3157 (*1 *2 *3) (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3)) (-4 *3 (-13 (-338) (-1106) (-928))))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928))) (-5 *1 (-160 *3)))))
+(-10 -7 (-15 -2346 ((-872 |#1|) (-872 |#1|))) (-15 -3657 ((-872 |#1|) (-872 |#1|))) (-15 -2432 ((-872 |#1|) (-872 |#1|))) (-15 -3586 ((-872 |#1|) (-872 |#1|))) (-15 -2361 ((-872 |#1|) (-872 |#1|))) (-15 -4211 ((-872 |#1|) (-872 |#1|))) (-15 -1935 ((-872 |#1|) (-872 |#1|))) (-15 -3157 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -4096 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -1378 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -2367 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -2675 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3612 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -4016 ((-1 (-872 |#1|) (-872 |#1|)) |#1|)) (-15 -3609 ((-1 (-872 |#1|) (-872 |#1|)) |#1| |#1|)))
+((-2051 ((|#2| |#3|) 27)))
+(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2051 (|#2| |#3|))) (-157) (-1142 |#1|) (-662 |#1| |#2|)) (T -161))
+((-2051 (*1 *2 *3) (-12 (-4 *4 (-157)) (-4 *2 (-1142 *4)) (-5 *1 (-161 *4 *2 *3)) (-4 *3 (-662 *4 *2)))))
+(-10 -7 (-15 -2051 (|#2| |#3|)))
+((-4011 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 47 (|has| (-881 |#2|) (-815 |#1|)))))
+(((-162 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-881 |#2|) (-815 |#1|)) (-15 -4011 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) |%noBranch|)) (-1014) (-13 (-815 |#1|) (-157)) (-151 |#2|)) (T -162))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *3 (-151 *6)) (-4 (-881 *6) (-815 *5)) (-4 *6 (-13 (-815 *5) (-157))) (-5 *1 (-162 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-881 |#2|) (-815 |#1|)) (-15 -4011 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) |%noBranch|))
+((-2726 (((-588 |#1|) (-588 |#1|) |#1|) 36)) (-4197 (((-588 |#1|) |#1| (-588 |#1|)) 19)) (-1257 (((-588 |#1|) (-588 (-588 |#1|)) (-588 |#1|)) 31) ((|#1| (-588 |#1|) (-588 |#1|)) 29)))
+(((-163 |#1|) (-10 -7 (-15 -4197 ((-588 |#1|) |#1| (-588 |#1|))) (-15 -1257 (|#1| (-588 |#1|) (-588 |#1|))) (-15 -1257 ((-588 |#1|) (-588 (-588 |#1|)) (-588 |#1|))) (-15 -2726 ((-588 |#1|) (-588 |#1|) |#1|))) (-283)) (T -163))
+((-2726 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3)))) (-1257 (*1 *2 *3 *2) (-12 (-5 *3 (-588 (-588 *4))) (-5 *2 (-588 *4)) (-4 *4 (-283)) (-5 *1 (-163 *4)))) (-1257 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-163 *2)) (-4 *2 (-283)))) (-4197 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3)))))
+(-10 -7 (-15 -4197 ((-588 |#1|) |#1| (-588 |#1|))) (-15 -1257 (|#1| (-588 |#1|) (-588 |#1|))) (-15 -1257 ((-588 |#1|) (-588 (-588 |#1|)) (-588 |#1|))) (-15 -2726 ((-588 |#1|) (-588 |#1|) |#1|)))
+((-1813 (((-2 (|:| |start| |#2|) (|:| -2976 (-393 |#2|))) |#2|) 61)) (-2056 ((|#1| |#1|) 54)) (-3828 (((-154 |#1|) |#2|) 83)) (-2141 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 81)) (-1839 ((|#2| |#2|) 82)) (-3014 (((-393 |#2|) |#2| |#1|) 113) (((-393 |#2|) |#2| |#1| (-108)) 80)) (-2100 ((|#1| |#2|) 112)) (-2962 ((|#2| |#2|) 119)) (-1916 (((-393 |#2|) |#2|) 134) (((-393 |#2|) |#2| |#1|) 32) (((-393 |#2|) |#2| |#1| (-108)) 133)) (-2802 (((-588 (-2 (|:| -2976 (-588 |#2|)) (|:| -2972 |#1|))) |#2| |#2|) 132) (((-588 (-2 (|:| -2976 (-588 |#2|)) (|:| -2972 |#1|))) |#2| |#2| (-108)) 75)) (-3728 (((-588 (-154 |#1|)) |#2| |#1|) 40) (((-588 (-154 |#1|)) |#2|) 41)))
+(((-164 |#1| |#2|) (-10 -7 (-15 -3728 ((-588 (-154 |#1|)) |#2|)) (-15 -3728 ((-588 (-154 |#1|)) |#2| |#1|)) (-15 -2802 ((-588 (-2 (|:| -2976 (-588 |#2|)) (|:| -2972 |#1|))) |#2| |#2| (-108))) (-15 -2802 ((-588 (-2 (|:| -2976 (-588 |#2|)) (|:| -2972 |#1|))) |#2| |#2|)) (-15 -1916 ((-393 |#2|) |#2| |#1| (-108))) (-15 -1916 ((-393 |#2|) |#2| |#1|)) (-15 -1916 ((-393 |#2|) |#2|)) (-15 -2962 (|#2| |#2|)) (-15 -2100 (|#1| |#2|)) (-15 -3014 ((-393 |#2|) |#2| |#1| (-108))) (-15 -3014 ((-393 |#2|) |#2| |#1|)) (-15 -1839 (|#2| |#2|)) (-15 -2141 (|#1| |#2| |#1|)) (-15 -2141 (|#1| |#2|)) (-15 -3828 ((-154 |#1|) |#2|)) (-15 -2056 (|#1| |#1|)) (-15 -1813 ((-2 (|:| |start| |#2|) (|:| -2976 (-393 |#2|))) |#2|))) (-13 (-338) (-782)) (-1142 (-154 |#1|))) (T -164))
+((-1813 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-2 (|:| |start| *3) (|:| -2976 (-393 *3)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2056 (*1 *2 *2) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-3828 (*1 *2 *3) (-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3)) (-4 *4 (-13 (-338) (-782))) (-4 *3 (-1142 *2)))) (-2141 (*1 *2 *3) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-2141 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1142 (-154 *3))))) (-3014 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-3014 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2100 (*1 *2 *3) (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3)) (-4 *3 (-1142 (-154 *2))))) (-2962 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2)) (-4 *2 (-1142 (-154 *3))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-1916 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2802 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-2 (|:| -2976 (-588 *3)) (|:| -2972 *4)))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-2802 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-338) (-782))) (-5 *2 (-588 (-2 (|:| -2976 (-588 *3)) (|:| -2972 *5)))) (-5 *1 (-164 *5 *3)) (-4 *3 (-1142 (-154 *5))))) (-3728 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))) (-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))))
+(-10 -7 (-15 -3728 ((-588 (-154 |#1|)) |#2|)) (-15 -3728 ((-588 (-154 |#1|)) |#2| |#1|)) (-15 -2802 ((-588 (-2 (|:| -2976 (-588 |#2|)) (|:| -2972 |#1|))) |#2| |#2| (-108))) (-15 -2802 ((-588 (-2 (|:| -2976 (-588 |#2|)) (|:| -2972 |#1|))) |#2| |#2|)) (-15 -1916 ((-393 |#2|) |#2| |#1| (-108))) (-15 -1916 ((-393 |#2|) |#2| |#1|)) (-15 -1916 ((-393 |#2|) |#2|)) (-15 -2962 (|#2| |#2|)) (-15 -2100 (|#1| |#2|)) (-15 -3014 ((-393 |#2|) |#2| |#1| (-108))) (-15 -3014 ((-393 |#2|) |#2| |#1|)) (-15 -1839 (|#2| |#2|)) (-15 -2141 (|#1| |#2| |#1|)) (-15 -2141 (|#1| |#2|)) (-15 -3828 ((-154 |#1|) |#2|)) (-15 -2056 (|#1| |#1|)) (-15 -1813 ((-2 (|:| |start| |#2|) (|:| -2976 (-393 |#2|))) |#2|)))
+((-2065 (((-3 |#2| "failed") |#2|) 14)) (-1318 (((-708) |#2|) 16)) (-2931 ((|#2| |#2| |#2|) 18)))
+(((-165 |#1| |#2|) (-10 -7 (-15 -2065 ((-3 |#2| "failed") |#2|)) (-15 -1318 ((-708) |#2|)) (-15 -2931 (|#2| |#2| |#2|))) (-1120) (-615 |#1|)) (T -165))
+((-2931 (*1 *2 *2 *2) (-12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) (-4 *2 (-615 *3)))) (-1318 (*1 *2 *3) (-12 (-4 *4 (-1120)) (-5 *2 (-708)) (-5 *1 (-165 *4 *3)) (-4 *3 (-615 *4)))) (-2065 (*1 *2 *2) (|partial| -12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) (-4 *2 (-615 *3)))))
+(-10 -7 (-15 -2065 ((-3 |#2| "failed") |#2|)) (-15 -1318 ((-708) |#2|)) (-15 -2931 (|#2| |#2| |#2|)))
+((-3608 (((-1085) $) 9)) (-2190 (((-792) $) 13)) (-3890 (((-588 (-1090)) $) 11)))
+(((-166) (-13 (-562 (-792)) (-10 -8 (-15 -3608 ((-1085) $)) (-15 -3890 ((-588 (-1090)) $))))) (T -166))
+((-3608 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-166)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-166)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -3608 ((-1085) $)) (-15 -3890 ((-588 (-1090)) $))))
+((-3874 ((|#2| |#2|) 28)) (-2405 (((-108) |#2|) 19)) (-1937 (((-291 |#1|) |#2|) 12)) (-1948 (((-291 |#1|) |#2|) 14)) (-3846 ((|#2| |#2| (-1085)) 68) ((|#2| |#2|) 69)) (-4162 (((-154 (-291 |#1|)) |#2|) 9)) (-2377 ((|#2| |#2| (-1085)) 65) ((|#2| |#2|) 58)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -3846 (|#2| |#2|)) (-15 -3846 (|#2| |#2| (-1085))) (-15 -2377 (|#2| |#2|)) (-15 -2377 (|#2| |#2| (-1085))) (-15 -1937 ((-291 |#1|) |#2|)) (-15 -1948 ((-291 |#1|) |#2|)) (-15 -2405 ((-108) |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -4162 ((-154 (-291 |#1|)) |#2|))) (-13 (-514) (-784) (-962 (-522))) (-13 (-27) (-1106) (-405 (-154 |#1|)))) (T -167))
+((-4162 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-154 (-291 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) (-2405 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-108)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-2377 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-2377 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))) (-3846 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4)))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3)))))))
+(-10 -7 (-15 -3846 (|#2| |#2|)) (-15 -3846 (|#2| |#2| (-1085))) (-15 -2377 (|#2| |#2|)) (-15 -2377 (|#2| |#2| (-1085))) (-15 -1937 ((-291 |#1|) |#2|)) (-15 -1948 ((-291 |#1|) |#2|)) (-15 -2405 ((-108) |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -4162 ((-154 (-291 |#1|)) |#2|)))
+((-4025 (((-1166 (-628 (-881 |#1|))) (-1166 (-628 |#1|))) 22)) (-2190 (((-1166 (-628 (-382 (-881 |#1|)))) (-1166 (-628 |#1|))) 30)))
+(((-168 |#1|) (-10 -7 (-15 -4025 ((-1166 (-628 (-881 |#1|))) (-1166 (-628 |#1|)))) (-15 -2190 ((-1166 (-628 (-382 (-881 |#1|)))) (-1166 (-628 |#1|))))) (-157)) (T -168))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157)) (-5 *2 (-1166 (-628 (-382 (-881 *4))))) (-5 *1 (-168 *4)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157)) (-5 *2 (-1166 (-628 (-881 *4)))) (-5 *1 (-168 *4)))))
+(-10 -7 (-15 -4025 ((-1166 (-628 (-881 |#1|))) (-1166 (-628 |#1|)))) (-15 -2190 ((-1166 (-628 (-382 (-881 |#1|)))) (-1166 (-628 |#1|)))))
+((-3385 (((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522)))) 66)) (-2334 (((-1087 (-382 (-522))) (-588 (-522)) (-588 (-522))) 74)) (-2398 (((-1087 (-382 (-522))) (-522)) 40)) (-4210 (((-1087 (-382 (-522))) (-522)) 52)) (-2289 (((-382 (-522)) (-1087 (-382 (-522)))) 62)) (-3805 (((-1087 (-382 (-522))) (-522)) 32)) (-3476 (((-1087 (-382 (-522))) (-522)) 48)) (-2759 (((-1087 (-382 (-522))) (-522)) 46)) (-2743 (((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522)))) 60)) (-1522 (((-1087 (-382 (-522))) (-522)) 25)) (-2655 (((-382 (-522)) (-1087 (-382 (-522))) (-1087 (-382 (-522)))) 64)) (-2628 (((-1087 (-382 (-522))) (-522)) 30)) (-2892 (((-1087 (-382 (-522))) (-588 (-522))) 71)))
+(((-169) (-10 -7 (-15 -1522 ((-1087 (-382 (-522))) (-522))) (-15 -2398 ((-1087 (-382 (-522))) (-522))) (-15 -3805 ((-1087 (-382 (-522))) (-522))) (-15 -2628 ((-1087 (-382 (-522))) (-522))) (-15 -2759 ((-1087 (-382 (-522))) (-522))) (-15 -3476 ((-1087 (-382 (-522))) (-522))) (-15 -4210 ((-1087 (-382 (-522))) (-522))) (-15 -2655 ((-382 (-522)) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2743 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2289 ((-382 (-522)) (-1087 (-382 (-522))))) (-15 -3385 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2892 ((-1087 (-382 (-522))) (-588 (-522)))) (-15 -2334 ((-1087 (-382 (-522))) (-588 (-522)) (-588 (-522)))))) (T -169))
+((-2334 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522))) (-5 *1 (-169)))) (-2743 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))) (-2655 (*1 *2 *3 *3) (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522))) (-5 *1 (-169)))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-2759 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-2628 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-2398 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))) (-1522 (*1 *2 *3) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))))
+(-10 -7 (-15 -1522 ((-1087 (-382 (-522))) (-522))) (-15 -2398 ((-1087 (-382 (-522))) (-522))) (-15 -3805 ((-1087 (-382 (-522))) (-522))) (-15 -2628 ((-1087 (-382 (-522))) (-522))) (-15 -2759 ((-1087 (-382 (-522))) (-522))) (-15 -3476 ((-1087 (-382 (-522))) (-522))) (-15 -4210 ((-1087 (-382 (-522))) (-522))) (-15 -2655 ((-382 (-522)) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2743 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2289 ((-382 (-522)) (-1087 (-382 (-522))))) (-15 -3385 ((-1087 (-382 (-522))) (-1087 (-382 (-522))) (-1087 (-382 (-522))))) (-15 -2892 ((-1087 (-382 (-522))) (-588 (-522)))) (-15 -2334 ((-1087 (-382 (-522))) (-588 (-522)) (-588 (-522)))))
+((-1583 (((-393 (-1081 (-522))) (-522)) 28)) (-2578 (((-588 (-1081 (-522))) (-522)) 23)) (-1437 (((-1081 (-522)) (-522)) 21)))
+(((-170) (-10 -7 (-15 -2578 ((-588 (-1081 (-522))) (-522))) (-15 -1437 ((-1081 (-522)) (-522))) (-15 -1583 ((-393 (-1081 (-522))) (-522))))) (T -170))
+((-1583 (*1 *2 *3) (-12 (-5 *2 (-393 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522)))) (-1437 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-170)) (-5 *3 (-522)))) (-2578 (*1 *2 *3) (-12 (-5 *2 (-588 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522)))))
+(-10 -7 (-15 -2578 ((-588 (-1081 (-522))) (-522))) (-15 -1437 ((-1081 (-522)) (-522))) (-15 -1583 ((-393 (-1081 (-522))) (-522))))
+((-2510 (((-1066 (-202)) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 101)) (-3205 (((-588 (-1068)) (-1066 (-202))) NIL)) (-1986 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77)) (-3072 (((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202)))) NIL)) (-1644 (((-588 (-1068)) (-588 (-202))) NIL)) (-2988 (((-202) (-1009 (-777 (-202)))) 22)) (-2740 (((-202) (-1009 (-777 (-202)))) 23)) (-3359 (((-354) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 93)) (-2762 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 40)) (-2461 (((-1068) (-202)) NIL)) (-3901 (((-1068) (-588 (-1068))) 19)) (-2926 (((-960) (-1085) (-1085) (-960)) 12)))
+(((-171) (-10 -7 (-15 -1986 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2762 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2988 ((-202) (-1009 (-777 (-202))))) (-15 -2740 ((-202) (-1009 (-777 (-202))))) (-15 -3359 ((-354) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3072 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -2510 ((-1066 (-202)) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2461 ((-1068) (-202))) (-15 -1644 ((-588 (-1068)) (-588 (-202)))) (-15 -3205 ((-588 (-1068)) (-1066 (-202)))) (-15 -3901 ((-1068) (-588 (-1068)))) (-15 -2926 ((-960) (-1085) (-1085) (-960))))) (T -171))
+((-2926 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-171)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-171)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-171)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-171)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085)) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-171)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-171)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-171)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-171)))))
+(-10 -7 (-15 -1986 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2762 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2988 ((-202) (-1009 (-777 (-202))))) (-15 -2740 ((-202) (-1009 (-777 (-202))))) (-15 -3359 ((-354) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3072 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -2510 ((-1066 (-202)) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2461 ((-1068) (-202))) (-15 -1644 ((-588 (-1068)) (-588 (-202)))) (-15 -3205 ((-588 (-1068)) (-1066 (-202)))) (-15 -3901 ((-1068) (-588 (-1068)))) (-15 -2926 ((-960) (-1085) (-1085) (-960))))
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 53) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 28) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-172) (-724)) (T -172))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 58) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-173) (-724)) (T -173))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 67) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-174) (-724)) (T -174))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 54) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 30) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-175) (-724)) (T -175))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 65) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 35) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-176) (-724)) (T -176))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 71) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-177) (-724)) (T -177))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 78) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 43) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-178) (-724)) (T -178))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 68) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-179) (-724)) (T -179))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 62)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-180) (-724)) (T -180))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 60)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 32)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-181) (-724)) (T -181))
+NIL
+(-724)
+((-1416 (((-108) $ $) NIL)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 89) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 77) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-182) (-724)) (T -182))
+NIL
+(-724)
+((-1304 (((-3 (-2 (|:| -1420 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 81)) (-1715 (((-522) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 39)) (-1733 (((-3 (-588 (-202)) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 69)))
+(((-183) (-10 -7 (-15 -1304 ((-3 (-2 (|:| -1420 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1733 ((-3 (-588 (-202)) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1715 ((-522) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -183))
+((-1715 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-522)) (-5 *1 (-183)))) (-1733 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-183)))) (-1304 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1420 (-110)) (|:| |w| (-202)))) (-5 *1 (-183)))))
+(-10 -7 (-15 -1304 ((-3 (-2 (|:| -1420 (-110)) (|:| |w| (-202))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1733 ((-3 (-588 (-202)) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1715 ((-522) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-1325 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-3757 (((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 128)) (-1375 (((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-628 (-291 (-202)))) 88)) (-1753 (((-354) (-628 (-291 (-202)))) 111)) (-3807 (((-628 (-291 (-202))) (-1166 (-291 (-202))) (-588 (-1085))) 108)) (-1216 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-1234 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-2289 (((-628 (-291 (-202))) (-628 (-291 (-202))) (-588 (-1085)) (-1166 (-291 (-202)))) 100)) (-2737 (((-354) (-354) (-588 (-354))) 105) (((-354) (-354) (-354)) 103)) (-3536 (((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)))
+(((-184) (-10 -7 (-15 -2737 ((-354) (-354) (-354))) (-15 -2737 ((-354) (-354) (-588 (-354)))) (-15 -1753 ((-354) (-628 (-291 (-202))))) (-15 -3807 ((-628 (-291 (-202))) (-1166 (-291 (-202))) (-588 (-1085)))) (-15 -2289 ((-628 (-291 (-202))) (-628 (-291 (-202))) (-588 (-1085)) (-1166 (-291 (-202))))) (-15 -1375 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-628 (-291 (-202))))) (-15 -3757 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1325 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1234 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3536 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1216 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -184))
+((-1216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-1234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354)))) (-5 *1 (-184)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-628 (-291 (-202)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354)))) (-5 *1 (-184)))) (-2289 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-628 (-291 (-202)))) (-5 *3 (-588 (-1085))) (-5 *4 (-1166 (-291 (-202)))) (-5 *1 (-184)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085))) (-5 *2 (-628 (-291 (-202)))) (-5 *1 (-184)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-628 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))) (-2737 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-354))) (-5 *2 (-354)) (-5 *1 (-184)))) (-2737 (*1 *2 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-184)))))
+(-10 -7 (-15 -2737 ((-354) (-354) (-354))) (-15 -2737 ((-354) (-354) (-588 (-354)))) (-15 -1753 ((-354) (-628 (-291 (-202))))) (-15 -3807 ((-628 (-291 (-202))) (-1166 (-291 (-202))) (-588 (-1085)))) (-15 -2289 ((-628 (-291 (-202))) (-628 (-291 (-202))) (-588 (-1085)) (-1166 (-291 (-202))))) (-15 -1375 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-628 (-291 (-202))))) (-15 -3757 ((-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1325 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1234 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3536 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1216 ((-354) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-1416 (((-108) $ $) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3462 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1531 (((-108) $ $) NIL)))
+(((-185) (-737)) (T -185))
+NIL
+(-737)
+((-1416 (((-108) $ $) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 37)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3462 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 60)) (-1531 (((-108) $ $) NIL)))
+(((-186) (-737)) (T -186))
+NIL
+(-737)
+((-1416 (((-108) $ $) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 36)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3462 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 64)) (-1531 (((-108) $ $) NIL)))
+(((-187) (-737)) (T -187))
+NIL
+(-737)
+((-1416 (((-108) $ $) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 42)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3462 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 73)) (-1531 (((-108) $ $) NIL)))
+(((-188) (-737)) (T -188))
+NIL
+(-737)
+((-4106 (((-588 (-1085)) (-1085) (-708)) 22)) (-3160 (((-291 (-202)) (-291 (-202))) 29)) (-2016 (((-108) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 67)) (-3815 (((-108) (-202) (-202) (-588 (-291 (-202)))) 43)))
+(((-189) (-10 -7 (-15 -4106 ((-588 (-1085)) (-1085) (-708))) (-15 -3160 ((-291 (-202)) (-291 (-202)))) (-15 -3815 ((-108) (-202) (-202) (-588 (-291 (-202))))) (-15 -2016 ((-108) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))))) (T -189))
+((-2016 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *2 (-108)) (-5 *1 (-189)))) (-3815 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-588 (-291 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-189)))) (-3160 (*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-189)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-588 (-1085))) (-5 *1 (-189)) (-5 *3 (-1085)))))
+(-10 -7 (-15 -4106 ((-588 (-1085)) (-1085) (-708))) (-15 -3160 ((-291 (-202)) (-291 (-202)))) (-15 -3815 ((-108) (-202) (-202) (-588 (-291 (-202))))) (-15 -2016 ((-108) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))))
+((-1416 (((-108) $ $) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 17)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3377 (((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 55)) (-1531 (((-108) $ $) NIL)))
+(((-190) (-824)) (T -190))
+NIL
+(-824)
+((-1416 (((-108) $ $) NIL)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 12)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3377 (((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-191) (-824)) (T -191))
+NIL
+(-824)
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2664 (((-1171) $) 36) (((-1171) $ (-850) (-850)) 38)) (-2545 (($ $ (-916)) 19) (((-222 (-1068)) $ (-1085)) 15)) (-1678 (((-1171) $) 34)) (-2190 (((-792) $) 31) (($ (-588 |#1|)) 8)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $ $) 27)) (-1602 (($ $ $) 22)))
+(((-192 |#1|) (-13 (-1014) (-10 -8 (-15 -2545 ($ $ (-916))) (-15 -2545 ((-222 (-1068)) $ (-1085))) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -2190 ($ (-588 |#1|))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $)) (-15 -2664 ((-1171) $ (-850) (-850))))) (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $))))) (T -192))
+((-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-916)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $))))))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-222 (-1068))) (-5 *1 (-192 *4)) (-4 *4 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ *3)) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $))))))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $))))))) (-1612 (*1 *1 *1 *1) (-12 (-5 *1 (-192 *2)) (-4 *2 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $))))))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $))))) (-5 *1 (-192 *3)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 (*2 $)) (-15 -2664 (*2 $))))))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3)) (-4 *3 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 (*2 $)) (-15 -2664 (*2 $))))))) (-2664 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-192 *4)) (-4 *4 (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 (*2 $)) (-15 -2664 (*2 $))))))))
+(-13 (-1014) (-10 -8 (-15 -2545 ($ $ (-916))) (-15 -2545 ((-222 (-1068)) $ (-1085))) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -2190 ($ (-588 |#1|))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $)) (-15 -2664 ((-1171) $ (-850) (-850)))))
+((-3336 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3336 (|#2| |#4| (-1 |#2| |#2|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -193))
+((-3336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-338)) (-4 *6 (-1142 (-382 *2))) (-4 *2 (-1142 *5)) (-5 *1 (-193 *5 *2 *6 *3)) (-4 *3 (-317 *5 *2 *6)))))
+(-10 -7 (-15 -3336 (|#2| |#4| (-1 |#2| |#2|))))
+((-1452 ((|#2| |#2| (-708) |#2|) 41)) (-3869 ((|#2| |#2| (-708) |#2|) 37)) (-2809 (((-588 |#2|) (-588 (-2 (|:| |deg| (-708)) (|:| -2574 |#2|)))) 57)) (-3764 (((-588 (-2 (|:| |deg| (-708)) (|:| -2574 |#2|))) |#2|) 52)) (-1769 (((-108) |#2|) 49)) (-2571 (((-393 |#2|) |#2|) 76)) (-1916 (((-393 |#2|) |#2|) 75)) (-1844 ((|#2| |#2| (-708) |#2|) 35)) (-2798 (((-2 (|:| |cont| |#1|) (|:| -2976 (-588 (-2 (|:| |irr| |#2|) (|:| -2245 (-522)))))) |#2| (-108)) 68)))
+(((-194 |#1| |#2|) (-10 -7 (-15 -1916 ((-393 |#2|) |#2|)) (-15 -2571 ((-393 |#2|) |#2|)) (-15 -2798 ((-2 (|:| |cont| |#1|) (|:| -2976 (-588 (-2 (|:| |irr| |#2|) (|:| -2245 (-522)))))) |#2| (-108))) (-15 -3764 ((-588 (-2 (|:| |deg| (-708)) (|:| -2574 |#2|))) |#2|)) (-15 -2809 ((-588 |#2|) (-588 (-2 (|:| |deg| (-708)) (|:| -2574 |#2|))))) (-15 -1844 (|#2| |#2| (-708) |#2|)) (-15 -3869 (|#2| |#2| (-708) |#2|)) (-15 -1452 (|#2| |#2| (-708) |#2|)) (-15 -1769 ((-108) |#2|))) (-324) (-1142 |#1|)) (T -194))
+((-1769 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))) (-1452 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1142 *4)))) (-3869 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1142 *4)))) (-1844 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2)) (-4 *2 (-1142 *4)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |deg| (-708)) (|:| -2574 *5)))) (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *2 (-588 *5)) (-5 *1 (-194 *4 *5)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -2574 *3)))) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-324)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522))))))) (-5 *1 (-194 *5 *3)) (-4 *3 (-1142 *5)))) (-2571 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -1916 ((-393 |#2|) |#2|)) (-15 -2571 ((-393 |#2|) |#2|)) (-15 -2798 ((-2 (|:| |cont| |#1|) (|:| -2976 (-588 (-2 (|:| |irr| |#2|) (|:| -2245 (-522)))))) |#2| (-108))) (-15 -3764 ((-588 (-2 (|:| |deg| (-708)) (|:| -2574 |#2|))) |#2|)) (-15 -2809 ((-588 |#2|) (-588 (-2 (|:| |deg| (-708)) (|:| -2574 |#2|))))) (-15 -1844 (|#2| |#2| (-708) |#2|)) (-15 -3869 (|#2| |#2| (-708) |#2|)) (-15 -1452 (|#2| |#2| (-708) |#2|)) (-15 -1769 ((-108) |#2|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-522) $) NIL (|has| (-522) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-522) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-522) (-962 (-522))))) (-1484 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-522) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| (-522) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-522) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-2556 (((-108) $) NIL (|has| (-522) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-522) (-784)))) (-1391 (($ (-1 (-522) (-522)) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-522) (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) NIL)) (-3686 (((-522) $) NIL (|has| (-522) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-522) $) NIL)) (-1453 (($ (-382 (-522))) 8)) (-1431 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 7) (($ (-522)) NIL) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL) (((-930 10) $) 9)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2323 (((-708)) NIL)) (-3025 (((-522) $) NIL (|has| (-522) (-507)))) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL (|has| (-522) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1620 (($ $ $) NIL) (($ (-522) (-522)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL)))
+(((-195) (-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -2190 ((-930 10) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -1453 ($ (-382 (-522))))))) (T -195))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-930 10)) (-5 *1 (-195)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))) (-1453 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))))
+(-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -2190 ((-930 10) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -1453 ($ (-382 (-522))))))
+((-1858 (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)) (-1068)) 27) (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|))) 23)) (-2035 (((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085) (-777 |#2|) (-777 |#2|) (-108)) 16)))
+(((-196 |#1| |#2|) (-10 -7 (-15 -1858 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)))) (-15 -1858 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)) (-1068))) (-15 -2035 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085) (-777 |#2|) (-777 |#2|) (-108)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-29 |#1|))) (T -196))
+((-2035 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1085)) (-5 *6 (-108)) (-4 *7 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-4 *3 (-13 (-1106) (-887) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *7 *3)) (-5 *5 (-777 *3)))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1007 (-777 *3))) (-5 *5 (-1068)) (-4 *3 (-13 (-1106) (-887) (-29 *6))) (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *6 *3)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-777 *3))) (-4 *3 (-13 (-1106) (-887) (-29 *5))) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-196 *5 *3)))))
+(-10 -7 (-15 -1858 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)))) (-15 -1858 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1007 (-777 |#2|)) (-1068))) (-15 -2035 ((-3 (|:| |f1| (-777 |#2|)) (|:| |f2| (-588 (-777 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085) (-777 |#2|) (-777 |#2|) (-108))))
+((-1858 (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))) (-1068)) 44) (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|))))) 41) (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))) (-1068)) 45) (((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|)))) 17)))
+(((-197 |#1|) (-10 -7 (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))))) (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))) (-1068))) (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))))) (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))) (-1068)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (T -197))
+((-1858 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1007 (-777 (-382 (-881 *6))))) (-5 *5 (-1068)) (-5 *3 (-382 (-881 *6))) (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-777 (-382 (-881 *5))))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1007 (-777 (-291 *6)))) (-5 *5 (-1068)) (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *6)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1007 (-777 (-291 *5)))) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-197 *5)))))
+(-10 -7 (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))))) (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-291 |#1|))) (-1068))) (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))))) (-15 -1858 ((-3 (|:| |f1| (-777 (-291 |#1|))) (|:| |f2| (-588 (-777 (-291 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-382 (-881 |#1|)) (-1007 (-777 (-382 (-881 |#1|)))) (-1068))))
+((-3864 (((-2 (|:| -3892 (-1081 |#1|)) (|:| |deg| (-850))) (-1081 |#1|)) 21)) (-1604 (((-588 (-291 |#2|)) (-291 |#2|) (-850)) 43)))
+(((-198 |#1| |#2|) (-10 -7 (-15 -3864 ((-2 (|:| -3892 (-1081 |#1|)) (|:| |deg| (-850))) (-1081 |#1|))) (-15 -1604 ((-588 (-291 |#2|)) (-291 |#2|) (-850)))) (-971) (-13 (-514) (-784))) (T -198))
+((-1604 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *6 (-13 (-514) (-784))) (-5 *2 (-588 (-291 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-291 *6)) (-4 *5 (-971)))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-2 (|:| -3892 (-1081 *4)) (|:| |deg| (-850)))) (-5 *1 (-198 *4 *5)) (-5 *3 (-1081 *4)) (-4 *5 (-13 (-514) (-784))))))
+(-10 -7 (-15 -3864 ((-2 (|:| -3892 (-1081 |#1|)) (|:| |deg| (-850))) (-1081 |#1|))) (-15 -1604 ((-588 (-291 |#2|)) (-291 |#2|) (-850))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3852 ((|#1| $) NIL)) (-1355 ((|#1| $) 25)) (-4141 (((-108) $ (-708)) NIL)) (-3175 (($) NIL T CONST)) (-2070 (($ $) NIL)) (-3509 (($ $) 31)) (-3218 ((|#1| |#1| $) NIL)) (-2327 ((|#1| $) NIL)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2517 (((-708) $) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2116 ((|#1| $) NIL)) (-2885 ((|#1| |#1| $) 28)) (-4194 ((|#1| |#1| $) 30)) (-4095 (($ |#1| $) NIL)) (-4155 (((-708) $) 27)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1698 ((|#1| $) NIL)) (-3265 ((|#1| $) 26)) (-1969 ((|#1| $) 24)) (-4087 ((|#1| $) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1965 ((|#1| |#1| $) NIL)) (-3985 (((-108) $) 9)) (-3775 (($) NIL)) (-3650 ((|#1| $) NIL)) (-1555 (($) NIL) (($ (-588 |#1|)) 16)) (-1253 (((-708) $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3288 ((|#1| $) 13)) (-2795 (($ (-588 |#1|)) NIL)) (-2316 ((|#1| $) NIL)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-199 |#1|) (-13 (-230 |#1|) (-10 -8 (-15 -1555 ($ (-588 |#1|))))) (-1014)) (T -199))
+((-1555 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-199 *3)))))
+(-13 (-230 |#1|) (-10 -8 (-15 -1555 ($ (-588 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1316 (($ (-291 |#1|)) 23)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1289 (((-108) $) NIL)) (-1297 (((-3 (-291 |#1|) "failed") $) NIL)) (-1484 (((-291 |#1|) $) NIL)) (-3156 (($ $) 31)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-1391 (($ (-1 (-291 |#1|) (-291 |#1|)) $) NIL)) (-3138 (((-291 |#1|) $) NIL)) (-3229 (($ $) 30)) (-2385 (((-1068) $) NIL)) (-3679 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1383 (($ (-708)) NIL)) (-1468 (($ $) 32)) (-2793 (((-522) $) NIL)) (-2190 (((-792) $) 57) (($ (-522)) NIL) (($ (-291 |#1|)) NIL)) (-3243 (((-291 |#1|) $ $) NIL)) (-2323 (((-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 25 T CONST)) (-3577 (($) 50 T CONST)) (-1531 (((-108) $ $) 28)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 19)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 24) (($ (-291 |#1|) $) 18)))
+(((-200 |#1| |#2|) (-13 (-566 (-291 |#1|)) (-962 (-291 |#1|)) (-10 -8 (-15 -3138 ((-291 |#1|) $)) (-15 -3229 ($ $)) (-15 -3156 ($ $)) (-15 -3243 ((-291 |#1|) $ $)) (-15 -1383 ($ (-708))) (-15 -3679 ((-108) $)) (-15 -1289 ((-108) $)) (-15 -2793 ((-522) $)) (-15 -1391 ($ (-1 (-291 |#1|) (-291 |#1|)) $)) (-15 -1316 ($ (-291 |#1|))) (-15 -1468 ($ $)))) (-13 (-971) (-784)) (-588 (-1085))) (T -200))
+((-3138 (*1 *2 *1) (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-3229 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) (-14 *3 (-588 (-1085))))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) (-14 *3 (-588 (-1085))))) (-3243 (*1 *2 *1 *1) (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085))))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-291 *3) (-291 *3))) (-4 *3 (-13 (-971) (-784))) (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085))))) (-1316 (*1 *1 *2) (-12 (-5 *2 (-291 *3)) (-4 *3 (-13 (-971) (-784))) (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085))))) (-1468 (*1 *1 *1) (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784))) (-14 *3 (-588 (-1085))))))
+(-13 (-566 (-291 |#1|)) (-962 (-291 |#1|)) (-10 -8 (-15 -3138 ((-291 |#1|) $)) (-15 -3229 ($ $)) (-15 -3156 ($ $)) (-15 -3243 ((-291 |#1|) $ $)) (-15 -1383 ($ (-708))) (-15 -3679 ((-108) $)) (-15 -1289 ((-108) $)) (-15 -2793 ((-522) $)) (-15 -1391 ($ (-1 (-291 |#1|) (-291 |#1|)) $)) (-15 -1316 ($ (-291 |#1|))) (-15 -1468 ($ $))))
+((-4111 (((-108) (-1068)) 22)) (-2826 (((-3 (-777 |#2|) "failed") (-561 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108)) 32)) (-1840 (((-3 (-108) "failed") (-1081 |#2|) (-777 |#2|) (-777 |#2|) (-108)) 73) (((-3 (-108) "failed") (-881 |#1|) (-1085) (-777 |#2|) (-777 |#2|) (-108)) 74)))
+(((-201 |#1| |#2|) (-10 -7 (-15 -4111 ((-108) (-1068))) (-15 -2826 ((-3 (-777 |#2|) "failed") (-561 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108))) (-15 -1840 ((-3 (-108) "failed") (-881 |#1|) (-1085) (-777 |#2|) (-777 |#2|) (-108))) (-15 -1840 ((-3 (-108) "failed") (-1081 |#2|) (-777 |#2|) (-777 |#2|) (-108)))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-29 |#1|))) (T -201))
+((-1840 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1081 *6)) (-5 *4 (-777 *6)) (-4 *6 (-13 (-1106) (-29 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-201 *5 *6)))) (-1840 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-881 *6)) (-5 *4 (-1085)) (-5 *5 (-777 *7)) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *7 (-13 (-1106) (-29 *6))) (-5 *1 (-201 *6 *7)))) (-2826 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-777 *4)) (-5 *3 (-561 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1106) (-29 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-201 *6 *4)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1106) (-29 *4))))))
+(-10 -7 (-15 -4111 ((-108) (-1068))) (-15 -2826 ((-3 (-777 |#2|) "failed") (-561 |#2|) |#2| (-777 |#2|) (-777 |#2|) (-108))) (-15 -1840 ((-3 (-108) "failed") (-881 |#1|) (-1085) (-777 |#2|) (-777 |#2|) (-108))) (-15 -1840 ((-3 (-108) "failed") (-1081 |#2|) (-777 |#2|) (-777 |#2|) (-108))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 89)) (-2229 (((-522) $) 99)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-2789 (($ $) NIL)) (-2908 (($ $) 77)) (-2772 (($ $) 65)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1929 (($ $) 56)) (-1687 (((-108) $ $) NIL)) (-2884 (($ $) 75)) (-2748 (($ $) 63)) (-1341 (((-522) $) 116)) (-2930 (($ $) 80)) (-2794 (($ $) 67)) (-3175 (($) NIL T CONST)) (-2599 (($ $) NIL)) (-1297 (((-3 (-522) "failed") $) 115) (((-3 (-382 (-522)) "failed") $) 112)) (-1484 (((-522) $) 113) (((-382 (-522)) $) 110)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) 92)) (-4202 (((-382 (-522)) $ (-708)) 108) (((-382 (-522)) $ (-708) (-708)) 107)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2175 (((-850)) 29) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-3687 (((-108) $) NIL)) (-2838 (($) 39)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL)) (-3714 (((-522) $) 35)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL)) (-2100 (($ $) NIL)) (-2556 (((-108) $) 88)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) 53) (($) 34 (-12 (-2401 (|has| $ (-6 -4221))) (-2401 (|has| $ (-6 -4229)))))) (-2446 (($ $ $) 52) (($) 33 (-12 (-2401 (|has| $ (-6 -4221))) (-2401 (|has| $ (-6 -4229)))))) (-3357 (((-522) $) 27)) (-3248 (($ $) 30)) (-3167 (($ $) 57)) (-1254 (($ $) 62)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-1941 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-4151 (((-1032) $) NIL) (((-522) $) 90)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL)) (-3686 (($ $) NIL)) (-3071 (($ (-522) (-522)) NIL) (($ (-522) (-522) (-850)) 100)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1400 (((-522) $) 28)) (-3131 (($) 38)) (-3266 (($ $) 61)) (-3730 (((-708) $) NIL)) (-3956 (((-1068) (-1068)) 8)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2615 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-2157 (($ $ (-708)) NIL) (($ $) 93)) (-2349 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-1738 (($ $) 78)) (-2804 (($ $) 68)) (-2919 (($ $) 79)) (-2784 (($ $) 66)) (-2896 (($ $) 76)) (-2761 (($ $) 64)) (-1431 (((-354) $) 104) (((-202) $) 101) (((-821 (-354)) $) NIL) (((-498) $) 45)) (-2190 (((-792) $) 42) (($ (-522)) 60) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-522)) 60) (($ (-382 (-522))) NIL)) (-2323 (((-708)) NIL)) (-3025 (($ $) NIL)) (-3836 (((-850)) 32) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-3355 (((-850)) 25)) (-1759 (($ $) 83)) (-2836 (($ $) 71) (($ $ $) 109)) (-3958 (((-108) $ $) NIL)) (-1745 (($ $) 81)) (-2815 (($ $) 69)) (-1776 (($ $) 86)) (-2860 (($ $) 74)) (-3924 (($ $) 84)) (-2872 (($ $) 72)) (-1768 (($ $) 85)) (-2848 (($ $) 73)) (-1752 (($ $) 82)) (-2825 (($ $) 70)) (-2241 (($ $) 117)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 36 T CONST)) (-3577 (($) 37 T CONST)) (-4149 (((-1068) $) 19) (((-1068) $ (-108)) 21) (((-1171) (-759) $) 22) (((-1171) (-759) $ (-108)) 23)) (-2018 (($ $) 96)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-2627 (($ $ $) 98)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 54)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 46)) (-1620 (($ $ $) 87) (($ $ (-522)) 55)) (-1612 (($ $) 47) (($ $ $) 49)) (-1602 (($ $ $) 48)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 58) (($ $ (-382 (-522))) 128) (($ $ $) 59)) (* (($ (-850) $) 31) (($ (-708) $) NIL) (($ (-522) $) 51) (($ $ $) 50) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-202) (-13 (-379) (-210) (-765) (-1106) (-563 (-498)) (-10 -8 (-15 -1620 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -3131 ($)) (-15 -4151 ((-522) $)) (-15 -3248 ($ $)) (-15 -3167 ($ $)) (-15 -2836 ($ $ $)) (-15 -2018 ($ $)) (-15 -2627 ($ $ $)) (-15 -3956 ((-1068) (-1068))) (-15 -4202 ((-382 (-522)) $ (-708))) (-15 -4202 ((-382 (-522)) $ (-708) (-708)))))) (T -202))
+((** (*1 *1 *1 *1) (-5 *1 (-202))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-202)))) (-3131 (*1 *1) (-5 *1 (-202))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-202)))) (-3248 (*1 *1 *1) (-5 *1 (-202))) (-3167 (*1 *1 *1) (-5 *1 (-202))) (-2836 (*1 *1 *1 *1) (-5 *1 (-202))) (-2018 (*1 *1 *1) (-5 *1 (-202))) (-2627 (*1 *1 *1 *1) (-5 *1 (-202))) (-3956 (*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-202)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202)))) (-4202 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202)))))
+(-13 (-379) (-210) (-765) (-1106) (-563 (-498)) (-10 -8 (-15 -1620 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -3131 ($)) (-15 -4151 ((-522) $)) (-15 -3248 ($ $)) (-15 -3167 ($ $)) (-15 -2836 ($ $ $)) (-15 -2018 ($ $)) (-15 -2627 ($ $ $)) (-15 -3956 ((-1068) (-1068))) (-15 -4202 ((-382 (-522)) $ (-708))) (-15 -4202 ((-382 (-522)) $ (-708) (-708)))))
+((-1967 (((-154 (-202)) (-708) (-154 (-202))) 11) (((-202) (-708) (-202)) 12)) (-2150 (((-154 (-202)) (-154 (-202))) 13) (((-202) (-202)) 14)) (-1890 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 19) (((-202) (-202) (-202)) 22)) (-3236 (((-154 (-202)) (-154 (-202))) 25) (((-202) (-202)) 24)) (-1829 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 43) (((-202) (-202) (-202)) 35)) (-2709 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 48) (((-202) (-202) (-202)) 45)) (-2477 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 15) (((-202) (-202) (-202)) 16)) (-4205 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 17) (((-202) (-202) (-202)) 18)) (-1601 (((-154 (-202)) (-154 (-202))) 60) (((-202) (-202)) 59)) (-2607 (((-202) (-202)) 54) (((-154 (-202)) (-154 (-202))) 58)) (-2018 (((-154 (-202)) (-154 (-202))) 7) (((-202) (-202)) 9)) (-2627 (((-154 (-202)) (-154 (-202)) (-154 (-202))) 30) (((-202) (-202) (-202)) 26)))
+(((-203) (-10 -7 (-15 -2018 ((-202) (-202))) (-15 -2018 ((-154 (-202)) (-154 (-202)))) (-15 -2627 ((-202) (-202) (-202))) (-15 -2627 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2150 ((-202) (-202))) (-15 -2150 ((-154 (-202)) (-154 (-202)))) (-15 -3236 ((-202) (-202))) (-15 -3236 ((-154 (-202)) (-154 (-202)))) (-15 -1967 ((-202) (-708) (-202))) (-15 -1967 ((-154 (-202)) (-708) (-154 (-202)))) (-15 -2477 ((-202) (-202) (-202))) (-15 -2477 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1829 ((-202) (-202) (-202))) (-15 -1829 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -4205 ((-202) (-202) (-202))) (-15 -4205 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2709 ((-202) (-202) (-202))) (-15 -2709 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2607 ((-154 (-202)) (-154 (-202)))) (-15 -2607 ((-202) (-202))) (-15 -1601 ((-202) (-202))) (-15 -1601 ((-154 (-202)) (-154 (-202)))) (-15 -1890 ((-202) (-202) (-202))) (-15 -1890 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))) (T -203))
+((-1890 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1890 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-4205 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-4205 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1829 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-1829 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2477 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2477 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-1967 (*1 *2 *3 *2) (-12 (-5 *2 (-154 (-202))) (-5 *3 (-708)) (-5 *1 (-203)))) (-1967 (*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-708)) (-5 *1 (-203)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-3236 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2627 (*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2627 (*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203)))))
+(-10 -7 (-15 -2018 ((-202) (-202))) (-15 -2018 ((-154 (-202)) (-154 (-202)))) (-15 -2627 ((-202) (-202) (-202))) (-15 -2627 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2150 ((-202) (-202))) (-15 -2150 ((-154 (-202)) (-154 (-202)))) (-15 -3236 ((-202) (-202))) (-15 -3236 ((-154 (-202)) (-154 (-202)))) (-15 -1967 ((-202) (-708) (-202))) (-15 -1967 ((-154 (-202)) (-708) (-154 (-202)))) (-15 -2477 ((-202) (-202) (-202))) (-15 -2477 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -1829 ((-202) (-202) (-202))) (-15 -1829 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -4205 ((-202) (-202) (-202))) (-15 -4205 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2709 ((-202) (-202) (-202))) (-15 -2709 ((-154 (-202)) (-154 (-202)) (-154 (-202)))) (-15 -2607 ((-154 (-202)) (-154 (-202)))) (-15 -2607 ((-202) (-202))) (-15 -1601 ((-202) (-202))) (-15 -1601 ((-154 (-202)) (-154 (-202)))) (-15 -1890 ((-202) (-202) (-202))) (-15 -1890 ((-154 (-202)) (-154 (-202)) (-154 (-202)))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3483 (($ (-708) (-708)) NIL)) (-3437 (($ $ $) NIL)) (-2318 (($ (-1166 |#1|)) NIL) (($ $) NIL)) (-2469 (($ |#1| |#1| |#1|) 32)) (-2727 (((-108) $) NIL)) (-2444 (($ $ (-522) (-522)) NIL)) (-1327 (($ $ (-522) (-522)) NIL)) (-4183 (($ $ (-522) (-522) (-522) (-522)) NIL)) (-2212 (($ $) NIL)) (-2527 (((-108) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3478 (($ $ (-522) (-522) $) NIL)) (-2379 ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) NIL)) (-2480 (($ $ (-522) (-1166 |#1|)) NIL)) (-1888 (($ $ (-522) (-1166 |#1|)) NIL)) (-3091 (($ |#1| |#1| |#1|) 31)) (-3022 (($ (-708) |#1|) NIL)) (-3175 (($) NIL T CONST)) (-2264 (($ $) NIL (|has| |#1| (-283)))) (-1860 (((-1166 |#1|) $ (-522)) NIL)) (-2923 (($ |#1|) 30)) (-1884 (($ |#1|) 29)) (-1319 (($ |#1|) 28)) (-3166 (((-708) $) NIL (|has| |#1| (-514)))) (-3854 ((|#1| $ (-522) (-522) |#1|) NIL)) (-3631 ((|#1| $ (-522) (-522)) NIL)) (-3837 (((-588 |#1|) $) NIL)) (-3799 (((-708) $) NIL (|has| |#1| (-514)))) (-2064 (((-588 (-1166 |#1|)) $) NIL (|has| |#1| (-514)))) (-1411 (((-708) $) NIL)) (-1811 (($ (-708) (-708) |#1|) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-3081 ((|#1| $) NIL (|has| |#1| (-6 (-4240 "*"))))) (-2575 (((-522) $) NIL)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3886 (((-522) $) NIL)) (-4132 (((-522) $) NIL)) (-1366 (($ (-588 (-588 |#1|))) 10)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3237 (((-588 (-588 |#1|)) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2147 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-1659 (($) 11)) (-1572 (($ $ $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522))) NIL)) (-4077 (($ (-588 |#1|)) NIL) (($ (-588 $)) NIL)) (-1767 (((-108) $) NIL)) (-3206 ((|#1| $) NIL (|has| |#1| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-3488 (((-1166 |#1|) $ (-522)) NIL)) (-2190 (($ (-1166 |#1|)) NIL) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1697 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-522) $) NIL) (((-1166 |#1|) $ (-1166 |#1|)) 14) (((-1166 |#1|) (-1166 |#1|) $) NIL) (((-872 |#1|) $ (-872 |#1|)) 20)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-204 |#1|) (-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 * ((-872 |#1|) $ (-872 |#1|))) (-15 -1659 ($)) (-15 -1319 ($ |#1|)) (-15 -1884 ($ |#1|)) (-15 -2923 ($ |#1|)) (-15 -3091 ($ |#1| |#1| |#1|)) (-15 -2469 ($ |#1| |#1| |#1|)))) (-13 (-338) (-1106))) (T -204))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106))) (-5 *1 (-204 *3)))) (-1659 (*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-1319 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-1884 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-2923 (*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-3091 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))) (-2469 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))))
+(-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 * ((-872 |#1|) $ (-872 |#1|))) (-15 -1659 ($)) (-15 -1319 ($ |#1|)) (-15 -1884 ($ |#1|)) (-15 -2923 ($ |#1|)) (-15 -3091 ($ |#1| |#1| |#1|)) (-15 -2469 ($ |#1| |#1| |#1|))))
+((-2790 (($ (-1 (-108) |#2|) $) 16)) (-3859 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 24)) (-3990 (($) NIL) (($ (-588 |#2|)) 11)) (-1531 (((-108) $ $) 22)))
+(((-205 |#1| |#2|) (-10 -8 (-15 -2790 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#1| |#2| |#1|)) (-15 -3990 (|#1| (-588 |#2|))) (-15 -3990 (|#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-206 |#2|) (-1014)) (T -205))
+NIL
+(-10 -8 (-15 -2790 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#1| |#2| |#1|)) (-15 -3990 (|#1| (-588 |#2|))) (-15 -3990 (|#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-2790 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2333 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3990 (($) 49) (($ (-588 |#1|)) 48)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 50)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-206 |#1|) (-1197) (-1014)) (T -206))
NIL
(-13 (-212 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-2193 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) 11) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) 19) (($ $ (-707)) NIL) (($ $) 16)) (-2244 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-707)) 14) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)))
-(((-207 |#1| |#2|) (-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2244 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2244 (|#1| |#1| (-1084))) (-15 -2244 (|#1| |#1| (-587 (-1084)))) (-15 -2244 (|#1| |#1| (-1084) (-707))) (-15 -2244 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2244 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|)))) (-208 |#2|) (-970)) (T -207))
-NIL
-(-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2244 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2244 (|#1| |#1| (-1084))) (-15 -2244 (|#1| |#1| (-587 (-1084)))) (-15 -2244 (|#1| |#1| (-1084) (-707))) (-15 -2244 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2244 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2244 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2193 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-707)) 51) (($ $ (-587 (-1084)) (-587 (-707))) 44 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 43 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 42 (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) 41 (|has| |#1| (-828 (-1084)))) (($ $ (-707)) 39 (|has| |#1| (-210))) (($ $) 37 (|has| |#1| (-210)))) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-707)) 49) (($ $ (-587 (-1084)) (-587 (-707))) 48 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 47 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 46 (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) 45 (|has| |#1| (-828 (-1084)))) (($ $ (-707)) 40 (|has| |#1| (-210))) (($ $) 38 (|has| |#1| (-210)))) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-208 |#1|) (-1196) (-970)) (T -208))
-((-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970)))) (-2193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4)) (-4 *4 (-970)))) (-2244 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4)) (-4 *4 (-970)))))
-(-13 (-970) (-10 -8 (-15 -2193 ($ $ (-1 |t#1| |t#1|))) (-15 -2193 ($ $ (-1 |t#1| |t#1|) (-707))) (-15 -2244 ($ $ (-1 |t#1| |t#1|))) (-15 -2244 ($ $ (-1 |t#1| |t#1|) (-707))) (IF (|has| |t#1| (-210)) (-6 (-210)) |%noBranch|) (IF (|has| |t#1| (-828 (-1084))) (-6 (-828 (-1084))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-210) |has| |#1| (-210)) ((-589 $) . T) ((-663) . T) ((-828 (-1084)) |has| |#1| (-828 (-1084))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2193 (($ $) NIL) (($ $ (-707)) 10)) (-2244 (($ $) 8) (($ $ (-707)) 12)))
-(((-209 |#1|) (-10 -8 (-15 -2244 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2244 (|#1| |#1|)) (-15 -2193 (|#1| |#1|))) (-210)) (T -209))
-NIL
-(-10 -8 (-15 -2244 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2244 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2193 (($ $) 38) (($ $ (-707)) 36)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $) 37) (($ $ (-707)) 35)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-210) (-1196)) (T -210))
-((-2193 (*1 *1 *1) (-4 *1 (-210))) (-2244 (*1 *1 *1) (-4 *1 (-210))) (-2193 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707)))) (-2244 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707)))))
-(-13 (-970) (-10 -8 (-15 -2193 ($ $)) (-15 -2244 ($ $)) (-15 -2193 ($ $ (-707))) (-15 -2244 ($ $ (-707)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2036 (($) 12) (($ (-587 |#2|)) NIL)) (-2420 (($ $) 14)) (-2234 (($ (-587 |#2|)) 10)) (-2223 (((-791) $) 21)))
-(((-211 |#1| |#2|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -2036 (|#1| (-587 |#2|))) (-15 -2036 (|#1|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -2420 (|#1| |#1|))) (-212 |#2|) (-1013)) (T -211))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -2036 (|#1| (-587 |#2|))) (-15 -2036 (|#1|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -2420 (|#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-3014 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2354 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2036 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 50)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-212 |#1|) (-1196) (-1013)) (T -212))
-((-2036 (*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1013)))) (-2036 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-212 *3)))) (-2726 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-212 *2)) (-4 *2 (-1013)))) (-2726 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3)) (-4 *3 (-1013)))) (-3014 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3)) (-4 *3 (-1013)))))
-(-13 (-102 |t#1|) (-139 |t#1|) (-10 -8 (-15 -2036 ($)) (-15 -2036 ($ (-587 |t#1|))) (IF (|has| $ (-6 -4233)) (PROGN (-15 -2726 ($ |t#1| $)) (-15 -2726 ($ (-1 (-108) |t#1|) $)) (-15 -3014 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1507 (((-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707))))) (-269 (-880 (-521)))) 25)))
-(((-213) (-10 -7 (-15 -1507 ((-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707))))) (-269 (-880 (-521))))))) (T -213))
-((-1507 (*1 *2 *3) (-12 (-5 *3 (-269 (-880 (-521)))) (-5 *2 (-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707)))))) (-5 *1 (-213)))))
-(-10 -7 (-15 -1507 ((-2 (|:| |varOrder| (-587 (-1084))) (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed")) (|:| |hom| (-587 (-1165 (-707))))) (-269 (-880 (-521))))))
-((-1659 (((-707)) 51)) (-1961 (((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) 49) (((-627 |#3|) (-627 $)) 41) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2043 (((-126)) 57)) (-2193 (($ $ (-1 |#3| |#3|) (-707)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-2223 (((-1165 |#3|) $) NIL) (($ |#3|) NIL) (((-791) $) NIL) (($ (-521)) 12) (($ (-381 (-521))) NIL)) (-1592 (((-707)) 15)) (-1648 (($ $ |#3|) 54)))
-(((-214 |#1| |#2| |#3|) (-10 -8 (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)) (-15 -1592 ((-707))) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -2223 (|#1| |#3|)) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -1961 ((-627 |#3|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -1659 ((-707))) (-15 -1648 (|#1| |#1| |#3|)) (-15 -2043 ((-126))) (-15 -2223 ((-1165 |#3|) |#1|))) (-215 |#2| |#3|) (-707) (-1119)) (T -214))
-((-2043 (*1 *2) (-12 (-14 *4 (-707)) (-4 *5 (-1119)) (-5 *2 (-126)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-1659 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-1592 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))))
-(-10 -8 (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)) (-15 -1592 ((-707))) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -2223 (|#1| |#3|)) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -1961 ((-627 |#3|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -1659 ((-707))) (-15 -1648 (|#1| |#1| |#3|)) (-15 -2043 ((-126))) (-15 -2223 ((-1165 |#3|) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#2| (-1013)))) (-3398 (((-108) $) 72 (|has| |#2| (-124)))) (-2965 (($ (-849)) 127 (|has| |#2| (-970)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2303 (($ $ $) 123 (|has| |#2| (-729)))) (-2057 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-1269 (((-108) $ (-707)) 8)) (-1659 (((-707)) 109 (|has| |#2| (-342)))) (-2578 (((-521) $) 121 (|has| |#2| (-781)))) (-2396 ((|#2| $ (-521) |#2|) 52 (|has| $ (-6 -4234)))) (-2231 (($) 7 T CONST)) (-1296 (((-3 (-521) "failed") $) 67 (-4009 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) 64 (-4009 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1013)))) (-1496 (((-521) $) 68 (-4009 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) 65 (-4009 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) 60 (|has| |#2| (-1013)))) (-1961 (((-627 (-521)) (-627 $)) 108 (-4009 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 107 (-4009 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 106 (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) 105 (|has| |#2| (-970)))) (-2783 (((-3 $ "failed") $) 99 (|has| |#2| (-970)))) (-3254 (($) 112 (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) 51)) (-2273 (((-108) $) 119 (|has| |#2| (-781)))) (-3831 (((-587 |#2|) $) 30 (|has| $ (-6 -4233)))) (-3637 (((-108) $) 102 (|has| |#2| (-970)))) (-3305 (((-108) $) 120 (|has| |#2| (-781)))) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 118 (-3703 (|has| |#2| (-781)) (|has| |#2| (-729))))) (-3568 (((-587 |#2|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 117 (-3703 (|has| |#2| (-781)) (|has| |#2| (-729))))) (-3833 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2|) $) 35)) (-3999 (((-849) $) 111 (|has| |#2| (-342)))) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#2| (-1013)))) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-2723 (($ (-849)) 110 (|has| |#2| (-342)))) (-4146 (((-1031) $) 21 (|has| |#2| (-1013)))) (-2319 ((|#2| $) 42 (|has| (-521) (-783)))) (-2995 (($ $ |#2|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) 26 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 25 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 23 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#2| $ (-521) |#2|) 50) ((|#2| $ (-521)) 49)) (-4103 ((|#2| $ $) 126 (|has| |#2| (-970)))) (-2015 (($ (-1165 |#2|)) 128)) (-2043 (((-126)) 125 (|has| |#2| (-337)))) (-2193 (($ $) 92 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) 90 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) 88 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) 87 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) 86 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) 85 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) 78 (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4233))) (((-707) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-1165 |#2|) $) 129) (($ (-521)) 66 (-3703 (-4009 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) 63 (-4009 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) 62 (|has| |#2| (-1013))) (((-791) $) 18 (|has| |#2| (-561 (-791))))) (-1592 (((-707)) 104 (|has| |#2| (-970)))) (-2006 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4233)))) (-4012 (($ $) 122 (|has| |#2| (-781)))) (-3509 (($ $ (-707)) 100 (|has| |#2| (-970))) (($ $ (-849)) 96 (|has| |#2| (-970)))) (-3562 (($) 71 (|has| |#2| (-124)) CONST)) (-3572 (($) 103 (|has| |#2| (-970)) CONST)) (-2244 (($ $) 91 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) 89 (-4009 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) 84 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) 83 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) 82 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) 81 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) 80 (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-970)))) (-1597 (((-108) $ $) 115 (-3703 (|has| |#2| (-781)) (|has| |#2| (-729))))) (-1579 (((-108) $ $) 114 (-3703 (|has| |#2| (-781)) (|has| |#2| (-729))))) (-1549 (((-108) $ $) 20 (|has| |#2| (-1013)))) (-1588 (((-108) $ $) 116 (-3703 (|has| |#2| (-781)) (|has| |#2| (-729))))) (-1569 (((-108) $ $) 113 (-3703 (|has| |#2| (-781)) (|has| |#2| (-729))))) (-1648 (($ $ |#2|) 124 (|has| |#2| (-337)))) (-1639 (($ $ $) 94 (|has| |#2| (-970))) (($ $) 93 (|has| |#2| (-970)))) (-1628 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-707)) 101 (|has| |#2| (-970))) (($ $ (-849)) 97 (|has| |#2| (-970)))) (* (($ $ $) 98 (|has| |#2| (-970))) (($ (-521) $) 95 (|has| |#2| (-970))) (($ $ |#2|) 76 (|has| |#2| (-663))) (($ |#2| $) 75 (|has| |#2| (-663))) (($ (-707) $) 73 (|has| |#2| (-124))) (($ (-849) $) 70 (|has| |#2| (-25)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-215 |#1| |#2|) (-1196) (-707) (-1119)) (T -215))
-((-2015 (*1 *1 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1119)) (-4 *1 (-215 *3 *4)))) (-2965 (*1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-215 *3 *4)) (-4 *4 (-970)) (-4 *4 (-1119)))) (-4103 (*1 *2 *1 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))))
-(-13 (-554 (-521) |t#2|) (-561 (-1165 |t#2|)) (-10 -8 (-6 -4233) (-15 -2015 ($ (-1165 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-385 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-970)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-208 |t#2|)) (-6 (-351 |t#2|)) (-15 -2965 ($ (-849))) (-15 -4103 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-663)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-342)) (-6 (-342)) |%noBranch|) (IF (|has| |t#2| (-157)) (PROGN (-6 (-37 |t#2|)) (-6 (-157))) |%noBranch|) (IF (|has| |t#2| (-6 -4230)) (-6 -4230) |%noBranch|) (IF (|has| |t#2| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |t#2| (-729)) (-6 (-729)) |%noBranch|) (IF (|has| |t#2| (-337)) (-6 (-1172 |t#2|)) |%noBranch|)))
-(((-21) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-23) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-729)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-25) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-729)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) -3703 (|has| |#2| (-1013)) (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-729)) (|has| |#2| (-342)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3703 (|has| |#2| (-970)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-107 $ $) |has| |#2| (-157)) ((-124) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-729)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-561 (-791)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-729)) (|has| |#2| (-342)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-561 (-791))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-561 (-1165 |#2|)) . T) ((-157) |has| |#2| (-157)) ((-208 |#2|) |has| |#2| (-970)) ((-210) -12 (|has| |#2| (-210)) (|has| |#2| (-970))) ((-261 #0=(-521) |#2|) . T) ((-263 #0# |#2|) . T) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-342) |has| |#2| (-342)) ((-351 |#2|) |has| |#2| (-970)) ((-385 |#2|) |has| |#2| (-1013)) ((-460 |#2|) . T) ((-554 #0# |#2|) . T) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-589 |#2|) -3703 (|has| |#2| (-970)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-589 $) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-583 (-521)) -12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970))) ((-583 |#2|) |has| |#2| (-970)) ((-654 |#2|) -3703 (|has| |#2| (-337)) (|has| |#2| (-157))) ((-663) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-727) |has| |#2| (-781)) ((-728) -3703 (|has| |#2| (-781)) (|has| |#2| (-729))) ((-729) |has| |#2| (-729)) ((-730) -3703 (|has| |#2| (-781)) (|has| |#2| (-729))) ((-731) -3703 (|has| |#2| (-781)) (|has| |#2| (-729))) ((-781) |has| |#2| (-781)) ((-783) -3703 (|has| |#2| (-781)) (|has| |#2| (-729))) ((-828 (-1084)) -12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970))) ((-961 (-381 (-521))) -12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013))) ((-961 (-521)) -12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) ((-961 |#2|) |has| |#2| (-1013)) ((-976 |#2|) -3703 (|has| |#2| (-970)) (|has| |#2| (-337)) (|has| |#2| (-157))) ((-976 $) |has| |#2| (-157)) ((-970) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-977) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-1025) -3703 (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-157))) ((-1013) -3703 (|has| |#2| (-1013)) (|has| |#2| (-970)) (|has| |#2| (-781)) (|has| |#2| (-729)) (|has| |#2| (-342)) (|has| |#2| (-337)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1119) . T) ((-1172 |#2|) |has| |#2| (-337)))
-((-3184 (((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 21)) (-3859 ((|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 23)) (-1393 (((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)) 18)))
-(((-216 |#1| |#2| |#3|) (-10 -7 (-15 -3184 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3859 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -1393 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)))) (-707) (-1119) (-1119)) (T -216))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-217 *5 *7)) (-5 *1 (-216 *5 *6 *7)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707)) (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-216 *5 *6 *2)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-707)) (-4 *7 (-1119)) (-4 *5 (-1119)) (-5 *2 (-217 *6 *5)) (-5 *1 (-216 *6 *7 *5)))))
-(-10 -7 (-15 -3184 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3859 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -1393 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|))))
-((-1422 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-3398 (((-108) $) NIL (|has| |#2| (-124)))) (-2965 (($ (-849)) 56 (|has| |#2| (-970)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2303 (($ $ $) 60 (|has| |#2| (-729)))) (-2057 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-1269 (((-108) $ (-707)) 17)) (-1659 (((-707)) NIL (|has| |#2| (-342)))) (-2578 (((-521) $) NIL (|has| |#2| (-781)))) (-2396 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1013)))) (-1496 (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) 27 (|has| |#2| (-1013)))) (-1961 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-970)))) (-2783 (((-3 $ "failed") $) 53 (|has| |#2| (-970)))) (-3254 (($) NIL (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) 51)) (-2273 (((-108) $) NIL (|has| |#2| (-781)))) (-3831 (((-587 |#2|) $) 15 (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL (|has| |#2| (-970)))) (-3305 (((-108) $) NIL (|has| |#2| (-781)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 20 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-3568 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 (((-521) $) 50 (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2|) $) 41)) (-3999 (((-849) $) NIL (|has| |#2| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#2| (-1013)))) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-2723 (($ (-849)) NIL (|has| |#2| (-342)))) (-4146 (((-1031) $) NIL (|has| |#2| (-1013)))) (-2319 ((|#2| $) NIL (|has| (-521) (-783)))) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) 21)) (-4103 ((|#2| $ $) NIL (|has| |#2| (-970)))) (-2015 (($ (-1165 |#2|)) 18)) (-2043 (((-126)) NIL (|has| |#2| (-337)))) (-2193 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1165 |#2|) $) 10) (($ (-521)) NIL (-3703 (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) 13 (|has| |#2| (-1013))) (((-791) $) NIL (|has| |#2| (-561 (-791))))) (-1592 (((-707)) NIL (|has| |#2| (-970)))) (-2006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-4012 (($ $) NIL (|has| |#2| (-781)))) (-3509 (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-849)) NIL (|has| |#2| (-970)))) (-3562 (($) 35 (|has| |#2| (-124)) CONST)) (-3572 (($) 38 (|has| |#2| (-970)) CONST)) (-2244 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-1597 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1549 (((-108) $ $) 26 (|has| |#2| (-1013)))) (-1588 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1569 (((-108) $ $) 58 (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $ $) NIL (|has| |#2| (-970))) (($ $) NIL (|has| |#2| (-970)))) (-1628 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-849)) NIL (|has| |#2| (-970)))) (* (($ $ $) 49 (|has| |#2| (-970))) (($ (-521) $) NIL (|has| |#2| (-970))) (($ $ |#2|) 42 (|has| |#2| (-663))) (($ |#2| $) 43 (|has| |#2| (-663))) (($ (-707) $) NIL (|has| |#2| (-124))) (($ (-849) $) NIL (|has| |#2| (-25)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-217 |#1| |#2|) (-215 |#1| |#2|) (-707) (-1119)) (T -217))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-2157 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) 11) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) 19) (($ $ (-708)) NIL) (($ $) 16)) (-2213 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-708)) 14) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)))
+(((-207 |#1| |#2|) (-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2213 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2213 (|#1| |#1| (-1085))) (-15 -2213 (|#1| |#1| (-588 (-1085)))) (-15 -2213 (|#1| |#1| (-1085) (-708))) (-15 -2213 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2213 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2213 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|)))) (-208 |#2|) (-971)) (T -207))
+NIL
+(-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2213 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2213 (|#1| |#1| (-1085))) (-15 -2213 (|#1| |#1| (-588 (-1085)))) (-15 -2213 (|#1| |#1| (-1085) (-708))) (-15 -2213 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2213 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2213 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2157 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-708)) 51) (($ $ (-588 (-1085)) (-588 (-708))) 44 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 43 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 42 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 41 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 39 (|has| |#1| (-210))) (($ $) 37 (|has| |#1| (-210)))) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-708)) 49) (($ $ (-588 (-1085)) (-588 (-708))) 48 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 47 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 46 (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 45 (|has| |#1| (-829 (-1085)))) (($ $ (-708)) 40 (|has| |#1| (-210))) (($ $) 38 (|has| |#1| (-210)))) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-208 |#1|) (-1197) (-971)) (T -208))
+((-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971)))) (-2157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4)) (-4 *4 (-971)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971)))) (-2213 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4)) (-4 *4 (-971)))))
+(-13 (-971) (-10 -8 (-15 -2157 ($ $ (-1 |t#1| |t#1|))) (-15 -2157 ($ $ (-1 |t#1| |t#1|) (-708))) (-15 -2213 ($ $ (-1 |t#1| |t#1|))) (-15 -2213 ($ $ (-1 |t#1| |t#1|) (-708))) (IF (|has| |t#1| (-210)) (-6 (-210)) |%noBranch|) (IF (|has| |t#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-210) |has| |#1| (-210)) ((-590 $) . T) ((-664) . T) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2157 (($ $) NIL) (($ $ (-708)) 10)) (-2213 (($ $) 8) (($ $ (-708)) 12)))
+(((-209 |#1|) (-10 -8 (-15 -2213 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2213 (|#1| |#1|)) (-15 -2157 (|#1| |#1|))) (-210)) (T -209))
+NIL
+(-10 -8 (-15 -2213 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2213 (|#1| |#1|)) (-15 -2157 (|#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2157 (($ $) 38) (($ $ (-708)) 36)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $) 37) (($ $ (-708)) 35)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-210) (-1197)) (T -210))
+((-2157 (*1 *1 *1) (-4 *1 (-210))) (-2213 (*1 *1 *1) (-4 *1 (-210))) (-2157 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708)))) (-2213 (*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708)))))
+(-13 (-971) (-10 -8 (-15 -2157 ($ $)) (-15 -2213 ($ $)) (-15 -2157 ($ $ (-708))) (-15 -2213 ($ $ (-708)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-3990 (($) 12) (($ (-588 |#2|)) NIL)) (-2404 (($ $) 14)) (-2201 (($ (-588 |#2|)) 10)) (-2190 (((-792) $) 21)))
+(((-211 |#1| |#2|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -3990 (|#1| (-588 |#2|))) (-15 -3990 (|#1|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -2404 (|#1| |#1|))) (-212 |#2|) (-1014)) (T -211))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -3990 (|#1| (-588 |#2|))) (-15 -3990 (|#1|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -2404 (|#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-2790 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2333 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3990 (($) 49) (($ (-588 |#1|)) 48)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 50)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-212 |#1|) (-1197) (-1014)) (T -212))
+((-3990 (*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1014)))) (-3990 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-212 *3)))) (-3859 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-212 *2)) (-4 *2 (-1014)))) (-3859 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3)) (-4 *3 (-1014)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3)) (-4 *3 (-1014)))))
+(-13 (-102 |t#1|) (-139 |t#1|) (-10 -8 (-15 -3990 ($)) (-15 -3990 ($ (-588 |t#1|))) (IF (|has| $ (-6 -4238)) (PROGN (-15 -3859 ($ |t#1| $)) (-15 -3859 ($ (-1 (-108) |t#1|) $)) (-15 -2790 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-3301 (((-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708))))) (-270 (-881 (-522)))) 25)))
+(((-213) (-10 -7 (-15 -3301 ((-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708))))) (-270 (-881 (-522))))))) (T -213))
+((-3301 (*1 *2 *3) (-12 (-5 *3 (-270 (-881 (-522)))) (-5 *2 (-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708)))))) (-5 *1 (-213)))))
+(-10 -7 (-15 -3301 ((-2 (|:| |varOrder| (-588 (-1085))) (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed")) (|:| |hom| (-588 (-1166 (-708))))) (-270 (-881 (-522))))))
+((-1629 (((-708)) 51)) (-2096 (((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) 49) (((-628 |#3|) (-628 $)) 41) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-4078 (((-126)) 57)) (-2157 (($ $ (-1 |#3| |#3|) (-708)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-2190 (((-1166 |#3|) $) NIL) (($ |#3|) NIL) (((-792) $) NIL) (($ (-522)) 12) (($ (-382 (-522))) NIL)) (-2323 (((-708)) 15)) (-1620 (($ $ |#3|) 54)))
+(((-214 |#1| |#2| |#3|) (-10 -8 (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)) (-15 -2323 ((-708))) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2190 (|#1| |#3|)) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -2096 ((-628 |#3|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -1629 ((-708))) (-15 -1620 (|#1| |#1| |#3|)) (-15 -4078 ((-126))) (-15 -2190 ((-1166 |#3|) |#1|))) (-215 |#2| |#3|) (-708) (-1120)) (T -214))
+((-4078 (*1 *2) (-12 (-14 *4 (-708)) (-4 *5 (-1120)) (-5 *2 (-126)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-1629 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))) (-2323 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708)) (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5)))))
+(-10 -8 (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)) (-15 -2323 ((-708))) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2190 (|#1| |#3|)) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -2096 ((-628 |#3|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -1629 ((-708))) (-15 -1620 (|#1| |#1| |#3|)) (-15 -4078 ((-126))) (-15 -2190 ((-1166 |#3|) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#2| (-1014)))) (-2250 (((-108) $) 72 (|has| |#2| (-124)))) (-2468 (($ (-850)) 127 (|has| |#2| (-971)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-1210 (($ $ $) 123 (|has| |#2| (-730)))) (-1233 (((-3 $ "failed") $ $) 74 (|has| |#2| (-124)))) (-4141 (((-108) $ (-708)) 8)) (-1629 (((-708)) 109 (|has| |#2| (-343)))) (-1341 (((-522) $) 121 (|has| |#2| (-782)))) (-2379 ((|#2| $ (-522) |#2|) 52 (|has| $ (-6 -4239)))) (-3175 (($) 7 T CONST)) (-1297 (((-3 (-522) "failed") $) 67 (-4015 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) 64 (-4015 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1014)))) (-1484 (((-522) $) 68 (-4015 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) 65 (-4015 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) 60 (|has| |#2| (-1014)))) (-2096 (((-628 (-522)) (-628 $)) 108 (-4015 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 107 (-4015 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 106 (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) 105 (|has| |#2| (-971)))) (-2682 (((-3 $ "failed") $) 99 (|has| |#2| (-971)))) (-3255 (($) 112 (|has| |#2| (-343)))) (-3854 ((|#2| $ (-522) |#2|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#2| $ (-522)) 51)) (-3687 (((-108) $) 119 (|has| |#2| (-782)))) (-3837 (((-588 |#2|) $) 30 (|has| $ (-6 -4238)))) (-2782 (((-108) $) 102 (|has| |#2| (-971)))) (-2556 (((-108) $) 120 (|has| |#2| (-782)))) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 118 (-3708 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-3308 (((-588 |#2|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 117 (-3708 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-3838 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2|) $) 35)) (-2120 (((-850) $) 111 (|has| |#2| (-343)))) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#2| (-1014)))) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-2717 (($ (-850)) 110 (|has| |#2| (-343)))) (-4151 (((-1032) $) 21 (|has| |#2| (-1014)))) (-2294 ((|#2| $) 42 (|has| (-522) (-784)))) (-2602 (($ $ |#2|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) 26 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 25 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 23 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#2| $ (-522) |#2|) 50) ((|#2| $ (-522)) 49)) (-1883 ((|#2| $ $) 126 (|has| |#2| (-971)))) (-1962 (($ (-1166 |#2|)) 128)) (-4078 (((-126)) 125 (|has| |#2| (-338)))) (-2157 (($ $) 92 (-4015 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) 90 (-4015 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) 88 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) 87 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) 86 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) 85 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) 78 (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-971)))) (-4168 (((-708) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4238))) (((-708) |#2| $) 28 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-1166 |#2|) $) 129) (($ (-522)) 66 (-3708 (-4015 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) 63 (-4015 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) 62 (|has| |#2| (-1014))) (((-792) $) 18 (|has| |#2| (-562 (-792))))) (-2323 (((-708)) 104 (|has| |#2| (-971)))) (-3648 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4238)))) (-2241 (($ $) 122 (|has| |#2| (-782)))) (-3510 (($ $ (-708)) 100 (|has| |#2| (-971))) (($ $ (-850)) 96 (|has| |#2| (-971)))) (-3566 (($) 71 (|has| |#2| (-124)) CONST)) (-3577 (($) 103 (|has| |#2| (-971)) CONST)) (-2213 (($ $) 91 (-4015 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) 89 (-4015 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) 84 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) 83 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) 82 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) 81 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) 80 (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-971)))) (-1574 (((-108) $ $) 115 (-3708 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1558 (((-108) $ $) 114 (-3708 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1531 (((-108) $ $) 20 (|has| |#2| (-1014)))) (-1566 (((-108) $ $) 116 (-3708 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1549 (((-108) $ $) 113 (-3708 (|has| |#2| (-782)) (|has| |#2| (-730))))) (-1620 (($ $ |#2|) 124 (|has| |#2| (-338)))) (-1612 (($ $ $) 94 (|has| |#2| (-971))) (($ $) 93 (|has| |#2| (-971)))) (-1602 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-708)) 101 (|has| |#2| (-971))) (($ $ (-850)) 97 (|has| |#2| (-971)))) (* (($ $ $) 98 (|has| |#2| (-971))) (($ (-522) $) 95 (|has| |#2| (-971))) (($ $ |#2|) 76 (|has| |#2| (-664))) (($ |#2| $) 75 (|has| |#2| (-664))) (($ (-708) $) 73 (|has| |#2| (-124))) (($ (-850) $) 70 (|has| |#2| (-25)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-215 |#1| |#2|) (-1197) (-708) (-1120)) (T -215))
+((-1962 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1120)) (-4 *1 (-215 *3 *4)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-215 *3 *4)) (-4 *4 (-971)) (-4 *4 (-1120)))) (-1883 (*1 *2 *1 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))))
+(-13 (-555 (-522) |t#2|) (-562 (-1166 |t#2|)) (-10 -8 (-6 -4238) (-15 -1962 ($ (-1166 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-386 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-971)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-208 |t#2|)) (-6 (-352 |t#2|)) (-15 -2468 ($ (-850))) (-15 -1883 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-124)) (-6 (-124)) |%noBranch|) (IF (|has| |t#2| (-664)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#2| (-157)) (PROGN (-6 (-37 |t#2|)) (-6 (-157))) |%noBranch|) (IF (|has| |t#2| (-6 -4235)) (-6 -4235) |%noBranch|) (IF (|has| |t#2| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |t#2| (-730)) (-6 (-730)) |%noBranch|) (IF (|has| |t#2| (-338)) (-6 (-1173 |t#2|)) |%noBranch|)))
+(((-21) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-23) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-25) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) -3708 (|has| |#2| (-1014)) (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-343)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3708 (|has| |#2| (-971)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-107 $ $) |has| |#2| (-157)) ((-124) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124))) ((-562 (-792)) -3708 (|has| |#2| (-1014)) (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-343)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-562 (-792))) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-562 (-1166 |#2|)) . T) ((-157) |has| |#2| (-157)) ((-208 |#2|) |has| |#2| (-971)) ((-210) -12 (|has| |#2| (-210)) (|has| |#2| (-971))) ((-262 #0=(-522) |#2|) . T) ((-264 #0# |#2|) . T) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-343) |has| |#2| (-343)) ((-352 |#2|) |has| |#2| (-971)) ((-386 |#2|) |has| |#2| (-1014)) ((-461 |#2|) . T) ((-555 #0# |#2|) . T) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-590 |#2|) -3708 (|has| |#2| (-971)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-590 $) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-584 (-522)) -12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971))) ((-584 |#2|) |has| |#2| (-971)) ((-655 |#2|) -3708 (|has| |#2| (-338)) (|has| |#2| (-157))) ((-664) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-728) |has| |#2| (-782)) ((-729) -3708 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-730) |has| |#2| (-730)) ((-731) -3708 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-732) -3708 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-782) |has| |#2| (-782)) ((-784) -3708 (|has| |#2| (-782)) (|has| |#2| (-730))) ((-829 (-1085)) -12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971))) ((-962 (-382 (-522))) -12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014))) ((-962 (-522)) -12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) ((-962 |#2|) |has| |#2| (-1014)) ((-977 |#2|) -3708 (|has| |#2| (-971)) (|has| |#2| (-338)) (|has| |#2| (-157))) ((-977 $) |has| |#2| (-157)) ((-971) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-978) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-1026) -3708 (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-157))) ((-1014) -3708 (|has| |#2| (-1014)) (|has| |#2| (-971)) (|has| |#2| (-782)) (|has| |#2| (-730)) (|has| |#2| (-343)) (|has| |#2| (-338)) (|has| |#2| (-157)) (|has| |#2| (-124)) (|has| |#2| (-25))) ((-1120) . T) ((-1173 |#2|) |has| |#2| (-338)))
+((-3690 (((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 21)) (-3864 ((|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|) 23)) (-1391 (((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)) 18)))
+(((-216 |#1| |#2| |#3|) (-10 -7 (-15 -3690 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3864 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -1391 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|)))) (-708) (-1120) (-1120)) (T -216))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-217 *5 *7)) (-5 *1 (-216 *5 *6 *7)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708)) (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-216 *5 *6 *2)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-708)) (-4 *7 (-1120)) (-4 *5 (-1120)) (-5 *2 (-217 *6 *5)) (-5 *1 (-216 *6 *7 *5)))))
+(-10 -7 (-15 -3690 ((-217 |#1| |#3|) (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -3864 (|#3| (-1 |#3| |#2| |#3|) (-217 |#1| |#2|) |#3|)) (-15 -1391 ((-217 |#1| |#3|) (-1 |#3| |#2|) (-217 |#1| |#2|))))
+((-1416 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-2250 (((-108) $) NIL (|has| |#2| (-124)))) (-2468 (($ (-850)) 56 (|has| |#2| (-971)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1210 (($ $ $) 60 (|has| |#2| (-730)))) (-1233 (((-3 $ "failed") $ $) 48 (|has| |#2| (-124)))) (-4141 (((-108) $ (-708)) 17)) (-1629 (((-708)) NIL (|has| |#2| (-343)))) (-1341 (((-522) $) NIL (|has| |#2| (-782)))) (-2379 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1014)))) (-1484 (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) 27 (|has| |#2| (-1014)))) (-2096 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) NIL (|has| |#2| (-971)))) (-2682 (((-3 $ "failed") $) 53 (|has| |#2| (-971)))) (-3255 (($) NIL (|has| |#2| (-343)))) (-3854 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ (-522)) 51)) (-3687 (((-108) $) NIL (|has| |#2| (-782)))) (-3837 (((-588 |#2|) $) 15 (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL (|has| |#2| (-971)))) (-2556 (((-108) $) NIL (|has| |#2| (-782)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 20 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-3308 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 (((-522) $) 50 (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-3838 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2|) $) 41)) (-2120 (((-850) $) NIL (|has| |#2| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#2| (-1014)))) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-2717 (($ (-850)) NIL (|has| |#2| (-343)))) (-4151 (((-1032) $) NIL (|has| |#2| (-1014)))) (-2294 ((|#2| $) NIL (|has| (-522) (-784)))) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) 21)) (-1883 ((|#2| $ $) NIL (|has| |#2| (-971)))) (-1962 (($ (-1166 |#2|)) 18)) (-4078 (((-126)) NIL (|has| |#2| (-338)))) (-2157 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-4168 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1166 |#2|) $) 10) (($ (-522)) NIL (-3708 (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) 13 (|has| |#2| (-1014))) (((-792) $) NIL (|has| |#2| (-562 (-792))))) (-2323 (((-708)) NIL (|has| |#2| (-971)))) (-3648 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2241 (($ $) NIL (|has| |#2| (-782)))) (-3510 (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (-3566 (($) 35 (|has| |#2| (-124)) CONST)) (-3577 (($) 38 (|has| |#2| (-971)) CONST)) (-2213 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-1574 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1531 (((-108) $ $) 26 (|has| |#2| (-1014)))) (-1566 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1549 (((-108) $ $) 58 (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $ $) NIL (|has| |#2| (-971))) (($ $) NIL (|has| |#2| (-971)))) (-1602 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (* (($ $ $) 49 (|has| |#2| (-971))) (($ (-522) $) NIL (|has| |#2| (-971))) (($ $ |#2|) 42 (|has| |#2| (-664))) (($ |#2| $) 43 (|has| |#2| (-664))) (($ (-708) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-217 |#1| |#2|) (-215 |#1| |#2|) (-708) (-1120)) (T -217))
NIL
(-215 |#1| |#2|)
-((-3965 (((-521) (-587 (-1067))) 24) (((-521) (-1067)) 19)) (-2468 (((-1170) (-587 (-1067))) 29) (((-1170) (-1067)) 28)) (-1401 (((-1067)) 14)) (-2357 (((-1067) (-521) (-1067)) 16)) (-1952 (((-587 (-1067)) (-587 (-1067)) (-521) (-1067)) 25) (((-1067) (-1067) (-521) (-1067)) 23)) (-2269 (((-587 (-1067)) (-587 (-1067))) 13) (((-587 (-1067)) (-1067)) 11)))
-(((-218) (-10 -7 (-15 -2269 ((-587 (-1067)) (-1067))) (-15 -2269 ((-587 (-1067)) (-587 (-1067)))) (-15 -1401 ((-1067))) (-15 -2357 ((-1067) (-521) (-1067))) (-15 -1952 ((-1067) (-1067) (-521) (-1067))) (-15 -1952 ((-587 (-1067)) (-587 (-1067)) (-521) (-1067))) (-15 -2468 ((-1170) (-1067))) (-15 -2468 ((-1170) (-587 (-1067)))) (-15 -3965 ((-521) (-1067))) (-15 -3965 ((-521) (-587 (-1067)))))) (T -218))
-((-3965 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-521)) (-5 *1 (-218)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-218)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1170)) (-5 *1 (-218)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-218)))) (-1952 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-587 (-1067))) (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *1 (-218)))) (-1952 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218)))) (-2357 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218)))) (-1401 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-218)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218)))) (-2269 (*1 *2 *3) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218)) (-5 *3 (-1067)))))
-(-10 -7 (-15 -2269 ((-587 (-1067)) (-1067))) (-15 -2269 ((-587 (-1067)) (-587 (-1067)))) (-15 -1401 ((-1067))) (-15 -2357 ((-1067) (-521) (-1067))) (-15 -1952 ((-1067) (-1067) (-521) (-1067))) (-15 -1952 ((-587 (-1067)) (-587 (-1067)) (-521) (-1067))) (-15 -2468 ((-1170) (-1067))) (-15 -2468 ((-1170) (-587 (-1067)))) (-15 -3965 ((-521) (-1067))) (-15 -3965 ((-521) (-587 (-1067)))))
-((-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 9)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 18)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ (-381 (-521)) $) 25) (($ $ (-381 (-521))) NIL)))
-(((-219 |#1|) (-10 -8 (-15 -3509 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 ** (|#1| |#1| (-707))) (-15 -3509 (|#1| |#1| (-707))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -3509 (|#1| |#1| (-849))) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|))) (-220)) (T -219))
-NIL
-(-10 -8 (-15 -3509 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 ** (|#1| |#1| (-707))) (-15 -3509 (|#1| |#1| (-707))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -3509 (|#1| |#1| (-849))) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 39)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 44)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 40)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 41)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ (-381 (-521)) $) 43) (($ $ (-381 (-521))) 42)))
-(((-220) (-1196)) (T -220))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521)))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521)))) (-3100 (*1 *1 *1) (-4 *1 (-220))))
-(-13 (-265) (-37 (-381 (-521))) (-10 -8 (-15 ** ($ $ (-521))) (-15 -3509 ($ $ (-521))) (-15 -3100 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-265) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-663) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-3830 (($ $) 57)) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-4179 (($ $ $) 53 (|has| $ (-6 -4234)))) (-2579 (($ $ $) 52 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2231 (($) 7 T CONST)) (-3462 (($ $) 56)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-3616 (($ $) 55)) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1450 ((|#1| $) 59)) (-1845 (($ $) 58)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47)) (-1557 (((-521) $ $) 44)) (-1475 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2240 (($ $ $) 54 (|has| $ (-6 -4234)))) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-221 |#1|) (-1196) (-1119)) (T -221))
-((-1450 (*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-1845 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3462 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-3616 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-2240 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-4179 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))) (-2579 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
-(-13 (-935 |t#1|) (-10 -8 (-15 -1450 (|t#1| $)) (-15 -1845 ($ $)) (-15 -3830 ($ $)) (-15 -3462 ($ $)) (-15 -3616 ($ $)) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2240 ($ $ $)) (-15 -4179 ($ $ $)) (-15 -2579 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-3830 (($ $) NIL)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) $) NIL (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1216 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-3215 (($ $) 10 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1471 (($ $ $) NIL (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "rest" $) NIL (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) |#1|) $) NIL)) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2124 ((|#1| $) NIL)) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2329 (($ $) NIL) (($ $ (-707)) NIL)) (-1514 (($ $) NIL (|has| |#1| (-1013)))) (-2354 (($ $) 7 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1429 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-2125 (((-108) $) NIL)) (-3236 (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013))) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-4162 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3389 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1604 (($ |#1|) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1450 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-4135 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1696 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2394 (((-108) $) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) NIL) ((|#1| $ (-521) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-707) $ "count") 16)) (-1557 (((-521) $ $) NIL)) (-3488 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3694 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3324 (($ (-587 |#1|)) 22)) (-1475 (((-108) $) NIL)) (-1290 (($ $) NIL)) (-2780 (($ $) NIL (|has| $ (-6 -4234)))) (-1602 (((-707) $) NIL)) (-1376 (($ $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-2240 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4159 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-587 $)) NIL) (($ $ |#1|) NIL)) (-2223 (($ (-587 |#1|)) 17) (((-587 |#1|) $) 18) (((-791) $) 21 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) 14 (|has| $ (-6 -4233)))))
-(((-222 |#1|) (-13 (-607 |#1|) (-10 -8 (-15 -2223 ($ (-587 |#1|))) (-15 -2223 ((-587 |#1|) $)) (-15 -3324 ($ (-587 |#1|))) (-15 -2550 ($ $ "unique")) (-15 -2550 ($ $ "sort")) (-15 -2550 ((-707) $ "count")))) (-783)) (T -222))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-222 *3)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-222 *3)) (-4 *3 (-783)))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-222 *3)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-783)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-783)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-707)) (-5 *1 (-222 *4)) (-4 *4 (-783)))))
-(-13 (-607 |#1|) (-10 -8 (-15 -2223 ($ (-587 |#1|))) (-15 -2223 ((-587 |#1|) $)) (-15 -3324 ($ (-587 |#1|))) (-15 -2550 ($ $ "unique")) (-15 -2550 ($ $ "sort")) (-15 -2550 ((-707) $ "count"))))
-((-3851 (((-3 (-707) "failed") |#1| |#1| (-707)) 27)))
-(((-223 |#1|) (-10 -7 (-15 -3851 ((-3 (-707) "failed") |#1| |#1| (-707)))) (-13 (-663) (-342) (-10 -7 (-15 ** (|#1| |#1| (-521)))))) (T -223))
-((-3851 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-707)) (-4 *3 (-13 (-663) (-342) (-10 -7 (-15 ** (*3 *3 (-521)))))) (-5 *1 (-223 *3)))))
-(-10 -7 (-15 -3851 ((-3 (-707) "failed") |#1| |#1| (-707))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-793 |#1|)) $) NIL)) (-1280 (((-1080 $) $ (-793 |#1|)) NIL) (((-1080 |#2|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-1954 (($ $) NIL (|has| |#2| (-513)))) (-3795 (((-108) $) NIL (|has| |#2| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-793 |#1|))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2694 (($ $) NIL (|has| |#2| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#2| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-793 |#1|) $) NIL)) (-3052 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-3097 (($ $ (-587 (-521))) NIL)) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#2| (-837)))) (-1709 (($ $ |#2| (-217 (-3478 |#1|) (-707)) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#2|) (-793 |#1|)) NIL) (($ (-1080 $) (-793 |#1|)) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#2| (-217 (-3478 |#1|) (-707))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-793 |#1|)) NIL)) (-2401 (((-217 (-3478 |#1|) (-707)) $) NIL) (((-707) $ (-793 |#1|)) NIL) (((-587 (-707)) $ (-587 (-793 |#1|))) NIL)) (-2816 (($ $ $) NIL (|has| |#2| (-783)))) (-2459 (($ $ $) NIL (|has| |#2| (-783)))) (-2310 (($ (-1 (-217 (-3478 |#1|) (-707)) (-217 (-3478 |#1|) (-707))) $) NIL)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2913 (((-3 (-793 |#1|) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#2| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2246 (-707))) "failed") $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#2| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#2| (-837)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-793 |#1|) |#2|) NIL) (($ $ (-587 (-793 |#1|)) (-587 |#2|)) NIL) (($ $ (-793 |#1|) $) NIL) (($ $ (-587 (-793 |#1|)) (-587 $)) NIL)) (-3011 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2193 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2098 (((-217 (-3478 |#1|) (-707)) $) NIL) (((-707) $ (-793 |#1|)) NIL) (((-587 (-707)) $ (-587 (-793 |#1|))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-793 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-1391 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-793 |#1|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-217 (-3478 |#1|) (-707))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-224 |#1| |#2|) (-13 (-877 |#2| (-217 (-3478 |#1|) (-707)) (-793 |#1|)) (-10 -8 (-15 -3097 ($ $ (-587 (-521)))))) (-587 (-1084)) (-970)) (T -224))
-((-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-224 *3 *4)) (-14 *3 (-587 (-1084))) (-4 *4 (-970)))))
-(-13 (-877 |#2| (-217 (-3478 |#1|) (-707)) (-793 |#1|)) (-10 -8 (-15 -3097 ($ $ (-587 (-521))))))
-((-1295 (((-1170) $) 12)) (-2646 (((-166) $) 9)) (-2371 (($ (-166)) 10)) (-2223 (((-791) $) 7)))
-(((-225) (-13 (-561 (-791)) (-10 -8 (-15 -2646 ((-166) $)) (-15 -2371 ($ (-166))) (-15 -1295 ((-1170) $))))) (T -225))
-((-2646 (*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-225)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2646 ((-166) $)) (-15 -2371 ($ (-166))) (-15 -1295 ((-1170) $))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2965 (($ (-849)) NIL (|has| |#4| (-970)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2303 (($ $ $) NIL (|has| |#4| (-729)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| |#4| (-342)))) (-2578 (((-521) $) NIL (|has| |#4| (-781)))) (-2396 ((|#4| $ (-521) |#4|) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1013))) (((-3 (-521) "failed") $) NIL (-12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))) (-1496 ((|#4| $) NIL (|has| |#4| (-1013))) (((-521) $) NIL (-12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))) (-1961 (((-2 (|:| -3534 (-627 |#4|)) (|:| |vec| (-1165 |#4|))) (-627 $) (-1165 $)) NIL (|has| |#4| (-970))) (((-627 |#4|) (-627 $)) NIL (|has| |#4| (-970))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#4| (-583 (-521))) (|has| |#4| (-970)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#4| (-583 (-521))) (|has| |#4| (-970))))) (-2783 (((-3 $ "failed") $) NIL (|has| |#4| (-970)))) (-3254 (($) NIL (|has| |#4| (-342)))) (-3849 ((|#4| $ (-521) |#4|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#4| $ (-521)) NIL)) (-2273 (((-108) $) NIL (|has| |#4| (-781)))) (-3831 (((-587 |#4|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL (|has| |#4| (-970)))) (-3305 (((-108) $) NIL (|has| |#4| (-781)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-781))))) (-3568 (((-587 |#4|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-781))))) (-3833 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#4| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-2723 (($ (-849)) NIL (|has| |#4| (-342)))) (-4146 (((-1031) $) NIL)) (-2319 ((|#4| $) NIL (|has| (-521) (-783)))) (-2995 (($ $ |#4|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-2481 (((-587 |#4|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#4| $ (-521) |#4|) NIL) ((|#4| $ (-521)) 12)) (-4103 ((|#4| $ $) NIL (|has| |#4| (-970)))) (-2015 (($ (-1165 |#4|)) NIL)) (-2043 (((-126)) NIL (|has| |#4| (-337)))) (-2193 (($ $ (-1 |#4| |#4|) (-707)) NIL (|has| |#4| (-970))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970))))) (-4163 (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1165 |#4|) $) NIL) (((-791) $) NIL) (($ |#4|) NIL (|has| |#4| (-1013))) (($ (-521)) NIL (-3703 (-12 (|has| |#4| (-961 (-521))) (|has| |#4| (-1013))) (|has| |#4| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#4| (-961 (-381 (-521)))) (|has| |#4| (-1013))))) (-1592 (((-707)) NIL (|has| |#4| (-970)))) (-2006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-4012 (($ $) NIL (|has| |#4| (-781)))) (-3509 (($ $ (-707)) NIL (|has| |#4| (-970))) (($ $ (-849)) NIL (|has| |#4| (-970)))) (-3562 (($) NIL T CONST)) (-3572 (($) NIL (|has| |#4| (-970)) CONST)) (-2244 (($ $ (-1 |#4| |#4|) (-707)) NIL (|has| |#4| (-970))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#4| (-828 (-1084))) (|has| |#4| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-970))))) (-1597 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-781))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-781))))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-781))))) (-1569 (((-108) $ $) NIL (-3703 (|has| |#4| (-729)) (|has| |#4| (-781))))) (-1648 (($ $ |#4|) NIL (|has| |#4| (-337)))) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL (|has| |#4| (-970))) (($ $ (-849)) NIL (|has| |#4| (-970)))) (* (($ |#2| $) 14) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-849) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-663))) (($ |#4| $) NIL (|has| |#4| (-663))) (($ $ $) NIL (|has| |#4| (-970)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-226 |#1| |#2| |#3| |#4|) (-13 (-215 |#1| |#4|) (-589 |#2|) (-589 |#3|)) (-849) (-970) (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-589 |#2|)) (T -226))
-NIL
-(-13 (-215 |#1| |#4|) (-589 |#2|) (-589 |#3|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2965 (($ (-849)) NIL (|has| |#3| (-970)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2303 (($ $ $) NIL (|has| |#3| (-729)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| |#3| (-342)))) (-2578 (((-521) $) NIL (|has| |#3| (-781)))) (-2396 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1013))) (((-3 (-521) "failed") $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))) (-1496 ((|#3| $) NIL (|has| |#3| (-1013))) (((-521) $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))) (-1961 (((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) NIL (|has| |#3| (-970))) (((-627 |#3|) (-627 $)) NIL (|has| |#3| (-970))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970))))) (-2783 (((-3 $ "failed") $) NIL (|has| |#3| (-970)))) (-3254 (($) NIL (|has| |#3| (-342)))) (-3849 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#3| $ (-521)) NIL)) (-2273 (((-108) $) NIL (|has| |#3| (-781)))) (-3831 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL (|has| |#3| (-970)))) (-3305 (((-108) $) NIL (|has| |#3| (-781)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-3568 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-3833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#3| |#3|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#3| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-2723 (($ (-849)) NIL (|has| |#3| (-342)))) (-4146 (((-1031) $) NIL)) (-2319 ((|#3| $) NIL (|has| (-521) (-783)))) (-2995 (($ $ |#3|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#3|))) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2481 (((-587 |#3|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#3| $ (-521) |#3|) NIL) ((|#3| $ (-521)) 11)) (-4103 ((|#3| $ $) NIL (|has| |#3| (-970)))) (-2015 (($ (-1165 |#3|)) NIL)) (-2043 (((-126)) NIL (|has| |#3| (-337)))) (-2193 (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970))))) (-4163 (((-707) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233))) (((-707) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1165 |#3|) $) NIL) (((-791) $) NIL) (($ |#3|) NIL (|has| |#3| (-1013))) (($ (-521)) NIL (-3703 (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (|has| |#3| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013))))) (-1592 (((-707)) NIL (|has| |#3| (-970)))) (-2006 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-4012 (($ $) NIL (|has| |#3| (-781)))) (-3509 (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-849)) NIL (|has| |#3| (-970)))) (-3562 (($) NIL T CONST)) (-3572 (($) NIL (|has| |#3| (-970)) CONST)) (-2244 (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970))))) (-1597 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1569 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1648 (($ $ |#3|) NIL (|has| |#3| (-337)))) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-849)) NIL (|has| |#3| (-970)))) (* (($ |#2| $) 13) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-849) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-663))) (($ |#3| $) NIL (|has| |#3| (-663))) (($ $ $) NIL (|has| |#3| (-970)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-227 |#1| |#2| |#3|) (-13 (-215 |#1| |#3|) (-589 |#2|)) (-707) (-970) (-589 |#2|)) (T -227))
-NIL
-(-13 (-215 |#1| |#3|) (-589 |#2|))
-((-1452 (((-587 (-707)) $) 47) (((-587 (-707)) $ |#3|) 50)) (-3245 (((-707) $) 49) (((-707) $ |#3|) 52)) (-3234 (($ $) 65)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3490 (((-707) $ |#3|) 39) (((-707) $) 36)) (-2308 (((-1 $ (-707)) |#3|) 15) (((-1 $ (-707)) $) 77)) (-1593 ((|#4| $) 58)) (-3742 (((-108) $) 56)) (-1959 (($ $) 64)) (-2313 (($ $ (-587 (-269 $))) 96) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-587 |#4|) (-587 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-587 |#4|) (-587 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-587 |#3|) (-587 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-587 |#3|) (-587 |#2|)) 84)) (-2193 (($ $ |#4|) NIL) (($ $ (-587 |#4|)) NIL) (($ $ |#4| (-707)) NIL) (($ $ (-587 |#4|) (-587 (-707))) NIL) (($ $) NIL) (($ $ (-707)) NIL) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1279 (((-587 |#3|) $) 75)) (-2098 ((|#5| $) NIL) (((-707) $ |#4|) NIL) (((-587 (-707)) $ (-587 |#4|)) NIL) (((-707) $ |#3|) 44)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-381 (-521))) NIL) (($ $) NIL)))
-(((-228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2313 (|#1| |#1| (-587 |#3|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#3| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#3|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#3| |#1|)) (-15 -2308 ((-1 |#1| (-707)) |#1|)) (-15 -3234 (|#1| |#1|)) (-15 -1959 (|#1| |#1|)) (-15 -1593 (|#4| |#1|)) (-15 -3742 ((-108) |#1|)) (-15 -3245 ((-707) |#1| |#3|)) (-15 -1452 ((-587 (-707)) |#1| |#3|)) (-15 -3245 ((-707) |#1|)) (-15 -1452 ((-587 (-707)) |#1|)) (-15 -2098 ((-707) |#1| |#3|)) (-15 -3490 ((-707) |#1|)) (-15 -3490 ((-707) |#1| |#3|)) (-15 -1279 ((-587 |#3|) |#1|)) (-15 -2308 ((-1 |#1| (-707)) |#3|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2223 (|#1| |#3|)) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -2098 ((-587 (-707)) |#1| (-587 |#4|))) (-15 -2098 ((-707) |#1| |#4|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2223 (|#1| |#4|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#4| |#1|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#4| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2098 (|#5| |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2193 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -2193 (|#1| |#1| |#4| (-707))) (-15 -2193 (|#1| |#1| (-587 |#4|))) (-15 -2193 (|#1| |#1| |#4|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-229 |#2| |#3| |#4| |#5|) (-970) (-783) (-242 |#3|) (-729)) (T -228))
-NIL
-(-10 -8 (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2313 (|#1| |#1| (-587 |#3|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#3| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#3|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#3| |#1|)) (-15 -2308 ((-1 |#1| (-707)) |#1|)) (-15 -3234 (|#1| |#1|)) (-15 -1959 (|#1| |#1|)) (-15 -1593 (|#4| |#1|)) (-15 -3742 ((-108) |#1|)) (-15 -3245 ((-707) |#1| |#3|)) (-15 -1452 ((-587 (-707)) |#1| |#3|)) (-15 -3245 ((-707) |#1|)) (-15 -1452 ((-587 (-707)) |#1|)) (-15 -2098 ((-707) |#1| |#3|)) (-15 -3490 ((-707) |#1|)) (-15 -3490 ((-707) |#1| |#3|)) (-15 -1279 ((-587 |#3|) |#1|)) (-15 -2308 ((-1 |#1| (-707)) |#3|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2223 (|#1| |#3|)) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -2098 ((-587 (-707)) |#1| (-587 |#4|))) (-15 -2098 ((-707) |#1| |#4|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2223 (|#1| |#4|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#4| |#1|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#4| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2098 (|#5| |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2193 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -2193 (|#1| |#1| |#4| (-707))) (-15 -2193 (|#1| |#1| (-587 |#4|))) (-15 -2193 (|#1| |#1| |#4|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1452 (((-587 (-707)) $) 214) (((-587 (-707)) $ |#2|) 212)) (-3245 (((-707) $) 213) (((-707) $ |#2|) 211)) (-4085 (((-587 |#3|) $) 110)) (-1280 (((-1080 $) $ |#3|) 125) (((-1080 |#1|) $) 124)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-1954 (($ $) 88 (|has| |#1| (-513)))) (-3795 (((-108) $) 90 (|has| |#1| (-513)))) (-2197 (((-707) $) 112) (((-707) $ (-587 |#3|)) 111)) (-2057 (((-3 $ "failed") $ $) 19)) (-2150 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-837)))) (-2694 (($ $) 98 (|has| |#1| (-425)))) (-2337 (((-392 $) $) 97 (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-837)))) (-3234 (($ $) 207)) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1496 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) ((|#3| $) 135) ((|#2| $) 220)) (-3052 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3157 (($ $) 154)) (-1961 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-2783 (((-3 $ "failed") $) 34)) (-1563 (($ $) 176 (|has| |#1| (-425))) (($ $ |#3|) 105 (|has| |#1| (-425)))) (-3149 (((-587 $) $) 109)) (-2100 (((-108) $) 96 (|has| |#1| (-837)))) (-1709 (($ $ |#1| |#4| $) 172)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 84 (-12 (|has| |#3| (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 83 (-12 (|has| |#3| (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3490 (((-707) $ |#2|) 217) (((-707) $) 216)) (-3637 (((-108) $) 31)) (-2443 (((-707) $) 169)) (-4068 (($ (-1080 |#1|) |#3|) 117) (($ (-1080 $) |#3|) 116)) (-2411 (((-587 $) $) 126)) (-3573 (((-108) $) 152)) (-4044 (($ |#1| |#4|) 153) (($ $ |#3| (-707)) 119) (($ $ (-587 |#3|) (-587 (-707))) 118)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#3|) 120)) (-2401 ((|#4| $) 170) (((-707) $ |#3|) 122) (((-587 (-707)) $ (-587 |#3|)) 121)) (-2816 (($ $ $) 79 (|has| |#1| (-783)))) (-2459 (($ $ $) 78 (|has| |#1| (-783)))) (-2310 (($ (-1 |#4| |#4|) $) 171)) (-1393 (($ (-1 |#1| |#1|) $) 151)) (-2308 (((-1 $ (-707)) |#2|) 219) (((-1 $ (-707)) $) 206 (|has| |#1| (-210)))) (-2913 (((-3 |#3| "failed") $) 123)) (-3130 (($ $) 149)) (-3140 ((|#1| $) 148)) (-1593 ((|#3| $) 209)) (-2254 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-4024 (((-1067) $) 9)) (-3742 (((-108) $) 210)) (-3722 (((-3 (-587 $) "failed") $) 114)) (-4141 (((-3 (-587 $) "failed") $) 115)) (-3262 (((-3 (-2 (|:| |var| |#3|) (|:| -2246 (-707))) "failed") $) 113)) (-1959 (($ $) 208)) (-4146 (((-1031) $) 10)) (-3110 (((-108) $) 166)) (-3120 ((|#1| $) 167)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2286 (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-837)))) (-1974 (((-392 $) $) 99 (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-587 |#3|) (-587 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-587 |#3|) (-587 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 $)) 204 (|has| |#1| (-210))) (($ $ |#2| |#1|) 203 (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 |#1|)) 202 (|has| |#1| (-210)))) (-3011 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2193 (($ $ |#3|) 42) (($ $ (-587 |#3|)) 41) (($ $ |#3| (-707)) 40) (($ $ (-587 |#3|) (-587 (-707))) 39) (($ $) 238 (|has| |#1| (-210))) (($ $ (-707)) 236 (|has| |#1| (-210))) (($ $ (-1084)) 234 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 233 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 232 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 231 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1279 (((-587 |#2|) $) 218)) (-2098 ((|#4| $) 150) (((-707) $ |#3|) 130) (((-587 (-707)) $ (-587 |#3|)) 129) (((-707) $ |#2|) 215)) (-1438 (((-820 (-353)) $) 82 (-12 (|has| |#3| (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) 81 (-12 (|has| |#3| (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) 80 (-12 (|has| |#3| (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ |#3|) 106 (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521)))))) (($ $) 85 (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) 168)) (-1499 ((|#1| $ |#4|) 155) (($ $ |#3| (-707)) 128) (($ $ (-587 |#3|) (-587 (-707))) 127)) (-2446 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) 29)) (-1413 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-1842 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ |#3|) 38) (($ $ (-587 |#3|)) 37) (($ $ |#3| (-707)) 36) (($ $ (-587 |#3|) (-587 (-707))) 35) (($ $) 237 (|has| |#1| (-210))) (($ $ (-707)) 235 (|has| |#1| (-210))) (($ $ (-1084)) 230 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 229 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 228 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 227 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1597 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1648 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-229 |#1| |#2| |#3| |#4|) (-1196) (-970) (-783) (-242 |t#2|) (-729)) (T -229))
-((-2308 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *3 (-783)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *4 *3 *5 *6)))) (-1279 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 *4)))) (-3490 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707)))) (-2098 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707)))) (-1452 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 (-707))))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707)))) (-1452 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-587 (-707))))) (-3245 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783)) (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-108)))) (-1593 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-729)) (-4 *2 (-242 *4)))) (-1959 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-783)) (-4 *4 (-242 *3)) (-4 *5 (-729)))) (-3234 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-783)) (-4 *4 (-242 *3)) (-4 *5 (-729)))) (-2308 (*1 *2 *1) (-12 (-4 *3 (-210)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *3 *4 *5 *6)))))
-(-13 (-877 |t#1| |t#4| |t#3|) (-208 |t#1|) (-961 |t#2|) (-10 -8 (-15 -2308 ((-1 $ (-707)) |t#2|)) (-15 -1279 ((-587 |t#2|) $)) (-15 -3490 ((-707) $ |t#2|)) (-15 -3490 ((-707) $)) (-15 -2098 ((-707) $ |t#2|)) (-15 -1452 ((-587 (-707)) $)) (-15 -3245 ((-707) $)) (-15 -1452 ((-587 (-707)) $ |t#2|)) (-15 -3245 ((-707) $ |t#2|)) (-15 -3742 ((-108) $)) (-15 -1593 (|t#3| $)) (-15 -1959 ($ $)) (-15 -3234 ($ $)) (IF (|has| |t#1| (-210)) (PROGN (-6 (-482 |t#2| |t#1|)) (-6 (-482 |t#2| $)) (-6 (-284 $)) (-15 -2308 ((-1 $ (-707)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))) ((-562 (-820 (-353))) -12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#3| (-562 (-820 (-353))))) ((-562 (-820 (-521))) -12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#3| (-562 (-820 (-521))))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-265) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-284 $) . T) ((-300 |#1| |#4|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-837)) (|has| |#1| (-425))) ((-482 |#2| |#1|) |has| |#1| (-210)) ((-482 |#2| $) |has| |#1| (-210)) ((-482 |#3| |#1|) . T) ((-482 |#3| $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-663) . T) ((-783) |has| |#1| (-783)) ((-828 (-1084)) |has| |#1| (-828 (-1084))) ((-828 |#3|) . T) ((-814 (-353)) -12 (|has| |#1| (-814 (-353))) (|has| |#3| (-814 (-353)))) ((-814 (-521)) -12 (|has| |#1| (-814 (-521))) (|has| |#3| (-814 (-521)))) ((-877 |#1| |#4| |#3|) . T) ((-837) |has| |#1| (-837)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-961 |#2|) . T) ((-961 |#3|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) |has| |#1| (-837)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-2202 ((|#1| $) 54)) (-1354 ((|#1| $) 44)) (-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-2547 (($ $) 60)) (-3288 (($ $) 48)) (-2237 ((|#1| |#1| $) 46)) (-4019 ((|#1| $) 45)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-2522 (((-707) $) 61)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-3339 ((|#1| |#1| $) 52)) (-1465 ((|#1| |#1| $) 51)) (-4135 (($ |#1| $) 40)) (-4151 (((-707) $) 55)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2690 ((|#1| $) 62)) (-3563 ((|#1| $) 50)) (-3985 ((|#1| $) 49)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1759 ((|#1| |#1| $) 58)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2717 ((|#1| $) 59)) (-3135 (($) 57) (($ (-587 |#1|)) 56)) (-1252 (((-707) $) 43)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2671 ((|#1| $) 53)) (-2869 (($ (-587 |#1|)) 42)) (-1397 ((|#1| $) 63)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-230 |#1|) (-1196) (-1119)) (T -230))
-((-3135 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-3135 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-230 *3)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-3339 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-1465 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))) (-3288 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(-13 (-1032 |t#1|) (-920 |t#1|) (-10 -8 (-15 -3135 ($)) (-15 -3135 ($ (-587 |t#1|))) (-15 -4151 ((-707) $)) (-15 -2202 (|t#1| $)) (-15 -2671 (|t#1| $)) (-15 -3339 (|t#1| |t#1| $)) (-15 -1465 (|t#1| |t#1| $)) (-15 -3563 (|t#1| $)) (-15 -3985 (|t#1| $)) (-15 -3288 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-920 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1032 |#1|) . T) ((-1119) . T))
-((-1733 (((-1 (-871 (-202)) (-202) (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 139)) (-2958 (((-1044 (-202)) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353))) 160) (((-1044 (-202)) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 158) (((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 163) (((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 159) (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 150) (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 149) (((-1044 (-202)) (-1 (-871 (-202)) (-202)) (-1008 (-353))) 129) (((-1044 (-202)) (-1 (-871 (-202)) (-202)) (-1008 (-353)) (-587 (-239))) 127) (((-1044 (-202)) (-807 (-1 (-202) (-202))) (-1008 (-353))) 128) (((-1044 (-202)) (-807 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239))) 125)) (-2922 (((-1167) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353))) 162) (((-1167) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 161) (((-1167) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 165) (((-1167) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 164) (((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353))) 152) (((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239))) 151) (((-1167) (-1 (-871 (-202)) (-202)) (-1008 (-353))) 135) (((-1167) (-1 (-871 (-202)) (-202)) (-1008 (-353)) (-587 (-239))) 134) (((-1167) (-807 (-1 (-202) (-202))) (-1008 (-353))) 133) (((-1167) (-807 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239))) 132) (((-1166) (-805 (-1 (-202) (-202))) (-1008 (-353))) 99) (((-1166) (-805 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239))) 98) (((-1166) (-1 (-202) (-202)) (-1008 (-353))) 95) (((-1166) (-1 (-202) (-202)) (-1008 (-353)) (-587 (-239))) 94)))
-(((-231) (-10 -7 (-15 -2922 ((-1166) (-1 (-202) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) (-1 (-202) (-202)) (-1008 (-353)))) (-15 -2922 ((-1166) (-805 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) (-805 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2922 ((-1167) (-807 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-807 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-807 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-807 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202)) (-1008 (-353)))) (-15 -2922 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2922 ((-1167) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -1733 ((-1 (-871 (-202)) (-202) (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -231))
-((-1733 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-871 (-202)) (-202) (-202))) (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-805 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *2 (-1166)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-805 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *2 (-1166)) (-5 *1 (-231)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231)))))
-(-10 -7 (-15 -2922 ((-1166) (-1 (-202) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) (-1 (-202) (-202)) (-1008 (-353)))) (-15 -2922 ((-1166) (-805 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) (-805 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2922 ((-1167) (-807 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-807 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-807 (-1 (-202) (-202))) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-807 (-1 (-202) (-202))) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202)) (-1008 (-353)))) (-15 -2922 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-353)) (-1008 (-353)))) (-15 -2922 ((-1167) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -2958 ((-1044 (-202)) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-810 (-1 (-202) (-202) (-202))) (-1008 (-353)) (-1008 (-353)))) (-15 -1733 ((-1 (-871 (-202)) (-202) (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))
-((-2922 (((-1166) (-269 |#2|) (-1084) (-1084) (-587 (-239))) 93)))
-(((-232 |#1| |#2|) (-10 -7 (-15 -2922 ((-1166) (-269 |#2|) (-1084) (-1084) (-587 (-239))))) (-13 (-513) (-783) (-961 (-521))) (-404 |#1|)) (T -232))
-((-2922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-269 *7)) (-5 *4 (-1084)) (-5 *5 (-587 (-239))) (-4 *7 (-404 *6)) (-4 *6 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-1166)) (-5 *1 (-232 *6 *7)))))
-(-10 -7 (-15 -2922 ((-1166) (-269 |#2|) (-1084) (-1084) (-587 (-239)))))
-((-4016 (((-521) (-521)) 50)) (-1909 (((-521) (-521)) 51)) (-4072 (((-202) (-202)) 52)) (-4002 (((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202))) 49)) (-3921 (((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)) (-108)) 47)))
-(((-233) (-10 -7 (-15 -3921 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)) (-108))) (-15 -4002 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -4016 ((-521) (-521))) (-15 -1909 ((-521) (-521))) (-15 -4072 ((-202) (-202))))) (T -233))
-((-4072 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))) (-4002 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202))) (-5 *2 (-1167)) (-5 *1 (-233)))) (-3921 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202))) (-5 *5 (-108)) (-5 *2 (-1167)) (-5 *1 (-233)))))
-(-10 -7 (-15 -3921 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)) (-108))) (-15 -4002 ((-1167) (-1 (-154 (-202)) (-154 (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -4016 ((-521) (-521))) (-15 -1909 ((-521) (-521))) (-15 -4072 ((-202) (-202))))
-((-2223 (((-1006 (-353)) (-1006 (-290 |#1|))) 16)))
-(((-234 |#1|) (-10 -7 (-15 -2223 ((-1006 (-353)) (-1006 (-290 |#1|))))) (-13 (-783) (-513) (-562 (-353)))) (T -234))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-1006 (-290 *4))) (-4 *4 (-13 (-783) (-513) (-562 (-353)))) (-5 *2 (-1006 (-353))) (-5 *1 (-234 *4)))))
-(-10 -7 (-15 -2223 ((-1006 (-353)) (-1006 (-290 |#1|)))))
-((-2958 (((-1044 (-202)) (-810 |#1|) (-1006 (-353)) (-1006 (-353))) 69) (((-1044 (-202)) (-810 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 68) (((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353))) 59) (((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 58) (((-1044 (-202)) (-807 |#1|) (-1006 (-353))) 50) (((-1044 (-202)) (-807 |#1|) (-1006 (-353)) (-587 (-239))) 49)) (-2922 (((-1167) (-810 |#1|) (-1006 (-353)) (-1006 (-353))) 72) (((-1167) (-810 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 71) (((-1167) |#1| (-1006 (-353)) (-1006 (-353))) 62) (((-1167) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239))) 61) (((-1167) (-807 |#1|) (-1006 (-353))) 54) (((-1167) (-807 |#1|) (-1006 (-353)) (-587 (-239))) 53) (((-1166) (-805 |#1|) (-1006 (-353))) 41) (((-1166) (-805 |#1|) (-1006 (-353)) (-587 (-239))) 40) (((-1166) |#1| (-1006 (-353))) 33) (((-1166) |#1| (-1006 (-353)) (-587 (-239))) 32)))
-(((-235 |#1|) (-10 -7 (-15 -2922 ((-1166) |#1| (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) |#1| (-1006 (-353)))) (-15 -2922 ((-1166) (-805 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) (-805 |#1|) (-1006 (-353)))) (-15 -2922 ((-1167) (-807 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-807 |#1|) (-1006 (-353)))) (-15 -2958 ((-1044 (-202)) (-807 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-807 |#1|) (-1006 (-353)))) (-15 -2922 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2958 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2922 ((-1167) (-810 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-810 |#1|) (-1006 (-353)) (-1006 (-353)))) (-15 -2958 ((-1044 (-202)) (-810 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-810 |#1|) (-1006 (-353)) (-1006 (-353))))) (-13 (-562 (-497)) (-1013))) (T -235))
-((-2958 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *5)))) (-2958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *6)))) (-2922 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-810 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *5)))) (-2922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-810 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *6)))) (-2958 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2958 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2922 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2922 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-807 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *5)))) (-2958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *6)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-807 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *5)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-807 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167)) (-5 *1 (-235 *6)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-805 *5)) (-5 *4 (-1006 (-353))) (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166)) (-5 *1 (-235 *5)))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-805 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166)) (-5 *1 (-235 *6)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1166)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))) (-2922 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013))))))
-(-10 -7 (-15 -2922 ((-1166) |#1| (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) |#1| (-1006 (-353)))) (-15 -2922 ((-1166) (-805 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1166) (-805 |#1|) (-1006 (-353)))) (-15 -2922 ((-1167) (-807 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-807 |#1|) (-1006 (-353)))) (-15 -2958 ((-1044 (-202)) (-807 |#1|) (-1006 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-807 |#1|) (-1006 (-353)))) (-15 -2922 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2958 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) |#1| (-1006 (-353)) (-1006 (-353)))) (-15 -2922 ((-1167) (-810 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2922 ((-1167) (-810 |#1|) (-1006 (-353)) (-1006 (-353)))) (-15 -2958 ((-1044 (-202)) (-810 |#1|) (-1006 (-353)) (-1006 (-353)) (-587 (-239)))) (-15 -2958 ((-1044 (-202)) (-810 |#1|) (-1006 (-353)) (-1006 (-353)))))
-((-2922 (((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)) (-587 (-239))) 21) (((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202))) 22) (((-1166) (-587 (-871 (-202))) (-587 (-239))) 13) (((-1166) (-587 (-871 (-202)))) 14) (((-1166) (-587 (-202)) (-587 (-202)) (-587 (-239))) 18) (((-1166) (-587 (-202)) (-587 (-202))) 19)))
-(((-236) (-10 -7 (-15 -2922 ((-1166) (-587 (-202)) (-587 (-202)))) (-15 -2922 ((-1166) (-587 (-202)) (-587 (-202)) (-587 (-239)))) (-15 -2922 ((-1166) (-587 (-871 (-202))))) (-15 -2922 ((-1166) (-587 (-871 (-202))) (-587 (-239)))) (-15 -2922 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)))) (-15 -2922 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)) (-587 (-239)))))) (T -236))
-((-2922 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2922 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-871 (-202)))) (-5 *4 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-236)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-587 (-871 (-202)))) (-5 *2 (-1166)) (-5 *1 (-236)))) (-2922 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-236)))) (-2922 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1166)) (-5 *1 (-236)))))
-(-10 -7 (-15 -2922 ((-1166) (-587 (-202)) (-587 (-202)))) (-15 -2922 ((-1166) (-587 (-202)) (-587 (-202)) (-587 (-239)))) (-15 -2922 ((-1166) (-587 (-871 (-202))))) (-15 -2922 ((-1166) (-587 (-871 (-202))) (-587 (-239)))) (-15 -2922 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)))) (-15 -2922 ((-1167) (-587 (-202)) (-587 (-202)) (-587 (-202)) (-587 (-239)))))
-((-3670 (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-587 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 24)) (-1876 (((-849) (-587 (-239)) (-849)) 49)) (-3746 (((-849) (-587 (-239)) (-849)) 48)) (-2021 (((-587 (-353)) (-587 (-239)) (-587 (-353))) 65)) (-1404 (((-353) (-587 (-239)) (-353)) 55)) (-1893 (((-849) (-587 (-239)) (-849)) 50)) (-2327 (((-108) (-587 (-239)) (-108)) 26)) (-2957 (((-1067) (-587 (-239)) (-1067)) 19)) (-1357 (((-1067) (-587 (-239)) (-1067)) 25)) (-2076 (((-1044 (-202)) (-587 (-239))) 43)) (-2904 (((-587 (-1008 (-353))) (-587 (-239)) (-587 (-1008 (-353)))) 37)) (-4098 (((-802) (-587 (-239)) (-802)) 31)) (-2048 (((-802) (-587 (-239)) (-802)) 32)) (-3433 (((-1 (-871 (-202)) (-871 (-202))) (-587 (-239)) (-1 (-871 (-202)) (-871 (-202)))) 60)) (-1907 (((-108) (-587 (-239)) (-108)) 15)) (-4144 (((-108) (-587 (-239)) (-108)) 14)))
-(((-237) (-10 -7 (-15 -4144 ((-108) (-587 (-239)) (-108))) (-15 -1907 ((-108) (-587 (-239)) (-108))) (-15 -3670 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-587 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2957 ((-1067) (-587 (-239)) (-1067))) (-15 -1357 ((-1067) (-587 (-239)) (-1067))) (-15 -2327 ((-108) (-587 (-239)) (-108))) (-15 -4098 ((-802) (-587 (-239)) (-802))) (-15 -2048 ((-802) (-587 (-239)) (-802))) (-15 -2904 ((-587 (-1008 (-353))) (-587 (-239)) (-587 (-1008 (-353))))) (-15 -3746 ((-849) (-587 (-239)) (-849))) (-15 -1876 ((-849) (-587 (-239)) (-849))) (-15 -2076 ((-1044 (-202)) (-587 (-239)))) (-15 -1893 ((-849) (-587 (-239)) (-849))) (-15 -1404 ((-353) (-587 (-239)) (-353))) (-15 -3433 ((-1 (-871 (-202)) (-871 (-202))) (-587 (-239)) (-1 (-871 (-202)) (-871 (-202))))) (-15 -2021 ((-587 (-353)) (-587 (-239)) (-587 (-353)))))) (T -237))
-((-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-353))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3433 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-871 (-202)) (-871 (-202)))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1404 (*1 *2 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1893 (*1 *2 *3 *2) (-12 (-5 *2 (-849)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-237)))) (-1876 (*1 *2 *3 *2) (-12 (-5 *2 (-849)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3746 (*1 *2 *3 *2) (-12 (-5 *2 (-849)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2904 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2048 (*1 *2 *3 *2) (-12 (-5 *2 (-802)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-4098 (*1 *2 *3 *2) (-12 (-5 *2 (-802)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2327 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1357 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-2957 (*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-3670 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-1907 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))) (-4144 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
-(-10 -7 (-15 -4144 ((-108) (-587 (-239)) (-108))) (-15 -1907 ((-108) (-587 (-239)) (-108))) (-15 -3670 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-587 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2957 ((-1067) (-587 (-239)) (-1067))) (-15 -1357 ((-1067) (-587 (-239)) (-1067))) (-15 -2327 ((-108) (-587 (-239)) (-108))) (-15 -4098 ((-802) (-587 (-239)) (-802))) (-15 -2048 ((-802) (-587 (-239)) (-802))) (-15 -2904 ((-587 (-1008 (-353))) (-587 (-239)) (-587 (-1008 (-353))))) (-15 -3746 ((-849) (-587 (-239)) (-849))) (-15 -1876 ((-849) (-587 (-239)) (-849))) (-15 -2076 ((-1044 (-202)) (-587 (-239)))) (-15 -1893 ((-849) (-587 (-239)) (-849))) (-15 -1404 ((-353) (-587 (-239)) (-353))) (-15 -3433 ((-1 (-871 (-202)) (-871 (-202))) (-587 (-239)) (-1 (-871 (-202)) (-871 (-202))))) (-15 -2021 ((-587 (-353)) (-587 (-239)) (-587 (-353)))))
-((-3018 (((-3 |#1| "failed") (-587 (-239)) (-1084)) 17)))
-(((-238 |#1|) (-10 -7 (-15 -3018 ((-3 |#1| "failed") (-587 (-239)) (-1084)))) (-1119)) (T -238))
-((-3018 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *1 (-238 *2)) (-4 *2 (-1119)))))
-(-10 -7 (-15 -3018 ((-3 |#1| "failed") (-587 (-239)) (-1084))))
-((-1422 (((-108) $ $) NIL)) (-3670 (($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 14)) (-1876 (($ (-849)) 70)) (-3746 (($ (-849)) 69)) (-1493 (($ (-587 (-353))) 76)) (-1404 (($ (-353)) 55)) (-1893 (($ (-849)) 71)) (-2327 (($ (-108)) 22)) (-2957 (($ (-1067)) 17)) (-1357 (($ (-1067)) 18)) (-2076 (($ (-1044 (-202))) 65)) (-2904 (($ (-587 (-1008 (-353)))) 61)) (-1403 (($ (-587 (-1008 (-353)))) 56) (($ (-587 (-1008 (-381 (-521))))) 60)) (-3971 (($ (-353)) 28) (($ (-802)) 32)) (-3454 (((-108) (-587 $) (-1084)) 85)) (-3018 (((-3 (-51) "failed") (-587 $) (-1084)) 87)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3584 (($ (-353)) 33) (($ (-802)) 34)) (-1816 (($ (-1 (-871 (-202)) (-871 (-202)))) 54)) (-3433 (($ (-1 (-871 (-202)) (-871 (-202)))) 72)) (-2388 (($ (-1 (-202) (-202))) 38) (($ (-1 (-202) (-202) (-202))) 42) (($ (-1 (-202) (-202) (-202) (-202))) 46)) (-2223 (((-791) $) 81)) (-2469 (($ (-108)) 23) (($ (-587 (-1008 (-353)))) 50)) (-4144 (($ (-108)) 24)) (-1549 (((-108) $ $) 83)))
-(((-239) (-13 (-1013) (-10 -8 (-15 -4144 ($ (-108))) (-15 -2469 ($ (-108))) (-15 -3670 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2957 ($ (-1067))) (-15 -1357 ($ (-1067))) (-15 -2327 ($ (-108))) (-15 -2469 ($ (-587 (-1008 (-353))))) (-15 -1816 ($ (-1 (-871 (-202)) (-871 (-202))))) (-15 -3971 ($ (-353))) (-15 -3971 ($ (-802))) (-15 -3584 ($ (-353))) (-15 -3584 ($ (-802))) (-15 -2388 ($ (-1 (-202) (-202)))) (-15 -2388 ($ (-1 (-202) (-202) (-202)))) (-15 -2388 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -1404 ($ (-353))) (-15 -1403 ($ (-587 (-1008 (-353))))) (-15 -1403 ($ (-587 (-1008 (-381 (-521)))))) (-15 -2904 ($ (-587 (-1008 (-353))))) (-15 -2076 ($ (-1044 (-202)))) (-15 -3746 ($ (-849))) (-15 -1876 ($ (-849))) (-15 -1893 ($ (-849))) (-15 -3433 ($ (-1 (-871 (-202)) (-871 (-202))))) (-15 -1493 ($ (-587 (-353)))) (-15 -3018 ((-3 (-51) "failed") (-587 $) (-1084))) (-15 -3454 ((-108) (-587 $) (-1084)))))) (T -239))
-((-4144 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-2469 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-3670 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-239)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239)))) (-2327 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-2469 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))) (-1816 (*1 *1 *2) (-12 (-5 *2 (-1 (-871 (-202)) (-871 (-202)))) (-5 *1 (-239)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-239)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-239)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239)))) (-1404 (*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-381 (-521))))) (-5 *1 (-239)))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))) (-2076 (*1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-239)))) (-3746 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-239)))) (-1876 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-239)))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-239)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1 (-871 (-202)) (-871 (-202)))) (-5 *1 (-239)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-239)))) (-3018 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-51)) (-5 *1 (-239)))) (-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-108)) (-5 *1 (-239)))))
-(-13 (-1013) (-10 -8 (-15 -4144 ($ (-108))) (-15 -2469 ($ (-108))) (-15 -3670 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2957 ($ (-1067))) (-15 -1357 ($ (-1067))) (-15 -2327 ($ (-108))) (-15 -2469 ($ (-587 (-1008 (-353))))) (-15 -1816 ($ (-1 (-871 (-202)) (-871 (-202))))) (-15 -3971 ($ (-353))) (-15 -3971 ($ (-802))) (-15 -3584 ($ (-353))) (-15 -3584 ($ (-802))) (-15 -2388 ($ (-1 (-202) (-202)))) (-15 -2388 ($ (-1 (-202) (-202) (-202)))) (-15 -2388 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -1404 ($ (-353))) (-15 -1403 ($ (-587 (-1008 (-353))))) (-15 -1403 ($ (-587 (-1008 (-381 (-521)))))) (-15 -2904 ($ (-587 (-1008 (-353))))) (-15 -2076 ($ (-1044 (-202)))) (-15 -3746 ($ (-849))) (-15 -1876 ($ (-849))) (-15 -1893 ($ (-849))) (-15 -3433 ($ (-1 (-871 (-202)) (-871 (-202))))) (-15 -1493 ($ (-587 (-353)))) (-15 -3018 ((-3 (-51) "failed") (-587 $) (-1084))) (-15 -3454 ((-108) (-587 $) (-1084)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1452 (((-587 (-707)) $) NIL) (((-587 (-707)) $ |#2|) NIL)) (-3245 (((-707) $) NIL) (((-707) $ |#2|) NIL)) (-4085 (((-587 |#3|) $) NIL)) (-1280 (((-1080 $) $ |#3|) NIL) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 |#3|)) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-3234 (($ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1036 |#1| |#2|) "failed") $) 20)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1036 |#1| |#2|) $) NIL)) (-3052 (($ $ $ |#3|) NIL (|has| |#1| (-157)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ |#3|) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-493 |#3|) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| |#1| (-814 (-353))) (|has| |#3| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| |#1| (-814 (-521))) (|has| |#3| (-814 (-521)))))) (-3490 (((-707) $ |#2|) NIL) (((-707) $) 10)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#1|) |#3|) NIL) (($ (-1080 $) |#3|) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-493 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#3|) NIL)) (-2401 (((-493 |#3|) $) NIL) (((-707) $ |#3|) NIL) (((-587 (-707)) $ (-587 |#3|)) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-493 |#3|) (-493 |#3|)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2308 (((-1 $ (-707)) |#2|) NIL) (((-1 $ (-707)) $) NIL (|has| |#1| (-210)))) (-2913 (((-3 |#3| "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-1593 ((|#3| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3742 (((-108) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| |#3|) (|:| -2246 (-707))) "failed") $) NIL)) (-1959 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-587 |#3|) (-587 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-587 |#3|) (-587 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 $)) NIL (|has| |#1| (-210))) (($ $ |#2| |#1|) NIL (|has| |#1| (-210))) (($ $ (-587 |#2|) (-587 |#1|)) NIL (|has| |#1| (-210)))) (-3011 (($ $ |#3|) NIL (|has| |#1| (-157)))) (-2193 (($ $ |#3|) NIL) (($ $ (-587 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1279 (((-587 |#2|) $) NIL)) (-2098 (((-493 |#3|) $) NIL) (((-707) $ |#3|) NIL) (((-587 (-707)) $ (-587 |#3|)) NIL) (((-707) $ |#2|) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#3| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#3| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))))) (-1391 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ |#3|) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1036 |#1| |#2|)) 28) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-493 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ |#3|) NIL) (($ $ (-587 |#3|)) NIL) (($ $ |#3| (-707)) NIL) (($ $ (-587 |#3|) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-240 |#1| |#2| |#3|) (-13 (-229 |#1| |#2| |#3| (-493 |#3|)) (-961 (-1036 |#1| |#2|))) (-970) (-783) (-242 |#2|)) (T -240))
-NIL
-(-13 (-229 |#1| |#2| |#3| (-493 |#3|)) (-961 (-1036 |#1| |#2|)))
-((-3245 (((-707) $) 30)) (-1296 (((-3 |#2| "failed") $) 17)) (-1496 ((|#2| $) 27)) (-2193 (($ $) 12) (($ $ (-707)) 15)) (-2223 (((-791) $) 26) (($ |#2|) 10)) (-1549 (((-108) $ $) 20)) (-1569 (((-108) $ $) 29)))
-(((-241 |#1| |#2|) (-10 -8 (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -3245 ((-707) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-242 |#2|) (-783)) (T -241))
-NIL
-(-10 -8 (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -3245 ((-707) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3245 (((-707) $) 22)) (-1638 ((|#1| $) 23)) (-1296 (((-3 |#1| "failed") $) 27)) (-1496 ((|#1| $) 26)) (-3490 (((-707) $) 24)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-2308 (($ |#1| (-707)) 25)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2193 (($ $) 21) (($ $ (-707)) 20)) (-2223 (((-791) $) 11) (($ |#1|) 28)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)))
-(((-242 |#1|) (-1196) (-783)) (T -242))
-((-2223 (*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-783)))) (-2308 (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-242 *2)) (-4 *2 (-783)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-783)) (-5 *2 (-707)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-783)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-783)) (-5 *2 (-707)))) (-2193 (*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-783)))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-242 *3)) (-4 *3 (-783)))))
-(-13 (-783) (-961 |t#1|) (-10 -8 (-15 -2308 ($ |t#1| (-707))) (-15 -3490 ((-707) $)) (-15 -1638 (|t#1| $)) (-15 -3245 ((-707) $)) (-15 -2193 ($ $)) (-15 -2193 ($ $ (-707))) (-15 -2223 ($ |t#1|))))
-(((-97) . T) ((-561 (-791)) . T) ((-783) . T) ((-961 |#1|) . T) ((-1013) . T))
-((-4085 (((-587 (-1084)) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 40)) (-4101 (((-587 (-1084)) (-290 (-202)) (-707)) 79)) (-1886 (((-3 (-290 (-202)) "failed") (-290 (-202))) 50)) (-3032 (((-290 (-202)) (-290 (-202))) 65)) (-3775 (((-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 26)) (-3981 (((-108) (-587 (-290 (-202)))) 83)) (-4040 (((-108) (-290 (-202))) 24)) (-1791 (((-587 (-1067)) (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) 105)) (-3662 (((-587 (-290 (-202))) (-587 (-290 (-202)))) 87)) (-1699 (((-587 (-290 (-202))) (-587 (-290 (-202)))) 85)) (-3689 (((-627 (-202)) (-587 (-290 (-202))) (-707)) 94)) (-1985 (((-108) (-290 (-202))) 20) (((-108) (-587 (-290 (-202)))) 84)) (-1476 (((-587 (-202)) (-587 (-776 (-202))) (-202)) 14)) (-1369 (((-353) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 100)) (-2402 (((-959) (-1084) (-959)) 33)))
-(((-243) (-10 -7 (-15 -1476 ((-587 (-202)) (-587 (-776 (-202))) (-202))) (-15 -3775 ((-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))))) (-15 -1886 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -3032 ((-290 (-202)) (-290 (-202)))) (-15 -3981 ((-108) (-587 (-290 (-202))))) (-15 -1985 ((-108) (-587 (-290 (-202))))) (-15 -1985 ((-108) (-290 (-202)))) (-15 -3689 ((-627 (-202)) (-587 (-290 (-202))) (-707))) (-15 -1699 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -3662 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -4040 ((-108) (-290 (-202)))) (-15 -4085 ((-587 (-1084)) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -4101 ((-587 (-1084)) (-290 (-202)) (-707))) (-15 -2402 ((-959) (-1084) (-959))) (-15 -1369 ((-353) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -1791 ((-587 (-1067)) (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))))) (T -243))
-((-1791 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) (-5 *2 (-587 (-1067))) (-5 *1 (-243)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-353)) (-5 *1 (-243)))) (-2402 (*1 *2 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-243)))) (-4101 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-707)) (-5 *2 (-587 (-1084))) (-5 *1 (-243)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-587 (-1084))) (-5 *1 (-243)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *4 (-707)) (-5 *2 (-627 (-202))) (-5 *1 (-243)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-3032 (*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))) (-1886 (*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (-5 *1 (-243)))) (-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-776 (-202)))) (-5 *4 (-202)) (-5 *2 (-587 *4)) (-5 *1 (-243)))))
-(-10 -7 (-15 -1476 ((-587 (-202)) (-587 (-776 (-202))) (-202))) (-15 -3775 ((-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))))) (-15 -1886 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -3032 ((-290 (-202)) (-290 (-202)))) (-15 -3981 ((-108) (-587 (-290 (-202))))) (-15 -1985 ((-108) (-587 (-290 (-202))))) (-15 -1985 ((-108) (-290 (-202)))) (-15 -3689 ((-627 (-202)) (-587 (-290 (-202))) (-707))) (-15 -1699 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -3662 ((-587 (-290 (-202))) (-587 (-290 (-202))))) (-15 -4040 ((-108) (-290 (-202)))) (-15 -4085 ((-587 (-1084)) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -4101 ((-587 (-1084)) (-290 (-202)) (-707))) (-15 -2402 ((-959) (-1084) (-959))) (-15 -1369 ((-353) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -1791 ((-587 (-1067)) (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))))
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 39)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 20) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-244) (-772)) (T -244))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 54) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 49)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 29) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 31)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-245) (-772)) (T -245))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 73) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 69)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 40) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 51)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-246) (-772)) (T -246))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 48)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 27) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-247) (-772)) (T -247))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 48)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 23) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-248) (-772)) (T -248))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 69)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 23) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-249) (-772)) (T -249))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 73)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 19) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-250) (-772)) (T -250))
-NIL
-(-772)
-((-1422 (((-108) $ $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3582 (((-587 (-521)) $) 17)) (-2098 (((-707) $) 15)) (-2223 (((-791) $) 21) (($ (-587 (-521))) 13)) (-2492 (($ (-707)) 18)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 9)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 11)))
-(((-251) (-13 (-783) (-10 -8 (-15 -2223 ($ (-587 (-521)))) (-15 -2098 ((-707) $)) (-15 -3582 ((-587 (-521)) $)) (-15 -2492 ($ (-707)))))) (T -251))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-251)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-251)))))
-(-13 (-783) (-10 -8 (-15 -2223 ($ (-587 (-521)))) (-15 -2098 ((-707) $)) (-15 -3582 ((-587 (-521)) $)) (-15 -2492 ($ (-707)))))
-((-2910 ((|#2| |#2|) 77)) (-2775 ((|#2| |#2|) 65)) (-1688 (((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-2886 ((|#2| |#2|) 75)) (-2752 ((|#2| |#2|) 63)) (-2932 ((|#2| |#2|) 79)) (-2796 ((|#2| |#2|) 67)) (-2840 ((|#2|) 46)) (-3928 (((-110) (-110)) 95)) (-1253 ((|#2| |#2|) 61)) (-3033 (((-108) |#2|) 134)) (-2879 ((|#2| |#2|) 180)) (-2493 ((|#2| |#2|) 156)) (-2771 ((|#2|) 59)) (-3137 ((|#2|) 58)) (-2160 ((|#2| |#2|) 176)) (-1990 ((|#2| |#2|) 152)) (-1695 ((|#2| |#2|) 184)) (-2171 ((|#2| |#2|) 160)) (-2732 ((|#2| |#2|) 148)) (-2507 ((|#2| |#2|) 150)) (-2709 ((|#2| |#2|) 186)) (-1807 ((|#2| |#2|) 162)) (-2848 ((|#2| |#2|) 182)) (-1957 ((|#2| |#2|) 158)) (-2463 ((|#2| |#2|) 178)) (-3675 ((|#2| |#2|) 154)) (-2314 ((|#2| |#2|) 192)) (-1826 ((|#2| |#2|) 168)) (-3648 ((|#2| |#2|) 188)) (-4195 ((|#2| |#2|) 164)) (-3364 ((|#2| |#2|) 196)) (-2529 ((|#2| |#2|) 172)) (-3581 ((|#2| |#2|) 198)) (-2877 ((|#2| |#2|) 174)) (-2648 ((|#2| |#2|) 194)) (-3341 ((|#2| |#2|) 170)) (-1721 ((|#2| |#2|) 190)) (-1208 ((|#2| |#2|) 166)) (-3265 ((|#2| |#2|) 62)) (-1787 ((|#2| |#2|) 80)) (-2806 ((|#2| |#2|) 68)) (-2921 ((|#2| |#2|) 78)) (-2786 ((|#2| |#2|) 66)) (-2898 ((|#2| |#2|) 76)) (-2764 ((|#2| |#2|) 64)) (-1224 (((-108) (-110)) 93)) (-1811 ((|#2| |#2|) 83)) (-2838 ((|#2| |#2|) 71)) (-1795 ((|#2| |#2|) 81)) (-2817 ((|#2| |#2|) 69)) (-1830 ((|#2| |#2|) 85)) (-2862 ((|#2| |#2|) 73)) (-3919 ((|#2| |#2|) 86)) (-2874 ((|#2| |#2|) 74)) (-1821 ((|#2| |#2|) 84)) (-2850 ((|#2| |#2|) 72)) (-1803 ((|#2| |#2|) 82)) (-2827 ((|#2| |#2|) 70)))
-(((-252 |#1| |#2|) (-10 -7 (-15 -3265 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -2786 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -2817 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -2838 (|#2| |#2|)) (-15 -2850 (|#2| |#2|)) (-15 -2862 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -2886 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -2921 (|#2| |#2|)) (-15 -2932 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -1811 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -2840 (|#2|)) (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -3137 (|#2|)) (-15 -2771 (|#2|)) (-15 -2507 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -1957 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -1208 (|#2| |#2|)) (-15 -1826 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -2529 (|#2| |#2|)) (-15 -2877 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -2463 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2848 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -3364 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -1688 ((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3033 ((-108) |#2|))) (-13 (-783) (-513)) (-13 (-404 |#1|) (-927))) (T -252))
-((-3033 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3)) (-4 *3 (-13 (-404 *4) (-927))))) (-1688 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-587 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-404 *4) (-927))) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-252 *4 *2)))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3364 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2709 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2848 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2879 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2463 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2877 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2529 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3341 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1826 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1208 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-4195 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1807 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2171 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1957 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2732 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2771 (*1 *2) (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-783) (-513))))) (-3137 (*1 *2) (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-783) (-513))))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *4)) (-4 *4 (-13 (-404 *3) (-927))))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-404 *4) (-927))))) (-2840 (*1 *2) (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-783) (-513))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2932 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2921 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2862 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2817 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-404 *3) (-927))))))
-(-10 -7 (-15 -3265 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2775 (|#2| |#2|)) (-15 -2786 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -2806 (|#2| |#2|)) (-15 -2817 (|#2| |#2|)) (-15 -2827 (|#2| |#2|)) (-15 -2838 (|#2| |#2|)) (-15 -2850 (|#2| |#2|)) (-15 -2862 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -2886 (|#2| |#2|)) (-15 -2898 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -2921 (|#2| |#2|)) (-15 -2932 (|#2| |#2|)) (-15 -1787 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -1803 (|#2| |#2|)) (-15 -1811 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -2840 (|#2|)) (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -3137 (|#2|)) (-15 -2771 (|#2|)) (-15 -2507 (|#2| |#2|)) (-15 -2732 (|#2| |#2|)) (-15 -1990 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -1957 (|#2| |#2|)) (-15 -2171 (|#2| |#2|)) (-15 -1807 (|#2| |#2|)) (-15 -4195 (|#2| |#2|)) (-15 -1208 (|#2| |#2|)) (-15 -1826 (|#2| |#2|)) (-15 -3341 (|#2| |#2|)) (-15 -2529 (|#2| |#2|)) (-15 -2877 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -2463 (|#2| |#2|)) (-15 -2879 (|#2| |#2|)) (-15 -2848 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2709 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -3364 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -1688 ((-3 |#2| "failed") |#2| (-587 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -3033 ((-108) |#2|)))
-((-2107 (((-3 |#2| "failed") (-587 (-560 |#2|)) |#2| (-1084)) 133)) (-2123 ((|#2| (-381 (-521)) |#2|) 50)) (-2099 ((|#2| |#2| (-560 |#2|)) 126)) (-1979 (((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-560 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1084)) 125)) (-2343 ((|#2| |#2| (-1084)) 19) ((|#2| |#2|) 22)) (-3090 ((|#2| |#2| (-1084)) 139) ((|#2| |#2|) 137)))
-(((-253 |#1| |#2|) (-10 -7 (-15 -3090 (|#2| |#2|)) (-15 -3090 (|#2| |#2| (-1084))) (-15 -1979 ((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-560 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1084))) (-15 -2343 (|#2| |#2|)) (-15 -2343 (|#2| |#2| (-1084))) (-15 -2107 ((-3 |#2| "failed") (-587 (-560 |#2|)) |#2| (-1084))) (-15 -2099 (|#2| |#2| (-560 |#2|))) (-15 -2123 (|#2| (-381 (-521)) |#2|))) (-13 (-513) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -253))
-((-2123 (*1 *2 *3 *2) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-2099 (*1 *2 *2 *3) (-12 (-5 *3 (-560 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))) (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)))) (-2107 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-1084)) (-4 *2 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *5 *2)))) (-2343 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-587 (-560 *3))) (|:| |vals| (-587 *3)))) (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3090 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
-(-10 -7 (-15 -3090 (|#2| |#2|)) (-15 -3090 (|#2| |#2| (-1084))) (-15 -1979 ((-2 (|:| |func| |#2|) (|:| |kers| (-587 (-560 |#2|))) (|:| |vals| (-587 |#2|))) |#2| (-1084))) (-15 -2343 (|#2| |#2|)) (-15 -2343 (|#2| |#2| (-1084))) (-15 -2107 ((-3 |#2| "failed") (-587 (-560 |#2|)) |#2| (-1084))) (-15 -2099 (|#2| |#2| (-560 |#2|))) (-15 -2123 (|#2| (-381 (-521)) |#2|)))
-((-2034 (((-3 |#3| "failed") |#3|) 110)) (-2910 ((|#3| |#3|) 131)) (-3414 (((-3 |#3| "failed") |#3|) 82)) (-2775 ((|#3| |#3|) 121)) (-2925 (((-3 |#3| "failed") |#3|) 58)) (-2886 ((|#3| |#3|) 129)) (-4113 (((-3 |#3| "failed") |#3|) 46)) (-2752 ((|#3| |#3|) 119)) (-2079 (((-3 |#3| "failed") |#3|) 112)) (-2932 ((|#3| |#3|) 133)) (-1740 (((-3 |#3| "failed") |#3|) 84)) (-2796 ((|#3| |#3|) 123)) (-1578 (((-3 |#3| "failed") |#3| (-707)) 36)) (-1614 (((-3 |#3| "failed") |#3|) 74)) (-1253 ((|#3| |#3|) 118)) (-2748 (((-3 |#3| "failed") |#3|) 44)) (-3265 ((|#3| |#3|) 117)) (-3156 (((-3 |#3| "failed") |#3|) 113)) (-1787 ((|#3| |#3|) 134)) (-1492 (((-3 |#3| "failed") |#3|) 85)) (-2806 ((|#3| |#3|) 124)) (-1432 (((-3 |#3| "failed") |#3|) 111)) (-2921 ((|#3| |#3|) 132)) (-2163 (((-3 |#3| "failed") |#3|) 83)) (-2786 ((|#3| |#3|) 122)) (-3692 (((-3 |#3| "failed") |#3|) 60)) (-2898 ((|#3| |#3|) 130)) (-1547 (((-3 |#3| "failed") |#3|) 48)) (-2764 ((|#3| |#3|) 120)) (-3653 (((-3 |#3| "failed") |#3|) 66)) (-1811 ((|#3| |#3|) 137)) (-1294 (((-3 |#3| "failed") |#3|) 104)) (-2838 ((|#3| |#3|) 142)) (-3308 (((-3 |#3| "failed") |#3|) 62)) (-1795 ((|#3| |#3|) 135)) (-3917 (((-3 |#3| "failed") |#3|) 50)) (-2817 ((|#3| |#3|) 125)) (-4067 (((-3 |#3| "failed") |#3|) 70)) (-1830 ((|#3| |#3|) 139)) (-3099 (((-3 |#3| "failed") |#3|) 54)) (-2862 ((|#3| |#3|) 127)) (-1211 (((-3 |#3| "failed") |#3|) 72)) (-3919 ((|#3| |#3|) 140)) (-1210 (((-3 |#3| "failed") |#3|) 56)) (-2874 ((|#3| |#3|) 128)) (-1333 (((-3 |#3| "failed") |#3|) 68)) (-1821 ((|#3| |#3|) 138)) (-3040 (((-3 |#3| "failed") |#3|) 107)) (-2850 ((|#3| |#3|) 143)) (-2132 (((-3 |#3| "failed") |#3|) 64)) (-1803 ((|#3| |#3|) 136)) (-3535 (((-3 |#3| "failed") |#3|) 52)) (-2827 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-381 (-521))) 40 (|has| |#1| (-337)))))
-(((-254 |#1| |#2| |#3|) (-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3265 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2752 (|#3| |#3|)) (-15 -2764 (|#3| |#3|)) (-15 -2775 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2806 (|#3| |#3|)) (-15 -2817 (|#3| |#3|)) (-15 -2827 (|#3| |#3|)) (-15 -2838 (|#3| |#3|)) (-15 -2850 (|#3| |#3|)) (-15 -2862 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2921 (|#3| |#3|)) (-15 -2932 (|#3| |#3|)) (-15 -1787 (|#3| |#3|)) (-15 -1795 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1811 (|#3| |#3|)) (-15 -1821 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)))) (-37 (-381 (-521))) (-1156 |#1|) (-1127 |#1| |#2|)) (T -254))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1127 *4 *5)))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2817 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2862 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2921 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-2932 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4)))))
-(-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3265 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2752 (|#3| |#3|)) (-15 -2764 (|#3| |#3|)) (-15 -2775 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2806 (|#3| |#3|)) (-15 -2817 (|#3| |#3|)) (-15 -2827 (|#3| |#3|)) (-15 -2838 (|#3| |#3|)) (-15 -2850 (|#3| |#3|)) (-15 -2862 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2921 (|#3| |#3|)) (-15 -2932 (|#3| |#3|)) (-15 -1787 (|#3| |#3|)) (-15 -1795 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1811 (|#3| |#3|)) (-15 -1821 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -3919 (|#3| |#3|))))
-((-2034 (((-3 |#3| "failed") |#3|) 66)) (-2910 ((|#3| |#3|) 133)) (-3414 (((-3 |#3| "failed") |#3|) 50)) (-2775 ((|#3| |#3|) 121)) (-2925 (((-3 |#3| "failed") |#3|) 62)) (-2886 ((|#3| |#3|) 131)) (-4113 (((-3 |#3| "failed") |#3|) 46)) (-2752 ((|#3| |#3|) 119)) (-2079 (((-3 |#3| "failed") |#3|) 70)) (-2932 ((|#3| |#3|) 135)) (-1740 (((-3 |#3| "failed") |#3|) 54)) (-2796 ((|#3| |#3|) 123)) (-1578 (((-3 |#3| "failed") |#3| (-707)) 35)) (-1614 (((-3 |#3| "failed") |#3|) 44)) (-1253 ((|#3| |#3|) 112)) (-2748 (((-3 |#3| "failed") |#3|) 42)) (-3265 ((|#3| |#3|) 118)) (-3156 (((-3 |#3| "failed") |#3|) 72)) (-1787 ((|#3| |#3|) 136)) (-1492 (((-3 |#3| "failed") |#3|) 56)) (-2806 ((|#3| |#3|) 124)) (-1432 (((-3 |#3| "failed") |#3|) 68)) (-2921 ((|#3| |#3|) 134)) (-2163 (((-3 |#3| "failed") |#3|) 52)) (-2786 ((|#3| |#3|) 122)) (-3692 (((-3 |#3| "failed") |#3|) 64)) (-2898 ((|#3| |#3|) 132)) (-1547 (((-3 |#3| "failed") |#3|) 48)) (-2764 ((|#3| |#3|) 120)) (-3653 (((-3 |#3| "failed") |#3|) 78)) (-1811 ((|#3| |#3|) 139)) (-1294 (((-3 |#3| "failed") |#3|) 58)) (-2838 ((|#3| |#3|) 127)) (-3308 (((-3 |#3| "failed") |#3|) 74)) (-1795 ((|#3| |#3|) 137)) (-3917 (((-3 |#3| "failed") |#3|) 102)) (-2817 ((|#3| |#3|) 125)) (-4067 (((-3 |#3| "failed") |#3|) 82)) (-1830 ((|#3| |#3|) 141)) (-3099 (((-3 |#3| "failed") |#3|) 109)) (-2862 ((|#3| |#3|) 129)) (-1211 (((-3 |#3| "failed") |#3|) 84)) (-3919 ((|#3| |#3|) 142)) (-1210 (((-3 |#3| "failed") |#3|) 111)) (-2874 ((|#3| |#3|) 130)) (-1333 (((-3 |#3| "failed") |#3|) 80)) (-1821 ((|#3| |#3|) 140)) (-3040 (((-3 |#3| "failed") |#3|) 60)) (-2850 ((|#3| |#3|) 128)) (-2132 (((-3 |#3| "failed") |#3|) 76)) (-1803 ((|#3| |#3|) 138)) (-3535 (((-3 |#3| "failed") |#3|) 105)) (-2827 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-381 (-521))) 40 (|has| |#1| (-337)))))
-(((-255 |#1| |#2| |#3| |#4|) (-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3265 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2752 (|#3| |#3|)) (-15 -2764 (|#3| |#3|)) (-15 -2775 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2806 (|#3| |#3|)) (-15 -2817 (|#3| |#3|)) (-15 -2827 (|#3| |#3|)) (-15 -2838 (|#3| |#3|)) (-15 -2850 (|#3| |#3|)) (-15 -2862 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2921 (|#3| |#3|)) (-15 -2932 (|#3| |#3|)) (-15 -1787 (|#3| |#3|)) (-15 -1795 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1811 (|#3| |#3|)) (-15 -1821 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)))) (-37 (-381 (-521))) (-1125 |#1|) (-1148 |#1| |#2|) (-909 |#2|)) (T -255))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3)) (-4 *5 (-1125 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1148 *4 *5)) (-4 *6 (-909 *5)))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2775 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2817 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2827 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2850 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2862 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2898 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2921 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-2932 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1787 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4)))))
-(-13 (-909 |#3|) (-10 -7 (IF (|has| |#1| (-337)) (-15 ** (|#3| |#3| (-381 (-521)))) |%noBranch|) (-15 -3265 (|#3| |#3|)) (-15 -1253 (|#3| |#3|)) (-15 -2752 (|#3| |#3|)) (-15 -2764 (|#3| |#3|)) (-15 -2775 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -2796 (|#3| |#3|)) (-15 -2806 (|#3| |#3|)) (-15 -2817 (|#3| |#3|)) (-15 -2827 (|#3| |#3|)) (-15 -2838 (|#3| |#3|)) (-15 -2850 (|#3| |#3|)) (-15 -2862 (|#3| |#3|)) (-15 -2874 (|#3| |#3|)) (-15 -2886 (|#3| |#3|)) (-15 -2898 (|#3| |#3|)) (-15 -2910 (|#3| |#3|)) (-15 -2921 (|#3| |#3|)) (-15 -2932 (|#3| |#3|)) (-15 -1787 (|#3| |#3|)) (-15 -1795 (|#3| |#3|)) (-15 -1803 (|#3| |#3|)) (-15 -1811 (|#3| |#3|)) (-15 -1821 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)) (-15 -3919 (|#3| |#3|))))
-((-1658 (($ (-1 (-108) |#2|) $) 23)) (-2354 (($ $) 36)) (-2726 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1429 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-4162 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1696 (($ |#2| $ (-521)) 19) (($ $ $ (-521)) 21)) (-3694 (($ $ (-521)) 11) (($ $ (-1132 (-521))) 14)) (-2240 (($ $ |#2|) 29) (($ $ $) NIL)) (-4159 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-587 $)) NIL)))
-(((-256 |#1| |#2|) (-10 -8 (-15 -4162 (|#1| |#1| |#1|)) (-15 -2726 (|#1| |#2| |#1|)) (-15 -4162 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2726 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -2240 (|#1| |#1| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -3694 (|#1| |#1| (-1132 (-521)))) (-15 -3694 (|#1| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1429 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1658 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1429 (|#1| |#2| |#1|)) (-15 -2354 (|#1| |#1|))) (-257 |#2|) (-1119)) (T -256))
-NIL
-(-10 -8 (-15 -4162 (|#1| |#1| |#1|)) (-15 -2726 (|#1| |#2| |#1|)) (-15 -4162 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2726 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -2240 (|#1| |#1| |#2|)) (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -3694 (|#1| |#1| (-1132 (-521)))) (-15 -3694 (|#1| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -1429 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1658 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1429 (|#1| |#2| |#1|)) (-15 -2354 (|#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) |#1|) $) 85)) (-1658 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-1514 (($ $) 83 (|has| |#1| (-1013)))) (-2354 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1013)))) (-1429 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-4162 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4135 (($ |#1| $ (-521)) 88) (($ $ $ (-521)) 87)) (-1696 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 42 (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2995 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3488 (($ $ (-521)) 91) (($ $ (-1132 (-521))) 90)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 70)) (-2240 (($ $ |#1|) 93) (($ $ $) 92)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-257 |#1|) (-1196) (-1119)) (T -257))
-((-2240 (*1 *1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)))) (-2240 (*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-2726 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-4135 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-257 *2)) (-4 *2 (-1119)))) (-4135 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-4162 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-3014 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))) (-2726 (*1 *1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))) (-1514 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013)))) (-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-783)))))
-(-13 (-592 |t#1|) (-10 -8 (-6 -4234) (-15 -2240 ($ $ |t#1|)) (-15 -2240 ($ $ $)) (-15 -3488 ($ $ (-521))) (-15 -3488 ($ $ (-1132 (-521)))) (-15 -2726 ($ (-1 (-108) |t#1|) $)) (-15 -4135 ($ |t#1| $ (-521))) (-15 -4135 ($ $ $ (-521))) (-15 -4162 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3014 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -2726 ($ |t#1| $)) (-15 -1514 ($ $))) |%noBranch|) (IF (|has| |t#1| (-783)) (-15 -4162 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
+((-2990 (((-522) (-588 (-1068))) 24) (((-522) (-1068)) 19)) (-2459 (((-1171) (-588 (-1068))) 29) (((-1171) (-1068)) 28)) (-2363 (((-1068)) 14)) (-3403 (((-1068) (-522) (-1068)) 16)) (-1893 (((-588 (-1068)) (-588 (-1068)) (-522) (-1068)) 25) (((-1068) (-1068) (-522) (-1068)) 23)) (-2239 (((-588 (-1068)) (-588 (-1068))) 13) (((-588 (-1068)) (-1068)) 11)))
+(((-218) (-10 -7 (-15 -2239 ((-588 (-1068)) (-1068))) (-15 -2239 ((-588 (-1068)) (-588 (-1068)))) (-15 -2363 ((-1068))) (-15 -3403 ((-1068) (-522) (-1068))) (-15 -1893 ((-1068) (-1068) (-522) (-1068))) (-15 -1893 ((-588 (-1068)) (-588 (-1068)) (-522) (-1068))) (-15 -2459 ((-1171) (-1068))) (-15 -2459 ((-1171) (-588 (-1068)))) (-15 -2990 ((-522) (-1068))) (-15 -2990 ((-522) (-588 (-1068)))))) (T -218))
+((-2990 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-522)) (-5 *1 (-218)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-218)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1171)) (-5 *1 (-218)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-218)))) (-1893 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-588 (-1068))) (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *1 (-218)))) (-1893 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218)))) (-3403 (*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218)))) (-2363 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-218)))) (-2239 (*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)))) (-2239 (*1 *2 *3) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)) (-5 *3 (-1068)))))
+(-10 -7 (-15 -2239 ((-588 (-1068)) (-1068))) (-15 -2239 ((-588 (-1068)) (-588 (-1068)))) (-15 -2363 ((-1068))) (-15 -3403 ((-1068) (-522) (-1068))) (-15 -1893 ((-1068) (-1068) (-522) (-1068))) (-15 -1893 ((-588 (-1068)) (-588 (-1068)) (-522) (-1068))) (-15 -2459 ((-1171) (-1068))) (-15 -2459 ((-1171) (-588 (-1068)))) (-15 -2990 ((-522) (-1068))) (-15 -2990 ((-522) (-588 (-1068)))))
+((-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 9)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 18)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ (-382 (-522)) $) 25) (($ $ (-382 (-522))) NIL)))
+(((-219 |#1|) (-10 -8 (-15 -3510 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 ** (|#1| |#1| (-708))) (-15 -3510 (|#1| |#1| (-708))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3510 (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-220)) (T -219))
+NIL
+(-10 -8 (-15 -3510 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 ** (|#1| |#1| (-708))) (-15 -3510 (|#1| |#1| (-708))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3510 (|#1| |#1| (-850))) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 39)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 44)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 40)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 41)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ (-382 (-522)) $) 43) (($ $ (-382 (-522))) 42)))
+(((-220) (-1197)) (T -220))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522)))) (-3098 (*1 *1 *1) (-4 *1 (-220))))
+(-13 (-266) (-37 (-382 (-522))) (-10 -8 (-15 ** ($ $ (-522))) (-15 -3510 ($ $ (-522))) (-15 -3098 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-266) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-664) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-3835 (($ $) 57)) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-3267 (($ $ $) 53 (|has| $ (-6 -4239)))) (-1350 (($ $ $) 52 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3175 (($) 7 T CONST)) (-3463 (($ $) 56)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3621 (($ $) 55)) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 59)) (-4002 (($ $) 58)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47)) (-2011 (((-522) $ $) 44)) (-3042 (((-108) $) 46)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2630 (($ $ $) 54 (|has| $ (-6 -4239)))) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-221 |#1|) (-1197) (-1120)) (T -221))
+((-1442 (*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-4002 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3463 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3621 (*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-2630 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-3267 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))) (-1350 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))))
+(-13 (-936 |t#1|) (-10 -8 (-15 -1442 (|t#1| $)) (-15 -4002 ($ $)) (-15 -3835 ($ $)) (-15 -3463 ($ $)) (-15 -3621 ($ $)) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2630 ($ $ $)) (-15 -3267 ($ $ $)) (-15 -1350 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) NIL)) (-2093 ((|#1| $) NIL)) (-3835 (($ $) NIL)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-3537 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3216 (($ $) 10 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1243 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "rest" $) NIL (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2081 ((|#1| $) NIL)) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2306 (($ $) NIL) (($ $ (-708)) NIL)) (-3362 (($ $) NIL (|has| |#1| (-1014)))) (-2333 (($ $) 7 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1423 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3069 (((-108) $) NIL)) (-3238 (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014))) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) NIL)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-1369 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2160 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1580 (($ |#1|) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-4095 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1661 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-2855 (((-108) $) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) NIL) ((|#1| $ (-522) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-708) $ "count") 16)) (-2011 (((-522) $ $) NIL)) (-3681 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3696 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3325 (($ (-588 |#1|)) 22)) (-3042 (((-108) $) NIL)) (-3107 (($ $) NIL)) (-2646 (($ $) NIL (|has| $ (-6 -4239)))) (-2393 (((-708) $) NIL)) (-2122 (($ $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-2630 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4165 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-588 $)) NIL) (($ $ |#1|) NIL)) (-2190 (($ (-588 |#1|)) 17) (((-588 |#1|) $) 18) (((-792) $) 21 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) 14 (|has| $ (-6 -4238)))))
+(((-222 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2190 ($ (-588 |#1|))) (-15 -2190 ((-588 |#1|) $)) (-15 -3325 ($ (-588 |#1|))) (-15 -2545 ($ $ "unique")) (-15 -2545 ($ $ "sort")) (-15 -2545 ((-708) $ "count")))) (-784)) (T -222))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-784)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-708)) (-5 *1 (-222 *4)) (-4 *4 (-784)))))
+(-13 (-608 |#1|) (-10 -8 (-15 -2190 ($ (-588 |#1|))) (-15 -2190 ((-588 |#1|) $)) (-15 -3325 ($ (-588 |#1|))) (-15 -2545 ($ $ "unique")) (-15 -2545 ($ $ "sort")) (-15 -2545 ((-708) $ "count"))))
+((-1343 (((-3 (-708) "failed") |#1| |#1| (-708)) 27)))
+(((-223 |#1|) (-10 -7 (-15 -1343 ((-3 (-708) "failed") |#1| |#1| (-708)))) (-13 (-664) (-343) (-10 -7 (-15 ** (|#1| |#1| (-522)))))) (T -223))
+((-1343 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-708)) (-4 *3 (-13 (-664) (-343) (-10 -7 (-15 ** (*3 *3 (-522)))))) (-5 *1 (-223 *3)))))
+(-10 -7 (-15 -1343 ((-3 (-708) "failed") |#1| |#1| (-708))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-794 |#1|)) $) NIL)) (-1282 (((-1081 $) $ (-794 |#1|)) NIL) (((-1081 |#2|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2022 (($ $) NIL (|has| |#2| (-514)))) (-3739 (((-108) $) NIL (|has| |#2| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-794 |#1|))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3119 (($ $) NIL (|has| |#2| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#2| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-1950 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2388 (($ $ (-588 (-522))) NIL)) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#2| (-838)))) (-2671 (($ $ |#2| (-217 (-3480 |#1|) (-708)) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#2|) (-794 |#1|)) NIL) (($ (-1081 $) (-794 |#1|)) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#2| (-217 (-3480 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-794 |#1|)) NIL)) (-2925 (((-217 (-3480 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3861 (($ (-1 (-217 (-3480 |#1|) (-708)) (-217 (-3480 |#1|) (-708))) $) NIL)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-3145 (((-3 (-794 |#1|) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#2| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -1400 (-708))) "failed") $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#2| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-588 (-794 |#1|)) (-588 $)) NIL)) (-2769 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2157 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2793 (((-217 (-3480 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2255 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-217 (-3480 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-224 |#1| |#2|) (-13 (-878 |#2| (-217 (-3480 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2388 ($ $ (-588 (-522)))))) (-588 (-1085)) (-971)) (T -224))
+((-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-224 *3 *4)) (-14 *3 (-588 (-1085))) (-4 *4 (-971)))))
+(-13 (-878 |#2| (-217 (-3480 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2388 ($ $ (-588 (-522))))))
+((-1296 (((-1171) $) 12)) (-1240 (((-166) $) 9)) (-2474 (($ (-166)) 10)) (-2190 (((-792) $) 7)))
+(((-225) (-13 (-562 (-792)) (-10 -8 (-15 -1240 ((-166) $)) (-15 -2474 ($ (-166))) (-15 -1296 ((-1171) $))))) (T -225))
+((-1240 (*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-2474 (*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-225)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -1240 ((-166) $)) (-15 -2474 ($ (-166))) (-15 -1296 ((-1171) $))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2468 (($ (-850)) NIL (|has| |#4| (-971)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1210 (($ $ $) NIL (|has| |#4| (-730)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| |#4| (-343)))) (-1341 (((-522) $) NIL (|has| |#4| (-782)))) (-2379 ((|#4| $ (-522) |#4|) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1014))) (((-3 (-522) "failed") $) NIL (-12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))) (-1484 ((|#4| $) NIL (|has| |#4| (-1014))) (((-522) $) NIL (-12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))) (-2096 (((-2 (|:| -1222 (-628 |#4|)) (|:| |vec| (-1166 |#4|))) (-628 $) (-1166 $)) NIL (|has| |#4| (-971))) (((-628 |#4|) (-628 $)) NIL (|has| |#4| (-971))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#4| (-584 (-522))) (|has| |#4| (-971)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#4| (-584 (-522))) (|has| |#4| (-971))))) (-2682 (((-3 $ "failed") $) NIL (|has| |#4| (-971)))) (-3255 (($) NIL (|has| |#4| (-343)))) (-3854 ((|#4| $ (-522) |#4|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#4| $ (-522)) NIL)) (-3687 (((-108) $) NIL (|has| |#4| (-782)))) (-3837 (((-588 |#4|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL (|has| |#4| (-971)))) (-2556 (((-108) $) NIL (|has| |#4| (-782)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (-3708 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-3308 (((-588 |#4|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (-3708 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-3838 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#4| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-2717 (($ (-850)) NIL (|has| |#4| (-343)))) (-4151 (((-1032) $) NIL)) (-2294 ((|#4| $) NIL (|has| (-522) (-784)))) (-2602 (($ $ |#4|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1525 (((-588 |#4|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#4| $ (-522) |#4|) NIL) ((|#4| $ (-522)) 12)) (-1883 ((|#4| $ $) NIL (|has| |#4| (-971)))) (-1962 (($ (-1166 |#4|)) NIL)) (-4078 (((-126)) NIL (|has| |#4| (-338)))) (-2157 (($ $ (-1 |#4| |#4|) (-708)) NIL (|has| |#4| (-971))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971))))) (-4168 (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1166 |#4|) $) NIL) (((-792) $) NIL) (($ |#4|) NIL (|has| |#4| (-1014))) (($ (-522)) NIL (-3708 (-12 (|has| |#4| (-962 (-522))) (|has| |#4| (-1014))) (|has| |#4| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#4| (-962 (-382 (-522)))) (|has| |#4| (-1014))))) (-2323 (((-708)) NIL (|has| |#4| (-971)))) (-3648 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2241 (($ $) NIL (|has| |#4| (-782)))) (-3510 (($ $ (-708)) NIL (|has| |#4| (-971))) (($ $ (-850)) NIL (|has| |#4| (-971)))) (-3566 (($) NIL T CONST)) (-3577 (($) NIL (|has| |#4| (-971)) CONST)) (-2213 (($ $ (-1 |#4| |#4|) (-708)) NIL (|has| |#4| (-971))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#4| (-829 (-1085))) (|has| |#4| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971)))) (($ $) NIL (-12 (|has| |#4| (-210)) (|has| |#4| (-971))))) (-1574 (((-108) $ $) NIL (-3708 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3708 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1549 (((-108) $ $) NIL (-3708 (|has| |#4| (-730)) (|has| |#4| (-782))))) (-1620 (($ $ |#4|) NIL (|has| |#4| (-338)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL (|has| |#4| (-971))) (($ $ (-850)) NIL (|has| |#4| (-971)))) (* (($ |#2| $) 14) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-664))) (($ |#4| $) NIL (|has| |#4| (-664))) (($ $ $) NIL (|has| |#4| (-971)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-226 |#1| |#2| |#3| |#4|) (-13 (-215 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-850) (-971) (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-590 |#2|)) (T -226))
+NIL
+(-13 (-215 |#1| |#4|) (-590 |#2|) (-590 |#3|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2468 (($ (-850)) NIL (|has| |#3| (-971)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1210 (($ $ $) NIL (|has| |#3| (-730)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| |#3| (-343)))) (-1341 (((-522) $) NIL (|has| |#3| (-782)))) (-2379 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1014))) (((-3 (-522) "failed") $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))) (-1484 ((|#3| $) NIL (|has| |#3| (-1014))) (((-522) $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))) (-2096 (((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) NIL (|has| |#3| (-971))) (((-628 |#3|) (-628 $)) NIL (|has| |#3| (-971))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971))))) (-2682 (((-3 $ "failed") $) NIL (|has| |#3| (-971)))) (-3255 (($) NIL (|has| |#3| (-343)))) (-3854 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#3| $ (-522)) NIL)) (-3687 (((-108) $) NIL (|has| |#3| (-782)))) (-3837 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL (|has| |#3| (-971)))) (-2556 (((-108) $) NIL (|has| |#3| (-782)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-3308 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-3838 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#3| |#3|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#3| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-2717 (($ (-850)) NIL (|has| |#3| (-343)))) (-4151 (((-1032) $) NIL)) (-2294 ((|#3| $) NIL (|has| (-522) (-784)))) (-2602 (($ $ |#3|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#3|))) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 |#3|) (-588 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-1525 (((-588 |#3|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#3| $ (-522) |#3|) NIL) ((|#3| $ (-522)) 11)) (-1883 ((|#3| $ $) NIL (|has| |#3| (-971)))) (-1962 (($ (-1166 |#3|)) NIL)) (-4078 (((-126)) NIL (|has| |#3| (-338)))) (-2157 (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971))))) (-4168 (((-708) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238))) (((-708) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1166 |#3|) $) NIL) (((-792) $) NIL) (($ |#3|) NIL (|has| |#3| (-1014))) (($ (-522)) NIL (-3708 (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (|has| |#3| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014))))) (-2323 (((-708)) NIL (|has| |#3| (-971)))) (-3648 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2241 (($ $) NIL (|has| |#3| (-782)))) (-3510 (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (-3566 (($) NIL T CONST)) (-3577 (($) NIL (|has| |#3| (-971)) CONST)) (-2213 (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971))))) (-1574 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1549 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1620 (($ $ |#3|) NIL (|has| |#3| (-338)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (* (($ |#2| $) 13) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-664))) (($ |#3| $) NIL (|has| |#3| (-664))) (($ $ $) NIL (|has| |#3| (-971)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-227 |#1| |#2| |#3|) (-13 (-215 |#1| |#3|) (-590 |#2|)) (-708) (-971) (-590 |#2|)) (T -227))
+NIL
+(-13 (-215 |#1| |#3|) (-590 |#2|))
+((-4040 (((-588 (-708)) $) 47) (((-588 (-708)) $ |#3|) 50)) (-3152 (((-708) $) 49) (((-708) $ |#3|) 52)) (-1292 (($ $) 65)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3714 (((-708) $ |#3|) 39) (((-708) $) 36)) (-3830 (((-1 $ (-708)) |#3|) 15) (((-1 $ (-708)) $) 77)) (-1570 ((|#4| $) 58)) (-1494 (((-108) $) 56)) (-1901 (($ $) 64)) (-2289 (($ $ (-588 (-270 $))) 96) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-588 |#4|) (-588 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-588 |#4|) (-588 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-588 |#3|) (-588 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-588 |#3|) (-588 |#2|)) 84)) (-2157 (($ $ |#4|) NIL) (($ $ (-588 |#4|)) NIL) (($ $ |#4| (-708)) NIL) (($ $ (-588 |#4|) (-588 (-708))) NIL) (($ $) NIL) (($ $ (-708)) NIL) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3013 (((-588 |#3|) $) 75)) (-2793 ((|#5| $) NIL) (((-708) $ |#4|) NIL) (((-588 (-708)) $ (-588 |#4|)) NIL) (((-708) $ |#3|) 44)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-382 (-522))) NIL) (($ $) NIL)))
+(((-228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2289 (|#1| |#1| (-588 |#3|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#3| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#3|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#3| |#1|)) (-15 -3830 ((-1 |#1| (-708)) |#1|)) (-15 -1292 (|#1| |#1|)) (-15 -1901 (|#1| |#1|)) (-15 -1570 (|#4| |#1|)) (-15 -1494 ((-108) |#1|)) (-15 -3152 ((-708) |#1| |#3|)) (-15 -4040 ((-588 (-708)) |#1| |#3|)) (-15 -3152 ((-708) |#1|)) (-15 -4040 ((-588 (-708)) |#1|)) (-15 -2793 ((-708) |#1| |#3|)) (-15 -3714 ((-708) |#1|)) (-15 -3714 ((-708) |#1| |#3|)) (-15 -3013 ((-588 |#3|) |#1|)) (-15 -3830 ((-1 |#1| (-708)) |#3|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2190 (|#1| |#3|)) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -2793 ((-588 (-708)) |#1| (-588 |#4|))) (-15 -2793 ((-708) |#1| |#4|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2190 (|#1| |#4|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#4| |#1|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#4| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2793 (|#5| |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2157 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -2157 (|#1| |#1| |#4| (-708))) (-15 -2157 (|#1| |#1| (-588 |#4|))) (-15 -2157 (|#1| |#1| |#4|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-229 |#2| |#3| |#4| |#5|) (-971) (-784) (-242 |#3|) (-730)) (T -228))
+NIL
+(-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2289 (|#1| |#1| (-588 |#3|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#3| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#3|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#3| |#1|)) (-15 -3830 ((-1 |#1| (-708)) |#1|)) (-15 -1292 (|#1| |#1|)) (-15 -1901 (|#1| |#1|)) (-15 -1570 (|#4| |#1|)) (-15 -1494 ((-108) |#1|)) (-15 -3152 ((-708) |#1| |#3|)) (-15 -4040 ((-588 (-708)) |#1| |#3|)) (-15 -3152 ((-708) |#1|)) (-15 -4040 ((-588 (-708)) |#1|)) (-15 -2793 ((-708) |#1| |#3|)) (-15 -3714 ((-708) |#1|)) (-15 -3714 ((-708) |#1| |#3|)) (-15 -3013 ((-588 |#3|) |#1|)) (-15 -3830 ((-1 |#1| (-708)) |#3|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2190 (|#1| |#3|)) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -2793 ((-588 (-708)) |#1| (-588 |#4|))) (-15 -2793 ((-708) |#1| |#4|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2190 (|#1| |#4|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#4| |#1|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#4| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2793 (|#5| |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2157 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -2157 (|#1| |#1| |#4| (-708))) (-15 -2157 (|#1| |#1| (-588 |#4|))) (-15 -2157 (|#1| |#1| |#4|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4040 (((-588 (-708)) $) 214) (((-588 (-708)) $ |#2|) 212)) (-3152 (((-708) $) 213) (((-708) $ |#2|) 211)) (-4090 (((-588 |#3|) $) 110)) (-1282 (((-1081 $) $ |#3|) 125) (((-1081 |#1|) $) 124)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2022 (($ $) 88 (|has| |#1| (-514)))) (-3739 (((-108) $) 90 (|has| |#1| (-514)))) (-3781 (((-708) $) 112) (((-708) $ (-588 |#3|)) 111)) (-1233 (((-3 $ "failed") $ $) 19)) (-1565 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-3119 (($ $) 98 (|has| |#1| (-426)))) (-3450 (((-393 $) $) 97 (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-1292 (($ $) 207)) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-1484 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) ((|#3| $) 135) ((|#2| $) 220)) (-1950 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3156 (($ $) 154)) (-2096 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-2682 (((-3 $ "failed") $) 34)) (-2071 (($ $) 176 (|has| |#1| (-426))) (($ $ |#3|) 105 (|has| |#1| (-426)))) (-3147 (((-588 $) $) 109)) (-2813 (((-108) $) 96 (|has| |#1| (-838)))) (-2671 (($ $ |#1| |#4| $) 172)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| |#3| (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| |#3| (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3714 (((-708) $ |#2|) 217) (((-708) $) 216)) (-2782 (((-108) $) 31)) (-2112 (((-708) $) 169)) (-4073 (($ (-1081 |#1|) |#3|) 117) (($ (-1081 $) |#3|) 116)) (-4052 (((-588 $) $) 126)) (-3340 (((-108) $) 152)) (-4049 (($ |#1| |#4|) 153) (($ $ |#3| (-708)) 119) (($ $ (-588 |#3|) (-588 (-708))) 118)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#3|) 120)) (-2925 ((|#4| $) 170) (((-708) $ |#3|) 122) (((-588 (-708)) $ (-588 |#3|)) 121)) (-2814 (($ $ $) 79 (|has| |#1| (-784)))) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3861 (($ (-1 |#4| |#4|) $) 171)) (-1391 (($ (-1 |#1| |#1|) $) 151)) (-3830 (((-1 $ (-708)) |#2|) 219) (((-1 $ (-708)) $) 206 (|has| |#1| (-210)))) (-3145 (((-3 |#3| "failed") $) 123)) (-3128 (($ $) 149)) (-3138 ((|#1| $) 148)) (-1570 ((|#3| $) 209)) (-2224 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-2385 (((-1068) $) 9)) (-1494 (((-108) $) 210)) (-2462 (((-3 (-588 $) "failed") $) 114)) (-4193 (((-3 (-588 $) "failed") $) 115)) (-3285 (((-3 (-2 (|:| |var| |#3|) (|:| -1400 (-708))) "failed") $) 113)) (-1901 (($ $) 208)) (-4151 (((-1032) $) 10)) (-3108 (((-108) $) 166)) (-3118 ((|#1| $) 167)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2259 (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-1916 (((-393 $) $) 99 (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-588 |#3|) (-588 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-588 |#3|) (-588 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 $)) 204 (|has| |#1| (-210))) (($ $ |#2| |#1|) 203 (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 |#1|)) 202 (|has| |#1| (-210)))) (-2769 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2157 (($ $ |#3|) 42) (($ $ (-588 |#3|)) 41) (($ $ |#3| (-708)) 40) (($ $ (-588 |#3|) (-588 (-708))) 39) (($ $) 238 (|has| |#1| (-210))) (($ $ (-708)) 236 (|has| |#1| (-210))) (($ $ (-1085)) 234 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 233 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 232 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 231 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3013 (((-588 |#2|) $) 218)) (-2793 ((|#4| $) 150) (((-708) $ |#3|) 130) (((-588 (-708)) $ (-588 |#3|)) 129) (((-708) $ |#2|) 215)) (-1431 (((-821 (-354)) $) 82 (-12 (|has| |#3| (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| |#3| (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| |#3| (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ |#3|) 106 (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4015 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-382 (-522))) 72 (-3708 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522)))))) (($ $) 85 (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) 168)) (-3243 ((|#1| $ |#4|) 155) (($ $ |#3| (-708)) 128) (($ $ (-588 |#3|) (-588 (-708))) 127)) (-2143 (((-3 $ "failed") $) 73 (-3708 (-4015 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) 29)) (-3632 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-3958 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ |#3|) 38) (($ $ (-588 |#3|)) 37) (($ $ |#3| (-708)) 36) (($ $ (-588 |#3|) (-588 (-708))) 35) (($ $) 237 (|has| |#1| (-210))) (($ $ (-708)) 235 (|has| |#1| (-210))) (($ $ (-1085)) 230 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 229 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 228 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 227 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-229 |#1| |#2| |#3| |#4|) (-1197) (-971) (-784) (-242 |t#2|) (-730)) (T -229))
+((-3830 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *4 *3 *5 *6)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 *4)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 (-708))))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-588 (-708))))) (-3152 (*1 *2 *1 *3) (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-108)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-4 *2 (-242 *4)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784)) (-4 *4 (-242 *3)) (-4 *5 (-730)))) (-1292 (*1 *1 *1) (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784)) (-4 *4 (-242 *3)) (-4 *5 (-730)))) (-3830 (*1 *2 *1) (-12 (-4 *3 (-210)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *3 *4 *5 *6)))))
+(-13 (-878 |t#1| |t#4| |t#3|) (-208 |t#1|) (-962 |t#2|) (-10 -8 (-15 -3830 ((-1 $ (-708)) |t#2|)) (-15 -3013 ((-588 |t#2|) $)) (-15 -3714 ((-708) $ |t#2|)) (-15 -3714 ((-708) $)) (-15 -2793 ((-708) $ |t#2|)) (-15 -4040 ((-588 (-708)) $)) (-15 -3152 ((-708) $)) (-15 -4040 ((-588 (-708)) $ |t#2|)) (-15 -3152 ((-708) $ |t#2|)) (-15 -1494 ((-108) $)) (-15 -1570 (|t#3| $)) (-15 -1901 ($ $)) (-15 -1292 ($ $)) (IF (|has| |t#1| (-210)) (PROGN (-6 (-483 |t#2| |t#1|)) (-6 (-483 |t#2| $)) (-6 (-285 $)) (-15 -3830 ((-1 $ (-708)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-266) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-285 $) . T) ((-301 |#1| |#4|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3708 (|has| |#1| (-838)) (|has| |#1| (-426))) ((-483 |#2| |#1|) |has| |#1| (-210)) ((-483 |#2| $) |has| |#1| (-210)) ((-483 |#3| |#1|) . T) ((-483 |#3| $) . T) ((-483 $ $) . T) ((-514) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-829 |#3|) . T) ((-815 (-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) ((-878 |#1| |#4| |#3|) . T) ((-838) |has| |#1| (-838)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-962 |#2|) . T) ((-962 |#3|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) |has| |#1| (-838)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3852 ((|#1| $) 54)) (-1355 ((|#1| $) 44)) (-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-2070 (($ $) 60)) (-3509 (($ $) 48)) (-3218 ((|#1| |#1| $) 46)) (-2327 ((|#1| $) 45)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2517 (((-708) $) 61)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-2885 ((|#1| |#1| $) 52)) (-4194 ((|#1| |#1| $) 51)) (-4095 (($ |#1| $) 40)) (-4155 (((-708) $) 55)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1698 ((|#1| $) 62)) (-3265 ((|#1| $) 50)) (-1969 ((|#1| $) 49)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1965 ((|#1| |#1| $) 58)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3650 ((|#1| $) 59)) (-1555 (($) 57) (($ (-588 |#1|)) 56)) (-1253 (((-708) $) 43)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3288 ((|#1| $) 53)) (-2795 (($ (-588 |#1|)) 42)) (-2316 ((|#1| $) 63)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-230 |#1|) (-1197) (-1120)) (T -230))
+((-1555 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-230 *3)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-2885 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-4194 (*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))) (-3509 (*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
+(-13 (-1033 |t#1|) (-921 |t#1|) (-10 -8 (-15 -1555 ($)) (-15 -1555 ($ (-588 |t#1|))) (-15 -4155 ((-708) $)) (-15 -3852 (|t#1| $)) (-15 -3288 (|t#1| $)) (-15 -2885 (|t#1| |t#1| $)) (-15 -4194 (|t#1| |t#1| $)) (-15 -3265 (|t#1| $)) (-15 -1969 (|t#1| $)) (-15 -3509 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-921 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1033 |#1|) . T) ((-1120) . T))
+((-2903 (((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 139)) (-2956 (((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354))) 160) (((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 158) (((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 163) (((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 159) (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 150) (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 149) (((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354))) 129) (((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239))) 127) (((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354))) 128) (((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239))) 125)) (-2920 (((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354))) 162) (((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 161) (((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 165) (((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 164) (((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354))) 152) (((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239))) 151) (((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354))) 135) (((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239))) 134) (((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354))) 133) (((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239))) 132) (((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354))) 99) (((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239))) 98) (((-1167) (-1 (-202) (-202)) (-1009 (-354))) 95) (((-1167) (-1 (-202) (-202)) (-1009 (-354)) (-588 (-239))) 94)))
+(((-231) (-10 -7 (-15 -2920 ((-1167) (-1 (-202) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) (-1 (-202) (-202)) (-1009 (-354)))) (-15 -2920 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -2920 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -2920 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2920 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -2903 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -231))
+((-2903 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *2 (-1167)) (-5 *1 (-231)))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231)))))
+(-10 -7 (-15 -2920 ((-1167) (-1 (-202) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) (-1 (-202) (-202)) (-1009 (-354)))) (-15 -2920 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) (-806 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -2920 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-808 (-1 (-202) (-202))) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202)) (-1009 (-354)))) (-15 -2920 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-354)) (-1009 (-354)))) (-15 -2920 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -2956 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-811 (-1 (-202) (-202) (-202))) (-1009 (-354)) (-1009 (-354)))) (-15 -2903 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))
+((-2920 (((-1167) (-270 |#2|) (-1085) (-1085) (-588 (-239))) 93)))
+(((-232 |#1| |#2|) (-10 -7 (-15 -2920 ((-1167) (-270 |#2|) (-1085) (-1085) (-588 (-239))))) (-13 (-514) (-784) (-962 (-522))) (-405 |#1|)) (T -232))
+((-2920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-270 *7)) (-5 *4 (-1085)) (-5 *5 (-588 (-239))) (-4 *7 (-405 *6)) (-4 *6 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-1167)) (-5 *1 (-232 *6 *7)))))
+(-10 -7 (-15 -2920 ((-1167) (-270 |#2|) (-1085) (-1085) (-588 (-239)))))
+((-2283 (((-522) (-522)) 50)) (-2796 (((-522) (-522)) 51)) (-1643 (((-202) (-202)) 52)) (-2139 (((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202))) 49)) (-3667 (((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)) (-108)) 47)))
+(((-233) (-10 -7 (-15 -3667 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)) (-108))) (-15 -2139 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -2283 ((-522) (-522))) (-15 -2796 ((-522) (-522))) (-15 -1643 ((-202) (-202))))) (T -233))
+((-1643 (*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233)))) (-2139 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202))) (-5 *2 (-1168)) (-5 *1 (-233)))) (-3667 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202))) (-5 *5 (-108)) (-5 *2 (-1168)) (-5 *1 (-233)))))
+(-10 -7 (-15 -3667 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)) (-108))) (-15 -2139 ((-1168) (-1 (-154 (-202)) (-154 (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -2283 ((-522) (-522))) (-15 -2796 ((-522) (-522))) (-15 -1643 ((-202) (-202))))
+((-2190 (((-1007 (-354)) (-1007 (-291 |#1|))) 16)))
+(((-234 |#1|) (-10 -7 (-15 -2190 ((-1007 (-354)) (-1007 (-291 |#1|))))) (-13 (-784) (-514) (-563 (-354)))) (T -234))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-1007 (-291 *4))) (-4 *4 (-13 (-784) (-514) (-563 (-354)))) (-5 *2 (-1007 (-354))) (-5 *1 (-234 *4)))))
+(-10 -7 (-15 -2190 ((-1007 (-354)) (-1007 (-291 |#1|)))))
+((-2956 (((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354))) 69) (((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 68) (((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354))) 59) (((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 58) (((-1045 (-202)) (-808 |#1|) (-1007 (-354))) 50) (((-1045 (-202)) (-808 |#1|) (-1007 (-354)) (-588 (-239))) 49)) (-2920 (((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354))) 72) (((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 71) (((-1168) |#1| (-1007 (-354)) (-1007 (-354))) 62) (((-1168) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239))) 61) (((-1168) (-808 |#1|) (-1007 (-354))) 54) (((-1168) (-808 |#1|) (-1007 (-354)) (-588 (-239))) 53) (((-1167) (-806 |#1|) (-1007 (-354))) 41) (((-1167) (-806 |#1|) (-1007 (-354)) (-588 (-239))) 40) (((-1167) |#1| (-1007 (-354))) 33) (((-1167) |#1| (-1007 (-354)) (-588 (-239))) 32)))
+(((-235 |#1|) (-10 -7 (-15 -2920 ((-1167) |#1| (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) |#1| (-1007 (-354)))) (-15 -2920 ((-1167) (-806 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) (-806 |#1|) (-1007 (-354)))) (-15 -2920 ((-1168) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-808 |#1|) (-1007 (-354)))) (-15 -2956 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)))) (-15 -2920 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -2956 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -2920 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)))) (-15 -2956 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354))))) (-13 (-563 (-498)) (-1014))) (T -235))
+((-2956 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *5)))) (-2956 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *6)))) (-2920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *5)))) (-2920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *6)))) (-2956 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-2956 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-2920 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1168)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-2920 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *5)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *6)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *5)))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168)) (-5 *1 (-235 *6)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-806 *5)) (-5 *4 (-1007 (-354))) (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167)) (-5 *1 (-235 *5)))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-806 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167)) (-5 *1 (-235 *6)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))) (-2920 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014))))))
+(-10 -7 (-15 -2920 ((-1167) |#1| (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) |#1| (-1007 (-354)))) (-15 -2920 ((-1167) (-806 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1167) (-806 |#1|) (-1007 (-354)))) (-15 -2920 ((-1168) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-808 |#1|) (-1007 (-354)))) (-15 -2956 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-808 |#1|) (-1007 (-354)))) (-15 -2920 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -2956 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) |#1| (-1007 (-354)) (-1007 (-354)))) (-15 -2920 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2920 ((-1168) (-811 |#1|) (-1007 (-354)) (-1007 (-354)))) (-15 -2956 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)) (-588 (-239)))) (-15 -2956 ((-1045 (-202)) (-811 |#1|) (-1007 (-354)) (-1007 (-354)))))
+((-2920 (((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)) (-588 (-239))) 21) (((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202))) 22) (((-1167) (-588 (-872 (-202))) (-588 (-239))) 13) (((-1167) (-588 (-872 (-202)))) 14) (((-1167) (-588 (-202)) (-588 (-202)) (-588 (-239))) 18) (((-1167) (-588 (-202)) (-588 (-202))) 19)))
+(((-236) (-10 -7 (-15 -2920 ((-1167) (-588 (-202)) (-588 (-202)))) (-15 -2920 ((-1167) (-588 (-202)) (-588 (-202)) (-588 (-239)))) (-15 -2920 ((-1167) (-588 (-872 (-202))))) (-15 -2920 ((-1167) (-588 (-872 (-202))) (-588 (-239)))) (-15 -2920 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)))) (-15 -2920 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)) (-588 (-239)))))) (T -236))
+((-2920 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-236)))) (-2920 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1168)) (-5 *1 (-236)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2920 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-236)))) (-2920 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1167)) (-5 *1 (-236)))))
+(-10 -7 (-15 -2920 ((-1167) (-588 (-202)) (-588 (-202)))) (-15 -2920 ((-1167) (-588 (-202)) (-588 (-202)) (-588 (-239)))) (-15 -2920 ((-1167) (-588 (-872 (-202))))) (-15 -2920 ((-1167) (-588 (-872 (-202))) (-588 (-239)))) (-15 -2920 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)))) (-15 -2920 ((-1168) (-588 (-202)) (-588 (-202)) (-588 (-202)) (-588 (-239)))))
+((-1908 (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-588 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 24)) (-1326 (((-850) (-588 (-239)) (-850)) 49)) (-1529 (((-850) (-588 (-239)) (-850)) 48)) (-1968 (((-588 (-354)) (-588 (-239)) (-588 (-354))) 65)) (-3542 (((-354) (-588 (-239)) (-354)) 55)) (-2643 (((-850) (-588 (-239)) (-850)) 50)) (-1447 (((-108) (-588 (-239)) (-108)) 26)) (-2955 (((-1068) (-588 (-239)) (-1068)) 19)) (-1936 (((-1068) (-588 (-239)) (-1068)) 25)) (-2594 (((-1045 (-202)) (-588 (-239))) 43)) (-3085 (((-588 (-1009 (-354))) (-588 (-239)) (-588 (-1009 (-354)))) 37)) (-1843 (((-803) (-588 (-239)) (-803)) 31)) (-4139 (((-803) (-588 (-239)) (-803)) 32)) (-1459 (((-1 (-872 (-202)) (-872 (-202))) (-588 (-239)) (-1 (-872 (-202)) (-872 (-202)))) 60)) (-2774 (((-108) (-588 (-239)) (-108)) 15)) (-1202 (((-108) (-588 (-239)) (-108)) 14)))
+(((-237) (-10 -7 (-15 -1202 ((-108) (-588 (-239)) (-108))) (-15 -2774 ((-108) (-588 (-239)) (-108))) (-15 -1908 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-588 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2955 ((-1068) (-588 (-239)) (-1068))) (-15 -1936 ((-1068) (-588 (-239)) (-1068))) (-15 -1447 ((-108) (-588 (-239)) (-108))) (-15 -1843 ((-803) (-588 (-239)) (-803))) (-15 -4139 ((-803) (-588 (-239)) (-803))) (-15 -3085 ((-588 (-1009 (-354))) (-588 (-239)) (-588 (-1009 (-354))))) (-15 -1529 ((-850) (-588 (-239)) (-850))) (-15 -1326 ((-850) (-588 (-239)) (-850))) (-15 -2594 ((-1045 (-202)) (-588 (-239)))) (-15 -2643 ((-850) (-588 (-239)) (-850))) (-15 -3542 ((-354) (-588 (-239)) (-354))) (-15 -1459 ((-1 (-872 (-202)) (-872 (-202))) (-588 (-239)) (-1 (-872 (-202)) (-872 (-202))))) (-15 -1968 ((-588 (-354)) (-588 (-239)) (-588 (-354)))))) (T -237))
+((-1968 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-354))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1459 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-3542 (*1 *2 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2643 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-237)))) (-1326 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1529 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-3085 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-4139 (*1 *2 *3 *2) (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1843 (*1 *2 *3 *2) (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1447 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1936 (*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2955 (*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1908 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-2774 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))) (-1202 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))))
+(-10 -7 (-15 -1202 ((-108) (-588 (-239)) (-108))) (-15 -2774 ((-108) (-588 (-239)) (-108))) (-15 -1908 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) (-588 (-239)) (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2955 ((-1068) (-588 (-239)) (-1068))) (-15 -1936 ((-1068) (-588 (-239)) (-1068))) (-15 -1447 ((-108) (-588 (-239)) (-108))) (-15 -1843 ((-803) (-588 (-239)) (-803))) (-15 -4139 ((-803) (-588 (-239)) (-803))) (-15 -3085 ((-588 (-1009 (-354))) (-588 (-239)) (-588 (-1009 (-354))))) (-15 -1529 ((-850) (-588 (-239)) (-850))) (-15 -1326 ((-850) (-588 (-239)) (-850))) (-15 -2594 ((-1045 (-202)) (-588 (-239)))) (-15 -2643 ((-850) (-588 (-239)) (-850))) (-15 -3542 ((-354) (-588 (-239)) (-354))) (-15 -1459 ((-1 (-872 (-202)) (-872 (-202))) (-588 (-239)) (-1 (-872 (-202)) (-872 (-202))))) (-15 -1968 ((-588 (-354)) (-588 (-239)) (-588 (-354)))))
+((-3017 (((-3 |#1| "failed") (-588 (-239)) (-1085)) 17)))
+(((-238 |#1|) (-10 -7 (-15 -3017 ((-3 |#1| "failed") (-588 (-239)) (-1085)))) (-1120)) (T -238))
+((-3017 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *1 (-238 *2)) (-4 *2 (-1120)))))
+(-10 -7 (-15 -3017 ((-3 |#1| "failed") (-588 (-239)) (-1085))))
+((-1416 (((-108) $ $) NIL)) (-1908 (($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 14)) (-1326 (($ (-850)) 70)) (-1529 (($ (-850)) 69)) (-3210 (($ (-588 (-354))) 76)) (-3542 (($ (-354)) 55)) (-2643 (($ (-850)) 71)) (-1447 (($ (-108)) 22)) (-2955 (($ (-1068)) 17)) (-1936 (($ (-1068)) 18)) (-2594 (($ (-1045 (-202))) 65)) (-3085 (($ (-588 (-1009 (-354)))) 61)) (-2386 (($ (-588 (-1009 (-354)))) 56) (($ (-588 (-1009 (-382 (-522))))) 60)) (-3052 (($ (-354)) 28) (($ (-803)) 32)) (-1627 (((-108) (-588 $) (-1085)) 85)) (-3017 (((-3 (-51) "failed") (-588 $) (-1085)) 87)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3449 (($ (-354)) 33) (($ (-803)) 34)) (-3677 (($ (-1 (-872 (-202)) (-872 (-202)))) 54)) (-1459 (($ (-1 (-872 (-202)) (-872 (-202)))) 72)) (-3795 (($ (-1 (-202) (-202))) 38) (($ (-1 (-202) (-202) (-202))) 42) (($ (-1 (-202) (-202) (-202) (-202))) 46)) (-2190 (((-792) $) 81)) (-1273 (($ (-108)) 23) (($ (-588 (-1009 (-354)))) 50)) (-1202 (($ (-108)) 24)) (-1531 (((-108) $ $) 83)))
+(((-239) (-13 (-1014) (-10 -8 (-15 -1202 ($ (-108))) (-15 -1273 ($ (-108))) (-15 -1908 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2955 ($ (-1068))) (-15 -1936 ($ (-1068))) (-15 -1447 ($ (-108))) (-15 -1273 ($ (-588 (-1009 (-354))))) (-15 -3677 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3052 ($ (-354))) (-15 -3052 ($ (-803))) (-15 -3449 ($ (-354))) (-15 -3449 ($ (-803))) (-15 -3795 ($ (-1 (-202) (-202)))) (-15 -3795 ($ (-1 (-202) (-202) (-202)))) (-15 -3795 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -3542 ($ (-354))) (-15 -2386 ($ (-588 (-1009 (-354))))) (-15 -2386 ($ (-588 (-1009 (-382 (-522)))))) (-15 -3085 ($ (-588 (-1009 (-354))))) (-15 -2594 ($ (-1045 (-202)))) (-15 -1529 ($ (-850))) (-15 -1326 ($ (-850))) (-15 -2643 ($ (-850))) (-15 -1459 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3210 ($ (-588 (-354)))) (-15 -3017 ((-3 (-51) "failed") (-588 $) (-1085))) (-15 -1627 ((-108) (-588 $) (-1085)))))) (T -239))
+((-1202 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-239)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239)))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239)))) (-1447 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))) (-1273 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) (-3677 (*1 *1 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))) (-3052 (*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) (-3449 (*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))) (-3449 (*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-382 (-522))))) (-5 *1 (-239)))) (-3085 (*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))) (-2594 (*1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-239)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-1326 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))) (-1459 (*1 *1 *2) (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-239)))) (-3017 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-51)) (-5 *1 (-239)))) (-1627 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-108)) (-5 *1 (-239)))))
+(-13 (-1014) (-10 -8 (-15 -1202 ($ (-108))) (-15 -1273 ($ (-108))) (-15 -1908 ($ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -2955 ($ (-1068))) (-15 -1936 ($ (-1068))) (-15 -1447 ($ (-108))) (-15 -1273 ($ (-588 (-1009 (-354))))) (-15 -3677 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3052 ($ (-354))) (-15 -3052 ($ (-803))) (-15 -3449 ($ (-354))) (-15 -3449 ($ (-803))) (-15 -3795 ($ (-1 (-202) (-202)))) (-15 -3795 ($ (-1 (-202) (-202) (-202)))) (-15 -3795 ($ (-1 (-202) (-202) (-202) (-202)))) (-15 -3542 ($ (-354))) (-15 -2386 ($ (-588 (-1009 (-354))))) (-15 -2386 ($ (-588 (-1009 (-382 (-522)))))) (-15 -3085 ($ (-588 (-1009 (-354))))) (-15 -2594 ($ (-1045 (-202)))) (-15 -1529 ($ (-850))) (-15 -1326 ($ (-850))) (-15 -2643 ($ (-850))) (-15 -1459 ($ (-1 (-872 (-202)) (-872 (-202))))) (-15 -3210 ($ (-588 (-354)))) (-15 -3017 ((-3 (-51) "failed") (-588 $) (-1085))) (-15 -1627 ((-108) (-588 $) (-1085)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4040 (((-588 (-708)) $) NIL) (((-588 (-708)) $ |#2|) NIL)) (-3152 (((-708) $) NIL) (((-708) $ |#2|) NIL)) (-4090 (((-588 |#3|) $) NIL)) (-1282 (((-1081 $) $ |#3|) NIL) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 |#3|)) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1292 (($ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1037 |#1| |#2|) "failed") $) 20)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1037 |#1| |#2|) $) NIL)) (-1950 (($ $ $ |#3|) NIL (|has| |#1| (-157)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ |#3|) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-494 |#3|) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))))) (-3714 (((-708) $ |#2|) NIL) (((-708) $) 10)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#1|) |#3|) NIL) (($ (-1081 $) |#3|) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-494 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#3|) NIL)) (-2925 (((-494 |#3|) $) NIL) (((-708) $ |#3|) NIL) (((-588 (-708)) $ (-588 |#3|)) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-494 |#3|) (-494 |#3|)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-1 $ (-708)) |#2|) NIL) (((-1 $ (-708)) $) NIL (|has| |#1| (-210)))) (-3145 (((-3 |#3| "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-1570 ((|#3| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-1494 (((-108) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| |#3|) (|:| -1400 (-708))) "failed") $) NIL)) (-1901 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-588 |#3|) (-588 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-588 |#3|) (-588 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 $)) NIL (|has| |#1| (-210))) (($ $ |#2| |#1|) NIL (|has| |#1| (-210))) (($ $ (-588 |#2|) (-588 |#1|)) NIL (|has| |#1| (-210)))) (-2769 (($ $ |#3|) NIL (|has| |#1| (-157)))) (-2157 (($ $ |#3|) NIL) (($ $ (-588 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3013 (((-588 |#2|) $) NIL)) (-2793 (((-494 |#3|) $) NIL) (((-708) $ |#3|) NIL) (((-588 (-708)) $ (-588 |#3|)) NIL) (((-708) $ |#2|) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))))) (-2255 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ |#3|) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1037 |#1| |#2|)) 28) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-494 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ |#3|) NIL) (($ $ (-588 |#3|)) NIL) (($ $ |#3| (-708)) NIL) (($ $ (-588 |#3|) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-240 |#1| |#2| |#3|) (-13 (-229 |#1| |#2| |#3| (-494 |#3|)) (-962 (-1037 |#1| |#2|))) (-971) (-784) (-242 |#2|)) (T -240))
+NIL
+(-13 (-229 |#1| |#2| |#3| (-494 |#3|)) (-962 (-1037 |#1| |#2|)))
+((-3152 (((-708) $) 30)) (-1297 (((-3 |#2| "failed") $) 17)) (-1484 ((|#2| $) 27)) (-2157 (($ $) 12) (($ $ (-708)) 15)) (-2190 (((-792) $) 26) (($ |#2|) 10)) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 29)))
+(((-241 |#1| |#2|) (-10 -8 (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -3152 ((-708) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-242 |#2|) (-784)) (T -241))
+NIL
+(-10 -8 (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -3152 ((-708) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-3152 (((-708) $) 22)) (-1611 ((|#1| $) 23)) (-1297 (((-3 |#1| "failed") $) 27)) (-1484 ((|#1| $) 26)) (-3714 (((-708) $) 24)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-3830 (($ |#1| (-708)) 25)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2157 (($ $) 21) (($ $ (-708)) 20)) (-2190 (((-792) $) 11) (($ |#1|) 28)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-242 |#1|) (-1197) (-784)) (T -242))
+((-2190 (*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-3830 (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708)))) (-2157 (*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-242 *3)) (-4 *3 (-784)))))
+(-13 (-784) (-962 |t#1|) (-10 -8 (-15 -3830 ($ |t#1| (-708))) (-15 -3714 ((-708) $)) (-15 -1611 (|t#1| $)) (-15 -3152 ((-708) $)) (-15 -2157 ($ $)) (-15 -2157 ($ $ (-708))) (-15 -2190 ($ |t#1|))))
+(((-97) . T) ((-562 (-792)) . T) ((-784) . T) ((-962 |#1|) . T) ((-1014) . T))
+((-4090 (((-588 (-1085)) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 40)) (-4106 (((-588 (-1085)) (-291 (-202)) (-708)) 79)) (-2588 (((-3 (-291 (-202)) "failed") (-291 (-202))) 50)) (-2973 (((-291 (-202)) (-291 (-202))) 65)) (-1757 (((-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 26)) (-3135 (((-108) (-588 (-291 (-202)))) 83)) (-2538 (((-108) (-291 (-202))) 24)) (-2292 (((-588 (-1068)) (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))))) 105)) (-3040 (((-588 (-291 (-202))) (-588 (-291 (-202)))) 87)) (-2583 (((-588 (-291 (-202))) (-588 (-291 (-202)))) 85)) (-2125 (((-628 (-202)) (-588 (-291 (-202))) (-708)) 94)) (-2311 (((-108) (-291 (-202))) 20) (((-108) (-588 (-291 (-202)))) 84)) (-3051 (((-588 (-202)) (-588 (-777 (-202))) (-202)) 14)) (-2041 (((-354) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 100)) (-3938 (((-960) (-1085) (-960)) 33)))
+(((-243) (-10 -7 (-15 -3051 ((-588 (-202)) (-588 (-777 (-202))) (-202))) (-15 -1757 ((-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -2588 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -2973 ((-291 (-202)) (-291 (-202)))) (-15 -3135 ((-108) (-588 (-291 (-202))))) (-15 -2311 ((-108) (-588 (-291 (-202))))) (-15 -2311 ((-108) (-291 (-202)))) (-15 -2125 ((-628 (-202)) (-588 (-291 (-202))) (-708))) (-15 -2583 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -3040 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -2538 ((-108) (-291 (-202)))) (-15 -4090 ((-588 (-1085)) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -4106 ((-588 (-1085)) (-291 (-202)) (-708))) (-15 -3938 ((-960) (-1085) (-960))) (-15 -2041 ((-354) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -2292 ((-588 (-1068)) (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))))))) (T -243))
+((-2292 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))))) (-5 *2 (-588 (-1068))) (-5 *1 (-243)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) (-5 *2 (-354)) (-5 *1 (-243)))) (-3938 (*1 *2 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-243)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-708)) (-5 *2 (-588 (-1085))) (-5 *1 (-243)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) (-5 *2 (-588 (-1085))) (-5 *1 (-243)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-3040 (*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243)))) (-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *4 (-708)) (-5 *2 (-628 (-202))) (-5 *1 (-243)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))) (-2973 (*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-243)))) (-2588 (*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-243)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *1 (-243)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-777 (-202)))) (-5 *4 (-202)) (-5 *2 (-588 *4)) (-5 *1 (-243)))))
+(-10 -7 (-15 -3051 ((-588 (-202)) (-588 (-777 (-202))) (-202))) (-15 -1757 ((-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -2588 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -2973 ((-291 (-202)) (-291 (-202)))) (-15 -3135 ((-108) (-588 (-291 (-202))))) (-15 -2311 ((-108) (-588 (-291 (-202))))) (-15 -2311 ((-108) (-291 (-202)))) (-15 -2125 ((-628 (-202)) (-588 (-291 (-202))) (-708))) (-15 -2583 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -3040 ((-588 (-291 (-202))) (-588 (-291 (-202))))) (-15 -2538 ((-108) (-291 (-202)))) (-15 -4090 ((-588 (-1085)) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -4106 ((-588 (-1085)) (-291 (-202)) (-708))) (-15 -3938 ((-960) (-1085) (-960))) (-15 -2041 ((-354) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -2292 ((-588 (-1068)) (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))))))
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 39)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 20) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-244) (-773)) (T -244))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 54) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 49)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 29) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 31)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-245) (-773)) (T -245))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 73) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 69)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 40) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 51)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-246) (-773)) (T -246))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 48)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 27) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-247) (-773)) (T -247))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 48)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 23) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-248) (-773)) (T -248))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 69)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 23) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-249) (-773)) (T -249))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 73)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 19) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-250) (-773)) (T -250))
+NIL
+(-773)
+((-1416 (((-108) $ $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3430 (((-588 (-522)) $) 17)) (-2793 (((-708) $) 15)) (-2190 (((-792) $) 21) (($ (-588 (-522))) 13)) (-2374 (($ (-708)) 18)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 9)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 11)))
+(((-251) (-13 (-784) (-10 -8 (-15 -2190 ($ (-588 (-522)))) (-15 -2793 ((-708) $)) (-15 -3430 ((-588 (-522)) $)) (-15 -2374 ($ (-708)))))) (T -251))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-251)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-251)))))
+(-13 (-784) (-10 -8 (-15 -2190 ($ (-588 (-522)))) (-15 -2793 ((-708) $)) (-15 -3430 ((-588 (-522)) $)) (-15 -2374 ($ (-708)))))
+((-2908 ((|#2| |#2|) 77)) (-2772 ((|#2| |#2|) 65)) (-2507 (((-3 |#2| "failed") |#2| (-588 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-2884 ((|#2| |#2|) 75)) (-2748 ((|#2| |#2|) 63)) (-2930 ((|#2| |#2|) 79)) (-2794 ((|#2| |#2|) 67)) (-2838 ((|#2|) 46)) (-2626 (((-110) (-110)) 95)) (-1254 ((|#2| |#2|) 61)) (-2984 (((-108) |#2|) 134)) (-2877 ((|#2| |#2|) 180)) (-2387 ((|#2| |#2|) 156)) (-1576 ((|#2|) 59)) (-1563 ((|#2|) 58)) (-1646 ((|#2| |#2|) 176)) (-2359 ((|#2| |#2|) 152)) (-2565 ((|#2| |#2|) 184)) (-1734 ((|#2| |#2|) 160)) (-1408 ((|#2| |#2|) 148)) (-3494 ((|#2| |#2|) 150)) (-1979 ((|#2| |#2|) 186)) (-2460 ((|#2| |#2|) 162)) (-2635 ((|#2| |#2|) 182)) (-2061 ((|#2| |#2|) 158)) (-1209 ((|#2| |#2|) 178)) (-1963 ((|#2| |#2|) 154)) (-4103 ((|#2| |#2|) 192)) (-3778 ((|#2| |#2|) 168)) (-2904 ((|#2| |#2|) 188)) (-3412 ((|#2| |#2|) 164)) (-1892 ((|#2| |#2|) 196)) (-3680 ((|#2| |#2|) 172)) (-3420 ((|#2| |#2|) 198)) (-2853 ((|#2| |#2|) 174)) (-1265 ((|#2| |#2|) 194)) (-2910 ((|#2| |#2|) 170)) (-2768 ((|#2| |#2|) 190)) (-3269 ((|#2| |#2|) 166)) (-3266 ((|#2| |#2|) 62)) (-1738 ((|#2| |#2|) 80)) (-2804 ((|#2| |#2|) 68)) (-2919 ((|#2| |#2|) 78)) (-2784 ((|#2| |#2|) 66)) (-2896 ((|#2| |#2|) 76)) (-2761 ((|#2| |#2|) 64)) (-3614 (((-108) (-110)) 93)) (-1759 ((|#2| |#2|) 83)) (-2836 ((|#2| |#2|) 71)) (-1745 ((|#2| |#2|) 81)) (-2815 ((|#2| |#2|) 69)) (-1776 ((|#2| |#2|) 85)) (-2860 ((|#2| |#2|) 73)) (-3924 ((|#2| |#2|) 86)) (-2872 ((|#2| |#2|) 74)) (-1768 ((|#2| |#2|) 84)) (-2848 ((|#2| |#2|) 72)) (-1752 ((|#2| |#2|) 82)) (-2825 ((|#2| |#2|) 70)))
+(((-252 |#1| |#2|) (-10 -7 (-15 -3266 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -2748 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2804 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -2848 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -2884 (|#2| |#2|)) (-15 -2896 (|#2| |#2|)) (-15 -2908 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -2930 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1776 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -2838 (|#2|)) (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -1563 (|#2|)) (-15 -1576 (|#2|)) (-15 -3494 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -1734 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -3269 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1209 (|#2| |#2|)) (-15 -2877 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -1265 (|#2| |#2|)) (-15 -1892 (|#2| |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -2507 ((-3 |#2| "failed") |#2| (-588 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -2984 ((-108) |#2|))) (-13 (-784) (-514)) (-13 (-405 |#1|) (-928))) (T -252))
+((-2984 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3)) (-4 *3 (-13 (-405 *4) (-928))))) (-2507 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-588 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-405 *4) (-928))) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-252 *4 *2)))) (-3420 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1892 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1265 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2768 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2904 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2877 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1209 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3269 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3412 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1734 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2061 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2387 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1963 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1408 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1576 (*1 *2) (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-514))))) (-1563 (*1 *2) (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-514))))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *4)) (-4 *4 (-13 (-405 *3) (-928))))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-405 *4) (-928))))) (-2838 (*1 *2) (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2)) (-4 *3 (-13 (-784) (-514))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1776 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2930 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2896 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2884 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2848 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2804 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2)) (-4 *2 (-13 (-405 *3) (-928))))))
+(-10 -7 (-15 -3266 (|#2| |#2|)) (-15 -1254 (|#2| |#2|)) (-15 -2748 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2772 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2804 (|#2| |#2|)) (-15 -2815 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -2836 (|#2| |#2|)) (-15 -2848 (|#2| |#2|)) (-15 -2860 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -2884 (|#2| |#2|)) (-15 -2896 (|#2| |#2|)) (-15 -2908 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -2930 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -1752 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -1768 (|#2| |#2|)) (-15 -1776 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -2838 (|#2|)) (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -1563 (|#2|)) (-15 -1576 (|#2|)) (-15 -3494 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)) (-15 -1963 (|#2| |#2|)) (-15 -2387 (|#2| |#2|)) (-15 -2061 (|#2| |#2|)) (-15 -1734 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3412 (|#2| |#2|)) (-15 -3269 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1209 (|#2| |#2|)) (-15 -2877 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -2904 (|#2| |#2|)) (-15 -2768 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -1265 (|#2| |#2|)) (-15 -1892 (|#2| |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -2507 ((-3 |#2| "failed") |#2| (-588 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -2984 ((-108) |#2|)))
+((-2894 (((-3 |#2| "failed") (-588 (-561 |#2|)) |#2| (-1085)) 133)) (-3059 ((|#2| (-382 (-522)) |#2|) 50)) (-2803 ((|#2| |#2| (-561 |#2|)) 126)) (-2260 (((-2 (|:| |func| |#2|) (|:| |kers| (-588 (-561 |#2|))) (|:| |vals| (-588 |#2|))) |#2| (-1085)) 125)) (-3121 ((|#2| |#2| (-1085)) 19) ((|#2| |#2|) 22)) (-2305 ((|#2| |#2| (-1085)) 139) ((|#2| |#2|) 137)))
+(((-253 |#1| |#2|) (-10 -7 (-15 -2305 (|#2| |#2|)) (-15 -2305 (|#2| |#2| (-1085))) (-15 -2260 ((-2 (|:| |func| |#2|) (|:| |kers| (-588 (-561 |#2|))) (|:| |vals| (-588 |#2|))) |#2| (-1085))) (-15 -3121 (|#2| |#2|)) (-15 -3121 (|#2| |#2| (-1085))) (-15 -2894 ((-3 |#2| "failed") (-588 (-561 |#2|)) |#2| (-1085))) (-15 -2803 (|#2| |#2| (-561 |#2|))) (-15 -3059 (|#2| (-382 (-522)) |#2|))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -253))
+((-3059 (*1 *2 *3 *2) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2803 (*1 *2 *2 *3) (-12 (-5 *3 (-561 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)))) (-2894 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-1085)) (-4 *2 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *5 *2)))) (-3121 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-3121 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-588 (-561 *3))) (|:| |vals| (-588 *3)))) (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2305 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))))
+(-10 -7 (-15 -2305 (|#2| |#2|)) (-15 -2305 (|#2| |#2| (-1085))) (-15 -2260 ((-2 (|:| |func| |#2|) (|:| |kers| (-588 (-561 |#2|))) (|:| |vals| (-588 |#2|))) |#2| (-1085))) (-15 -3121 (|#2| |#2|)) (-15 -3121 (|#2| |#2| (-1085))) (-15 -2894 ((-3 |#2| "failed") (-588 (-561 |#2|)) |#2| (-1085))) (-15 -2803 (|#2| |#2| (-561 |#2|))) (-15 -3059 (|#2| (-382 (-522)) |#2|)))
+((-3967 (((-3 |#3| "failed") |#3|) 110)) (-2908 ((|#3| |#3|) 131)) (-2435 (((-3 |#3| "failed") |#3|) 82)) (-2772 ((|#3| |#3|) 121)) (-2063 (((-3 |#3| "failed") |#3|) 58)) (-2884 ((|#3| |#3|) 129)) (-3801 (((-3 |#3| "failed") |#3|) 46)) (-2748 ((|#3| |#3|) 119)) (-2623 (((-3 |#3| "failed") |#3|) 112)) (-2930 ((|#3| |#3|) 133)) (-2974 (((-3 |#3| "failed") |#3|) 84)) (-2794 ((|#3| |#3|) 123)) (-2192 (((-3 |#3| "failed") |#3| (-708)) 36)) (-3618 (((-3 |#3| "failed") |#3|) 74)) (-1254 ((|#3| |#3|) 118)) (-4108 (((-3 |#3| "failed") |#3|) 44)) (-3266 ((|#3| |#3|) 117)) (-1696 (((-3 |#3| "failed") |#3|) 113)) (-1738 ((|#3| |#3|) 134)) (-3200 (((-3 |#3| "failed") |#3|) 85)) (-2804 ((|#3| |#3|) 124)) (-3803 (((-3 |#3| "failed") |#3|) 111)) (-2919 ((|#3| |#3|) 132)) (-1672 (((-3 |#3| "failed") |#3|) 83)) (-2784 ((|#3| |#3|) 122)) (-2145 (((-3 |#3| "failed") |#3|) 60)) (-2896 ((|#3| |#3|) 130)) (-1898 (((-3 |#3| "failed") |#3|) 48)) (-2761 ((|#3| |#3|) 120)) (-2954 (((-3 |#3| "failed") |#3|) 66)) (-1759 ((|#3| |#3|) 137)) (-3146 (((-3 |#3| "failed") |#3|) 104)) (-2836 ((|#3| |#3|) 142)) (-2579 (((-3 |#3| "failed") |#3|) 62)) (-1745 ((|#3| |#3|) 135)) (-3644 (((-3 |#3| "failed") |#3|) 50)) (-2815 ((|#3| |#3|) 125)) (-1623 (((-3 |#3| "failed") |#3|) 70)) (-1776 ((|#3| |#3|) 139)) (-2415 (((-3 |#3| "failed") |#3|) 54)) (-2860 ((|#3| |#3|) 127)) (-3294 (((-3 |#3| "failed") |#3|) 72)) (-3924 ((|#3| |#3|) 140)) (-3286 (((-3 |#3| "failed") |#3|) 56)) (-2872 ((|#3| |#3|) 128)) (-3471 (((-3 |#3| "failed") |#3|) 68)) (-1768 ((|#3| |#3|) 138)) (-1834 (((-3 |#3| "failed") |#3|) 107)) (-2848 ((|#3| |#3|) 143)) (-1415 (((-3 |#3| "failed") |#3|) 64)) (-1752 ((|#3| |#3|) 136)) (-1239 (((-3 |#3| "failed") |#3|) 52)) (-2825 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-382 (-522))) 40 (|has| |#1| (-338)))))
+(((-254 |#1| |#2| |#3|) (-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3266 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2848 (|#3| |#3|)) (-15 -2860 (|#3| |#3|)) (-15 -2872 (|#3| |#3|)) (-15 -2884 (|#3| |#3|)) (-15 -2896 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)) (-15 -2919 (|#3| |#3|)) (-15 -2930 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) (-37 (-382 (-522))) (-1157 |#1|) (-1128 |#1| |#2|)) (T -254))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1128 *4 *5)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2804 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2848 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2884 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2896 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-2930 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-1776 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3)) (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))))
+(-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3266 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2848 (|#3| |#3|)) (-15 -2860 (|#3| |#3|)) (-15 -2872 (|#3| |#3|)) (-15 -2884 (|#3| |#3|)) (-15 -2896 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)) (-15 -2919 (|#3| |#3|)) (-15 -2930 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3924 (|#3| |#3|))))
+((-3967 (((-3 |#3| "failed") |#3|) 66)) (-2908 ((|#3| |#3|) 133)) (-2435 (((-3 |#3| "failed") |#3|) 50)) (-2772 ((|#3| |#3|) 121)) (-2063 (((-3 |#3| "failed") |#3|) 62)) (-2884 ((|#3| |#3|) 131)) (-3801 (((-3 |#3| "failed") |#3|) 46)) (-2748 ((|#3| |#3|) 119)) (-2623 (((-3 |#3| "failed") |#3|) 70)) (-2930 ((|#3| |#3|) 135)) (-2974 (((-3 |#3| "failed") |#3|) 54)) (-2794 ((|#3| |#3|) 123)) (-2192 (((-3 |#3| "failed") |#3| (-708)) 35)) (-3618 (((-3 |#3| "failed") |#3|) 44)) (-1254 ((|#3| |#3|) 112)) (-4108 (((-3 |#3| "failed") |#3|) 42)) (-3266 ((|#3| |#3|) 118)) (-1696 (((-3 |#3| "failed") |#3|) 72)) (-1738 ((|#3| |#3|) 136)) (-3200 (((-3 |#3| "failed") |#3|) 56)) (-2804 ((|#3| |#3|) 124)) (-3803 (((-3 |#3| "failed") |#3|) 68)) (-2919 ((|#3| |#3|) 134)) (-1672 (((-3 |#3| "failed") |#3|) 52)) (-2784 ((|#3| |#3|) 122)) (-2145 (((-3 |#3| "failed") |#3|) 64)) (-2896 ((|#3| |#3|) 132)) (-1898 (((-3 |#3| "failed") |#3|) 48)) (-2761 ((|#3| |#3|) 120)) (-2954 (((-3 |#3| "failed") |#3|) 78)) (-1759 ((|#3| |#3|) 139)) (-3146 (((-3 |#3| "failed") |#3|) 58)) (-2836 ((|#3| |#3|) 127)) (-2579 (((-3 |#3| "failed") |#3|) 74)) (-1745 ((|#3| |#3|) 137)) (-3644 (((-3 |#3| "failed") |#3|) 102)) (-2815 ((|#3| |#3|) 125)) (-1623 (((-3 |#3| "failed") |#3|) 82)) (-1776 ((|#3| |#3|) 141)) (-2415 (((-3 |#3| "failed") |#3|) 109)) (-2860 ((|#3| |#3|) 129)) (-3294 (((-3 |#3| "failed") |#3|) 84)) (-3924 ((|#3| |#3|) 142)) (-3286 (((-3 |#3| "failed") |#3|) 111)) (-2872 ((|#3| |#3|) 130)) (-3471 (((-3 |#3| "failed") |#3|) 80)) (-1768 ((|#3| |#3|) 140)) (-1834 (((-3 |#3| "failed") |#3|) 60)) (-2848 ((|#3| |#3|) 128)) (-1415 (((-3 |#3| "failed") |#3|) 76)) (-1752 ((|#3| |#3|) 138)) (-1239 (((-3 |#3| "failed") |#3|) 105)) (-2825 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-382 (-522))) 40 (|has| |#1| (-338)))))
+(((-255 |#1| |#2| |#3| |#4|) (-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3266 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2848 (|#3| |#3|)) (-15 -2860 (|#3| |#3|)) (-15 -2872 (|#3| |#3|)) (-15 -2884 (|#3| |#3|)) (-15 -2896 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)) (-15 -2919 (|#3| |#3|)) (-15 -2930 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) (-37 (-382 (-522))) (-1126 |#1|) (-1149 |#1| |#2|) (-910 |#2|)) (T -255))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3)) (-4 *5 (-1126 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1149 *4 *5)) (-4 *6 (-910 *5)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1254 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2772 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2804 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2815 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2836 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2848 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2860 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2884 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2896 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2908 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-2930 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1752 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1768 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-1776 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3)) (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4)))))
+(-13 (-910 |#3|) (-10 -7 (IF (|has| |#1| (-338)) (-15 ** (|#3| |#3| (-382 (-522)))) |%noBranch|) (-15 -3266 (|#3| |#3|)) (-15 -1254 (|#3| |#3|)) (-15 -2748 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2772 (|#3| |#3|)) (-15 -2784 (|#3| |#3|)) (-15 -2794 (|#3| |#3|)) (-15 -2804 (|#3| |#3|)) (-15 -2815 (|#3| |#3|)) (-15 -2825 (|#3| |#3|)) (-15 -2836 (|#3| |#3|)) (-15 -2848 (|#3| |#3|)) (-15 -2860 (|#3| |#3|)) (-15 -2872 (|#3| |#3|)) (-15 -2884 (|#3| |#3|)) (-15 -2896 (|#3| |#3|)) (-15 -2908 (|#3| |#3|)) (-15 -2919 (|#3| |#3|)) (-15 -2930 (|#3| |#3|)) (-15 -1738 (|#3| |#3|)) (-15 -1745 (|#3| |#3|)) (-15 -1752 (|#3| |#3|)) (-15 -1759 (|#3| |#3|)) (-15 -1768 (|#3| |#3|)) (-15 -1776 (|#3| |#3|)) (-15 -3924 (|#3| |#3|))))
+((-1487 (((-108) $) 19)) (-2028 (((-166) $) 8)) (-2744 (((-3 (-1085) "failed") $) 22)) (-2494 (((-3 (-1085) "failed") $) 14)) (-3323 (((-3 (-588 $) "failed") $) NIL)) (-2757 (((-3 (-1018) "failed") $) 17)) (-1328 (((-108) $) 15)) (-2190 (((-792) $) NIL)) (-2779 (((-108) $) 10)))
+(((-256) (-13 (-562 (-792)) (-10 -8 (-15 -2028 ((-166) $)) (-15 -1328 ((-108) $)) (-15 -2757 ((-3 (-1018) "failed") $)) (-15 -1487 ((-108) $)) (-15 -2744 ((-3 (-1085) "failed") $)) (-15 -2779 ((-108) $)) (-15 -2494 ((-3 (-1085) "failed") $)) (-15 -3323 ((-3 (-588 $) "failed") $))))) (T -256))
+((-2028 (*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-256)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) (-2757 (*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-256)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) (-2744 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))) (-2494 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256)))) (-3323 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-256))) (-5 *1 (-256)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2028 ((-166) $)) (-15 -1328 ((-108) $)) (-15 -2757 ((-3 (-1018) "failed") $)) (-15 -1487 ((-108) $)) (-15 -2744 ((-3 (-1085) "failed") $)) (-15 -2779 ((-108) $)) (-15 -2494 ((-3 (-1085) "failed") $)) (-15 -3323 ((-3 (-588 $) "failed") $))))
+((-1628 (($ (-1 (-108) |#2|) $) 23)) (-2333 (($ $) 36)) (-3859 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1423 (($ |#2| $) 31) (($ (-1 (-108) |#2|) $) 17)) (-1369 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1661 (($ |#2| $ (-522)) 19) (($ $ $ (-522)) 21)) (-3696 (($ $ (-522)) 11) (($ $ (-1133 (-522))) 14)) (-2630 (($ $ |#2|) 29) (($ $ $) NIL)) (-4165 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-588 $)) NIL)))
+(((-257 |#1| |#2|) (-10 -8 (-15 -1369 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#2| |#1|)) (-15 -1369 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3859 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2630 (|#1| |#1| |#1|)) (-15 -2630 (|#1| |#1| |#2|)) (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -3696 (|#1| |#1| (-1133 (-522)))) (-15 -3696 (|#1| |#1| (-522))) (-15 -4165 (|#1| (-588 |#1|))) (-15 -4165 (|#1| |#1| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2333 (|#1| |#1|))) (-258 |#2|) (-1120)) (T -257))
+NIL
+(-10 -8 (-15 -1369 (|#1| |#1| |#1|)) (-15 -3859 (|#1| |#2| |#1|)) (-15 -1369 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3859 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2630 (|#1| |#1| |#1|)) (-15 -2630 (|#1| |#1| |#2|)) (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -3696 (|#1| |#1| (-1133 (-522)))) (-15 -3696 (|#1| |#1| (-522))) (-15 -4165 (|#1| (-588 |#1|))) (-15 -4165 (|#1| |#1| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -1423 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1628 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1423 (|#1| |#2| |#1|)) (-15 -2333 (|#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) |#1|) $) 85)) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3362 (($ $) 83 (|has| |#1| (-1014)))) (-2333 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1014)))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 51)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-1369 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4095 (($ |#1| $ (-522)) 88) (($ $ $ (-522)) 87)) (-1661 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 42 (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2602 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3681 (($ $ (-522)) 91) (($ $ (-1133 (-522))) 90)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 70)) (-2630 (($ $ |#1|) 93) (($ $ $) 92)) (-4165 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-258 |#1|) (-1197) (-1120)) (T -258))
+((-2630 (*1 *1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)))) (-2630 (*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-3859 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-4095 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-258 *2)) (-4 *2 (-1120)))) (-4095 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-1369 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-2790 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))) (-3859 (*1 *1 *2 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) (-3362 (*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014)))) (-1369 (*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))))
+(-13 (-593 |t#1|) (-10 -8 (-6 -4239) (-15 -2630 ($ $ |t#1|)) (-15 -2630 ($ $ $)) (-15 -3681 ($ $ (-522))) (-15 -3681 ($ $ (-1133 (-522)))) (-15 -3859 ($ (-1 (-108) |t#1|) $)) (-15 -4095 ($ |t#1| $ (-522))) (-15 -4095 ($ $ $ (-522))) (-15 -1369 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -2790 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3859 ($ |t#1| $)) (-15 -3362 ($ $))) |%noBranch|) (IF (|has| |t#1| (-784)) (-15 -1369 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
((** (($ $ $) 10)))
-(((-258 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-259)) (T -258))
+(((-259 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-260)) (T -259))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1253 (($ $) 6)) (-3265 (($ $) 7)) (** (($ $ $) 8)))
-(((-259) (-1196)) (T -259))
-((** (*1 *1 *1 *1) (-4 *1 (-259))) (-3265 (*1 *1 *1) (-4 *1 (-259))) (-1253 (*1 *1 *1) (-4 *1 (-259))))
-(-13 (-10 -8 (-15 -1253 ($ $)) (-15 -3265 ($ $)) (-15 ** ($ $ $))))
-((-3719 (((-587 (-1065 |#1|)) (-1065 |#1|) |#1|) 35)) (-2361 ((|#2| |#2| |#1|) 38)) (-4043 ((|#2| |#2| |#1|) 40)) (-2601 ((|#2| |#2| |#1|) 39)))
-(((-260 |#1| |#2|) (-10 -7 (-15 -2361 (|#2| |#2| |#1|)) (-15 -2601 (|#2| |#2| |#1|)) (-15 -4043 (|#2| |#2| |#1|)) (-15 -3719 ((-587 (-1065 |#1|)) (-1065 |#1|) |#1|))) (-337) (-1156 |#1|)) (T -260))
-((-3719 (*1 *2 *3 *4) (-12 (-4 *4 (-337)) (-5 *2 (-587 (-1065 *4))) (-5 *1 (-260 *4 *5)) (-5 *3 (-1065 *4)) (-4 *5 (-1156 *4)))) (-4043 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))) (-2601 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))) (-2361 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
-(-10 -7 (-15 -2361 (|#2| |#2| |#1|)) (-15 -2601 (|#2| |#2| |#1|)) (-15 -4043 (|#2| |#2| |#1|)) (-15 -3719 ((-587 (-1065 |#1|)) (-1065 |#1|) |#1|)))
-((-2550 ((|#2| $ |#1|) 6)))
-(((-261 |#1| |#2|) (-1196) (-1013) (-1119)) (T -261))
-((-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))))
-(-13 (-10 -8 (-15 -2550 (|t#2| $ |t#1|))))
-((-3849 ((|#3| $ |#2| |#3|) 12)) (-3626 ((|#3| $ |#2|) 10)))
-(((-262 |#1| |#2| |#3|) (-10 -8 (-15 -3849 (|#3| |#1| |#2| |#3|)) (-15 -3626 (|#3| |#1| |#2|))) (-263 |#2| |#3|) (-1013) (-1119)) (T -262))
-NIL
-(-10 -8 (-15 -3849 (|#3| |#1| |#2| |#3|)) (-15 -3626 (|#3| |#1| |#2|)))
-((-2396 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4234)))) (-3849 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 11)) (-2550 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-263 |#1| |#2|) (-1196) (-1013) (-1119)) (T -263))
-((-2550 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-3626 (*1 *2 *1 *3) (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-2396 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-3849 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))))
-(-13 (-261 |t#1| |t#2|) (-10 -8 (-15 -2550 (|t#2| $ |t#1| |t#2|)) (-15 -3626 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2396 (|t#2| $ |t#1| |t#2|)) (-15 -3849 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-261 |#1| |#2|) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 35)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 40)) (-1954 (($ $) 38)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) 33)) (-3859 (($ |#2| |#3|) 19)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3967 ((|#3| $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 20)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4189 (((-3 $ "failed") $ $) NIL)) (-3794 (((-707) $) 34)) (-2550 ((|#2| $ |#2|) 42)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 24)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 29 T CONST)) (-3572 (($) 36 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 37)))
-(((-264 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-282) (-10 -8 (-15 -3967 (|#3| $)) (-15 -2223 (|#2| $)) (-15 -3859 ($ |#2| |#3|)) (-15 -4189 ((-3 $ "failed") $ $)) (-15 -2783 ((-3 $ "failed") $)) (-15 -3100 ($ $)) (-15 -2550 (|#2| $ |#2|)))) (-157) (-1141 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -264))
-((-2783 (*1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3967 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-264 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1141 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2223 (*1 *2 *1) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7)) (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3859 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-264 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1141 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4189 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3100 (*1 *1 *1) (-12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2550 (*1 *2 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1141 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-282) (-10 -8 (-15 -3967 (|#3| $)) (-15 -2223 (|#2| $)) (-15 -3859 ($ |#2| |#3|)) (-15 -4189 ((-3 $ "failed") $ $)) (-15 -2783 ((-3 $ "failed") $)) (-15 -3100 ($ $)) (-15 -2550 (|#2| $ |#2|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-265) (-1196)) (T -265))
-NIL
-(-13 (-970) (-107 $ $) (-10 -7 (-6 -4226)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1680 (($ (-1084) (-1084) (-1017) $) 15)) (-1690 (($ (-1084) (-587 (-892)) $) 19)) (-1701 (((-587 (-1000)) $) 8)) (-1711 (((-3 (-1017) "failed") (-1084) (-1084) $) 14)) (-1723 (((-3 (-587 (-892)) "failed") (-1084) $) 17)) (-2280 (($) 6)) (-3986 (($) 20)) (-2223 (((-791) $) 24)) (-1742 (($) 21)))
-(((-266) (-13 (-561 (-791)) (-10 -8 (-15 -2280 ($)) (-15 -1701 ((-587 (-1000)) $)) (-15 -1711 ((-3 (-1017) "failed") (-1084) (-1084) $)) (-15 -1680 ($ (-1084) (-1084) (-1017) $)) (-15 -1723 ((-3 (-587 (-892)) "failed") (-1084) $)) (-15 -1690 ($ (-1084) (-587 (-892)) $)) (-15 -3986 ($)) (-15 -1742 ($))))) (T -266))
-((-2280 (*1 *1) (-5 *1 (-266))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-587 (-1000))) (-5 *1 (-266)))) (-1711 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-266)))) (-1680 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-266)))) (-1723 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-587 (-892))) (-5 *1 (-266)))) (-1690 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-892))) (-5 *1 (-266)))) (-3986 (*1 *1) (-5 *1 (-266))) (-1742 (*1 *1) (-5 *1 (-266))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2280 ($)) (-15 -1701 ((-587 (-1000)) $)) (-15 -1711 ((-3 (-1017) "failed") (-1084) (-1084) $)) (-15 -1680 ($ (-1084) (-1084) (-1017) $)) (-15 -1723 ((-3 (-587 (-892)) "failed") (-1084) $)) (-15 -1690 ($ (-1084) (-587 (-892)) $)) (-15 -3986 ($)) (-15 -1742 ($))))
-((-1582 (((-587 (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |geneigvec| (-587 (-627 (-381 (-880 |#1|))))))) (-627 (-381 (-880 |#1|)))) 84)) (-1265 (((-587 (-627 (-381 (-880 |#1|)))) (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 |#1|)))))) (-627 (-381 (-880 |#1|)))) 79) (((-587 (-627 (-381 (-880 |#1|)))) (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|))) (-627 (-381 (-880 |#1|))) (-707) (-707)) 37)) (-3198 (((-587 (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 |#1|))))))) (-627 (-381 (-880 |#1|)))) 81)) (-1831 (((-587 (-627 (-381 (-880 |#1|)))) (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|))) (-627 (-381 (-880 |#1|)))) 61)) (-3801 (((-587 (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (-627 (-381 (-880 |#1|)))) 60)) (-3379 (((-880 |#1|) (-627 (-381 (-880 |#1|)))) 48) (((-880 |#1|) (-627 (-381 (-880 |#1|))) (-1084)) 49)))
-(((-267 |#1|) (-10 -7 (-15 -3379 ((-880 |#1|) (-627 (-381 (-880 |#1|))) (-1084))) (-15 -3379 ((-880 |#1|) (-627 (-381 (-880 |#1|))))) (-15 -3801 ((-587 (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (-627 (-381 (-880 |#1|))))) (-15 -1831 ((-587 (-627 (-381 (-880 |#1|)))) (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|))) (-627 (-381 (-880 |#1|))))) (-15 -1265 ((-587 (-627 (-381 (-880 |#1|)))) (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|))) (-627 (-381 (-880 |#1|))) (-707) (-707))) (-15 -1265 ((-587 (-627 (-381 (-880 |#1|)))) (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 |#1|)))))) (-627 (-381 (-880 |#1|))))) (-15 -1582 ((-587 (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |geneigvec| (-587 (-627 (-381 (-880 |#1|))))))) (-627 (-381 (-880 |#1|))))) (-15 -3198 ((-587 (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 |#1|))))))) (-627 (-381 (-880 |#1|)))))) (-425)) (T -267))
-((-3198 (*1 *2 *3) (-12 (-4 *4 (-425)) (-5 *2 (-587 (-2 (|:| |eigval| (-3 (-381 (-880 *4)) (-1074 (-1084) (-880 *4)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 *4)))))))) (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-880 *4)))))) (-1582 (*1 *2 *3) (-12 (-4 *4 (-425)) (-5 *2 (-587 (-2 (|:| |eigval| (-3 (-381 (-880 *4)) (-1074 (-1084) (-880 *4)))) (|:| |geneigvec| (-587 (-627 (-381 (-880 *4)))))))) (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-880 *4)))))) (-1265 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-381 (-880 *5)) (-1074 (-1084) (-880 *5)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 *4)))) (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-880 *5))))) (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-880 *5)))))) (-1265 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-381 (-880 *6)) (-1074 (-1084) (-880 *6)))) (-5 *5 (-707)) (-4 *6 (-425)) (-5 *2 (-587 (-627 (-381 (-880 *6))))) (-5 *1 (-267 *6)) (-5 *4 (-627 (-381 (-880 *6)))))) (-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-381 (-880 *5)) (-1074 (-1084) (-880 *5)))) (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-880 *5))))) (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-880 *5)))))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-880 *4)))) (-4 *4 (-425)) (-5 *2 (-587 (-3 (-381 (-880 *4)) (-1074 (-1084) (-880 *4))))) (-5 *1 (-267 *4)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-880 *4)))) (-5 *2 (-880 *4)) (-5 *1 (-267 *4)) (-4 *4 (-425)))) (-3379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-880 *5)))) (-5 *4 (-1084)) (-5 *2 (-880 *5)) (-5 *1 (-267 *5)) (-4 *5 (-425)))))
-(-10 -7 (-15 -3379 ((-880 |#1|) (-627 (-381 (-880 |#1|))) (-1084))) (-15 -3379 ((-880 |#1|) (-627 (-381 (-880 |#1|))))) (-15 -3801 ((-587 (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (-627 (-381 (-880 |#1|))))) (-15 -1831 ((-587 (-627 (-381 (-880 |#1|)))) (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|))) (-627 (-381 (-880 |#1|))))) (-15 -1265 ((-587 (-627 (-381 (-880 |#1|)))) (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|))) (-627 (-381 (-880 |#1|))) (-707) (-707))) (-15 -1265 ((-587 (-627 (-381 (-880 |#1|)))) (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 |#1|)))))) (-627 (-381 (-880 |#1|))))) (-15 -1582 ((-587 (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |geneigvec| (-587 (-627 (-381 (-880 |#1|))))))) (-627 (-381 (-880 |#1|))))) (-15 -3198 ((-587 (-2 (|:| |eigval| (-3 (-381 (-880 |#1|)) (-1074 (-1084) (-880 |#1|)))) (|:| |eigmult| (-707)) (|:| |eigvec| (-587 (-627 (-381 (-880 |#1|))))))) (-627 (-381 (-880 |#1|))))))
-((-1393 (((-269 |#2|) (-1 |#2| |#1|) (-269 |#1|)) 14)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -1393 ((-269 |#2|) (-1 |#2| |#1|) (-269 |#1|)))) (-1119) (-1119)) (T -268))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-269 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-269 *6)) (-5 *1 (-268 *5 *6)))))
-(-10 -7 (-15 -1393 ((-269 |#2|) (-1 |#2| |#1|) (-269 |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3398 (((-108) $) NIL (|has| |#1| (-21)))) (-1273 (($ $) 22)) (-2057 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3304 (($ $ $) 93 (|has| |#1| (-277)))) (-2231 (($) NIL (-3703 (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-2172 (($ $) 8 (|has| |#1| (-21)))) (-1439 (((-3 $ "failed") $) 68 (|has| |#1| (-663)))) (-3597 ((|#1| $) 21)) (-2783 (((-3 $ "failed") $) 66 (|has| |#1| (-663)))) (-3637 (((-108) $) NIL (|has| |#1| (-663)))) (-1393 (($ (-1 |#1| |#1|) $) 24)) (-3588 ((|#1| $) 9)) (-2251 (($ $) 57 (|has| |#1| (-21)))) (-2787 (((-3 $ "failed") $) 67 (|has| |#1| (-663)))) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-3100 (($ $) 70 (-3703 (|has| |#1| (-337)) (|has| |#1| (-446))))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3811 (((-587 $) $) 19 (|has| |#1| (-513)))) (-2313 (($ $ $) 34 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 $)) 37 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-1084) |#1|) 27 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 31 (|has| |#1| (-482 (-1084) |#1|)))) (-1634 (($ |#1| |#1|) 17)) (-2043 (((-126)) 88 (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) 85 (|has| |#1| (-828 (-1084))))) (-1484 (($ $ $) NIL (|has| |#1| (-446)))) (-2062 (($ $ $) NIL (|has| |#1| (-446)))) (-2223 (($ (-521)) NIL (|has| |#1| (-970))) (((-108) $) 45 (|has| |#1| (-1013))) (((-791) $) 44 (|has| |#1| (-1013)))) (-1592 (((-707)) 73 (|has| |#1| (-970)))) (-3509 (($ $ (-521)) NIL (|has| |#1| (-446))) (($ $ (-707)) NIL (|has| |#1| (-663))) (($ $ (-849)) NIL (|has| |#1| (-1025)))) (-3562 (($) 55 (|has| |#1| (-21)) CONST)) (-3572 (($) 63 (|has| |#1| (-663)) CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084))))) (-1549 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1013)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 90 (-3703 (|has| |#1| (-337)) (|has| |#1| (-446))))) (-1639 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1628 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-521)) NIL (|has| |#1| (-446))) (($ $ (-707)) NIL (|has| |#1| (-663))) (($ $ (-849)) NIL (|has| |#1| (-1025)))) (* (($ $ |#1|) 61 (|has| |#1| (-1025))) (($ |#1| $) 60 (|has| |#1| (-1025))) (($ $ $) 59 (|has| |#1| (-1025))) (($ (-521) $) 76 (|has| |#1| (-21))) (($ (-707) $) NIL (|has| |#1| (-21))) (($ (-849) $) NIL (|has| |#1| (-25)))))
-(((-269 |#1|) (-13 (-1119) (-10 -8 (-15 -1549 ($ |#1| |#1|)) (-15 -1634 ($ |#1| |#1|)) (-15 -1273 ($ $)) (-15 -3588 (|#1| $)) (-15 -3597 (|#1| $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-482 (-1084) |#1|)) (-6 (-482 (-1084) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-561 (-108))) (IF (|has| |#1| (-284 |#1|)) (PROGN (-15 -2313 ($ $ $)) (-15 -2313 ($ $ (-587 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1628 ($ |#1| $)) (-15 -1628 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2251 ($ $)) (-15 -2172 ($ $)) (-15 -1639 ($ |#1| $)) (-15 -1639 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -2787 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-446)) (PROGN (-6 (-446)) (-15 -2787 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-6 (-970)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-513)) (-15 -3811 ((-587 $) $)) |%noBranch|) (IF (|has| |#1| (-828 (-1084))) (-6 (-828 (-1084))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-1172 |#1|)) (-15 -1648 ($ $ $)) (-15 -3100 ($ $))) |%noBranch|) (IF (|has| |#1| (-277)) (-15 -3304 ($ $ $)) |%noBranch|))) (-1119)) (T -269))
-((-1549 (*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-1634 (*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-1273 (*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-3588 (*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-3597 (*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-269 *3)))) (-2313 (*1 *1 *1 *1) (-12 (-4 *2 (-284 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)) (-5 *1 (-269 *2)))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *3))) (-4 *3 (-284 *3)) (-4 *3 (-1013)) (-4 *3 (-1119)) (-5 *1 (-269 *3)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) (-2251 (*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1639 (*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1639 (*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-2787 (*1 *1 *1) (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))) (-1439 (*1 *1 *1) (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-587 (-269 *3))) (-5 *1 (-269 *3)) (-4 *3 (-513)) (-4 *3 (-1119)))) (-3304 (*1 *1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-277)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119)))) (-1648 (*1 *1 *1 *1) (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119))) (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119))))) (-3100 (*1 *1 *1) (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119))) (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119))))))
-(-13 (-1119) (-10 -8 (-15 -1549 ($ |#1| |#1|)) (-15 -1634 ($ |#1| |#1|)) (-15 -1273 ($ $)) (-15 -3588 (|#1| $)) (-15 -3597 (|#1| $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-482 (-1084) |#1|)) (-6 (-482 (-1084) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-561 (-108))) (IF (|has| |#1| (-284 |#1|)) (PROGN (-15 -2313 ($ $ $)) (-15 -2313 ($ $ (-587 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1628 ($ |#1| $)) (-15 -1628 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2251 ($ $)) (-15 -2172 ($ $)) (-15 -1639 ($ |#1| $)) (-15 -1639 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -2787 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-446)) (PROGN (-6 (-446)) (-15 -2787 ((-3 $ "failed") $)) (-15 -1439 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-6 (-970)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-513)) (-15 -3811 ((-587 $) $)) |%noBranch|) (IF (|has| |#1| (-828 (-1084))) (-6 (-828 (-1084))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-1172 |#1|)) (-15 -1648 ($ $ $)) (-15 -3100 ($ $))) |%noBranch|) (IF (|has| |#1| (-277)) (-15 -3304 ($ $ $)) |%noBranch|)))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#2| $ |#1| |#2|) NIL)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2964 (((-587 |#1|) $) NIL)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1223 (((-587 |#1|) $) NIL)) (-2131 (((-108) |#1| $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-270 |#1| |#2|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013)) (T -270))
-NIL
-(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
-((-2974 (((-286) (-1067) (-587 (-1067))) 16) (((-286) (-1067) (-1067)) 15) (((-286) (-587 (-1067))) 14) (((-286) (-1067)) 12)))
-(((-271) (-10 -7 (-15 -2974 ((-286) (-1067))) (-15 -2974 ((-286) (-587 (-1067)))) (-15 -2974 ((-286) (-1067) (-1067))) (-15 -2974 ((-286) (-1067) (-587 (-1067)))))) (T -271))
-((-2974 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1067))) (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271)))) (-2974 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-286)) (-5 *1 (-271)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271)))))
-(-10 -7 (-15 -2974 ((-286) (-1067))) (-15 -2974 ((-286) (-587 (-1067)))) (-15 -2974 ((-286) (-1067) (-1067))) (-15 -2974 ((-286) (-1067) (-587 (-1067)))))
-((-1393 ((|#2| (-1 |#2| |#1|) (-1067) (-560 |#1|)) 17)))
-(((-272 |#1| |#2|) (-10 -7 (-15 -1393 (|#2| (-1 |#2| |#1|) (-1067) (-560 |#1|)))) (-277) (-1119)) (T -272))
-((-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1067)) (-5 *5 (-560 *6)) (-4 *6 (-277)) (-4 *2 (-1119)) (-5 *1 (-272 *6 *2)))))
-(-10 -7 (-15 -1393 (|#2| (-1 |#2| |#1|) (-1067) (-560 |#1|))))
-((-1393 ((|#2| (-1 |#2| |#1|) (-560 |#1|)) 17)))
-(((-273 |#1| |#2|) (-10 -7 (-15 -1393 (|#2| (-1 |#2| |#1|) (-560 |#1|)))) (-277) (-277)) (T -273))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-560 *5)) (-4 *5 (-277)) (-4 *2 (-277)) (-5 *1 (-273 *5 *2)))))
-(-10 -7 (-15 -1393 (|#2| (-1 |#2| |#1|) (-560 |#1|))))
-((-2933 (((-108) (-202)) 10)))
-(((-274 |#1| |#2|) (-10 -7 (-15 -2933 ((-108) (-202)))) (-202) (-202)) (T -274))
-((-2933 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-274 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2933 ((-108) (-202))))
-((-3144 (((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-776 (-202)))) 88)) (-1877 (((-1065 (-202)) (-1165 (-290 (-202))) (-587 (-1084)) (-1008 (-776 (-202)))) 103) (((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-776 (-202)))) 58)) (-2236 (((-587 (-1067)) (-1065 (-202))) NIL)) (-1478 (((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-776 (-202)))) 55)) (-1298 (((-587 (-202)) (-880 (-381 (-521))) (-1084) (-1008 (-776 (-202)))) 47)) (-2583 (((-587 (-1067)) (-587 (-202))) NIL)) (-3351 (((-202) (-1008 (-776 (-202)))) 23)) (-2861 (((-202) (-1008 (-776 (-202)))) 24)) (-2896 (((-108) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 51)) (-3104 (((-1067) (-202)) NIL)))
-(((-275) (-10 -7 (-15 -3351 ((-202) (-1008 (-776 (-202))))) (-15 -2861 ((-202) (-1008 (-776 (-202))))) (-15 -2896 ((-108) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-776 (-202))))) (-15 -3144 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-776 (-202))))) (-15 -1877 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-776 (-202))))) (-15 -1877 ((-1065 (-202)) (-1165 (-290 (-202))) (-587 (-1084)) (-1008 (-776 (-202))))) (-15 -1298 ((-587 (-202)) (-880 (-381 (-521))) (-1084) (-1008 (-776 (-202))))) (-15 -3104 ((-1067) (-202))) (-15 -2583 ((-587 (-1067)) (-587 (-202)))) (-15 -2236 ((-587 (-1067)) (-1065 (-202)))))) (T -275))
-((-2236 (*1 *2 *3) (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-275)))) (-1298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-381 (-521)))) (-5 *4 (-1084)) (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))) (-1877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084))) (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))) (-1877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084))) (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084))) (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))) (-1478 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084)) (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-108)) (-5 *1 (-275)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-275)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-275)))))
-(-10 -7 (-15 -3351 ((-202) (-1008 (-776 (-202))))) (-15 -2861 ((-202) (-1008 (-776 (-202))))) (-15 -2896 ((-108) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1478 ((-587 (-202)) (-290 (-202)) (-1084) (-1008 (-776 (-202))))) (-15 -3144 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-776 (-202))))) (-15 -1877 ((-1065 (-202)) (-290 (-202)) (-587 (-1084)) (-1008 (-776 (-202))))) (-15 -1877 ((-1065 (-202)) (-1165 (-290 (-202))) (-587 (-1084)) (-1008 (-776 (-202))))) (-15 -1298 ((-587 (-202)) (-880 (-381 (-521))) (-1084) (-1008 (-776 (-202))))) (-15 -3104 ((-1067) (-202))) (-15 -2583 ((-587 (-1067)) (-587 (-202)))) (-15 -2236 ((-587 (-1067)) (-1065 (-202)))))
-((-1946 (((-587 (-560 $)) $) 28)) (-3304 (($ $ (-269 $)) 81) (($ $ (-587 (-269 $))) 121) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-1296 (((-3 (-560 $) "failed") $) 111)) (-1496 (((-560 $) $) 110)) (-2707 (($ $) 19) (($ (-587 $)) 55)) (-2788 (((-587 (-110)) $) 37)) (-3928 (((-110) (-110)) 91)) (-3924 (((-108) $) 129)) (-1393 (($ (-1 $ $) (-560 $)) 89)) (-1656 (((-3 (-560 $) "failed") $) 93)) (-2911 (($ (-110) $) 61) (($ (-110) (-587 $)) 99)) (-4013 (((-108) $ (-110)) 115) (((-108) $ (-1084)) 114)) (-4151 (((-707) $) 45)) (-3457 (((-108) $ $) 59) (((-108) $ (-1084)) 50)) (-2060 (((-108) $) 127)) (-2313 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) 119) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 84) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) 69) (($ $ (-1084) (-1 $ $)) 75) (($ $ (-587 (-110)) (-587 (-1 $ $))) 83) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 85) (($ $ (-110) (-1 $ (-587 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-2550 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-587 $)) 107)) (-1935 (($ $) 52) (($ $ $) 117)) (-2342 (($ $) 17) (($ (-587 $)) 54)) (-1224 (((-108) (-110)) 22)))
-(((-276 |#1|) (-10 -8 (-15 -3924 ((-108) |#1|)) (-15 -2060 ((-108) |#1|)) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -3457 ((-108) |#1| (-1084))) (-15 -3457 ((-108) |#1| |#1|)) (-15 -1393 (|#1| (-1 |#1| |#1|) (-560 |#1|))) (-15 -2911 (|#1| (-110) (-587 |#1|))) (-15 -2911 (|#1| (-110) |#1|)) (-15 -4013 ((-108) |#1| (-1084))) (-15 -4013 ((-108) |#1| (-110))) (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -2788 ((-587 (-110)) |#1|)) (-15 -1946 ((-587 (-560 |#1|)) |#1|)) (-15 -1656 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -4151 ((-707) |#1|)) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -2707 (|#1| (-587 |#1|))) (-15 -2707 (|#1| |#1|)) (-15 -2342 (|#1| (-587 |#1|))) (-15 -2342 (|#1| |#1|)) (-15 -3304 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3304 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3304 (|#1| |#1| (-269 |#1|))) (-15 -2550 (|#1| (-110) (-587 |#1|))) (-15 -2550 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2313 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1496 ((-560 |#1|) |#1|)) (-15 -1296 ((-3 (-560 |#1|) "failed") |#1|))) (-277)) (T -276))
-((-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-276 *3)) (-4 *3 (-277)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-276 *4)) (-4 *4 (-277)))))
-(-10 -8 (-15 -3924 ((-108) |#1|)) (-15 -2060 ((-108) |#1|)) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -3457 ((-108) |#1| (-1084))) (-15 -3457 ((-108) |#1| |#1|)) (-15 -1393 (|#1| (-1 |#1| |#1|) (-560 |#1|))) (-15 -2911 (|#1| (-110) (-587 |#1|))) (-15 -2911 (|#1| (-110) |#1|)) (-15 -4013 ((-108) |#1| (-1084))) (-15 -4013 ((-108) |#1| (-110))) (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -2788 ((-587 (-110)) |#1|)) (-15 -1946 ((-587 (-560 |#1|)) |#1|)) (-15 -1656 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -4151 ((-707) |#1|)) (-15 -1935 (|#1| |#1| |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -2707 (|#1| (-587 |#1|))) (-15 -2707 (|#1| |#1|)) (-15 -2342 (|#1| (-587 |#1|))) (-15 -2342 (|#1| |#1|)) (-15 -3304 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3304 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3304 (|#1| |#1| (-269 |#1|))) (-15 -2550 (|#1| (-110) (-587 |#1|))) (-15 -2550 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2313 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1496 ((-560 |#1|) |#1|)) (-15 -1296 ((-3 (-560 |#1|) "failed") |#1|)))
-((-1422 (((-108) $ $) 7)) (-1946 (((-587 (-560 $)) $) 44)) (-3304 (($ $ (-269 $)) 56) (($ $ (-587 (-269 $))) 55) (($ $ (-587 (-560 $)) (-587 $)) 54)) (-1296 (((-3 (-560 $) "failed") $) 69)) (-1496 (((-560 $) $) 68)) (-2707 (($ $) 51) (($ (-587 $)) 50)) (-2788 (((-587 (-110)) $) 43)) (-3928 (((-110) (-110)) 42)) (-3924 (((-108) $) 22 (|has| $ (-961 (-521))))) (-3159 (((-1080 $) (-560 $)) 25 (|has| $ (-970)))) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-1393 (($ (-1 $ $) (-560 $)) 36)) (-1656 (((-3 (-560 $) "failed") $) 46)) (-4024 (((-1067) $) 9)) (-1266 (((-587 (-560 $)) $) 45)) (-2911 (($ (-110) $) 38) (($ (-110) (-587 $)) 37)) (-4013 (((-108) $ (-110)) 40) (((-108) $ (-1084)) 39)) (-4151 (((-707) $) 47)) (-4146 (((-1031) $) 10)) (-3457 (((-108) $ $) 35) (((-108) $ (-1084)) 34)) (-2060 (((-108) $) 23 (|has| $ (-961 (-521))))) (-2313 (($ $ (-560 $) $) 67) (($ $ (-587 (-560 $)) (-587 $)) 66) (($ $ (-587 (-269 $))) 65) (($ $ (-269 $)) 64) (($ $ $ $) 63) (($ $ (-587 $) (-587 $)) 62) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 33) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 32) (($ $ (-1084) (-1 $ (-587 $))) 31) (($ $ (-1084) (-1 $ $)) 30) (($ $ (-587 (-110)) (-587 (-1 $ $))) 29) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 28) (($ $ (-110) (-1 $ (-587 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-2550 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-587 $)) 57)) (-1935 (($ $) 49) (($ $ $) 48)) (-3436 (($ $) 24 (|has| $ (-970)))) (-2223 (((-791) $) 11) (($ (-560 $)) 70)) (-2342 (($ $) 53) (($ (-587 $)) 52)) (-1224 (((-108) (-110)) 41)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)))
-(((-277) (-1196)) (T -277))
-((-2550 (*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2550 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2550 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2550 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2550 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277)))) (-3304 (*1 *1 *1 *2) (-12 (-5 *2 (-269 *1)) (-4 *1 (-277)))) (-3304 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *1))) (-4 *1 (-277)))) (-3304 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-560 *1))) (-5 *3 (-587 *1)) (-4 *1 (-277)))) (-2342 (*1 *1 *1) (-4 *1 (-277))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277)))) (-2707 (*1 *1 *1) (-4 *1 (-277))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277)))) (-1935 (*1 *1 *1) (-4 *1 (-277))) (-1935 (*1 *1 *1 *1) (-4 *1 (-277))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-707)))) (-1656 (*1 *2 *1) (|partial| -12 (-5 *2 (-560 *1)) (-4 *1 (-277)))) (-1266 (*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))) (-2788 (*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-587 (-110))))) (-3928 (*1 *2 *2) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-1224 (*1 *2 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108)))) (-4013 (*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108)))) (-4013 (*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108)))) (-2911 (*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277)))) (-1393 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-560 *1)) (-4 *1 (-277)))) (-3457 (*1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-108)))) (-3457 (*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-560 *1)) (-4 *1 (-970)) (-4 *1 (-277)) (-5 *2 (-1080 *1)))) (-3436 (*1 *1 *1) (-12 (-4 *1 (-970)) (-4 *1 (-277)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108)))))
-(-13 (-783) (-961 (-560 $)) (-482 (-560 $) $) (-284 $) (-10 -8 (-15 -2550 ($ (-110) $)) (-15 -2550 ($ (-110) $ $)) (-15 -2550 ($ (-110) $ $ $)) (-15 -2550 ($ (-110) $ $ $ $)) (-15 -2550 ($ (-110) (-587 $))) (-15 -3304 ($ $ (-269 $))) (-15 -3304 ($ $ (-587 (-269 $)))) (-15 -3304 ($ $ (-587 (-560 $)) (-587 $))) (-15 -2342 ($ $)) (-15 -2342 ($ (-587 $))) (-15 -2707 ($ $)) (-15 -2707 ($ (-587 $))) (-15 -1935 ($ $)) (-15 -1935 ($ $ $)) (-15 -4151 ((-707) $)) (-15 -1656 ((-3 (-560 $) "failed") $)) (-15 -1266 ((-587 (-560 $)) $)) (-15 -1946 ((-587 (-560 $)) $)) (-15 -2788 ((-587 (-110)) $)) (-15 -3928 ((-110) (-110))) (-15 -1224 ((-108) (-110))) (-15 -4013 ((-108) $ (-110))) (-15 -4013 ((-108) $ (-1084))) (-15 -2911 ($ (-110) $)) (-15 -2911 ($ (-110) (-587 $))) (-15 -1393 ($ (-1 $ $) (-560 $))) (-15 -3457 ((-108) $ $)) (-15 -3457 ((-108) $ (-1084))) (-15 -2313 ($ $ (-587 (-1084)) (-587 (-1 $ $)))) (-15 -2313 ($ $ (-587 (-1084)) (-587 (-1 $ (-587 $))))) (-15 -2313 ($ $ (-1084) (-1 $ (-587 $)))) (-15 -2313 ($ $ (-1084) (-1 $ $))) (-15 -2313 ($ $ (-587 (-110)) (-587 (-1 $ $)))) (-15 -2313 ($ $ (-587 (-110)) (-587 (-1 $ (-587 $))))) (-15 -2313 ($ $ (-110) (-1 $ (-587 $)))) (-15 -2313 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-970)) (PROGN (-15 -3159 ((-1080 $) (-560 $))) (-15 -3436 ($ $))) |%noBranch|) (IF (|has| $ (-961 (-521))) (PROGN (-15 -2060 ((-108) $)) (-15 -3924 ((-108) $))) |%noBranch|)))
-(((-97) . T) ((-561 (-791)) . T) ((-284 $) . T) ((-482 (-560 $) $) . T) ((-482 $ $) . T) ((-783) . T) ((-961 (-560 $)) . T) ((-1013) . T))
-((-3643 (((-587 |#1|) (-587 |#1|)) 10)))
-(((-278 |#1|) (-10 -7 (-15 -3643 ((-587 |#1|) (-587 |#1|)))) (-781)) (T -278))
-((-3643 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-781)) (-5 *1 (-278 *3)))))
-(-10 -7 (-15 -3643 ((-587 |#1|) (-587 |#1|))))
-((-1393 (((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)) 15)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -1393 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)))) (-970) (-970)) (T -279))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-627 *6)) (-5 *1 (-279 *5 *6)))))
-(-10 -7 (-15 -1393 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|))))
-((-4196 (((-1165 (-290 (-353))) (-1165 (-290 (-202)))) 105)) (-3841 (((-1008 (-776 (-202))) (-1008 (-776 (-353)))) 39)) (-2236 (((-587 (-1067)) (-1065 (-202))) 87)) (-2182 (((-290 (-353)) (-880 (-202))) 49)) (-1851 (((-202) (-880 (-202))) 45)) (-3384 (((-1067) (-353)) 167)) (-2069 (((-776 (-202)) (-776 (-353))) 33)) (-3595 (((-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))) (-1165 (-290 (-202)))) 142)) (-3429 (((-959) (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) 180) (((-959) (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) 178)) (-3534 (((-627 (-202)) (-587 (-202)) (-707)) 13)) (-1966 (((-1165 (-636)) (-587 (-202))) 94)) (-2583 (((-587 (-1067)) (-587 (-202))) 74)) (-4070 (((-3 (-290 (-202)) "failed") (-290 (-202))) 120)) (-2933 (((-108) (-202) (-1008 (-776 (-202)))) 109)) (-2142 (((-959) (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))) 198)) (-3351 (((-202) (-1008 (-776 (-202)))) 107)) (-2861 (((-202) (-1008 (-776 (-202)))) 108)) (-3706 (((-202) (-381 (-521))) 26)) (-1411 (((-1067) (-353)) 72)) (-1408 (((-202) (-353)) 17)) (-1369 (((-353) (-1165 (-290 (-202)))) 153)) (-2611 (((-290 (-202)) (-290 (-353))) 23)) (-1863 (((-381 (-521)) (-290 (-202))) 52)) (-2804 (((-290 (-381 (-521))) (-290 (-202))) 68)) (-2997 (((-290 (-353)) (-290 (-202))) 98)) (-2753 (((-202) (-290 (-202))) 53)) (-2530 (((-587 (-202)) (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) 63)) (-2460 (((-1008 (-776 (-202))) (-1008 (-776 (-202)))) 60)) (-3104 (((-1067) (-202)) 71)) (-2987 (((-636) (-202)) 90)) (-2900 (((-381 (-521)) (-202)) 54)) (-1919 (((-290 (-353)) (-202)) 48)) (-1438 (((-587 (-1008 (-776 (-202)))) (-587 (-1008 (-776 (-353))))) 42)) (-4159 (((-959) (-587 (-959))) 163) (((-959) (-959) (-959)) 160)) (-3802 (((-959) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
-(((-280) (-10 -7 (-15 -1408 ((-202) (-353))) (-15 -2611 ((-290 (-202)) (-290 (-353)))) (-15 -2069 ((-776 (-202)) (-776 (-353)))) (-15 -3841 ((-1008 (-776 (-202))) (-1008 (-776 (-353))))) (-15 -1438 ((-587 (-1008 (-776 (-202)))) (-587 (-1008 (-776 (-353)))))) (-15 -2900 ((-381 (-521)) (-202))) (-15 -1863 ((-381 (-521)) (-290 (-202)))) (-15 -2753 ((-202) (-290 (-202)))) (-15 -4070 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -1369 ((-353) (-1165 (-290 (-202))))) (-15 -3595 ((-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))) (-1165 (-290 (-202))))) (-15 -2804 ((-290 (-381 (-521))) (-290 (-202)))) (-15 -2460 ((-1008 (-776 (-202))) (-1008 (-776 (-202))))) (-15 -2530 ((-587 (-202)) (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))) (-15 -2987 ((-636) (-202))) (-15 -1966 ((-1165 (-636)) (-587 (-202)))) (-15 -2997 ((-290 (-353)) (-290 (-202)))) (-15 -4196 ((-1165 (-290 (-353))) (-1165 (-290 (-202))))) (-15 -2933 ((-108) (-202) (-1008 (-776 (-202))))) (-15 -3104 ((-1067) (-202))) (-15 -1411 ((-1067) (-353))) (-15 -2583 ((-587 (-1067)) (-587 (-202)))) (-15 -2236 ((-587 (-1067)) (-1065 (-202)))) (-15 -3351 ((-202) (-1008 (-776 (-202))))) (-15 -2861 ((-202) (-1008 (-776 (-202))))) (-15 -4159 ((-959) (-959) (-959))) (-15 -4159 ((-959) (-587 (-959)))) (-15 -3384 ((-1067) (-353))) (-15 -3429 ((-959) (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))))) (-15 -3429 ((-959) (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))) (-15 -3802 ((-959) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2142 ((-959) (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))) (-15 -2182 ((-290 (-353)) (-880 (-202)))) (-15 -1851 ((-202) (-880 (-202)))) (-15 -1919 ((-290 (-353)) (-202))) (-15 -3706 ((-202) (-381 (-521)))) (-15 -3534 ((-627 (-202)) (-587 (-202)) (-707))))) (T -280))
-((-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-202))) (-5 *4 (-707)) (-5 *2 (-627 (-202))) (-5 *1 (-280)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-381 (-521))) (-5 *2 (-202)) (-5 *1 (-280)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-290 (-353))) (-5 *1 (-280)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-880 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-880 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))) (-5 *2 (-959)) (-5 *1 (-280)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-959)) (-5 *1 (-280)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) (-5 *2 (-959)) (-5 *1 (-280)))) (-3429 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *2 (-959)) (-5 *1 (-280)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-587 (-959))) (-5 *2 (-959)) (-5 *1 (-280)))) (-4159 (*1 *2 *2 *2) (-12 (-5 *2 (-959)) (-5 *1 (-280)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-280)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *4 (-1008 (-776 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-280)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-1165 (-290 (-353)))) (-5 *1 (-280)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1165 (-636))) (-5 *1 (-280)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-636)) (-5 *1 (-280)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *2 (-587 (-202))) (-5 *1 (-280)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-1008 (-776 (-202)))) (-5 *1 (-280)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-381 (-521)))) (-5 *1 (-280)))) (-3595 (*1 *2 *3) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521)))) (-5 *1 (-280)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-280)))) (-4070 (*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-280)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-381 (-521))) (-5 *1 (-280)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-381 (-521))) (-5 *1 (-280)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-587 (-1008 (-776 (-353))))) (-5 *2 (-587 (-1008 (-776 (-202))))) (-5 *1 (-280)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-1008 (-776 (-353)))) (-5 *2 (-1008 (-776 (-202)))) (-5 *1 (-280)))) (-2069 (*1 *2 *3) (-12 (-5 *3 (-776 (-353))) (-5 *2 (-776 (-202))) (-5 *1 (-280)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-290 (-353))) (-5 *2 (-290 (-202))) (-5 *1 (-280)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-280)))))
-(-10 -7 (-15 -1408 ((-202) (-353))) (-15 -2611 ((-290 (-202)) (-290 (-353)))) (-15 -2069 ((-776 (-202)) (-776 (-353)))) (-15 -3841 ((-1008 (-776 (-202))) (-1008 (-776 (-353))))) (-15 -1438 ((-587 (-1008 (-776 (-202)))) (-587 (-1008 (-776 (-353)))))) (-15 -2900 ((-381 (-521)) (-202))) (-15 -1863 ((-381 (-521)) (-290 (-202)))) (-15 -2753 ((-202) (-290 (-202)))) (-15 -4070 ((-3 (-290 (-202)) "failed") (-290 (-202)))) (-15 -1369 ((-353) (-1165 (-290 (-202))))) (-15 -3595 ((-2 (|:| |additions| (-521)) (|:| |multiplications| (-521)) (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))) (-1165 (-290 (-202))))) (-15 -2804 ((-290 (-381 (-521))) (-290 (-202)))) (-15 -2460 ((-1008 (-776 (-202))) (-1008 (-776 (-202))))) (-15 -2530 ((-587 (-202)) (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))) (-15 -2987 ((-636) (-202))) (-15 -1966 ((-1165 (-636)) (-587 (-202)))) (-15 -2997 ((-290 (-353)) (-290 (-202)))) (-15 -4196 ((-1165 (-290 (-353))) (-1165 (-290 (-202))))) (-15 -2933 ((-108) (-202) (-1008 (-776 (-202))))) (-15 -3104 ((-1067) (-202))) (-15 -1411 ((-1067) (-353))) (-15 -2583 ((-587 (-1067)) (-587 (-202)))) (-15 -2236 ((-587 (-1067)) (-1065 (-202)))) (-15 -3351 ((-202) (-1008 (-776 (-202))))) (-15 -2861 ((-202) (-1008 (-776 (-202))))) (-15 -4159 ((-959) (-959) (-959))) (-15 -4159 ((-959) (-587 (-959)))) (-15 -3384 ((-1067) (-353))) (-15 -3429 ((-959) (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))))) (-15 -3429 ((-959) (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))) (-15 -3802 ((-959) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2142 ((-959) (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))) (-15 -2182 ((-290 (-353)) (-880 (-202)))) (-15 -1851 ((-202) (-880 (-202)))) (-15 -1919 ((-290 (-353)) (-202))) (-15 -3706 ((-202) (-381 (-521)))) (-15 -3534 ((-627 (-202)) (-587 (-202)) (-707))))
-((-2165 (((-108) $ $) 11)) (-2302 (($ $ $) 15)) (-2282 (($ $ $) 14)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 44)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 53)) (-2286 (($ $ $) 21) (($ (-587 $)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2261 (((-3 $ "failed") $ $) 17)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 46)))
-(((-281 |#1|) (-10 -8 (-15 -1509 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -2283 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2283 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1384 |#1|)) |#1| |#1|)) (-15 -2302 (|#1| |#1| |#1|)) (-15 -2282 (|#1| |#1| |#1|)) (-15 -2165 ((-108) |#1| |#1|)) (-15 -3611 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -1313 ((-2 (|:| -2979 (-587 |#1|)) (|:| -1384 |#1|)) (-587 |#1|))) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|))) (-282)) (T -281))
-NIL
-(-10 -8 (-15 -1509 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -2283 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2283 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1384 |#1|)) |#1| |#1|)) (-15 -2302 (|#1| |#1| |#1|)) (-15 -2282 (|#1| |#1| |#1|)) (-15 -2165 ((-108) |#1| |#1|)) (-15 -3611 ((-3 (-587 |#1|) "failed") (-587 |#1|) |#1|)) (-15 -1313 ((-2 (|:| -2979 (-587 |#1|)) (|:| -1384 |#1|)) (-587 |#1|))) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-3637 (((-108) $) 31)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-282) (-1196)) (T -282))
-((-2165 (*1 *2 *1 *1) (-12 (-4 *1 (-282)) (-5 *2 (-108)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-282)) (-5 *2 (-707)))) (-1904 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-282)))) (-2282 (*1 *1 *1 *1) (-4 *1 (-282))) (-2302 (*1 *1 *1 *1) (-4 *1 (-282))) (-2283 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1384 *1))) (-4 *1 (-282)))) (-2283 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-282)))) (-1509 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-282)))))
-(-13 (-848) (-10 -8 (-15 -2165 ((-108) $ $)) (-15 -3794 ((-707) $)) (-15 -1904 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -2282 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2283 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $)) (-15 -2283 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1509 ((-3 (-587 $) "failed") (-587 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2313 (($ $ (-587 |#2|) (-587 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-269 |#2|)) 11) (($ $ (-587 (-269 |#2|))) NIL)))
-(((-283 |#1| |#2|) (-10 -8 (-15 -2313 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2313 (|#1| |#1| (-269 |#2|))) (-15 -2313 (|#1| |#1| |#2| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#2|)))) (-284 |#2|) (-1013)) (T -283))
-NIL
-(-10 -8 (-15 -2313 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2313 (|#1| |#1| (-269 |#2|))) (-15 -2313 (|#1| |#1| |#2| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#2|))))
-((-2313 (($ $ (-587 |#1|) (-587 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-269 |#1|)) 11) (($ $ (-587 (-269 |#1|))) 10)))
-(((-284 |#1|) (-1196) (-1013)) (T -284))
-((-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-269 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1013)))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *3))) (-4 *1 (-284 *3)) (-4 *3 (-1013)))))
-(-13 (-482 |t#1| |t#1|) (-10 -8 (-15 -2313 ($ $ (-269 |t#1|))) (-15 -2313 ($ $ (-587 (-269 |t#1|))))))
-(((-482 |#1| |#1|) . T))
-((-2313 ((|#1| (-1 |#1| (-521)) (-1086 (-381 (-521)))) 24)))
-(((-285 |#1|) (-10 -7 (-15 -2313 (|#1| (-1 |#1| (-521)) (-1086 (-381 (-521)))))) (-37 (-381 (-521)))) (T -285))
-((-2313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-521))) (-5 *4 (-1086 (-381 (-521)))) (-5 *1 (-285 *2)) (-4 *2 (-37 (-381 (-521)))))))
-(-10 -7 (-15 -2313 (|#1| (-1 |#1| (-521)) (-1086 (-381 (-521))))))
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 7)) (-1549 (((-108) $ $) 9)))
-(((-286) (-1013)) (T -286))
-NIL
-(-1013)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 62)) (-2556 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-1151 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-3 (-1150 |#2| |#3| |#4|) "failed") $) 24)) (-1496 (((-1151 |#1| |#2| |#3| |#4|) $) NIL) (((-1084) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-521) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-521)))) (((-1150 |#2| |#3| |#4|) $) NIL)) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-1151 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1165 (-1151 |#1| |#2| |#3| |#4|)))) (-627 $) (-1165 $)) NIL) (((-627 (-1151 |#1| |#2| |#3| |#4|)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-1151 |#1| |#2| |#3| |#4|) $) 21)) (-3035 (((-3 $ "failed") $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-1060)))) (-3305 (((-108) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-783)))) (-2459 (($ $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-783)))) (-1393 (($ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) $) NIL)) (-3522 (((-3 (-776 |#2|) "failed") $) 76)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-282)))) (-2720 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-1151 |#1| |#2| |#3| |#4|)) (-587 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-269 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-587 (-269 (-1151 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-284 (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-587 (-1084)) (-587 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-482 (-1084) (-1151 |#1| |#2| |#3| |#4|)))) (($ $ (-1084) (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-482 (-1084) (-1151 |#1| |#2| |#3| |#4|))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-261 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1084)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) (-707)) NIL) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-1151 |#1| |#2| |#3| |#4|) $) 17)) (-1438 (((-820 (-521)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-562 (-497)))) (((-353) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-946))) (((-202) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-1151 |#1| |#2| |#3| |#4|) (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-1151 |#1| |#2| |#3| |#4|)) 28) (($ (-1084)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-961 (-1084)))) (($ (-1150 |#2| |#3| |#4|)) 36)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-1151 |#1| |#2| |#3| |#4|) (-837))) (|has| (-1151 |#1| |#2| |#3| |#4|) (-133))))) (-1592 (((-707)) NIL)) (-1281 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-506)))) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 41 T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1084)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-828 (-1084)))) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) (-707)) NIL) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-783)))) (-1648 (($ $ $) 33) (($ (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) 30)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-1151 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1151 |#1| |#2| |#3| |#4|)) NIL)))
-(((-287 |#1| |#2| |#3| |#4|) (-13 (-918 (-1151 |#1| |#2| |#3| |#4|)) (-961 (-1150 |#2| |#3| |#4|)) (-10 -8 (-15 -3522 ((-3 (-776 |#2|) "failed") $)) (-15 -2223 ($ (-1150 |#2| |#3| |#4|))))) (-13 (-783) (-961 (-521)) (-583 (-521)) (-425)) (-13 (-27) (-1105) (-404 |#1|)) (-1084) |#2|) (T -287))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4) (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425))) (-5 *1 (-287 *3 *4 *5 *6)))) (-3522 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425))) (-5 *2 (-776 *4)) (-5 *1 (-287 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4))))
-(-13 (-918 (-1151 |#1| |#2| |#3| |#4|)) (-961 (-1150 |#2| |#3| |#4|)) (-10 -8 (-15 -3522 ((-3 (-776 |#2|) "failed") $)) (-15 -2223 ($ (-1150 |#2| |#3| |#4|)))))
-((-1393 (((-290 |#2|) (-1 |#2| |#1|) (-290 |#1|)) 13)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -1393 ((-290 |#2|) (-1 |#2| |#1|) (-290 |#1|)))) (-783) (-783)) (T -288))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-290 *5)) (-4 *5 (-783)) (-4 *6 (-783)) (-5 *2 (-290 *6)) (-5 *1 (-288 *5 *6)))))
-(-10 -7 (-15 -1393 ((-290 |#2|) (-1 |#2| |#1|) (-290 |#1|))))
-((-3060 (((-51) |#2| (-269 |#2|) (-707)) 33) (((-51) |#2| (-269 |#2|)) 24) (((-51) |#2| (-707)) 28) (((-51) |#2|) 25) (((-51) (-1084)) 21)) (-2776 (((-51) |#2| (-269 |#2|) (-381 (-521))) 51) (((-51) |#2| (-269 |#2|)) 48) (((-51) |#2| (-381 (-521))) 50) (((-51) |#2|) 49) (((-51) (-1084)) 47)) (-3080 (((-51) |#2| (-269 |#2|) (-381 (-521))) 46) (((-51) |#2| (-269 |#2|)) 43) (((-51) |#2| (-381 (-521))) 45) (((-51) |#2|) 44) (((-51) (-1084)) 42)) (-3070 (((-51) |#2| (-269 |#2|) (-521)) 39) (((-51) |#2| (-269 |#2|)) 35) (((-51) |#2| (-521)) 38) (((-51) |#2|) 36) (((-51) (-1084)) 34)))
-(((-289 |#1| |#2|) (-10 -7 (-15 -3060 ((-51) (-1084))) (-15 -3060 ((-51) |#2|)) (-15 -3060 ((-51) |#2| (-707))) (-15 -3060 ((-51) |#2| (-269 |#2|))) (-15 -3060 ((-51) |#2| (-269 |#2|) (-707))) (-15 -3070 ((-51) (-1084))) (-15 -3070 ((-51) |#2|)) (-15 -3070 ((-51) |#2| (-521))) (-15 -3070 ((-51) |#2| (-269 |#2|))) (-15 -3070 ((-51) |#2| (-269 |#2|) (-521))) (-15 -3080 ((-51) (-1084))) (-15 -3080 ((-51) |#2|)) (-15 -3080 ((-51) |#2| (-381 (-521)))) (-15 -3080 ((-51) |#2| (-269 |#2|))) (-15 -3080 ((-51) |#2| (-269 |#2|) (-381 (-521)))) (-15 -2776 ((-51) (-1084))) (-15 -2776 ((-51) |#2|)) (-15 -2776 ((-51) |#2| (-381 (-521)))) (-15 -2776 ((-51) |#2| (-269 |#2|))) (-15 -2776 ((-51) |#2| (-269 |#2|) (-381 (-521))))) (-13 (-425) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -289))
-((-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *4 (-381 (-521))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-2776 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))) (-3080 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-381 (-521))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-783) (-961 *5) (-583 *5))) (-5 *5 (-521)) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-4 *5 (-13 (-425) (-783) (-961 *4) (-583 *4))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3070 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))) (-3060 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-269 *3)) (-5 *5 (-707)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *6 *3)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3060 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-289 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-404 *4))))))
-(-10 -7 (-15 -3060 ((-51) (-1084))) (-15 -3060 ((-51) |#2|)) (-15 -3060 ((-51) |#2| (-707))) (-15 -3060 ((-51) |#2| (-269 |#2|))) (-15 -3060 ((-51) |#2| (-269 |#2|) (-707))) (-15 -3070 ((-51) (-1084))) (-15 -3070 ((-51) |#2|)) (-15 -3070 ((-51) |#2| (-521))) (-15 -3070 ((-51) |#2| (-269 |#2|))) (-15 -3070 ((-51) |#2| (-269 |#2|) (-521))) (-15 -3080 ((-51) (-1084))) (-15 -3080 ((-51) |#2|)) (-15 -3080 ((-51) |#2| (-381 (-521)))) (-15 -3080 ((-51) |#2| (-269 |#2|))) (-15 -3080 ((-51) |#2| (-269 |#2|) (-381 (-521)))) (-15 -2776 ((-51) (-1084))) (-15 -2776 ((-51) |#2|)) (-15 -2776 ((-51) |#2| (-381 (-521)))) (-15 -2776 ((-51) |#2| (-269 |#2|))) (-15 -2776 ((-51) |#2| (-269 |#2|) (-381 (-521)))))
-((-1422 (((-108) $ $) NIL)) (-3144 (((-587 $) $ (-1084)) NIL (|has| |#1| (-513))) (((-587 $) $) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $) (-1084)) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $)) NIL (|has| |#1| (-513))) (((-587 $) (-880 $)) NIL (|has| |#1| (-513)))) (-1260 (($ $ (-1084)) NIL (|has| |#1| (-513))) (($ $) NIL (|has| |#1| (-513))) (($ (-1080 $) (-1084)) NIL (|has| |#1| (-513))) (($ (-1080 $)) NIL (|has| |#1| (-513))) (($ (-880 $)) NIL (|has| |#1| (-513)))) (-3398 (((-108) $) 27 (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-4085 (((-587 (-1084)) $) 345)) (-1280 (((-381 (-1080 $)) $ (-560 $)) NIL (|has| |#1| (-513)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-1946 (((-587 (-560 $)) $) NIL)) (-2910 (($ $) 154 (|has| |#1| (-513)))) (-2775 (($ $) 130 (|has| |#1| (-513)))) (-3233 (($ $ (-1006 $)) 215 (|has| |#1| (-513))) (($ $ (-1084)) 211 (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) NIL (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-3304 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) 361) (($ $ (-587 (-560 $)) (-587 $)) 404)) (-2150 (((-392 (-1080 $)) (-1080 $)) 289 (-12 (|has| |#1| (-425)) (|has| |#1| (-513))))) (-2694 (($ $) NIL (|has| |#1| (-513)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-513)))) (-1984 (($ $) NIL (|has| |#1| (-513)))) (-2165 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2886 (($ $) 150 (|has| |#1| (-513)))) (-2752 (($ $) 126 (|has| |#1| (-513)))) (-1504 (($ $ (-521)) 64 (|has| |#1| (-513)))) (-2932 (($ $) 158 (|has| |#1| (-513)))) (-2796 (($ $) 134 (|has| |#1| (-513)))) (-2231 (($) NIL (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))) CONST)) (-1678 (((-587 $) $ (-1084)) NIL (|has| |#1| (-513))) (((-587 $) $) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $) (-1084)) NIL (|has| |#1| (-513))) (((-587 $) (-1080 $)) NIL (|has| |#1| (-513))) (((-587 $) (-880 $)) NIL (|has| |#1| (-513)))) (-1444 (($ $ (-1084)) NIL (|has| |#1| (-513))) (($ $) NIL (|has| |#1| (-513))) (($ (-1080 $) (-1084)) 117 (|has| |#1| (-513))) (($ (-1080 $)) NIL (|has| |#1| (-513))) (($ (-880 $)) NIL (|has| |#1| (-513)))) (-1296 (((-3 (-560 $) "failed") $) 17) (((-3 (-1084) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-880 |#1|)) "failed") $) NIL (|has| |#1| (-513))) (((-3 (-880 |#1|) "failed") $) NIL (|has| |#1| (-970))) (((-3 (-381 (-521)) "failed") $) 45 (-3703 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1496 (((-560 $) $) 11) (((-1084) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-880 |#1|)) $) NIL (|has| |#1| (-513))) (((-880 |#1|) $) NIL (|has| |#1| (-970))) (((-381 (-521)) $) 302 (-3703 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2302 (($ $ $) NIL (|has| |#1| (-513)))) (-1961 (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 110 (|has| |#1| (-970))) (((-627 |#1|) (-627 $)) 102 (|has| |#1| (-970))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (-3859 (($ $) 84 (|has| |#1| (-513)))) (-2783 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (-2282 (($ $ $) NIL (|has| |#1| (-513)))) (-3854 (($ $ (-1006 $)) 219 (|has| |#1| (-513))) (($ $ (-1084)) 217 (|has| |#1| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-513)))) (-2100 (((-108) $) NIL (|has| |#1| (-513)))) (-2708 (($ $ $) 185 (|has| |#1| (-513)))) (-2840 (($) 120 (|has| |#1| (-513)))) (-3556 (($ $ $) 205 (|has| |#1| (-513)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 367 (|has| |#1| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 373 (|has| |#1| (-814 (-353))))) (-2707 (($ $) NIL) (($ (-587 $)) NIL)) (-2788 (((-587 (-110)) $) NIL)) (-3928 (((-110) (-110)) 260)) (-3637 (((-108) $) 25 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (-3924 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2399 (($ $) 66 (|has| |#1| (-970)))) (-2807 (((-1036 |#1| (-560 $)) $) 79 (|has| |#1| (-970)))) (-1519 (((-108) $) 46 (|has| |#1| (-513)))) (-3743 (($ $ (-521)) NIL (|has| |#1| (-513)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-513)))) (-3159 (((-1080 $) (-560 $)) 261 (|has| $ (-970)))) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 $ $) (-560 $)) 400)) (-1656 (((-3 (-560 $) "failed") $) NIL)) (-1253 (($ $) 124 (|has| |#1| (-513)))) (-3246 (($ $) 230 (|has| |#1| (-513)))) (-2254 (($ (-587 $)) NIL (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-4024 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) 48)) (-2911 (($ (-110) $) NIL) (($ (-110) (-587 $)) 405)) (-3722 (((-3 (-587 $) "failed") $) NIL (|has| |#1| (-1025)))) (-3390 (((-3 (-2 (|:| |val| $) (|:| -2246 (-521))) "failed") $) NIL (|has| |#1| (-970)))) (-4141 (((-3 (-587 $) "failed") $) 408 (|has| |#1| (-25)))) (-4148 (((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 $))) "failed") $) 412 (|has| |#1| (-25)))) (-3262 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $) NIL (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-110)) NIL (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-1084)) NIL (|has| |#1| (-970)))) (-4013 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) 52)) (-3100 (($ $) NIL (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-3094 (($ $ (-1084)) 234 (|has| |#1| (-513))) (($ $ (-1006 $)) 236 (|has| |#1| (-513)))) (-4151 (((-707) $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) 43)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 282 (|has| |#1| (-513)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-3457 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-2504 (($ $ (-1084)) 209 (|has| |#1| (-513))) (($ $) 207 (|has| |#1| (-513)))) (-3022 (($ $) 201 (|has| |#1| (-513)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 287 (-12 (|has| |#1| (-425)) (|has| |#1| (-513))))) (-1974 (((-392 $) $) NIL (|has| |#1| (-513)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-513))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-513)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-513)))) (-3265 (($ $) 122 (|has| |#1| (-513)))) (-2060 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2313 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) 399) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) 355) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1084)) NIL (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-562 (-497)))) (($ $) NIL (|has| |#1| (-562 (-497)))) (($ $ (-110) $ (-1084)) 343 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-110)) (-587 $) (-1084)) 342 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) NIL (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ (-587 $))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ $)) NIL (|has| |#1| (-970)))) (-3794 (((-707) $) NIL (|has| |#1| (-513)))) (-2711 (($ $) 222 (|has| |#1| (-513)))) (-2550 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-1935 (($ $) NIL) (($ $ $) NIL)) (-2740 (($ $) 232 (|has| |#1| (-513)))) (-1498 (($ $) 183 (|has| |#1| (-513)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-970))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-970))) (($ $ (-1084)) NIL (|has| |#1| (-970)))) (-2259 (($ $) 67 (|has| |#1| (-513)))) (-2818 (((-1036 |#1| (-560 $)) $) 81 (|has| |#1| (-513)))) (-3436 (($ $) 300 (|has| $ (-970)))) (-1787 (($ $) 160 (|has| |#1| (-513)))) (-2806 (($ $) 136 (|has| |#1| (-513)))) (-2921 (($ $) 156 (|has| |#1| (-513)))) (-2786 (($ $) 132 (|has| |#1| (-513)))) (-2898 (($ $) 152 (|has| |#1| (-513)))) (-2764 (($ $) 128 (|has| |#1| (-513)))) (-1438 (((-820 (-521)) $) NIL (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| |#1| (-562 (-820 (-353))))) (($ (-392 $)) NIL (|has| |#1| (-513))) (((-497) $) 340 (|has| |#1| (-562 (-497))))) (-1484 (($ $ $) NIL (|has| |#1| (-446)))) (-2062 (($ $ $) NIL (|has| |#1| (-446)))) (-2223 (((-791) $) 398) (($ (-560 $)) 389) (($ (-1084)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-513))) (($ (-47)) 294 (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) (($ (-1036 |#1| (-560 $))) 83 (|has| |#1| (-970))) (($ (-381 |#1|)) NIL (|has| |#1| (-513))) (($ (-880 (-381 |#1|))) NIL (|has| |#1| (-513))) (($ (-381 (-880 (-381 |#1|)))) NIL (|has| |#1| (-513))) (($ (-381 (-880 |#1|))) NIL (|has| |#1| (-513))) (($ (-880 |#1|)) NIL (|has| |#1| (-970))) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-513)) (|has| |#1| (-961 (-381 (-521)))))) (($ (-521)) 34 (-3703 (|has| |#1| (-961 (-521))) (|has| |#1| (-970))))) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL (|has| |#1| (-970)))) (-2342 (($ $) NIL) (($ (-587 $)) NIL)) (-2475 (($ $ $) 203 (|has| |#1| (-513)))) (-3481 (($ $ $) 189 (|has| |#1| (-513)))) (-3321 (($ $ $) 193 (|has| |#1| (-513)))) (-4032 (($ $ $) 187 (|has| |#1| (-513)))) (-2053 (($ $ $) 191 (|has| |#1| (-513)))) (-1224 (((-108) (-110)) 9)) (-1811 (($ $) 166 (|has| |#1| (-513)))) (-2838 (($ $) 142 (|has| |#1| (-513)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) 162 (|has| |#1| (-513)))) (-2817 (($ $) 138 (|has| |#1| (-513)))) (-1830 (($ $) 170 (|has| |#1| (-513)))) (-2862 (($ $) 146 (|has| |#1| (-513)))) (-1862 (($ (-1084) $) NIL) (($ (-1084) $ $) NIL) (($ (-1084) $ $ $) NIL) (($ (-1084) $ $ $ $) NIL) (($ (-1084) (-587 $)) NIL)) (-2154 (($ $) 197 (|has| |#1| (-513)))) (-2845 (($ $) 195 (|has| |#1| (-513)))) (-3919 (($ $) 172 (|has| |#1| (-513)))) (-2874 (($ $) 148 (|has| |#1| (-513)))) (-1821 (($ $) 168 (|has| |#1| (-513)))) (-2850 (($ $) 144 (|has| |#1| (-513)))) (-1803 (($ $) 164 (|has| |#1| (-513)))) (-2827 (($ $) 140 (|has| |#1| (-513)))) (-4012 (($ $) 175 (|has| |#1| (-513)))) (-3509 (($ $ (-521)) NIL (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025)))) (($ $ (-849)) NIL (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (-3562 (($) 20 (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) CONST)) (-2978 (($ $) 226 (|has| |#1| (-513)))) (-3572 (($) 22 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))) CONST)) (-1763 (($ $) 177 (|has| |#1| (-513))) (($ $ $) 179 (|has| |#1| (-513)))) (-3761 (($ $) 224 (|has| |#1| (-513)))) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-970))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-970))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-970))) (($ $ (-1084)) NIL (|has| |#1| (-970)))) (-2356 (($ $) 228 (|has| |#1| (-513)))) (-2847 (($ $ $) 181 (|has| |#1| (-513)))) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 76)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 75)) (-1648 (($ (-1036 |#1| (-560 $)) (-1036 |#1| (-560 $))) 93 (|has| |#1| (-513))) (($ $ $) 42 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-1639 (($ $ $) 40 (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (($ $) 29 (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (-1628 (($ $ $) 38 (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))) (** (($ $ $) 61 (|has| |#1| (-513))) (($ $ (-381 (-521))) 297 (|has| |#1| (-513))) (($ $ (-521)) 71 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) 68 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025)))) (($ $ (-849)) 73 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025))))) (* (($ (-381 (-521)) $) NIL (|has| |#1| (-513))) (($ $ (-381 (-521))) NIL (|has| |#1| (-513))) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))) (($ $ $) 36 (-3703 (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) (|has| |#1| (-1025)))) (($ (-521) $) 32 (-3703 (|has| |#1| (-21)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (($ (-707) $) NIL (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))))) (($ (-849) $) NIL (-3703 (|has| |#1| (-25)) (-12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))))))
-(((-290 |#1|) (-13 (-404 |#1|) (-10 -8 (IF (|has| |#1| (-513)) (PROGN (-6 (-29 |#1|)) (-6 (-1105)) (-6 (-146)) (-6 (-573)) (-6 (-1048)) (-15 -3859 ($ $)) (-15 -1519 ((-108) $)) (-15 -1504 ($ $ (-521))) (IF (|has| |#1| (-425)) (PROGN (-15 -1336 ((-392 (-1080 $)) (-1080 $))) (-15 -2150 ((-392 (-1080 $)) (-1080 $)))) |%noBranch|) (IF (|has| |#1| (-961 (-521))) (-6 (-961 (-47))) |%noBranch|)) |%noBranch|))) (-783)) (T -290))
-((-3859 (*1 *1 *1) (-12 (-5 *1 (-290 *2)) (-4 *2 (-513)) (-4 *2 (-783)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-783)))) (-1504 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-783)))) (-1336 (*1 *2 *3) (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1)) (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-783)))) (-2150 (*1 *2 *3) (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1)) (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-783)))))
-(-13 (-404 |#1|) (-10 -8 (IF (|has| |#1| (-513)) (PROGN (-6 (-29 |#1|)) (-6 (-1105)) (-6 (-146)) (-6 (-573)) (-6 (-1048)) (-15 -3859 ($ $)) (-15 -1519 ((-108) $)) (-15 -1504 ($ $ (-521))) (IF (|has| |#1| (-425)) (PROGN (-15 -1336 ((-392 (-1080 $)) (-1080 $))) (-15 -2150 ((-392 (-1080 $)) (-1080 $)))) |%noBranch|) (IF (|has| |#1| (-961 (-521))) (-6 (-961 (-47))) |%noBranch|)) |%noBranch|)))
-((-2970 (((-51) |#2| (-110) (-269 |#2|) (-587 |#2|)) 86) (((-51) |#2| (-110) (-269 |#2|) (-269 |#2|)) 82) (((-51) |#2| (-110) (-269 |#2|) |#2|) 84) (((-51) (-269 |#2|) (-110) (-269 |#2|) |#2|) 85) (((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|))) 78) (((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 |#2|)) 80) (((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 |#2|)) 81) (((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|))) 79) (((-51) (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|)) 87) (((-51) (-269 |#2|) (-110) (-269 |#2|) (-269 |#2|)) 83)))
-(((-291 |#1| |#2|) (-10 -7 (-15 -2970 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-269 |#2|))) (-15 -2970 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -2970 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -2970 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -2970 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -2970 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -2970 ((-51) (-269 |#2|) (-110) (-269 |#2|) |#2|)) (-15 -2970 ((-51) |#2| (-110) (-269 |#2|) |#2|)) (-15 -2970 ((-51) |#2| (-110) (-269 |#2|) (-269 |#2|))) (-15 -2970 ((-51) |#2| (-110) (-269 |#2|) (-587 |#2|)))) (-13 (-783) (-513) (-562 (-497))) (-404 |#1|)) (T -291))
-((-2970 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-5 *6 (-587 *3)) (-4 *3 (-404 *7)) (-4 *7 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *7 *3)))) (-2970 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2970 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *3)))) (-2970 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-269 *5)) (-5 *4 (-110)) (-4 *5 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *5)))) (-2970 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-110))) (-5 *6 (-587 (-269 *8))) (-4 *8 (-404 *7)) (-5 *5 (-269 *8)) (-4 *7 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *7 *8)))) (-2970 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7)) (-4 *7 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *7)))) (-2970 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 (-269 *8))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *8)) (-5 *6 (-587 *8)) (-4 *8 (-404 *7)) (-4 *7 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *7 *8)))) (-2970 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7)) (-4 *7 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *7)))) (-2970 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-587 *7)) (-4 *7 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *6 *7)))) (-2970 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-269 *6)) (-5 *4 (-110)) (-4 *6 (-404 *5)) (-4 *5 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51)) (-5 *1 (-291 *5 *6)))))
-(-10 -7 (-15 -2970 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-269 |#2|))) (-15 -2970 ((-51) (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -2970 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -2970 ((-51) (-587 (-269 |#2|)) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -2970 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 |#2|))) (-15 -2970 ((-51) (-587 |#2|) (-587 (-110)) (-269 |#2|) (-587 (-269 |#2|)))) (-15 -2970 ((-51) (-269 |#2|) (-110) (-269 |#2|) |#2|)) (-15 -2970 ((-51) |#2| (-110) (-269 |#2|) |#2|)) (-15 -2970 ((-51) |#2| (-110) (-269 |#2|) (-269 |#2|))) (-15 -2970 ((-51) |#2| (-110) (-269 |#2|) (-587 |#2|))))
-((-2765 (((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521) (-1067)) 46) (((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521)) 47) (((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521) (-1067)) 43) (((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521)) 44)) (-2644 (((-1 (-202) (-202)) (-202)) 45)))
-(((-292) (-10 -7 (-15 -2644 ((-1 (-202) (-202)) (-202))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521) (-1067))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521) (-1067))))) (T -292))
-((-2765 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521)) (-5 *8 (-1067)) (-5 *2 (-1115 (-854))) (-5 *1 (-292)))) (-2765 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521)) (-5 *2 (-1115 (-854))) (-5 *1 (-292)))) (-2765 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *7 (-1067)) (-5 *2 (-1115 (-854))) (-5 *1 (-292)))) (-2765 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *2 (-1115 (-854))) (-5 *1 (-292)))) (-2644 (*1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-292)) (-5 *3 (-202)))))
-(-10 -7 (-15 -2644 ((-1 (-202) (-202)) (-202))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-1 (-202) (-202)) (-521) (-1067))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521))) (-15 -2765 ((-1115 (-854)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-202) (-521) (-1067))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 24)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 19)) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) 31)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) 15)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) NIL) (($ $ (-381 (-521))) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-381 (-521))) NIL) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-1749 (($ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105)))))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3264 (((-381 (-521)) $) 16)) (-2221 (($ (-1150 |#1| |#2| |#3|)) 11)) (-2246 (((-1150 |#1| |#2| |#3|) $) 12)) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-2098 (((-381 (-521)) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 10)) (-2223 (((-791) $) 37) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) 29)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) NIL)) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 26)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 32)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-293 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-728) (-10 -8 (-15 -2221 ($ (-1150 |#1| |#2| |#3|))) (-15 -2246 ((-1150 |#1| |#2| |#3|) $)) (-15 -3264 ((-381 (-521)) $)))) (-13 (-337) (-783)) (-1084) |#1|) (T -293))
-((-2221 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-13 (-337) (-783))) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-293 *3 *4 *5)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-1150 *3 *4 *5)) (-5 *1 (-293 *3 *4 *5)) (-4 *3 (-13 (-337) (-783))) (-14 *4 (-1084)) (-14 *5 *3))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-293 *3 *4 *5)) (-4 *3 (-13 (-337) (-783))) (-14 *4 (-1084)) (-14 *5 *3))))
-(-13 (-1146 |#1|) (-728) (-10 -8 (-15 -2221 ($ (-1150 |#1| |#2| |#3|))) (-15 -2246 ((-1150 |#1| |#2| |#3|) $)) (-15 -3264 ((-381 (-521)) $))))
-((-3743 (((-2 (|:| -2246 (-707)) (|:| -2979 |#1|) (|:| |radicand| (-587 |#1|))) (-392 |#1|) (-707)) 24)) (-1253 (((-587 (-2 (|:| -2979 (-707)) (|:| |logand| |#1|))) (-392 |#1|)) 28)))
-(((-294 |#1|) (-10 -7 (-15 -3743 ((-2 (|:| -2246 (-707)) (|:| -2979 |#1|) (|:| |radicand| (-587 |#1|))) (-392 |#1|) (-707))) (-15 -1253 ((-587 (-2 (|:| -2979 (-707)) (|:| |logand| |#1|))) (-392 |#1|)))) (-513)) (T -294))
-((-1253 (*1 *2 *3) (-12 (-5 *3 (-392 *4)) (-4 *4 (-513)) (-5 *2 (-587 (-2 (|:| -2979 (-707)) (|:| |logand| *4)))) (-5 *1 (-294 *4)))) (-3743 (*1 *2 *3 *4) (-12 (-5 *3 (-392 *5)) (-4 *5 (-513)) (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *5) (|:| |radicand| (-587 *5)))) (-5 *1 (-294 *5)) (-5 *4 (-707)))))
-(-10 -7 (-15 -3743 ((-2 (|:| -2246 (-707)) (|:| -2979 |#1|) (|:| |radicand| (-587 |#1|))) (-392 |#1|) (-707))) (-15 -1253 ((-587 (-2 (|:| -2979 (-707)) (|:| |logand| |#1|))) (-392 |#1|))))
-((-4085 (((-587 |#2|) (-1080 |#4|)) 43)) (-2654 ((|#3| (-521)) 46)) (-3596 (((-1080 |#4|) (-1080 |#3|)) 30)) (-2101 (((-1080 |#4|) (-1080 |#4|) (-521)) 56)) (-4058 (((-1080 |#3|) (-1080 |#4|)) 21)) (-2098 (((-587 (-707)) (-1080 |#4|) (-587 |#2|)) 40)) (-1768 (((-1080 |#3|) (-1080 |#4|) (-587 |#2|) (-587 |#3|)) 35)))
-(((-295 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1768 ((-1080 |#3|) (-1080 |#4|) (-587 |#2|) (-587 |#3|))) (-15 -2098 ((-587 (-707)) (-1080 |#4|) (-587 |#2|))) (-15 -4085 ((-587 |#2|) (-1080 |#4|))) (-15 -4058 ((-1080 |#3|) (-1080 |#4|))) (-15 -3596 ((-1080 |#4|) (-1080 |#3|))) (-15 -2101 ((-1080 |#4|) (-1080 |#4|) (-521))) (-15 -2654 (|#3| (-521)))) (-729) (-783) (-970) (-877 |#3| |#1| |#2|)) (T -295))
-((-2654 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-970)) (-5 *1 (-295 *4 *5 *2 *6)) (-4 *6 (-877 *2 *4 *5)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *7)) (-5 *3 (-521)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-5 *1 (-295 *4 *5 *6 *7)))) (-3596 (*1 *2 *3) (-12 (-5 *3 (-1080 *6)) (-4 *6 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-1080 *7)) (-5 *1 (-295 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1080 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-5 *2 (-1080 *6)) (-5 *1 (-295 *4 *5 *6 *7)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-1080 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-5 *2 (-587 *5)) (-5 *1 (-295 *4 *5 *6 *7)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *8)) (-5 *4 (-587 *6)) (-4 *6 (-783)) (-4 *8 (-877 *7 *5 *6)) (-4 *5 (-729)) (-4 *7 (-970)) (-5 *2 (-587 (-707))) (-5 *1 (-295 *5 *6 *7 *8)))) (-1768 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 *8)) (-4 *7 (-783)) (-4 *8 (-970)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-729)) (-5 *2 (-1080 *8)) (-5 *1 (-295 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1768 ((-1080 |#3|) (-1080 |#4|) (-587 |#2|) (-587 |#3|))) (-15 -2098 ((-587 (-707)) (-1080 |#4|) (-587 |#2|))) (-15 -4085 ((-587 |#2|) (-1080 |#4|))) (-15 -4058 ((-1080 |#3|) (-1080 |#4|))) (-15 -3596 ((-1080 |#4|) (-1080 |#3|))) (-15 -2101 ((-1080 |#4|) (-1080 |#4|) (-521))) (-15 -2654 (|#3| (-521))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 14)) (-3704 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-521)))) $) 18)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1659 (((-707) $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3493 ((|#1| $ (-521)) NIL)) (-1433 (((-521) $ (-521)) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2205 (($ (-1 |#1| |#1|) $) NIL)) (-3750 (($ (-1 (-521) (-521)) $) 10)) (-4024 (((-1067) $) NIL)) (-4198 (($ $ $) NIL (|has| (-521) (-728)))) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL) (($ |#1|) NIL)) (-1499 (((-521) |#1| $) NIL)) (-3562 (($) 15 T CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) 21 (|has| |#1| (-783)))) (-1639 (($ $) 11) (($ $ $) 20)) (-1628 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL) (($ (-521) |#1|) 19)))
-(((-296 |#1|) (-13 (-21) (-654 (-521)) (-297 |#1| (-521)) (-10 -7 (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|))) (-1013)) (T -296))
-NIL
-(-13 (-21) (-654 (-521)) (-297 |#1| (-521)) (-10 -7 (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-3704 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))) $) 27)) (-2057 (((-3 $ "failed") $ $) 19)) (-1659 (((-707) $) 28)) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 32)) (-1496 ((|#1| $) 31)) (-3493 ((|#1| $ (-521)) 25)) (-1433 ((|#2| $ (-521)) 26)) (-2205 (($ (-1 |#1| |#1|) $) 22)) (-3750 (($ (-1 |#2| |#2|) $) 23)) (-4024 (((-1067) $) 9)) (-4198 (($ $ $) 21 (|has| |#2| (-728)))) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ |#1|) 33)) (-1499 ((|#2| |#1| $) 24)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1628 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ |#2| |#1|) 29)))
-(((-297 |#1| |#2|) (-1196) (-1013) (-124)) (T -297))
-((-1628 (*1 *1 *2 *1) (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)) (-5 *2 (-707)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)) (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 *4)))))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-297 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-124)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-297 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1013)))) (-1499 (*1 *2 *3 *1) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124)))) (-3750 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)))) (-2205 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124)) (-4 *3 (-728)))))
-(-13 (-124) (-961 |t#1|) (-10 -8 (-15 -1628 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1659 ((-707) $)) (-15 -3704 ((-587 (-2 (|:| |gen| |t#1|) (|:| -3265 |t#2|))) $)) (-15 -1433 (|t#2| $ (-521))) (-15 -3493 (|t#1| $ (-521))) (-15 -1499 (|t#2| |t#1| $)) (-15 -3750 ($ (-1 |t#2| |t#2|) $)) (-15 -2205 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-728)) (-15 -4198 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-961 |#1|) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-3704 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1659 (((-707) $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3493 ((|#1| $ (-521)) NIL)) (-1433 (((-707) $ (-521)) NIL)) (-2205 (($ (-1 |#1| |#1|) $) NIL)) (-3750 (($ (-1 (-707) (-707)) $) NIL)) (-4024 (((-1067) $) NIL)) (-4198 (($ $ $) NIL (|has| (-707) (-728)))) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL) (($ |#1|) NIL)) (-1499 (((-707) |#1| $) NIL)) (-3562 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1628 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-707) |#1|) NIL)))
-(((-298 |#1|) (-297 |#1| (-707)) (-1013)) (T -298))
-NIL
-(-297 |#1| (-707))
-((-1563 (($ $) 53)) (-1709 (($ $ |#2| |#3| $) 14)) (-2310 (($ (-1 |#3| |#3|) $) 35)) (-3110 (((-108) $) 27)) (-3120 ((|#2| $) 29)) (-2261 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1391 ((|#2| $) 49)) (-2730 (((-587 |#2|) $) 38)) (-1413 (($ $ $ (-707)) 23)) (-1648 (($ $ |#2|) 42)))
-(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -1563 (|#1| |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1| (-707))) (-15 -1709 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2310 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2730 ((-587 |#2|) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1648 (|#1| |#1| |#2|))) (-300 |#2| |#3|) (-970) (-728)) (T -299))
-NIL
-(-10 -8 (-15 -1563 (|#1| |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1| (-707))) (-15 -1709 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2310 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2730 ((-587 |#2|) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1648 (|#1| |#1| |#2|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 90 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 88 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 87)) (-1496 (((-521) $) 91 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 89 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 86)) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-1563 (($ $) 75 (|has| |#1| (-425)))) (-1709 (($ $ |#1| |#2| $) 79)) (-3637 (((-108) $) 31)) (-2443 (((-707) $) 82)) (-3573 (((-108) $) 62)) (-4044 (($ |#1| |#2|) 61)) (-2401 ((|#2| $) 81)) (-2310 (($ (-1 |#2| |#2|) $) 80)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-3110 (((-108) $) 85)) (-3120 ((|#1| $) 84)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-513)))) (-2098 ((|#2| $) 64)) (-1391 ((|#1| $) 76 (|has| |#1| (-425)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47) (($ (-381 (-521))) 57 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521))))))) (-2730 (((-587 |#1|) $) 83)) (-1499 ((|#1| $ |#2|) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1413 (($ $ $ (-707)) 78 (|has| |#1| (-157)))) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-300 |#1| |#2|) (-1196) (-970) (-728)) (T -300))
-((-3110 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-108)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-587 *3)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-707)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)))) (-1709 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))) (-1413 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-4 *3 (-157)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *2 (-513)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)) (-4 *2 (-425)))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *2 (-425)))))
-(-13 (-46 |t#1| |t#2|) (-385 |t#1|) (-10 -8 (-15 -3110 ((-108) $)) (-15 -3120 (|t#1| $)) (-15 -2730 ((-587 |t#1|) $)) (-15 -2443 ((-707) $)) (-15 -2401 (|t#2| $)) (-15 -2310 ($ (-1 |t#2| |t#2|) $)) (-15 -1709 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-157)) (-15 -1413 ($ $ $ (-707))) |%noBranch|) (IF (|has| |t#1| (-513)) (-15 -2261 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-15 -1391 (|t#1| $)) (-15 -1563 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-265) |has| |#1| (-513)) ((-385 |#1|) . T) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-3421 (((-108) (-108)) NIL)) (-2396 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) |#1|) $) NIL)) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-1514 (($ $) NIL (|has| |#1| (-1013)))) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-4192 (($ $ (-521)) NIL)) (-3259 (((-707) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-4162 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4135 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2126 (($ (-587 |#1|)) NIL)) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3488 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-2240 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-301 |#1|) (-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2126 ($ (-587 |#1|))) (-15 -3259 ((-707) $)) (-15 -4192 ($ $ (-521))) (-15 -3421 ((-108) (-108))))) (-1119)) (T -301))
-((-2126 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-301 *3)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-301 *3)) (-4 *3 (-1119)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-301 *3)) (-4 *3 (-1119)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-301 *3)) (-4 *3 (-1119)))))
-(-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2126 ($ (-587 |#1|))) (-15 -3259 ((-707) $)) (-15 -4192 ($ $ (-521))) (-15 -3421 ((-108) (-108)))))
-((-2663 (((-108) $) 42)) (-4010 (((-707)) 22)) (-1927 ((|#2| $) 46) (($ $ (-849)) 103)) (-1659 (((-707)) 97)) (-3190 (($ (-1165 |#2|)) 20)) (-2377 (((-108) $) 115)) (-2549 ((|#2| $) 48) (($ $ (-849)) 101)) (-3769 (((-1080 |#2|) $) NIL) (((-1080 $) $ (-849)) 94)) (-3361 (((-1080 |#2|) $) 83)) (-3959 (((-1080 |#2|) $) 80) (((-3 (-1080 |#2|) "failed") $ $) 77)) (-3734 (($ $ (-1080 |#2|)) 53)) (-2239 (((-769 (-849))) 28) (((-849)) 43)) (-2043 (((-126)) 25)) (-2098 (((-769 (-849)) $) 30) (((-849) $) 116)) (-3540 (($) 109)) (-1816 (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $)) 39)) (-2446 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2567 (((-108) $) 41)))
-(((-302 |#1| |#2|) (-10 -8 (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -1659 ((-707))) (-15 -2446 (|#1| |#1|)) (-15 -3959 ((-3 (-1080 |#2|) "failed") |#1| |#1|)) (-15 -3959 ((-1080 |#2|) |#1|)) (-15 -3361 ((-1080 |#2|) |#1|)) (-15 -3734 (|#1| |#1| (-1080 |#2|))) (-15 -2377 ((-108) |#1|)) (-15 -3540 (|#1|)) (-15 -1927 (|#1| |#1| (-849))) (-15 -2549 (|#1| |#1| (-849))) (-15 -3769 ((-1080 |#1|) |#1| (-849))) (-15 -1927 (|#2| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -2098 ((-849) |#1|)) (-15 -2239 ((-849))) (-15 -3769 ((-1080 |#2|) |#1|)) (-15 -3190 (|#1| (-1165 |#2|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -4010 ((-707))) (-15 -2239 ((-769 (-849)))) (-15 -2098 ((-769 (-849)) |#1|)) (-15 -2663 ((-108) |#1|)) (-15 -2567 ((-108) |#1|)) (-15 -2043 ((-126)))) (-303 |#2|) (-337)) (T -302))
-((-2043 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-126)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-2239 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-769 (-849))) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-4010 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-2239 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-849)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))) (-1659 (*1 *2) (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4)) (-4 *3 (-303 *4)))))
-(-10 -8 (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -1659 ((-707))) (-15 -2446 (|#1| |#1|)) (-15 -3959 ((-3 (-1080 |#2|) "failed") |#1| |#1|)) (-15 -3959 ((-1080 |#2|) |#1|)) (-15 -3361 ((-1080 |#2|) |#1|)) (-15 -3734 (|#1| |#1| (-1080 |#2|))) (-15 -2377 ((-108) |#1|)) (-15 -3540 (|#1|)) (-15 -1927 (|#1| |#1| (-849))) (-15 -2549 (|#1| |#1| (-849))) (-15 -3769 ((-1080 |#1|) |#1| (-849))) (-15 -1927 (|#2| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -2098 ((-849) |#1|)) (-15 -2239 ((-849))) (-15 -3769 ((-1080 |#2|) |#1|)) (-15 -3190 (|#1| (-1165 |#2|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -4010 ((-707))) (-15 -2239 ((-769 (-849)))) (-15 -2098 ((-769 (-849)) |#1|)) (-15 -2663 ((-108) |#1|)) (-15 -2567 ((-108) |#1|)) (-15 -2043 ((-126))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2663 (((-108) $) 94)) (-4010 (((-707)) 90)) (-1927 ((|#1| $) 140) (($ $ (-849)) 137 (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) 122 (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-2165 (((-108) $ $) 59)) (-1659 (((-707)) 112 (|has| |#1| (-342)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 101)) (-1496 ((|#1| $) 100)) (-3190 (($ (-1165 |#1|)) 146)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-342)))) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-3254 (($) 109 (|has| |#1| (-342)))) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2464 (($) 124 (|has| |#1| (-342)))) (-3299 (((-108) $) 125 (|has| |#1| (-342)))) (-1375 (($ $ (-707)) 87 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) 86 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) 71)) (-3490 (((-849) $) 127 (|has| |#1| (-342))) (((-769 (-849)) $) 84 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) 31)) (-3579 (($) 135 (|has| |#1| (-342)))) (-2377 (((-108) $) 134 (|has| |#1| (-342)))) (-2549 ((|#1| $) 141) (($ $ (-849)) 138 (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) 113 (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-3769 (((-1080 |#1|) $) 145) (((-1080 $) $ (-849)) 139 (|has| |#1| (-342)))) (-3999 (((-849) $) 110 (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) 131 (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) 130 (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) 129 (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) 132 (|has| |#1| (-342)))) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-3797 (($) 114 (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) 111 (|has| |#1| (-342)))) (-3017 (((-108) $) 93)) (-4146 (((-1031) $) 10)) (-1384 (($) 133 (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 121 (|has| |#1| (-342)))) (-1974 (((-392 $) $) 74)) (-2239 (((-769 (-849))) 91) (((-849)) 143)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-3660 (((-707) $) 126 (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) 85 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) 99)) (-2193 (($ $) 118 (|has| |#1| (-342))) (($ $ (-707)) 116 (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) 92) (((-849) $) 142)) (-3436 (((-1080 |#1|)) 144)) (-3923 (($) 123 (|has| |#1| (-342)))) (-3540 (($) 136 (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) 148) (((-627 |#1|) (-1165 $)) 147)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 120 (|has| |#1| (-342)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ |#1|) 102)) (-2446 (($ $) 119 (|has| |#1| (-342))) (((-3 $ "failed") $) 83 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) 29)) (-1245 (((-1165 $)) 150) (((-1165 $) (-849)) 149)) (-1842 (((-108) $ $) 39)) (-2567 (((-108) $) 95)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2687 (($ $) 89 (|has| |#1| (-342))) (($ $ (-707)) 88 (|has| |#1| (-342)))) (-2244 (($ $) 117 (|has| |#1| (-342))) (($ $ (-707)) 115 (|has| |#1| (-342)))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 64) (($ $ |#1|) 98)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-303 |#1|) (-1196) (-337)) (T -303))
-((-1245 (*1 *2) (-12 (-4 *3 (-337)) (-5 *2 (-1165 *1)) (-4 *1 (-303 *3)))) (-1245 (*1 *2 *3) (-12 (-5 *3 (-849)) (-4 *4 (-337)) (-5 *2 (-1165 *1)) (-4 *1 (-303 *4)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1165 *3)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-303 *4)) (-4 *4 (-337)) (-5 *2 (-627 *4)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-4 *1 (-303 *3)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3)))) (-3436 (*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3)))) (-2239 (*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-849)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-849)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337)))) (-3769 (*1 *2 *1 *3) (-12 (-5 *3 (-849)) (-4 *4 (-342)) (-4 *4 (-337)) (-5 *2 (-1080 *1)) (-4 *1 (-303 *4)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)))) (-3540 (*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))) (-3579 (*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-108)))) (-1384 (*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-342)) (-4 *1 (-303 *3)) (-4 *3 (-337)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-1080 *3)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-1080 *3)))) (-3959 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-1080 *3)))))
-(-13 (-1182 |t#1|) (-961 |t#1|) (-10 -8 (-15 -1245 ((-1165 $))) (-15 -1245 ((-1165 $) (-849))) (-15 -1816 ((-1165 |t#1|) $)) (-15 -1816 ((-627 |t#1|) (-1165 $))) (-15 -3190 ($ (-1165 |t#1|))) (-15 -3769 ((-1080 |t#1|) $)) (-15 -3436 ((-1080 |t#1|))) (-15 -2239 ((-849))) (-15 -2098 ((-849) $)) (-15 -2549 (|t#1| $)) (-15 -1927 (|t#1| $)) (IF (|has| |t#1| (-342)) (PROGN (-6 (-323)) (-15 -3769 ((-1080 $) $ (-849))) (-15 -2549 ($ $ (-849))) (-15 -1927 ($ $ (-849))) (-15 -3540 ($)) (-15 -3579 ($)) (-15 -2377 ((-108) $)) (-15 -1384 ($)) (-15 -3734 ($ $ (-1080 |t#1|))) (-15 -3361 ((-1080 |t#1|) $)) (-15 -3959 ((-1080 |t#1|) $)) (-15 -3959 ((-3 (-1080 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) . T) ((-210) |has| |#1| (-342)) ((-220) . T) ((-265) . T) ((-282) . T) ((-1182 |#1|) . T) ((-337) . T) ((-376) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-342) |has| |#1| (-342)) ((-323) |has| |#1| (-342)) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-342)) ((-1123) . T) ((-1172 |#1|) . T))
-((-1422 (((-108) $ $) NIL)) (-4126 (($ (-1083) $) 88)) (-2759 (($) 76)) (-1430 (((-1031) (-1031)) 11)) (-3978 (($) 77)) (-2812 (($) 90) (($ (-290 (-636))) 96) (($ (-290 (-638))) 93) (($ (-290 (-631))) 99) (($ (-290 (-353))) 105) (($ (-290 (-521))) 102) (($ (-290 (-154 (-353)))) 108)) (-3186 (($ (-1083) $) 89)) (-2320 (($ (-587 (-791))) 79)) (-2277 (((-1170) $) 73)) (-4173 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1779 (($ (-1031)) 45)) (-3407 (((-1017) $) 25)) (-1812 (($ (-1006 (-880 (-521))) $) 85) (($ (-1006 (-880 (-521))) (-880 (-521)) $) 86)) (-1364 (($ (-1031)) 87)) (-2592 (($ (-1083) $) 110) (($ (-1083) $ $) 111)) (-2545 (($ (-1084) (-587 (-1084))) 75)) (-1271 (($ (-1067)) 82) (($ (-587 (-1067))) 80)) (-2223 (((-791) $) 113)) (-2080 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-880 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1447 (-108)) (|:| -3434 (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |blockBranch| (-587 $)) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -1403 (-1006 (-880 (-521)))) (|:| |span| (-880 (-521))) (|:| |body| $))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2890 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-791)))) $) 37)) (-1892 (($ (-1067)) 182)) (-3495 (($ (-587 $)) 109)) (-2275 (($ (-1084) (-1067)) 115) (($ (-1084) (-290 (-638))) 155) (($ (-1084) (-290 (-636))) 156) (($ (-1084) (-290 (-631))) 157) (($ (-1084) (-627 (-638))) 118) (($ (-1084) (-627 (-636))) 121) (($ (-1084) (-627 (-631))) 124) (($ (-1084) (-1165 (-638))) 127) (($ (-1084) (-1165 (-636))) 130) (($ (-1084) (-1165 (-631))) 133) (($ (-1084) (-627 (-290 (-638)))) 136) (($ (-1084) (-627 (-290 (-636)))) 139) (($ (-1084) (-627 (-290 (-631)))) 142) (($ (-1084) (-1165 (-290 (-638)))) 145) (($ (-1084) (-1165 (-290 (-636)))) 148) (($ (-1084) (-1165 (-290 (-631)))) 151) (($ (-1084) (-587 (-880 (-521))) (-290 (-638))) 152) (($ (-1084) (-587 (-880 (-521))) (-290 (-636))) 153) (($ (-1084) (-587 (-880 (-521))) (-290 (-631))) 154) (($ (-1084) (-290 (-521))) 179) (($ (-1084) (-290 (-353))) 180) (($ (-1084) (-290 (-154 (-353)))) 181) (($ (-1084) (-627 (-290 (-521)))) 160) (($ (-1084) (-627 (-290 (-353)))) 163) (($ (-1084) (-627 (-290 (-154 (-353))))) 166) (($ (-1084) (-1165 (-290 (-521)))) 169) (($ (-1084) (-1165 (-290 (-353)))) 172) (($ (-1084) (-1165 (-290 (-154 (-353))))) 175) (($ (-1084) (-587 (-880 (-521))) (-290 (-521))) 176) (($ (-1084) (-587 (-880 (-521))) (-290 (-353))) 177) (($ (-1084) (-587 (-880 (-521))) (-290 (-154 (-353)))) 178)) (-1549 (((-108) $ $) NIL)))
-(((-304) (-13 (-1013) (-10 -8 (-15 -2223 ((-791) $)) (-15 -1812 ($ (-1006 (-880 (-521))) $)) (-15 -1812 ($ (-1006 (-880 (-521))) (-880 (-521)) $)) (-15 -4126 ($ (-1083) $)) (-15 -3186 ($ (-1083) $)) (-15 -1779 ($ (-1031))) (-15 -1364 ($ (-1031))) (-15 -1271 ($ (-1067))) (-15 -1271 ($ (-587 (-1067)))) (-15 -1892 ($ (-1067))) (-15 -2812 ($)) (-15 -2812 ($ (-290 (-636)))) (-15 -2812 ($ (-290 (-638)))) (-15 -2812 ($ (-290 (-631)))) (-15 -2812 ($ (-290 (-353)))) (-15 -2812 ($ (-290 (-521)))) (-15 -2812 ($ (-290 (-154 (-353))))) (-15 -2592 ($ (-1083) $)) (-15 -2592 ($ (-1083) $ $)) (-15 -2275 ($ (-1084) (-1067))) (-15 -2275 ($ (-1084) (-290 (-638)))) (-15 -2275 ($ (-1084) (-290 (-636)))) (-15 -2275 ($ (-1084) (-290 (-631)))) (-15 -2275 ($ (-1084) (-627 (-638)))) (-15 -2275 ($ (-1084) (-627 (-636)))) (-15 -2275 ($ (-1084) (-627 (-631)))) (-15 -2275 ($ (-1084) (-1165 (-638)))) (-15 -2275 ($ (-1084) (-1165 (-636)))) (-15 -2275 ($ (-1084) (-1165 (-631)))) (-15 -2275 ($ (-1084) (-627 (-290 (-638))))) (-15 -2275 ($ (-1084) (-627 (-290 (-636))))) (-15 -2275 ($ (-1084) (-627 (-290 (-631))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-638))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-636))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-631))))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-638)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-636)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-631)))) (-15 -2275 ($ (-1084) (-290 (-521)))) (-15 -2275 ($ (-1084) (-290 (-353)))) (-15 -2275 ($ (-1084) (-290 (-154 (-353))))) (-15 -2275 ($ (-1084) (-627 (-290 (-521))))) (-15 -2275 ($ (-1084) (-627 (-290 (-353))))) (-15 -2275 ($ (-1084) (-627 (-290 (-154 (-353)))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-521))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-353))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-154 (-353)))))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-521)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-353)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-154 (-353))))) (-15 -3495 ($ (-587 $))) (-15 -2759 ($)) (-15 -3978 ($)) (-15 -2320 ($ (-587 (-791)))) (-15 -2545 ($ (-1084) (-587 (-1084)))) (-15 -4173 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2080 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-880 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1447 (-108)) (|:| -3434 (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |blockBranch| (-587 $)) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -1403 (-1006 (-880 (-521)))) (|:| |span| (-880 (-521))) (|:| |body| $))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2890 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-791)))) $)) (-15 -2277 ((-1170) $)) (-15 -3407 ((-1017) $)) (-15 -1430 ((-1031) (-1031)))))) (T -304))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-304)))) (-1812 (*1 *1 *2 *1) (-12 (-5 *2 (-1006 (-880 (-521)))) (-5 *1 (-304)))) (-1812 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1006 (-880 (-521)))) (-5 *3 (-880 (-521))) (-5 *1 (-304)))) (-4126 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-3186 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))) (-1271 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))) (-1271 (*1 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-304)))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))) (-2812 (*1 *1) (-5 *1 (-304))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-290 (-636))) (-5 *1 (-304)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-290 (-638))) (-5 *1 (-304)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-290 (-631))) (-5 *1 (-304)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-304)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-304)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-304)))) (-2592 (*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-2592 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-638))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-636))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-631))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-638))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-636))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-631))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-638))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-636))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-631))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-638)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-636)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-631)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-638)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-636)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-631)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-290 (-638))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-290 (-636))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-290 (-631))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-521))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-353))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-154 (-353)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-521)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-353)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-154 (-353))))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-521)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-353)))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-154 (-353))))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-290 (-521))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-290 (-353))) (-5 *1 (-304)))) (-2275 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-290 (-154 (-353)))) (-5 *1 (-304)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-5 *1 (-304)))) (-2759 (*1 *1) (-5 *1 (-304))) (-3978 (*1 *1) (-5 *1 (-304))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-304)))) (-2545 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-304)))) (-4173 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-304)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-880 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| (-304)) (|:| |elseClause| (-304)))) (|:| |returnBranch| (-2 (|:| -1447 (-108)) (|:| -3434 (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |blockBranch| (-587 (-304))) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -1403 (-1006 (-880 (-521)))) (|:| |span| (-880 (-521))) (|:| |body| (-304)))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| (-304)))) (|:| |commonBranch| (-2 (|:| -2890 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-791))))) (-5 *1 (-304)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-304)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-304)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ((-791) $)) (-15 -1812 ($ (-1006 (-880 (-521))) $)) (-15 -1812 ($ (-1006 (-880 (-521))) (-880 (-521)) $)) (-15 -4126 ($ (-1083) $)) (-15 -3186 ($ (-1083) $)) (-15 -1779 ($ (-1031))) (-15 -1364 ($ (-1031))) (-15 -1271 ($ (-1067))) (-15 -1271 ($ (-587 (-1067)))) (-15 -1892 ($ (-1067))) (-15 -2812 ($)) (-15 -2812 ($ (-290 (-636)))) (-15 -2812 ($ (-290 (-638)))) (-15 -2812 ($ (-290 (-631)))) (-15 -2812 ($ (-290 (-353)))) (-15 -2812 ($ (-290 (-521)))) (-15 -2812 ($ (-290 (-154 (-353))))) (-15 -2592 ($ (-1083) $)) (-15 -2592 ($ (-1083) $ $)) (-15 -2275 ($ (-1084) (-1067))) (-15 -2275 ($ (-1084) (-290 (-638)))) (-15 -2275 ($ (-1084) (-290 (-636)))) (-15 -2275 ($ (-1084) (-290 (-631)))) (-15 -2275 ($ (-1084) (-627 (-638)))) (-15 -2275 ($ (-1084) (-627 (-636)))) (-15 -2275 ($ (-1084) (-627 (-631)))) (-15 -2275 ($ (-1084) (-1165 (-638)))) (-15 -2275 ($ (-1084) (-1165 (-636)))) (-15 -2275 ($ (-1084) (-1165 (-631)))) (-15 -2275 ($ (-1084) (-627 (-290 (-638))))) (-15 -2275 ($ (-1084) (-627 (-290 (-636))))) (-15 -2275 ($ (-1084) (-627 (-290 (-631))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-638))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-636))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-631))))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-638)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-636)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-631)))) (-15 -2275 ($ (-1084) (-290 (-521)))) (-15 -2275 ($ (-1084) (-290 (-353)))) (-15 -2275 ($ (-1084) (-290 (-154 (-353))))) (-15 -2275 ($ (-1084) (-627 (-290 (-521))))) (-15 -2275 ($ (-1084) (-627 (-290 (-353))))) (-15 -2275 ($ (-1084) (-627 (-290 (-154 (-353)))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-521))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-353))))) (-15 -2275 ($ (-1084) (-1165 (-290 (-154 (-353)))))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-521)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-353)))) (-15 -2275 ($ (-1084) (-587 (-880 (-521))) (-290 (-154 (-353))))) (-15 -3495 ($ (-587 $))) (-15 -2759 ($)) (-15 -3978 ($)) (-15 -2320 ($ (-587 (-791)))) (-15 -2545 ($ (-1084) (-587 (-1084)))) (-15 -4173 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2080 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1084)) (|:| |arrayIndex| (-587 (-880 (-521)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1084)) (|:| |rand| (-791)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1083)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1447 (-108)) (|:| -3434 (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791)))))) (|:| |blockBranch| (-587 $)) (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067)) (|:| |forBranch| (-2 (|:| -1403 (-1006 (-880 (-521)))) (|:| |span| (-880 (-521))) (|:| |body| $))) (|:| |labelBranch| (-1031)) (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2890 (-1084)) (|:| |contents| (-587 (-1084))))) (|:| |printBranch| (-587 (-791)))) $)) (-15 -2277 ((-1170) $)) (-15 -3407 ((-1017) $)) (-15 -1430 ((-1031) (-1031)))))
-((-1422 (((-108) $ $) NIL)) (-1920 (((-108) $) 11)) (-2752 (($ |#1|) 8)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2764 (($ |#1|) 9)) (-2223 (((-791) $) 17)) (-1640 ((|#1| $) 12)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 19)))
-(((-305 |#1|) (-13 (-783) (-10 -8 (-15 -2752 ($ |#1|)) (-15 -2764 ($ |#1|)) (-15 -1920 ((-108) $)) (-15 -1640 (|#1| $)))) (-783)) (T -305))
-((-2752 (*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-783)))) (-2764 (*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-783)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-783)))) (-1640 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-783)))))
-(-13 (-783) (-10 -8 (-15 -2752 ($ |#1|)) (-15 -2764 ($ |#1|)) (-15 -1920 ((-108) $)) (-15 -1640 (|#1| $))))
-((-1599 (((-304) (-1084) (-880 (-521))) 22)) (-2225 (((-304) (-1084) (-880 (-521))) 26)) (-1969 (((-304) (-1084) (-1006 (-880 (-521))) (-1006 (-880 (-521)))) 25) (((-304) (-1084) (-880 (-521)) (-880 (-521))) 23)) (-2684 (((-304) (-1084) (-880 (-521))) 30)))
-(((-306) (-10 -7 (-15 -1599 ((-304) (-1084) (-880 (-521)))) (-15 -1969 ((-304) (-1084) (-880 (-521)) (-880 (-521)))) (-15 -1969 ((-304) (-1084) (-1006 (-880 (-521))) (-1006 (-880 (-521))))) (-15 -2225 ((-304) (-1084) (-880 (-521)))) (-15 -2684 ((-304) (-1084) (-880 (-521)))))) (T -306))
-((-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))) (-2225 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))) (-1969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-1006 (-880 (-521)))) (-5 *2 (-304)) (-5 *1 (-306)))) (-1969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304)) (-5 *1 (-306)))))
-(-10 -7 (-15 -1599 ((-304) (-1084) (-880 (-521)))) (-15 -1969 ((-304) (-1084) (-880 (-521)) (-880 (-521)))) (-15 -1969 ((-304) (-1084) (-1006 (-880 (-521))) (-1006 (-880 (-521))))) (-15 -2225 ((-304) (-1084) (-880 (-521)))) (-15 -2684 ((-304) (-1084) (-880 (-521)))))
-((-1393 (((-310 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-310 |#1| |#2| |#3| |#4|)) 31)))
-(((-307 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1393 ((-310 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-310 |#1| |#2| |#3| |#4|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|) (-337) (-1141 |#5|) (-1141 (-381 |#6|)) (-316 |#5| |#6| |#7|)) (T -307))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-310 *5 *6 *7 *8)) (-4 *5 (-337)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *9 (-337)) (-4 *10 (-1141 *9)) (-4 *11 (-1141 (-381 *10))) (-5 *2 (-310 *9 *10 *11 *12)) (-5 *1 (-307 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-316 *9 *10 *11)))))
-(-10 -7 (-15 -1393 ((-310 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-310 |#1| |#2| |#3| |#4|))))
-((-3955 (((-108) $) 14)))
-(((-308 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3955 ((-108) |#1|))) (-309 |#2| |#3| |#4| |#5|) (-337) (-1141 |#2|) (-1141 (-381 |#3|)) (-316 |#2| |#3| |#4|)) (T -308))
-NIL
-(-10 -8 (-15 -3955 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3859 (($ $) 26)) (-3955 (((-108) $) 25)) (-4024 (((-1067) $) 9)) (-2447 (((-387 |#2| (-381 |#2|) |#3| |#4|) $) 32)) (-4146 (((-1031) $) 10)) (-1384 (((-3 |#4| "failed") $) 24)) (-2315 (($ (-387 |#2| (-381 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-521)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3593 (((-2 (|:| -1836 (-387 |#2| (-381 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20)))
-(((-309 |#1| |#2| |#3| |#4|) (-1196) (-337) (-1141 |t#1|) (-1141 (-381 |t#2|)) (-316 |t#1| |t#2| |t#3|)) (T -309))
-((-2447 (*1 *2 *1) (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-387 *4 (-381 *4) *5 *6)))) (-2315 (*1 *1 *2) (-12 (-5 *2 (-387 *4 (-381 *4) *5 *6)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-4 *3 (-337)) (-4 *1 (-309 *3 *4 *5 *6)))) (-2315 (*1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *1 (-309 *3 *4 *5 *2)) (-4 *2 (-316 *3 *4 *5)))) (-2315 (*1 *1 *2 *2) (-12 (-4 *2 (-337)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))) (-4 *1 (-309 *2 *3 *4 *5)) (-4 *5 (-316 *2 *3 *4)))) (-2315 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-521)) (-4 *2 (-337)) (-4 *4 (-1141 *2)) (-4 *5 (-1141 (-381 *4))) (-4 *1 (-309 *2 *4 *5 *6)) (-4 *6 (-316 *2 *4 *5)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-2 (|:| -1836 (-387 *4 (-381 *4) *5 *6)) (|:| |principalPart| *6))))) (-3859 (*1 *1 *1) (-12 (-4 *1 (-309 *2 *3 *4 *5)) (-4 *2 (-337)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))) (-4 *5 (-316 *2 *3 *4)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-108)))) (-1384 (*1 *2 *1) (|partial| -12 (-4 *1 (-309 *3 *4 *5 *2)) (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *2 (-316 *3 *4 *5)))) (-2315 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-337)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-4 *1 (-309 *4 *3 *5 *2)) (-4 *2 (-316 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2447 ((-387 |t#2| (-381 |t#2|) |t#3| |t#4|) $)) (-15 -2315 ($ (-387 |t#2| (-381 |t#2|) |t#3| |t#4|))) (-15 -2315 ($ |t#4|)) (-15 -2315 ($ |t#1| |t#1|)) (-15 -2315 ($ |t#1| |t#1| (-521))) (-15 -3593 ((-2 (|:| -1836 (-387 |t#2| (-381 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3859 ($ $)) (-15 -3955 ((-108) $)) (-15 -1384 ((-3 |t#4| "failed") $)) (-15 -2315 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3859 (($ $) 32)) (-3955 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-1500 (((-1165 |#4|) $) 124)) (-2447 (((-387 |#2| (-381 |#2|) |#3| |#4|) $) 30)) (-4146 (((-1031) $) NIL)) (-1384 (((-3 |#4| "failed") $) 35)) (-2622 (((-1165 |#4|) $) 117)) (-2315 (($ (-387 |#2| (-381 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-521)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-3593 (((-2 (|:| -1836 (-387 |#2| (-381 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2223 (((-791) $) 17)) (-3562 (($) 14 T CONST)) (-1549 (((-108) $ $) 20)) (-1639 (($ $) 27) (($ $ $) NIL)) (-1628 (($ $ $) 25)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 23)))
-(((-310 |#1| |#2| |#3| |#4|) (-13 (-309 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2622 ((-1165 |#4|) $)) (-15 -1500 ((-1165 |#4|) $)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -310))
-((-2622 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6)) (-4 *6 (-316 *3 *4 *5)))) (-1500 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6)) (-4 *6 (-316 *3 *4 *5)))))
-(-13 (-309 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2622 ((-1165 |#4|) $)) (-15 -1500 ((-1165 |#4|) $))))
-((-2313 (($ $ (-1084) |#2|) NIL) (($ $ (-587 (-1084)) (-587 |#2|)) 18) (($ $ (-587 (-269 |#2|))) 14) (($ $ (-269 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-587 |#2|) (-587 |#2|)) NIL)) (-2550 (($ $ |#2|) 11)))
-(((-311 |#1| |#2|) (-10 -8 (-15 -2550 (|#1| |#1| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#2| |#2|)) (-15 -2313 (|#1| |#1| (-269 |#2|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 |#2|))) (-15 -2313 (|#1| |#1| (-1084) |#2|))) (-312 |#2|) (-1013)) (T -311))
-NIL
-(-10 -8 (-15 -2550 (|#1| |#1| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#2| |#2|)) (-15 -2313 (|#1| |#1| (-269 |#2|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 |#2|))) (-15 -2313 (|#1| |#1| (-1084) |#2|)))
-((-1393 (($ (-1 |#1| |#1|) $) 6)) (-2313 (($ $ (-1084) |#1|) 17 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 16 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-587 (-269 |#1|))) 15 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 14 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-284 |#1|))) (($ $ (-587 |#1|) (-587 |#1|)) 12 (|has| |#1| (-284 |#1|)))) (-2550 (($ $ |#1|) 11 (|has| |#1| (-261 |#1| |#1|)))))
-(((-312 |#1|) (-1196) (-1013)) (T -312))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1013)))))
-(-13 (-10 -8 (-15 -1393 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-261 |t#1| |t#1|)) (-6 (-261 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-284 |t#1|)) (-6 (-284 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-482 (-1084) |t#1|)) (-6 (-482 (-1084) |t#1|)) |%noBranch|)))
-(((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-1084)) $) NIL)) (-2082 (((-108)) 88) (((-108) (-108)) 89)) (-1946 (((-587 (-560 $)) $) NIL)) (-2910 (($ $) NIL)) (-2775 (($ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3304 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-1984 (($ $) NIL)) (-2886 (($ $) NIL)) (-2752 (($ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-560 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-290 |#3|)) 70) (((-3 $ "failed") (-1084)) 94) (((-3 $ "failed") (-290 (-521))) 57 (|has| |#3| (-961 (-521)))) (((-3 $ "failed") (-381 (-880 (-521)))) 63 (|has| |#3| (-961 (-521)))) (((-3 $ "failed") (-880 (-521))) 58 (|has| |#3| (-961 (-521)))) (((-3 $ "failed") (-290 (-353))) 75 (|has| |#3| (-961 (-353)))) (((-3 $ "failed") (-381 (-880 (-353)))) 81 (|has| |#3| (-961 (-353)))) (((-3 $ "failed") (-880 (-353))) 76 (|has| |#3| (-961 (-353))))) (-1496 (((-560 $) $) NIL) ((|#3| $) NIL) (($ (-290 |#3|)) 71) (($ (-1084)) 95) (($ (-290 (-521))) 59 (|has| |#3| (-961 (-521)))) (($ (-381 (-880 (-521)))) 64 (|has| |#3| (-961 (-521)))) (($ (-880 (-521))) 60 (|has| |#3| (-961 (-521)))) (($ (-290 (-353))) 77 (|has| |#3| (-961 (-353)))) (($ (-381 (-880 (-353)))) 82 (|has| |#3| (-961 (-353)))) (($ (-880 (-353))) 78 (|has| |#3| (-961 (-353))))) (-2783 (((-3 $ "failed") $) NIL)) (-2840 (($) 10)) (-2707 (($ $) NIL) (($ (-587 $)) NIL)) (-2788 (((-587 (-110)) $) NIL)) (-3928 (((-110) (-110)) NIL)) (-3637 (((-108) $) NIL)) (-3924 (((-108) $) NIL (|has| $ (-961 (-521))))) (-3159 (((-1080 $) (-560 $)) NIL (|has| $ (-970)))) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 $ $) (-560 $)) NIL)) (-1656 (((-3 (-560 $) "failed") $) NIL)) (-3551 (($ $) 91)) (-1253 (($ $) NIL)) (-4024 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) NIL)) (-2911 (($ (-110) $) 90) (($ (-110) (-587 $)) NIL)) (-4013 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) NIL)) (-4151 (((-707) $) NIL)) (-4146 (((-1031) $) NIL)) (-3457 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-3265 (($ $) NIL)) (-2060 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2313 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2550 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1935 (($ $) NIL) (($ $ $) NIL)) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL)) (-3436 (($ $) NIL (|has| $ (-970)))) (-2898 (($ $) NIL)) (-2764 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-560 $)) NIL) (($ |#3|) NIL) (($ (-521)) NIL) (((-290 |#3|) $) 93)) (-1592 (((-707)) NIL)) (-2342 (($ $) NIL) (($ (-587 $)) NIL)) (-1224 (((-108) (-110)) NIL)) (-2838 (($ $) NIL)) (-2817 (($ $) NIL)) (-2827 (($ $) NIL)) (-4012 (($ $) NIL)) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3562 (($) 92 T CONST)) (-3572 (($) 22 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-313 |#1| |#2| |#3|) (-13 (-277) (-37 |#3|) (-961 |#3|) (-828 (-1084)) (-10 -8 (-15 -1496 ($ (-290 |#3|))) (-15 -1296 ((-3 $ "failed") (-290 |#3|))) (-15 -1496 ($ (-1084))) (-15 -1296 ((-3 $ "failed") (-1084))) (-15 -2223 ((-290 |#3|) $)) (IF (|has| |#3| (-961 (-521))) (PROGN (-15 -1496 ($ (-290 (-521)))) (-15 -1296 ((-3 $ "failed") (-290 (-521)))) (-15 -1496 ($ (-381 (-880 (-521))))) (-15 -1296 ((-3 $ "failed") (-381 (-880 (-521))))) (-15 -1496 ($ (-880 (-521)))) (-15 -1296 ((-3 $ "failed") (-880 (-521))))) |%noBranch|) (IF (|has| |#3| (-961 (-353))) (PROGN (-15 -1496 ($ (-290 (-353)))) (-15 -1296 ((-3 $ "failed") (-290 (-353)))) (-15 -1496 ($ (-381 (-880 (-353))))) (-15 -1296 ((-3 $ "failed") (-381 (-880 (-353))))) (-15 -1496 ($ (-880 (-353)))) (-15 -1296 ((-3 $ "failed") (-880 (-353))))) |%noBranch|) (-15 -4012 ($ $)) (-15 -1984 ($ $)) (-15 -3265 ($ $)) (-15 -1253 ($ $)) (-15 -3551 ($ $)) (-15 -2752 ($ $)) (-15 -2764 ($ $)) (-15 -2775 ($ $)) (-15 -2817 ($ $)) (-15 -2827 ($ $)) (-15 -2838 ($ $)) (-15 -2886 ($ $)) (-15 -2898 ($ $)) (-15 -2910 ($ $)) (-15 -2840 ($)) (-15 -4085 ((-587 (-1084)) $)) (-15 -2082 ((-108))) (-15 -2082 ((-108) (-108))))) (-587 (-1084)) (-587 (-1084)) (-361)) (T -313))
-((-1496 (*1 *1 *2) (-12 (-5 *2 (-290 *5)) (-4 *5 (-361)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 *5)) (-4 *5 (-361)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 *2)) (-14 *4 (-587 *2)) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 *2)) (-14 *4 (-587 *2)) (-4 *5 (-361)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-290 *5)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-521)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-880 (-521)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-880 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-521))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-353)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-880 (-353)))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-880 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-353))) (-5 *1 (-313 *3 *4 *5)) (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-4012 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-1984 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-3265 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-1253 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-3551 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2752 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2764 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2775 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2817 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2827 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2838 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2886 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2898 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-2840 (*1 *1) (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084))) (-14 *3 (-587 (-1084))) (-4 *4 (-361)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-313 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-361)))) (-2082 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))) (-2082 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361)))))
-(-13 (-277) (-37 |#3|) (-961 |#3|) (-828 (-1084)) (-10 -8 (-15 -1496 ($ (-290 |#3|))) (-15 -1296 ((-3 $ "failed") (-290 |#3|))) (-15 -1496 ($ (-1084))) (-15 -1296 ((-3 $ "failed") (-1084))) (-15 -2223 ((-290 |#3|) $)) (IF (|has| |#3| (-961 (-521))) (PROGN (-15 -1496 ($ (-290 (-521)))) (-15 -1296 ((-3 $ "failed") (-290 (-521)))) (-15 -1496 ($ (-381 (-880 (-521))))) (-15 -1296 ((-3 $ "failed") (-381 (-880 (-521))))) (-15 -1496 ($ (-880 (-521)))) (-15 -1296 ((-3 $ "failed") (-880 (-521))))) |%noBranch|) (IF (|has| |#3| (-961 (-353))) (PROGN (-15 -1496 ($ (-290 (-353)))) (-15 -1296 ((-3 $ "failed") (-290 (-353)))) (-15 -1496 ($ (-381 (-880 (-353))))) (-15 -1296 ((-3 $ "failed") (-381 (-880 (-353))))) (-15 -1496 ($ (-880 (-353)))) (-15 -1296 ((-3 $ "failed") (-880 (-353))))) |%noBranch|) (-15 -4012 ($ $)) (-15 -1984 ($ $)) (-15 -3265 ($ $)) (-15 -1253 ($ $)) (-15 -3551 ($ $)) (-15 -2752 ($ $)) (-15 -2764 ($ $)) (-15 -2775 ($ $)) (-15 -2817 ($ $)) (-15 -2827 ($ $)) (-15 -2838 ($ $)) (-15 -2886 ($ $)) (-15 -2898 ($ $)) (-15 -2910 ($ $)) (-15 -2840 ($)) (-15 -4085 ((-587 (-1084)) $)) (-15 -2082 ((-108))) (-15 -2082 ((-108) (-108)))))
-((-1393 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1393 (|#8| (-1 |#5| |#1|) |#4|))) (-1123) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|) (-1123) (-1141 |#5|) (-1141 (-381 |#6|)) (-316 |#5| |#6| |#7|)) (T -314))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1123)) (-4 *8 (-1123)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *9 (-1141 *8)) (-4 *2 (-316 *8 *9 *10)) (-5 *1 (-314 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-316 *5 *6 *7)) (-4 *10 (-1141 (-381 *9))))))
-(-10 -7 (-15 -1393 (|#8| (-1 |#5| |#1|) |#4|)))
-((-1402 (((-2 (|:| |num| (-1165 |#3|)) (|:| |den| |#3|)) $) 38)) (-3190 (($ (-1165 (-381 |#3|)) (-1165 $)) NIL) (($ (-1165 (-381 |#3|))) NIL) (($ (-1165 |#3|) |#3|) 159)) (-1813 (((-1165 $) (-1165 $)) 143)) (-1367 (((-587 (-587 |#2|))) 116)) (-3536 (((-108) |#2| |#2|) 72)) (-1563 (($ $) 137)) (-2955 (((-707)) 31)) (-2147 (((-1165 $) (-1165 $)) 196)) (-2083 (((-587 (-880 |#2|)) (-1084)) 109)) (-3693 (((-108) $) 156)) (-2655 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-1291 (((-3 |#3| "failed")) 49)) (-3511 (((-707)) 168)) (-2550 ((|#2| $ |#2| |#2|) 130)) (-3550 (((-3 |#3| "failed")) 67)) (-2193 (($ $ (-1 (-381 |#3|) (-381 |#3|)) (-707)) NIL) (($ $ (-1 (-381 |#3|) (-381 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-3758 (((-1165 $) (-1165 $)) 149)) (-3888 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-3683 (((-108)) 33)))
-(((-315 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -1367 ((-587 (-587 |#2|)))) (-15 -2083 ((-587 (-880 |#2|)) (-1084))) (-15 -3888 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1291 ((-3 |#3| "failed"))) (-15 -3550 ((-3 |#3| "failed"))) (-15 -2550 (|#2| |#1| |#2| |#2|)) (-15 -1563 (|#1| |#1|)) (-15 -3190 (|#1| (-1165 |#3|) |#3|)) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2655 ((-108) |#1| |#3|)) (-15 -2655 ((-108) |#1| |#2|)) (-15 -1402 ((-2 (|:| |num| (-1165 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1813 ((-1165 |#1|) (-1165 |#1|))) (-15 -2147 ((-1165 |#1|) (-1165 |#1|))) (-15 -3758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2655 ((-108) |#1|)) (-15 -3693 ((-108) |#1|)) (-15 -3536 ((-108) |#2| |#2|)) (-15 -3683 ((-108))) (-15 -3511 ((-707))) (-15 -2955 ((-707))) (-15 -2193 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)))) (-15 -2193 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)) (-707))) (-15 -3190 (|#1| (-1165 (-381 |#3|)))) (-15 -3190 (|#1| (-1165 (-381 |#3|)) (-1165 |#1|)))) (-316 |#2| |#3| |#4|) (-1123) (-1141 |#2|) (-1141 (-381 |#3|))) (T -315))
-((-2955 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))) (-3511 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))) (-3683 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))) (-3536 (*1 *2 *3 *3) (-12 (-4 *3 (-1123)) (-4 *5 (-1141 *3)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-108)) (-5 *1 (-315 *4 *3 *5 *6)) (-4 *4 (-316 *3 *5 *6)))) (-3550 (*1 *2) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5)) (-4 *3 (-316 *4 *2 *5)))) (-1291 (*1 *2) (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5)) (-4 *3 (-316 *4 *2 *5)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *5 (-1123)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-5 *2 (-587 (-880 *5))) (-5 *1 (-315 *4 *5 *6 *7)) (-4 *4 (-316 *5 *6 *7)))) (-1367 (*1 *2) (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-587 (-587 *4))) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6)))))
-(-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -1367 ((-587 (-587 |#2|)))) (-15 -2083 ((-587 (-880 |#2|)) (-1084))) (-15 -3888 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1291 ((-3 |#3| "failed"))) (-15 -3550 ((-3 |#3| "failed"))) (-15 -2550 (|#2| |#1| |#2| |#2|)) (-15 -1563 (|#1| |#1|)) (-15 -3190 (|#1| (-1165 |#3|) |#3|)) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2655 ((-108) |#1| |#3|)) (-15 -2655 ((-108) |#1| |#2|)) (-15 -1402 ((-2 (|:| |num| (-1165 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1813 ((-1165 |#1|) (-1165 |#1|))) (-15 -2147 ((-1165 |#1|) (-1165 |#1|))) (-15 -3758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2655 ((-108) |#1|)) (-15 -3693 ((-108) |#1|)) (-15 -3536 ((-108) |#2| |#2|)) (-15 -3683 ((-108))) (-15 -3511 ((-707))) (-15 -2955 ((-707))) (-15 -2193 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)))) (-15 -2193 (|#1| |#1| (-1 (-381 |#3|) (-381 |#3|)) (-707))) (-15 -3190 (|#1| (-1165 (-381 |#3|)))) (-15 -3190 (|#1| (-1165 (-381 |#3|)) (-1165 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1402 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 196)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 93 (|has| (-381 |#2|) (-337)))) (-1954 (($ $) 94 (|has| (-381 |#2|) (-337)))) (-3795 (((-108) $) 96 (|has| (-381 |#2|) (-337)))) (-1299 (((-627 (-381 |#2|)) (-1165 $)) 46) (((-627 (-381 |#2|))) 61)) (-1927 (((-381 |#2|) $) 52)) (-2130 (((-1093 (-849) (-707)) (-521)) 147 (|has| (-381 |#2|) (-323)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 113 (|has| (-381 |#2|) (-337)))) (-2337 (((-392 $) $) 114 (|has| (-381 |#2|) (-337)))) (-2165 (((-108) $ $) 104 (|has| (-381 |#2|) (-337)))) (-1659 (((-707)) 87 (|has| (-381 |#2|) (-342)))) (-3723 (((-108)) 213)) (-1918 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 169 (|has| (-381 |#2|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 167 (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-3 (-381 |#2|) "failed") $) 166)) (-1496 (((-521) $) 170 (|has| (-381 |#2|) (-961 (-521)))) (((-381 (-521)) $) 168 (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-381 |#2|) $) 165)) (-3190 (($ (-1165 (-381 |#2|)) (-1165 $)) 48) (($ (-1165 (-381 |#2|))) 64) (($ (-1165 |#2|) |#2|) 189)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-381 |#2|) (-323)))) (-2302 (($ $ $) 108 (|has| (-381 |#2|) (-337)))) (-3998 (((-627 (-381 |#2|)) $ (-1165 $)) 53) (((-627 (-381 |#2|)) $) 59)) (-1961 (((-627 (-521)) (-627 $)) 164 (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 163 (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-381 |#2|))) (|:| |vec| (-1165 (-381 |#2|)))) (-627 $) (-1165 $)) 162) (((-627 (-381 |#2|)) (-627 $)) 161)) (-1813 (((-1165 $) (-1165 $)) 201)) (-3859 (($ |#3|) 158) (((-3 $ "failed") (-381 |#3|)) 155 (|has| (-381 |#2|) (-337)))) (-2783 (((-3 $ "failed") $) 34)) (-1367 (((-587 (-587 |#1|))) 182 (|has| |#1| (-342)))) (-3536 (((-108) |#1| |#1|) 217)) (-3167 (((-849)) 54)) (-3254 (($) 90 (|has| (-381 |#2|) (-342)))) (-3982 (((-108)) 210)) (-1469 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2282 (($ $ $) 107 (|has| (-381 |#2|) (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 102 (|has| (-381 |#2|) (-337)))) (-1563 (($ $) 188)) (-2464 (($) 149 (|has| (-381 |#2|) (-323)))) (-3299 (((-108) $) 150 (|has| (-381 |#2|) (-323)))) (-1375 (($ $ (-707)) 141 (|has| (-381 |#2|) (-323))) (($ $) 140 (|has| (-381 |#2|) (-323)))) (-2100 (((-108) $) 115 (|has| (-381 |#2|) (-337)))) (-3490 (((-849) $) 152 (|has| (-381 |#2|) (-323))) (((-769 (-849)) $) 138 (|has| (-381 |#2|) (-323)))) (-3637 (((-108) $) 31)) (-2955 (((-707)) 220)) (-2147 (((-1165 $) (-1165 $)) 202)) (-2549 (((-381 |#2|) $) 51)) (-2083 (((-587 (-880 |#1|)) (-1084)) 183 (|has| |#1| (-337)))) (-3035 (((-3 $ "failed") $) 142 (|has| (-381 |#2|) (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 111 (|has| (-381 |#2|) (-337)))) (-3769 ((|#3| $) 44 (|has| (-381 |#2|) (-337)))) (-3999 (((-849) $) 89 (|has| (-381 |#2|) (-342)))) (-3843 ((|#3| $) 156)) (-2254 (($ (-587 $)) 100 (|has| (-381 |#2|) (-337))) (($ $ $) 99 (|has| (-381 |#2|) (-337)))) (-4024 (((-1067) $) 9)) (-3263 (((-627 (-381 |#2|))) 197)) (-1463 (((-627 (-381 |#2|))) 199)) (-3100 (($ $) 116 (|has| (-381 |#2|) (-337)))) (-2058 (($ (-1165 |#2|) |#2|) 194)) (-2352 (((-627 (-381 |#2|))) 198)) (-2784 (((-627 (-381 |#2|))) 200)) (-2121 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1455 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 195)) (-3817 (((-1165 $)) 206)) (-3807 (((-1165 $)) 207)) (-3693 (((-108) $) 205)) (-2655 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3797 (($) 143 (|has| (-381 |#2|) (-323)) CONST)) (-2723 (($ (-849)) 88 (|has| (-381 |#2|) (-342)))) (-1291 (((-3 |#2| "failed")) 185)) (-4146 (((-1031) $) 10)) (-3511 (((-707)) 219)) (-1384 (($) 160)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 101 (|has| (-381 |#2|) (-337)))) (-2286 (($ (-587 $)) 98 (|has| (-381 |#2|) (-337))) (($ $ $) 97 (|has| (-381 |#2|) (-337)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 146 (|has| (-381 |#2|) (-323)))) (-1974 (((-392 $) $) 112 (|has| (-381 |#2|) (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-381 |#2|) (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 109 (|has| (-381 |#2|) (-337)))) (-2261 (((-3 $ "failed") $ $) 92 (|has| (-381 |#2|) (-337)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 103 (|has| (-381 |#2|) (-337)))) (-3794 (((-707) $) 105 (|has| (-381 |#2|) (-337)))) (-2550 ((|#1| $ |#1| |#1|) 187)) (-3550 (((-3 |#2| "failed")) 186)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 106 (|has| (-381 |#2|) (-337)))) (-3011 (((-381 |#2|) (-1165 $)) 47) (((-381 |#2|)) 60)) (-3660 (((-707) $) 151 (|has| (-381 |#2|) (-323))) (((-3 (-707) "failed") $ $) 139 (|has| (-381 |#2|) (-323)))) (-2193 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) 123 (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) 122 (|has| (-381 |#2|) (-337))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-587 (-1084)) (-587 (-707))) 130 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084) (-707)) 131 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-587 (-1084))) 132 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084)) 133 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-707)) 135 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) 137 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-3785 (((-627 (-381 |#2|)) (-1165 $) (-1 (-381 |#2|) (-381 |#2|))) 154 (|has| (-381 |#2|) (-337)))) (-3436 ((|#3|) 159)) (-3923 (($) 148 (|has| (-381 |#2|) (-323)))) (-1816 (((-1165 (-381 |#2|)) $ (-1165 $)) 50) (((-627 (-381 |#2|)) (-1165 $) (-1165 $)) 49) (((-1165 (-381 |#2|)) $) 66) (((-627 (-381 |#2|)) (-1165 $)) 65)) (-1438 (((-1165 (-381 |#2|)) $) 63) (($ (-1165 (-381 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 145 (|has| (-381 |#2|) (-323)))) (-3758 (((-1165 $) (-1165 $)) 203)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 |#2|)) 37) (($ (-381 (-521))) 86 (-3703 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-961 (-381 (-521)))))) (($ $) 91 (|has| (-381 |#2|) (-337)))) (-2446 (($ $) 144 (|has| (-381 |#2|) (-323))) (((-3 $ "failed") $) 43 (|has| (-381 |#2|) (-133)))) (-3379 ((|#3| $) 45)) (-1592 (((-707)) 29)) (-3598 (((-108)) 216)) (-2458 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-1245 (((-1165 $)) 67)) (-1842 (((-108) $ $) 95 (|has| (-381 |#2|) (-337)))) (-3888 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3683 (((-108)) 218)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 117 (|has| (-381 |#2|) (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) 125 (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) 124 (|has| (-381 |#2|) (-337))) (($ $ (-587 (-1084)) (-587 (-707))) 126 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084) (-707)) 127 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-587 (-1084))) 128 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-1084)) 129 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) (-4009 (|has| (-381 |#2|) (-828 (-1084))) (|has| (-381 |#2|) (-337))))) (($ $ (-707)) 134 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) 136 (-3703 (-4009 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-210))) (-4009 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 121 (|has| (-381 |#2|) (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 118 (|has| (-381 |#2|) (-337)))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 |#2|)) 39) (($ (-381 |#2|) $) 38) (($ (-381 (-521)) $) 120 (|has| (-381 |#2|) (-337))) (($ $ (-381 (-521))) 119 (|has| (-381 |#2|) (-337)))))
-(((-316 |#1| |#2| |#3|) (-1196) (-1123) (-1141 |t#1|) (-1141 (-381 |t#2|))) (T -316))
-((-2955 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707)))) (-3511 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707)))) (-3683 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3536 (*1 *2 *3 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3598 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-2458 (*1 *2 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-2458 (*1 *2 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-3723 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-1918 (*1 *2 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-1918 (*1 *2 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-3982 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-1469 (*1 *2 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-1469 (*1 *2 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-3807 (*1 *2) (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)))) (-3817 (*1 *2) (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-2784 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-1463 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-2352 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-3263 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))) (-1402 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))) (-1455 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))) (-2058 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123)) (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3))))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-2 (|:| |num| (-627 *5)) (|:| |den| *5))))) (-2655 (*1 *2 *1 *3) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))) (-2655 (*1 *2 *1 *3) (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108)))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))) (-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123)) (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3))))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))))) (-2550 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3))))) (-3550 (*1 *2) (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123)) (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))) (-1291 (*1 *2) (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123)) (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))) (-3888 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-1123)) (-4 *6 (-1141 (-381 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-316 *4 *5 *6)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *4 (-337)) (-5 *2 (-587 (-880 *4))))) (-1367 (*1 *2) (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))) (-4 *3 (-342)) (-5 *2 (-587 (-587 *3))))))
-(-13 (-661 (-381 |t#2|) |t#3|) (-10 -8 (-15 -2955 ((-707))) (-15 -3511 ((-707))) (-15 -3683 ((-108))) (-15 -3536 ((-108) |t#1| |t#1|)) (-15 -3598 ((-108))) (-15 -2458 ((-108) |t#1|)) (-15 -2458 ((-108) |t#2|)) (-15 -3723 ((-108))) (-15 -1918 ((-108) |t#1|)) (-15 -1918 ((-108) |t#2|)) (-15 -3982 ((-108))) (-15 -1469 ((-108) |t#1|)) (-15 -1469 ((-108) |t#2|)) (-15 -3807 ((-1165 $))) (-15 -3817 ((-1165 $))) (-15 -3693 ((-108) $)) (-15 -2655 ((-108) $)) (-15 -3758 ((-1165 $) (-1165 $))) (-15 -2147 ((-1165 $) (-1165 $))) (-15 -1813 ((-1165 $) (-1165 $))) (-15 -2784 ((-627 (-381 |t#2|)))) (-15 -1463 ((-627 (-381 |t#2|)))) (-15 -2352 ((-627 (-381 |t#2|)))) (-15 -3263 ((-627 (-381 |t#2|)))) (-15 -1402 ((-2 (|:| |num| (-1165 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3190 ($ (-1165 |t#2|) |t#2|)) (-15 -1455 ((-2 (|:| |num| (-1165 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2058 ($ (-1165 |t#2|) |t#2|)) (-15 -2121 ((-2 (|:| |num| (-627 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2655 ((-108) $ |t#1|)) (-15 -2655 ((-108) $ |t#2|)) (-15 -2193 ($ $ (-1 |t#2| |t#2|))) (-15 -3190 ($ (-1165 |t#2|) |t#2|)) (-15 -1563 ($ $)) (-15 -2550 (|t#1| $ |t#1| |t#1|)) (-15 -3550 ((-3 |t#2| "failed"))) (-15 -1291 ((-3 |t#2| "failed"))) (-15 -3888 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-337)) (-15 -2083 ((-587 (-880 |t#1|)) (-1084))) |%noBranch|) (IF (|has| |t#1| (-342)) (-15 -1367 ((-587 (-587 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-37 #1=(-381 |#2|)) . T) ((-37 $) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-97) . T) ((-107 #0# #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-133))) ((-135) |has| (-381 |#2|) (-135)) ((-561 (-791)) . T) ((-157) . T) ((-562 |#3|) . T) ((-208 #1#) |has| (-381 |#2|) (-337)) ((-210) -3703 (|has| (-381 |#2|) (-323)) (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337)))) ((-220) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-265) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-282) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-337) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-376) |has| (-381 |#2|) (-323)) ((-342) -3703 (|has| (-381 |#2|) (-342)) (|has| (-381 |#2|) (-323))) ((-323) |has| (-381 |#2|) (-323)) ((-344 #1# |#3|) . T) ((-383 #1# |#3|) . T) ((-351 #1#) . T) ((-385 #1#) . T) ((-425) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-513) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-589 #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-589 #1#) . T) ((-589 $) . T) ((-583 #1#) . T) ((-583 (-521)) |has| (-381 |#2|) (-583 (-521))) ((-654 #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-654 #1#) . T) ((-654 $) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-661 #1# |#3|) . T) ((-663) . T) ((-828 (-1084)) -12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084)))) ((-848) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-961 (-381 (-521))) |has| (-381 |#2|) (-961 (-381 (-521)))) ((-961 #1#) . T) ((-961 (-521)) |has| (-381 |#2|) (-961 (-521))) ((-976 #0#) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))) ((-976 #1#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| (-381 |#2|) (-323)) ((-1123) -3703 (|has| (-381 |#2|) (-323)) (|has| (-381 |#2|) (-337))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-838 |#1|) (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| (-838 |#1|) (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-838 |#1|) "failed") $) NIL)) (-1496 (((-838 |#1|) $) NIL)) (-3190 (($ (-1165 (-838 |#1|))) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-838 |#1|) (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-838 |#1|) (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| (-838 |#1|) (-342)))) (-3299 (((-108) $) NIL (|has| (-838 |#1|) (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| (-838 |#1|) (-342))) (((-769 (-849)) $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| (-838 |#1|) (-342)))) (-2377 (((-108) $) NIL (|has| (-838 |#1|) (-342)))) (-2549 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| (-838 |#1|) (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 (-838 |#1|)) $) NIL) (((-1080 $) $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3999 (((-849) $) NIL (|has| (-838 |#1|) (-342)))) (-3361 (((-1080 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-342)))) (-3959 (((-1080 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-342))) (((-3 (-1080 (-838 |#1|)) "failed") $ $) NIL (|has| (-838 |#1|) (-342)))) (-3734 (($ $ (-1080 (-838 |#1|))) NIL (|has| (-838 |#1|) (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-838 |#1|) (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1486 (((-885 (-1031))) NIL)) (-1384 (($) NIL (|has| (-838 |#1|) (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-838 |#1|) (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| (-838 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 (-838 |#1|))) NIL)) (-3923 (($) NIL (|has| (-838 |#1|) (-342)))) (-3540 (($) NIL (|has| (-838 |#1|) (-342)))) (-1816 (((-1165 (-838 |#1|)) $) NIL) (((-627 (-838 |#1|)) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-838 |#1|) (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-838 |#1|)) NIL)) (-2446 (($ $) NIL (|has| (-838 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-2244 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ (-838 |#1|)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-838 |#1|)) NIL) (($ (-838 |#1|) $) NIL)))
-(((-317 |#1| |#2|) (-13 (-303 (-838 |#1|)) (-10 -7 (-15 -1486 ((-885 (-1031)))))) (-849) (-849)) (T -317))
-((-1486 (*1 *2) (-12 (-5 *2 (-885 (-1031))) (-5 *1 (-317 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))))
-(-13 (-303 (-838 |#1|)) (-10 -7 (-15 -1486 ((-885 (-1031))))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 46)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) 43 (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 114)) (-1496 ((|#1| $) 85)) (-3190 (($ (-1165 |#1|)) 103)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) 97 (|has| |#1| (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) 129 (|has| |#1| (-342)))) (-3299 (((-108) $) 49 (|has| |#1| (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) 47 (|has| |#1| (-342))) (((-769 (-849)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) 131 (|has| |#1| (-342)))) (-2377 (((-108) $) NIL (|has| |#1| (-342)))) (-2549 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 |#1|) $) 89) (((-1080 $) $ (-849)) NIL (|has| |#1| (-342)))) (-3999 (((-849) $) 139 (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 146)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) 70 (|has| |#1| (-342)))) (-3017 (((-108) $) 117)) (-4146 (((-1031) $) NIL)) (-1486 (((-885 (-1031))) 44)) (-1384 (($) 127 (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 92 (|has| |#1| (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) 67) (((-849)) 68)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) 130 (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) 124 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 |#1|)) 95)) (-3923 (($) 128 (|has| |#1| (-342)))) (-3540 (($) 136 (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) 59) (((-627 |#1|) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) 142) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 74)) (-2446 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) 138)) (-1245 (((-1165 $)) 116) (((-1165 $) (-849)) 72)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 32 T CONST)) (-3572 (($) 19 T CONST)) (-2687 (($ $) 80 (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2244 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1549 (((-108) $ $) 48)) (-1648 (($ $ $) 144) (($ $ |#1|) 145)) (-1639 (($ $) 126) (($ $ $) NIL)) (-1628 (($ $ $) 61)) (** (($ $ (-849)) 148) (($ $ (-707)) 149) (($ $ (-521)) 147)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 76) (($ $ $) 75) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
-(((-318 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -1486 ((-885 (-1031)))))) (-323) (-1080 |#1|)) (T -318))
-((-1486 (*1 *2) (-12 (-5 *2 (-885 (-1031))) (-5 *1 (-318 *3 *4)) (-4 *3 (-323)) (-14 *4 (-1080 *3)))))
-(-13 (-303 |#1|) (-10 -7 (-15 -1486 ((-885 (-1031))))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3190 (($ (-1165 |#1|)) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| |#1| (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| |#1| (-342)))) (-3299 (((-108) $) NIL (|has| |#1| (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| |#1| (-342))) (((-769 (-849)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| |#1| (-342)))) (-2377 (((-108) $) NIL (|has| |#1| (-342)))) (-2549 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 |#1|) $) NIL) (((-1080 $) $ (-849)) NIL (|has| |#1| (-342)))) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1486 (((-885 (-1031))) NIL)) (-1384 (($) NIL (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| |#1| (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 |#1|)) NIL)) (-3923 (($) NIL (|has| |#1| (-342)))) (-3540 (($) NIL (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) NIL)) (-2446 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2244 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-319 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -1486 ((-885 (-1031)))))) (-323) (-849)) (T -319))
-((-1486 (*1 *2) (-12 (-5 *2 (-885 (-1031))) (-5 *1 (-319 *3 *4)) (-4 *3 (-323)) (-14 *4 (-849)))))
-(-13 (-303 |#1|) (-10 -7 (-15 -1486 ((-885 (-1031))))))
-((-2825 (((-707) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) 40)) (-3178 (((-885 (-1031)) (-1080 |#1|)) 85)) (-2828 (((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) (-1080 |#1|)) 78)) (-2241 (((-627 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) 86)) (-1434 (((-3 (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) "failed") (-849)) 10)) (-3247 (((-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) (-849)) 15)))
-(((-320 |#1|) (-10 -7 (-15 -3178 ((-885 (-1031)) (-1080 |#1|))) (-15 -2828 ((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) (-1080 |#1|))) (-15 -2241 ((-627 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -2825 ((-707) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -1434 ((-3 (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) "failed") (-849))) (-15 -3247 ((-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) (-849)))) (-323)) (T -320))
-((-3247 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-3 (-1080 *4) (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031))))))) (-5 *1 (-320 *4)) (-4 *4 (-323)))) (-1434 (*1 *2 *3) (|partial| -12 (-5 *3 (-849)) (-5 *2 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031)))))) (-5 *1 (-320 *4)) (-4 *4 (-323)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031)))))) (-4 *4 (-323)) (-5 *2 (-707)) (-5 *1 (-320 *4)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031)))))) (-4 *4 (-323)) (-5 *2 (-627 *4)) (-5 *1 (-320 *4)))) (-2828 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031)))))) (-5 *1 (-320 *4)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-885 (-1031))) (-5 *1 (-320 *4)))))
-(-10 -7 (-15 -3178 ((-885 (-1031)) (-1080 |#1|))) (-15 -2828 ((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) (-1080 |#1|))) (-15 -2241 ((-627 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -2825 ((-707) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -1434 ((-3 (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) "failed") (-849))) (-15 -3247 ((-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) (-849))))
-((-2223 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
-(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -2223 (|#3| |#1|)) (-15 -2223 (|#1| |#3|))) (-303 |#2|) (-323) (-303 |#2|)) (T -321))
-((-2223 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *2 *4 *3)) (-4 *3 (-303 *4)))) (-2223 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *3 *4 *2)) (-4 *3 (-303 *4)))))
-(-10 -7 (-15 -2223 (|#3| |#1|)) (-15 -2223 (|#1| |#3|)))
-((-3299 (((-108) $) 51)) (-3490 (((-769 (-849)) $) 21) (((-849) $) 52)) (-3035 (((-3 $ "failed") $) 16)) (-3797 (($) 9)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 92)) (-3660 (((-3 (-707) "failed") $ $) 71) (((-707) $) 60)) (-2193 (($ $ (-707)) NIL) (($ $) 8)) (-3923 (($) 45)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 33)) (-2446 (((-3 $ "failed") $) 39) (($ $) 38)))
-(((-322 |#1|) (-10 -8 (-15 -3490 ((-849) |#1|)) (-15 -3660 ((-707) |#1|)) (-15 -3299 ((-108) |#1|)) (-15 -3923 (|#1|)) (-15 -2956 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -2446 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3660 ((-3 (-707) "failed") |#1| |#1|)) (-15 -3490 ((-769 (-849)) |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)))) (-323)) (T -322))
-NIL
-(-10 -8 (-15 -3490 ((-849) |#1|)) (-15 -3660 ((-707) |#1|)) (-15 -3299 ((-108) |#1|)) (-15 -3923 (|#1|)) (-15 -2956 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -2446 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3660 ((-3 (-707) "failed") |#1| |#1|)) (-15 -3490 ((-769 (-849)) |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2130 (((-1093 (-849) (-707)) (-521)) 93)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-2165 (((-108) $ $) 59)) (-1659 (((-707)) 103)) (-2231 (($) 17 T CONST)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-3254 (($) 106)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2464 (($) 91)) (-3299 (((-108) $) 90)) (-1375 (($ $) 79) (($ $ (-707)) 78)) (-2100 (((-108) $) 71)) (-3490 (((-769 (-849)) $) 81) (((-849) $) 88)) (-3637 (((-108) $) 31)) (-3035 (((-3 $ "failed") $) 102)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-3999 (((-849) $) 105)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-3797 (($) 101 T CONST)) (-2723 (($ (-849)) 104)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 94)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-3660 (((-3 (-707) "failed") $ $) 80) (((-707) $) 89)) (-2193 (($ $ (-707)) 99) (($ $) 97)) (-3923 (($) 92)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 95)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-2446 (((-3 $ "failed") $) 82) (($ $) 96)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-707)) 100) (($ $) 98)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 64)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
-(((-323) (-1196)) (T -323))
-((-2446 (*1 *1 *1) (-4 *1 (-323))) (-2956 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-323)) (-5 *2 (-1165 *1)))) (-2789 (*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))))) (-2130 (*1 *2 *3) (-12 (-4 *1 (-323)) (-5 *3 (-521)) (-5 *2 (-1093 (-849) (-707))))) (-3923 (*1 *1) (-4 *1 (-323))) (-2464 (*1 *1) (-4 *1 (-323))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-108)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-707)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-849)))) (-3386 (*1 *2) (-12 (-4 *1 (-323)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-376) (-342) (-1060) (-210) (-10 -8 (-15 -2446 ($ $)) (-15 -2956 ((-3 (-1165 $) "failed") (-627 $))) (-15 -2789 ((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521)))))) (-15 -2130 ((-1093 (-849) (-707)) (-521))) (-15 -3923 ($)) (-15 -2464 ($)) (-15 -3299 ((-108) $)) (-15 -3660 ((-707) $)) (-15 -3490 ((-849) $)) (-15 -3386 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-561 (-791)) . T) ((-157) . T) ((-210) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-376) . T) ((-342) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) . T) ((-1123) . T))
-((-1635 (((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|) 51)) (-3807 (((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))) 49)))
-(((-324 |#1| |#2| |#3|) (-10 -7 (-15 -3807 ((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))) (-15 -1635 ((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|))) (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))) (-1141 |#1|) (-383 |#1| |#2|)) (T -324))
-((-1635 (*1 *2 *3) (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *2 (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-3807 (*1 *2) (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *2 (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
-(-10 -7 (-15 -3807 ((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))) (-15 -1635 ((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-838 |#1|) (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2825 (((-707)) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| (-838 |#1|) (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-838 |#1|) "failed") $) NIL)) (-1496 (((-838 |#1|) $) NIL)) (-3190 (($ (-1165 (-838 |#1|))) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-838 |#1|) (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-838 |#1|) (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| (-838 |#1|) (-342)))) (-3299 (((-108) $) NIL (|has| (-838 |#1|) (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| (-838 |#1|) (-342))) (((-769 (-849)) $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| (-838 |#1|) (-342)))) (-2377 (((-108) $) NIL (|has| (-838 |#1|) (-342)))) (-2549 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| (-838 |#1|) (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 (-838 |#1|)) $) NIL) (((-1080 $) $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3999 (((-849) $) NIL (|has| (-838 |#1|) (-342)))) (-3361 (((-1080 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-342)))) (-3959 (((-1080 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-342))) (((-3 (-1080 (-838 |#1|)) "failed") $ $) NIL (|has| (-838 |#1|) (-342)))) (-3734 (($ $ (-1080 (-838 |#1|))) NIL (|has| (-838 |#1|) (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-838 |#1|) (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-4088 (((-1165 (-587 (-2 (|:| -3434 (-838 |#1|)) (|:| -2723 (-1031)))))) NIL)) (-2265 (((-627 (-838 |#1|))) NIL)) (-1384 (($) NIL (|has| (-838 |#1|) (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-838 |#1|) (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| (-838 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 (-838 |#1|))) NIL)) (-3923 (($) NIL (|has| (-838 |#1|) (-342)))) (-3540 (($) NIL (|has| (-838 |#1|) (-342)))) (-1816 (((-1165 (-838 |#1|)) $) NIL) (((-627 (-838 |#1|)) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-838 |#1|) (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-838 |#1|)) NIL)) (-2446 (($ $) NIL (|has| (-838 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-2244 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ (-838 |#1|)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-838 |#1|)) NIL) (($ (-838 |#1|) $) NIL)))
-(((-325 |#1| |#2|) (-13 (-303 (-838 |#1|)) (-10 -7 (-15 -4088 ((-1165 (-587 (-2 (|:| -3434 (-838 |#1|)) (|:| -2723 (-1031))))))) (-15 -2265 ((-627 (-838 |#1|)))) (-15 -2825 ((-707))))) (-849) (-849)) (T -325))
-((-4088 (*1 *2) (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3434 (-838 *3)) (|:| -2723 (-1031)))))) (-5 *1 (-325 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-2265 (*1 *2) (-12 (-5 *2 (-627 (-838 *3))) (-5 *1 (-325 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-2825 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-325 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))))
-(-13 (-303 (-838 |#1|)) (-10 -7 (-15 -4088 ((-1165 (-587 (-2 (|:| -3434 (-838 |#1|)) (|:| -2723 (-1031))))))) (-15 -2265 ((-627 (-838 |#1|)))) (-15 -2825 ((-707)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 75)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 ((|#1| $) 93) (($ $ (-849)) 91 (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) 149 (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2825 (((-707)) 90)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) 163 (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 112)) (-1496 ((|#1| $) 92)) (-3190 (($ (-1165 |#1|)) 56)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) 159 (|has| |#1| (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) 150 (|has| |#1| (-342)))) (-3299 (((-108) $) NIL (|has| |#1| (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| |#1| (-342))) (((-769 (-849)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) 98 (|has| |#1| (-342)))) (-2377 (((-108) $) 176 (|has| |#1| (-342)))) (-2549 ((|#1| $) 95) (($ $ (-849)) 94 (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 |#1|) $) 188) (((-1080 $) $ (-849)) NIL (|has| |#1| (-342)))) (-3999 (((-849) $) 134 (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) 74 (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) 71 (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) 83 (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) 70 (|has| |#1| (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 191)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) 137 (|has| |#1| (-342)))) (-3017 (((-108) $) 108)) (-4146 (((-1031) $) NIL)) (-4088 (((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) 84)) (-2265 (((-627 |#1|)) 88)) (-1384 (($) 97 (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 151 (|has| |#1| (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) 152)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) 63)) (-3436 (((-1080 |#1|)) 153)) (-3923 (($) 133 (|has| |#1| (-342)))) (-3540 (($) NIL (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) 106) (((-627 |#1|) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) 124) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 55)) (-2446 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) 157)) (-1245 (((-1165 $)) 173) (((-1165 $) (-849)) 101)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 29 T CONST)) (-3572 (($) 22 T CONST)) (-2687 (($ $) 107 (|has| |#1| (-342))) (($ $ (-707)) 99 (|has| |#1| (-342)))) (-2244 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1549 (((-108) $ $) 59)) (-1648 (($ $ $) 104) (($ $ |#1|) 105)) (-1639 (($ $) 178) (($ $ $) 182)) (-1628 (($ $ $) 180)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 138)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 185) (($ $ $) 143) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
-(((-326 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -4088 ((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -2265 ((-627 |#1|))) (-15 -2825 ((-707))))) (-323) (-3 (-1080 |#1|) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (T -326))
-((-4088 (*1 *2) (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031)))))) (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) *2)))) (-2265 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031))))))))) (-2825 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031))))))))))
-(-13 (-303 |#1|) (-10 -7 (-15 -4088 ((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -2265 ((-627 |#1|))) (-15 -2825 ((-707)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2825 (((-707)) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3190 (($ (-1165 |#1|)) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| |#1| (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| |#1| (-342)))) (-3299 (((-108) $) NIL (|has| |#1| (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| |#1| (-342))) (((-769 (-849)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| |#1| (-342)))) (-2377 (((-108) $) NIL (|has| |#1| (-342)))) (-2549 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 |#1|) $) NIL) (((-1080 $) $ (-849)) NIL (|has| |#1| (-342)))) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-4088 (((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031)))))) NIL)) (-2265 (((-627 |#1|)) NIL)) (-1384 (($) NIL (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| |#1| (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 |#1|)) NIL)) (-3923 (($) NIL (|has| |#1| (-342)))) (-3540 (($) NIL (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) NIL)) (-2446 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2244 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-327 |#1| |#2|) (-13 (-303 |#1|) (-10 -7 (-15 -4088 ((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -2265 ((-627 |#1|))) (-15 -2825 ((-707))))) (-323) (-849)) (T -327))
-((-4088 (*1 *2) (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031)))))) (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-849)))) (-2265 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-849)))) (-2825 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-849)))))
-(-13 (-303 |#1|) (-10 -7 (-15 -4088 ((-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))))) (-15 -2265 ((-627 |#1|))) (-15 -2825 ((-707)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-838 |#1|) (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| (-838 |#1|) (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-838 |#1|) "failed") $) NIL)) (-1496 (((-838 |#1|) $) NIL)) (-3190 (($ (-1165 (-838 |#1|))) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-838 |#1|) (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-838 |#1|) (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| (-838 |#1|) (-342)))) (-3299 (((-108) $) NIL (|has| (-838 |#1|) (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| (-838 |#1|) (-342))) (((-769 (-849)) $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| (-838 |#1|) (-342)))) (-2377 (((-108) $) NIL (|has| (-838 |#1|) (-342)))) (-2549 (((-838 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| (-838 |#1|) (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 (-838 |#1|)) $) NIL) (((-1080 $) $ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3999 (((-849) $) NIL (|has| (-838 |#1|) (-342)))) (-3361 (((-1080 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-342)))) (-3959 (((-1080 (-838 |#1|)) $) NIL (|has| (-838 |#1|) (-342))) (((-3 (-1080 (-838 |#1|)) "failed") $ $) NIL (|has| (-838 |#1|) (-342)))) (-3734 (($ $ (-1080 (-838 |#1|))) NIL (|has| (-838 |#1|) (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-838 |#1|) (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| (-838 |#1|) (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1384 (($) NIL (|has| (-838 |#1|) (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-838 |#1|) (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| (-838 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 (-838 |#1|))) NIL)) (-3923 (($) NIL (|has| (-838 |#1|) (-342)))) (-3540 (($) NIL (|has| (-838 |#1|) (-342)))) (-1816 (((-1165 (-838 |#1|)) $) NIL) (((-627 (-838 |#1|)) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-838 |#1|) (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-838 |#1|)) NIL)) (-2446 (($ $) NIL (|has| (-838 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-838 |#1|) (-133)) (|has| (-838 |#1|) (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-2244 (($ $) NIL (|has| (-838 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-838 |#1|) (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ (-838 |#1|)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-838 |#1|)) NIL) (($ (-838 |#1|) $) NIL)))
-(((-328 |#1| |#2|) (-303 (-838 |#1|)) (-849) (-849)) (T -328))
-NIL
-(-303 (-838 |#1|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) 119 (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) 139 (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 91)) (-1496 ((|#1| $) 88)) (-3190 (($ (-1165 |#1|)) 83)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) 80 (|has| |#1| (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) 39 (|has| |#1| (-342)))) (-3299 (((-108) $) NIL (|has| |#1| (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| |#1| (-342))) (((-769 (-849)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) 120 (|has| |#1| (-342)))) (-2377 (((-108) $) 72 (|has| |#1| (-342)))) (-2549 ((|#1| $) 38) (($ $ (-849)) 40 (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 |#1|) $) 62) (((-1080 $) $ (-849)) NIL (|has| |#1| (-342)))) (-3999 (((-849) $) 95 (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) 93 (|has| |#1| (-342)))) (-3017 (((-108) $) 141)) (-4146 (((-1031) $) NIL)) (-1384 (($) 35 (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 113 (|has| |#1| (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) 138)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) 56)) (-3436 (((-1080 |#1|)) 86)) (-3923 (($) 125 (|has| |#1| (-342)))) (-3540 (($) NIL (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) 50) (((-627 |#1|) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) 137) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 85)) (-2446 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) 143)) (-1245 (((-1165 $)) 107) (((-1165 $) (-849)) 46)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 109 T CONST)) (-3572 (($) 31 T CONST)) (-2687 (($ $) 65 (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2244 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1549 (((-108) $ $) 105)) (-1648 (($ $ $) 97) (($ $ |#1|) 98)) (-1639 (($ $) 78) (($ $ $) 103)) (-1628 (($ $ $) 101)) (** (($ $ (-849)) NIL) (($ $ (-707)) 41) (($ $ (-521)) 129)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 76) (($ $ $) 53) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
-(((-329 |#1| |#2|) (-303 |#1|) (-323) (-1080 |#1|)) (T -329))
-NIL
-(-303 |#1|)
-((-2373 ((|#1| (-1080 |#2|)) 51)))
-(((-330 |#1| |#2|) (-10 -7 (-15 -2373 (|#1| (-1080 |#2|)))) (-13 (-376) (-10 -7 (-15 -2223 (|#1| |#2|)) (-15 -3999 ((-849) |#1|)) (-15 -1245 ((-1165 |#1|) (-849))) (-15 -2687 (|#1| |#1|)))) (-323)) (T -330))
-((-2373 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-4 *2 (-13 (-376) (-10 -7 (-15 -2223 (*2 *4)) (-15 -3999 ((-849) *2)) (-15 -1245 ((-1165 *2) (-849))) (-15 -2687 (*2 *2))))) (-5 *1 (-330 *2 *4)))))
-(-10 -7 (-15 -2373 (|#1| (-1080 |#2|))))
-((-1256 (((-885 (-1080 |#1|)) (-1080 |#1|)) 37)) (-3254 (((-1080 |#1|) (-849) (-849)) 110) (((-1080 |#1|) (-849)) 109)) (-3299 (((-108) (-1080 |#1|)) 82)) (-2188 (((-849) (-849)) 72)) (-3823 (((-849) (-849)) 74)) (-1930 (((-849) (-849)) 70)) (-2377 (((-108) (-1080 |#1|)) 86)) (-3725 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 98)) (-2905 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 101)) (-4036 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 100)) (-2470 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 99)) (-1819 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 95)) (-3836 (((-1080 |#1|) (-1080 |#1|)) 63)) (-3500 (((-1080 |#1|) (-849)) 104)) (-3451 (((-1080 |#1|) (-849)) 107)) (-2755 (((-1080 |#1|) (-849)) 106)) (-3920 (((-1080 |#1|) (-849)) 105)) (-4074 (((-1080 |#1|) (-849)) 102)))
-(((-331 |#1|) (-10 -7 (-15 -3299 ((-108) (-1080 |#1|))) (-15 -2377 ((-108) (-1080 |#1|))) (-15 -1930 ((-849) (-849))) (-15 -2188 ((-849) (-849))) (-15 -3823 ((-849) (-849))) (-15 -4074 ((-1080 |#1|) (-849))) (-15 -3500 ((-1080 |#1|) (-849))) (-15 -3920 ((-1080 |#1|) (-849))) (-15 -2755 ((-1080 |#1|) (-849))) (-15 -3451 ((-1080 |#1|) (-849))) (-15 -1819 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3725 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2470 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -4036 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2905 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3254 ((-1080 |#1|) (-849))) (-15 -3254 ((-1080 |#1|) (-849) (-849))) (-15 -3836 ((-1080 |#1|) (-1080 |#1|))) (-15 -1256 ((-885 (-1080 |#1|)) (-1080 |#1|)))) (-323)) (T -331))
-((-1256 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-885 (-1080 *4))) (-5 *1 (-331 *4)) (-5 *3 (-1080 *4)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-3254 (*1 *2 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-2905 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-4036 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-2470 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-3725 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-1819 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4)) (-4 *4 (-323)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-331 *3)) (-4 *3 (-323)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-331 *3)) (-4 *3 (-323)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-331 *3)) (-4 *3 (-323)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-331 *4)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-331 *4)))))
-(-10 -7 (-15 -3299 ((-108) (-1080 |#1|))) (-15 -2377 ((-108) (-1080 |#1|))) (-15 -1930 ((-849) (-849))) (-15 -2188 ((-849) (-849))) (-15 -3823 ((-849) (-849))) (-15 -4074 ((-1080 |#1|) (-849))) (-15 -3500 ((-1080 |#1|) (-849))) (-15 -3920 ((-1080 |#1|) (-849))) (-15 -2755 ((-1080 |#1|) (-849))) (-15 -3451 ((-1080 |#1|) (-849))) (-15 -1819 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3725 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2470 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -4036 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -2905 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3254 ((-1080 |#1|) (-849))) (-15 -3254 ((-1080 |#1|) (-849) (-849))) (-15 -3836 ((-1080 |#1|) (-1080 |#1|))) (-15 -1256 ((-885 (-1080 |#1|)) (-1080 |#1|))))
-((-4050 (((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|) 34)))
-(((-332 |#1| |#2| |#3|) (-10 -7 (-15 -4050 ((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|))) (-323) (-1141 |#1|) (-1141 |#2|)) (T -332))
-((-4050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *1 (-332 *4 *5 *3)))))
-(-10 -7 (-15 -4050 ((-3 (-587 |#3|) "failed") (-587 |#3|) |#3|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| |#1| (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3190 (($ (-1165 |#1|)) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| |#1| (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| |#1| (-342)))) (-3299 (((-108) $) NIL (|has| |#1| (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| |#1| (-342))) (((-769 (-849)) $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| |#1| (-342)))) (-2377 (((-108) $) NIL (|has| |#1| (-342)))) (-2549 ((|#1| $) NIL) (($ $ (-849)) NIL (|has| |#1| (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 |#1|) $) NIL) (((-1080 $) $ (-849)) NIL (|has| |#1| (-342)))) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-3361 (((-1080 |#1|) $) NIL (|has| |#1| (-342)))) (-3959 (((-1080 |#1|) $) NIL (|has| |#1| (-342))) (((-3 (-1080 |#1|) "failed") $ $) NIL (|has| |#1| (-342)))) (-3734 (($ $ (-1080 |#1|)) NIL (|has| |#1| (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1384 (($) NIL (|has| |#1| (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| |#1| (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| |#1| (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 |#1|)) NIL)) (-3923 (($) NIL (|has| |#1| (-342)))) (-3540 (($) NIL (|has| |#1| (-342)))) (-1816 (((-1165 |#1|) $) NIL) (((-627 |#1|) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) NIL)) (-2446 (($ $) NIL (|has| |#1| (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-2244 (($ $) NIL (|has| |#1| (-342))) (($ $ (-707)) NIL (|has| |#1| (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-333 |#1| |#2|) (-303 |#1|) (-323) (-849)) (T -333))
-NIL
-(-303 |#1|)
-((-1198 (((-108) (-587 (-880 |#1|))) 32)) (-1453 (((-587 (-880 |#1|)) (-587 (-880 |#1|))) 43)) (-2584 (((-3 (-587 (-880 |#1|)) "failed") (-587 (-880 |#1|))) 39)))
-(((-334 |#1| |#2|) (-10 -7 (-15 -1198 ((-108) (-587 (-880 |#1|)))) (-15 -2584 ((-3 (-587 (-880 |#1|)) "failed") (-587 (-880 |#1|)))) (-15 -1453 ((-587 (-880 |#1|)) (-587 (-880 |#1|))))) (-425) (-587 (-1084))) (T -334))
-((-1453 (*1 *2 *2) (-12 (-5 *2 (-587 (-880 *3))) (-4 *3 (-425)) (-5 *1 (-334 *3 *4)) (-14 *4 (-587 (-1084))))) (-2584 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-880 *3))) (-4 *3 (-425)) (-5 *1 (-334 *3 *4)) (-14 *4 (-587 (-1084))))) (-1198 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-425)) (-5 *2 (-108)) (-5 *1 (-334 *4 *5)) (-14 *5 (-587 (-1084))))))
-(-10 -7 (-15 -1198 ((-108) (-587 (-880 |#1|)))) (-15 -2584 ((-3 (-587 (-880 |#1|)) "failed") (-587 (-880 |#1|)))) (-15 -1453 ((-587 (-880 |#1|)) (-587 (-880 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-1659 (((-707) $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) 14)) (-3493 ((|#1| $ (-521)) NIL)) (-1754 (((-521) $ (-521)) NIL)) (-2205 (($ (-1 |#1| |#1|) $) 32)) (-2031 (($ (-1 (-521) (-521)) $) 24)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 26)) (-4146 (((-1031) $) NIL)) (-3655 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-521)))) $) 28)) (-1484 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2223 (((-791) $) 38) (($ |#1|) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 9 T CONST)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ |#1| (-521)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-335 |#1|) (-13 (-446) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-521))) (-15 -1659 ((-707) $)) (-15 -1754 ((-521) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -2031 ($ (-1 (-521) (-521)) $)) (-15 -2205 ($ (-1 |#1| |#1|) $)) (-15 -3655 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-521)))) $)))) (-1013)) (T -335))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-335 *3)) (-4 *3 (-1013)))) (-1754 (*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-335 *3)) (-4 *3 (-1013)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013)))) (-2031 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-521) (-521))) (-5 *1 (-335 *3)) (-4 *3 (-1013)))) (-2205 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-335 *3)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 (-521))))) (-5 *1 (-335 *3)) (-4 *3 (-1013)))))
-(-13 (-446) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-521))) (-15 -1659 ((-707) $)) (-15 -1754 ((-521) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -2031 ($ (-1 (-521) (-521)) $)) (-15 -2205 ($ (-1 |#1| |#1|) $)) (-15 -3655 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-521)))) $))))
-((-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 13)) (-1954 (($ $) 14)) (-2337 (((-392 $) $) 30)) (-2100 (((-108) $) 26)) (-3100 (($ $) 19)) (-2286 (($ $ $) 23) (($ (-587 $)) NIL)) (-1974 (((-392 $) $) 31)) (-2261 (((-3 $ "failed") $ $) 22)) (-3794 (((-707) $) 25)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 35)) (-1842 (((-108) $ $) 16)) (-1648 (($ $ $) 33)))
-(((-336 |#1|) (-10 -8 (-15 -1648 (|#1| |#1| |#1|)) (-15 -3100 (|#1| |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -1904 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3794 ((-707) |#1|)) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2286 (|#1| |#1| |#1|)) (-15 -1842 ((-108) |#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -2919 ((-2 (|:| -1493 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|))) (-337)) (T -336))
-NIL
-(-10 -8 (-15 -1648 (|#1| |#1| |#1|)) (-15 -3100 (|#1| |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -1904 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3794 ((-707) |#1|)) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2286 (|#1| |#1| |#1|)) (-15 -1842 ((-108) |#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -2919 ((-2 (|:| -1493 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2100 (((-108) $) 71)) (-3637 (((-108) $) 31)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 64)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
-(((-337) (-1196)) (T -337))
-((-1648 (*1 *1 *1 *1) (-4 *1 (-337))))
-(-13 (-282) (-1123) (-220) (-10 -8 (-15 -1648 ($ $ $)) (-6 -4231) (-6 -4225)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-1422 (((-108) $ $) 7)) (-2823 ((|#2| $ |#2|) 13)) (-3306 (($ $ (-1067)) 18)) (-2629 ((|#2| $) 14)) (-1564 (($ |#1|) 20) (($ |#1| (-1067)) 19)) (-2890 ((|#1| $) 16)) (-4024 (((-1067) $) 9)) (-3283 (((-1067) $) 15)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1777 (($ $) 17)) (-1549 (((-108) $ $) 6)))
-(((-338 |#1| |#2|) (-1196) (-1013) (-1013)) (T -338))
-((-1564 (*1 *1 *2) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1564 (*1 *1 *2 *3) (-12 (-5 *3 (-1067)) (-4 *1 (-338 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-3306 (*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1777 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1067)))) (-2629 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2823 (*1 *2 *1 *2) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -1564 ($ |t#1|)) (-15 -1564 ($ |t#1| (-1067))) (-15 -3306 ($ $ (-1067))) (-15 -1777 ($ $)) (-15 -2890 (|t#1| $)) (-15 -3283 ((-1067) $)) (-15 -2629 (|t#2| $)) (-15 -2823 (|t#2| $ |t#2|))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-2823 ((|#1| $ |#1|) 29)) (-3306 (($ $ (-1067)) 22)) (-1340 (((-3 |#1| "failed") $) 28)) (-2629 ((|#1| $) 26)) (-1564 (($ (-362)) 21) (($ (-362) (-1067)) 20)) (-2890 (((-362) $) 24)) (-4024 (((-1067) $) NIL)) (-3283 (((-1067) $) 25)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 19)) (-1777 (($ $) 23)) (-1549 (((-108) $ $) 18)))
-(((-339 |#1|) (-13 (-338 (-362) |#1|) (-10 -8 (-15 -1340 ((-3 |#1| "failed") $)))) (-1013)) (T -339))
-((-1340 (*1 *2 *1) (|partial| -12 (-5 *1 (-339 *2)) (-4 *2 (-1013)))))
-(-13 (-338 (-362) |#1|) (-10 -8 (-15 -1340 ((-3 |#1| "failed") $))))
-((-2772 (((-1165 (-627 |#2|)) (-1165 $)) 61)) (-4090 (((-627 |#2|) (-1165 $)) 119)) (-3912 ((|#2| $) 32)) (-2872 (((-627 |#2|) $ (-1165 $)) 123)) (-2604 (((-3 $ "failed") $) 75)) (-3973 ((|#2| $) 35)) (-1276 (((-1080 |#2|) $) 83)) (-2115 ((|#2| (-1165 $)) 106)) (-1449 (((-1080 |#2|) $) 28)) (-3953 (((-108)) 100)) (-3190 (($ (-1165 |#2|) (-1165 $)) 113)) (-2783 (((-3 $ "failed") $) 79)) (-2325 (((-108)) 95)) (-2071 (((-108)) 90)) (-3318 (((-108)) 53)) (-3370 (((-627 |#2|) (-1165 $)) 117)) (-3748 ((|#2| $) 31)) (-4138 (((-627 |#2|) $ (-1165 $)) 122)) (-1389 (((-3 $ "failed") $) 73)) (-3440 ((|#2| $) 34)) (-3609 (((-1080 |#2|) $) 82)) (-2001 ((|#2| (-1165 $)) 104)) (-2486 (((-1080 |#2|) $) 26)) (-1743 (((-108)) 99)) (-1232 (((-108)) 92)) (-3037 (((-108)) 51)) (-2901 (((-108)) 87)) (-2880 (((-108)) 101)) (-1816 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) 111)) (-2628 (((-108)) 97)) (-2881 (((-587 (-1165 |#2|))) 86)) (-3650 (((-108)) 98)) (-3972 (((-108)) 96)) (-3502 (((-108)) 46)) (-3199 (((-108)) 102)))
-(((-340 |#1| |#2|) (-10 -8 (-15 -1276 ((-1080 |#2|) |#1|)) (-15 -3609 ((-1080 |#2|) |#1|)) (-15 -2881 ((-587 (-1165 |#2|)))) (-15 -2604 ((-3 |#1| "failed") |#1|)) (-15 -1389 ((-3 |#1| "failed") |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 -2071 ((-108))) (-15 -1232 ((-108))) (-15 -2325 ((-108))) (-15 -3037 ((-108))) (-15 -3318 ((-108))) (-15 -2901 ((-108))) (-15 -3199 ((-108))) (-15 -2880 ((-108))) (-15 -3953 ((-108))) (-15 -1743 ((-108))) (-15 -3502 ((-108))) (-15 -3650 ((-108))) (-15 -3972 ((-108))) (-15 -2628 ((-108))) (-15 -1449 ((-1080 |#2|) |#1|)) (-15 -2486 ((-1080 |#2|) |#1|)) (-15 -4090 ((-627 |#2|) (-1165 |#1|))) (-15 -3370 ((-627 |#2|) (-1165 |#1|))) (-15 -2115 (|#2| (-1165 |#1|))) (-15 -2001 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3973 (|#2| |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -3912 (|#2| |#1|)) (-15 -3748 (|#2| |#1|)) (-15 -2872 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -4138 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -2772 ((-1165 (-627 |#2|)) (-1165 |#1|)))) (-341 |#2|) (-157)) (T -340))
-((-2628 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3972 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3650 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3502 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1743 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3953 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2880 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3199 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2901 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3318 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3037 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2325 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1232 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2071 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2881 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-587 (-1165 *4))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))))
-(-10 -8 (-15 -1276 ((-1080 |#2|) |#1|)) (-15 -3609 ((-1080 |#2|) |#1|)) (-15 -2881 ((-587 (-1165 |#2|)))) (-15 -2604 ((-3 |#1| "failed") |#1|)) (-15 -1389 ((-3 |#1| "failed") |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 -2071 ((-108))) (-15 -1232 ((-108))) (-15 -2325 ((-108))) (-15 -3037 ((-108))) (-15 -3318 ((-108))) (-15 -2901 ((-108))) (-15 -3199 ((-108))) (-15 -2880 ((-108))) (-15 -3953 ((-108))) (-15 -1743 ((-108))) (-15 -3502 ((-108))) (-15 -3650 ((-108))) (-15 -3972 ((-108))) (-15 -2628 ((-108))) (-15 -1449 ((-1080 |#2|) |#1|)) (-15 -2486 ((-1080 |#2|) |#1|)) (-15 -4090 ((-627 |#2|) (-1165 |#1|))) (-15 -3370 ((-627 |#2|) (-1165 |#1|))) (-15 -2115 (|#2| (-1165 |#1|))) (-15 -2001 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3973 (|#2| |#1|)) (-15 -3440 (|#2| |#1|)) (-15 -3912 (|#2| |#1|)) (-15 -3748 (|#2| |#1|)) (-15 -2872 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -4138 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -2772 ((-1165 (-627 |#2|)) (-1165 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1493 (((-3 $ "failed")) 37 (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2772 (((-1165 (-627 |#1|)) (-1165 $)) 78)) (-3765 (((-1165 $)) 81)) (-2231 (($) 17 T CONST)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) 40 (|has| |#1| (-513)))) (-2695 (((-3 $ "failed")) 38 (|has| |#1| (-513)))) (-4090 (((-627 |#1|) (-1165 $)) 65)) (-3912 ((|#1| $) 74)) (-2872 (((-627 |#1|) $ (-1165 $)) 76)) (-2604 (((-3 $ "failed") $) 45 (|has| |#1| (-513)))) (-2588 (($ $ (-849)) 28)) (-3973 ((|#1| $) 72)) (-1276 (((-1080 |#1|) $) 42 (|has| |#1| (-513)))) (-2115 ((|#1| (-1165 $)) 67)) (-1449 (((-1080 |#1|) $) 63)) (-3953 (((-108)) 57)) (-3190 (($ (-1165 |#1|) (-1165 $)) 69)) (-2783 (((-3 $ "failed") $) 47 (|has| |#1| (-513)))) (-3167 (((-849)) 80)) (-2782 (((-108)) 54)) (-1940 (($ $ (-849)) 33)) (-2325 (((-108)) 50)) (-2071 (((-108)) 48)) (-3318 (((-108)) 52)) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) 41 (|has| |#1| (-513)))) (-2712 (((-3 $ "failed")) 39 (|has| |#1| (-513)))) (-3370 (((-627 |#1|) (-1165 $)) 66)) (-3748 ((|#1| $) 75)) (-4138 (((-627 |#1|) $ (-1165 $)) 77)) (-1389 (((-3 $ "failed") $) 46 (|has| |#1| (-513)))) (-1209 (($ $ (-849)) 29)) (-3440 ((|#1| $) 73)) (-3609 (((-1080 |#1|) $) 43 (|has| |#1| (-513)))) (-2001 ((|#1| (-1165 $)) 68)) (-2486 (((-1080 |#1|) $) 64)) (-1743 (((-108)) 58)) (-4024 (((-1067) $) 9)) (-1232 (((-108)) 49)) (-3037 (((-108)) 51)) (-2901 (((-108)) 53)) (-4146 (((-1031) $) 10)) (-2880 (((-108)) 56)) (-1816 (((-1165 |#1|) $ (-1165 $)) 71) (((-627 |#1|) (-1165 $) (-1165 $)) 70)) (-1894 (((-587 (-880 |#1|)) (-1165 $)) 79)) (-2062 (($ $ $) 25)) (-2628 (((-108)) 62)) (-2223 (((-791) $) 11)) (-2881 (((-587 (-1165 |#1|))) 44 (|has| |#1| (-513)))) (-2268 (($ $ $ $) 26)) (-3650 (((-108)) 60)) (-3968 (($ $ $) 24)) (-3972 (((-108)) 61)) (-3502 (((-108)) 59)) (-3199 (((-108)) 55)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-341 |#1|) (-1196) (-157)) (T -341))
-((-3765 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-341 *3)))) (-3167 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-849)))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-587 (-880 *4))))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-1165 (-627 *4))))) (-4138 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-1165 *4)))) (-1816 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157)) (-4 *1 (-341 *4)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))) (-2628 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3972 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3650 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3502 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1743 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3953 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2880 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3199 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2782 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2901 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3318 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3037 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2325 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1232 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2071 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2783 (*1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-1389 (*1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-2604 (*1 *1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513)))) (-2881 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513)) (-5 *2 (-587 (-1165 *3))))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513)) (-5 *2 (-1080 *3)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513)) (-5 *2 (-1080 *3)))) (-2256 (*1 *2) (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1245 (-587 *1)))) (-4 *1 (-341 *3)))) (-2186 (*1 *2) (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1245 (-587 *1)))) (-4 *1 (-341 *3)))) (-2712 (*1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))) (-2695 (*1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))) (-1493 (*1 *1) (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))))
-(-13 (-681 |t#1|) (-10 -8 (-15 -3765 ((-1165 $))) (-15 -3167 ((-849))) (-15 -1894 ((-587 (-880 |t#1|)) (-1165 $))) (-15 -2772 ((-1165 (-627 |t#1|)) (-1165 $))) (-15 -4138 ((-627 |t#1|) $ (-1165 $))) (-15 -2872 ((-627 |t#1|) $ (-1165 $))) (-15 -3748 (|t#1| $)) (-15 -3912 (|t#1| $)) (-15 -3440 (|t#1| $)) (-15 -3973 (|t#1| $)) (-15 -1816 ((-1165 |t#1|) $ (-1165 $))) (-15 -1816 ((-627 |t#1|) (-1165 $) (-1165 $))) (-15 -3190 ($ (-1165 |t#1|) (-1165 $))) (-15 -2001 (|t#1| (-1165 $))) (-15 -2115 (|t#1| (-1165 $))) (-15 -3370 ((-627 |t#1|) (-1165 $))) (-15 -4090 ((-627 |t#1|) (-1165 $))) (-15 -2486 ((-1080 |t#1|) $)) (-15 -1449 ((-1080 |t#1|) $)) (-15 -2628 ((-108))) (-15 -3972 ((-108))) (-15 -3650 ((-108))) (-15 -3502 ((-108))) (-15 -1743 ((-108))) (-15 -3953 ((-108))) (-15 -2880 ((-108))) (-15 -3199 ((-108))) (-15 -2782 ((-108))) (-15 -2901 ((-108))) (-15 -3318 ((-108))) (-15 -3037 ((-108))) (-15 -2325 ((-108))) (-15 -1232 ((-108))) (-15 -2071 ((-108))) (IF (|has| |t#1| (-513)) (PROGN (-15 -2783 ((-3 $ "failed") $)) (-15 -1389 ((-3 $ "failed") $)) (-15 -2604 ((-3 $ "failed") $)) (-15 -2881 ((-587 (-1165 |t#1|)))) (-15 -3609 ((-1080 |t#1|) $)) (-15 -1276 ((-1080 |t#1|) $)) (-15 -2256 ((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed"))) (-15 -2186 ((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed"))) (-15 -2712 ((-3 $ "failed"))) (-15 -2695 ((-3 $ "failed"))) (-15 -1493 ((-3 $ "failed"))) (-6 -4230)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-681 |#1|) . T) ((-698) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-1659 (((-707)) 16)) (-3254 (($) 13)) (-3999 (((-849) $) 14)) (-4024 (((-1067) $) 9)) (-2723 (($ (-849)) 15)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-342) (-1196)) (T -342))
-((-1659 (*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-707)))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-342)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-849)))) (-3254 (*1 *1) (-4 *1 (-342))))
-(-13 (-1013) (-10 -8 (-15 -1659 ((-707))) (-15 -2723 ($ (-849))) (-15 -3999 ((-849) $)) (-15 -3254 ($))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1299 (((-627 |#2|) (-1165 $)) 40)) (-3190 (($ (-1165 |#2|) (-1165 $)) 35)) (-3998 (((-627 |#2|) $ (-1165 $)) 43)) (-3011 ((|#2| (-1165 $)) 13)) (-1816 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) 25)))
-(((-343 |#1| |#2| |#3|) (-10 -8 (-15 -1299 ((-627 |#2|) (-1165 |#1|))) (-15 -3011 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3998 ((-627 |#2|) |#1| (-1165 |#1|)))) (-344 |#2| |#3|) (-157) (-1141 |#2|)) (T -343))
-NIL
-(-10 -8 (-15 -1299 ((-627 |#2|) (-1165 |#1|))) (-15 -3011 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3998 ((-627 |#2|) |#1| (-1165 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1299 (((-627 |#1|) (-1165 $)) 46)) (-1927 ((|#1| $) 52)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3190 (($ (-1165 |#1|) (-1165 $)) 48)) (-3998 (((-627 |#1|) $ (-1165 $)) 53)) (-2783 (((-3 $ "failed") $) 34)) (-3167 (((-849)) 54)) (-3637 (((-108) $) 31)) (-2549 ((|#1| $) 51)) (-3769 ((|#2| $) 44 (|has| |#1| (-337)))) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-3011 ((|#1| (-1165 $)) 47)) (-1816 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37)) (-2446 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-3379 ((|#2| $) 45)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-344 |#1| |#2|) (-1196) (-157) (-1141 |t#1|)) (T -344))
-((-3167 (*1 *2) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-849)))) (-3998 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *4)))) (-1816 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157)) (-4 *1 (-344 *4 *5)) (-4 *5 (-1141 *4)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *2 *4)) (-4 *4 (-1141 *2)) (-4 *2 (-157)))) (-1299 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *3 (-337)) (-4 *2 (-1141 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3167 ((-849))) (-15 -3998 ((-627 |t#1|) $ (-1165 $))) (-15 -1927 (|t#1| $)) (-15 -2549 (|t#1| $)) (-15 -1816 ((-1165 |t#1|) $ (-1165 $))) (-15 -1816 ((-627 |t#1|) (-1165 $) (-1165 $))) (-15 -3190 ($ (-1165 |t#1|) (-1165 $))) (-15 -3011 (|t#1| (-1165 $))) (-15 -1299 ((-627 |t#1|) (-1165 $))) (-15 -3379 (|t#2| $)) (IF (|has| |t#1| (-337)) (-15 -3769 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3859 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1393 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-345 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1119) (-347 |#1|) (-1119) (-347 |#3|)) (T -345))
-((-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-347 *5)) (-5 *1 (-345 *6 *4 *5 *2)) (-4 *4 (-347 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-345 *5 *4 *2 *6)) (-4 *4 (-347 *5)) (-4 *6 (-347 *2)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-347 *6)) (-5 *1 (-345 *5 *4 *6 *2)) (-4 *4 (-347 *5)))))
-(-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2299 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1216 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3215 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1924 (($ $) 25)) (-3236 (((-521) (-1 (-108) |#2|) $) NIL) (((-521) |#2| $) 11) (((-521) |#2| $ (-521)) NIL)) (-3389 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-346 |#1| |#2|) (-10 -8 (-15 -1216 (|#1| |#1|)) (-15 -1216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2299 ((-108) |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3389 (|#1| |#1| |#1|)) (-15 -3236 ((-521) |#2| |#1| (-521))) (-15 -3236 ((-521) |#2| |#1|)) (-15 -3236 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -2299 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3215 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1924 (|#1| |#1|)) (-15 -3389 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-347 |#2|) (-1119)) (T -346))
-NIL
-(-10 -8 (-15 -1216 (|#1| |#1|)) (-15 -1216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2299 ((-108) |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3389 (|#1| |#1| |#1|)) (-15 -3236 ((-521) |#2| |#1| (-521))) (-15 -3236 ((-521) |#2| |#1|)) (-15 -3236 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -2299 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3215 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1924 (|#1| |#1|)) (-15 -3389 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-3288 (($ $) 90 (|has| $ (-6 -4234)))) (-1924 (($ $) 100)) (-2354 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3236 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 87 (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 86 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 42 (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2995 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1588 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 82 (|has| |#1| (-783)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-347 |#1|) (-1196) (-1119)) (T -347))
-((-3389 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-1924 (*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)))) (-3215 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-2299 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-3236 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119)) (-5 *2 (-521)))) (-3236 (*1 *2 *3 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-521)))) (-3236 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)))) (-3389 (*1 *1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-783)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-783)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-783)) (-5 *2 (-108)))) (-3448 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-3288 (*1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119)))) (-1216 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4234)) (-4 *1 (-347 *3)) (-4 *3 (-1119)))) (-1216 (*1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-783)))))
-(-13 (-592 |t#1|) (-10 -8 (-6 -4233) (-15 -3389 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1924 ($ $)) (-15 -3215 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -2299 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3236 ((-521) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -3236 ((-521) |t#1| $)) (-15 -3236 ((-521) |t#1| $ (-521)))) |%noBranch|) (IF (|has| |t#1| (-783)) (PROGN (-6 (-783)) (-15 -3389 ($ $ $)) (-15 -3215 ($ $)) (-15 -2299 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4234)) (PROGN (-15 -3448 ($ $ $ (-521))) (-15 -3288 ($ $)) (-15 -1216 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-783)) (-15 -1216 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-1119) . T))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4101 (((-587 |#1|) $) 32)) (-3619 (($ $ (-707)) 33)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2301 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 36)) (-2056 (($ $) 34)) (-2116 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 37)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2313 (($ $ |#1| $) 31) (($ $ (-587 |#1|) (-587 $)) 30)) (-2098 (((-707) $) 38)) (-2234 (($ $ $) 29)) (-2223 (((-791) $) 11) (($ |#1|) 41) (((-1178 |#1| |#2|) $) 40) (((-1187 |#1| |#2|) $) 39)) (-2979 ((|#2| (-1187 |#1| |#2|) $) 42)) (-3562 (($) 18 T CONST)) (-1377 (($ (-612 |#1|)) 35)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#2|) 28 (|has| |#2| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-348 |#1| |#2|) (-1196) (-783) (-157)) (T -348))
-((-2979 (*1 *2 *3 *1) (-12 (-5 *3 (-1187 *4 *2)) (-4 *1 (-348 *4 *2)) (-4 *4 (-783)) (-4 *2 (-157)))) (-2223 (*1 *1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-1178 *3 *4)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-1187 *3 *4)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-707)))) (-2116 (*1 *2 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-2301 (*1 *2 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-4 *1 (-348 *3 *4)) (-4 *4 (-157)))) (-2056 (*1 *1 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *2 (-587 *3)))) (-2313 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-783)) (-4 *5 (-157)))))
-(-13 (-578 |t#2|) (-10 -8 (-15 -2979 (|t#2| (-1187 |t#1| |t#2|) $)) (-15 -2223 ($ |t#1|)) (-15 -2223 ((-1178 |t#1| |t#2|) $)) (-15 -2223 ((-1187 |t#1| |t#2|) $)) (-15 -2098 ((-707) $)) (-15 -2116 ((-1187 |t#1| |t#2|) (-1187 |t#1| |t#2|) $)) (-15 -2301 ((-1187 |t#1| |t#2|) (-1187 |t#1| |t#2|) $)) (-15 -1377 ($ (-612 |t#1|))) (-15 -2056 ($ $)) (-15 -3619 ($ $ (-707))) (-15 -4101 ((-587 |t#1|) $)) (-15 -2313 ($ $ |t#1| $)) (-15 -2313 ($ $ (-587 |t#1|) (-587 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#2|) . T) ((-578 |#2|) . T) ((-654 |#2|) . T) ((-976 |#2|) . T) ((-1013) . T))
-((-3195 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3756 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-1370 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21)))
-(((-349 |#1| |#2|) (-10 -7 (-15 -3756 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1370 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3195 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1119) (-13 (-347 |#1|) (-10 -7 (-6 -4234)))) (T -349))
-((-3195 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2)) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))) (-1370 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2)) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))) (-3756 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2)) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
-(-10 -7 (-15 -3756 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -1370 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3195 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
-((-1961 (((-627 |#2|) (-627 $)) NIL) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 19) (((-627 (-521)) (-627 $)) 13)))
-(((-350 |#1| |#2|) (-10 -8 (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 |#2|) (-627 |#1|)))) (-351 |#2|) (-970)) (T -350))
-NIL
-(-10 -8 (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 |#2|) (-627 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-1961 (((-627 |#1|) (-627 $)) 36) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 35) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 43 (|has| |#1| (-583 (-521)))) (((-627 (-521)) (-627 $)) 42 (|has| |#1| (-583 (-521))))) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-351 |#1|) (-1196) (-970)) (T -351))
-NIL
-(-13 (-583 |t#1|) (-10 -7 (IF (|has| |t#1| (-583 (-521))) (-6 (-583 (-521))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3932 (((-587 (-269 (-880 (-154 |#1|)))) (-269 (-381 (-880 (-154 (-521))))) |#1|) 50) (((-587 (-269 (-880 (-154 |#1|)))) (-381 (-880 (-154 (-521)))) |#1|) 49) (((-587 (-587 (-269 (-880 (-154 |#1|))))) (-587 (-269 (-381 (-880 (-154 (-521)))))) |#1|) 45) (((-587 (-587 (-269 (-880 (-154 |#1|))))) (-587 (-381 (-880 (-154 (-521))))) |#1|) 39)) (-2990 (((-587 (-587 (-154 |#1|))) (-587 (-381 (-880 (-154 (-521))))) (-587 (-1084)) |#1|) 27) (((-587 (-154 |#1|)) (-381 (-880 (-154 (-521)))) |#1|) 15)))
-(((-352 |#1|) (-10 -7 (-15 -3932 ((-587 (-587 (-269 (-880 (-154 |#1|))))) (-587 (-381 (-880 (-154 (-521))))) |#1|)) (-15 -3932 ((-587 (-587 (-269 (-880 (-154 |#1|))))) (-587 (-269 (-381 (-880 (-154 (-521)))))) |#1|)) (-15 -3932 ((-587 (-269 (-880 (-154 |#1|)))) (-381 (-880 (-154 (-521)))) |#1|)) (-15 -3932 ((-587 (-269 (-880 (-154 |#1|)))) (-269 (-381 (-880 (-154 (-521))))) |#1|)) (-15 -2990 ((-587 (-154 |#1|)) (-381 (-880 (-154 (-521)))) |#1|)) (-15 -2990 ((-587 (-587 (-154 |#1|))) (-587 (-381 (-880 (-154 (-521))))) (-587 (-1084)) |#1|))) (-13 (-337) (-781))) (T -352))
-((-2990 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-381 (-880 (-154 (-521)))))) (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 (-154 *5)))) (-5 *1 (-352 *5)) (-4 *5 (-13 (-337) (-781))))) (-2990 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 (-154 (-521))))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-781))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-880 (-154 (-521)))))) (-5 *2 (-587 (-269 (-880 (-154 *4))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-781))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 (-154 (-521))))) (-5 *2 (-587 (-269 (-880 (-154 *4))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-781))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-269 (-381 (-880 (-154 (-521))))))) (-5 *2 (-587 (-587 (-269 (-880 (-154 *4)))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-781))))) (-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-880 (-154 (-521)))))) (-5 *2 (-587 (-587 (-269 (-880 (-154 *4)))))) (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-781))))))
-(-10 -7 (-15 -3932 ((-587 (-587 (-269 (-880 (-154 |#1|))))) (-587 (-381 (-880 (-154 (-521))))) |#1|)) (-15 -3932 ((-587 (-587 (-269 (-880 (-154 |#1|))))) (-587 (-269 (-381 (-880 (-154 (-521)))))) |#1|)) (-15 -3932 ((-587 (-269 (-880 (-154 |#1|)))) (-381 (-880 (-154 (-521)))) |#1|)) (-15 -3932 ((-587 (-269 (-880 (-154 |#1|)))) (-269 (-381 (-880 (-154 (-521))))) |#1|)) (-15 -2990 ((-587 (-154 |#1|)) (-381 (-880 (-154 (-521)))) |#1|)) (-15 -2990 ((-587 (-587 (-154 |#1|))) (-587 (-381 (-880 (-154 (-521))))) (-587 (-1084)) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 33)) (-2556 (((-521) $) 55)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2868 (($ $) 110)) (-2910 (($ $) 82)) (-2775 (($ $) 71)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-1984 (($ $) 44)) (-2165 (((-108) $ $) NIL)) (-2886 (($ $) 80)) (-2752 (($ $) 69)) (-2578 (((-521) $) 64)) (-1697 (($ $ (-521)) 62)) (-2932 (($ $) NIL)) (-2796 (($ $) NIL)) (-2231 (($) NIL T CONST)) (-2844 (($ $) 112)) (-1296 (((-3 (-521) "failed") $) 188) (((-3 (-381 (-521)) "failed") $) 184)) (-1496 (((-521) $) 186) (((-381 (-521)) $) 182)) (-2302 (($ $ $) NIL)) (-1517 (((-521) $ $) 102)) (-2783 (((-3 $ "failed") $) 114)) (-1675 (((-381 (-521)) $ (-707)) 189) (((-381 (-521)) $ (-707) (-707)) 181)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2207 (((-849)) 73) (((-849) (-849)) 98 (|has| $ (-6 -4224)))) (-2273 (((-108) $) 106)) (-2840 (($) 40)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL)) (-4204 (((-1170) (-707)) 151)) (-1277 (((-1170)) 156) (((-1170) (-707)) 157)) (-2705 (((-1170)) 158) (((-1170) (-707)) 159)) (-3780 (((-1170)) 154) (((-1170) (-707)) 155)) (-3490 (((-521) $) 58)) (-3637 (((-108) $) 104)) (-3743 (($ $ (-521)) NIL)) (-3090 (($ $) 48)) (-2549 (($ $) NIL)) (-3305 (((-108) $) 35)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL) (($) NIL (-12 (-2416 (|has| $ (-6 -4216))) (-2416 (|has| $ (-6 -4224)))))) (-2459 (($ $ $) NIL) (($) 99 (-12 (-2416 (|has| $ (-6 -4216))) (-2416 (|has| $ (-6 -4224)))))) (-3356 (((-521) $) 17)) (-1307 (($) 87) (($ $) 92)) (-3551 (($) 91) (($ $) 93)) (-1253 (($ $) 83)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 116)) (-2914 (((-849) (-521)) 43 (|has| $ (-6 -4224)))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) 53)) (-2720 (($ $) 109)) (-3073 (($ (-521) (-521)) 107) (($ (-521) (-521) (-849)) 108)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2246 (((-521) $) 19)) (-3243 (($) 94)) (-3265 (($ $) 79)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3312 (((-849)) 100) (((-849) (-849)) 101 (|has| $ (-6 -4224)))) (-2193 (($ $ (-707)) NIL) (($ $) 115)) (-1989 (((-849) (-521)) 47 (|has| $ (-6 -4224)))) (-1787 (($ $) NIL)) (-2806 (($ $) NIL)) (-2921 (($ $) NIL)) (-2786 (($ $) NIL)) (-2898 (($ $) 81)) (-2764 (($ $) 70)) (-1438 (((-353) $) 174) (((-202) $) 176) (((-820 (-353)) $) NIL) (((-1067) $) 161) (((-497) $) 172) (($ (-202)) 180)) (-2223 (((-791) $) 163) (($ (-521)) 185) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-521)) 185) (($ (-381 (-521))) NIL) (((-202) $) 177)) (-1592 (((-707)) NIL)) (-1281 (($ $) 111)) (-2201 (((-849)) 54) (((-849) (-849)) 66 (|has| $ (-6 -4224)))) (-3354 (((-849)) 103)) (-1811 (($ $) 86)) (-2838 (($ $) 46) (($ $ $) 52)) (-1842 (((-108) $ $) NIL)) (-1795 (($ $) 84)) (-2817 (($ $) 37)) (-1830 (($ $) NIL)) (-2862 (($ $) NIL)) (-3919 (($ $) NIL)) (-2874 (($ $) NIL)) (-1821 (($ $) NIL)) (-2850 (($ $) NIL)) (-1803 (($ $) 85)) (-2827 (($ $) 49)) (-4012 (($ $) 51)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 34 T CONST)) (-3572 (($) 38 T CONST)) (-3828 (((-1067) $) 27) (((-1067) $ (-108)) 29) (((-1170) (-758) $) 30) (((-1170) (-758) $ (-108)) 31)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 39)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 42)) (-1648 (($ $ $) 45) (($ $ (-521)) 41)) (-1639 (($ $) 36) (($ $ $) 50)) (-1628 (($ $ $) 61)) (** (($ $ (-849)) 67) (($ $ (-707)) NIL) (($ $ (-521)) 88) (($ $ (-381 (-521))) 125) (($ $ $) 117)) (* (($ (-849) $) 65) (($ (-707) $) NIL) (($ (-521) $) 68) (($ $ $) 60) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-353) (-13 (-378) (-210) (-562 (-1067)) (-764) (-561 (-202)) (-1105) (-562 (-497)) (-10 -8 (-15 -1648 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3090 ($ $)) (-15 -1517 ((-521) $ $)) (-15 -1697 ($ $ (-521))) (-15 -1675 ((-381 (-521)) $ (-707))) (-15 -1675 ((-381 (-521)) $ (-707) (-707))) (-15 -1307 ($)) (-15 -3551 ($)) (-15 -3243 ($)) (-15 -2838 ($ $ $)) (-15 -1307 ($ $)) (-15 -3551 ($ $)) (-15 -1438 ($ (-202))) (-15 -2705 ((-1170))) (-15 -2705 ((-1170) (-707))) (-15 -3780 ((-1170))) (-15 -3780 ((-1170) (-707))) (-15 -1277 ((-1170))) (-15 -1277 ((-1170) (-707))) (-15 -4204 ((-1170) (-707))) (-6 -4224) (-6 -4216)))) (T -353))
-((** (*1 *1 *1 *1) (-5 *1 (-353))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353)))) (-3090 (*1 *1 *1) (-5 *1 (-353))) (-1517 (*1 *2 *1 *1) (-12 (-5 *2 (-521)) (-5 *1 (-353)))) (-1697 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353)))) (-1675 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353)))) (-1675 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353)))) (-1307 (*1 *1) (-5 *1 (-353))) (-3551 (*1 *1) (-5 *1 (-353))) (-3243 (*1 *1) (-5 *1 (-353))) (-2838 (*1 *1 *1 *1) (-5 *1 (-353))) (-1307 (*1 *1 *1) (-5 *1 (-353))) (-3551 (*1 *1 *1) (-5 *1 (-353))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-353)))) (-2705 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))) (-3780 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))) (-1277 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))) (-1277 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))))
-(-13 (-378) (-210) (-562 (-1067)) (-764) (-561 (-202)) (-1105) (-562 (-497)) (-10 -8 (-15 -1648 ($ $ (-521))) (-15 ** ($ $ $)) (-15 -3090 ($ $)) (-15 -1517 ((-521) $ $)) (-15 -1697 ($ $ (-521))) (-15 -1675 ((-381 (-521)) $ (-707))) (-15 -1675 ((-381 (-521)) $ (-707) (-707))) (-15 -1307 ($)) (-15 -3551 ($)) (-15 -3243 ($)) (-15 -2838 ($ $ $)) (-15 -1307 ($ $)) (-15 -3551 ($ $)) (-15 -1438 ($ (-202))) (-15 -2705 ((-1170))) (-15 -2705 ((-1170) (-707))) (-15 -3780 ((-1170))) (-15 -3780 ((-1170) (-707))) (-15 -1277 ((-1170))) (-15 -1277 ((-1170) (-707))) (-15 -4204 ((-1170) (-707))) (-6 -4224) (-6 -4216)))
-((-3278 (((-587 (-269 (-880 |#1|))) (-269 (-381 (-880 (-521)))) |#1|) 46) (((-587 (-269 (-880 |#1|))) (-381 (-880 (-521))) |#1|) 45) (((-587 (-587 (-269 (-880 |#1|)))) (-587 (-269 (-381 (-880 (-521))))) |#1|) 41) (((-587 (-587 (-269 (-880 |#1|)))) (-587 (-381 (-880 (-521)))) |#1|) 35)) (-1317 (((-587 |#1|) (-381 (-880 (-521))) |#1|) 19) (((-587 (-587 |#1|)) (-587 (-381 (-880 (-521)))) (-587 (-1084)) |#1|) 30)))
-(((-354 |#1|) (-10 -7 (-15 -3278 ((-587 (-587 (-269 (-880 |#1|)))) (-587 (-381 (-880 (-521)))) |#1|)) (-15 -3278 ((-587 (-587 (-269 (-880 |#1|)))) (-587 (-269 (-381 (-880 (-521))))) |#1|)) (-15 -3278 ((-587 (-269 (-880 |#1|))) (-381 (-880 (-521))) |#1|)) (-15 -3278 ((-587 (-269 (-880 |#1|))) (-269 (-381 (-880 (-521)))) |#1|)) (-15 -1317 ((-587 (-587 |#1|)) (-587 (-381 (-880 (-521)))) (-587 (-1084)) |#1|)) (-15 -1317 ((-587 |#1|) (-381 (-880 (-521))) |#1|))) (-13 (-781) (-337))) (T -354))
-((-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-354 *4)) (-4 *4 (-13 (-781) (-337))))) (-1317 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-381 (-880 (-521))))) (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 *5))) (-5 *1 (-354 *5)) (-4 *5 (-13 (-781) (-337))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-880 (-521))))) (-5 *2 (-587 (-269 (-880 *4)))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-781) (-337))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 (-521)))) (-5 *2 (-587 (-269 (-880 *4)))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-781) (-337))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-269 (-381 (-880 (-521)))))) (-5 *2 (-587 (-587 (-269 (-880 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-781) (-337))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-880 (-521))))) (-5 *2 (-587 (-587 (-269 (-880 *4))))) (-5 *1 (-354 *4)) (-4 *4 (-13 (-781) (-337))))))
-(-10 -7 (-15 -3278 ((-587 (-587 (-269 (-880 |#1|)))) (-587 (-381 (-880 (-521)))) |#1|)) (-15 -3278 ((-587 (-587 (-269 (-880 |#1|)))) (-587 (-269 (-381 (-880 (-521))))) |#1|)) (-15 -3278 ((-587 (-269 (-880 |#1|))) (-381 (-880 (-521))) |#1|)) (-15 -3278 ((-587 (-269 (-880 |#1|))) (-269 (-381 (-880 (-521)))) |#1|)) (-15 -1317 ((-587 (-587 |#1|)) (-587 (-381 (-880 (-521)))) (-587 (-1084)) |#1|)) (-15 -1317 ((-587 |#1|) (-381 (-880 (-521))) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 25)) (-1496 ((|#2| $) 27)) (-3157 (($ $) NIL)) (-2443 (((-707) $) 10)) (-2411 (((-587 $) $) 20)) (-3573 (((-108) $) NIL)) (-2523 (($ |#2| |#1|) 18)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3130 ((|#2| $) 15)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 44) (($ |#2|) 26)) (-2730 (((-587 |#1|) $) 17)) (-1499 ((|#1| $ |#2|) 46)) (-3562 (($) 28 T CONST)) (-1583 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
-(((-355 |#1| |#2|) (-13 (-356 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-970) (-783)) (T -355))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-355 *3 *2)) (-4 *3 (-970)) (-4 *2 (-783)))))
-(-13 (-356 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#2| "failed") $) 44)) (-1496 ((|#2| $) 43)) (-3157 (($ $) 30)) (-2443 (((-707) $) 34)) (-2411 (((-587 $) $) 35)) (-3573 (((-108) $) 38)) (-2523 (($ |#2| |#1|) 39)) (-1393 (($ (-1 |#1| |#1|) $) 40)) (-2102 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3130 ((|#2| $) 33)) (-3140 ((|#1| $) 32)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ |#2|) 45)) (-2730 (((-587 |#1|) $) 36)) (-1499 ((|#1| $ |#2|) 41)) (-3562 (($) 18 T CONST)) (-1583 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-356 |#1| |#2|) (-1196) (-970) (-1013)) (T -356))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013)))) (-1499 (*1 *2 *1 *3) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)))) (-2523 (*1 *1 *2 *3) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-108)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 *3)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 *1)) (-4 *1 (-356 *3 *4)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-707)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970)))) (-2102 (*1 *2 *1) (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013)))))
-(-13 (-107 |t#1| |t#1|) (-961 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1499 (|t#1| $ |t#2|)) (-15 -1393 ($ (-1 |t#1| |t#1|) $)) (-15 -2523 ($ |t#2| |t#1|)) (-15 -3573 ((-108) $)) (-15 -1583 ((-587 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2730 ((-587 |t#1|) $)) (-15 -2411 ((-587 $) $)) (-15 -2443 ((-707) $)) (-15 -3130 (|t#2| $)) (-15 -3140 (|t#1| $)) (-15 -2102 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3157 ($ $)) (IF (|has| |t#1| (-157)) (-6 (-654 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-654 |#1|) |has| |#1| (-157)) ((-961 |#2|) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-2059 (((-1170) $) 7)) (-2223 (((-791) $) 8) (($ (-627 (-636))) 14) (($ (-587 (-304))) 13) (($ (-304)) 12) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 11)))
-(((-357) (-1196)) (T -357))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-627 (-636))) (-4 *1 (-357)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-357)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-357)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) (-4 *1 (-357)))))
-(-13 (-369) (-10 -8 (-15 -2223 ($ (-627 (-636)))) (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-304))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))))))
-(((-561 (-791)) . T) ((-369) . T) ((-1119) . T))
-((-1296 (((-3 $ "failed") (-627 (-290 (-353)))) 21) (((-3 $ "failed") (-627 (-290 (-521)))) 19) (((-3 $ "failed") (-627 (-880 (-353)))) 17) (((-3 $ "failed") (-627 (-880 (-521)))) 15) (((-3 $ "failed") (-627 (-381 (-880 (-353))))) 13) (((-3 $ "failed") (-627 (-381 (-880 (-521))))) 11)) (-1496 (($ (-627 (-290 (-353)))) 22) (($ (-627 (-290 (-521)))) 20) (($ (-627 (-880 (-353)))) 18) (($ (-627 (-880 (-521)))) 16) (($ (-627 (-381 (-880 (-353))))) 14) (($ (-627 (-381 (-880 (-521))))) 12)) (-2059 (((-1170) $) 7)) (-2223 (((-791) $) 8) (($ (-587 (-304))) 25) (($ (-304)) 24) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 23)))
-(((-358) (-1196)) (T -358))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-358)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-358)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) (-4 *1 (-358)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-627 (-880 (-353)))) (-4 *1 (-358)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-880 (-353)))) (-4 *1 (-358)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-627 (-880 (-521)))) (-4 *1 (-358)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-880 (-521)))) (-4 *1 (-358)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-880 (-353))))) (-4 *1 (-358)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-381 (-880 (-353))))) (-4 *1 (-358)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-880 (-521))))) (-4 *1 (-358)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 (-381 (-880 (-521))))) (-4 *1 (-358)))))
-(-13 (-369) (-10 -8 (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-304))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))) (-15 -1496 ($ (-627 (-290 (-353))))) (-15 -1296 ((-3 $ "failed") (-627 (-290 (-353))))) (-15 -1496 ($ (-627 (-290 (-521))))) (-15 -1296 ((-3 $ "failed") (-627 (-290 (-521))))) (-15 -1496 ($ (-627 (-880 (-353))))) (-15 -1296 ((-3 $ "failed") (-627 (-880 (-353))))) (-15 -1496 ($ (-627 (-880 (-521))))) (-15 -1296 ((-3 $ "failed") (-627 (-880 (-521))))) (-15 -1496 ($ (-627 (-381 (-880 (-353)))))) (-15 -1296 ((-3 $ "failed") (-627 (-381 (-880 (-353)))))) (-15 -1496 ($ (-627 (-381 (-880 (-521)))))) (-15 -1296 ((-3 $ "failed") (-627 (-381 (-880 (-521))))))))
-(((-561 (-791)) . T) ((-369) . T) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-4044 (($ |#1| |#2|) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3837 ((|#2| $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 28)) (-3562 (($) 12 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-359 |#1| |#2|) (-13 (-107 |#1| |#1|) (-477 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|))) (-970) (-783)) (T -359))
-NIL
-(-13 (-107 |#1| |#1|) (-477 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-654 |#1|)) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-1659 (((-707) $) 57)) (-2231 (($) NIL T CONST)) (-2301 (((-3 $ "failed") $ $) 59)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3526 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3637 (((-108) $) 14)) (-3493 ((|#1| $ (-521)) NIL)) (-1754 (((-707) $ (-521)) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2205 (($ (-1 |#1| |#1|) $) 37)) (-2031 (($ (-1 (-707) (-707)) $) 34)) (-2116 (((-3 $ "failed") $ $) 50)) (-4024 (((-1067) $) NIL)) (-3606 (($ $ $) 25)) (-3763 (($ $ $) 23)) (-4146 (((-1031) $) NIL)) (-3655 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $) 31)) (-1904 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2223 (((-791) $) 21) (($ |#1|) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3572 (($) 9 T CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 41)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) 61 (|has| |#1| (-783)))) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ |#1| (-707)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
-(((-360 |#1|) (-13 (-663) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -3763 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2116 ((-3 $ "failed") $ $)) (-15 -2301 ((-3 $ "failed") $ $)) (-15 -1904 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3526 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1659 ((-707) $)) (-15 -3655 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $)) (-15 -1754 ((-707) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -2031 ($ (-1 (-707) (-707)) $)) (-15 -2205 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|))) (-1013)) (T -360))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-3763 (*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-3606 (*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-2116 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-2301 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-1904 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-360 *3)) (|:| |rm| (-360 *3)))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-3526 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-360 *3)) (|:| |mm| (-360 *3)) (|:| |rm| (-360 *3)))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 (-707))))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-360 *4)) (-4 *4 (-1013)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-360 *2)) (-4 *2 (-1013)))) (-2031 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-707) (-707))) (-5 *1 (-360 *3)) (-4 *3 (-1013)))) (-2205 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-360 *3)))))
-(-13 (-663) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -3763 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2116 ((-3 $ "failed") $ $)) (-15 -2301 ((-3 $ "failed") $ $)) (-15 -1904 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3526 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1659 ((-707) $)) (-15 -3655 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $)) (-15 -1754 ((-707) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -2031 ($ (-1 (-707) (-707)) $)) (-15 -2205 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-783)) (-6 (-783)) |%noBranch|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 47)) (-1496 (((-521) $) 46)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-2816 (($ $ $) 54)) (-2459 (($ $ $) 53)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ $) 42)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-521)) 48)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 51)) (-1579 (((-108) $ $) 50)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 52)) (-1569 (((-108) $ $) 49)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-361) (-1196)) (T -361))
-NIL
-(-13 (-513) (-783) (-961 (-521)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-783) . T) ((-961 (-521)) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-2437 (((-108) $) 20)) (-3819 (((-108) $) 19)) (-1869 (($ (-1067) (-1067) (-1067)) 21)) (-2890 (((-1067) $) 16)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2559 (($ (-1067) (-1067) (-1067)) 14)) (-2577 (((-1067) $) 17)) (-2243 (((-108) $) 18)) (-3123 (((-1067) $) 15)) (-2223 (((-791) $) 12) (($ (-1067)) 13) (((-1067) $) 9)) (-1549 (((-108) $ $) 7)))
-(((-362) (-363)) (T -362))
-NIL
-(-363)
-((-1422 (((-108) $ $) 7)) (-2437 (((-108) $) 14)) (-3819 (((-108) $) 15)) (-1869 (($ (-1067) (-1067) (-1067)) 13)) (-2890 (((-1067) $) 18)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2559 (($ (-1067) (-1067) (-1067)) 20)) (-2577 (((-1067) $) 17)) (-2243 (((-108) $) 16)) (-3123 (((-1067) $) 19)) (-2223 (((-791) $) 11) (($ (-1067)) 22) (((-1067) $) 21)) (-1549 (((-108) $ $) 6)))
-(((-363) (-1196)) (T -363))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-2559 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))) (-2437 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))) (-1869 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-1067))) (-15 -2223 ((-1067) $)) (-15 -2559 ($ (-1067) (-1067) (-1067))) (-15 -3123 ((-1067) $)) (-15 -2890 ((-1067) $)) (-15 -2577 ((-1067) $)) (-15 -2243 ((-108) $)) (-15 -3819 ((-108) $)) (-15 -2437 ((-108) $)) (-15 -1869 ($ (-1067) (-1067) (-1067)))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3413 (((-791) $) 50)) (-2231 (($) NIL T CONST)) (-2588 (($ $ (-849)) NIL)) (-1940 (($ $ (-849)) NIL)) (-1209 (($ $ (-849)) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1384 (($ (-707)) 26)) (-2043 (((-707)) 15)) (-4161 (((-791) $) 52)) (-2062 (($ $ $) NIL)) (-2223 (((-791) $) NIL)) (-2268 (($ $ $ $) NIL)) (-3968 (($ $ $) NIL)) (-3562 (($) 20 T CONST)) (-1549 (((-108) $ $) 28)) (-1639 (($ $) 34) (($ $ $) 36)) (-1628 (($ $ $) 37)) (** (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-364 |#1| |#2| |#3|) (-13 (-681 |#3|) (-10 -8 (-15 -2043 ((-707))) (-15 -4161 ((-791) $)) (-15 -3413 ((-791) $)) (-15 -1384 ($ (-707))))) (-707) (-707) (-157)) (T -364))
-((-2043 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)) (-4 *5 (-157)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)) (-4 *5 (-157)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))))
-(-13 (-681 |#3|) (-10 -8 (-15 -2043 ((-707))) (-15 -4161 ((-791) $)) (-15 -3413 ((-791) $)) (-15 -1384 ($ (-707)))))
-((-3258 (((-1067)) 10)) (-4128 (((-1056 (-1067))) 28)) (-2033 (((-1170) (-1067)) 25) (((-1170) (-362)) 24)) (-2046 (((-1170)) 26)) (-3887 (((-1056 (-1067))) 27)))
-(((-365) (-10 -7 (-15 -3887 ((-1056 (-1067)))) (-15 -4128 ((-1056 (-1067)))) (-15 -2046 ((-1170))) (-15 -2033 ((-1170) (-362))) (-15 -2033 ((-1170) (-1067))) (-15 -3258 ((-1067))))) (T -365))
-((-3258 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-365)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-365)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-365)))) (-2046 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-365)))) (-4128 (*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))) (-3887 (*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))))
-(-10 -7 (-15 -3887 ((-1056 (-1067)))) (-15 -4128 ((-1056 (-1067)))) (-15 -2046 ((-1170))) (-15 -2033 ((-1170) (-362))) (-15 -2033 ((-1170) (-1067))) (-15 -3258 ((-1067))))
-((-3490 (((-707) (-310 |#1| |#2| |#3| |#4|)) 16)))
-(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 ((-707) (-310 |#1| |#2| |#3| |#4|)))) (-13 (-342) (-337)) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -366))
-((-3490 (*1 *2 *3) (-12 (-5 *3 (-310 *4 *5 *6 *7)) (-4 *4 (-13 (-342) (-337))) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *7 (-316 *4 *5 *6)) (-5 *2 (-707)) (-5 *1 (-366 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3490 ((-707) (-310 |#1| |#2| |#3| |#4|))))
-((-2223 (((-368) |#1|) 11)))
-(((-367 |#1|) (-10 -7 (-15 -2223 ((-368) |#1|))) (-1013)) (T -367))
-((-2223 (*1 *2 *3) (-12 (-5 *2 (-368)) (-5 *1 (-367 *3)) (-4 *3 (-1013)))))
-(-10 -7 (-15 -2223 ((-368) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-2563 (((-587 (-1067)) $ (-587 (-1067))) 37)) (-1898 (((-587 (-1067)) $ (-587 (-1067))) 38)) (-1647 (((-587 (-1067)) $ (-587 (-1067))) 39)) (-3302 (((-587 (-1067)) $) 34)) (-1869 (($) 23)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1383 (((-587 (-1067)) $) 35)) (-4006 (((-587 (-1067)) $) 36)) (-1718 (((-1170) $ (-521)) 32) (((-1170) $) 33)) (-1438 (($ (-791) (-521)) 29)) (-2223 (((-791) $) 41) (($ (-791)) 25)) (-1549 (((-108) $ $) NIL)))
-(((-368) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-791))) (-15 -1438 ($ (-791) (-521))) (-15 -1718 ((-1170) $ (-521))) (-15 -1718 ((-1170) $)) (-15 -4006 ((-587 (-1067)) $)) (-15 -1383 ((-587 (-1067)) $)) (-15 -1869 ($)) (-15 -3302 ((-587 (-1067)) $)) (-15 -1647 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -1898 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2563 ((-587 (-1067)) $ (-587 (-1067))))))) (T -368))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-368)))) (-1438 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-521)) (-5 *1 (-368)))) (-1718 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-368)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-368)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1869 (*1 *1) (-5 *1 (-368))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1647 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-1898 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))) (-2563 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-791))) (-15 -1438 ($ (-791) (-521))) (-15 -1718 ((-1170) $ (-521))) (-15 -1718 ((-1170) $)) (-15 -4006 ((-587 (-1067)) $)) (-15 -1383 ((-587 (-1067)) $)) (-15 -1869 ($)) (-15 -3302 ((-587 (-1067)) $)) (-15 -1647 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -1898 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2563 ((-587 (-1067)) $ (-587 (-1067))))))
-((-2059 (((-1170) $) 7)) (-2223 (((-791) $) 8)))
-(((-369) (-1196)) (T -369))
-((-2059 (*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1170)))))
-(-13 (-1119) (-561 (-791)) (-10 -8 (-15 -2059 ((-1170) $))))
-(((-561 (-791)) . T) ((-1119) . T))
-((-1296 (((-3 $ "failed") (-290 (-353))) 21) (((-3 $ "failed") (-290 (-521))) 19) (((-3 $ "failed") (-880 (-353))) 17) (((-3 $ "failed") (-880 (-521))) 15) (((-3 $ "failed") (-381 (-880 (-353)))) 13) (((-3 $ "failed") (-381 (-880 (-521)))) 11)) (-1496 (($ (-290 (-353))) 22) (($ (-290 (-521))) 20) (($ (-880 (-353))) 18) (($ (-880 (-521))) 16) (($ (-381 (-880 (-353)))) 14) (($ (-381 (-880 (-521)))) 12)) (-2059 (((-1170) $) 7)) (-2223 (((-791) $) 8) (($ (-587 (-304))) 25) (($ (-304)) 24) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 23)))
-(((-370) (-1196)) (T -370))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-370)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-370)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) (-4 *1 (-370)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-4 *1 (-370)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-353))) (-4 *1 (-370)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-4 *1 (-370)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-521))) (-4 *1 (-370)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-880 (-353))) (-4 *1 (-370)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-353))) (-4 *1 (-370)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-880 (-521))) (-4 *1 (-370)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-521))) (-4 *1 (-370)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-353)))) (-4 *1 (-370)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-880 (-353)))) (-4 *1 (-370)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-521)))) (-4 *1 (-370)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 (-880 (-521)))) (-4 *1 (-370)))))
-(-13 (-369) (-10 -8 (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-304))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))) (-15 -1496 ($ (-290 (-353)))) (-15 -1296 ((-3 $ "failed") (-290 (-353)))) (-15 -1496 ($ (-290 (-521)))) (-15 -1296 ((-3 $ "failed") (-290 (-521)))) (-15 -1496 ($ (-880 (-353)))) (-15 -1296 ((-3 $ "failed") (-880 (-353)))) (-15 -1496 ($ (-880 (-521)))) (-15 -1296 ((-3 $ "failed") (-880 (-521)))) (-15 -1496 ($ (-381 (-880 (-353))))) (-15 -1296 ((-3 $ "failed") (-381 (-880 (-353))))) (-15 -1496 ($ (-381 (-880 (-521))))) (-15 -1296 ((-3 $ "failed") (-381 (-880 (-521)))))))
-(((-561 (-791)) . T) ((-369) . T) ((-1119) . T))
-((-2982 (((-587 (-1067)) (-587 (-1067))) 8)) (-2059 (((-1170) (-362)) 27)) (-3466 (((-1017) (-1084) (-587 (-1084)) (-1087) (-587 (-1084))) 59) (((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)) (-1084)) 35) (((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084))) 34)))
-(((-371) (-10 -7 (-15 -3466 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)))) (-15 -3466 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)) (-1084))) (-15 -3466 ((-1017) (-1084) (-587 (-1084)) (-1087) (-587 (-1084)))) (-15 -2059 ((-1170) (-362))) (-15 -2982 ((-587 (-1067)) (-587 (-1067)))))) (T -371))
-((-2982 (*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-371)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-371)))) (-3466 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-587 (-1084))) (-5 *5 (-1087)) (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-371)))) (-3466 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084))))) (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-371)))) (-3466 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084))))) (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-371)))))
-(-10 -7 (-15 -3466 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)))) (-15 -3466 ((-1017) (-1084) (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084)))) (-587 (-587 (-3 (|:| |array| (-587 (-1084))) (|:| |scalar| (-1084))))) (-587 (-1084)) (-1084))) (-15 -3466 ((-1017) (-1084) (-587 (-1084)) (-1087) (-587 (-1084)))) (-15 -2059 ((-1170) (-362))) (-15 -2982 ((-587 (-1067)) (-587 (-1067)))))
-((-2059 (((-1170) $) 37)) (-2223 (((-791) $) 89) (($ (-304)) 92) (($ (-587 (-304))) 91) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 88) (($ (-290 (-638))) 52) (($ (-290 (-636))) 66) (($ (-290 (-631))) 78) (($ (-269 (-290 (-638)))) 62) (($ (-269 (-290 (-636)))) 74) (($ (-269 (-290 (-631)))) 86) (($ (-290 (-521))) 96) (($ (-290 (-353))) 108) (($ (-290 (-154 (-353)))) 120) (($ (-269 (-290 (-521)))) 104) (($ (-269 (-290 (-353)))) 116) (($ (-269 (-290 (-154 (-353))))) 128)))
-(((-372 |#1| |#2| |#3| |#4|) (-13 (-369) (-10 -8 (-15 -2223 ($ (-304))) (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))) (-15 -2223 ($ (-290 (-638)))) (-15 -2223 ($ (-290 (-636)))) (-15 -2223 ($ (-290 (-631)))) (-15 -2223 ($ (-269 (-290 (-638))))) (-15 -2223 ($ (-269 (-290 (-636))))) (-15 -2223 ($ (-269 (-290 (-631))))) (-15 -2223 ($ (-290 (-521)))) (-15 -2223 ($ (-290 (-353)))) (-15 -2223 ($ (-290 (-154 (-353))))) (-15 -2223 ($ (-269 (-290 (-521))))) (-15 -2223 ($ (-269 (-290 (-353))))) (-15 -2223 ($ (-269 (-290 (-154 (-353)))))))) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-1088)) (T -372))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-304)) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-290 (-638))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-290 (-636))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-290 (-631))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-638)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-636)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-631)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-521)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-353)))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-269 (-290 (-154 (-353))))) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-14 *5 (-587 (-1084))) (-14 *6 (-1088)))))
-(-13 (-369) (-10 -8 (-15 -2223 ($ (-304))) (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))) (-15 -2223 ($ (-290 (-638)))) (-15 -2223 ($ (-290 (-636)))) (-15 -2223 ($ (-290 (-631)))) (-15 -2223 ($ (-269 (-290 (-638))))) (-15 -2223 ($ (-269 (-290 (-636))))) (-15 -2223 ($ (-269 (-290 (-631))))) (-15 -2223 ($ (-290 (-521)))) (-15 -2223 ($ (-290 (-353)))) (-15 -2223 ($ (-290 (-154 (-353))))) (-15 -2223 ($ (-269 (-290 (-521))))) (-15 -2223 ($ (-269 (-290 (-353))))) (-15 -2223 ($ (-269 (-290 (-154 (-353))))))))
-((-1422 (((-108) $ $) NIL)) (-1953 ((|#2| $) 36)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1706 (($ (-381 |#2|)) 84)) (-2065 (((-587 (-2 (|:| -2246 (-707)) (|:| -1952 |#2|) (|:| |num| |#2|))) $) 37)) (-2193 (($ $) 32) (($ $ (-707)) 34)) (-1438 (((-381 |#2|) $) 46)) (-2234 (($ (-587 (-2 (|:| -2246 (-707)) (|:| -1952 |#2|) (|:| |num| |#2|)))) 31)) (-2223 (((-791) $) 120)) (-2244 (($ $) 33) (($ $ (-707)) 35)) (-1549 (((-108) $ $) NIL)) (-1628 (($ |#2| $) 39)))
-(((-373 |#1| |#2|) (-13 (-1013) (-562 (-381 |#2|)) (-10 -8 (-15 -1628 ($ |#2| $)) (-15 -1706 ($ (-381 |#2|))) (-15 -1953 (|#2| $)) (-15 -2065 ((-587 (-2 (|:| -2246 (-707)) (|:| -1952 |#2|) (|:| |num| |#2|))) $)) (-15 -2234 ($ (-587 (-2 (|:| -2246 (-707)) (|:| -1952 |#2|) (|:| |num| |#2|))))) (-15 -2193 ($ $)) (-15 -2244 ($ $)) (-15 -2193 ($ $ (-707))) (-15 -2244 ($ $ (-707))))) (-13 (-337) (-135)) (-1141 |#1|)) (T -373))
-((-1628 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *2)) (-4 *2 (-1141 *3)))) (-1706 (*1 *1 *2) (-12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)))) (-1953 (*1 *2 *1) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-373 *3 *2)) (-4 *3 (-13 (-337) (-135))))) (-2065 (*1 *2 *1) (-12 (-4 *3 (-13 (-337) (-135))) (-5 *2 (-587 (-2 (|:| -2246 (-707)) (|:| -1952 *4) (|:| |num| *4)))) (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2246 (-707)) (|:| -1952 *4) (|:| |num| *4)))) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)))) (-2193 (*1 *1 *1) (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3)) (-4 *3 (-1141 *2)))) (-2244 (*1 *1 *1) (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3)) (-4 *3 (-1141 *2)))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))) (-2244 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))))
-(-13 (-1013) (-562 (-381 |#2|)) (-10 -8 (-15 -1628 ($ |#2| $)) (-15 -1706 ($ (-381 |#2|))) (-15 -1953 (|#2| $)) (-15 -2065 ((-587 (-2 (|:| -2246 (-707)) (|:| -1952 |#2|) (|:| |num| |#2|))) $)) (-15 -2234 ($ (-587 (-2 (|:| -2246 (-707)) (|:| -1952 |#2|) (|:| |num| |#2|))))) (-15 -2193 ($ $)) (-15 -2244 ($ $)) (-15 -2193 ($ $ (-707))) (-15 -2244 ($ $ (-707)))))
-((-1422 (((-108) $ $) 9 (-3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))))) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 15 (|has| |#1| (-814 (-353)))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 14 (|has| |#1| (-814 (-521))))) (-4024 (((-1067) $) 13 (-3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))))) (-4146 (((-1031) $) 12 (-3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))))) (-2223 (((-791) $) 11 (-3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))))) (-1549 (((-108) $ $) 10 (-3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))))))
-(((-374 |#1|) (-1196) (-1119)) (T -374))
-NIL
-(-13 (-1119) (-10 -7 (IF (|has| |t#1| (-814 (-521))) (-6 (-814 (-521))) |%noBranch|) (IF (|has| |t#1| (-814 (-353))) (-6 (-814 (-353))) |%noBranch|)))
-(((-97) -3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))) ((-561 (-791)) -3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))) ((-814 (-353)) |has| |#1| (-814 (-353))) ((-814 (-521)) |has| |#1| (-814 (-521))) ((-1013) -3703 (|has| |#1| (-814 (-521))) (|has| |#1| (-814 (-353)))) ((-1119) . T))
-((-1375 (($ $) 10) (($ $ (-707)) 11)))
-(((-375 |#1|) (-10 -8 (-15 -1375 (|#1| |#1| (-707))) (-15 -1375 (|#1| |#1|))) (-376)) (T -375))
-NIL
-(-10 -8 (-15 -1375 (|#1| |#1| (-707))) (-15 -1375 (|#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-1375 (($ $) 79) (($ $ (-707)) 78)) (-2100 (((-108) $) 71)) (-3490 (((-769 (-849)) $) 81)) (-3637 (((-108) $) 31)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-3660 (((-3 (-707) "failed") $ $) 80)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65)) (-2446 (((-3 $ "failed") $) 82)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 64)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
-(((-376) (-1196)) (T -376))
-((-3490 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-769 (-849))))) (-3660 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-376)) (-5 *2 (-707)))) (-1375 (*1 *1 *1) (-4 *1 (-376))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-707)))))
-(-13 (-337) (-133) (-10 -8 (-15 -3490 ((-769 (-849)) $)) (-15 -3660 ((-3 (-707) "failed") $ $)) (-15 -1375 ($ $)) (-15 -1375 ($ $ (-707)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-561 (-791)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-3073 (($ (-521) (-521)) 11) (($ (-521) (-521) (-849)) NIL)) (-3312 (((-849)) 16) (((-849) (-849)) NIL)))
-(((-377 |#1|) (-10 -8 (-15 -3312 ((-849) (-849))) (-15 -3312 ((-849))) (-15 -3073 (|#1| (-521) (-521) (-849))) (-15 -3073 (|#1| (-521) (-521)))) (-378)) (T -377))
-((-3312 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-377 *3)) (-4 *3 (-378)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-377 *3)) (-4 *3 (-378)))))
-(-10 -8 (-15 -3312 ((-849) (-849))) (-15 -3312 ((-849))) (-15 -3073 (|#1| (-521) (-521) (-849))) (-15 -3073 (|#1| (-521) (-521))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2556 (((-521) $) 89)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2868 (($ $) 87)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-1984 (($ $) 97)) (-2165 (((-108) $ $) 59)) (-2578 (((-521) $) 114)) (-2231 (($) 17 T CONST)) (-2844 (($ $) 86)) (-1296 (((-3 (-521) "failed") $) 102) (((-3 (-381 (-521)) "failed") $) 99)) (-1496 (((-521) $) 101) (((-381 (-521)) $) 98)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2100 (((-108) $) 71)) (-2207 (((-849)) 130) (((-849) (-849)) 127 (|has| $ (-6 -4224)))) (-2273 (((-108) $) 112)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 93)) (-3490 (((-521) $) 136)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 96)) (-2549 (($ $) 92)) (-3305 (((-108) $) 113)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2816 (($ $ $) 111) (($) 124 (-12 (-2416 (|has| $ (-6 -4224))) (-2416 (|has| $ (-6 -4216)))))) (-2459 (($ $ $) 110) (($) 123 (-12 (-2416 (|has| $ (-6 -4224))) (-2416 (|has| $ (-6 -4216)))))) (-3356 (((-521) $) 133)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-2914 (((-849) (-521)) 126 (|has| $ (-6 -4224)))) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1840 (($ $) 88)) (-2720 (($ $) 90)) (-3073 (($ (-521) (-521)) 138) (($ (-521) (-521) (-849)) 137)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2246 (((-521) $) 134)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-3312 (((-849)) 131) (((-849) (-849)) 128 (|has| $ (-6 -4224)))) (-1989 (((-849) (-521)) 125 (|has| $ (-6 -4224)))) (-1438 (((-353) $) 105) (((-202) $) 104) (((-820 (-353)) $) 94)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ (-521)) 103) (($ (-381 (-521))) 100)) (-1592 (((-707)) 29)) (-1281 (($ $) 91)) (-2201 (((-849)) 132) (((-849) (-849)) 129 (|has| $ (-6 -4224)))) (-3354 (((-849)) 135)) (-1842 (((-108) $ $) 39)) (-4012 (($ $) 115)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 108)) (-1579 (((-108) $ $) 107)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 109)) (-1569 (((-108) $ $) 106)) (-1648 (($ $ $) 64)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 95)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
-(((-378) (-1196)) (T -378))
-((-3073 (*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-378)))) (-3073 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-849)) (-4 *1 (-378)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521)))) (-3354 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849)))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521)))) (-2201 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849)))) (-3312 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849)))) (-2207 (*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849)))) (-2201 (*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4224)) (-4 *1 (-378)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4224)) (-4 *1 (-378)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4224)) (-4 *1 (-378)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378)) (-5 *2 (-849)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378)) (-5 *2 (-849)))) (-2816 (*1 *1) (-12 (-4 *1 (-378)) (-2416 (|has| *1 (-6 -4224))) (-2416 (|has| *1 (-6 -4216))))) (-2459 (*1 *1) (-12 (-4 *1 (-378)) (-2416 (|has| *1 (-6 -4224))) (-2416 (|has| *1 (-6 -4216))))))
-(-13 (-979) (-10 -8 (-6 -3893) (-15 -3073 ($ (-521) (-521))) (-15 -3073 ($ (-521) (-521) (-849))) (-15 -3490 ((-521) $)) (-15 -3354 ((-849))) (-15 -2246 ((-521) $)) (-15 -3356 ((-521) $)) (-15 -2201 ((-849))) (-15 -3312 ((-849))) (-15 -2207 ((-849))) (IF (|has| $ (-6 -4224)) (PROGN (-15 -2201 ((-849) (-849))) (-15 -3312 ((-849) (-849))) (-15 -2207 ((-849) (-849))) (-15 -2914 ((-849) (-521))) (-15 -1989 ((-849) (-521)))) |%noBranch|) (IF (|has| $ (-6 -4216)) |%noBranch| (IF (|has| $ (-6 -4224)) |%noBranch| (PROGN (-15 -2816 ($)) (-15 -2459 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-791)) . T) ((-157) . T) ((-562 (-202)) . T) ((-562 (-353)) . T) ((-562 (-820 (-353))) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-814 (-353)) . T) ((-848) . T) ((-927) . T) ((-946) . T) ((-979) . T) ((-961 (-381 (-521))) . T) ((-961 (-521)) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-1393 (((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)) 20)))
-(((-379 |#1| |#2|) (-10 -7 (-15 -1393 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|)))) (-513) (-513)) (T -379))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-513)) (-4 *6 (-513)) (-5 *2 (-392 *6)) (-5 *1 (-379 *5 *6)))))
-(-10 -7 (-15 -1393 ((-392 |#2|) (-1 |#2| |#1|) (-392 |#1|))))
-((-1393 (((-381 |#2|) (-1 |#2| |#1|) (-381 |#1|)) 13)))
-(((-380 |#1| |#2|) (-10 -7 (-15 -1393 ((-381 |#2|) (-1 |#2| |#1|) (-381 |#1|)))) (-513) (-513)) (T -380))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-381 *5)) (-4 *5 (-513)) (-4 *6 (-513)) (-5 *2 (-381 *6)) (-5 *1 (-380 *5 *6)))))
-(-10 -7 (-15 -1393 ((-381 |#2|) (-1 |#2| |#1|) (-381 |#1|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 13)) (-2556 ((|#1| $) 21 (|has| |#1| (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| |#1| (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 17) (((-3 (-1084) "failed") $) NIL (|has| |#1| (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) 70 (|has| |#1| (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521))))) (-1496 ((|#1| $) 15) (((-1084) $) NIL (|has| |#1| (-961 (-1084)))) (((-381 (-521)) $) 67 (|has| |#1| (-961 (-521)))) (((-521) $) NIL (|has| |#1| (-961 (-521))))) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) 50)) (-3254 (($) NIL (|has| |#1| (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| |#1| (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| |#1| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| |#1| (-814 (-353))))) (-3637 (((-108) $) 64)) (-2399 (($ $) NIL)) (-2807 ((|#1| $) 71)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-3305 (((-108) $) NIL (|has| |#1| (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 97)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| |#1| (-282)))) (-2720 ((|#1| $) 28 (|has| |#1| (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 133 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 129 (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-3794 (((-707) $) NIL)) (-2550 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2259 (($ $) NIL)) (-2818 ((|#1| $) 73)) (-1438 (((-820 (-521)) $) NIL (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| |#1| (-562 (-820 (-353))))) (((-497) $) NIL (|has| |#1| (-562 (-497)))) (((-353) $) NIL (|has| |#1| (-946))) (((-202) $) NIL (|has| |#1| (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 113 (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 10) (($ (-1084)) NIL (|has| |#1| (-961 (-1084))))) (-2446 (((-3 $ "failed") $) 99 (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) 100)) (-1281 ((|#1| $) 26 (|has| |#1| (-506)))) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL (|has| |#1| (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 22 T CONST)) (-3572 (($) 8 T CONST)) (-3828 (((-1067) $) 43 (-12 (|has| |#1| (-506)) (|has| |#1| (-764)))) (((-1067) $ (-108)) 44 (-12 (|has| |#1| (-506)) (|has| |#1| (-764)))) (((-1170) (-758) $) 45 (-12 (|has| |#1| (-506)) (|has| |#1| (-764)))) (((-1170) (-758) $ (-108)) 46 (-12 (|has| |#1| (-506)) (|has| |#1| (-764))))) (-2244 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 56)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) 24 (|has| |#1| (-783)))) (-1648 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1639 (($ $) 25) (($ $ $) 55)) (-1628 (($ $ $) 53)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 123)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 60) (($ $ $) 57) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-381 |#1|) (-13 (-918 |#1|) (-10 -7 (IF (|has| |#1| (-506)) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4220)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-6 -4231)) (-6 -4220) |%noBranch|) |%noBranch|) |%noBranch|))) (-513)) (T -381))
-NIL
-(-13 (-918 |#1|) (-10 -7 (IF (|has| |#1| (-506)) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4220)) (IF (|has| |#1| (-425)) (IF (|has| |#1| (-6 -4231)) (-6 -4220) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1299 (((-627 |#2|) (-1165 $)) NIL) (((-627 |#2|)) 18)) (-3190 (($ (-1165 |#2|) (-1165 $)) NIL) (($ (-1165 |#2|)) 26)) (-3998 (((-627 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) $) 22)) (-3769 ((|#3| $) 59)) (-3011 ((|#2| (-1165 $)) NIL) ((|#2|) 20)) (-1816 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $)) 24)) (-1438 (((-1165 |#2|) $) 11) (($ (-1165 |#2|)) 13)) (-3379 ((|#3| $) 51)))
-(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -3998 ((-627 |#2|) |#1|)) (-15 -3011 (|#2|)) (-15 -1299 ((-627 |#2|))) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -3190 (|#1| (-1165 |#2|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -3769 (|#3| |#1|)) (-15 -3379 (|#3| |#1|)) (-15 -1299 ((-627 |#2|) (-1165 |#1|))) (-15 -3011 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3998 ((-627 |#2|) |#1| (-1165 |#1|)))) (-383 |#2| |#3|) (-157) (-1141 |#2|)) (T -382))
-((-1299 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)) (-5 *1 (-382 *3 *4 *5)) (-4 *3 (-383 *4 *5)))) (-3011 (*1 *2) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-157)) (-5 *1 (-382 *3 *2 *4)) (-4 *3 (-383 *2 *4)))))
-(-10 -8 (-15 -3998 ((-627 |#2|) |#1|)) (-15 -3011 (|#2|)) (-15 -1299 ((-627 |#2|))) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -3190 (|#1| (-1165 |#2|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -3769 (|#3| |#1|)) (-15 -3379 (|#3| |#1|)) (-15 -1299 ((-627 |#2|) (-1165 |#1|))) (-15 -3011 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -3998 ((-627 |#2|) |#1| (-1165 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1299 (((-627 |#1|) (-1165 $)) 46) (((-627 |#1|)) 61)) (-1927 ((|#1| $) 52)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3190 (($ (-1165 |#1|) (-1165 $)) 48) (($ (-1165 |#1|)) 64)) (-3998 (((-627 |#1|) $ (-1165 $)) 53) (((-627 |#1|) $) 59)) (-2783 (((-3 $ "failed") $) 34)) (-3167 (((-849)) 54)) (-3637 (((-108) $) 31)) (-2549 ((|#1| $) 51)) (-3769 ((|#2| $) 44 (|has| |#1| (-337)))) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-3011 ((|#1| (-1165 $)) 47) ((|#1|) 60)) (-1816 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49) (((-1165 |#1|) $) 66) (((-627 |#1|) (-1165 $)) 65)) (-1438 (((-1165 |#1|) $) 63) (($ (-1165 |#1|)) 62)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37)) (-2446 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-3379 ((|#2| $) 45)) (-1592 (((-707)) 29)) (-1245 (((-1165 $)) 67)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-383 |#1| |#2|) (-1196) (-157) (-1141 |t#1|)) (T -383))
-((-1245 (*1 *2) (-12 (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *1)) (-4 *1 (-383 *3 *4)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *3)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4)) (-4 *4 (-1141 *3)))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *3)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4)) (-4 *4 (-1141 *3)))) (-1299 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-627 *3)))) (-3011 (*1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-627 *3)))))
-(-13 (-344 |t#1| |t#2|) (-10 -8 (-15 -1245 ((-1165 $))) (-15 -1816 ((-1165 |t#1|) $)) (-15 -1816 ((-627 |t#1|) (-1165 $))) (-15 -3190 ($ (-1165 |t#1|))) (-15 -1438 ((-1165 |t#1|) $)) (-15 -1438 ($ (-1165 |t#1|))) (-15 -1299 ((-627 |t#1|))) (-15 -3011 (|t#1|)) (-15 -3998 ((-627 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-344 |#1| |#2|) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) 27) (((-3 (-521) "failed") $) 19)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) 24) (((-521) $) 14)) (-2223 (($ |#2|) NIL) (($ (-381 (-521))) 22) (($ (-521)) 11)))
-(((-384 |#1| |#2|) (-10 -8 (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -2223 (|#1| (-521))) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|))) (-385 |#2|) (-1119)) (T -384))
-NIL
-(-10 -8 (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -2223 (|#1| (-521))) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)))
-((-1296 (((-3 |#1| "failed") $) 7) (((-3 (-381 (-521)) "failed") $) 16 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 13 (|has| |#1| (-961 (-521))))) (-1496 ((|#1| $) 8) (((-381 (-521)) $) 15 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 12 (|has| |#1| (-961 (-521))))) (-2223 (($ |#1|) 6) (($ (-381 (-521))) 17 (|has| |#1| (-961 (-381 (-521))))) (($ (-521)) 14 (|has| |#1| (-961 (-521))))))
-(((-385 |#1|) (-1196) (-1119)) (T -385))
-NIL
-(-13 (-961 |t#1|) (-10 -7 (IF (|has| |t#1| (-961 (-521))) (-6 (-961 (-521))) |%noBranch|) (IF (|has| |t#1| (-961 (-381 (-521)))) (-6 (-961 (-381 (-521)))) |%noBranch|)))
-(((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T))
-((-1393 (((-387 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-387 |#1| |#2| |#3| |#4|)) 33)))
-(((-386 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1393 ((-387 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-387 |#1| |#2| |#3| |#4|)))) (-282) (-918 |#1|) (-1141 |#2|) (-13 (-383 |#2| |#3|) (-961 |#2|)) (-282) (-918 |#5|) (-1141 |#6|) (-13 (-383 |#6| |#7|) (-961 |#6|))) (T -386))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-387 *5 *6 *7 *8)) (-4 *5 (-282)) (-4 *6 (-918 *5)) (-4 *7 (-1141 *6)) (-4 *8 (-13 (-383 *6 *7) (-961 *6))) (-4 *9 (-282)) (-4 *10 (-918 *9)) (-4 *11 (-1141 *10)) (-5 *2 (-387 *9 *10 *11 *12)) (-5 *1 (-386 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-383 *10 *11) (-961 *10))))))
-(-10 -7 (-15 -1393 ((-387 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-387 |#1| |#2| |#3| |#4|))))
-((-1422 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3567 ((|#4| (-707) (-1165 |#4|)) 55)) (-3637 (((-108) $) NIL)) (-2807 (((-1165 |#4|) $) 17)) (-2549 ((|#2| $) 53)) (-2661 (($ $) 136)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 98)) (-2447 (($ (-1165 |#4|)) 97)) (-4146 (((-1031) $) NIL)) (-2818 ((|#1| $) 18)) (-1484 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2223 (((-791) $) 131)) (-1245 (((-1165 |#4|) $) 126)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 11 T CONST)) (-1549 (((-108) $ $) 39)) (-1648 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 119)) (* (($ $ $) 118)))
-(((-387 |#1| |#2| |#3| |#4|) (-13 (-446) (-10 -8 (-15 -2447 ($ (-1165 |#4|))) (-15 -1245 ((-1165 |#4|) $)) (-15 -2549 (|#2| $)) (-15 -2807 ((-1165 |#4|) $)) (-15 -2818 (|#1| $)) (-15 -2661 ($ $)) (-15 -3567 (|#4| (-707) (-1165 |#4|))))) (-282) (-918 |#1|) (-1141 |#2|) (-13 (-383 |#2| |#3|) (-961 |#2|))) (T -387))
-((-2447 (*1 *1 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4))) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *3 (-282)) (-5 *1 (-387 *3 *4 *5 *6)))) (-1245 (*1 *2 *1) (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4))))) (-2549 (*1 *2 *1) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3)) (-5 *1 (-387 *3 *2 *4 *5)) (-4 *3 (-282)) (-4 *5 (-13 (-383 *2 *4) (-961 *2))))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4))))) (-2818 (*1 *2 *1) (-12 (-4 *3 (-918 *2)) (-4 *4 (-1141 *3)) (-4 *2 (-282)) (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3))))) (-2661 (*1 *1 *1) (-12 (-4 *2 (-282)) (-4 *3 (-918 *2)) (-4 *4 (-1141 *3)) (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3))))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-1165 *2)) (-4 *5 (-282)) (-4 *6 (-918 *5)) (-4 *2 (-13 (-383 *6 *7) (-961 *6))) (-5 *1 (-387 *5 *6 *7 *2)) (-4 *7 (-1141 *6)))))
-(-13 (-446) (-10 -8 (-15 -2447 ($ (-1165 |#4|))) (-15 -1245 ((-1165 |#4|) $)) (-15 -2549 (|#2| $)) (-15 -2807 ((-1165 |#4|) $)) (-15 -2818 (|#1| $)) (-15 -2661 ($ $)) (-15 -3567 (|#4| (-707) (-1165 |#4|)))))
-((-1422 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-2549 ((|#2| $) 60)) (-1722 (($ (-1165 |#4|)) 25) (($ (-387 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-961 |#2|)))) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 34)) (-1245 (((-1165 |#4|) $) 26)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3572 (($) 23 T CONST)) (-1549 (((-108) $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ $ $) 72)))
-(((-388 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -1245 ((-1165 |#4|) $)) (-15 -2549 (|#2| $)) (-15 -1722 ($ (-1165 |#4|))) (IF (|has| |#4| (-961 |#2|)) (-15 -1722 ($ (-387 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-282) (-918 |#1|) (-1141 |#2|) (-383 |#2| |#3|) (-1165 |#4|)) (T -388))
-((-1245 (*1 *2 *1) (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7)) (-4 *6 (-383 *4 *5)) (-14 *7 *2))) (-2549 (*1 *2 *1) (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3)) (-5 *1 (-388 *3 *2 *4 *5 *6)) (-4 *3 (-282)) (-4 *5 (-383 *2 *4)) (-14 *6 (-1165 *5)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-383 *4 *5)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *3 (-282)) (-5 *1 (-388 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-387 *3 *4 *5 *6)) (-4 *6 (-961 *4)) (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *6 (-383 *4 *5)) (-14 *7 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7)))))
-(-13 (-663) (-10 -8 (-15 -1245 ((-1165 |#4|) $)) (-15 -2549 (|#2| $)) (-15 -1722 ($ (-1165 |#4|))) (IF (|has| |#4| (-961 |#2|)) (-15 -1722 ($ (-387 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1393 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#3| (-1 |#4| |#2|) |#1|))) (-391 |#2|) (-157) (-391 |#4|) (-157)) (T -389))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-391 *6)) (-5 *1 (-389 *4 *5 *2 *6)) (-4 *4 (-391 *5)))))
-(-10 -7 (-15 -1393 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1493 (((-3 $ "failed")) 85)) (-2772 (((-1165 (-627 |#2|)) (-1165 $)) NIL) (((-1165 (-627 |#2|))) 90)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) 84)) (-2695 (((-3 $ "failed")) 83)) (-4090 (((-627 |#2|) (-1165 $)) NIL) (((-627 |#2|)) 101)) (-2872 (((-627 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) $) 109)) (-2262 (((-1080 (-880 |#2|))) 54)) (-2115 ((|#2| (-1165 $)) NIL) ((|#2|) 105)) (-3190 (($ (-1165 |#2|) (-1165 $)) NIL) (($ (-1165 |#2|)) 112)) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) 82)) (-2712 (((-3 $ "failed")) 74)) (-3370 (((-627 |#2|) (-1165 $)) NIL) (((-627 |#2|)) 99)) (-4138 (((-627 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) $) 107)) (-3726 (((-1080 (-880 |#2|))) 53)) (-2001 ((|#2| (-1165 $)) NIL) ((|#2|) 103)) (-1816 (((-1165 |#2|) $ (-1165 $)) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $)) 111)) (-1438 (((-1165 |#2|) $) 95) (($ (-1165 |#2|)) 97)) (-1894 (((-587 (-880 |#2|)) (-1165 $)) NIL) (((-587 (-880 |#2|))) 93)) (-1644 (($ (-627 |#2|) $) 89)))
-(((-390 |#1| |#2|) (-10 -8 (-15 -1644 (|#1| (-627 |#2|) |#1|)) (-15 -2262 ((-1080 (-880 |#2|)))) (-15 -3726 ((-1080 (-880 |#2|)))) (-15 -2872 ((-627 |#2|) |#1|)) (-15 -4138 ((-627 |#2|) |#1|)) (-15 -4090 ((-627 |#2|))) (-15 -3370 ((-627 |#2|))) (-15 -2115 (|#2|)) (-15 -2001 (|#2|)) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -3190 (|#1| (-1165 |#2|))) (-15 -1894 ((-587 (-880 |#2|)))) (-15 -2772 ((-1165 (-627 |#2|)))) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -1493 ((-3 |#1| "failed"))) (-15 -2695 ((-3 |#1| "failed"))) (-15 -2712 ((-3 |#1| "failed"))) (-15 -2186 ((-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed"))) (-15 -2256 ((-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed"))) (-15 -4090 ((-627 |#2|) (-1165 |#1|))) (-15 -3370 ((-627 |#2|) (-1165 |#1|))) (-15 -2115 (|#2| (-1165 |#1|))) (-15 -2001 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -2872 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -4138 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -2772 ((-1165 (-627 |#2|)) (-1165 |#1|))) (-15 -1894 ((-587 (-880 |#2|)) (-1165 |#1|)))) (-391 |#2|) (-157)) (T -390))
-((-2772 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-1894 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-587 (-880 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-2001 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2)))) (-2115 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2)))) (-3370 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-4090 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-3726 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-880 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))) (-2262 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-880 *4))) (-5 *1 (-390 *3 *4)) (-4 *3 (-391 *4)))))
-(-10 -8 (-15 -1644 (|#1| (-627 |#2|) |#1|)) (-15 -2262 ((-1080 (-880 |#2|)))) (-15 -3726 ((-1080 (-880 |#2|)))) (-15 -2872 ((-627 |#2|) |#1|)) (-15 -4138 ((-627 |#2|) |#1|)) (-15 -4090 ((-627 |#2|))) (-15 -3370 ((-627 |#2|))) (-15 -2115 (|#2|)) (-15 -2001 (|#2|)) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -3190 (|#1| (-1165 |#2|))) (-15 -1894 ((-587 (-880 |#2|)))) (-15 -2772 ((-1165 (-627 |#2|)))) (-15 -1816 ((-627 |#2|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1|)) (-15 -1493 ((-3 |#1| "failed"))) (-15 -2695 ((-3 |#1| "failed"))) (-15 -2712 ((-3 |#1| "failed"))) (-15 -2186 ((-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed"))) (-15 -2256 ((-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed"))) (-15 -4090 ((-627 |#2|) (-1165 |#1|))) (-15 -3370 ((-627 |#2|) (-1165 |#1|))) (-15 -2115 (|#2| (-1165 |#1|))) (-15 -2001 (|#2| (-1165 |#1|))) (-15 -3190 (|#1| (-1165 |#2|) (-1165 |#1|))) (-15 -1816 ((-627 |#2|) (-1165 |#1|) (-1165 |#1|))) (-15 -1816 ((-1165 |#2|) |#1| (-1165 |#1|))) (-15 -2872 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -4138 ((-627 |#2|) |#1| (-1165 |#1|))) (-15 -2772 ((-1165 (-627 |#2|)) (-1165 |#1|))) (-15 -1894 ((-587 (-880 |#2|)) (-1165 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1493 (((-3 $ "failed")) 37 (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2772 (((-1165 (-627 |#1|)) (-1165 $)) 78) (((-1165 (-627 |#1|))) 100)) (-3765 (((-1165 $)) 81)) (-2231 (($) 17 T CONST)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) 40 (|has| |#1| (-513)))) (-2695 (((-3 $ "failed")) 38 (|has| |#1| (-513)))) (-4090 (((-627 |#1|) (-1165 $)) 65) (((-627 |#1|)) 92)) (-3912 ((|#1| $) 74)) (-2872 (((-627 |#1|) $ (-1165 $)) 76) (((-627 |#1|) $) 90)) (-2604 (((-3 $ "failed") $) 45 (|has| |#1| (-513)))) (-2262 (((-1080 (-880 |#1|))) 88 (|has| |#1| (-337)))) (-2588 (($ $ (-849)) 28)) (-3973 ((|#1| $) 72)) (-1276 (((-1080 |#1|) $) 42 (|has| |#1| (-513)))) (-2115 ((|#1| (-1165 $)) 67) ((|#1|) 94)) (-1449 (((-1080 |#1|) $) 63)) (-3953 (((-108)) 57)) (-3190 (($ (-1165 |#1|) (-1165 $)) 69) (($ (-1165 |#1|)) 98)) (-2783 (((-3 $ "failed") $) 47 (|has| |#1| (-513)))) (-3167 (((-849)) 80)) (-2782 (((-108)) 54)) (-1940 (($ $ (-849)) 33)) (-2325 (((-108)) 50)) (-2071 (((-108)) 48)) (-3318 (((-108)) 52)) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) 41 (|has| |#1| (-513)))) (-2712 (((-3 $ "failed")) 39 (|has| |#1| (-513)))) (-3370 (((-627 |#1|) (-1165 $)) 66) (((-627 |#1|)) 93)) (-3748 ((|#1| $) 75)) (-4138 (((-627 |#1|) $ (-1165 $)) 77) (((-627 |#1|) $) 91)) (-1389 (((-3 $ "failed") $) 46 (|has| |#1| (-513)))) (-3726 (((-1080 (-880 |#1|))) 89 (|has| |#1| (-337)))) (-1209 (($ $ (-849)) 29)) (-3440 ((|#1| $) 73)) (-3609 (((-1080 |#1|) $) 43 (|has| |#1| (-513)))) (-2001 ((|#1| (-1165 $)) 68) ((|#1|) 95)) (-2486 (((-1080 |#1|) $) 64)) (-1743 (((-108)) 58)) (-4024 (((-1067) $) 9)) (-1232 (((-108)) 49)) (-3037 (((-108)) 51)) (-2901 (((-108)) 53)) (-4146 (((-1031) $) 10)) (-2880 (((-108)) 56)) (-2550 ((|#1| $ (-521)) 101)) (-1816 (((-1165 |#1|) $ (-1165 $)) 71) (((-627 |#1|) (-1165 $) (-1165 $)) 70) (((-1165 |#1|) $) 103) (((-627 |#1|) (-1165 $)) 102)) (-1438 (((-1165 |#1|) $) 97) (($ (-1165 |#1|)) 96)) (-1894 (((-587 (-880 |#1|)) (-1165 $)) 79) (((-587 (-880 |#1|))) 99)) (-2062 (($ $ $) 25)) (-2628 (((-108)) 62)) (-2223 (((-791) $) 11)) (-1245 (((-1165 $)) 104)) (-2881 (((-587 (-1165 |#1|))) 44 (|has| |#1| (-513)))) (-2268 (($ $ $ $) 26)) (-3650 (((-108)) 60)) (-1644 (($ (-627 |#1|) $) 87)) (-3968 (($ $ $) 24)) (-3972 (((-108)) 61)) (-3502 (((-108)) 59)) (-3199 (((-108)) 55)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-391 |#1|) (-1196) (-157)) (T -391))
-((-1245 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-391 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-391 *4)) (-4 *4 (-157)) (-5 *2 (-627 *4)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-391 *2)) (-4 *2 (-157)))) (-2772 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 (-627 *3))))) (-1894 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-587 (-880 *3))))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3)))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3)))) (-2001 (*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))) (-2115 (*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))) (-3370 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-4090 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))) (-3726 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337)) (-5 *2 (-1080 (-880 *3))))) (-2262 (*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337)) (-5 *2 (-1080 (-880 *3))))) (-1644 (*1 *1 *2 *1) (-12 (-5 *2 (-627 *3)) (-4 *1 (-391 *3)) (-4 *3 (-157)))))
-(-13 (-341 |t#1|) (-10 -8 (-15 -1245 ((-1165 $))) (-15 -1816 ((-1165 |t#1|) $)) (-15 -1816 ((-627 |t#1|) (-1165 $))) (-15 -2550 (|t#1| $ (-521))) (-15 -2772 ((-1165 (-627 |t#1|)))) (-15 -1894 ((-587 (-880 |t#1|)))) (-15 -3190 ($ (-1165 |t#1|))) (-15 -1438 ((-1165 |t#1|) $)) (-15 -1438 ($ (-1165 |t#1|))) (-15 -2001 (|t#1|)) (-15 -2115 (|t#1|)) (-15 -3370 ((-627 |t#1|))) (-15 -4090 ((-627 |t#1|))) (-15 -4138 ((-627 |t#1|) $)) (-15 -2872 ((-627 |t#1|) $)) (IF (|has| |t#1| (-337)) (PROGN (-15 -3726 ((-1080 (-880 |t#1|)))) (-15 -2262 ((-1080 (-880 |t#1|))))) |%noBranch|) (-15 -1644 ($ (-627 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-341 |#1|) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-681 |#1|) . T) ((-698) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 41)) (-1472 (($ $) 56)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 143)) (-1954 (($ $) NIL)) (-3795 (((-108) $) 35)) (-1493 ((|#1| $) 12)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-1123)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-1123)))) (-4139 (($ |#1| (-521)) 30)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 113)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 54)) (-2783 (((-3 $ "failed") $) 128)) (-3762 (((-3 (-381 (-521)) "failed") $) 62 (|has| |#1| (-506)))) (-2428 (((-108) $) 58 (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) 60 (|has| |#1| (-506)))) (-3333 (($ |#1| (-521)) 32)) (-2100 (((-108) $) 149 (|has| |#1| (-1123)))) (-3637 (((-108) $) 42)) (-3329 (((-707) $) 37)) (-2376 (((-3 "nil" "sqfr" "irred" "prime") $ (-521)) 134)) (-3493 ((|#1| $ (-521)) 133)) (-1241 (((-521) $ (-521)) 132)) (-2680 (($ |#1| (-521)) 29)) (-1393 (($ (-1 |#1| |#1|) $) 140)) (-2224 (($ |#1| (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521))))) 57)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-1881 (($ |#1| (-521)) 31)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) 144 (|has| |#1| (-425)))) (-2893 (($ |#1| (-521) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-3655 (((-587 (-2 (|:| -1974 |#1|) (|:| -2246 (-521)))) $) 53)) (-1443 (((-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))) $) 11)) (-1974 (((-392 $) $) NIL (|has| |#1| (-1123)))) (-2261 (((-3 $ "failed") $ $) 135)) (-2246 (((-521) $) 129)) (-1631 ((|#1| $) 55)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 77 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 82 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) $) NIL (|has| |#1| (-482 (-1084) $))) (($ $ (-587 (-1084)) (-587 $)) 83 (|has| |#1| (-482 (-1084) $))) (($ $ (-587 (-269 $))) 79 (|has| |#1| (-284 $))) (($ $ (-269 $)) NIL (|has| |#1| (-284 $))) (($ $ $ $) NIL (|has| |#1| (-284 $))) (($ $ (-587 $) (-587 $)) NIL (|has| |#1| (-284 $)))) (-2550 (($ $ |#1|) 69 (|has| |#1| (-261 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-261 $ $)))) (-2193 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-1438 (((-497) $) 26 (|has| |#1| (-562 (-497)))) (((-353) $) 89 (|has| |#1| (-946))) (((-202) $) 92 (|has| |#1| (-946)))) (-2223 (((-791) $) 111) (($ (-521)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521)))))) (-1592 (((-707)) 47)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 39 T CONST)) (-3572 (($) 38 T CONST)) (-2244 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1549 (((-108) $ $) 93)) (-1639 (($ $) 125) (($ $ $) NIL)) (-1628 (($ $ $) 137)) (** (($ $ (-849)) NIL) (($ $ (-707)) 99)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
-(((-392 |#1|) (-13 (-513) (-208 |#1|) (-37 |#1|) (-312 |#1|) (-385 |#1|) (-10 -8 (-15 -1631 (|#1| $)) (-15 -2246 ((-521) $)) (-15 -2224 ($ |#1| (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))))) (-15 -1443 ((-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))) $)) (-15 -2680 ($ |#1| (-521))) (-15 -3655 ((-587 (-2 (|:| -1974 |#1|) (|:| -2246 (-521)))) $)) (-15 -1881 ($ |#1| (-521))) (-15 -1241 ((-521) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -2376 ((-3 "nil" "sqfr" "irred" "prime") $ (-521))) (-15 -3329 ((-707) $)) (-15 -3333 ($ |#1| (-521))) (-15 -4139 ($ |#1| (-521))) (-15 -2893 ($ |#1| (-521) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1493 (|#1| $)) (-15 -1472 ($ $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-425)) (-6 (-425)) |%noBranch|) (IF (|has| |#1| (-946)) (-6 (-946)) |%noBranch|) (IF (|has| |#1| (-1123)) (-6 (-1123)) |%noBranch|) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-261 $ $)) (-6 (-261 $ $)) |%noBranch|) (IF (|has| |#1| (-284 $)) (-6 (-284 $)) |%noBranch|) (IF (|has| |#1| (-482 (-1084) $)) (-6 (-482 (-1084) $)) |%noBranch|))) (-513)) (T -392))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-513)) (-5 *1 (-392 *3)))) (-1631 (*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-2224 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-521))))) (-4 *2 (-513)) (-5 *1 (-392 *2)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-521))))) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-2680 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -1974 *3) (|:| -2246 (-521))))) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-1881 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-1241 (*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-2376 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-392 *4)) (-4 *4 (-513)))) (-3329 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-392 *3)) (-4 *3 (-513)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-2893 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-521)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-1493 (*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-1472 (*1 *1 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513)))) (-3762 (*1 *2 *1) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513)))))
-(-13 (-513) (-208 |#1|) (-37 |#1|) (-312 |#1|) (-385 |#1|) (-10 -8 (-15 -1631 (|#1| $)) (-15 -2246 ((-521) $)) (-15 -2224 ($ |#1| (-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))))) (-15 -1443 ((-587 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-521)))) $)) (-15 -2680 ($ |#1| (-521))) (-15 -3655 ((-587 (-2 (|:| -1974 |#1|) (|:| -2246 (-521)))) $)) (-15 -1881 ($ |#1| (-521))) (-15 -1241 ((-521) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -2376 ((-3 "nil" "sqfr" "irred" "prime") $ (-521))) (-15 -3329 ((-707) $)) (-15 -3333 ($ |#1| (-521))) (-15 -4139 ($ |#1| (-521))) (-15 -2893 ($ |#1| (-521) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1493 (|#1| $)) (-15 -1472 ($ $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-425)) (-6 (-425)) |%noBranch|) (IF (|has| |#1| (-946)) (-6 (-946)) |%noBranch|) (IF (|has| |#1| (-1123)) (-6 (-1123)) |%noBranch|) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-261 $ $)) (-6 (-261 $ $)) |%noBranch|) (IF (|has| |#1| (-284 $)) (-6 (-284 $)) |%noBranch|) (IF (|has| |#1| (-482 (-1084) $)) (-6 (-482 (-1084) $)) |%noBranch|)))
-((-2760 (((-392 |#1|) (-392 |#1|) (-1 (-392 |#1|) |#1|)) 20)) (-3772 (((-392 |#1|) (-392 |#1|) (-392 |#1|)) 15)))
-(((-393 |#1|) (-10 -7 (-15 -2760 ((-392 |#1|) (-392 |#1|) (-1 (-392 |#1|) |#1|))) (-15 -3772 ((-392 |#1|) (-392 |#1|) (-392 |#1|)))) (-513)) (T -393))
-((-3772 (*1 *2 *2 *2) (-12 (-5 *2 (-392 *3)) (-4 *3 (-513)) (-5 *1 (-393 *3)))) (-2760 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-392 *4) *4)) (-4 *4 (-513)) (-5 *2 (-392 *4)) (-5 *1 (-393 *4)))))
-(-10 -7 (-15 -2760 ((-392 |#1|) (-392 |#1|) (-1 (-392 |#1|) |#1|))) (-15 -3772 ((-392 |#1|) (-392 |#1|) (-392 |#1|))))
-((-2278 ((|#2| |#2|) 161)) (-3102 (((-3 (|:| |%expansion| (-287 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108)) 55)))
-(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3102 ((-3 (|:| |%expansion| (-287 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108))) (-15 -2278 (|#2| |#2|))) (-13 (-425) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|)) (-1084) |#2|) (T -394))
-((-2278 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1105) (-404 *3))) (-14 *4 (-1084)) (-14 *5 *2))) (-3102 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (|:| |%expansion| (-287 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067)))))) (-5 *1 (-394 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-14 *6 (-1084)) (-14 *7 *3))))
-(-10 -7 (-15 -3102 ((-3 (|:| |%expansion| (-287 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108))) (-15 -2278 (|#2| |#2|)))
-((-1393 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-970) (-783)) (-404 |#1|) (-13 (-970) (-783)) (-404 |#3|)) (T -395))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-970) (-783))) (-4 *6 (-13 (-970) (-783))) (-4 *2 (-404 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-404 *5)))))
-(-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2278 ((|#2| |#2|) 88)) (-3328 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067)) 46)) (-2702 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067)) 153)))
-(((-396 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3328 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -2702 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -2278 (|#2| |#2|))) (-13 (-425) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|) (-10 -8 (-15 -2223 ($ |#3|)))) (-781) (-13 (-1143 |#2| |#3|) (-337) (-1105) (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $)))) (-909 |#4|) (-1084)) (T -396))
-((-2278 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-4 *2 (-13 (-27) (-1105) (-404 *3) (-10 -8 (-15 -2223 ($ *4))))) (-4 *4 (-781)) (-4 *5 (-13 (-1143 *2 *4) (-337) (-1105) (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $))))) (-5 *1 (-396 *3 *2 *4 *5 *6 *7)) (-4 *6 (-909 *5)) (-14 *7 (-1084)))) (-2702 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2223 ($ *7))))) (-4 *7 (-781)) (-4 *8 (-13 (-1143 *3 *7) (-337) (-1105) (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067)))))) (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8)) (-14 *10 (-1084)))) (-3328 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2223 ($ *7))))) (-4 *7 (-781)) (-4 *8 (-13 (-1143 *3 *7) (-337) (-1105) (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067)))))) (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8)) (-14 *10 (-1084)))))
-(-10 -7 (-15 -3328 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -2702 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))) |#2| (-108) (-1067))) (-15 -2278 (|#2| |#2|)))
-((-3184 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3859 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1393 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-399 |#1|) (-1013) (-399 |#3|)) (T -397))
-((-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-399 *5)) (-5 *1 (-397 *6 *4 *5 *2)) (-4 *4 (-399 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-397 *5 *4 *2 *6)) (-4 *4 (-399 *5)) (-4 *6 (-399 *2)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-399 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-399 *5)))))
-(-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3859 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3184 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-4062 (($) 44)) (-2296 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1769 (($ $ $) 39)) (-3601 (((-108) $ $) 28)) (-1659 (((-707)) 47)) (-1817 (($ (-587 |#2|)) 20) (($) NIL)) (-3254 (($) 53)) (-2816 ((|#2| $) 61)) (-2459 ((|#2| $) 59)) (-3999 (((-849) $) 55)) (-1802 (($ $ $) 35)) (-2723 (($ (-849)) 50)) (-2686 (($ $ |#2|) NIL) (($ $ $) 38)) (-4163 (((-707) (-1 (-108) |#2|) $) NIL) (((-707) |#2| $) 26)) (-2234 (($ (-587 |#2|)) 24)) (-4110 (($ $) 46)) (-2223 (((-791) $) 33)) (-3064 (((-707) $) 21)) (-3391 (($ (-587 |#2|)) 19) (($) NIL)) (-1549 (((-108) $ $) 16)) (-1569 (((-108) $ $) 13)))
-(((-398 |#1| |#2|) (-10 -8 (-15 -1659 ((-707))) (-15 -2723 (|#1| (-849))) (-15 -3999 ((-849) |#1|)) (-15 -3254 (|#1|)) (-15 -2816 (|#2| |#1|)) (-15 -2459 (|#2| |#1|)) (-15 -4062 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3064 ((-707) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -3391 (|#1|)) (-15 -3391 (|#1| (-587 |#2|))) (-15 -1817 (|#1|)) (-15 -1817 (|#1| (-587 |#2|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#2|)) (-15 -1769 (|#1| |#1| |#1|)) (-15 -3601 ((-108) |#1| |#1|)) (-15 -2296 (|#1| |#1| |#1|)) (-15 -2296 (|#1| |#1| |#2|)) (-15 -2296 (|#1| |#2| |#1|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|))) (-399 |#2|) (-1013)) (T -398))
-((-1659 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-707)) (-5 *1 (-398 *3 *4)) (-4 *3 (-399 *4)))))
-(-10 -8 (-15 -1659 ((-707))) (-15 -2723 (|#1| (-849))) (-15 -3999 ((-849) |#1|)) (-15 -3254 (|#1|)) (-15 -2816 (|#2| |#1|)) (-15 -2459 (|#2| |#1|)) (-15 -4062 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3064 ((-707) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -3391 (|#1|)) (-15 -3391 (|#1| (-587 |#2|))) (-15 -1817 (|#1|)) (-15 -1817 (|#1| (-587 |#2|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#2|)) (-15 -1769 (|#1| |#1| |#1|)) (-15 -3601 ((-108) |#1| |#1|)) (-15 -2296 (|#1| |#1| |#1|)) (-15 -2296 (|#1| |#1| |#2|)) (-15 -2296 (|#1| |#2| |#1|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -4163 ((-707) |#2| |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)))
-((-1422 (((-108) $ $) 19)) (-4062 (($) 67 (|has| |#1| (-342)))) (-2296 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1769 (($ $ $) 78)) (-3601 (((-108) $ $) 79)) (-1269 (((-108) $ (-707)) 8)) (-1659 (((-707)) 61 (|has| |#1| (-342)))) (-1817 (($ (-587 |#1|)) 74) (($) 73)) (-3014 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2354 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3254 (($) 64 (|has| |#1| (-342)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-2816 ((|#1| $) 65 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2459 ((|#1| $) 66 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-3999 (((-849) $) 63 (|has| |#1| (-342)))) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22)) (-1802 (($ $ $) 75)) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-2723 (($ (-849)) 62 (|has| |#1| (-342)))) (-4146 (((-1031) $) 21)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2686 (($ $ |#1|) 77) (($ $ $) 76)) (-2036 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 50)) (-4110 (($ $) 68 (|has| |#1| (-342)))) (-2223 (((-791) $) 18)) (-3064 (((-707) $) 69)) (-3391 (($ (-587 |#1|)) 72) (($) 71)) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20)) (-1569 (((-108) $ $) 70)) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-399 |#1|) (-1196) (-1013)) (T -399))
-((-3064 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1013)) (-5 *2 (-707)))) (-4110 (*1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-342)))) (-4062 (*1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-342)) (-4 *2 (-1013)))) (-2459 (*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-783)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-783)))))
-(-13 (-206 |t#1|) (-1011 |t#1|) (-10 -8 (-6 -4233) (-15 -3064 ((-707) $)) (IF (|has| |t#1| (-342)) (PROGN (-6 (-342)) (-15 -4110 ($ $)) (-15 -4062 ($))) |%noBranch|) (IF (|has| |t#1| (-783)) (PROGN (-15 -2459 (|t#1| $)) (-15 -2816 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-561 (-791)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-206 |#1|) . T) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-342) |has| |#1| (-342)) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1011 |#1|) . T) ((-1013) . T) ((-1119) . T))
-((-3565 (((-538 |#2|) |#2| (-1084)) 35)) (-2340 (((-538 |#2|) |#2| (-1084)) 19)) (-3450 ((|#2| |#2| (-1084)) 24)))
-(((-400 |#1| |#2|) (-10 -7 (-15 -2340 ((-538 |#2|) |#2| (-1084))) (-15 -3565 ((-538 |#2|) |#2| (-1084))) (-15 -3450 (|#2| |#2| (-1084)))) (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-29 |#1|))) (T -400))
-((-3450 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-400 *4 *2)) (-4 *2 (-13 (-1105) (-29 *4))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5))))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5))))))
-(-10 -7 (-15 -2340 ((-538 |#2|) |#2| (-1084))) (-15 -3565 ((-538 |#2|) |#2| (-1084))) (-15 -3450 (|#2| |#2| (-1084))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-2066 (($ |#2| |#1|) 35)) (-1414 (($ |#2| |#1|) 33)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-305 |#2|)) 25)) (-1592 (((-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 10 T CONST)) (-3572 (($) 16 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 34)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-401 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4220)) (IF (|has| |#1| (-6 -4220)) (-6 -4220) |%noBranch|) |%noBranch|) (-15 -2223 ($ |#1|)) (-15 -2223 ($ (-305 |#2|))) (-15 -2066 ($ |#2| |#1|)) (-15 -1414 ($ |#2| |#1|)))) (-13 (-157) (-37 (-381 (-521)))) (-13 (-783) (-21))) (T -401))
-((-2223 (*1 *1 *2) (-12 (-5 *1 (-401 *2 *3)) (-4 *2 (-13 (-157) (-37 (-381 (-521))))) (-4 *3 (-13 (-783) (-21))))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-305 *4)) (-4 *4 (-13 (-783) (-21))) (-5 *1 (-401 *3 *4)) (-4 *3 (-13 (-157) (-37 (-381 (-521))))))) (-2066 (*1 *1 *2 *3) (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521))))) (-4 *2 (-13 (-783) (-21))))) (-1414 (*1 *1 *2 *3) (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521))))) (-4 *2 (-13 (-783) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4220)) (IF (|has| |#1| (-6 -4220)) (-6 -4220) |%noBranch|) |%noBranch|) (-15 -2223 ($ |#1|)) (-15 -2223 ($ (-305 |#2|))) (-15 -2066 ($ |#2| |#1|)) (-15 -1414 ($ |#2| |#1|))))
-((-1749 (((-3 |#2| (-587 |#2|)) |#2| (-1084)) 105)))
-(((-402 |#1| |#2|) (-10 -7 (-15 -1749 ((-3 |#2| (-587 |#2|)) |#2| (-1084)))) (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-886) (-29 |#1|))) (T -402))
-((-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 *3 (-587 *3))) (-5 *1 (-402 *5 *3)) (-4 *3 (-13 (-1105) (-886) (-29 *5))))))
-(-10 -7 (-15 -1749 ((-3 |#2| (-587 |#2|)) |#2| (-1084))))
-((-4085 (((-587 (-1084)) $) 72)) (-1280 (((-381 (-1080 $)) $ (-560 $)) 269)) (-3304 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) 234)) (-1296 (((-3 (-560 $) "failed") $) NIL) (((-3 (-1084) "failed") $) 75) (((-3 (-521) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-381 (-880 |#2|)) "failed") $) 320) (((-3 (-880 |#2|) "failed") $) 232) (((-3 (-381 (-521)) "failed") $) NIL)) (-1496 (((-560 $) $) NIL) (((-1084) $) 30) (((-521) $) NIL) ((|#2| $) 228) (((-381 (-880 |#2|)) $) 301) (((-880 |#2|) $) 229) (((-381 (-521)) $) NIL)) (-3928 (((-110) (-110)) 47)) (-2399 (($ $) 87)) (-1656 (((-3 (-560 $) "failed") $) 225)) (-1266 (((-587 (-560 $)) $) 226)) (-3722 (((-3 (-587 $) "failed") $) 244)) (-3390 (((-3 (-2 (|:| |val| $) (|:| -2246 (-521))) "failed") $) 251)) (-4141 (((-3 (-587 $) "failed") $) 242)) (-4148 (((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 $))) "failed") $) 260)) (-3262 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $) 248) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-1084)) 217)) (-3110 (((-108) $) 19)) (-3120 ((|#2| $) 21)) (-2313 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) 233) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 96) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1084)) 57) (($ $ (-587 (-1084))) 237) (($ $) 238) (($ $ (-110) $ (-1084)) 60) (($ $ (-587 (-110)) (-587 $) (-1084)) 67) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) 107) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) 239) (($ $ (-1084) (-707) (-1 $ (-587 $))) 94) (($ $ (-1084) (-707) (-1 $ $)) 93)) (-2550 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) 106)) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) 235)) (-2259 (($ $) 280)) (-1438 (((-820 (-521)) $) 254) (((-820 (-353)) $) 257) (($ (-392 $)) 316) (((-497) $) NIL)) (-2223 (((-791) $) 236) (($ (-560 $)) 84) (($ (-1084)) 26) (($ |#2|) NIL) (($ (-1036 |#2| (-560 $))) NIL) (($ (-381 |#2|)) 285) (($ (-880 (-381 |#2|))) 325) (($ (-381 (-880 (-381 |#2|)))) 297) (($ (-381 (-880 |#2|))) 291) (($ $) NIL) (($ (-880 |#2|)) 184) (($ (-381 (-521))) 330) (($ (-521)) NIL)) (-1592 (((-707)) 79)) (-1224 (((-108) (-110)) 41)) (-1862 (($ (-1084) $) 33) (($ (-1084) $ $) 34) (($ (-1084) $ $ $) 35) (($ (-1084) $ $ $ $) 36) (($ (-1084) (-587 $)) 39)) (* (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-403 |#1| |#2|) (-10 -8 (-15 * (|#1| (-849) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1592 ((-707))) (-15 -2223 (|#1| (-521))) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1438 ((-497) |#1|)) (-15 -1496 ((-880 |#2|) |#1|)) (-15 -1296 ((-3 (-880 |#2|) "failed") |#1|)) (-15 -2223 (|#1| (-880 |#2|))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1496 ((-381 (-880 |#2|)) |#1|)) (-15 -1296 ((-3 (-381 (-880 |#2|)) "failed") |#1|)) (-15 -2223 (|#1| (-381 (-880 |#2|)))) (-15 -1280 ((-381 (-1080 |#1|)) |#1| (-560 |#1|))) (-15 -2223 (|#1| (-381 (-880 (-381 |#2|))))) (-15 -2223 (|#1| (-880 (-381 |#2|)))) (-15 -2223 (|#1| (-381 |#2|))) (-15 -2259 (|#1| |#1|)) (-15 -1438 (|#1| (-392 |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-707) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-707) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| |#1|)))) (-15 -3390 ((-3 (-2 (|:| |val| |#1|) (|:| -2246 (-521))) "failed") |#1|)) (-15 -3262 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2246 (-521))) "failed") |#1| (-1084))) (-15 -3262 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2246 (-521))) "failed") |#1| (-110))) (-15 -2399 (|#1| |#1|)) (-15 -2223 (|#1| (-1036 |#2| (-560 |#1|)))) (-15 -4148 ((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 |#1|))) "failed") |#1|)) (-15 -4141 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -3262 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2246 (-521))) "failed") |#1|)) (-15 -3722 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 |#1|) (-1084))) (-15 -2313 (|#1| |#1| (-110) |#1| (-1084))) (-15 -2313 (|#1| |#1|)) (-15 -2313 (|#1| |#1| (-587 (-1084)))) (-15 -2313 (|#1| |#1| (-1084))) (-15 -1862 (|#1| (-1084) (-587 |#1|))) (-15 -1862 (|#1| (-1084) |#1| |#1| |#1| |#1|)) (-15 -1862 (|#1| (-1084) |#1| |#1| |#1|)) (-15 -1862 (|#1| (-1084) |#1| |#1|)) (-15 -1862 (|#1| (-1084) |#1|)) (-15 -4085 ((-587 (-1084)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1496 ((-1084) |#1|)) (-15 -1296 ((-3 (-1084) "failed") |#1|)) (-15 -2223 (|#1| (-1084))) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -1266 ((-587 (-560 |#1|)) |#1|)) (-15 -1656 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -3304 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3304 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3304 (|#1| |#1| (-269 |#1|))) (-15 -2550 (|#1| (-110) (-587 |#1|))) (-15 -2550 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2313 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1496 ((-560 |#1|) |#1|)) (-15 -1296 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -2223 (|#1| (-560 |#1|))) (-15 -2223 ((-791) |#1|))) (-404 |#2|) (-783)) (T -403))
-((-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-783)) (-5 *1 (-403 *3 *4)) (-4 *3 (-404 *4)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-403 *4 *5)) (-4 *4 (-404 *5)))) (-1592 (*1 *2) (-12 (-4 *4 (-783)) (-5 *2 (-707)) (-5 *1 (-403 *3 *4)) (-4 *3 (-404 *4)))))
-(-10 -8 (-15 * (|#1| (-849) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1592 ((-707))) (-15 -2223 (|#1| (-521))) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1438 ((-497) |#1|)) (-15 -1496 ((-880 |#2|) |#1|)) (-15 -1296 ((-3 (-880 |#2|) "failed") |#1|)) (-15 -2223 (|#1| (-880 |#2|))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2223 (|#1| |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1496 ((-381 (-880 |#2|)) |#1|)) (-15 -1296 ((-3 (-381 (-880 |#2|)) "failed") |#1|)) (-15 -2223 (|#1| (-381 (-880 |#2|)))) (-15 -1280 ((-381 (-1080 |#1|)) |#1| (-560 |#1|))) (-15 -2223 (|#1| (-381 (-880 (-381 |#2|))))) (-15 -2223 (|#1| (-880 (-381 |#2|)))) (-15 -2223 (|#1| (-381 |#2|))) (-15 -2259 (|#1| |#1|)) (-15 -1438 (|#1| (-392 |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-707) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-707) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-707)) (-587 (-1 |#1| |#1|)))) (-15 -3390 ((-3 (-2 (|:| |val| |#1|) (|:| -2246 (-521))) "failed") |#1|)) (-15 -3262 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2246 (-521))) "failed") |#1| (-1084))) (-15 -3262 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2246 (-521))) "failed") |#1| (-110))) (-15 -2399 (|#1| |#1|)) (-15 -2223 (|#1| (-1036 |#2| (-560 |#1|)))) (-15 -4148 ((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 |#1|))) "failed") |#1|)) (-15 -4141 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -3262 ((-3 (-2 (|:| |var| (-560 |#1|)) (|:| -2246 (-521))) "failed") |#1|)) (-15 -3722 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 |#1|) (-1084))) (-15 -2313 (|#1| |#1| (-110) |#1| (-1084))) (-15 -2313 (|#1| |#1|)) (-15 -2313 (|#1| |#1| (-587 (-1084)))) (-15 -2313 (|#1| |#1| (-1084))) (-15 -1862 (|#1| (-1084) (-587 |#1|))) (-15 -1862 (|#1| (-1084) |#1| |#1| |#1| |#1|)) (-15 -1862 (|#1| (-1084) |#1| |#1| |#1|)) (-15 -1862 (|#1| (-1084) |#1| |#1|)) (-15 -1862 (|#1| (-1084) |#1|)) (-15 -4085 ((-587 (-1084)) |#1|)) (-15 -3120 (|#2| |#1|)) (-15 -3110 ((-108) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1496 ((-1084) |#1|)) (-15 -1296 ((-3 (-1084) "failed") |#1|)) (-15 -2223 (|#1| (-1084))) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-110) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-110)) (-587 (-1 |#1| |#1|)))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| |#1|))) (-15 -2313 (|#1| |#1| (-1084) (-1 |#1| (-587 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| (-587 |#1|))))) (-15 -2313 (|#1| |#1| (-587 (-1084)) (-587 (-1 |#1| |#1|)))) (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -1266 ((-587 (-560 |#1|)) |#1|)) (-15 -1656 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -3304 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -3304 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -3304 (|#1| |#1| (-269 |#1|))) (-15 -2550 (|#1| (-110) (-587 |#1|))) (-15 -2550 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1| |#1|)) (-15 -2550 (|#1| (-110) |#1|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2313 (|#1| |#1| (-587 (-560 |#1|)) (-587 |#1|))) (-15 -2313 (|#1| |#1| (-560 |#1|) |#1|)) (-15 -1496 ((-560 |#1|) |#1|)) (-15 -1296 ((-3 (-560 |#1|) "failed") |#1|)) (-15 -2223 (|#1| (-560 |#1|))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 116 (|has| |#1| (-25)))) (-4085 (((-587 (-1084)) $) 203)) (-1280 (((-381 (-1080 $)) $ (-560 $)) 171 (|has| |#1| (-513)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 143 (|has| |#1| (-513)))) (-1954 (($ $) 144 (|has| |#1| (-513)))) (-3795 (((-108) $) 146 (|has| |#1| (-513)))) (-1946 (((-587 (-560 $)) $) 44)) (-2057 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3304 (($ $ (-269 $)) 56) (($ $ (-587 (-269 $))) 55) (($ $ (-587 (-560 $)) (-587 $)) 54)) (-2694 (($ $) 163 (|has| |#1| (-513)))) (-2337 (((-392 $) $) 164 (|has| |#1| (-513)))) (-2165 (((-108) $ $) 154 (|has| |#1| (-513)))) (-2231 (($) 102 (-3703 (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-1296 (((-3 (-560 $) "failed") $) 69) (((-3 (-1084) "failed") $) 216) (((-3 (-521) "failed") $) 209 (|has| |#1| (-961 (-521)))) (((-3 |#1| "failed") $) 207) (((-3 (-381 (-880 |#1|)) "failed") $) 169 (|has| |#1| (-513))) (((-3 (-880 |#1|) "failed") $) 123 (|has| |#1| (-970))) (((-3 (-381 (-521)) "failed") $) 95 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-1496 (((-560 $) $) 68) (((-1084) $) 215) (((-521) $) 210 (|has| |#1| (-961 (-521)))) ((|#1| $) 206) (((-381 (-880 |#1|)) $) 168 (|has| |#1| (-513))) (((-880 |#1|) $) 122 (|has| |#1| (-970))) (((-381 (-521)) $) 94 (-3703 (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521))))))) (-2302 (($ $ $) 158 (|has| |#1| (-513)))) (-1961 (((-627 (-521)) (-627 $)) 137 (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 136 (-4009 (|has| |#1| (-583 (-521))) (|has| |#1| (-970)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 135 (|has| |#1| (-970))) (((-627 |#1|) (-627 $)) 134 (|has| |#1| (-970)))) (-2783 (((-3 $ "failed") $) 105 (|has| |#1| (-1025)))) (-2282 (($ $ $) 157 (|has| |#1| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 152 (|has| |#1| (-513)))) (-2100 (((-108) $) 165 (|has| |#1| (-513)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 212 (|has| |#1| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 211 (|has| |#1| (-814 (-353))))) (-2707 (($ $) 51) (($ (-587 $)) 50)) (-2788 (((-587 (-110)) $) 43)) (-3928 (((-110) (-110)) 42)) (-3637 (((-108) $) 103 (|has| |#1| (-1025)))) (-3924 (((-108) $) 22 (|has| $ (-961 (-521))))) (-2399 (($ $) 186 (|has| |#1| (-970)))) (-2807 (((-1036 |#1| (-560 $)) $) 187 (|has| |#1| (-970)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 161 (|has| |#1| (-513)))) (-3159 (((-1080 $) (-560 $)) 25 (|has| $ (-970)))) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-1393 (($ (-1 $ $) (-560 $)) 36)) (-1656 (((-3 (-560 $) "failed") $) 46)) (-2254 (($ (-587 $)) 150 (|has| |#1| (-513))) (($ $ $) 149 (|has| |#1| (-513)))) (-4024 (((-1067) $) 9)) (-1266 (((-587 (-560 $)) $) 45)) (-2911 (($ (-110) $) 38) (($ (-110) (-587 $)) 37)) (-3722 (((-3 (-587 $) "failed") $) 192 (|has| |#1| (-1025)))) (-3390 (((-3 (-2 (|:| |val| $) (|:| -2246 (-521))) "failed") $) 183 (|has| |#1| (-970)))) (-4141 (((-3 (-587 $) "failed") $) 190 (|has| |#1| (-25)))) (-4148 (((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3262 (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $) 191 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-110)) 185 (|has| |#1| (-970))) (((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-1084)) 184 (|has| |#1| (-970)))) (-4013 (((-108) $ (-110)) 40) (((-108) $ (-1084)) 39)) (-3100 (($ $) 107 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-4151 (((-707) $) 47)) (-4146 (((-1031) $) 10)) (-3110 (((-108) $) 205)) (-3120 ((|#1| $) 204)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 151 (|has| |#1| (-513)))) (-2286 (($ (-587 $)) 148 (|has| |#1| (-513))) (($ $ $) 147 (|has| |#1| (-513)))) (-3457 (((-108) $ $) 35) (((-108) $ (-1084)) 34)) (-1974 (((-392 $) $) 162 (|has| |#1| (-513)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-513))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 159 (|has| |#1| (-513)))) (-2261 (((-3 $ "failed") $ $) 142 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 153 (|has| |#1| (-513)))) (-2060 (((-108) $) 23 (|has| $ (-961 (-521))))) (-2313 (($ $ (-560 $) $) 67) (($ $ (-587 (-560 $)) (-587 $)) 66) (($ $ (-587 (-269 $))) 65) (($ $ (-269 $)) 64) (($ $ $ $) 63) (($ $ (-587 $) (-587 $)) 62) (($ $ (-587 (-1084)) (-587 (-1 $ $))) 33) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) 32) (($ $ (-1084) (-1 $ (-587 $))) 31) (($ $ (-1084) (-1 $ $)) 30) (($ $ (-587 (-110)) (-587 (-1 $ $))) 29) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) 28) (($ $ (-110) (-1 $ (-587 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1084)) 197 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084))) 196 (|has| |#1| (-562 (-497)))) (($ $) 195 (|has| |#1| (-562 (-497)))) (($ $ (-110) $ (-1084)) 194 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-110)) (-587 $) (-1084)) 193 (|has| |#1| (-562 (-497)))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $))) 182 (|has| |#1| (-970))) (($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $)))) 181 (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ (-587 $))) 180 (|has| |#1| (-970))) (($ $ (-1084) (-707) (-1 $ $)) 179 (|has| |#1| (-970)))) (-3794 (((-707) $) 155 (|has| |#1| (-513)))) (-2550 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-587 $)) 57)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 156 (|has| |#1| (-513)))) (-1935 (($ $) 49) (($ $ $) 48)) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) 128 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 127 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 126 (|has| |#1| (-970))) (($ $ (-1084)) 125 (|has| |#1| (-970)))) (-2259 (($ $) 176 (|has| |#1| (-513)))) (-2818 (((-1036 |#1| (-560 $)) $) 177 (|has| |#1| (-513)))) (-3436 (($ $) 24 (|has| $ (-970)))) (-1438 (((-820 (-521)) $) 214 (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) 213 (|has| |#1| (-562 (-820 (-353))))) (($ (-392 $)) 178 (|has| |#1| (-513))) (((-497) $) 97 (|has| |#1| (-562 (-497))))) (-1484 (($ $ $) 111 (|has| |#1| (-446)))) (-2062 (($ $ $) 112 (|has| |#1| (-446)))) (-2223 (((-791) $) 11) (($ (-560 $)) 70) (($ (-1084)) 217) (($ |#1|) 208) (($ (-1036 |#1| (-560 $))) 188 (|has| |#1| (-970))) (($ (-381 |#1|)) 174 (|has| |#1| (-513))) (($ (-880 (-381 |#1|))) 173 (|has| |#1| (-513))) (($ (-381 (-880 (-381 |#1|)))) 172 (|has| |#1| (-513))) (($ (-381 (-880 |#1|))) 170 (|has| |#1| (-513))) (($ $) 141 (|has| |#1| (-513))) (($ (-880 |#1|)) 124 (|has| |#1| (-970))) (($ (-381 (-521))) 96 (-3703 (|has| |#1| (-513)) (-12 (|has| |#1| (-961 (-521))) (|has| |#1| (-513))) (|has| |#1| (-961 (-381 (-521)))))) (($ (-521)) 93 (-3703 (|has| |#1| (-970)) (|has| |#1| (-961 (-521)))))) (-2446 (((-3 $ "failed") $) 138 (|has| |#1| (-133)))) (-1592 (((-707)) 133 (|has| |#1| (-970)))) (-2342 (($ $) 53) (($ (-587 $)) 52)) (-1224 (((-108) (-110)) 41)) (-1842 (((-108) $ $) 145 (|has| |#1| (-513)))) (-1862 (($ (-1084) $) 202) (($ (-1084) $ $) 201) (($ (-1084) $ $ $) 200) (($ (-1084) $ $ $ $) 199) (($ (-1084) (-587 $)) 198)) (-3509 (($ $ (-521)) 110 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) 104 (|has| |#1| (-1025))) (($ $ (-849)) 100 (|has| |#1| (-1025)))) (-3562 (($) 115 (|has| |#1| (-25)) CONST)) (-3572 (($) 101 (|has| |#1| (-1025)) CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) 132 (|has| |#1| (-970))) (($ $ (-1084) (-707)) 131 (|has| |#1| (-970))) (($ $ (-587 (-1084))) 130 (|has| |#1| (-970))) (($ $ (-1084)) 129 (|has| |#1| (-970)))) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1648 (($ (-1036 |#1| (-560 $)) (-1036 |#1| (-560 $))) 175 (|has| |#1| (-513))) (($ $ $) 108 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513))))) (-1639 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1628 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-521)) 109 (-3703 (|has| |#1| (-446)) (|has| |#1| (-513)))) (($ $ (-707)) 106 (|has| |#1| (-1025))) (($ $ (-849)) 99 (|has| |#1| (-1025)))) (* (($ (-381 (-521)) $) 167 (|has| |#1| (-513))) (($ $ (-381 (-521))) 166 (|has| |#1| (-513))) (($ |#1| $) 140 (|has| |#1| (-157))) (($ $ |#1|) 139 (|has| |#1| (-157))) (($ (-521) $) 121 (|has| |#1| (-21))) (($ (-707) $) 117 (|has| |#1| (-25))) (($ (-849) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1025)))))
-(((-404 |#1|) (-1196) (-783)) (T -404))
-((-3110 (*1 *2 *1) (-12 (-4 *1 (-404 *3)) (-4 *3 (-783)) (-5 *2 (-108)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-404 *3)) (-4 *3 (-783)) (-5 *2 (-587 (-1084))))) (-1862 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783)))) (-1862 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783)))) (-1862 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783)))) (-1862 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783)))) (-1862 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 *1)) (-4 *1 (-404 *4)) (-4 *4 (-783)))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783)) (-4 *3 (-562 (-497))))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1084))) (-4 *1 (-404 *3)) (-4 *3 (-783)) (-4 *3 (-562 (-497))))) (-2313 (*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)) (-4 *2 (-562 (-497))))) (-2313 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1084)) (-4 *1 (-404 *4)) (-4 *4 (-783)) (-4 *4 (-562 (-497))))) (-2313 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 *1)) (-5 *4 (-1084)) (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-562 (-497))))) (-3722 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-404 *3)))) (-3262 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-783)) (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2246 (-521)))) (-4 *1 (-404 *3)))) (-4141 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-404 *3)))) (-4148 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2979 (-521)) (|:| |var| (-560 *1)))) (-4 *1 (-404 *3)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-970)) (-4 *3 (-783)) (-4 *1 (-404 *3)))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *3 (-783)) (-5 *2 (-1036 *3 (-560 *1))) (-4 *1 (-404 *3)))) (-2399 (*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)) (-4 *2 (-970)))) (-3262 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-970)) (-4 *4 (-783)) (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2246 (-521)))) (-4 *1 (-404 *4)))) (-3262 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-970)) (-4 *4 (-783)) (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2246 (-521)))) (-4 *1 (-404 *4)))) (-3390 (*1 *2 *1) (|partial| -12 (-4 *3 (-970)) (-4 *3 (-783)) (-5 *2 (-2 (|:| |val| *1) (|:| -2246 (-521)))) (-4 *1 (-404 *3)))) (-2313 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707))) (-5 *4 (-587 (-1 *1 *1))) (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-970)))) (-2313 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707))) (-5 *4 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-970)))) (-2313 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 (-587 *1))) (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-970)))) (-2313 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 *1)) (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-970)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-392 *1)) (-4 *1 (-404 *3)) (-4 *3 (-513)) (-4 *3 (-783)))) (-2818 (*1 *2 *1) (-12 (-4 *3 (-513)) (-4 *3 (-783)) (-5 *2 (-1036 *3 (-560 *1))) (-4 *1 (-404 *3)))) (-2259 (*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)) (-4 *2 (-513)))) (-1648 (*1 *1 *2 *2) (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-513)) (-4 *3 (-783)) (-4 *1 (-404 *3)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-381 *3)) (-4 *3 (-513)) (-4 *3 (-783)) (-4 *1 (-404 *3)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-880 (-381 *3))) (-4 *3 (-513)) (-4 *3 (-783)) (-4 *1 (-404 *3)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-381 *3)))) (-4 *3 (-513)) (-4 *3 (-783)) (-4 *1 (-404 *3)))) (-1280 (*1 *2 *1 *3) (-12 (-5 *3 (-560 *1)) (-4 *1 (-404 *4)) (-4 *4 (-783)) (-4 *4 (-513)) (-5 *2 (-381 (-1080 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-404 *3)) (-4 *3 (-783)) (-4 *3 (-1025)))))
-(-13 (-277) (-961 (-1084)) (-812 |t#1|) (-374 |t#1|) (-385 |t#1|) (-10 -8 (-15 -3110 ((-108) $)) (-15 -3120 (|t#1| $)) (-15 -4085 ((-587 (-1084)) $)) (-15 -1862 ($ (-1084) $)) (-15 -1862 ($ (-1084) $ $)) (-15 -1862 ($ (-1084) $ $ $)) (-15 -1862 ($ (-1084) $ $ $ $)) (-15 -1862 ($ (-1084) (-587 $))) (IF (|has| |t#1| (-562 (-497))) (PROGN (-6 (-562 (-497))) (-15 -2313 ($ $ (-1084))) (-15 -2313 ($ $ (-587 (-1084)))) (-15 -2313 ($ $)) (-15 -2313 ($ $ (-110) $ (-1084))) (-15 -2313 ($ $ (-587 (-110)) (-587 $) (-1084)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-663)) (-15 ** ($ $ (-707))) (-15 -3722 ((-3 (-587 $) "failed") $)) (-15 -3262 ((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4141 ((-3 (-587 $) "failed") $)) (-15 -4148 ((-3 (-2 (|:| -2979 (-521)) (|:| |var| (-560 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-970)) (PROGN (-6 (-970)) (-6 (-961 (-880 |t#1|))) (-6 (-828 (-1084))) (-6 (-351 |t#1|)) (-15 -2223 ($ (-1036 |t#1| (-560 $)))) (-15 -2807 ((-1036 |t#1| (-560 $)) $)) (-15 -2399 ($ $)) (-15 -3262 ((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-110))) (-15 -3262 ((-3 (-2 (|:| |var| (-560 $)) (|:| -2246 (-521))) "failed") $ (-1084))) (-15 -3390 ((-3 (-2 (|:| |val| $) (|:| -2246 (-521))) "failed") $)) (-15 -2313 ($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ $)))) (-15 -2313 ($ $ (-587 (-1084)) (-587 (-707)) (-587 (-1 $ (-587 $))))) (-15 -2313 ($ $ (-1084) (-707) (-1 $ (-587 $)))) (-15 -2313 ($ $ (-1084) (-707) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-6 (-337)) (-6 (-961 (-381 (-880 |t#1|)))) (-15 -1438 ($ (-392 $))) (-15 -2818 ((-1036 |t#1| (-560 $)) $)) (-15 -2259 ($ $)) (-15 -1648 ($ (-1036 |t#1| (-560 $)) (-1036 |t#1| (-560 $)))) (-15 -2223 ($ (-381 |t#1|))) (-15 -2223 ($ (-880 (-381 |t#1|)))) (-15 -2223 ($ (-381 (-880 (-381 |t#1|))))) (-15 -1280 ((-381 (-1080 $)) $ (-560 $))) (IF (|has| |t#1| (-961 (-521))) (-6 (-961 (-381 (-521)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-23) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-381 (-521))) |has| |#1| (-513)) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-513)) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) |has| |#1| (-513)) ((-124) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) |has| |#1| (-513)) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-820 (-353))) |has| |#1| (-562 (-820 (-353)))) ((-562 (-820 (-521))) |has| |#1| (-562 (-820 (-521)))) ((-220) |has| |#1| (-513)) ((-265) |has| |#1| (-513)) ((-282) |has| |#1| (-513)) ((-284 $) . T) ((-277) . T) ((-337) |has| |#1| (-513)) ((-351 |#1|) |has| |#1| (-970)) ((-374 |#1|) . T) ((-385 |#1|) . T) ((-425) |has| |#1| (-513)) ((-446) |has| |#1| (-446)) ((-482 (-560 $) $) . T) ((-482 $ $) . T) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-513)) ((-589 |#1|) |has| |#1| (-157)) ((-589 $) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-583 (-521)) -12 (|has| |#1| (-583 (-521))) (|has| |#1| (-970))) ((-583 |#1|) |has| |#1| (-970)) ((-654 #0#) |has| |#1| (-513)) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) -3703 (|has| |#1| (-1025)) (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-446)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-783) . T) ((-828 (-1084)) |has| |#1| (-970)) ((-814 (-353)) |has| |#1| (-814 (-353))) ((-814 (-521)) |has| |#1| (-814 (-521))) ((-812 |#1|) . T) ((-848) |has| |#1| (-513)) ((-961 (-381 (-521))) -3703 (|has| |#1| (-961 (-381 (-521)))) (-12 (|has| |#1| (-513)) (|has| |#1| (-961 (-521))))) ((-961 (-381 (-880 |#1|))) |has| |#1| (-513)) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 (-560 $)) . T) ((-961 (-880 |#1|)) |has| |#1| (-970)) ((-961 (-1084)) . T) ((-961 |#1|) . T) ((-976 #0#) |has| |#1| (-513)) ((-976 |#1|) |has| |#1| (-157)) ((-976 $) |has| |#1| (-513)) ((-970) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-977) -3703 (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1025) -3703 (|has| |#1| (-1025)) (|has| |#1| (-970)) (|has| |#1| (-513)) (|has| |#1| (-446)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1013) . T) ((-1119) . T) ((-1123) |has| |#1| (-513)))
-((-2708 ((|#2| |#2| |#2|) 33)) (-3928 (((-110) (-110)) 44)) (-3695 ((|#2| |#2|) 66)) (-3494 ((|#2| |#2|) 69)) (-1498 ((|#2| |#2|) 32)) (-3481 ((|#2| |#2| |#2|) 35)) (-3321 ((|#2| |#2| |#2|) 37)) (-4032 ((|#2| |#2| |#2|) 34)) (-2053 ((|#2| |#2| |#2|) 36)) (-1224 (((-108) (-110)) 42)) (-2154 ((|#2| |#2|) 39)) (-2845 ((|#2| |#2|) 38)) (-4012 ((|#2| |#2|) 27)) (-1763 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2847 ((|#2| |#2| |#2|) 31)))
-(((-405 |#1| |#2|) (-10 -7 (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -4012 (|#2| |#2|)) (-15 -1763 (|#2| |#2|)) (-15 -1763 (|#2| |#2| |#2|)) (-15 -2847 (|#2| |#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -2708 (|#2| |#2| |#2|)) (-15 -4032 (|#2| |#2| |#2|)) (-15 -3481 (|#2| |#2| |#2|)) (-15 -2053 (|#2| |#2| |#2|)) (-15 -3321 (|#2| |#2| |#2|)) (-15 -2845 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3695 (|#2| |#2|))) (-13 (-783) (-513)) (-404 |#1|)) (T -405))
-((-3695 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2845 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3321 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2053 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3481 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-4032 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2708 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-2847 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-1763 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-1763 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2)) (-4 *2 (-404 *3)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *4)) (-4 *4 (-404 *3)))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-405 *4 *5)) (-4 *5 (-404 *4)))))
-(-10 -7 (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -4012 (|#2| |#2|)) (-15 -1763 (|#2| |#2|)) (-15 -1763 (|#2| |#2| |#2|)) (-15 -2847 (|#2| |#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -2708 (|#2| |#2| |#2|)) (-15 -4032 (|#2| |#2| |#2|)) (-15 -3481 (|#2| |#2| |#2|)) (-15 -2053 (|#2| |#2| |#2|)) (-15 -3321 (|#2| |#2| |#2|)) (-15 -2845 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)))
-((-2464 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1080 |#2|)) (|:| |pol2| (-1080 |#2|)) (|:| |prim| (-1080 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1080 |#2|))) (|:| |prim| (-1080 |#2|))) (-587 |#2|)) 58)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -2464 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1080 |#2|))) (|:| |prim| (-1080 |#2|))) (-587 |#2|))) (IF (|has| |#2| (-27)) (-15 -2464 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1080 |#2|)) (|:| |pol2| (-1080 |#2|)) (|:| |prim| (-1080 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-513) (-783) (-135)) (-404 |#1|)) (T -406))
-((-2464 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-513) (-783) (-135))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1080 *3)) (|:| |pol2| (-1080 *3)) (|:| |prim| (-1080 *3)))) (-5 *1 (-406 *4 *3)) (-4 *3 (-27)) (-4 *3 (-404 *4)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4)) (-4 *4 (-13 (-513) (-783) (-135))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-587 (-1080 *5))) (|:| |prim| (-1080 *5)))) (-5 *1 (-406 *4 *5)))))
-(-10 -7 (-15 -2464 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-587 (-1080 |#2|))) (|:| |prim| (-1080 |#2|))) (-587 |#2|))) (IF (|has| |#2| (-27)) (-15 -2464 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1080 |#2|)) (|:| |pol2| (-1080 |#2|)) (|:| |prim| (-1080 |#2|))) |#2| |#2|)) |%noBranch|))
-((-2665 (((-1170)) 18)) (-3620 (((-1080 (-381 (-521))) |#2| (-560 |#2|)) 40) (((-381 (-521)) |#2|) 23)))
-(((-407 |#1| |#2|) (-10 -7 (-15 -3620 ((-381 (-521)) |#2|)) (-15 -3620 ((-1080 (-381 (-521))) |#2| (-560 |#2|))) (-15 -2665 ((-1170)))) (-13 (-783) (-513) (-961 (-521))) (-404 |#1|)) (T -407))
-((-2665 (*1 *2) (-12 (-4 *3 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-1170)) (-5 *1 (-407 *3 *4)) (-4 *4 (-404 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *4 (-560 *3)) (-4 *3 (-404 *5)) (-4 *5 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-407 *5 *3)))) (-3620 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-381 (-521))) (-5 *1 (-407 *4 *3)) (-4 *3 (-404 *4)))))
-(-10 -7 (-15 -3620 ((-381 (-521)) |#2|)) (-15 -3620 ((-1080 (-381 (-521))) |#2| (-560 |#2|))) (-15 -2665 ((-1170))))
-((-3717 (((-108) $) 28)) (-3293 (((-108) $) 30)) (-3976 (((-108) $) 31)) (-3697 (((-108) $) 34)) (-3081 (((-108) $) 29)) (-1975 (((-108) $) 33)) (-2223 (((-791) $) 18) (($ (-1067)) 27) (($ (-1084)) 23) (((-1084) $) 22) (((-1017) $) 21)) (-1866 (((-108) $) 32)) (-1549 (((-108) $ $) 15)))
-(((-408) (-13 (-561 (-791)) (-10 -8 (-15 -2223 ($ (-1067))) (-15 -2223 ($ (-1084))) (-15 -2223 ((-1084) $)) (-15 -2223 ((-1017) $)) (-15 -3717 ((-108) $)) (-15 -3081 ((-108) $)) (-15 -3976 ((-108) $)) (-15 -1975 ((-108) $)) (-15 -3697 ((-108) $)) (-15 -1866 ((-108) $)) (-15 -3293 ((-108) $)) (-15 -1549 ((-108) $ $))))) (T -408))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-408)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-408)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-408)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-408)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))) (-1549 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2223 ($ (-1067))) (-15 -2223 ($ (-1084))) (-15 -2223 ((-1084) $)) (-15 -2223 ((-1017) $)) (-15 -3717 ((-108) $)) (-15 -3081 ((-108) $)) (-15 -3976 ((-108) $)) (-15 -1975 ((-108) $)) (-15 -3697 ((-108) $)) (-15 -1866 ((-108) $)) (-15 -3293 ((-108) $)) (-15 -1549 ((-108) $ $))))
-((-3310 (((-3 (-392 (-1080 (-381 (-521)))) "failed") |#3|) 69)) (-2636 (((-392 |#3|) |#3|) 33)) (-1386 (((-3 (-392 (-1080 (-47))) "failed") |#3|) 27 (|has| |#2| (-961 (-47))))) (-3453 (((-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3084 (-108))) |#3|) 35)))
-(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -2636 ((-392 |#3|) |#3|)) (-15 -3310 ((-3 (-392 (-1080 (-381 (-521)))) "failed") |#3|)) (-15 -3453 ((-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3084 (-108))) |#3|)) (IF (|has| |#2| (-961 (-47))) (-15 -1386 ((-3 (-392 (-1080 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-513) (-783) (-961 (-521))) (-404 |#1|) (-1141 |#2|)) (T -409))
-((-1386 (*1 *2 *3) (|partial| -12 (-4 *5 (-961 (-47))) (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-392 (-1080 (-47)))) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-3453 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3084 (-108)))) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-3310 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-392 (-1080 (-381 (-521))))) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-2636 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4)) (-5 *2 (-392 *3)) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
-(-10 -7 (-15 -2636 ((-392 |#3|) |#3|)) (-15 -3310 ((-3 (-392 (-1080 (-381 (-521)))) "failed") |#3|)) (-15 -3453 ((-3 (|:| |overq| (-1080 (-381 (-521)))) (|:| |overan| (-1080 (-47))) (|:| -3084 (-108))) |#3|)) (IF (|has| |#2| (-961 (-47))) (-15 -1386 ((-3 (-392 (-1080 (-47))) "failed") |#3|)) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-2823 (((-1067) $ (-1067)) NIL)) (-3306 (($ $ (-1067)) NIL)) (-2629 (((-1067) $) NIL)) (-3685 (((-362) (-362) (-362)) 17) (((-362) (-362)) 15)) (-1564 (($ (-362)) NIL) (($ (-362) (-1067)) NIL)) (-2890 (((-362) $) NIL)) (-4024 (((-1067) $) NIL)) (-3283 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2797 (((-1170) (-1067)) 9)) (-1947 (((-1170) (-1067)) 10)) (-4154 (((-1170)) 11)) (-2223 (((-791) $) NIL)) (-1777 (($ $) 35)) (-1549 (((-108) $ $) NIL)))
-(((-410) (-13 (-338 (-362) (-1067)) (-10 -7 (-15 -3685 ((-362) (-362) (-362))) (-15 -3685 ((-362) (-362))) (-15 -2797 ((-1170) (-1067))) (-15 -1947 ((-1170) (-1067))) (-15 -4154 ((-1170)))))) (T -410))
-((-3685 (*1 *2 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))) (-4154 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-410)))))
-(-13 (-338 (-362) (-1067)) (-10 -7 (-15 -3685 ((-362) (-362) (-362))) (-15 -3685 ((-362) (-362))) (-15 -2797 ((-1170) (-1067))) (-15 -1947 ((-1170) (-1067))) (-15 -4154 ((-1170)))))
-((-1422 (((-108) $ $) NIL)) (-2267 (((-3 (|:| |fst| (-408)) (|:| -1366 "void")) $) 10)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2666 (($) 31)) (-4017 (($) 37)) (-2242 (($) 33)) (-3220 (($) 35)) (-4073 (($) 32)) (-4206 (($) 34)) (-4202 (($) 36)) (-2721 (((-108) $) 8)) (-3019 (((-587 (-880 (-521))) $) 16)) (-2234 (($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-108)) 25) (($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-880 (-521))) (-108)) 26)) (-2223 (((-791) $) 21) (($ (-408)) 28)) (-1549 (((-108) $ $) NIL)))
-(((-411) (-13 (-1013) (-10 -8 (-15 -2223 ((-791) $)) (-15 -2223 ($ (-408))) (-15 -2267 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -3019 ((-587 (-880 (-521))) $)) (-15 -2721 ((-108) $)) (-15 -2234 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-108))) (-15 -2234 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-880 (-521))) (-108))) (-15 -2666 ($)) (-15 -4073 ($)) (-15 -2242 ($)) (-15 -4017 ($)) (-15 -4206 ($)) (-15 -3220 ($)) (-15 -4202 ($))))) (T -411))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-411)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-408)) (-5 *1 (-411)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *1 (-411)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-587 (-880 (-521)))) (-5 *1 (-411)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-411)))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *3 (-587 (-1084))) (-5 *4 (-108)) (-5 *1 (-411)))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-108)) (-5 *1 (-411)))) (-2666 (*1 *1) (-5 *1 (-411))) (-4073 (*1 *1) (-5 *1 (-411))) (-2242 (*1 *1) (-5 *1 (-411))) (-4017 (*1 *1) (-5 *1 (-411))) (-4206 (*1 *1) (-5 *1 (-411))) (-3220 (*1 *1) (-5 *1 (-411))) (-4202 (*1 *1) (-5 *1 (-411))))
-(-13 (-1013) (-10 -8 (-15 -2223 ((-791) $)) (-15 -2223 ($ (-408))) (-15 -2267 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -3019 ((-587 (-880 (-521))) $)) (-15 -2721 ((-108) $)) (-15 -2234 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-1084)) (-108))) (-15 -2234 ($ (-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-587 (-880 (-521))) (-108))) (-15 -2666 ($)) (-15 -4073 ($)) (-15 -2242 ($)) (-15 -4017 ($)) (-15 -4206 ($)) (-15 -3220 ($)) (-15 -4202 ($))))
-((-1422 (((-108) $ $) NIL)) (-2890 (((-1084) $) 8)) (-4024 (((-1067) $) 16)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 13)))
-(((-412 |#1|) (-13 (-1013) (-10 -8 (-15 -2890 ((-1084) $)))) (-1084)) (T -412))
-((-2890 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-412 *3)) (-14 *3 *2))))
-(-13 (-1013) (-10 -8 (-15 -2890 ((-1084) $))))
-((-2059 (((-1170) $) 7)) (-2223 (((-791) $) 8) (($ (-1165 (-636))) 14) (($ (-587 (-304))) 13) (($ (-304)) 12) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 11)))
-(((-413) (-1196)) (T -413))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-636))) (-4 *1 (-413)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-413)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-413)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) (-4 *1 (-413)))))
-(-13 (-369) (-10 -8 (-15 -2223 ($ (-1165 (-636)))) (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-304))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))))))
-(((-561 (-791)) . T) ((-369) . T) ((-1119) . T))
-((-1296 (((-3 $ "failed") (-1165 (-290 (-353)))) 21) (((-3 $ "failed") (-1165 (-290 (-521)))) 19) (((-3 $ "failed") (-1165 (-880 (-353)))) 17) (((-3 $ "failed") (-1165 (-880 (-521)))) 15) (((-3 $ "failed") (-1165 (-381 (-880 (-353))))) 13) (((-3 $ "failed") (-1165 (-381 (-880 (-521))))) 11)) (-1496 (($ (-1165 (-290 (-353)))) 22) (($ (-1165 (-290 (-521)))) 20) (($ (-1165 (-880 (-353)))) 18) (($ (-1165 (-880 (-521)))) 16) (($ (-1165 (-381 (-880 (-353))))) 14) (($ (-1165 (-381 (-880 (-521))))) 12)) (-2059 (((-1170) $) 7)) (-2223 (((-791) $) 8) (($ (-587 (-304))) 25) (($ (-304)) 24) (($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) 23)))
-(((-414) (-1196)) (T -414))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-414)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-414)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304))))) (-4 *1 (-414)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1165 (-880 (-353)))) (-4 *1 (-414)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-880 (-353)))) (-4 *1 (-414)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1165 (-880 (-521)))) (-4 *1 (-414)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-880 (-521)))) (-4 *1 (-414)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-880 (-353))))) (-4 *1 (-414)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-381 (-880 (-353))))) (-4 *1 (-414)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-880 (-521))))) (-4 *1 (-414)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-1165 (-381 (-880 (-521))))) (-4 *1 (-414)))))
-(-13 (-369) (-10 -8 (-15 -2223 ($ (-587 (-304)))) (-15 -2223 ($ (-304))) (-15 -2223 ($ (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))) (-15 -1496 ($ (-1165 (-290 (-353))))) (-15 -1296 ((-3 $ "failed") (-1165 (-290 (-353))))) (-15 -1496 ($ (-1165 (-290 (-521))))) (-15 -1296 ((-3 $ "failed") (-1165 (-290 (-521))))) (-15 -1496 ($ (-1165 (-880 (-353))))) (-15 -1296 ((-3 $ "failed") (-1165 (-880 (-353))))) (-15 -1496 ($ (-1165 (-880 (-521))))) (-15 -1296 ((-3 $ "failed") (-1165 (-880 (-521))))) (-15 -1496 ($ (-1165 (-381 (-880 (-353)))))) (-15 -1296 ((-3 $ "failed") (-1165 (-381 (-880 (-353)))))) (-15 -1496 ($ (-1165 (-381 (-880 (-521)))))) (-15 -1296 ((-3 $ "failed") (-1165 (-381 (-880 (-521))))))))
-(((-561 (-791)) . T) ((-369) . T) ((-1119) . T))
-((-3138 (((-108)) 17)) (-3317 (((-108) (-108)) 18)) (-3378 (((-108)) 13)) (-1355 (((-108) (-108)) 14)) (-2902 (((-108)) 15)) (-1512 (((-108) (-108)) 16)) (-1796 (((-849) (-849)) 21) (((-849)) 20)) (-3329 (((-707) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521))))) 42)) (-3301 (((-849) (-849)) 23) (((-849)) 22)) (-3630 (((-2 (|:| -1820 (-521)) (|:| -3655 (-587 |#1|))) |#1|) 62)) (-2224 (((-392 |#1|) (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521))))))) 124)) (-2699 (((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108)) 150)) (-3307 (((-392 |#1|) |#1| (-707) (-707)) 163) (((-392 |#1|) |#1| (-587 (-707)) (-707)) 160) (((-392 |#1|) |#1| (-587 (-707))) 162) (((-392 |#1|) |#1| (-707)) 161) (((-392 |#1|) |#1|) 159)) (-4210 (((-3 |#1| "failed") (-849) |#1| (-587 (-707)) (-707) (-108)) 165) (((-3 |#1| "failed") (-849) |#1| (-587 (-707)) (-707)) 166) (((-3 |#1| "failed") (-849) |#1| (-587 (-707))) 168) (((-3 |#1| "failed") (-849) |#1| (-707)) 167) (((-3 |#1| "failed") (-849) |#1|) 169)) (-1974 (((-392 |#1|) |#1| (-707) (-707)) 158) (((-392 |#1|) |#1| (-587 (-707)) (-707)) 154) (((-392 |#1|) |#1| (-587 (-707))) 156) (((-392 |#1|) |#1| (-707)) 155) (((-392 |#1|) |#1|) 153)) (-3827 (((-108) |#1|) 37)) (-2884 (((-674 (-707)) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521))))) 67)) (-3564 (((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108) (-1015 (-707)) (-707)) 152)))
-(((-415 |#1|) (-10 -7 (-15 -2224 ((-392 |#1|) (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))))) (-15 -2884 ((-674 (-707)) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))))) (-15 -3301 ((-849))) (-15 -3301 ((-849) (-849))) (-15 -1796 ((-849))) (-15 -1796 ((-849) (-849))) (-15 -3329 ((-707) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))))) (-15 -3630 ((-2 (|:| -1820 (-521)) (|:| -3655 (-587 |#1|))) |#1|)) (-15 -3138 ((-108))) (-15 -3317 ((-108) (-108))) (-15 -3378 ((-108))) (-15 -1355 ((-108) (-108))) (-15 -3827 ((-108) |#1|)) (-15 -2902 ((-108))) (-15 -1512 ((-108) (-108))) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -1974 ((-392 |#1|) |#1| (-707))) (-15 -1974 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -1974 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -1974 ((-392 |#1|) |#1| (-707) (-707))) (-15 -3307 ((-392 |#1|) |#1|)) (-15 -3307 ((-392 |#1|) |#1| (-707))) (-15 -3307 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -3307 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -3307 ((-392 |#1|) |#1| (-707) (-707))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1|)) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-707))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-587 (-707)))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-587 (-707)) (-707))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-587 (-707)) (-707) (-108))) (-15 -2699 ((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108))) (-15 -3564 ((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108) (-1015 (-707)) (-707)))) (-1141 (-521))) (T -415))
-((-3564 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1015 (-707))) (-5 *6 (-707)) (-5 *2 (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521))))))) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2699 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521))))))) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-4210 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *6 (-108)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-4210 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-4210 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-587 (-707))) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-4210 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-849)) (-5 *4 (-707)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-4210 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-849)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521))))) (-3307 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3307 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3307 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3307 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3307 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1974 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1974 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2902 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3827 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3378 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3138 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3630 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1820 (-521)) (|:| -3655 (-587 *3)))) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1974 *4) (|:| -2098 (-521))))) (-4 *4 (-1141 (-521))) (-5 *2 (-707)) (-5 *1 (-415 *4)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-1796 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3301 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-3301 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1974 *4) (|:| -2098 (-521))))) (-4 *4 (-1141 (-521))) (-5 *2 (-674 (-707))) (-5 *1 (-415 *4)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| *4) (|:| -3083 (-521))))))) (-4 *4 (-1141 (-521))) (-5 *2 (-392 *4)) (-5 *1 (-415 *4)))))
-(-10 -7 (-15 -2224 ((-392 |#1|) (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))))) (-15 -2884 ((-674 (-707)) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))))) (-15 -3301 ((-849))) (-15 -3301 ((-849) (-849))) (-15 -1796 ((-849))) (-15 -1796 ((-849) (-849))) (-15 -3329 ((-707) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))))) (-15 -3630 ((-2 (|:| -1820 (-521)) (|:| -3655 (-587 |#1|))) |#1|)) (-15 -3138 ((-108))) (-15 -3317 ((-108) (-108))) (-15 -3378 ((-108))) (-15 -1355 ((-108) (-108))) (-15 -3827 ((-108) |#1|)) (-15 -2902 ((-108))) (-15 -1512 ((-108) (-108))) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -1974 ((-392 |#1|) |#1| (-707))) (-15 -1974 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -1974 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -1974 ((-392 |#1|) |#1| (-707) (-707))) (-15 -3307 ((-392 |#1|) |#1|)) (-15 -3307 ((-392 |#1|) |#1| (-707))) (-15 -3307 ((-392 |#1|) |#1| (-587 (-707)))) (-15 -3307 ((-392 |#1|) |#1| (-587 (-707)) (-707))) (-15 -3307 ((-392 |#1|) |#1| (-707) (-707))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1|)) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-707))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-587 (-707)))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-587 (-707)) (-707))) (-15 -4210 ((-3 |#1| "failed") (-849) |#1| (-587 (-707)) (-707) (-108))) (-15 -2699 ((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108))) (-15 -3564 ((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108) (-1015 (-707)) (-707))))
-((-2950 (((-521) |#2|) 48) (((-521) |#2| (-707)) 47)) (-1479 (((-521) |#2|) 55)) (-3558 ((|#3| |#2|) 25)) (-2549 ((|#3| |#2| (-849)) 14)) (-2522 ((|#3| |#2|) 15)) (-1900 ((|#3| |#2|) 9)) (-4151 ((|#3| |#2|) 10)) (-3716 ((|#3| |#2| (-849)) 62) ((|#3| |#2|) 30)) (-3172 (((-521) |#2|) 57)))
-(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -3172 ((-521) |#2|)) (-15 -3716 (|#3| |#2|)) (-15 -3716 (|#3| |#2| (-849))) (-15 -1479 ((-521) |#2|)) (-15 -2950 ((-521) |#2| (-707))) (-15 -2950 ((-521) |#2|)) (-15 -2549 (|#3| |#2| (-849))) (-15 -3558 (|#3| |#2|)) (-15 -1900 (|#3| |#2|)) (-15 -4151 (|#3| |#2|)) (-15 -2522 (|#3| |#2|))) (-970) (-1141 |#1|) (-13 (-378) (-961 |#1|) (-337) (-1105) (-259))) (T -416))
-((-2522 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-1900 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *5 (-970)) (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259))) (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5)))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5)) (-4 *3 (-1141 *4)) (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))) (-2950 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *5 *3 *6)) (-4 *3 (-1141 *5)) (-4 *6 (-13 (-378) (-961 *5) (-337) (-1105) (-259))))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5)) (-4 *3 (-1141 *4)) (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *5 (-970)) (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259))) (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259))) (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))) (-3172 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5)) (-4 *3 (-1141 *4)) (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
-(-10 -7 (-15 -3172 ((-521) |#2|)) (-15 -3716 (|#3| |#2|)) (-15 -3716 (|#3| |#2| (-849))) (-15 -1479 ((-521) |#2|)) (-15 -2950 ((-521) |#2| (-707))) (-15 -2950 ((-521) |#2|)) (-15 -2549 (|#3| |#2| (-849))) (-15 -3558 (|#3| |#2|)) (-15 -1900 (|#3| |#2|)) (-15 -4151 (|#3| |#2|)) (-15 -2522 (|#3| |#2|)))
-((-2639 ((|#2| (-1165 |#1|)) 36)) (-2894 ((|#2| |#2| |#1|) 49)) (-2722 ((|#2| |#2| |#1|) 41)) (-1924 ((|#2| |#2|) 38)) (-2895 (((-108) |#2|) 30)) (-2238 (((-587 |#2|) (-849) (-392 |#2|)) 16)) (-4210 ((|#2| (-849) (-392 |#2|)) 21)) (-2884 (((-674 (-707)) (-392 |#2|)) 25)))
-(((-417 |#1| |#2|) (-10 -7 (-15 -2895 ((-108) |#2|)) (-15 -2639 (|#2| (-1165 |#1|))) (-15 -1924 (|#2| |#2|)) (-15 -2722 (|#2| |#2| |#1|)) (-15 -2894 (|#2| |#2| |#1|)) (-15 -2884 ((-674 (-707)) (-392 |#2|))) (-15 -4210 (|#2| (-849) (-392 |#2|))) (-15 -2238 ((-587 |#2|) (-849) (-392 |#2|)))) (-970) (-1141 |#1|)) (T -417))
-((-2238 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-392 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-970)) (-5 *2 (-587 *6)) (-5 *1 (-417 *5 *6)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-392 *2)) (-4 *2 (-1141 *5)) (-5 *1 (-417 *5 *2)) (-4 *5 (-970)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-392 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-970)) (-5 *2 (-674 (-707))) (-5 *1 (-417 *4 *5)))) (-2894 (*1 *2 *2 *3) (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))) (-2722 (*1 *2 *2 *3) (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))) (-1924 (*1 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-970)) (-4 *2 (-1141 *4)) (-5 *1 (-417 *4 *2)))) (-2895 (*1 *2 *3) (-12 (-4 *4 (-970)) (-5 *2 (-108)) (-5 *1 (-417 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -2895 ((-108) |#2|)) (-15 -2639 (|#2| (-1165 |#1|))) (-15 -1924 (|#2| |#2|)) (-15 -2722 (|#2| |#2| |#1|)) (-15 -2894 (|#2| |#2| |#1|)) (-15 -2884 ((-674 (-707)) (-392 |#2|))) (-15 -4210 (|#2| (-849) (-392 |#2|))) (-15 -2238 ((-587 |#2|) (-849) (-392 |#2|))))
-((-2693 (((-707)) 41)) (-2189 (((-707)) 23 (|has| |#1| (-378))) (((-707) (-707)) 22 (|has| |#1| (-378)))) (-3636 (((-521) |#1|) 18 (|has| |#1| (-378)))) (-1728 (((-521) |#1|) 20 (|has| |#1| (-378)))) (-4027 (((-707)) 40) (((-707) (-707)) 39)) (-1681 ((|#1| (-707) (-521)) 29)) (-1405 (((-1170)) 43)))
-(((-418 |#1|) (-10 -7 (-15 -1681 (|#1| (-707) (-521))) (-15 -4027 ((-707) (-707))) (-15 -4027 ((-707))) (-15 -2693 ((-707))) (-15 -1405 ((-1170))) (IF (|has| |#1| (-378)) (PROGN (-15 -1728 ((-521) |#1|)) (-15 -3636 ((-521) |#1|)) (-15 -2189 ((-707) (-707))) (-15 -2189 ((-707)))) |%noBranch|)) (-970)) (T -418))
-((-2189 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-3636 (*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))) (-1405 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-2693 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-4027 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-521)) (-5 *1 (-418 *2)) (-4 *2 (-970)))))
-(-10 -7 (-15 -1681 (|#1| (-707) (-521))) (-15 -4027 ((-707) (-707))) (-15 -4027 ((-707))) (-15 -2693 ((-707))) (-15 -1405 ((-1170))) (IF (|has| |#1| (-378)) (PROGN (-15 -1728 ((-521) |#1|)) (-15 -3636 ((-521) |#1|)) (-15 -2189 ((-707) (-707))) (-15 -2189 ((-707)))) |%noBranch|))
-((-3992 (((-587 (-521)) (-521)) 59)) (-2100 (((-108) (-154 (-521))) 63)) (-1974 (((-392 (-154 (-521))) (-154 (-521))) 58)))
-(((-419) (-10 -7 (-15 -1974 ((-392 (-154 (-521))) (-154 (-521)))) (-15 -3992 ((-587 (-521)) (-521))) (-15 -2100 ((-108) (-154 (-521)))))) (T -419))
-((-2100 (*1 *2 *3) (-12 (-5 *3 (-154 (-521))) (-5 *2 (-108)) (-5 *1 (-419)))) (-3992 (*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-419)) (-5 *3 (-521)))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-392 (-154 (-521)))) (-5 *1 (-419)) (-5 *3 (-154 (-521))))))
-(-10 -7 (-15 -1974 ((-392 (-154 (-521))) (-154 (-521)))) (-15 -3992 ((-587 (-521)) (-521))) (-15 -2100 ((-108) (-154 (-521)))))
-((-1442 ((|#4| |#4| (-587 |#4|)) 59)) (-2391 (((-587 |#4|) (-587 |#4|) (-1067) (-1067)) 17) (((-587 |#4|) (-587 |#4|) (-1067)) 16) (((-587 |#4|) (-587 |#4|)) 11)))
-(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1442 (|#4| |#4| (-587 |#4|))) (-15 -2391 ((-587 |#4|) (-587 |#4|))) (-15 -2391 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -2391 ((-587 |#4|) (-587 |#4|) (-1067) (-1067)))) (-282) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -420))
-((-2391 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-420 *4 *5 *6 *7)))) (-2391 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-420 *4 *5 *6 *7)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-282)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-420 *3 *4 *5 *6)))) (-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-420 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1442 (|#4| |#4| (-587 |#4|))) (-15 -2391 ((-587 |#4|) (-587 |#4|))) (-15 -2391 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -2391 ((-587 |#4|) (-587 |#4|) (-1067) (-1067))))
-((-1362 (((-587 (-587 |#4|)) (-587 |#4|) (-108)) 71) (((-587 (-587 |#4|)) (-587 |#4|)) 70) (((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-108)) 64) (((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|)) 65)) (-2853 (((-587 (-587 |#4|)) (-587 |#4|) (-108)) 41) (((-587 (-587 |#4|)) (-587 |#4|)) 61)))
-(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2853 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -2853 ((-587 (-587 |#4|)) (-587 |#4|) (-108))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-108))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|) (-108)))) (-13 (-282) (-135)) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -421))
-((-1362 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-1362 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1362 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-1362 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2853 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-587 (-587 *8))) (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))) (-2853 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
-(-10 -7 (-15 -2853 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -2853 ((-587 (-587 |#4|)) (-587 |#4|) (-108))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|) (-587 |#4|) (-108))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|))) (-15 -1362 ((-587 (-587 |#4|)) (-587 |#4|) (-108))))
-((-1303 (((-707) |#4|) 12)) (-3394 (((-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|))) |#4| (-707) (-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|)))) 31)) (-3949 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3842 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2637 ((|#4| |#4| (-587 |#4|)) 40)) (-3079 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|)) 69)) (-3173 (((-1170) |#4|) 42)) (-3117 (((-1170) (-587 |#4|)) 51)) (-3047 (((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521)) 48)) (-1315 (((-1170) (-521)) 77)) (-2190 (((-587 |#4|) (-587 |#4|)) 75)) (-2865 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|)) |#4| (-707)) 25)) (-1948 (((-521) |#4|) 76)) (-3771 ((|#4| |#4|) 29)) (-2551 (((-587 |#4|) (-587 |#4|) (-521) (-521)) 55)) (-3845 (((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521) (-521)) 87)) (-3363 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1615 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3569 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3272 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-4089 (((-108) |#2| |#2|) 56)) (-2630 (((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1585 (((-108) |#2| |#2| |#2| |#2|) 59)) (-3218 ((|#4| |#4| (-587 |#4|)) 70)))
-(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3218 (|#4| |#4| (-587 |#4|))) (-15 -2637 (|#4| |#4| (-587 |#4|))) (-15 -2551 ((-587 |#4|) (-587 |#4|) (-521) (-521))) (-15 -1615 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4089 ((-108) |#2| |#2|)) (-15 -1585 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2630 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3272 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3569 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3079 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|))) (-15 -3771 (|#4| |#4|)) (-15 -3394 ((-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|))) |#4| (-707) (-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|))))) (-15 -3842 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3949 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2190 ((-587 |#4|) (-587 |#4|))) (-15 -1948 ((-521) |#4|)) (-15 -3173 ((-1170) |#4|)) (-15 -3047 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521))) (-15 -3845 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521) (-521))) (-15 -3117 ((-1170) (-587 |#4|))) (-15 -1315 ((-1170) (-521))) (-15 -3363 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2865 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|)) |#4| (-707))) (-15 -1303 ((-707) |#4|))) (-425) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -422))
-((-1303 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-707)) (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-2865 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-707)) (|:| -3201 *4))) (-5 *5 (-707)) (-4 *4 (-877 *6 *7 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-422 *6 *7 *8 *4)))) (-3363 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-729)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-3117 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *7)))) (-3845 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-729)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-783)) (-5 *1 (-422 *5 *6 *7 *4)))) (-3047 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-729)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-783)) (-5 *1 (-422 *5 *6 *7 *4)))) (-3173 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-521)) (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-2190 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3949 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-729)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *6)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-729)) (-4 *2 (-877 *4 *5 *6)) (-5 *1 (-422 *4 *5 *6 *2)) (-4 *4 (-425)) (-4 *6 (-783)))) (-3394 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 *3)))) (-5 *4 (-707)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-422 *5 *6 *7 *3)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-422 *5 *6 *7 *3)))) (-3569 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-707)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-729)) (-4 *6 (-877 *4 *3 *5)) (-4 *4 (-425)) (-4 *5 (-783)) (-5 *1 (-422 *4 *3 *5 *6)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-729)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *6)))) (-2630 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-729)) (-4 *3 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *3)))) (-1585 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))) (-4089 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-729)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2551 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-521)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *7)))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *2)))) (-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3218 (|#4| |#4| (-587 |#4|))) (-15 -2637 (|#4| |#4| (-587 |#4|))) (-15 -2551 ((-587 |#4|) (-587 |#4|) (-521) (-521))) (-15 -1615 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4089 ((-108) |#2| |#2|)) (-15 -1585 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2630 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3272 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3569 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3079 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-587 |#4|))) (-15 -3771 (|#4| |#4|)) (-15 -3394 ((-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|))) |#4| (-707) (-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|))))) (-15 -3842 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3949 ((-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-587 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2190 ((-587 |#4|) (-587 |#4|))) (-15 -1948 ((-521) |#4|)) (-15 -3173 ((-1170) |#4|)) (-15 -3047 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521))) (-15 -3845 ((-521) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-521) (-521) (-521) (-521))) (-15 -3117 ((-1170) (-587 |#4|))) (-15 -1315 ((-1170) (-521))) (-15 -3363 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2865 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-707)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-707)) (|:| -3201 |#4|)) |#4| (-707))) (-15 -1303 ((-707) |#4|)))
-((-4120 ((|#4| |#4| (-587 |#4|)) 22 (|has| |#1| (-337)))) (-1453 (((-587 |#4|) (-587 |#4|) (-1067) (-1067)) 42) (((-587 |#4|) (-587 |#4|) (-1067)) 41) (((-587 |#4|) (-587 |#4|)) 36)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1453 ((-587 |#4|) (-587 |#4|))) (-15 -1453 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -1453 ((-587 |#4|) (-587 |#4|) (-1067) (-1067))) (IF (|has| |#1| (-337)) (-15 -4120 (|#4| |#4| (-587 |#4|))) |%noBranch|)) (-425) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -423))
-((-4120 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-337)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-423 *4 *5 *6 *2)))) (-1453 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1453 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-423 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1453 ((-587 |#4|) (-587 |#4|))) (-15 -1453 ((-587 |#4|) (-587 |#4|) (-1067))) (-15 -1453 ((-587 |#4|) (-587 |#4|) (-1067) (-1067))) (IF (|has| |#1| (-337)) (-15 -4120 (|#4| |#4| (-587 |#4|))) |%noBranch|))
-((-2254 (($ $ $) 14) (($ (-587 $)) 21)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 41)) (-2286 (($ $ $) NIL) (($ (-587 $)) 22)))
-(((-424 |#1|) (-10 -8 (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2254 (|#1| (-587 |#1|))) (-15 -2254 (|#1| |#1| |#1|)) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2286 (|#1| |#1| |#1|))) (-425)) (T -424))
-NIL
-(-10 -8 (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2254 (|#1| (-587 |#1|))) (-15 -2254 (|#1| |#1| |#1|)) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2286 (|#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2261 (((-3 $ "failed") $ $) 42)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-425) (-1196)) (T -425))
-((-2286 (*1 *1 *1 *1) (-4 *1 (-425))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425)))) (-2254 (*1 *1 *1 *1) (-4 *1 (-425))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425)))) (-2826 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-425)))))
-(-13 (-513) (-10 -8 (-15 -2286 ($ $ $)) (-15 -2286 ($ (-587 $))) (-15 -2254 ($ $ $)) (-15 -2254 ($ (-587 $))) (-15 -2826 ((-1080 $) (-1080 $) (-1080 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1493 (((-3 $ "failed")) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2772 (((-1165 (-627 (-381 (-880 |#1|)))) (-1165 $)) NIL) (((-1165 (-627 (-381 (-880 |#1|))))) NIL)) (-3765 (((-1165 $)) NIL)) (-2231 (($) NIL T CONST)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL)) (-2695 (((-3 $ "failed")) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-4090 (((-627 (-381 (-880 |#1|))) (-1165 $)) NIL) (((-627 (-381 (-880 |#1|)))) NIL)) (-3912 (((-381 (-880 |#1|)) $) NIL)) (-2872 (((-627 (-381 (-880 |#1|))) $ (-1165 $)) NIL) (((-627 (-381 (-880 |#1|))) $) NIL)) (-2604 (((-3 $ "failed") $) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-2262 (((-1080 (-880 (-381 (-880 |#1|))))) NIL (|has| (-381 (-880 |#1|)) (-337))) (((-1080 (-381 (-880 |#1|)))) 79 (|has| |#1| (-513)))) (-2588 (($ $ (-849)) NIL)) (-3973 (((-381 (-880 |#1|)) $) NIL)) (-1276 (((-1080 (-381 (-880 |#1|))) $) 77 (|has| (-381 (-880 |#1|)) (-513)))) (-2115 (((-381 (-880 |#1|)) (-1165 $)) NIL) (((-381 (-880 |#1|))) NIL)) (-1449 (((-1080 (-381 (-880 |#1|))) $) NIL)) (-3953 (((-108)) NIL)) (-3190 (($ (-1165 (-381 (-880 |#1|))) (-1165 $)) 97) (($ (-1165 (-381 (-880 |#1|)))) NIL)) (-2783 (((-3 $ "failed") $) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-3167 (((-849)) NIL)) (-2782 (((-108)) NIL)) (-1940 (($ $ (-849)) NIL)) (-2325 (((-108)) NIL)) (-2071 (((-108)) NIL)) (-3318 (((-108)) NIL)) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL)) (-2712 (((-3 $ "failed")) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-3370 (((-627 (-381 (-880 |#1|))) (-1165 $)) NIL) (((-627 (-381 (-880 |#1|)))) NIL)) (-3748 (((-381 (-880 |#1|)) $) NIL)) (-4138 (((-627 (-381 (-880 |#1|))) $ (-1165 $)) NIL) (((-627 (-381 (-880 |#1|))) $) NIL)) (-1389 (((-3 $ "failed") $) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-3726 (((-1080 (-880 (-381 (-880 |#1|))))) NIL (|has| (-381 (-880 |#1|)) (-337))) (((-1080 (-381 (-880 |#1|)))) 78 (|has| |#1| (-513)))) (-1209 (($ $ (-849)) NIL)) (-3440 (((-381 (-880 |#1|)) $) NIL)) (-3609 (((-1080 (-381 (-880 |#1|))) $) 72 (|has| (-381 (-880 |#1|)) (-513)))) (-2001 (((-381 (-880 |#1|)) (-1165 $)) NIL) (((-381 (-880 |#1|))) NIL)) (-2486 (((-1080 (-381 (-880 |#1|))) $) NIL)) (-1743 (((-108)) NIL)) (-4024 (((-1067) $) NIL)) (-1232 (((-108)) NIL)) (-3037 (((-108)) NIL)) (-2901 (((-108)) NIL)) (-4146 (((-1031) $) NIL)) (-2252 (((-381 (-880 |#1|)) $ $) 66 (|has| |#1| (-513)))) (-4056 (((-381 (-880 |#1|)) $) 65 (|has| |#1| (-513)))) (-1324 (((-381 (-880 |#1|)) $) 89 (|has| |#1| (-513)))) (-3477 (((-1080 (-381 (-880 |#1|))) $) 83 (|has| |#1| (-513)))) (-3504 (((-381 (-880 |#1|))) 67 (|has| |#1| (-513)))) (-3577 (((-381 (-880 |#1|)) $ $) 54 (|has| |#1| (-513)))) (-2226 (((-381 (-880 |#1|)) $) 53 (|has| |#1| (-513)))) (-1756 (((-381 (-880 |#1|)) $) 88 (|has| |#1| (-513)))) (-1417 (((-1080 (-381 (-880 |#1|))) $) 82 (|has| |#1| (-513)))) (-1419 (((-381 (-880 |#1|))) 64 (|has| |#1| (-513)))) (-1793 (($) 95) (($ (-1084)) 101) (($ (-1165 (-1084))) 100) (($ (-1165 $)) 90) (($ (-1084) (-1165 $)) 99) (($ (-1165 (-1084)) (-1165 $)) 98)) (-2880 (((-108)) NIL)) (-2550 (((-381 (-880 |#1|)) $ (-521)) NIL)) (-1816 (((-1165 (-381 (-880 |#1|))) $ (-1165 $)) 92) (((-627 (-381 (-880 |#1|))) (-1165 $) (-1165 $)) NIL) (((-1165 (-381 (-880 |#1|))) $) 37) (((-627 (-381 (-880 |#1|))) (-1165 $)) NIL)) (-1438 (((-1165 (-381 (-880 |#1|))) $) NIL) (($ (-1165 (-381 (-880 |#1|)))) 34)) (-1894 (((-587 (-880 (-381 (-880 |#1|)))) (-1165 $)) NIL) (((-587 (-880 (-381 (-880 |#1|))))) NIL) (((-587 (-880 |#1|)) (-1165 $)) 93 (|has| |#1| (-513))) (((-587 (-880 |#1|))) 94 (|has| |#1| (-513)))) (-2062 (($ $ $) NIL)) (-2628 (((-108)) NIL)) (-2223 (((-791) $) NIL) (($ (-1165 (-381 (-880 |#1|)))) NIL)) (-1245 (((-1165 $)) 56)) (-2881 (((-587 (-1165 (-381 (-880 |#1|))))) NIL (|has| (-381 (-880 |#1|)) (-513)))) (-2268 (($ $ $ $) NIL)) (-3650 (((-108)) NIL)) (-1644 (($ (-627 (-381 (-880 |#1|))) $) NIL)) (-3968 (($ $ $) NIL)) (-3972 (((-108)) NIL)) (-3502 (((-108)) NIL)) (-3199 (((-108)) NIL)) (-3562 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) 91)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 52) (($ $ (-381 (-880 |#1|))) NIL) (($ (-381 (-880 |#1|)) $) NIL) (($ (-1051 |#2| (-381 (-880 |#1|))) $) NIL)))
-(((-426 |#1| |#2| |#3| |#4|) (-13 (-391 (-381 (-880 |#1|))) (-589 (-1051 |#2| (-381 (-880 |#1|)))) (-10 -8 (-15 -2223 ($ (-1165 (-381 (-880 |#1|))))) (-15 -2256 ((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed"))) (-15 -2186 ((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed"))) (-15 -1793 ($)) (-15 -1793 ($ (-1084))) (-15 -1793 ($ (-1165 (-1084)))) (-15 -1793 ($ (-1165 $))) (-15 -1793 ($ (-1084) (-1165 $))) (-15 -1793 ($ (-1165 (-1084)) (-1165 $))) (IF (|has| |#1| (-513)) (PROGN (-15 -3726 ((-1080 (-381 (-880 |#1|))))) (-15 -1417 ((-1080 (-381 (-880 |#1|))) $)) (-15 -2226 ((-381 (-880 |#1|)) $)) (-15 -1756 ((-381 (-880 |#1|)) $)) (-15 -2262 ((-1080 (-381 (-880 |#1|))))) (-15 -3477 ((-1080 (-381 (-880 |#1|))) $)) (-15 -4056 ((-381 (-880 |#1|)) $)) (-15 -1324 ((-381 (-880 |#1|)) $)) (-15 -3577 ((-381 (-880 |#1|)) $ $)) (-15 -1419 ((-381 (-880 |#1|)))) (-15 -2252 ((-381 (-880 |#1|)) $ $)) (-15 -3504 ((-381 (-880 |#1|)))) (-15 -1894 ((-587 (-880 |#1|)) (-1165 $))) (-15 -1894 ((-587 (-880 |#1|))))) |%noBranch|))) (-157) (-849) (-587 (-1084)) (-1165 (-627 |#1|))) (T -426))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-880 *3)))) (-4 *3 (-157)) (-14 *6 (-1165 (-627 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))))) (-2256 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-426 *3 *4 *5 *6)) (|:| -1245 (-587 (-426 *3 *4 *5 *6))))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2186 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-426 *3 *4 *5 *6)) (|:| -1245 (-587 (-426 *3 *4 *5 *6))))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1793 (*1 *1) (-12 (-5 *1 (-426 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-849)) (-14 *4 (-587 (-1084))) (-14 *5 (-1165 (-627 *2))))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 *2)) (-14 *6 (-1165 (-627 *3))))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1165 (-1084))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1165 (-426 *3 *4 *5 *6))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849)) (-14 *6 (-587 *2)) (-14 *7 (-1165 (-627 *4))))) (-1793 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-1084))) (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849)) (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4))))) (-3726 (*1 *2) (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2262 (*1 *2) (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3577 (*1 *2 *1 *1) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1419 (*1 *2) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-2252 (*1 *2 *1 *1) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-3504 (*1 *2) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))) (-1894 (*1 *2 *3) (-12 (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *2 (-587 (-880 *4))) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-513)) (-4 *4 (-157)) (-14 *5 (-849)) (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4))))) (-1894 (*1 *2) (-12 (-5 *2 (-587 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(-13 (-391 (-381 (-880 |#1|))) (-589 (-1051 |#2| (-381 (-880 |#1|)))) (-10 -8 (-15 -2223 ($ (-1165 (-381 (-880 |#1|))))) (-15 -2256 ((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed"))) (-15 -2186 ((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed"))) (-15 -1793 ($)) (-15 -1793 ($ (-1084))) (-15 -1793 ($ (-1165 (-1084)))) (-15 -1793 ($ (-1165 $))) (-15 -1793 ($ (-1084) (-1165 $))) (-15 -1793 ($ (-1165 (-1084)) (-1165 $))) (IF (|has| |#1| (-513)) (PROGN (-15 -3726 ((-1080 (-381 (-880 |#1|))))) (-15 -1417 ((-1080 (-381 (-880 |#1|))) $)) (-15 -2226 ((-381 (-880 |#1|)) $)) (-15 -1756 ((-381 (-880 |#1|)) $)) (-15 -2262 ((-1080 (-381 (-880 |#1|))))) (-15 -3477 ((-1080 (-381 (-880 |#1|))) $)) (-15 -4056 ((-381 (-880 |#1|)) $)) (-15 -1324 ((-381 (-880 |#1|)) $)) (-15 -3577 ((-381 (-880 |#1|)) $ $)) (-15 -1419 ((-381 (-880 |#1|)))) (-15 -2252 ((-381 (-880 |#1|)) $ $)) (-15 -3504 ((-381 (-880 |#1|)))) (-15 -1894 ((-587 (-880 |#1|)) (-1165 $))) (-15 -1894 ((-587 (-880 |#1|))))) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 13)) (-4085 (((-587 (-793 |#1|)) $) 74)) (-1280 (((-1080 $) $ (-793 |#1|)) 46) (((-1080 |#2|) $) 116)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-1954 (($ $) NIL (|has| |#2| (-513)))) (-3795 (((-108) $) NIL (|has| |#2| (-513)))) (-2197 (((-707) $) 21) (((-707) $ (-587 (-793 |#1|))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2694 (($ $) NIL (|has| |#2| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#2| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 44) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1496 ((|#2| $) 42) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-793 |#1|) $) NIL)) (-3052 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-3097 (($ $ (-587 (-521))) 79)) (-3157 (($ $) 68)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#2| (-837)))) (-1709 (($ $ |#2| |#3| $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) 58)) (-4068 (($ (-1080 |#2|) (-793 |#1|)) 121) (($ (-1080 $) (-793 |#1|)) 52)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) 59)) (-4044 (($ |#2| |#3|) 28) (($ $ (-793 |#1|) (-707)) 30) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-793 |#1|)) NIL)) (-2401 ((|#3| $) NIL) (((-707) $ (-793 |#1|)) 50) (((-587 (-707)) $ (-587 (-793 |#1|))) 57)) (-2816 (($ $ $) NIL (|has| |#2| (-783)))) (-2459 (($ $ $) NIL (|has| |#2| (-783)))) (-2310 (($ (-1 |#3| |#3|) $) NIL)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2913 (((-3 (-793 |#1|) "failed") $) 39)) (-3130 (($ $) NIL)) (-3140 ((|#2| $) 41)) (-2254 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2246 (-707))) "failed") $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) 40)) (-3120 ((|#2| $) 114)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) 126 (|has| |#2| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#2| (-837)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-793 |#1|) |#2|) 86) (($ $ (-587 (-793 |#1|)) (-587 |#2|)) 89) (($ $ (-793 |#1|) $) 84) (($ $ (-587 (-793 |#1|)) (-587 $)) 105)) (-3011 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2193 (($ $ (-793 |#1|)) 53) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2098 ((|#3| $) 67) (((-707) $ (-793 |#1|)) 37) (((-587 (-707)) $ (-587 (-793 |#1|))) 56)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-793 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-1391 ((|#2| $) 123 (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2223 (((-791) $) 142) (($ (-521)) NIL) (($ |#2|) 85) (($ (-793 |#1|)) 31) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ |#3|) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 16 T CONST)) (-3572 (($) 25 T CONST)) (-2244 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1648 (($ $ |#2|) 64 (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 110)) (** (($ $ (-849)) NIL) (($ $ (-707)) 108)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 29) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-427 |#1| |#2| |#3|) (-13 (-877 |#2| |#3| (-793 |#1|)) (-10 -8 (-15 -3097 ($ $ (-587 (-521)))))) (-587 (-1084)) (-970) (-215 (-3478 |#1|) (-707))) (T -427))
-((-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-14 *3 (-587 (-1084))) (-5 *1 (-427 *3 *4 *5)) (-4 *4 (-970)) (-4 *5 (-215 (-3478 *3) (-707))))))
-(-13 (-877 |#2| |#3| (-793 |#1|)) (-10 -8 (-15 -3097 ($ $ (-587 (-521))))))
-((-2930 (((-108) |#1| (-587 |#2|)) 66)) (-3663 (((-3 (-1165 (-587 |#2|)) "failed") (-707) |#1| (-587 |#2|)) 75)) (-3061 (((-3 (-587 |#2|) "failed") |#2| |#1| (-1165 (-587 |#2|))) 77)) (-1664 ((|#2| |#2| |#1|) 28)) (-1284 (((-707) |#2| (-587 |#2|)) 20)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -1664 (|#2| |#2| |#1|)) (-15 -1284 ((-707) |#2| (-587 |#2|))) (-15 -3663 ((-3 (-1165 (-587 |#2|)) "failed") (-707) |#1| (-587 |#2|))) (-15 -3061 ((-3 (-587 |#2|) "failed") |#2| |#1| (-1165 (-587 |#2|)))) (-15 -2930 ((-108) |#1| (-587 |#2|)))) (-282) (-1141 |#1|)) (T -428))
-((-2930 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *5)) (-4 *5 (-1141 *3)) (-4 *3 (-282)) (-5 *2 (-108)) (-5 *1 (-428 *3 *5)))) (-3061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1165 (-587 *3))) (-4 *4 (-282)) (-5 *2 (-587 *3)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1141 *4)))) (-3663 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-707)) (-4 *4 (-282)) (-4 *6 (-1141 *4)) (-5 *2 (-1165 (-587 *6))) (-5 *1 (-428 *4 *6)) (-5 *5 (-587 *6)))) (-1284 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-282)) (-5 *2 (-707)) (-5 *1 (-428 *5 *3)))) (-1664 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1141 *3)))))
-(-10 -7 (-15 -1664 (|#2| |#2| |#1|)) (-15 -1284 ((-707) |#2| (-587 |#2|))) (-15 -3663 ((-3 (-1165 (-587 |#2|)) "failed") (-707) |#1| (-587 |#2|))) (-15 -3061 ((-3 (-587 |#2|) "failed") |#2| |#1| (-1165 (-587 |#2|)))) (-15 -2930 ((-108) |#1| (-587 |#2|))))
-((-1974 (((-392 |#5|) |#5|) 24)))
-(((-429 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1974 ((-392 |#5|) |#5|))) (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084))))) (-729) (-513) (-513) (-877 |#4| |#2| |#1|)) (T -429))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-4 *5 (-729)) (-4 *7 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-429 *4 *5 *6 *7 *3)) (-4 *6 (-513)) (-4 *3 (-877 *7 *5 *4)))))
-(-10 -7 (-15 -1974 ((-392 |#5|) |#5|)))
-((-3656 ((|#3|) 36)) (-2826 (((-1080 |#4|) (-1080 |#4|) (-1080 |#4|)) 32)))
-(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2826 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -3656 (|#3|))) (-729) (-783) (-837) (-877 |#3| |#1| |#2|)) (T -430))
-((-3656 (*1 *2) (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-837)) (-5 *1 (-430 *3 *4 *2 *5)) (-4 *5 (-877 *2 *3 *4)))) (-2826 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-837)) (-5 *1 (-430 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2826 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -3656 (|#3|)))
-((-1974 (((-392 (-1080 |#1|)) (-1080 |#1|)) 41)))
-(((-431 |#1|) (-10 -7 (-15 -1974 ((-392 (-1080 |#1|)) (-1080 |#1|)))) (-282)) (T -431))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-282)) (-5 *2 (-392 (-1080 *4))) (-5 *1 (-431 *4)) (-5 *3 (-1080 *4)))))
-(-10 -7 (-15 -1974 ((-392 (-1080 |#1|)) (-1080 |#1|))))
-((-3060 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-707))) 42) (((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-707))) 41) (((-51) |#2| (-1084) (-269 |#2|)) 35) (((-51) (-1 |#2| (-521)) (-269 |#2|)) 27)) (-2776 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 80) (((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 79) (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521))) 78) (((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521))) 77) (((-51) |#2| (-1084) (-269 |#2|)) 72) (((-51) (-1 |#2| (-521)) (-269 |#2|)) 71)) (-3080 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 66) (((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))) 64)) (-3070 (((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521))) 48) (((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521))) 47)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -3060 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -3060 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -3060 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-707)))) (-15 -3060 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-707)))) (-15 -3070 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -3070 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -3080 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -3080 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2776 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -2776 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -2776 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -2776 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -2776 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2776 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521))))) (-13 (-513) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -432))
-((-2776 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521)))) (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8))) (-4 *8 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *8 *3)))) (-2776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8)) (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521))) (-4 *8 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *8)))) (-2776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *3)))) (-2776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521))) (-4 *7 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *7)))) (-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *3)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6)) (-4 *6 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *5 *6)))) (-3080 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521)))) (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8))) (-4 *8 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *8 *3)))) (-3080 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8)) (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521))) (-4 *8 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *8)))) (-3070 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *3)))) (-3070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521))) (-4 *7 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *7)))) (-3060 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-707))) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *7 *3)))) (-3060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-707))) (-4 *7 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *7)))) (-3060 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *6 *3)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6)) (-4 *6 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-51)) (-5 *1 (-432 *5 *6)))))
-(-10 -7 (-15 -3060 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -3060 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -3060 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-707)))) (-15 -3060 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-707)))) (-15 -3070 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -3070 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -3080 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -3080 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2776 ((-51) (-1 |#2| (-521)) (-269 |#2|))) (-15 -2776 ((-51) |#2| (-1084) (-269 |#2|))) (-15 -2776 ((-51) (-1 |#2| (-521)) (-269 |#2|) (-1132 (-521)))) (-15 -2776 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-521)))) (-15 -2776 ((-51) (-1 |#2| (-381 (-521))) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))) (-15 -2776 ((-51) |#2| (-1084) (-269 |#2|) (-1132 (-381 (-521))) (-381 (-521)))))
-((-1664 ((|#2| |#2| |#1|) 15)) (-1606 (((-587 |#2|) |#2| (-587 |#2|) |#1| (-849)) 69)) (-1649 (((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-849)) 60)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -1649 ((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-849))) (-15 -1606 ((-587 |#2|) |#2| (-587 |#2|) |#1| (-849))) (-15 -1664 (|#2| |#2| |#1|))) (-282) (-1141 |#1|)) (T -433))
-((-1664 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-5 *1 (-433 *3 *2)) (-4 *2 (-1141 *3)))) (-1606 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-587 *3)) (-5 *5 (-849)) (-4 *3 (-1141 *4)) (-4 *4 (-282)) (-5 *1 (-433 *4 *3)))) (-1649 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-849)) (-4 *5 (-282)) (-4 *3 (-1141 *5)) (-5 *2 (-2 (|:| |plist| (-587 *3)) (|:| |modulo| *5))) (-5 *1 (-433 *5 *3)) (-5 *4 (-587 *3)))))
-(-10 -7 (-15 -1649 ((-2 (|:| |plist| (-587 |#2|)) (|:| |modulo| |#1|)) |#2| (-587 |#2|) |#1| (-849))) (-15 -1606 ((-587 |#2|) |#2| (-587 |#2|) |#1| (-849))) (-15 -1664 (|#2| |#2| |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 28)) (-2965 (($ |#3|) 25)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3157 (($ $) 32)) (-2633 (($ |#2| |#4| $) 33)) (-4044 (($ |#2| (-650 |#3| |#4| |#5|)) 24)) (-3130 (((-650 |#3| |#4| |#5|) $) 15)) (-1986 ((|#3| $) 19)) (-3996 ((|#4| $) 17)) (-3140 ((|#2| $) 29)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3846 (($ |#2| |#3| |#4|) 26)) (-3562 (($) 36 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 34)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3140 (|#2| $)) (-15 -3130 ((-650 |#3| |#4| |#5|) $)) (-15 -3996 (|#4| $)) (-15 -1986 (|#3| $)) (-15 -3157 ($ $)) (-15 -4044 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -2965 ($ |#3|)) (-15 -3846 ($ |#2| |#3| |#4|)) (-15 -2633 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-587 (-1084)) (-157) (-783) (-215 (-3478 |#1|) (-707)) (-1 (-108) (-2 (|:| -2723 |#3|) (|:| -2246 |#4|)) (-2 (|:| -2723 |#3|) (|:| -2246 |#4|))) (-877 |#2| |#4| (-793 |#1|))) (T -434))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *6 (-215 (-3478 *3) (-707))) (-14 *7 (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *6)) (-2 (|:| -2723 *5) (|:| -2246 *6)))) (-5 *1 (-434 *3 *4 *5 *6 *7 *2)) (-4 *5 (-783)) (-4 *2 (-877 *4 *6 (-793 *3))))) (-3140 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *5 (-215 (-3478 *3) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2723 *4) (|:| -2246 *5)) (-2 (|:| -2723 *4) (|:| -2246 *5)))) (-4 *2 (-157)) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *4 (-783)) (-4 *7 (-877 *2 *5 (-793 *3))))) (-3130 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *6 (-215 (-3478 *3) (-707))) (-14 *7 (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *6)) (-2 (|:| -2723 *5) (|:| -2246 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-434 *3 *4 *5 *6 *7 *8)) (-4 *5 (-783)) (-4 *8 (-877 *4 *6 (-793 *3))))) (-3996 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-14 *6 (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *2)) (-2 (|:| -2723 *5) (|:| -2246 *2)))) (-4 *2 (-215 (-3478 *3) (-707))) (-5 *1 (-434 *3 *4 *5 *2 *6 *7)) (-4 *5 (-783)) (-4 *7 (-877 *4 *2 (-793 *3))))) (-1986 (*1 *2 *1) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *5 (-215 (-3478 *3) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *5)) (-2 (|:| -2723 *2) (|:| -2246 *5)))) (-4 *2 (-783)) (-5 *1 (-434 *3 *4 *2 *5 *6 *7)) (-4 *7 (-877 *4 *5 (-793 *3))))) (-3157 (*1 *1 *1) (-12 (-14 *2 (-587 (-1084))) (-4 *3 (-157)) (-4 *5 (-215 (-3478 *2) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2723 *4) (|:| -2246 *5)) (-2 (|:| -2723 *4) (|:| -2246 *5)))) (-5 *1 (-434 *2 *3 *4 *5 *6 *7)) (-4 *4 (-783)) (-4 *7 (-877 *3 *5 (-793 *2))))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-783)) (-4 *6 (-215 (-3478 *4) (-707))) (-14 *7 (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *6)) (-2 (|:| -2723 *5) (|:| -2246 *6)))) (-14 *4 (-587 (-1084))) (-4 *2 (-157)) (-5 *1 (-434 *4 *2 *5 *6 *7 *8)) (-4 *8 (-877 *2 *6 (-793 *4))))) (-2965 (*1 *1 *2) (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157)) (-4 *5 (-215 (-3478 *3) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *5)) (-2 (|:| -2723 *2) (|:| -2246 *5)))) (-5 *1 (-434 *3 *4 *2 *5 *6 *7)) (-4 *2 (-783)) (-4 *7 (-877 *4 *5 (-793 *3))))) (-3846 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-587 (-1084))) (-4 *2 (-157)) (-4 *4 (-215 (-3478 *5) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2723 *3) (|:| -2246 *4)) (-2 (|:| -2723 *3) (|:| -2246 *4)))) (-5 *1 (-434 *5 *2 *3 *4 *6 *7)) (-4 *3 (-783)) (-4 *7 (-877 *2 *4 (-793 *5))))) (-2633 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-587 (-1084))) (-4 *2 (-157)) (-4 *3 (-215 (-3478 *4) (-707))) (-14 *6 (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *3)) (-2 (|:| -2723 *5) (|:| -2246 *3)))) (-5 *1 (-434 *4 *2 *5 *3 *6 *7)) (-4 *5 (-783)) (-4 *7 (-877 *2 *3 (-793 *4))))))
-(-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3140 (|#2| $)) (-15 -3130 ((-650 |#3| |#4| |#5|) $)) (-15 -3996 (|#4| $)) (-15 -1986 (|#3| $)) (-15 -3157 ($ $)) (-15 -4044 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -2965 ($ |#3|)) (-15 -3846 ($ |#2| |#3| |#4|)) (-15 -2633 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3191 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
-(((-435 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3191 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-729) (-783) (-513) (-877 |#3| |#1| |#2|) (-13 (-961 (-381 (-521))) (-337) (-10 -8 (-15 -2223 ($ |#4|)) (-15 -2807 (|#4| $)) (-15 -2818 (|#4| $))))) (T -435))
-((-3191 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-783)) (-4 *5 (-729)) (-4 *6 (-513)) (-4 *7 (-877 *6 *5 *3)) (-5 *1 (-435 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-961 (-381 (-521))) (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))))
-(-10 -7 (-15 -3191 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1422 (((-108) $ $) NIL)) (-4085 (((-587 |#3|) $) 41)) (-2856 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-513)))) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1658 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-1616 (((-108) $) NIL (|has| |#1| (-513)))) (-3514 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3515 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2512 (((-108) $) NIL (|has| |#1| (-513)))) (-2122 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 47)) (-1496 (($ (-587 |#4|)) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1429 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233)))) (-3831 (((-587 |#4|) $) 18 (|has| $ (-6 -4233)))) (-3131 ((|#3| $) 45)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#4|) $) 14 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 21)) (-2963 (((-587 |#3|) $) NIL)) (-4065 (((-108) |#3| $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-4146 (((-1031) $) NIL)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1936 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 39)) (-2280 (($) 17)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) 16)) (-1438 (((-497) $) NIL (|has| |#4| (-562 (-497)))) (($ (-587 |#4|)) 49)) (-2234 (($ (-587 |#4|)) 13)) (-3680 (($ $ |#3|) NIL)) (-2600 (($ $ |#3|) NIL)) (-2222 (($ $ |#3|) NIL)) (-2223 (((-791) $) 38) (((-587 |#4|) $) 48)) (-2006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 30)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-436 |#1| |#2| |#3| |#4|) (-13 (-902 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1438 ($ (-587 |#4|))) (-6 -4233) (-6 -4234))) (-970) (-729) (-783) (-984 |#1| |#2| |#3|)) (T -436))
-((-1438 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-436 *3 *4 *5 *6)))))
-(-13 (-902 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1438 ($ (-587 |#4|))) (-6 -4233) (-6 -4234)))
-((-3562 (($) 11)) (-3572 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-437 |#1| |#2| |#3|) (-10 -8 (-15 -3572 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3562 (|#1|))) (-438 |#2| |#3|) (-157) (-23)) (T -437))
-NIL
-(-10 -8 (-15 -3572 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3562 (|#1|)))
-((-1422 (((-108) $ $) 7)) (-1296 (((-3 |#1| "failed") $) 26)) (-1496 ((|#1| $) 25)) (-3854 (($ $ $) 23)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2098 ((|#2| $) 19)) (-2223 (((-791) $) 11) (($ |#1|) 27)) (-3562 (($) 18 T CONST)) (-3572 (($) 24 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 15) (($ $ $) 13)) (-1628 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-438 |#1| |#2|) (-1196) (-157) (-23)) (T -438))
-((-3572 (*1 *1) (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-3854 (*1 *1 *1 *1) (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
-(-13 (-443 |t#1| |t#2|) (-961 |t#1|) (-10 -8 (-15 (-3572) ($) -2682) (-15 -3854 ($ $ $))))
-(((-97) . T) ((-561 (-791)) . T) ((-443 |#1| |#2|) . T) ((-961 |#1|) . T) ((-1013) . T))
-((-2328 (((-1165 (-1165 (-521))) (-1165 (-1165 (-521))) (-849)) 18)) (-2321 (((-1165 (-1165 (-521))) (-849)) 16)))
-(((-439) (-10 -7 (-15 -2328 ((-1165 (-1165 (-521))) (-1165 (-1165 (-521))) (-849))) (-15 -2321 ((-1165 (-1165 (-521))) (-849))))) (T -439))
-((-2321 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1165 (-1165 (-521)))) (-5 *1 (-439)))) (-2328 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-1165 (-521)))) (-5 *3 (-849)) (-5 *1 (-439)))))
-(-10 -7 (-15 -2328 ((-1165 (-1165 (-521))) (-1165 (-1165 (-521))) (-849))) (-15 -2321 ((-1165 (-1165 (-521))) (-849))))
-((-3212 (((-521) (-521)) 30) (((-521)) 22)) (-3902 (((-521) (-521)) 26) (((-521)) 18)) (-1456 (((-521) (-521)) 28) (((-521)) 20)) (-2738 (((-108) (-108)) 12) (((-108)) 10)) (-3279 (((-108) (-108)) 11) (((-108)) 9)) (-4144 (((-108) (-108)) 24) (((-108)) 15)))
-(((-440) (-10 -7 (-15 -3279 ((-108))) (-15 -2738 ((-108))) (-15 -3279 ((-108) (-108))) (-15 -2738 ((-108) (-108))) (-15 -4144 ((-108))) (-15 -1456 ((-521))) (-15 -3902 ((-521))) (-15 -3212 ((-521))) (-15 -4144 ((-108) (-108))) (-15 -1456 ((-521) (-521))) (-15 -3902 ((-521) (-521))) (-15 -3212 ((-521) (-521))))) (T -440))
-((-3212 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3212 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-3902 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-1456 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440)))) (-4144 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-2738 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-2738 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))) (-3279 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
-(-10 -7 (-15 -3279 ((-108))) (-15 -2738 ((-108))) (-15 -3279 ((-108) (-108))) (-15 -2738 ((-108) (-108))) (-15 -4144 ((-108))) (-15 -1456 ((-521))) (-15 -3902 ((-521))) (-15 -3212 ((-521))) (-15 -4144 ((-108) (-108))) (-15 -1456 ((-521) (-521))) (-15 -3902 ((-521) (-521))) (-15 -3212 ((-521) (-521))))
-((-1422 (((-108) $ $) NIL)) (-2021 (((-587 (-353)) $) 27) (((-587 (-353)) $ (-587 (-353))) 91)) (-2904 (((-587 (-1008 (-353))) $) 14) (((-587 (-1008 (-353))) $ (-587 (-1008 (-353)))) 88)) (-1801 (((-587 (-587 (-871 (-202)))) (-587 (-587 (-871 (-202)))) (-587 (-802))) 42)) (-3336 (((-587 (-587 (-871 (-202)))) $) 84)) (-2741 (((-1170) $ (-871 (-202)) (-802)) 104)) (-1607 (($ $) 83) (($ (-587 (-587 (-871 (-202))))) 94) (($ (-587 (-587 (-871 (-202)))) (-587 (-802)) (-587 (-802)) (-587 (-849))) 93) (($ (-587 (-587 (-871 (-202)))) (-587 (-802)) (-587 (-802)) (-587 (-849)) (-587 (-239))) 95)) (-4024 (((-1067) $) NIL)) (-2535 (((-521) $) 66)) (-4146 (((-1031) $) NIL)) (-1344 (($) 92)) (-2870 (((-587 (-202)) (-587 (-587 (-871 (-202))))) 52)) (-3645 (((-1170) $ (-587 (-871 (-202))) (-802) (-802) (-849)) 98) (((-1170) $ (-871 (-202))) 100) (((-1170) $ (-871 (-202)) (-802) (-802) (-849)) 99)) (-2223 (((-791) $) 110) (($ (-587 (-587 (-871 (-202))))) 105)) (-1967 (((-1170) $ (-871 (-202))) 103)) (-1549 (((-108) $ $) NIL)))
-(((-441) (-13 (-1013) (-10 -8 (-15 -1344 ($)) (-15 -1607 ($ $)) (-15 -1607 ($ (-587 (-587 (-871 (-202)))))) (-15 -1607 ($ (-587 (-587 (-871 (-202)))) (-587 (-802)) (-587 (-802)) (-587 (-849)))) (-15 -1607 ($ (-587 (-587 (-871 (-202)))) (-587 (-802)) (-587 (-802)) (-587 (-849)) (-587 (-239)))) (-15 -3336 ((-587 (-587 (-871 (-202)))) $)) (-15 -2535 ((-521) $)) (-15 -2904 ((-587 (-1008 (-353))) $)) (-15 -2904 ((-587 (-1008 (-353))) $ (-587 (-1008 (-353))))) (-15 -2021 ((-587 (-353)) $)) (-15 -2021 ((-587 (-353)) $ (-587 (-353)))) (-15 -3645 ((-1170) $ (-587 (-871 (-202))) (-802) (-802) (-849))) (-15 -3645 ((-1170) $ (-871 (-202)))) (-15 -3645 ((-1170) $ (-871 (-202)) (-802) (-802) (-849))) (-15 -1967 ((-1170) $ (-871 (-202)))) (-15 -2741 ((-1170) $ (-871 (-202)) (-802))) (-15 -2223 ($ (-587 (-587 (-871 (-202)))))) (-15 -2223 ((-791) $)) (-15 -1801 ((-587 (-587 (-871 (-202)))) (-587 (-587 (-871 (-202)))) (-587 (-802)))) (-15 -2870 ((-587 (-202)) (-587 (-587 (-871 (-202))))))))) (T -441))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-441)))) (-1344 (*1 *1) (-5 *1 (-441))) (-1607 (*1 *1 *1) (-5 *1 (-441))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-441)))) (-1607 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *3 (-587 (-802))) (-5 *4 (-587 (-849))) (-5 *1 (-441)))) (-1607 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *3 (-587 (-802))) (-5 *4 (-587 (-849))) (-5 *5 (-587 (-239))) (-5 *1 (-441)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-441)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-441)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441)))) (-2904 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441)))) (-2021 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441)))) (-3645 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-587 (-871 (-202)))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *2 (-1170)) (-5 *1 (-441)))) (-3645 (*1 *2 *1 *3) (-12 (-5 *3 (-871 (-202))) (-5 *2 (-1170)) (-5 *1 (-441)))) (-3645 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-871 (-202))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *2 (-1170)) (-5 *1 (-441)))) (-1967 (*1 *2 *1 *3) (-12 (-5 *3 (-871 (-202))) (-5 *2 (-1170)) (-5 *1 (-441)))) (-2741 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-871 (-202))) (-5 *4 (-802)) (-5 *2 (-1170)) (-5 *1 (-441)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-441)))) (-1801 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *3 (-587 (-802))) (-5 *1 (-441)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *2 (-587 (-202))) (-5 *1 (-441)))))
-(-13 (-1013) (-10 -8 (-15 -1344 ($)) (-15 -1607 ($ $)) (-15 -1607 ($ (-587 (-587 (-871 (-202)))))) (-15 -1607 ($ (-587 (-587 (-871 (-202)))) (-587 (-802)) (-587 (-802)) (-587 (-849)))) (-15 -1607 ($ (-587 (-587 (-871 (-202)))) (-587 (-802)) (-587 (-802)) (-587 (-849)) (-587 (-239)))) (-15 -3336 ((-587 (-587 (-871 (-202)))) $)) (-15 -2535 ((-521) $)) (-15 -2904 ((-587 (-1008 (-353))) $)) (-15 -2904 ((-587 (-1008 (-353))) $ (-587 (-1008 (-353))))) (-15 -2021 ((-587 (-353)) $)) (-15 -2021 ((-587 (-353)) $ (-587 (-353)))) (-15 -3645 ((-1170) $ (-587 (-871 (-202))) (-802) (-802) (-849))) (-15 -3645 ((-1170) $ (-871 (-202)))) (-15 -3645 ((-1170) $ (-871 (-202)) (-802) (-802) (-849))) (-15 -1967 ((-1170) $ (-871 (-202)))) (-15 -2741 ((-1170) $ (-871 (-202)) (-802))) (-15 -2223 ($ (-587 (-587 (-871 (-202)))))) (-15 -2223 ((-791) $)) (-15 -1801 ((-587 (-587 (-871 (-202)))) (-587 (-587 (-871 (-202)))) (-587 (-802)))) (-15 -2870 ((-587 (-202)) (-587 (-587 (-871 (-202))))))))
-((-1639 (($ $) NIL) (($ $ $) 11)))
-(((-442 |#1| |#2| |#3|) (-10 -8 (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|))) (-443 |#2| |#3|) (-157) (-23)) (T -442))
-NIL
-(-10 -8 (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2098 ((|#2| $) 19)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 15) (($ $ $) 13)) (-1628 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-443 |#1| |#2|) (-1196) (-157) (-23)) (T -443))
-((-2098 (*1 *2 *1) (-12 (-4 *1 (-443 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) (-3562 (*1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1639 (*1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1628 (*1 *1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1639 (*1 *1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
-(-13 (-1013) (-10 -8 (-15 -2098 (|t#2| $)) (-15 (-3562) ($) -2682) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1639 ($ $)) (-15 -1628 ($ $ $)) (-15 -1639 ($ $ $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-2192 (((-3 (-587 (-453 |#1| |#2|)) "failed") (-587 (-453 |#1| |#2|)) (-587 (-793 |#1|))) 90)) (-3524 (((-587 (-587 (-224 |#1| |#2|))) (-587 (-224 |#1| |#2|)) (-587 (-793 |#1|))) 88)) (-3605 (((-2 (|:| |dpolys| (-587 (-224 |#1| |#2|))) (|:| |coords| (-587 (-521)))) (-587 (-224 |#1| |#2|)) (-587 (-793 |#1|))) 58)))
-(((-444 |#1| |#2| |#3|) (-10 -7 (-15 -3524 ((-587 (-587 (-224 |#1| |#2|))) (-587 (-224 |#1| |#2|)) (-587 (-793 |#1|)))) (-15 -2192 ((-3 (-587 (-453 |#1| |#2|)) "failed") (-587 (-453 |#1| |#2|)) (-587 (-793 |#1|)))) (-15 -3605 ((-2 (|:| |dpolys| (-587 (-224 |#1| |#2|))) (|:| |coords| (-587 (-521)))) (-587 (-224 |#1| |#2|)) (-587 (-793 |#1|))))) (-587 (-1084)) (-425) (-425)) (T -444))
-((-3605 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-793 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-2 (|:| |dpolys| (-587 (-224 *5 *6))) (|:| |coords| (-587 (-521))))) (-5 *1 (-444 *5 *6 *7)) (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))) (-2192 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-587 (-793 *4))) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-444 *4 *5 *6)) (-4 *6 (-425)))) (-3524 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-793 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-587 (-587 (-224 *5 *6)))) (-5 *1 (-444 *5 *6 *7)) (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))))
-(-10 -7 (-15 -3524 ((-587 (-587 (-224 |#1| |#2|))) (-587 (-224 |#1| |#2|)) (-587 (-793 |#1|)))) (-15 -2192 ((-3 (-587 (-453 |#1| |#2|)) "failed") (-587 (-453 |#1| |#2|)) (-587 (-793 |#1|)))) (-15 -3605 ((-2 (|:| |dpolys| (-587 (-224 |#1| |#2|))) (|:| |coords| (-587 (-521)))) (-587 (-224 |#1| |#2|)) (-587 (-793 |#1|)))))
-((-2783 (((-3 $ "failed") $) 11)) (-1484 (($ $ $) 20)) (-2062 (($ $ $) 21)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 14)) (-1648 (($ $ $) 9)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 19)))
-(((-445 |#1|) (-10 -8 (-15 -2062 (|#1| |#1| |#1|)) (-15 -1484 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 -1648 (|#1| |#1| |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 -3509 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3509 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849)))) (-446)) (T -445))
-NIL
-(-10 -8 (-15 -2062 (|#1| |#1| |#1|)) (-15 -1484 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| (-521))) (-15 ** (|#1| |#1| (-521))) (-15 -1648 (|#1| |#1| |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 -3509 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3509 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-2231 (($) 20 T CONST)) (-2783 (((-3 $ "failed") $) 16)) (-3637 (((-108) $) 19)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 27)) (-4146 (((-1031) $) 10)) (-1484 (($ $ $) 23)) (-2062 (($ $ $) 22)) (-2223 (((-791) $) 11)) (-3509 (($ $ (-849)) 13) (($ $ (-707)) 17) (($ $ (-521)) 24)) (-3572 (($) 21 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 26)) (** (($ $ (-849)) 14) (($ $ (-707)) 18) (($ $ (-521)) 25)) (* (($ $ $) 15)))
-(((-446) (-1196)) (T -446))
-((-3100 (*1 *1 *1) (-4 *1 (-446))) (-1648 (*1 *1 *1 *1) (-4 *1 (-446))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521)))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521)))) (-1484 (*1 *1 *1 *1) (-4 *1 (-446))) (-2062 (*1 *1 *1 *1) (-4 *1 (-446))))
-(-13 (-663) (-10 -8 (-15 -3100 ($ $)) (-15 -1648 ($ $ $)) (-15 ** ($ $ (-521))) (-15 -3509 ($ $ (-521))) (-6 -4230) (-15 -1484 ($ $ $)) (-15 -2062 ($ $ $))))
-(((-97) . T) ((-561 (-791)) . T) ((-663) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 17)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) NIL)) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) NIL)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) NIL) (($ $ (-381 (-521))) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-381 (-521))) NIL) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) 22)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-1749 (($ $) 26 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 33 (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 27 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) 25 (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $ (-1161 |#2|)) 15)) (-2098 (((-381 (-521)) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1161 |#2|)) NIL) (($ (-1150 |#1| |#2| |#3|)) 9) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 18)) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) 24)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-447 |#1| |#2| |#3|) (-13 (-1146 |#1|) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2223 ($ (-1150 |#1| |#2| |#3|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -447))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-447 *3 *4 *5)))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1146 |#1|) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2223 ($ (-1150 |#1| |#2| |#3|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#2| $ |#1| |#2|) 18)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) 19)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 16)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2964 (((-587 |#1|) $) NIL)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1223 (((-587 |#1|) $) NIL)) (-2131 (((-108) |#1| $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-448 |#1| |#2| |#3| |#4|) (-1096 |#1| |#2|) (-1013) (-1013) (-1096 |#1| |#2|) |#2|) (T -448))
-NIL
-(-1096 |#1| |#2|)
-((-1422 (((-108) $ $) NIL)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) NIL)) (-4137 (((-587 $) (-587 |#4|)) NIL)) (-4085 (((-587 |#3|) $) NIL)) (-2856 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1613 ((|#4| |#4| $) NIL)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1658 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2231 (($) NIL T CONST)) (-1616 (((-108) $) 26 (|has| |#1| (-513)))) (-3514 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3515 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2512 (((-108) $) NIL (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2122 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1496 (($ (-587 |#4|)) NIL)) (-2329 (((-3 $ "failed") $) 39)) (-1910 ((|#4| |#4| $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1429 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1860 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) NIL)) (-3831 (((-587 |#4|) $) 16 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3131 ((|#3| $) 33)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#4|) $) 17 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 21)) (-2963 (((-587 |#3|) $) NIL)) (-4065 (((-108) |#3| $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1450 (((-3 |#4| "failed") $) 37)) (-2942 (((-587 |#4|) $) NIL)) (-2626 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3432 ((|#4| |#4| $) NIL)) (-3069 (((-108) $ $) NIL)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1896 ((|#4| |#4| $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-3 |#4| "failed") $) 35)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1314 (((-3 $ "failed") $ |#4|) 47)) (-2191 (($ $ |#4|) NIL)) (-1936 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 15)) (-2280 (($) 13)) (-2098 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) 12)) (-1438 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 20)) (-3680 (($ $ |#3|) 42)) (-2600 (($ $ |#3|) 44)) (-2404 (($ $) NIL)) (-2222 (($ $ |#3|) NIL)) (-2223 (((-791) $) 31) (((-587 |#4|) $) 40)) (-2537 (((-707) $) NIL (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-2006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) NIL)) (-2567 (((-108) |#3| $) NIL)) (-1549 (((-108) $ $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-449 |#1| |#2| |#3| |#4|) (-1113 |#1| |#2| |#3| |#4|) (-513) (-729) (-783) (-984 |#1| |#2| |#3|)) (T -449))
-NIL
-(-1113 |#1| |#2| |#3| |#4|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL)) (-1496 (((-521) $) NIL) (((-381 (-521)) $) NIL)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2840 (($) 18)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-1438 (((-353) $) 22) (((-202) $) 25) (((-381 (-1080 (-521))) $) 19) (((-497) $) 53)) (-2223 (((-791) $) 51) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (((-202) $) 24) (((-353) $) 21)) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 36 T CONST)) (-3572 (($) 11 T CONST)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-450) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))) (-946) (-561 (-202)) (-561 (-353)) (-562 (-381 (-1080 (-521)))) (-562 (-497)) (-10 -8 (-15 -2840 ($))))) (T -450))
-((-2840 (*1 *1) (-5 *1 (-450))))
-(-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))) (-946) (-561 (-202)) (-561 (-353)) (-562 (-381 (-1080 (-521)))) (-562 (-497)) (-10 -8 (-15 -2840 ($))))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#2| $ |#1| |#2|) 16)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) 20)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 18)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2964 (((-587 |#1|) $) 13)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1223 (((-587 |#1|) $) NIL)) (-2131 (((-108) |#1| $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 19)) (-2550 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 11 (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3478 (((-707) $) 15 (|has| $ (-6 -4233)))))
-(((-451 |#1| |#2| |#3|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013) (-1067)) (T -451))
-NIL
-(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
-((-2607 (((-521) (-521) (-521)) 7)) (-4037 (((-108) (-521) (-521) (-521) (-521)) 11)) (-1601 (((-1165 (-587 (-521))) (-707) (-707)) 23)))
-(((-452) (-10 -7 (-15 -2607 ((-521) (-521) (-521))) (-15 -4037 ((-108) (-521) (-521) (-521) (-521))) (-15 -1601 ((-1165 (-587 (-521))) (-707) (-707))))) (T -452))
-((-1601 (*1 *2 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1165 (-587 (-521)))) (-5 *1 (-452)))) (-4037 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-452)))) (-2607 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-452)))))
-(-10 -7 (-15 -2607 ((-521) (-521) (-521))) (-15 -4037 ((-108) (-521) (-521) (-521) (-521))) (-15 -1601 ((-1165 (-587 (-521))) (-707) (-707))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-793 |#1|)) $) NIL)) (-1280 (((-1080 $) $ (-793 |#1|)) NIL) (((-1080 |#2|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-1954 (($ $) NIL (|has| |#2| (-513)))) (-3795 (((-108) $) NIL (|has| |#2| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-793 |#1|))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2694 (($ $) NIL (|has| |#2| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#2| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-793 |#1|) $) NIL)) (-3052 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-3097 (($ $ (-587 (-521))) NIL)) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#2| (-837)))) (-1709 (($ $ |#2| (-454 (-3478 |#1|) (-707)) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#2|) (-793 |#1|)) NIL) (($ (-1080 $) (-793 |#1|)) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#2| (-454 (-3478 |#1|) (-707))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-793 |#1|)) NIL)) (-2401 (((-454 (-3478 |#1|) (-707)) $) NIL) (((-707) $ (-793 |#1|)) NIL) (((-587 (-707)) $ (-587 (-793 |#1|))) NIL)) (-2816 (($ $ $) NIL (|has| |#2| (-783)))) (-2459 (($ $ $) NIL (|has| |#2| (-783)))) (-2310 (($ (-1 (-454 (-3478 |#1|) (-707)) (-454 (-3478 |#1|) (-707))) $) NIL)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2913 (((-3 (-793 |#1|) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#2| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2246 (-707))) "failed") $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#2| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#2| (-837)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-793 |#1|) |#2|) NIL) (($ $ (-587 (-793 |#1|)) (-587 |#2|)) NIL) (($ $ (-793 |#1|) $) NIL) (($ $ (-587 (-793 |#1|)) (-587 $)) NIL)) (-3011 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2193 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2098 (((-454 (-3478 |#1|) (-707)) $) NIL) (((-707) $ (-793 |#1|)) NIL) (((-587 (-707)) $ (-587 (-793 |#1|))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-793 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-1391 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-793 |#1|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-454 (-3478 |#1|) (-707))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-453 |#1| |#2|) (-13 (-877 |#2| (-454 (-3478 |#1|) (-707)) (-793 |#1|)) (-10 -8 (-15 -3097 ($ $ (-587 (-521)))))) (-587 (-1084)) (-970)) (T -453))
-((-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-453 *3 *4)) (-14 *3 (-587 (-1084))) (-4 *4 (-970)))))
-(-13 (-877 |#2| (-454 (-3478 |#1|) (-707)) (-793 |#1|)) (-10 -8 (-15 -3097 ($ $ (-587 (-521))))))
-((-1422 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-3398 (((-108) $) NIL (|has| |#2| (-124)))) (-2965 (($ (-849)) NIL (|has| |#2| (-970)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2303 (($ $ $) NIL (|has| |#2| (-729)))) (-2057 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| |#2| (-342)))) (-2578 (((-521) $) NIL (|has| |#2| (-781)))) (-2396 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1013)))) (-1496 (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) NIL (|has| |#2| (-1013)))) (-1961 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-970)))) (-2783 (((-3 $ "failed") $) NIL (|has| |#2| (-970)))) (-3254 (($) NIL (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) 11)) (-2273 (((-108) $) NIL (|has| |#2| (-781)))) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL (|has| |#2| (-970)))) (-3305 (((-108) $) NIL (|has| |#2| (-781)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-3568 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#2| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#2| (-1013)))) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-2723 (($ (-849)) NIL (|has| |#2| (-342)))) (-4146 (((-1031) $) NIL (|has| |#2| (-1013)))) (-2319 ((|#2| $) NIL (|has| (-521) (-783)))) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) NIL)) (-4103 ((|#2| $ $) NIL (|has| |#2| (-970)))) (-2015 (($ (-1165 |#2|)) NIL)) (-2043 (((-126)) NIL (|has| |#2| (-337)))) (-2193 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1165 |#2|) $) NIL) (($ (-521)) NIL (-3703 (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) NIL (|has| |#2| (-1013))) (((-791) $) NIL (|has| |#2| (-561 (-791))))) (-1592 (((-707)) NIL (|has| |#2| (-970)))) (-2006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-4012 (($ $) NIL (|has| |#2| (-781)))) (-3509 (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-849)) NIL (|has| |#2| (-970)))) (-3562 (($) NIL (|has| |#2| (-124)) CONST)) (-3572 (($) NIL (|has| |#2| (-970)) CONST)) (-2244 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-1597 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1549 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-1588 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1569 (((-108) $ $) 15 (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $ $) NIL (|has| |#2| (-970))) (($ $) NIL (|has| |#2| (-970)))) (-1628 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-849)) NIL (|has| |#2| (-970)))) (* (($ $ $) NIL (|has| |#2| (-970))) (($ (-521) $) NIL (|has| |#2| (-970))) (($ $ |#2|) NIL (|has| |#2| (-663))) (($ |#2| $) NIL (|has| |#2| (-663))) (($ (-707) $) NIL (|has| |#2| (-124))) (($ (-849) $) NIL (|has| |#2| (-25)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-454 |#1| |#2|) (-215 |#1| |#2|) (-707) (-729)) (T -454))
+((-1254 (($ $) 6)) (-3266 (($ $) 7)) (** (($ $ $) 8)))
+(((-260) (-1197)) (T -260))
+((** (*1 *1 *1 *1) (-4 *1 (-260))) (-3266 (*1 *1 *1) (-4 *1 (-260))) (-1254 (*1 *1 *1) (-4 *1 (-260))))
+(-13 (-10 -8 (-15 -1254 ($ $)) (-15 -3266 ($ $)) (-15 ** ($ $ $))))
+((-2429 (((-588 (-1066 |#1|)) (-1066 |#1|) |#1|) 35)) (-3444 ((|#2| |#2| |#1|) 38)) (-2557 ((|#2| |#2| |#1|) 40)) (-2596 ((|#2| |#2| |#1|) 39)))
+(((-261 |#1| |#2|) (-10 -7 (-15 -3444 (|#2| |#2| |#1|)) (-15 -2596 (|#2| |#2| |#1|)) (-15 -2557 (|#2| |#2| |#1|)) (-15 -2429 ((-588 (-1066 |#1|)) (-1066 |#1|) |#1|))) (-338) (-1157 |#1|)) (T -261))
+((-2429 (*1 *2 *3 *4) (-12 (-4 *4 (-338)) (-5 *2 (-588 (-1066 *4))) (-5 *1 (-261 *4 *5)) (-5 *3 (-1066 *4)) (-4 *5 (-1157 *4)))) (-2557 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))) (-2596 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))) (-3444 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -3444 (|#2| |#2| |#1|)) (-15 -2596 (|#2| |#2| |#1|)) (-15 -2557 (|#2| |#2| |#1|)) (-15 -2429 ((-588 (-1066 |#1|)) (-1066 |#1|) |#1|)))
+((-2545 ((|#2| $ |#1|) 6)))
+(((-262 |#1| |#2|) (-1197) (-1014) (-1120)) (T -262))
+((-2545 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))))
+(-13 (-10 -8 (-15 -2545 (|t#2| $ |t#1|))))
+((-3854 ((|#3| $ |#2| |#3|) 12)) (-3631 ((|#3| $ |#2|) 10)))
+(((-263 |#1| |#2| |#3|) (-10 -8 (-15 -3854 (|#3| |#1| |#2| |#3|)) (-15 -3631 (|#3| |#1| |#2|))) (-264 |#2| |#3|) (-1014) (-1120)) (T -263))
+NIL
+(-10 -8 (-15 -3854 (|#3| |#1| |#2| |#3|)) (-15 -3631 (|#3| |#1| |#2|)))
+((-2379 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4239)))) (-3854 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) 11)) (-2545 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-264 |#1| |#2|) (-1197) (-1014) (-1120)) (T -264))
+((-2545 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-3631 (*1 *2 *1 *3) (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-2379 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-3854 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))))
+(-13 (-262 |t#1| |t#2|) (-10 -8 (-15 -2545 (|t#2| $ |t#1| |t#2|)) (-15 -3631 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2379 (|t#2| $ |t#1| |t#2|)) (-15 -3854 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-262 |#1| |#2|) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 35)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 40)) (-2022 (($ $) 38)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) 33)) (-3864 (($ |#2| |#3|) 19)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3010 ((|#3| $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 20)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3351 (((-3 $ "failed") $ $) NIL)) (-3730 (((-708) $) 34)) (-2545 ((|#2| $ |#2|) 42)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 24)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 29 T CONST)) (-3577 (($) 36 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 37)))
+(((-265 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-283) (-10 -8 (-15 -3010 (|#3| $)) (-15 -2190 (|#2| $)) (-15 -3864 ($ |#2| |#3|)) (-15 -3351 ((-3 $ "failed") $ $)) (-15 -2682 ((-3 $ "failed") $)) (-15 -3098 ($ $)) (-15 -2545 (|#2| $ |#2|)))) (-157) (-1142 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -265))
+((-2682 (*1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3010 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-265 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1142 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2190 (*1 *2 *1) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7)) (-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3864 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-265 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1142 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3351 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3098 (*1 *1 *1) (-12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2545 (*1 *2 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1142 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-283) (-10 -8 (-15 -3010 (|#3| $)) (-15 -2190 (|#2| $)) (-15 -3864 ($ |#2| |#3|)) (-15 -3351 ((-3 $ "failed") $ $)) (-15 -2682 ((-3 $ "failed") $)) (-15 -3098 ($ $)) (-15 -2545 (|#2| $ |#2|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-266) (-1197)) (T -266))
+NIL
+(-13 (-971) (-107 $ $) (-10 -7 (-6 -4231)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1248 (($ (-1085) (-1085) (-1018) $) 15)) (-2525 (($ (-1085) (-588 (-893)) $) 19)) (-2601 (((-588 (-1001)) $) 8)) (-2693 (((-3 (-1018) "failed") (-1085) (-1085) $) 14)) (-2791 (((-3 (-588 (-893)) "failed") (-1085) $) 17)) (-3775 (($) 6)) (-3991 (($) 20)) (-2190 (((-792) $) 24)) (-2993 (($) 21)))
+(((-267) (-13 (-562 (-792)) (-10 -8 (-15 -3775 ($)) (-15 -2601 ((-588 (-1001)) $)) (-15 -2693 ((-3 (-1018) "failed") (-1085) (-1085) $)) (-15 -1248 ($ (-1085) (-1085) (-1018) $)) (-15 -2791 ((-3 (-588 (-893)) "failed") (-1085) $)) (-15 -2525 ($ (-1085) (-588 (-893)) $)) (-15 -3991 ($)) (-15 -2993 ($))))) (T -267))
+((-3775 (*1 *1) (-5 *1 (-267))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-588 (-1001))) (-5 *1 (-267)))) (-2693 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-267)))) (-1248 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-267)))) (-2791 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-588 (-893))) (-5 *1 (-267)))) (-2525 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-267)))) (-3991 (*1 *1) (-5 *1 (-267))) (-2993 (*1 *1) (-5 *1 (-267))))
+(-13 (-562 (-792)) (-10 -8 (-15 -3775 ($)) (-15 -2601 ((-588 (-1001)) $)) (-15 -2693 ((-3 (-1018) "failed") (-1085) (-1085) $)) (-15 -1248 ($ (-1085) (-1085) (-1018) $)) (-15 -2791 ((-3 (-588 (-893)) "failed") (-1085) $)) (-15 -2525 ($ (-1085) (-588 (-893)) $)) (-15 -3991 ($)) (-15 -2993 ($))))
+((-2225 (((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))) 84)) (-4104 (((-588 (-628 (-382 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|)))))) (-628 (-382 (-881 |#1|)))) 79) (((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))) (-708) (-708)) 37)) (-3865 (((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))) 81)) (-3832 (((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|)))) 61)) (-3806 (((-588 (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (-628 (-382 (-881 |#1|)))) 60)) (-2051 (((-881 |#1|) (-628 (-382 (-881 |#1|)))) 48) (((-881 |#1|) (-628 (-382 (-881 |#1|))) (-1085)) 49)))
+(((-268 |#1|) (-10 -7 (-15 -2051 ((-881 |#1|) (-628 (-382 (-881 |#1|))) (-1085))) (-15 -2051 ((-881 |#1|) (-628 (-382 (-881 |#1|))))) (-15 -3806 ((-588 (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (-628 (-382 (-881 |#1|))))) (-15 -3832 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))))) (-15 -4104 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))) (-708) (-708))) (-15 -4104 ((-588 (-628 (-382 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|)))))) (-628 (-382 (-881 |#1|))))) (-15 -2225 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|))))) (-15 -3865 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|)))))) (-426)) (T -268))
+((-3865 (*1 *2 *3) (-12 (-4 *4 (-426)) (-5 *2 (-588 (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 *4)))))))) (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4)))))) (-2225 (*1 *2 *3) (-12 (-4 *4 (-426)) (-5 *2 (-588 (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 *4)))))))) (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4)))))) (-4104 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 *4)))) (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5))))) (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5)))))) (-4104 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-382 (-881 *6)) (-1075 (-1085) (-881 *6)))) (-5 *5 (-708)) (-4 *6 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *6))))) (-5 *1 (-268 *6)) (-5 *4 (-628 (-382 (-881 *6)))))) (-3832 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5)))) (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5))))) (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5)))))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-4 *4 (-426)) (-5 *2 (-588 (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4))))) (-5 *1 (-268 *4)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-5 *2 (-881 *4)) (-5 *1 (-268 *4)) (-4 *4 (-426)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-881 *5)))) (-5 *4 (-1085)) (-5 *2 (-881 *5)) (-5 *1 (-268 *5)) (-4 *5 (-426)))))
+(-10 -7 (-15 -2051 ((-881 |#1|) (-628 (-382 (-881 |#1|))) (-1085))) (-15 -2051 ((-881 |#1|) (-628 (-382 (-881 |#1|))))) (-15 -3806 ((-588 (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (-628 (-382 (-881 |#1|))))) (-15 -3832 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))))) (-15 -4104 ((-588 (-628 (-382 (-881 |#1|)))) (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|))) (-628 (-382 (-881 |#1|))) (-708) (-708))) (-15 -4104 ((-588 (-628 (-382 (-881 |#1|)))) (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|)))))) (-628 (-382 (-881 |#1|))))) (-15 -2225 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |geneigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|))))) (-15 -3865 ((-588 (-2 (|:| |eigval| (-3 (-382 (-881 |#1|)) (-1075 (-1085) (-881 |#1|)))) (|:| |eigmult| (-708)) (|:| |eigvec| (-588 (-628 (-382 (-881 |#1|))))))) (-628 (-382 (-881 |#1|))))))
+((-1391 (((-270 |#2|) (-1 |#2| |#1|) (-270 |#1|)) 14)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -1391 ((-270 |#2|) (-1 |#2| |#1|) (-270 |#1|)))) (-1120) (-1120)) (T -269))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-270 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-270 *6)) (-5 *1 (-269 *5 *6)))))
+(-10 -7 (-15 -1391 ((-270 |#2|) (-1 |#2| |#1|) (-270 |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2250 (((-108) $) NIL (|has| |#1| (-21)))) (-4201 (($ $) 22)) (-1233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3305 (($ $ $) 93 (|has| |#1| (-278)))) (-3175 (($) NIL (-3708 (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1743 (($ $) 8 (|has| |#1| (-21)))) (-3891 (((-3 $ "failed") $) 68 (|has| |#1| (-664)))) (-3602 ((|#1| $) 21)) (-2682 (((-3 $ "failed") $) 66 (|has| |#1| (-664)))) (-2782 (((-108) $) NIL (|has| |#1| (-664)))) (-1391 (($ (-1 |#1| |#1|) $) 24)) (-3593 ((|#1| $) 9)) (-1448 (($ $) 57 (|has| |#1| (-21)))) (-4143 (((-3 $ "failed") $) 67 (|has| |#1| (-664)))) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-3098 (($ $) 70 (-3708 (|has| |#1| (-338)) (|has| |#1| (-447))))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3934 (((-588 $) $) 19 (|has| |#1| (-514)))) (-2289 (($ $ $) 34 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 $)) 37 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-1085) |#1|) 27 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 31 (|has| |#1| (-483 (-1085) |#1|)))) (-1607 (($ |#1| |#1|) 17)) (-4078 (((-126)) 88 (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) 85 (|has| |#1| (-829 (-1085))))) (-3122 (($ $ $) NIL (|has| |#1| (-447)))) (-1288 (($ $ $) NIL (|has| |#1| (-447)))) (-2190 (($ (-522)) NIL (|has| |#1| (-971))) (((-108) $) 45 (|has| |#1| (-1014))) (((-792) $) 44 (|has| |#1| (-1014)))) (-2323 (((-708)) 73 (|has| |#1| (-971)))) (-3510 (($ $ (-522)) NIL (|has| |#1| (-447))) (($ $ (-708)) NIL (|has| |#1| (-664))) (($ $ (-850)) NIL (|has| |#1| (-1026)))) (-3566 (($) 55 (|has| |#1| (-21)) CONST)) (-3577 (($) 63 (|has| |#1| (-664)) CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085))))) (-1531 (($ |#1| |#1|) 20) (((-108) $ $) 40 (|has| |#1| (-1014)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 90 (-3708 (|has| |#1| (-338)) (|has| |#1| (-447))))) (-1612 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1602 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-522)) NIL (|has| |#1| (-447))) (($ $ (-708)) NIL (|has| |#1| (-664))) (($ $ (-850)) NIL (|has| |#1| (-1026)))) (* (($ $ |#1|) 61 (|has| |#1| (-1026))) (($ |#1| $) 60 (|has| |#1| (-1026))) (($ $ $) 59 (|has| |#1| (-1026))) (($ (-522) $) 76 (|has| |#1| (-21))) (($ (-708) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-25)))))
+(((-270 |#1|) (-13 (-1120) (-10 -8 (-15 -1531 ($ |#1| |#1|)) (-15 -1607 ($ |#1| |#1|)) (-15 -4201 ($ $)) (-15 -3593 (|#1| $)) (-15 -3602 (|#1| $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-483 (-1085) |#1|)) (-6 (-483 (-1085) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-562 (-108))) (IF (|has| |#1| (-285 |#1|)) (PROGN (-15 -2289 ($ $ $)) (-15 -2289 ($ $ (-588 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1602 ($ |#1| $)) (-15 -1602 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1448 ($ $)) (-15 -1743 ($ $)) (-15 -1612 ($ |#1| $)) (-15 -1612 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -4143 ((-3 $ "failed") $)) (-15 -3891 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-447)) (PROGN (-6 (-447)) (-15 -4143 ((-3 $ "failed") $)) (-15 -3891 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-6 (-971)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-514)) (-15 -3934 ((-588 $) $)) |%noBranch|) (IF (|has| |#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-1173 |#1|)) (-15 -1620 ($ $ $)) (-15 -3098 ($ $))) |%noBranch|) (IF (|has| |#1| (-278)) (-15 -3305 ($ $ $)) |%noBranch|))) (-1120)) (T -270))
+((-1531 (*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-1607 (*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-4201 (*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-3593 (*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-3602 (*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-270 *3)))) (-2289 (*1 *1 *1 *1) (-12 (-4 *2 (-285 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)) (-5 *1 (-270 *2)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *3))) (-4 *3 (-285 *3)) (-4 *3 (-1014)) (-4 *3 (-1120)) (-5 *1 (-270 *3)))) (-1602 (*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) (-1602 (*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120)))) (-1448 (*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1743 (*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1612 (*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-1612 (*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))) (-4143 (*1 *1 *1) (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120)))) (-3891 (*1 *1 *1) (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-588 (-270 *3))) (-5 *1 (-270 *3)) (-4 *3 (-514)) (-4 *3 (-1120)))) (-3305 (*1 *1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-278)) (-4 *2 (-1120)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120)))) (-1620 (*1 *1 *1 *1) (-3708 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120))) (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120))))) (-3098 (*1 *1 *1) (-3708 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120))) (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120))))))
+(-13 (-1120) (-10 -8 (-15 -1531 ($ |#1| |#1|)) (-15 -1607 ($ |#1| |#1|)) (-15 -4201 ($ $)) (-15 -3593 (|#1| $)) (-15 -3602 (|#1| $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-483 (-1085) |#1|)) (-6 (-483 (-1085) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-562 (-108))) (IF (|has| |#1| (-285 |#1|)) (PROGN (-15 -2289 ($ $ $)) (-15 -2289 ($ $ (-588 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1602 ($ |#1| $)) (-15 -1602 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1448 ($ $)) (-15 -1743 ($ $)) (-15 -1612 ($ |#1| $)) (-15 -1612 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -4143 ((-3 $ "failed") $)) (-15 -3891 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-447)) (PROGN (-6 (-447)) (-15 -4143 ((-3 $ "failed") $)) (-15 -3891 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-6 (-971)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-514)) (-15 -3934 ((-588 $) $)) |%noBranch|) (IF (|has| |#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-1173 |#1|)) (-15 -1620 ($ $ $)) (-15 -3098 ($ $))) |%noBranch|) (IF (|has| |#1| (-278)) (-15 -3305 ($ $ $)) |%noBranch|)))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#2| $ |#1| |#2|) NIL)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2966 (((-588 |#1|) $) NIL)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3604 (((-588 |#1|) $) NIL)) (-1405 (((-108) |#1| $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-271 |#1| |#2|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014)) (T -271))
+NIL
+(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238)))
+((-2972 (((-287) (-1068) (-588 (-1068))) 16) (((-287) (-1068) (-1068)) 15) (((-287) (-588 (-1068))) 14) (((-287) (-1068)) 12)))
+(((-272) (-10 -7 (-15 -2972 ((-287) (-1068))) (-15 -2972 ((-287) (-588 (-1068)))) (-15 -2972 ((-287) (-1068) (-1068))) (-15 -2972 ((-287) (-1068) (-588 (-1068)))))) (T -272))
+((-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1068))) (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))) (-2972 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-287)) (-5 *1 (-272)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272)))))
+(-10 -7 (-15 -2972 ((-287) (-1068))) (-15 -2972 ((-287) (-588 (-1068)))) (-15 -2972 ((-287) (-1068) (-1068))) (-15 -2972 ((-287) (-1068) (-588 (-1068)))))
+((-1391 ((|#2| (-1 |#2| |#1|) (-1068) (-561 |#1|)) 17)))
+(((-273 |#1| |#2|) (-10 -7 (-15 -1391 (|#2| (-1 |#2| |#1|) (-1068) (-561 |#1|)))) (-278) (-1120)) (T -273))
+((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1068)) (-5 *5 (-561 *6)) (-4 *6 (-278)) (-4 *2 (-1120)) (-5 *1 (-273 *6 *2)))))
+(-10 -7 (-15 -1391 (|#2| (-1 |#2| |#1|) (-1068) (-561 |#1|))))
+((-1391 ((|#2| (-1 |#2| |#1|) (-561 |#1|)) 17)))
+(((-274 |#1| |#2|) (-10 -7 (-15 -1391 (|#2| (-1 |#2| |#1|) (-561 |#1|)))) (-278) (-278)) (T -274))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-561 *5)) (-4 *5 (-278)) (-4 *2 (-278)) (-5 *1 (-274 *5 *2)))))
+(-10 -7 (-15 -1391 (|#2| (-1 |#2| |#1|) (-561 |#1|))))
+((-2140 (((-108) (-202)) 10)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -2140 ((-108) (-202)))) (-202) (-202)) (T -275))
+((-2140 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-275 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2140 ((-108) (-202))))
+((-1617 (((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202)))) 88)) (-2510 (((-1066 (-202)) (-1166 (-291 (-202))) (-588 (-1085)) (-1009 (-777 (-202)))) 103) (((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202)))) 58)) (-3205 (((-588 (-1068)) (-1066 (-202))) NIL)) (-3072 (((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202)))) 55)) (-3164 (((-588 (-202)) (-881 (-382 (-522))) (-1085) (-1009 (-777 (-202)))) 47)) (-1644 (((-588 (-1068)) (-588 (-202))) NIL)) (-2988 (((-202) (-1009 (-777 (-202)))) 23)) (-2740 (((-202) (-1009 (-777 (-202)))) 24)) (-3023 (((-108) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 51)) (-2461 (((-1068) (-202)) NIL)))
+(((-276) (-10 -7 (-15 -2988 ((-202) (-1009 (-777 (-202))))) (-15 -2740 ((-202) (-1009 (-777 (-202))))) (-15 -3023 ((-108) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3072 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -1617 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2510 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2510 ((-1066 (-202)) (-1166 (-291 (-202))) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -3164 ((-588 (-202)) (-881 (-382 (-522))) (-1085) (-1009 (-777 (-202))))) (-15 -2461 ((-1068) (-202))) (-15 -1644 ((-588 (-1068)) (-588 (-202)))) (-15 -3205 ((-588 (-1068)) (-1066 (-202)))))) (T -276))
+((-3205 (*1 *2 *3) (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-276)))) (-3164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *4 (-1085)) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276)))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085))) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085))) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) (-1617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085))) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085)) (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276)))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-108)) (-5 *1 (-276)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276)))))
+(-10 -7 (-15 -2988 ((-202) (-1009 (-777 (-202))))) (-15 -2740 ((-202) (-1009 (-777 (-202))))) (-15 -3023 ((-108) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3072 ((-588 (-202)) (-291 (-202)) (-1085) (-1009 (-777 (-202))))) (-15 -1617 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2510 ((-1066 (-202)) (-291 (-202)) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -2510 ((-1066 (-202)) (-1166 (-291 (-202))) (-588 (-1085)) (-1009 (-777 (-202))))) (-15 -3164 ((-588 (-202)) (-881 (-382 (-522))) (-1085) (-1009 (-777 (-202))))) (-15 -2461 ((-1068) (-202))) (-15 -1644 ((-588 (-1068)) (-588 (-202)))) (-15 -3205 ((-588 (-1068)) (-1066 (-202)))))
+((-1886 (((-588 (-561 $)) $) 28)) (-3305 (($ $ (-270 $)) 81) (($ $ (-588 (-270 $))) 121) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-1297 (((-3 (-561 $) "failed") $) 111)) (-1484 (((-561 $) $) 110)) (-1953 (($ $) 19) (($ (-588 $)) 55)) (-4161 (((-588 (-110)) $) 37)) (-2626 (((-110) (-110)) 91)) (-2591 (((-108) $) 129)) (-1391 (($ (-1 $ $) (-561 $)) 89)) (-3993 (((-3 (-561 $) "failed") $) 93)) (-2909 (($ (-110) $) 61) (($ (-110) (-588 $)) 99)) (-2249 (((-108) $ (-110)) 115) (((-108) $ (-1085)) 114)) (-4155 (((-708) $) 45)) (-1648 (((-108) $ $) 59) (((-108) $ (-1085)) 50)) (-1263 (((-108) $) 127)) (-2289 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) 119) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 84) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) 69) (($ $ (-1085) (-1 $ $)) 75) (($ $ (-588 (-110)) (-588 (-1 $ $))) 83) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 85) (($ $ (-110) (-1 $ (-588 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-2545 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-588 $)) 107)) (-3043 (($ $) 52) (($ $ $) 117)) (-2308 (($ $) 17) (($ (-588 $)) 54)) (-3614 (((-108) (-110)) 22)))
+(((-277 |#1|) (-10 -8 (-15 -2591 ((-108) |#1|)) (-15 -1263 ((-108) |#1|)) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -1648 ((-108) |#1| (-1085))) (-15 -1648 ((-108) |#1| |#1|)) (-15 -1391 (|#1| (-1 |#1| |#1|) (-561 |#1|))) (-15 -2909 (|#1| (-110) (-588 |#1|))) (-15 -2909 (|#1| (-110) |#1|)) (-15 -2249 ((-108) |#1| (-1085))) (-15 -2249 ((-108) |#1| (-110))) (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -4161 ((-588 (-110)) |#1|)) (-15 -1886 ((-588 (-561 |#1|)) |#1|)) (-15 -3993 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -4155 ((-708) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -1953 (|#1| (-588 |#1|))) (-15 -1953 (|#1| |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1|)) (-15 -3305 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -3305 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -3305 (|#1| |#1| (-270 |#1|))) (-15 -2545 (|#1| (-110) (-588 |#1|))) (-15 -2545 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2289 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1484 ((-561 |#1|) |#1|)) (-15 -1297 ((-3 (-561 |#1|) "failed") |#1|))) (-278)) (T -277))
+((-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-277 *3)) (-4 *3 (-278)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-277 *4)) (-4 *4 (-278)))))
+(-10 -8 (-15 -2591 ((-108) |#1|)) (-15 -1263 ((-108) |#1|)) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -1648 ((-108) |#1| (-1085))) (-15 -1648 ((-108) |#1| |#1|)) (-15 -1391 (|#1| (-1 |#1| |#1|) (-561 |#1|))) (-15 -2909 (|#1| (-110) (-588 |#1|))) (-15 -2909 (|#1| (-110) |#1|)) (-15 -2249 ((-108) |#1| (-1085))) (-15 -2249 ((-108) |#1| (-110))) (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -4161 ((-588 (-110)) |#1|)) (-15 -1886 ((-588 (-561 |#1|)) |#1|)) (-15 -3993 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -4155 ((-708) |#1|)) (-15 -3043 (|#1| |#1| |#1|)) (-15 -3043 (|#1| |#1|)) (-15 -1953 (|#1| (-588 |#1|))) (-15 -1953 (|#1| |#1|)) (-15 -2308 (|#1| (-588 |#1|))) (-15 -2308 (|#1| |#1|)) (-15 -3305 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -3305 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -3305 (|#1| |#1| (-270 |#1|))) (-15 -2545 (|#1| (-110) (-588 |#1|))) (-15 -2545 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2289 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1484 ((-561 |#1|) |#1|)) (-15 -1297 ((-3 (-561 |#1|) "failed") |#1|)))
+((-1416 (((-108) $ $) 7)) (-1886 (((-588 (-561 $)) $) 44)) (-3305 (($ $ (-270 $)) 56) (($ $ (-588 (-270 $))) 55) (($ $ (-588 (-561 $)) (-588 $)) 54)) (-1297 (((-3 (-561 $) "failed") $) 69)) (-1484 (((-561 $) $) 68)) (-1953 (($ $) 51) (($ (-588 $)) 50)) (-4161 (((-588 (-110)) $) 43)) (-2626 (((-110) (-110)) 42)) (-2591 (((-108) $) 22 (|has| $ (-962 (-522))))) (-1711 (((-1081 $) (-561 $)) 25 (|has| $ (-971)))) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1391 (($ (-1 $ $) (-561 $)) 36)) (-3993 (((-3 (-561 $) "failed") $) 46)) (-2385 (((-1068) $) 9)) (-1267 (((-588 (-561 $)) $) 45)) (-2909 (($ (-110) $) 38) (($ (-110) (-588 $)) 37)) (-2249 (((-108) $ (-110)) 40) (((-108) $ (-1085)) 39)) (-4155 (((-708) $) 47)) (-4151 (((-1032) $) 10)) (-1648 (((-108) $ $) 35) (((-108) $ (-1085)) 34)) (-1263 (((-108) $) 23 (|has| $ (-962 (-522))))) (-2289 (($ $ (-561 $) $) 67) (($ $ (-588 (-561 $)) (-588 $)) 66) (($ $ (-588 (-270 $))) 65) (($ $ (-270 $)) 64) (($ $ $ $) 63) (($ $ (-588 $) (-588 $)) 62) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 33) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 32) (($ $ (-1085) (-1 $ (-588 $))) 31) (($ $ (-1085) (-1 $ $)) 30) (($ $ (-588 (-110)) (-588 (-1 $ $))) 29) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 28) (($ $ (-110) (-1 $ (-588 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-2545 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-588 $)) 57)) (-3043 (($ $) 49) (($ $ $) 48)) (-1479 (($ $) 24 (|has| $ (-971)))) (-2190 (((-792) $) 11) (($ (-561 $)) 70)) (-2308 (($ $) 53) (($ (-588 $)) 52)) (-3614 (((-108) (-110)) 41)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-278) (-1197)) (T -278))
+((-2545 (*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2545 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2545 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2545 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2545 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278)))) (-3305 (*1 *1 *1 *2) (-12 (-5 *2 (-270 *1)) (-4 *1 (-278)))) (-3305 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *1))) (-4 *1 (-278)))) (-3305 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-561 *1))) (-5 *3 (-588 *1)) (-4 *1 (-278)))) (-2308 (*1 *1 *1) (-4 *1 (-278))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278)))) (-1953 (*1 *1 *1) (-4 *1 (-278))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278)))) (-3043 (*1 *1 *1) (-4 *1 (-278))) (-3043 (*1 *1 *1 *1) (-4 *1 (-278))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-708)))) (-3993 (*1 *2 *1) (|partial| -12 (-5 *2 (-561 *1)) (-4 *1 (-278)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-588 (-110))))) (-2626 (*1 *2 *2) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-3614 (*1 *2 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2249 (*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108)))) (-2249 (*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108)))) (-2909 (*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110)))) (-2909 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278)))) (-1391 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-561 *1)) (-4 *1 (-278)))) (-1648 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-108)))) (-1648 (*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278)))) (-1711 (*1 *2 *3) (-12 (-5 *3 (-561 *1)) (-4 *1 (-971)) (-4 *1 (-278)) (-5 *2 (-1081 *1)))) (-1479 (*1 *1 *1) (-12 (-4 *1 (-971)) (-4 *1 (-278)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108)))) (-2591 (*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108)))))
+(-13 (-784) (-962 (-561 $)) (-483 (-561 $) $) (-285 $) (-10 -8 (-15 -2545 ($ (-110) $)) (-15 -2545 ($ (-110) $ $)) (-15 -2545 ($ (-110) $ $ $)) (-15 -2545 ($ (-110) $ $ $ $)) (-15 -2545 ($ (-110) (-588 $))) (-15 -3305 ($ $ (-270 $))) (-15 -3305 ($ $ (-588 (-270 $)))) (-15 -3305 ($ $ (-588 (-561 $)) (-588 $))) (-15 -2308 ($ $)) (-15 -2308 ($ (-588 $))) (-15 -1953 ($ $)) (-15 -1953 ($ (-588 $))) (-15 -3043 ($ $)) (-15 -3043 ($ $ $)) (-15 -4155 ((-708) $)) (-15 -3993 ((-3 (-561 $) "failed") $)) (-15 -1267 ((-588 (-561 $)) $)) (-15 -1886 ((-588 (-561 $)) $)) (-15 -4161 ((-588 (-110)) $)) (-15 -2626 ((-110) (-110))) (-15 -3614 ((-108) (-110))) (-15 -2249 ((-108) $ (-110))) (-15 -2249 ((-108) $ (-1085))) (-15 -2909 ($ (-110) $)) (-15 -2909 ($ (-110) (-588 $))) (-15 -1391 ($ (-1 $ $) (-561 $))) (-15 -1648 ((-108) $ $)) (-15 -1648 ((-108) $ (-1085))) (-15 -2289 ($ $ (-588 (-1085)) (-588 (-1 $ $)))) (-15 -2289 ($ $ (-588 (-1085)) (-588 (-1 $ (-588 $))))) (-15 -2289 ($ $ (-1085) (-1 $ (-588 $)))) (-15 -2289 ($ $ (-1085) (-1 $ $))) (-15 -2289 ($ $ (-588 (-110)) (-588 (-1 $ $)))) (-15 -2289 ($ $ (-588 (-110)) (-588 (-1 $ (-588 $))))) (-15 -2289 ($ $ (-110) (-1 $ (-588 $)))) (-15 -2289 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-971)) (PROGN (-15 -1711 ((-1081 $) (-561 $))) (-15 -1479 ($ $))) |%noBranch|) (IF (|has| $ (-962 (-522))) (PROGN (-15 -1263 ((-108) $)) (-15 -2591 ((-108) $))) |%noBranch|)))
+(((-97) . T) ((-562 (-792)) . T) ((-285 $) . T) ((-483 (-561 $) $) . T) ((-483 $ $) . T) ((-784) . T) ((-962 (-561 $)) . T) ((-1014) . T))
+((-2846 (((-588 |#1|) (-588 |#1|)) 10)))
+(((-279 |#1|) (-10 -7 (-15 -2846 ((-588 |#1|) (-588 |#1|)))) (-782)) (T -279))
+((-2846 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-782)) (-5 *1 (-279 *3)))))
+(-10 -7 (-15 -2846 ((-588 |#1|) (-588 |#1|))))
+((-1391 (((-628 |#2|) (-1 |#2| |#1|) (-628 |#1|)) 15)))
+(((-280 |#1| |#2|) (-10 -7 (-15 -1391 ((-628 |#2|) (-1 |#2| |#1|) (-628 |#1|)))) (-971) (-971)) (T -280))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-628 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-628 *6)) (-5 *1 (-280 *5 *6)))))
+(-10 -7 (-15 -1391 ((-628 |#2|) (-1 |#2| |#1|) (-628 |#1|))))
+((-3422 (((-1166 (-291 (-354))) (-1166 (-291 (-202)))) 105)) (-1259 (((-1009 (-777 (-202))) (-1009 (-777 (-354)))) 39)) (-3205 (((-588 (-1068)) (-1066 (-202))) 87)) (-1836 (((-291 (-354)) (-881 (-202))) 49)) (-4067 (((-202) (-881 (-202))) 45)) (-2107 (((-1068) (-354)) 167)) (-1357 (((-777 (-202)) (-777 (-354))) 33)) (-3514 (((-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))) (-1166 (-291 (-202)))) 142)) (-1417 (((-960) (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) 180) (((-960) (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) 178)) (-1222 (((-628 (-202)) (-588 (-202)) (-708)) 13)) (-2137 (((-1166 (-637)) (-588 (-202))) 94)) (-1644 (((-588 (-1068)) (-588 (-202))) 74)) (-4076 (((-3 (-291 (-202)) "failed") (-291 (-202))) 120)) (-2140 (((-108) (-202) (-1009 (-777 (-202)))) 109)) (-1495 (((-960) (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))) 198)) (-2988 (((-202) (-1009 (-777 (-202)))) 107)) (-2740 (((-202) (-1009 (-777 (-202)))) 108)) (-2281 (((-202) (-382 (-522))) 26)) (-3611 (((-1068) (-354)) 72)) (-3580 (((-202) (-354)) 17)) (-2041 (((-354) (-1166 (-291 (-202)))) 153)) (-1975 (((-291 (-202)) (-291 (-354))) 23)) (-4195 (((-382 (-522)) (-291 (-202))) 52)) (-4085 (((-291 (-382 (-522))) (-291 (-202))) 68)) (-2619 (((-291 (-354)) (-291 (-202))) 98)) (-1462 (((-202) (-291 (-202))) 53)) (-3694 (((-588 (-202)) (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) 63)) (-4186 (((-1009 (-777 (-202))) (-1009 (-777 (-202)))) 60)) (-2461 (((-1068) (-202)) 71)) (-2533 (((-637) (-202)) 90)) (-3046 (((-382 (-522)) (-202)) 54)) (-2911 (((-291 (-354)) (-202)) 48)) (-1431 (((-588 (-1009 (-777 (-202)))) (-588 (-1009 (-777 (-354))))) 42)) (-4165 (((-960) (-588 (-960))) 163) (((-960) (-960) (-960)) 160)) (-3819 (((-960) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
+(((-281) (-10 -7 (-15 -3580 ((-202) (-354))) (-15 -1975 ((-291 (-202)) (-291 (-354)))) (-15 -1357 ((-777 (-202)) (-777 (-354)))) (-15 -1259 ((-1009 (-777 (-202))) (-1009 (-777 (-354))))) (-15 -1431 ((-588 (-1009 (-777 (-202)))) (-588 (-1009 (-777 (-354)))))) (-15 -3046 ((-382 (-522)) (-202))) (-15 -4195 ((-382 (-522)) (-291 (-202)))) (-15 -1462 ((-202) (-291 (-202)))) (-15 -4076 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -2041 ((-354) (-1166 (-291 (-202))))) (-15 -3514 ((-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))) (-1166 (-291 (-202))))) (-15 -4085 ((-291 (-382 (-522))) (-291 (-202)))) (-15 -4186 ((-1009 (-777 (-202))) (-1009 (-777 (-202))))) (-15 -3694 ((-588 (-202)) (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))) (-15 -2533 ((-637) (-202))) (-15 -2137 ((-1166 (-637)) (-588 (-202)))) (-15 -2619 ((-291 (-354)) (-291 (-202)))) (-15 -3422 ((-1166 (-291 (-354))) (-1166 (-291 (-202))))) (-15 -2140 ((-108) (-202) (-1009 (-777 (-202))))) (-15 -2461 ((-1068) (-202))) (-15 -3611 ((-1068) (-354))) (-15 -1644 ((-588 (-1068)) (-588 (-202)))) (-15 -3205 ((-588 (-1068)) (-1066 (-202)))) (-15 -2988 ((-202) (-1009 (-777 (-202))))) (-15 -2740 ((-202) (-1009 (-777 (-202))))) (-15 -4165 ((-960) (-960) (-960))) (-15 -4165 ((-960) (-588 (-960)))) (-15 -2107 ((-1068) (-354))) (-15 -1417 ((-960) (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))))) (-15 -1417 ((-960) (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))) (-15 -3819 ((-960) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1495 ((-960) (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))) (-15 -1836 ((-291 (-354)) (-881 (-202)))) (-15 -4067 ((-202) (-881 (-202)))) (-15 -2911 ((-291 (-354)) (-202))) (-15 -2281 ((-202) (-382 (-522)))) (-15 -1222 ((-628 (-202)) (-588 (-202)) (-708))))) (T -281))
+((-1222 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-202))) (-5 *4 (-708)) (-5 *2 (-628 (-202))) (-5 *1 (-281)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-382 (-522))) (-5 *2 (-202)) (-5 *1 (-281)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-291 (-354))) (-5 *1 (-281)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-202)) (-5 *1 (-281)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))) (-5 *2 (-960)) (-5 *1 (-281)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-960)) (-5 *1 (-281)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) (-5 *2 (-960)) (-5 *1 (-281)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *2 (-960)) (-5 *1 (-281)))) (-2107 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-588 (-960))) (-5 *2 (-960)) (-5 *1 (-281)))) (-4165 (*1 *2 *2 *2) (-12 (-5 *2 (-960)) (-5 *1 (-281)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-281)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-1009 (-777 (-202)))) (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-281)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-1166 (-291 (-354)))) (-5 *1 (-281)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1166 (-637))) (-5 *1 (-281)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-637)) (-5 *1 (-281)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *2 (-588 (-202))) (-5 *1 (-281)))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-1009 (-777 (-202)))) (-5 *1 (-281)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-382 (-522)))) (-5 *1 (-281)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522)))) (-5 *1 (-281)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-281)))) (-4076 (*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-281)))) (-1462 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-202)) (-5 *1 (-281)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-382 (-522))) (-5 *1 (-281)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-382 (-522))) (-5 *1 (-281)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-588 (-1009 (-777 (-354))))) (-5 *2 (-588 (-1009 (-777 (-202))))) (-5 *1 (-281)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-1009 (-777 (-354)))) (-5 *2 (-1009 (-777 (-202)))) (-5 *1 (-281)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-777 (-354))) (-5 *2 (-777 (-202))) (-5 *1 (-281)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-291 (-354))) (-5 *2 (-291 (-202))) (-5 *1 (-281)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-281)))))
+(-10 -7 (-15 -3580 ((-202) (-354))) (-15 -1975 ((-291 (-202)) (-291 (-354)))) (-15 -1357 ((-777 (-202)) (-777 (-354)))) (-15 -1259 ((-1009 (-777 (-202))) (-1009 (-777 (-354))))) (-15 -1431 ((-588 (-1009 (-777 (-202)))) (-588 (-1009 (-777 (-354)))))) (-15 -3046 ((-382 (-522)) (-202))) (-15 -4195 ((-382 (-522)) (-291 (-202)))) (-15 -1462 ((-202) (-291 (-202)))) (-15 -4076 ((-3 (-291 (-202)) "failed") (-291 (-202)))) (-15 -2041 ((-354) (-1166 (-291 (-202))))) (-15 -3514 ((-2 (|:| |additions| (-522)) (|:| |multiplications| (-522)) (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))) (-1166 (-291 (-202))))) (-15 -4085 ((-291 (-382 (-522))) (-291 (-202)))) (-15 -4186 ((-1009 (-777 (-202))) (-1009 (-777 (-202))))) (-15 -3694 ((-588 (-202)) (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))) (-15 -2533 ((-637) (-202))) (-15 -2137 ((-1166 (-637)) (-588 (-202)))) (-15 -2619 ((-291 (-354)) (-291 (-202)))) (-15 -3422 ((-1166 (-291 (-354))) (-1166 (-291 (-202))))) (-15 -2140 ((-108) (-202) (-1009 (-777 (-202))))) (-15 -2461 ((-1068) (-202))) (-15 -3611 ((-1068) (-354))) (-15 -1644 ((-588 (-1068)) (-588 (-202)))) (-15 -3205 ((-588 (-1068)) (-1066 (-202)))) (-15 -2988 ((-202) (-1009 (-777 (-202))))) (-15 -2740 ((-202) (-1009 (-777 (-202))))) (-15 -4165 ((-960) (-960) (-960))) (-15 -4165 ((-960) (-588 (-960)))) (-15 -2107 ((-1068) (-354))) (-15 -1417 ((-960) (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))))) (-15 -1417 ((-960) (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))) (-15 -3819 ((-960) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1495 ((-960) (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))) (-15 -1836 ((-291 (-354)) (-881 (-202)))) (-15 -4067 ((-202) (-881 (-202)))) (-15 -2911 ((-291 (-354)) (-202))) (-15 -2281 ((-202) (-382 (-522)))) (-15 -1222 ((-628 (-202)) (-588 (-202)) (-708))))
+((-1687 (((-108) $ $) 11)) (-2277 (($ $ $) 15)) (-2254 (($ $ $) 14)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 44)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 53)) (-2259 (($ $ $) 21) (($ (-588 $)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2232 (((-3 $ "failed") $ $) 17)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 46)))
+(((-282 |#1|) (-10 -8 (-15 -3317 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -3885 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3885 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -2254 (|#1| |#1| |#1|)) (-15 -1687 ((-108) |#1| |#1|)) (-15 -2553 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -3297 ((-2 (|:| -2977 (-588 |#1|)) (|:| -1383 |#1|)) (-588 |#1|))) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2259 (|#1| |#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|))) (-283)) (T -282))
+NIL
+(-10 -8 (-15 -3317 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -3885 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3885 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2277 (|#1| |#1| |#1|)) (-15 -2254 (|#1| |#1| |#1|)) (-15 -1687 ((-108) |#1| |#1|)) (-15 -2553 ((-3 (-588 |#1|) "failed") (-588 |#1|) |#1|)) (-15 -3297 ((-2 (|:| -2977 (-588 |#1|)) (|:| -1383 |#1|)) (-588 |#1|))) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2259 (|#1| |#1| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2782 (((-108) $) 31)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-283) (-1197)) (T -283))
+((-1687 (*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-108)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-708)))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-283)))) (-2254 (*1 *1 *1 *1) (-4 *1 (-283))) (-2277 (*1 *1 *1 *1) (-4 *1 (-283))) (-3885 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1))) (-4 *1 (-283)))) (-3885 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-283)))) (-3317 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-283)))))
+(-13 (-849) (-10 -8 (-15 -1687 ((-108) $ $)) (-15 -3730 ((-708) $)) (-15 -2752 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -2254 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -3885 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $)) (-15 -3885 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3317 ((-3 (-588 $) "failed") (-588 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2289 (($ $ (-588 |#2|) (-588 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-270 |#2|)) 11) (($ $ (-588 (-270 |#2|))) NIL)))
+(((-284 |#1| |#2|) (-10 -8 (-15 -2289 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2289 (|#1| |#1| (-270 |#2|))) (-15 -2289 (|#1| |#1| |#2| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#2|)))) (-285 |#2|) (-1014)) (T -284))
+NIL
+(-10 -8 (-15 -2289 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2289 (|#1| |#1| (-270 |#2|))) (-15 -2289 (|#1| |#1| |#2| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#2|))))
+((-2289 (($ $ (-588 |#1|) (-588 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-270 |#1|)) 11) (($ $ (-588 (-270 |#1|))) 10)))
+(((-285 |#1|) (-1197) (-1014)) (T -285))
+((-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-270 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1014)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *3))) (-4 *1 (-285 *3)) (-4 *3 (-1014)))))
+(-13 (-483 |t#1| |t#1|) (-10 -8 (-15 -2289 ($ $ (-270 |t#1|))) (-15 -2289 ($ $ (-588 (-270 |t#1|))))))
+(((-483 |#1| |#1|) . T))
+((-2289 ((|#1| (-1 |#1| (-522)) (-1087 (-382 (-522)))) 24)))
+(((-286 |#1|) (-10 -7 (-15 -2289 (|#1| (-1 |#1| (-522)) (-1087 (-382 (-522)))))) (-37 (-382 (-522)))) (T -286))
+((-2289 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-522))) (-5 *4 (-1087 (-382 (-522)))) (-5 *1 (-286 *2)) (-4 *2 (-37 (-382 (-522)))))))
+(-10 -7 (-15 -2289 (|#1| (-1 |#1| (-522)) (-1087 (-382 (-522))))))
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 7)) (-1531 (((-108) $ $) 9)))
+(((-287) (-1014)) (T -287))
+NIL
+(-1014)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 62)) (-2229 (((-1152 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-1152 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-3 (-1151 |#2| |#3| |#4|) "failed") $) 24)) (-1484 (((-1152 |#1| |#2| |#3| |#4|) $) NIL) (((-1085) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-522) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-522)))) (((-1151 |#2| |#3| |#4|) $) NIL)) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-1152 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1166 (-1152 |#1| |#2| |#3| |#4|)))) (-628 $) (-1166 $)) NIL) (((-628 (-1152 |#1| |#2| |#3| |#4|)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-1152 |#1| |#2| |#3| |#4|) $) 21)) (-3004 (((-3 $ "failed") $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-1061)))) (-2556 (((-108) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-2446 (($ $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1391 (($ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) $) NIL)) (-4064 (((-3 (-777 |#2|) "failed") $) 76)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-283)))) (-3686 (((-1152 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-1152 |#1| |#2| |#3| |#4|)) (-588 (-1152 |#1| |#2| |#3| |#4|))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-270 (-1152 |#1| |#2| |#3| |#4|))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-588 (-270 (-1152 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-285 (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-588 (-1085)) (-588 (-1152 |#1| |#2| |#3| |#4|))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-483 (-1085) (-1152 |#1| |#2| |#3| |#4|)))) (($ $ (-1085) (-1152 |#1| |#2| |#3| |#4|)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-483 (-1085) (-1152 |#1| |#2| |#3| |#4|))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-1152 |#1| |#2| |#3| |#4|)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-262 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1085)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) (-708)) NIL) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-1152 |#1| |#2| |#3| |#4|) $) 17)) (-1431 (((-821 (-522)) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-563 (-498)))) (((-354) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-947))) (((-202) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-1152 |#1| |#2| |#3| |#4|) (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-1152 |#1| |#2| |#3| |#4|)) 28) (($ (-1085)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-962 (-1085)))) (($ (-1151 |#2| |#3| |#4|)) 36)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-1152 |#1| |#2| |#3| |#4|) (-838))) (|has| (-1152 |#1| |#2| |#3| |#4|) (-133))))) (-2323 (((-708)) NIL)) (-3025 (((-1152 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-507)))) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 41 T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-210))) (($ $ (-1085)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-829 (-1085)))) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) (-708)) NIL) (($ $ (-1 (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-1152 |#1| |#2| |#3| |#4|) (-784)))) (-1620 (($ $ $) 33) (($ (-1152 |#1| |#2| |#3| |#4|) (-1152 |#1| |#2| |#3| |#4|)) 30)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-1152 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1152 |#1| |#2| |#3| |#4|)) NIL)))
+(((-288 |#1| |#2| |#3| |#4|) (-13 (-919 (-1152 |#1| |#2| |#3| |#4|)) (-962 (-1151 |#2| |#3| |#4|)) (-10 -8 (-15 -4064 ((-3 (-777 |#2|) "failed") $)) (-15 -2190 ($ (-1151 |#2| |#3| |#4|))))) (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)) (-13 (-27) (-1106) (-405 |#1|)) (-1085) |#2|) (T -288))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1151 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4) (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *1 (-288 *3 *4 *5 *6)))) (-4064 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *2 (-777 *4)) (-5 *1 (-288 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4))))
+(-13 (-919 (-1152 |#1| |#2| |#3| |#4|)) (-962 (-1151 |#2| |#3| |#4|)) (-10 -8 (-15 -4064 ((-3 (-777 |#2|) "failed") $)) (-15 -2190 ($ (-1151 |#2| |#3| |#4|)))))
+((-1391 (((-291 |#2|) (-1 |#2| |#1|) (-291 |#1|)) 13)))
+(((-289 |#1| |#2|) (-10 -7 (-15 -1391 ((-291 |#2|) (-1 |#2| |#1|) (-291 |#1|)))) (-784) (-784)) (T -289))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-291 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-5 *2 (-291 *6)) (-5 *1 (-289 *5 *6)))))
+(-10 -7 (-15 -1391 ((-291 |#2|) (-1 |#2| |#1|) (-291 |#1|))))
+((-3058 (((-51) |#2| (-270 |#2|) (-708)) 33) (((-51) |#2| (-270 |#2|)) 24) (((-51) |#2| (-708)) 28) (((-51) |#2|) 25) (((-51) (-1085)) 21)) (-2773 (((-51) |#2| (-270 |#2|) (-382 (-522))) 51) (((-51) |#2| (-270 |#2|)) 48) (((-51) |#2| (-382 (-522))) 50) (((-51) |#2|) 49) (((-51) (-1085)) 47)) (-3079 (((-51) |#2| (-270 |#2|) (-382 (-522))) 46) (((-51) |#2| (-270 |#2|)) 43) (((-51) |#2| (-382 (-522))) 45) (((-51) |#2|) 44) (((-51) (-1085)) 42)) (-3068 (((-51) |#2| (-270 |#2|) (-522)) 39) (((-51) |#2| (-270 |#2|)) 35) (((-51) |#2| (-522)) 38) (((-51) |#2|) 36) (((-51) (-1085)) 34)))
+(((-290 |#1| |#2|) (-10 -7 (-15 -3058 ((-51) (-1085))) (-15 -3058 ((-51) |#2|)) (-15 -3058 ((-51) |#2| (-708))) (-15 -3058 ((-51) |#2| (-270 |#2|))) (-15 -3058 ((-51) |#2| (-270 |#2|) (-708))) (-15 -3068 ((-51) (-1085))) (-15 -3068 ((-51) |#2|)) (-15 -3068 ((-51) |#2| (-522))) (-15 -3068 ((-51) |#2| (-270 |#2|))) (-15 -3068 ((-51) |#2| (-270 |#2|) (-522))) (-15 -3079 ((-51) (-1085))) (-15 -3079 ((-51) |#2|)) (-15 -3079 ((-51) |#2| (-382 (-522)))) (-15 -3079 ((-51) |#2| (-270 |#2|))) (-15 -3079 ((-51) |#2| (-270 |#2|) (-382 (-522)))) (-15 -2773 ((-51) (-1085))) (-15 -2773 ((-51) |#2|)) (-15 -2773 ((-51) |#2| (-382 (-522)))) (-15 -2773 ((-51) |#2| (-270 |#2|))) (-15 -2773 ((-51) |#2| (-270 |#2|) (-382 (-522))))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -290))
+((-2773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *4 (-382 (-522))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2773 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))) (-3079 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *4 (-382 (-522))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3079 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))) (-3068 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 *5) (-584 *5))) (-5 *5 (-522)) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-4 *5 (-13 (-426) (-784) (-962 *4) (-584 *4))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3068 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))) (-3058 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-270 *3)) (-5 *5 (-708)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *6 *3)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-3058 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-290 *4 *5)) (-4 *5 (-13 (-27) (-1106) (-405 *4))))))
+(-10 -7 (-15 -3058 ((-51) (-1085))) (-15 -3058 ((-51) |#2|)) (-15 -3058 ((-51) |#2| (-708))) (-15 -3058 ((-51) |#2| (-270 |#2|))) (-15 -3058 ((-51) |#2| (-270 |#2|) (-708))) (-15 -3068 ((-51) (-1085))) (-15 -3068 ((-51) |#2|)) (-15 -3068 ((-51) |#2| (-522))) (-15 -3068 ((-51) |#2| (-270 |#2|))) (-15 -3068 ((-51) |#2| (-270 |#2|) (-522))) (-15 -3079 ((-51) (-1085))) (-15 -3079 ((-51) |#2|)) (-15 -3079 ((-51) |#2| (-382 (-522)))) (-15 -3079 ((-51) |#2| (-270 |#2|))) (-15 -3079 ((-51) |#2| (-270 |#2|) (-382 (-522)))) (-15 -2773 ((-51) (-1085))) (-15 -2773 ((-51) |#2|)) (-15 -2773 ((-51) |#2| (-382 (-522)))) (-15 -2773 ((-51) |#2| (-270 |#2|))) (-15 -2773 ((-51) |#2| (-270 |#2|) (-382 (-522)))))
+((-1416 (((-108) $ $) NIL)) (-1617 (((-588 $) $ (-1085)) NIL (|has| |#1| (-514))) (((-588 $) $) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $) (-1085)) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $)) NIL (|has| |#1| (-514))) (((-588 $) (-881 $)) NIL (|has| |#1| (-514)))) (-4032 (($ $ (-1085)) NIL (|has| |#1| (-514))) (($ $) NIL (|has| |#1| (-514))) (($ (-1081 $) (-1085)) NIL (|has| |#1| (-514))) (($ (-1081 $)) NIL (|has| |#1| (-514))) (($ (-881 $)) NIL (|has| |#1| (-514)))) (-2250 (((-108) $) 27 (-3708 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-4090 (((-588 (-1085)) $) 345)) (-1282 (((-382 (-1081 $)) $ (-561 $)) NIL (|has| |#1| (-514)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-1886 (((-588 (-561 $)) $) NIL)) (-2908 (($ $) 154 (|has| |#1| (-514)))) (-2772 (($ $) 130 (|has| |#1| (-514)))) (-1280 (($ $ (-1007 $)) 215 (|has| |#1| (-514))) (($ $ (-1085)) 211 (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) NIL (-3708 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-3305 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) 361) (($ $ (-588 (-561 $)) (-588 $)) 404)) (-1565 (((-393 (-1081 $)) (-1081 $)) 289 (-12 (|has| |#1| (-426)) (|has| |#1| (-514))))) (-3119 (($ $) NIL (|has| |#1| (-514)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-514)))) (-1929 (($ $) NIL (|has| |#1| (-514)))) (-1687 (((-108) $ $) NIL (|has| |#1| (-514)))) (-2884 (($ $) 150 (|has| |#1| (-514)))) (-2748 (($ $) 126 (|has| |#1| (-514)))) (-3276 (($ $ (-522)) 64 (|has| |#1| (-514)))) (-2930 (($ $) 158 (|has| |#1| (-514)))) (-2794 (($ $) 134 (|has| |#1| (-514)))) (-3175 (($) NIL (-3708 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))) CONST)) (-1221 (((-588 $) $ (-1085)) NIL (|has| |#1| (-514))) (((-588 $) $) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $) (-1085)) NIL (|has| |#1| (-514))) (((-588 $) (-1081 $)) NIL (|has| |#1| (-514))) (((-588 $) (-881 $)) NIL (|has| |#1| (-514)))) (-3944 (($ $ (-1085)) NIL (|has| |#1| (-514))) (($ $) NIL (|has| |#1| (-514))) (($ (-1081 $) (-1085)) 117 (|has| |#1| (-514))) (($ (-1081 $)) NIL (|has| |#1| (-514))) (($ (-881 $)) NIL (|has| |#1| (-514)))) (-1297 (((-3 (-561 $) "failed") $) 17) (((-3 (-1085) "failed") $) NIL) (((-3 |#1| "failed") $) 413) (((-3 (-47) "failed") $) 318 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-881 |#1|)) "failed") $) NIL (|has| |#1| (-514))) (((-3 (-881 |#1|) "failed") $) NIL (|has| |#1| (-971))) (((-3 (-382 (-522)) "failed") $) 45 (-3708 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-1484 (((-561 $) $) 11) (((-1085) $) NIL) ((|#1| $) 395) (((-47) $) NIL (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-881 |#1|)) $) NIL (|has| |#1| (-514))) (((-881 |#1|) $) NIL (|has| |#1| (-971))) (((-382 (-522)) $) 302 (-3708 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2277 (($ $ $) NIL (|has| |#1| (-514)))) (-2096 (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 110 (|has| |#1| (-971))) (((-628 |#1|) (-628 $)) 102 (|has| |#1| (-971))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (-3864 (($ $) 84 (|has| |#1| (-514)))) (-2682 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (-2254 (($ $ $) NIL (|has| |#1| (-514)))) (-1372 (($ $ (-1007 $)) 219 (|has| |#1| (-514))) (($ $ (-1085)) 217 (|has| |#1| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-514)))) (-2813 (((-108) $) NIL (|has| |#1| (-514)))) (-1967 (($ $ $) 185 (|has| |#1| (-514)))) (-2838 (($) 120 (|has| |#1| (-514)))) (-3219 (($ $ $) 205 (|has| |#1| (-514)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 367 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 373 (|has| |#1| (-815 (-354))))) (-1953 (($ $) NIL) (($ (-588 $)) NIL)) (-4161 (((-588 (-110)) $) NIL)) (-2626 (((-110) (-110)) 260)) (-2782 (((-108) $) 25 (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (-2591 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2902 (($ $) 66 (|has| |#1| (-971)))) (-2805 (((-1037 |#1| (-561 $)) $) 79 (|has| |#1| (-971)))) (-3404 (((-108) $) 46 (|has| |#1| (-514)))) (-1504 (($ $ (-522)) NIL (|has| |#1| (-514)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-514)))) (-1711 (((-1081 $) (-561 $)) 261 (|has| $ (-971)))) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 $ $) (-561 $)) 400)) (-3993 (((-3 (-561 $) "failed") $) NIL)) (-1254 (($ $) 124 (|has| |#1| (-514)))) (-3247 (($ $) 230 (|has| |#1| (-514)))) (-2224 (($ (-588 $)) NIL (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-2385 (((-1068) $) NIL)) (-1267 (((-588 (-561 $)) $) 48)) (-2909 (($ (-110) $) NIL) (($ (-110) (-588 $)) 405)) (-2462 (((-3 (-588 $) "failed") $) NIL (|has| |#1| (-1026)))) (-2170 (((-3 (-2 (|:| |val| $) (|:| -1400 (-522))) "failed") $) NIL (|has| |#1| (-971)))) (-4193 (((-3 (-588 $) "failed") $) 408 (|has| |#1| (-25)))) (-1241 (((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 $))) "failed") $) 412 (|has| |#1| (-25)))) (-3285 (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $) NIL (|has| |#1| (-1026))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-110)) NIL (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-1085)) NIL (|has| |#1| (-971)))) (-2249 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) 52)) (-3098 (($ $) NIL (-3708 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-2355 (($ $ (-1085)) 234 (|has| |#1| (-514))) (($ $ (-1007 $)) 236 (|has| |#1| (-514)))) (-4155 (((-708) $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) 43)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 282 (|has| |#1| (-514)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-1648 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-2692 (($ $ (-1085)) 209 (|has| |#1| (-514))) (($ $) 207 (|has| |#1| (-514)))) (-2868 (($ $) 201 (|has| |#1| (-514)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 287 (-12 (|has| |#1| (-426)) (|has| |#1| (-514))))) (-1916 (((-393 $) $) NIL (|has| |#1| (-514)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-514))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-514)))) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-514)))) (-3266 (($ $) 122 (|has| |#1| (-514)))) (-1263 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2289 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) 399) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) 355) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1085)) NIL (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-563 (-498)))) (($ $) NIL (|has| |#1| (-563 (-498)))) (($ $ (-110) $ (-1085)) 343 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-110)) (-588 $) (-1085)) 342 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) NIL (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ (-588 $))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ $)) NIL (|has| |#1| (-971)))) (-3730 (((-708) $) NIL (|has| |#1| (-514)))) (-2706 (($ $) 222 (|has| |#1| (-514)))) (-2545 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-3043 (($ $) NIL) (($ $ $) NIL)) (-2735 (($ $) 232 (|has| |#1| (-514)))) (-3236 (($ $) 183 (|has| |#1| (-514)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-971))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-971))) (($ $ (-1085)) NIL (|has| |#1| (-971)))) (-3533 (($ $) 67 (|has| |#1| (-514)))) (-2816 (((-1037 |#1| (-561 $)) $) 81 (|has| |#1| (-514)))) (-1479 (($ $) 300 (|has| $ (-971)))) (-1738 (($ $) 160 (|has| |#1| (-514)))) (-2804 (($ $) 136 (|has| |#1| (-514)))) (-2919 (($ $) 156 (|has| |#1| (-514)))) (-2784 (($ $) 132 (|has| |#1| (-514)))) (-2896 (($ $) 152 (|has| |#1| (-514)))) (-2761 (($ $) 128 (|has| |#1| (-514)))) (-1431 (((-821 (-522)) $) NIL (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#1| (-563 (-821 (-354))))) (($ (-393 $)) NIL (|has| |#1| (-514))) (((-498) $) 340 (|has| |#1| (-563 (-498))))) (-3122 (($ $ $) NIL (|has| |#1| (-447)))) (-1288 (($ $ $) NIL (|has| |#1| (-447)))) (-2190 (((-792) $) 398) (($ (-561 $)) 389) (($ (-1085)) 357) (($ |#1|) 319) (($ $) NIL (|has| |#1| (-514))) (($ (-47)) 294 (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) (($ (-1037 |#1| (-561 $))) 83 (|has| |#1| (-971))) (($ (-382 |#1|)) NIL (|has| |#1| (-514))) (($ (-881 (-382 |#1|))) NIL (|has| |#1| (-514))) (($ (-382 (-881 (-382 |#1|)))) NIL (|has| |#1| (-514))) (($ (-382 (-881 |#1|))) NIL (|has| |#1| (-514))) (($ (-881 |#1|)) NIL (|has| |#1| (-971))) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-514)) (|has| |#1| (-962 (-382 (-522)))))) (($ (-522)) 34 (-3708 (|has| |#1| (-962 (-522))) (|has| |#1| (-971))))) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL (|has| |#1| (-971)))) (-2308 (($ $) NIL) (($ (-588 $)) NIL)) (-1480 (($ $ $) 203 (|has| |#1| (-514)))) (-1829 (($ $ $) 189 (|has| |#1| (-514)))) (-2709 (($ $ $) 193 (|has| |#1| (-514)))) (-2477 (($ $ $) 187 (|has| |#1| (-514)))) (-4205 (($ $ $) 191 (|has| |#1| (-514)))) (-3614 (((-108) (-110)) 9)) (-1759 (($ $) 166 (|has| |#1| (-514)))) (-2836 (($ $) 142 (|has| |#1| (-514)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) 162 (|has| |#1| (-514)))) (-2815 (($ $) 138 (|has| |#1| (-514)))) (-1776 (($ $) 170 (|has| |#1| (-514)))) (-2860 (($ $) 146 (|has| |#1| (-514)))) (-1805 (($ (-1085) $) NIL) (($ (-1085) $ $) NIL) (($ (-1085) $ $ $) NIL) (($ (-1085) $ $ $ $) NIL) (($ (-1085) (-588 $)) NIL)) (-1601 (($ $) 197 (|has| |#1| (-514)))) (-2607 (($ $) 195 (|has| |#1| (-514)))) (-3924 (($ $) 172 (|has| |#1| (-514)))) (-2872 (($ $) 148 (|has| |#1| (-514)))) (-1768 (($ $) 168 (|has| |#1| (-514)))) (-2848 (($ $) 144 (|has| |#1| (-514)))) (-1752 (($ $) 164 (|has| |#1| (-514)))) (-2825 (($ $) 140 (|has| |#1| (-514)))) (-2241 (($ $) 175 (|has| |#1| (-514)))) (-3510 (($ $ (-522)) NIL (-3708 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) NIL (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026)))) (($ $ (-850)) NIL (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (-3566 (($) 20 (-3708 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) CONST)) (-2558 (($ $) 226 (|has| |#1| (-514)))) (-3577 (($) 22 (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))) CONST)) (-2018 (($ $) 177 (|has| |#1| (-514))) (($ $ $) 179 (|has| |#1| (-514)))) (-1654 (($ $) 224 (|has| |#1| (-514)))) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-971))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-971))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-971))) (($ $ (-1085)) NIL (|has| |#1| (-971)))) (-3543 (($ $) 228 (|has| |#1| (-514)))) (-2627 (($ $ $) 181 (|has| |#1| (-514)))) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 76)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 75)) (-1620 (($ (-1037 |#1| (-561 $)) (-1037 |#1| (-561 $))) 93 (|has| |#1| (-514))) (($ $ $) 42 (-3708 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-1612 (($ $ $) 40 (-3708 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (($ $) 29 (-3708 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (-1602 (($ $ $) 38 (-3708 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))) (** (($ $ $) 61 (|has| |#1| (-514))) (($ $ (-382 (-522))) 297 (|has| |#1| (-514))) (($ $ (-522)) 71 (-3708 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) 68 (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026)))) (($ $ (-850)) 73 (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026))))) (* (($ (-382 (-522)) $) NIL (|has| |#1| (-514))) (($ $ (-382 (-522))) NIL (|has| |#1| (-514))) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157))) (($ $ $) 36 (-3708 (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) (|has| |#1| (-1026)))) (($ (-522) $) 32 (-3708 (|has| |#1| (-21)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (($ (-708) $) NIL (-3708 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))))) (($ (-850) $) NIL (-3708 (|has| |#1| (-25)) (-12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))))))
+(((-291 |#1|) (-13 (-405 |#1|) (-10 -8 (IF (|has| |#1| (-514)) (PROGN (-6 (-29 |#1|)) (-6 (-1106)) (-6 (-146)) (-6 (-574)) (-6 (-1049)) (-15 -3864 ($ $)) (-15 -3404 ((-108) $)) (-15 -3276 ($ $ (-522))) (IF (|has| |#1| (-426)) (PROGN (-15 -3495 ((-393 (-1081 $)) (-1081 $))) (-15 -1565 ((-393 (-1081 $)) (-1081 $)))) |%noBranch|) (IF (|has| |#1| (-962 (-522))) (-6 (-962 (-47))) |%noBranch|)) |%noBranch|))) (-784)) (T -291))
+((-3864 (*1 *1 *1) (-12 (-5 *1 (-291 *2)) (-4 *2 (-514)) (-4 *2 (-784)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784)))) (-3276 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784)))) (-3495 (*1 *2 *3) (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1)) (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784)))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1)) (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784)))))
+(-13 (-405 |#1|) (-10 -8 (IF (|has| |#1| (-514)) (PROGN (-6 (-29 |#1|)) (-6 (-1106)) (-6 (-146)) (-6 (-574)) (-6 (-1049)) (-15 -3864 ($ $)) (-15 -3404 ((-108) $)) (-15 -3276 ($ $ (-522))) (IF (|has| |#1| (-426)) (PROGN (-15 -3495 ((-393 (-1081 $)) (-1081 $))) (-15 -1565 ((-393 (-1081 $)) (-1081 $)))) |%noBranch|) (IF (|has| |#1| (-962 (-522))) (-6 (-962 (-47))) |%noBranch|)) |%noBranch|)))
+((-2500 (((-51) |#2| (-110) (-270 |#2|) (-588 |#2|)) 86) (((-51) |#2| (-110) (-270 |#2|) (-270 |#2|)) 82) (((-51) |#2| (-110) (-270 |#2|) |#2|) 84) (((-51) (-270 |#2|) (-110) (-270 |#2|) |#2|) 85) (((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|))) 78) (((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 |#2|)) 80) (((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 |#2|)) 81) (((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|))) 79) (((-51) (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|)) 87) (((-51) (-270 |#2|) (-110) (-270 |#2|) (-270 |#2|)) 83)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -2500 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-270 |#2|))) (-15 -2500 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -2500 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -2500 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -2500 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -2500 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -2500 ((-51) (-270 |#2|) (-110) (-270 |#2|) |#2|)) (-15 -2500 ((-51) |#2| (-110) (-270 |#2|) |#2|)) (-15 -2500 ((-51) |#2| (-110) (-270 |#2|) (-270 |#2|))) (-15 -2500 ((-51) |#2| (-110) (-270 |#2|) (-588 |#2|)))) (-13 (-784) (-514) (-563 (-498))) (-405 |#1|)) (T -292))
+((-2500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-5 *6 (-588 *3)) (-4 *3 (-405 *7)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *7 *3)))) (-2500 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *3)))) (-2500 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *3)))) (-2500 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-270 *5)) (-5 *4 (-110)) (-4 *5 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *5)))) (-2500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-110))) (-5 *6 (-588 (-270 *8))) (-4 *8 (-405 *7)) (-5 *5 (-270 *8)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *7 *8)))) (-2500 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7)) (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) (-2500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-588 (-270 *8))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *8)) (-5 *6 (-588 *8)) (-4 *8 (-405 *7)) (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *7 *8)))) (-2500 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7)) (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) (-2500 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-588 *7)) (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *6 *7)))) (-2500 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-270 *6)) (-5 *4 (-110)) (-4 *6 (-405 *5)) (-4 *5 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51)) (-5 *1 (-292 *5 *6)))))
+(-10 -7 (-15 -2500 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-270 |#2|))) (-15 -2500 ((-51) (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -2500 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -2500 ((-51) (-588 (-270 |#2|)) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -2500 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 |#2|))) (-15 -2500 ((-51) (-588 |#2|) (-588 (-110)) (-270 |#2|) (-588 (-270 |#2|)))) (-15 -2500 ((-51) (-270 |#2|) (-110) (-270 |#2|) |#2|)) (-15 -2500 ((-51) |#2| (-110) (-270 |#2|) |#2|)) (-15 -2500 ((-51) |#2| (-110) (-270 |#2|) (-270 |#2|))) (-15 -2500 ((-51) |#2| (-110) (-270 |#2|) (-588 |#2|))))
+((-1534 (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522) (-1068)) 46) (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522)) 47) (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522) (-1068)) 43) (((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522)) 44)) (-1214 (((-1 (-202) (-202)) (-202)) 45)))
+(((-293) (-10 -7 (-15 -1214 ((-1 (-202) (-202)) (-202))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522) (-1068))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522) (-1068))))) (T -293))
+((-1534 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) (-5 *8 (-1068)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-1534 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-1534 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *7 (-1068)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-1534 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *2 (-1116 (-855))) (-5 *1 (-293)))) (-1214 (*1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-293)) (-5 *3 (-202)))))
+(-10 -7 (-15 -1214 ((-1 (-202) (-202)) (-202))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-1 (-202) (-202)) (-522) (-1068))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522))) (-15 -1534 ((-1116 (-855)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-202) (-522) (-1068))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 24)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 19)) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) 31)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) 15)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-382 (-522))) NIL) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-1858 (($ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106)))))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) NIL)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3302 (((-382 (-522)) $) 16)) (-2453 (($ (-1151 |#1| |#2| |#3|)) 11)) (-1400 (((-1151 |#1| |#2| |#3|) $) 12)) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2793 (((-382 (-522)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 10)) (-2190 (((-792) $) 37) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) 29)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) NIL)) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 26)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 32)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-294 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-729) (-10 -8 (-15 -2453 ($ (-1151 |#1| |#2| |#3|))) (-15 -1400 ((-1151 |#1| |#2| |#3|) $)) (-15 -3302 ((-382 (-522)) $)))) (-13 (-338) (-784)) (-1085) |#1|) (T -294))
+((-2453 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-294 *3 *4 *5)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-1151 *3 *4 *5)) (-5 *1 (-294 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-294 *3 *4 *5)) (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3))))
+(-13 (-1147 |#1|) (-729) (-10 -8 (-15 -2453 ($ (-1151 |#1| |#2| |#3|))) (-15 -1400 ((-1151 |#1| |#2| |#3|) $)) (-15 -3302 ((-382 (-522)) $))))
+((-1504 (((-2 (|:| -1400 (-708)) (|:| -2977 |#1|) (|:| |radicand| (-588 |#1|))) (-393 |#1|) (-708)) 24)) (-1254 (((-588 (-2 (|:| -2977 (-708)) (|:| |logand| |#1|))) (-393 |#1|)) 28)))
+(((-295 |#1|) (-10 -7 (-15 -1504 ((-2 (|:| -1400 (-708)) (|:| -2977 |#1|) (|:| |radicand| (-588 |#1|))) (-393 |#1|) (-708))) (-15 -1254 ((-588 (-2 (|:| -2977 (-708)) (|:| |logand| |#1|))) (-393 |#1|)))) (-514)) (T -295))
+((-1254 (*1 *2 *3) (-12 (-5 *3 (-393 *4)) (-4 *4 (-514)) (-5 *2 (-588 (-2 (|:| -2977 (-708)) (|:| |logand| *4)))) (-5 *1 (-295 *4)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-393 *5)) (-4 *5 (-514)) (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *5) (|:| |radicand| (-588 *5)))) (-5 *1 (-295 *5)) (-5 *4 (-708)))))
+(-10 -7 (-15 -1504 ((-2 (|:| -1400 (-708)) (|:| -2977 |#1|) (|:| |radicand| (-588 |#1|))) (-393 |#1|) (-708))) (-15 -1254 ((-588 (-2 (|:| -2977 (-708)) (|:| |logand| |#1|))) (-393 |#1|))))
+((-4090 (((-588 |#2|) (-1081 |#4|)) 43)) (-1322 ((|#3| (-522)) 46)) (-3524 (((-1081 |#4|) (-1081 |#3|)) 30)) (-2823 (((-1081 |#4|) (-1081 |#4|) (-522)) 56)) (-1542 (((-1081 |#3|) (-1081 |#4|)) 21)) (-2793 (((-588 (-708)) (-1081 |#4|) (-588 |#2|)) 40)) (-2066 (((-1081 |#3|) (-1081 |#4|) (-588 |#2|) (-588 |#3|)) 35)))
+(((-296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2066 ((-1081 |#3|) (-1081 |#4|) (-588 |#2|) (-588 |#3|))) (-15 -2793 ((-588 (-708)) (-1081 |#4|) (-588 |#2|))) (-15 -4090 ((-588 |#2|) (-1081 |#4|))) (-15 -1542 ((-1081 |#3|) (-1081 |#4|))) (-15 -3524 ((-1081 |#4|) (-1081 |#3|))) (-15 -2823 ((-1081 |#4|) (-1081 |#4|) (-522))) (-15 -1322 (|#3| (-522)))) (-730) (-784) (-971) (-878 |#3| |#1| |#2|)) (T -296))
+((-1322 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-971)) (-5 *1 (-296 *4 *5 *2 *6)) (-4 *6 (-878 *2 *4 *5)))) (-2823 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 *7)) (-5 *3 (-522)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-5 *1 (-296 *4 *5 *6 *7)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1081 *6)) (-4 *6 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-1081 *7)) (-5 *1 (-296 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-1081 *6)) (-5 *1 (-296 *4 *5 *6 *7)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-588 *5)) (-5 *1 (-296 *4 *5 *6 *7)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *8)) (-5 *4 (-588 *6)) (-4 *6 (-784)) (-4 *8 (-878 *7 *5 *6)) (-4 *5 (-730)) (-4 *7 (-971)) (-5 *2 (-588 (-708))) (-5 *1 (-296 *5 *6 *7 *8)))) (-2066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 *8)) (-4 *7 (-784)) (-4 *8 (-971)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-5 *2 (-1081 *8)) (-5 *1 (-296 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2066 ((-1081 |#3|) (-1081 |#4|) (-588 |#2|) (-588 |#3|))) (-15 -2793 ((-588 (-708)) (-1081 |#4|) (-588 |#2|))) (-15 -4090 ((-588 |#2|) (-1081 |#4|))) (-15 -1542 ((-1081 |#3|) (-1081 |#4|))) (-15 -3524 ((-1081 |#4|) (-1081 |#3|))) (-15 -2823 ((-1081 |#4|) (-1081 |#4|) (-522))) (-15 -1322 (|#3| (-522))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 14)) (-2258 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-522)))) $) 18)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1629 (((-708) $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3750 ((|#1| $ (-522)) NIL)) (-3816 (((-522) $ (-522)) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3896 (($ (-1 |#1| |#1|) $) NIL)) (-1564 (($ (-1 (-522) (-522)) $) 10)) (-2385 (((-1068) $) NIL)) (-3443 (($ $ $) NIL (|has| (-522) (-729)))) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL) (($ |#1|) NIL)) (-3243 (((-522) |#1| $) NIL)) (-3566 (($) 15 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) 21 (|has| |#1| (-784)))) (-1612 (($ $) 11) (($ $ $) 20)) (-1602 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL) (($ (-522) |#1|) 19)))
+(((-297 |#1|) (-13 (-21) (-655 (-522)) (-298 |#1| (-522)) (-10 -7 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) (-1014)) (T -297))
+NIL
+(-13 (-21) (-655 (-522)) (-298 |#1| (-522)) (-10 -7 (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2258 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))) $) 27)) (-1233 (((-3 $ "failed") $ $) 19)) (-1629 (((-708) $) 28)) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 32)) (-1484 ((|#1| $) 31)) (-3750 ((|#1| $ (-522)) 25)) (-3816 ((|#2| $ (-522)) 26)) (-3896 (($ (-1 |#1| |#1|) $) 22)) (-1564 (($ (-1 |#2| |#2|) $) 23)) (-2385 (((-1068) $) 9)) (-3443 (($ $ $) 21 (|has| |#2| (-729)))) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ |#1|) 33)) (-3243 ((|#2| |#1| $) 24)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1602 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ |#2| |#1|) 29)))
+(((-298 |#1| |#2|) (-1197) (-1014) (-124)) (T -298))
+((-1602 (*1 *1 *2 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)) (-5 *2 (-708)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)) (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 *4)))))) (-3816 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-298 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-124)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-298 *2 *4)) (-4 *4 (-124)) (-4 *2 (-1014)))) (-3243 (*1 *2 *3 *1) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124)))) (-1564 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)))) (-3896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124)))) (-3443 (*1 *1 *1 *1) (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124)) (-4 *3 (-729)))))
+(-13 (-124) (-962 |t#1|) (-10 -8 (-15 -1602 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1629 ((-708) $)) (-15 -2258 ((-588 (-2 (|:| |gen| |t#1|) (|:| -3266 |t#2|))) $)) (-15 -3816 (|t#2| $ (-522))) (-15 -3750 (|t#1| $ (-522))) (-15 -3243 (|t#2| |t#1| $)) (-15 -1564 ($ (-1 |t#2| |t#2|) $)) (-15 -3896 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-729)) (-15 -3443 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-962 |#1|) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2258 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1629 (((-708) $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3750 ((|#1| $ (-522)) NIL)) (-3816 (((-708) $ (-522)) NIL)) (-3896 (($ (-1 |#1| |#1|) $) NIL)) (-1564 (($ (-1 (-708) (-708)) $) NIL)) (-2385 (((-1068) $) NIL)) (-3443 (($ $ $) NIL (|has| (-708) (-729)))) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL) (($ |#1|) NIL)) (-3243 (((-708) |#1| $) NIL)) (-3566 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-708) |#1|) NIL)))
+(((-299 |#1|) (-298 |#1| (-708)) (-1014)) (T -299))
+NIL
+(-298 |#1| (-708))
+((-2071 (($ $) 53)) (-2671 (($ $ |#2| |#3| $) 14)) (-3861 (($ (-1 |#3| |#3|) $) 35)) (-3108 (((-108) $) 27)) (-3118 ((|#2| $) 29)) (-2232 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2255 ((|#2| $) 49)) (-3916 (((-588 |#2|) $) 38)) (-3632 (($ $ $ (-708)) 23)) (-1620 (($ $ |#2|) 42)))
+(((-300 |#1| |#2| |#3|) (-10 -8 (-15 -2071 (|#1| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3632 (|#1| |#1| |#1| (-708))) (-15 -2671 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3861 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3916 ((-588 |#2|) |#1|)) (-15 -3118 (|#2| |#1|)) (-15 -3108 ((-108) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1620 (|#1| |#1| |#2|))) (-301 |#2| |#3|) (-971) (-729)) (T -300))
+NIL
+(-10 -8 (-15 -2071 (|#1| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3632 (|#1| |#1| |#1| (-708))) (-15 -2671 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3861 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3916 ((-588 |#2|) |#1|)) (-15 -3118 (|#2| |#1|)) (-15 -3108 ((-108) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1620 (|#1| |#1| |#2|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 90 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 88 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 87)) (-1484 (((-522) $) 91 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 89 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 86)) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-2071 (($ $) 75 (|has| |#1| (-426)))) (-2671 (($ $ |#1| |#2| $) 79)) (-2782 (((-108) $) 31)) (-2112 (((-708) $) 82)) (-3340 (((-108) $) 62)) (-4049 (($ |#1| |#2|) 61)) (-2925 ((|#2| $) 81)) (-3861 (($ (-1 |#2| |#2|) $) 80)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-3108 (((-108) $) 85)) (-3118 ((|#1| $) 84)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-514)))) (-2793 ((|#2| $) 64)) (-2255 ((|#1| $) 76 (|has| |#1| (-426)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47) (($ (-382 (-522))) 57 (-3708 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522))))))) (-3916 (((-588 |#1|) $) 83)) (-3243 ((|#1| $ |#2|) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-3632 (($ $ $ (-708)) 78 (|has| |#1| (-157)))) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-301 |#1| |#2|) (-1197) (-971) (-729)) (T -301))
+((-3108 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-108)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-588 *3)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-708)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)))) (-2671 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))) (-3632 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-4 *3 (-157)))) (-2232 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *2 (-514)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)) (-4 *2 (-426)))) (-2071 (*1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *2 (-426)))))
+(-13 (-46 |t#1| |t#2|) (-386 |t#1|) (-10 -8 (-15 -3108 ((-108) $)) (-15 -3118 (|t#1| $)) (-15 -3916 ((-588 |t#1|) $)) (-15 -2112 ((-708) $)) (-15 -2925 (|t#2| $)) (-15 -3861 ($ (-1 |t#2| |t#2|) $)) (-15 -2671 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-157)) (-15 -3632 ($ $ $ (-708))) |%noBranch|) (IF (|has| |t#1| (-514)) (-15 -2232 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-15 -2255 (|t#1| $)) (-15 -2071 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-266) |has| |#1| (-514)) ((-386 |#1|) . T) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2498 (((-108) (-108)) NIL)) (-2379 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-3362 (($ $) NIL (|has| |#1| (-1014)))) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3381 (($ $ (-522)) NIL)) (-3260 (((-708) $) NIL)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-1369 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4095 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3080 (($ (-588 |#1|)) NIL)) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3681 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-2630 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-302 |#1|) (-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3080 ($ (-588 |#1|))) (-15 -3260 ((-708) $)) (-15 -3381 ($ $ (-522))) (-15 -2498 ((-108) (-108))))) (-1120)) (T -302))
+((-3080 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-302 *3)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))) (-2498 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-302 *3)) (-4 *3 (-1120)))))
+(-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3080 ($ (-588 |#1|))) (-15 -3260 ((-708) $)) (-15 -3381 ($ $ (-522))) (-15 -2498 ((-108) (-108)))))
+((-1651 (((-108) $) 42)) (-2219 (((-708)) 22)) (-1865 ((|#2| $) 46) (($ $ (-850)) 103)) (-1629 (((-708)) 97)) (-3766 (($ (-1166 |#2|)) 20)) (-2741 (((-108) $) 115)) (-2100 ((|#2| $) 48) (($ $ (-850)) 101)) (-1712 (((-1081 |#2|) $) NIL) (((-1081 $) $ (-850)) 94)) (-3074 (((-1081 |#2|) $) 83)) (-2941 (((-1081 |#2|) $) 80) (((-3 (-1081 |#2|) "failed") $ $) 77)) (-1425 (($ $ (-1081 |#2|)) 53)) (-2621 (((-770 (-850))) 28) (((-850)) 43)) (-4078 (((-126)) 25)) (-2793 (((-770 (-850)) $) 30) (((-850) $) 116)) (-1299 (($) 109)) (-3677 (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $)) 39)) (-2143 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2351 (((-108) $) 41)))
+(((-303 |#1| |#2|) (-10 -8 (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1629 ((-708))) (-15 -2143 (|#1| |#1|)) (-15 -2941 ((-3 (-1081 |#2|) "failed") |#1| |#1|)) (-15 -2941 ((-1081 |#2|) |#1|)) (-15 -3074 ((-1081 |#2|) |#1|)) (-15 -1425 (|#1| |#1| (-1081 |#2|))) (-15 -2741 ((-108) |#1|)) (-15 -1299 (|#1|)) (-15 -1865 (|#1| |#1| (-850))) (-15 -2100 (|#1| |#1| (-850))) (-15 -1712 ((-1081 |#1|) |#1| (-850))) (-15 -1865 (|#2| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -2793 ((-850) |#1|)) (-15 -2621 ((-850))) (-15 -1712 ((-1081 |#2|) |#1|)) (-15 -3766 (|#1| (-1166 |#2|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -2219 ((-708))) (-15 -2621 ((-770 (-850)))) (-15 -2793 ((-770 (-850)) |#1|)) (-15 -1651 ((-108) |#1|)) (-15 -2351 ((-108) |#1|)) (-15 -4078 ((-126)))) (-304 |#2|) (-338)) (T -303))
+((-4078 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-126)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-2621 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-770 (-850))) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-2219 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-2621 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-850)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))) (-1629 (*1 *2) (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4)) (-4 *3 (-304 *4)))))
+(-10 -8 (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1629 ((-708))) (-15 -2143 (|#1| |#1|)) (-15 -2941 ((-3 (-1081 |#2|) "failed") |#1| |#1|)) (-15 -2941 ((-1081 |#2|) |#1|)) (-15 -3074 ((-1081 |#2|) |#1|)) (-15 -1425 (|#1| |#1| (-1081 |#2|))) (-15 -2741 ((-108) |#1|)) (-15 -1299 (|#1|)) (-15 -1865 (|#1| |#1| (-850))) (-15 -2100 (|#1| |#1| (-850))) (-15 -1712 ((-1081 |#1|) |#1| (-850))) (-15 -1865 (|#2| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -2793 ((-850) |#1|)) (-15 -2621 ((-850))) (-15 -1712 ((-1081 |#2|) |#1|)) (-15 -3766 (|#1| (-1166 |#2|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -2219 ((-708))) (-15 -2621 ((-770 (-850)))) (-15 -2793 ((-770 (-850)) |#1|)) (-15 -1651 ((-108) |#1|)) (-15 -2351 ((-108) |#1|)) (-15 -4078 ((-126))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1651 (((-108) $) 94)) (-2219 (((-708)) 90)) (-1865 ((|#1| $) 140) (($ $ (-850)) 137 (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) 122 (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1687 (((-108) $ $) 59)) (-1629 (((-708)) 112 (|has| |#1| (-343)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 101)) (-1484 ((|#1| $) 100)) (-3766 (($ (-1166 |#1|)) 146)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-343)))) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-3255 (($) 109 (|has| |#1| (-343)))) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-1223 (($) 124 (|has| |#1| (-343)))) (-2511 (((-108) $) 125 (|has| |#1| (-343)))) (-2111 (($ $ (-708)) 87 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) 86 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) 71)) (-3714 (((-850) $) 127 (|has| |#1| (-343))) (((-770 (-850)) $) 84 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) 31)) (-3400 (($) 135 (|has| |#1| (-343)))) (-2741 (((-108) $) 134 (|has| |#1| (-343)))) (-2100 ((|#1| $) 141) (($ $ (-850)) 138 (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) 113 (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-1712 (((-1081 |#1|) $) 145) (((-1081 $) $ (-850)) 139 (|has| |#1| (-343)))) (-2120 (((-850) $) 110 (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) 131 (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) 130 (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) 129 (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) 132 (|has| |#1| (-343)))) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-3802 (($) 114 (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) 111 (|has| |#1| (-343)))) (-2822 (((-108) $) 93)) (-4151 (((-1032) $) 10)) (-1383 (($) 133 (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 121 (|has| |#1| (-343)))) (-1916 (((-393 $) $) 74)) (-2621 (((-770 (-850))) 91) (((-850)) 143)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-3018 (((-708) $) 126 (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) 85 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) 99)) (-2157 (($ $) 118 (|has| |#1| (-343))) (($ $ (-708)) 116 (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) 92) (((-850) $) 142)) (-1479 (((-1081 |#1|)) 144)) (-2581 (($) 123 (|has| |#1| (-343)))) (-1299 (($) 136 (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) 148) (((-628 |#1|) (-1166 $)) 147)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 120 (|has| |#1| (-343)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ |#1|) 102)) (-2143 (($ $) 119 (|has| |#1| (-343))) (((-3 $ "failed") $) 83 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) 29)) (-3855 (((-1166 $)) 150) (((-1166 $) (-850)) 149)) (-3958 (((-108) $ $) 39)) (-2351 (((-108) $) 95)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-3428 (($ $) 89 (|has| |#1| (-343))) (($ $ (-708)) 88 (|has| |#1| (-343)))) (-2213 (($ $) 117 (|has| |#1| (-343))) (($ $ (-708)) 115 (|has| |#1| (-343)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64) (($ $ |#1|) 98)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-304 |#1|) (-1197) (-338)) (T -304))
+((-3855 (*1 *2) (-12 (-4 *3 (-338)) (-5 *2 (-1166 *1)) (-4 *1 (-304 *3)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-338)) (-5 *2 (-1166 *1)) (-4 *1 (-304 *4)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1166 *3)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-304 *4)) (-4 *4 (-338)) (-5 *2 (-628 *4)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-4 *1 (-304 *3)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3)))) (-1479 (*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3)))) (-2621 (*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338)))) (-1712 (*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-4 *4 (-343)) (-4 *4 (-338)) (-5 *2 (-1081 *1)) (-4 *1 (-304 *4)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) (-1865 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)))) (-1299 (*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) (-3400 (*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-108)))) (-1383 (*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))) (-1425 (*1 *1 *1 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-343)) (-4 *1 (-304 *3)) (-4 *3 (-338)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-1081 *3)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-1081 *3)))) (-2941 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-1081 *3)))))
+(-13 (-1183 |t#1|) (-962 |t#1|) (-10 -8 (-15 -3855 ((-1166 $))) (-15 -3855 ((-1166 $) (-850))) (-15 -3677 ((-1166 |t#1|) $)) (-15 -3677 ((-628 |t#1|) (-1166 $))) (-15 -3766 ($ (-1166 |t#1|))) (-15 -1712 ((-1081 |t#1|) $)) (-15 -1479 ((-1081 |t#1|))) (-15 -2621 ((-850))) (-15 -2793 ((-850) $)) (-15 -2100 (|t#1| $)) (-15 -1865 (|t#1| $)) (IF (|has| |t#1| (-343)) (PROGN (-6 (-324)) (-15 -1712 ((-1081 $) $ (-850))) (-15 -2100 ($ $ (-850))) (-15 -1865 ($ $ (-850))) (-15 -1299 ($)) (-15 -3400 ($)) (-15 -2741 ((-108) $)) (-15 -1383 ($)) (-15 -1425 ($ $ (-1081 |t#1|))) (-15 -3074 ((-1081 |t#1|) $)) (-15 -2941 ((-1081 |t#1|) $)) (-15 -2941 ((-3 (-1081 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3708 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-210) |has| |#1| (-343)) ((-220) . T) ((-266) . T) ((-283) . T) ((-1183 |#1|) . T) ((-338) . T) ((-377) -3708 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-343) |has| |#1| (-343)) ((-324) |has| |#1| (-343)) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-343)) ((-1124) . T) ((-1173 |#1|) . T))
+((-1416 (((-108) $ $) NIL)) (-3962 (($ (-1084) $) 88)) (-2755 (($) 76)) (-3777 (((-1032) (-1032)) 11)) (-3976 (($) 77)) (-4182 (($) 90) (($ (-291 (-637))) 96) (($ (-291 (-639))) 93) (($ (-291 (-632))) 99) (($ (-291 (-354))) 105) (($ (-291 (-522))) 102) (($ (-291 (-154 (-354)))) 108)) (-3716 (($ (-1084) $) 89)) (-4185 (($ (-588 (-792))) 79)) (-3736 (((-1171) $) 73)) (-4177 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2174 (($ (-1032)) 45)) (-2348 (((-1018) $) 25)) (-3633 (($ (-1007 (-881 (-522))) $) 85) (($ (-1007 (-881 (-522))) (-881 (-522)) $) 86)) (-1365 (($ (-1032)) 87)) (-2587 (($ (-1084) $) 110) (($ (-1084) $ $) 111)) (-2540 (($ (-1085) (-588 (-1085))) 75)) (-1272 (($ (-1068)) 82) (($ (-588 (-1068))) 80)) (-2190 (((-792) $) 113)) (-2033 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3985 (-108)) (|:| -3435 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-588 $)) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2386 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| $))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2888 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792)))) $) 37)) (-1831 (($ (-1068)) 182)) (-3770 (($ (-588 $)) 109)) (-3712 (($ (-1085) (-1068)) 115) (($ (-1085) (-291 (-639))) 155) (($ (-1085) (-291 (-637))) 156) (($ (-1085) (-291 (-632))) 157) (($ (-1085) (-628 (-639))) 118) (($ (-1085) (-628 (-637))) 121) (($ (-1085) (-628 (-632))) 124) (($ (-1085) (-1166 (-639))) 127) (($ (-1085) (-1166 (-637))) 130) (($ (-1085) (-1166 (-632))) 133) (($ (-1085) (-628 (-291 (-639)))) 136) (($ (-1085) (-628 (-291 (-637)))) 139) (($ (-1085) (-628 (-291 (-632)))) 142) (($ (-1085) (-1166 (-291 (-639)))) 145) (($ (-1085) (-1166 (-291 (-637)))) 148) (($ (-1085) (-1166 (-291 (-632)))) 151) (($ (-1085) (-588 (-881 (-522))) (-291 (-639))) 152) (($ (-1085) (-588 (-881 (-522))) (-291 (-637))) 153) (($ (-1085) (-588 (-881 (-522))) (-291 (-632))) 154) (($ (-1085) (-291 (-522))) 179) (($ (-1085) (-291 (-354))) 180) (($ (-1085) (-291 (-154 (-354)))) 181) (($ (-1085) (-628 (-291 (-522)))) 160) (($ (-1085) (-628 (-291 (-354)))) 163) (($ (-1085) (-628 (-291 (-154 (-354))))) 166) (($ (-1085) (-1166 (-291 (-522)))) 169) (($ (-1085) (-1166 (-291 (-354)))) 172) (($ (-1085) (-1166 (-291 (-154 (-354))))) 175) (($ (-1085) (-588 (-881 (-522))) (-291 (-522))) 176) (($ (-1085) (-588 (-881 (-522))) (-291 (-354))) 177) (($ (-1085) (-588 (-881 (-522))) (-291 (-154 (-354)))) 178)) (-1531 (((-108) $ $) NIL)))
+(((-305) (-13 (-1014) (-10 -8 (-15 -2190 ((-792) $)) (-15 -3633 ($ (-1007 (-881 (-522))) $)) (-15 -3633 ($ (-1007 (-881 (-522))) (-881 (-522)) $)) (-15 -3962 ($ (-1084) $)) (-15 -3716 ($ (-1084) $)) (-15 -2174 ($ (-1032))) (-15 -1365 ($ (-1032))) (-15 -1272 ($ (-1068))) (-15 -1272 ($ (-588 (-1068)))) (-15 -1831 ($ (-1068))) (-15 -4182 ($)) (-15 -4182 ($ (-291 (-637)))) (-15 -4182 ($ (-291 (-639)))) (-15 -4182 ($ (-291 (-632)))) (-15 -4182 ($ (-291 (-354)))) (-15 -4182 ($ (-291 (-522)))) (-15 -4182 ($ (-291 (-154 (-354))))) (-15 -2587 ($ (-1084) $)) (-15 -2587 ($ (-1084) $ $)) (-15 -3712 ($ (-1085) (-1068))) (-15 -3712 ($ (-1085) (-291 (-639)))) (-15 -3712 ($ (-1085) (-291 (-637)))) (-15 -3712 ($ (-1085) (-291 (-632)))) (-15 -3712 ($ (-1085) (-628 (-639)))) (-15 -3712 ($ (-1085) (-628 (-637)))) (-15 -3712 ($ (-1085) (-628 (-632)))) (-15 -3712 ($ (-1085) (-1166 (-639)))) (-15 -3712 ($ (-1085) (-1166 (-637)))) (-15 -3712 ($ (-1085) (-1166 (-632)))) (-15 -3712 ($ (-1085) (-628 (-291 (-639))))) (-15 -3712 ($ (-1085) (-628 (-291 (-637))))) (-15 -3712 ($ (-1085) (-628 (-291 (-632))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-639))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-637))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-632))))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-639)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-637)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-632)))) (-15 -3712 ($ (-1085) (-291 (-522)))) (-15 -3712 ($ (-1085) (-291 (-354)))) (-15 -3712 ($ (-1085) (-291 (-154 (-354))))) (-15 -3712 ($ (-1085) (-628 (-291 (-522))))) (-15 -3712 ($ (-1085) (-628 (-291 (-354))))) (-15 -3712 ($ (-1085) (-628 (-291 (-154 (-354)))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-522))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-354))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-154 (-354)))))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-522)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-354)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-154 (-354))))) (-15 -3770 ($ (-588 $))) (-15 -2755 ($)) (-15 -3976 ($)) (-15 -4185 ($ (-588 (-792)))) (-15 -2540 ($ (-1085) (-588 (-1085)))) (-15 -4177 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2033 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3985 (-108)) (|:| -3435 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-588 $)) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2386 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| $))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2888 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792)))) $)) (-15 -3736 ((-1171) $)) (-15 -2348 ((-1018) $)) (-15 -3777 ((-1032) (-1032)))))) (T -305))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-305)))) (-3633 (*1 *1 *2 *1) (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *1 (-305)))) (-3633 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *3 (-881 (-522))) (-5 *1 (-305)))) (-3962 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-3716 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-2174 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-1272 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305)))) (-1272 (*1 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-305)))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305)))) (-4182 (*1 *1) (-5 *1 (-305))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-291 (-637))) (-5 *1 (-305)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-291 (-639))) (-5 *1 (-305)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-291 (-632))) (-5 *1 (-305)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-305)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-305)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-305)))) (-2587 (*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-2587 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-639))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-637))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-632))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-639))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-637))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-632))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-639))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-637))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-632))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-639)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-637)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-632)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-639)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-637)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-632)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-639))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-637))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-632))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-522))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-354))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-154 (-354)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-522)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-354)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-154 (-354))))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-522)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-354)))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-154 (-354))))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-522))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-354))) (-5 *1 (-305)))) (-3712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-291 (-154 (-354)))) (-5 *1 (-305)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-5 *1 (-305)))) (-2755 (*1 *1) (-5 *1 (-305))) (-3976 (*1 *1) (-5 *1 (-305))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-305)))) (-2540 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-305)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-305)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| (-305)) (|:| |elseClause| (-305)))) (|:| |returnBranch| (-2 (|:| -3985 (-108)) (|:| -3435 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-588 (-305))) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2386 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| (-305)))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| (-305)))) (|:| |commonBranch| (-2 (|:| -2888 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792))))) (-5 *1 (-305)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-305)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-305)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ((-792) $)) (-15 -3633 ($ (-1007 (-881 (-522))) $)) (-15 -3633 ($ (-1007 (-881 (-522))) (-881 (-522)) $)) (-15 -3962 ($ (-1084) $)) (-15 -3716 ($ (-1084) $)) (-15 -2174 ($ (-1032))) (-15 -1365 ($ (-1032))) (-15 -1272 ($ (-1068))) (-15 -1272 ($ (-588 (-1068)))) (-15 -1831 ($ (-1068))) (-15 -4182 ($)) (-15 -4182 ($ (-291 (-637)))) (-15 -4182 ($ (-291 (-639)))) (-15 -4182 ($ (-291 (-632)))) (-15 -4182 ($ (-291 (-354)))) (-15 -4182 ($ (-291 (-522)))) (-15 -4182 ($ (-291 (-154 (-354))))) (-15 -2587 ($ (-1084) $)) (-15 -2587 ($ (-1084) $ $)) (-15 -3712 ($ (-1085) (-1068))) (-15 -3712 ($ (-1085) (-291 (-639)))) (-15 -3712 ($ (-1085) (-291 (-637)))) (-15 -3712 ($ (-1085) (-291 (-632)))) (-15 -3712 ($ (-1085) (-628 (-639)))) (-15 -3712 ($ (-1085) (-628 (-637)))) (-15 -3712 ($ (-1085) (-628 (-632)))) (-15 -3712 ($ (-1085) (-1166 (-639)))) (-15 -3712 ($ (-1085) (-1166 (-637)))) (-15 -3712 ($ (-1085) (-1166 (-632)))) (-15 -3712 ($ (-1085) (-628 (-291 (-639))))) (-15 -3712 ($ (-1085) (-628 (-291 (-637))))) (-15 -3712 ($ (-1085) (-628 (-291 (-632))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-639))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-637))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-632))))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-639)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-637)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-632)))) (-15 -3712 ($ (-1085) (-291 (-522)))) (-15 -3712 ($ (-1085) (-291 (-354)))) (-15 -3712 ($ (-1085) (-291 (-154 (-354))))) (-15 -3712 ($ (-1085) (-628 (-291 (-522))))) (-15 -3712 ($ (-1085) (-628 (-291 (-354))))) (-15 -3712 ($ (-1085) (-628 (-291 (-154 (-354)))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-522))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-354))))) (-15 -3712 ($ (-1085) (-1166 (-291 (-154 (-354)))))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-522)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-354)))) (-15 -3712 ($ (-1085) (-588 (-881 (-522))) (-291 (-154 (-354))))) (-15 -3770 ($ (-588 $))) (-15 -2755 ($)) (-15 -3976 ($)) (-15 -4185 ($ (-588 (-792)))) (-15 -2540 ($ (-1085) (-588 (-1085)))) (-15 -4177 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2033 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1085)) (|:| |arrayIndex| (-588 (-881 (-522)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1085)) (|:| |rand| (-792)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1084)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3985 (-108)) (|:| -3435 (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792)))))) (|:| |blockBranch| (-588 $)) (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068)) (|:| |forBranch| (-2 (|:| -2386 (-1007 (-881 (-522)))) (|:| |span| (-881 (-522))) (|:| |body| $))) (|:| |labelBranch| (-1032)) (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -2888 (-1085)) (|:| |contents| (-588 (-1085))))) (|:| |printBranch| (-588 (-792)))) $)) (-15 -3736 ((-1171) $)) (-15 -2348 ((-1018) $)) (-15 -3777 ((-1032) (-1032)))))
+((-1416 (((-108) $ $) NIL)) (-2921 (((-108) $) 11)) (-2748 (($ |#1|) 8)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2761 (($ |#1|) 9)) (-2190 (((-792) $) 17)) (-3824 ((|#1| $) 12)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 19)))
+(((-306 |#1|) (-13 (-784) (-10 -8 (-15 -2748 ($ |#1|)) (-15 -2761 ($ |#1|)) (-15 -2921 ((-108) $)) (-15 -3824 (|#1| $)))) (-784)) (T -306))
+((-2748 (*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) (-2761 (*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-306 *3)) (-4 *3 (-784)))) (-3824 (*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784)))))
+(-13 (-784) (-10 -8 (-15 -2748 ($ |#1|)) (-15 -2761 ($ |#1|)) (-15 -2921 ((-108) $)) (-15 -3824 (|#1| $))))
+((-2369 (((-305) (-1085) (-881 (-522))) 22)) (-2489 (((-305) (-1085) (-881 (-522))) 26)) (-2169 (((-305) (-1085) (-1007 (-881 (-522))) (-1007 (-881 (-522)))) 25) (((-305) (-1085) (-881 (-522)) (-881 (-522))) 23)) (-3396 (((-305) (-1085) (-881 (-522))) 30)))
+(((-307) (-10 -7 (-15 -2369 ((-305) (-1085) (-881 (-522)))) (-15 -2169 ((-305) (-1085) (-881 (-522)) (-881 (-522)))) (-15 -2169 ((-305) (-1085) (-1007 (-881 (-522))) (-1007 (-881 (-522))))) (-15 -2489 ((-305) (-1085) (-881 (-522)))) (-15 -3396 ((-305) (-1085) (-881 (-522)))))) (T -307))
+((-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))) (-2169 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1007 (-881 (-522)))) (-5 *2 (-305)) (-5 *1 (-307)))) (-2169 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305)) (-5 *1 (-307)))))
+(-10 -7 (-15 -2369 ((-305) (-1085) (-881 (-522)))) (-15 -2169 ((-305) (-1085) (-881 (-522)) (-881 (-522)))) (-15 -2169 ((-305) (-1085) (-1007 (-881 (-522))) (-1007 (-881 (-522))))) (-15 -2489 ((-305) (-1085) (-881 (-522)))) (-15 -3396 ((-305) (-1085) (-881 (-522)))))
+((-1391 (((-311 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-311 |#1| |#2| |#3| |#4|)) 31)))
+(((-308 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1391 ((-311 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-311 |#1| |#2| |#3| |#4|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|) (-338) (-1142 |#5|) (-1142 (-382 |#6|)) (-317 |#5| |#6| |#7|)) (T -308))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-311 *5 *6 *7 *8)) (-4 *5 (-338)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *9 (-338)) (-4 *10 (-1142 *9)) (-4 *11 (-1142 (-382 *10))) (-5 *2 (-311 *9 *10 *11 *12)) (-5 *1 (-308 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-317 *9 *10 *11)))))
+(-10 -7 (-15 -1391 ((-311 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-311 |#1| |#2| |#3| |#4|))))
+((-2900 (((-108) $) 14)))
+(((-309 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2900 ((-108) |#1|))) (-310 |#2| |#3| |#4| |#5|) (-338) (-1142 |#2|) (-1142 (-382 |#3|)) (-317 |#2| |#3| |#4|)) (T -309))
+NIL
+(-10 -8 (-15 -2900 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3864 (($ $) 26)) (-2900 (((-108) $) 25)) (-2385 (((-1068) $) 9)) (-2154 (((-388 |#2| (-382 |#2|) |#3| |#4|) $) 32)) (-4151 (((-1032) $) 10)) (-1383 (((-3 |#4| "failed") $) 24)) (-4118 (($ (-388 |#2| (-382 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-522)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3496 (((-2 (|:| -1781 (-388 |#2| (-382 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20)))
+(((-310 |#1| |#2| |#3| |#4|) (-1197) (-338) (-1142 |t#1|) (-1142 (-382 |t#2|)) (-317 |t#1| |t#2| |t#3|)) (T -310))
+((-2154 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-388 *4 (-382 *4) *5 *6)))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-388 *4 (-382 *4) *5 *6)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-4 *3 (-338)) (-4 *1 (-310 *3 *4 *5 *6)))) (-4118 (*1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *1 (-310 *3 *4 *5 *2)) (-4 *2 (-317 *3 *4 *5)))) (-4118 (*1 *1 *2 *2) (-12 (-4 *2 (-338)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))) (-4 *1 (-310 *2 *3 *4 *5)) (-4 *5 (-317 *2 *3 *4)))) (-4118 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-522)) (-4 *2 (-338)) (-4 *4 (-1142 *2)) (-4 *5 (-1142 (-382 *4))) (-4 *1 (-310 *2 *4 *5 *6)) (-4 *6 (-317 *2 *4 *5)))) (-3496 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-2 (|:| -1781 (-388 *4 (-382 *4) *5 *6)) (|:| |principalPart| *6))))) (-3864 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3 *4 *5)) (-4 *2 (-338)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))) (-4 *5 (-317 *2 *3 *4)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-108)))) (-1383 (*1 *2 *1) (|partial| -12 (-4 *1 (-310 *3 *4 *5 *2)) (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *2 (-317 *3 *4 *5)))) (-4118 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-338)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-4 *1 (-310 *4 *3 *5 *2)) (-4 *2 (-317 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2154 ((-388 |t#2| (-382 |t#2|) |t#3| |t#4|) $)) (-15 -4118 ($ (-388 |t#2| (-382 |t#2|) |t#3| |t#4|))) (-15 -4118 ($ |t#4|)) (-15 -4118 ($ |t#1| |t#1|)) (-15 -4118 ($ |t#1| |t#1| (-522))) (-15 -3496 ((-2 (|:| -1781 (-388 |t#2| (-382 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3864 ($ $)) (-15 -2900 ((-108) $)) (-15 -1383 ((-3 |t#4| "failed") $)) (-15 -4118 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3864 (($ $) 32)) (-2900 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-3251 (((-1166 |#4|) $) 124)) (-2154 (((-388 |#2| (-382 |#2|) |#3| |#4|) $) 30)) (-4151 (((-1032) $) NIL)) (-1383 (((-3 |#4| "failed") $) 35)) (-3378 (((-1166 |#4|) $) 117)) (-4118 (($ (-388 |#2| (-382 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-522)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-3496 (((-2 (|:| -1781 (-388 |#2| (-382 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2190 (((-792) $) 17)) (-3566 (($) 14 T CONST)) (-1531 (((-108) $ $) 20)) (-1612 (($ $) 27) (($ $ $) NIL)) (-1602 (($ $ $) 25)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 23)))
+(((-311 |#1| |#2| |#3| |#4|) (-13 (-310 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3378 ((-1166 |#4|) $)) (-15 -3251 ((-1166 |#4|) $)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -311))
+((-3378 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *6 (-317 *3 *4 *5)))) (-3251 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *6 (-317 *3 *4 *5)))))
+(-13 (-310 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3378 ((-1166 |#4|) $)) (-15 -3251 ((-1166 |#4|) $))))
+((-2289 (($ $ (-1085) |#2|) NIL) (($ $ (-588 (-1085)) (-588 |#2|)) 18) (($ $ (-588 (-270 |#2|))) 14) (($ $ (-270 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-588 |#2|) (-588 |#2|)) NIL)) (-2545 (($ $ |#2|) 11)))
+(((-312 |#1| |#2|) (-10 -8 (-15 -2545 (|#1| |#1| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#2| |#2|)) (-15 -2289 (|#1| |#1| (-270 |#2|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 |#2|))) (-15 -2289 (|#1| |#1| (-1085) |#2|))) (-313 |#2|) (-1014)) (T -312))
+NIL
+(-10 -8 (-15 -2545 (|#1| |#1| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#2| |#2|)) (-15 -2289 (|#1| |#1| (-270 |#2|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 |#2|))) (-15 -2289 (|#1| |#1| (-1085) |#2|)))
+((-1391 (($ (-1 |#1| |#1|) $) 6)) (-2289 (($ $ (-1085) |#1|) 17 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 16 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-588 (-270 |#1|))) 15 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 14 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-285 |#1|))) (($ $ (-588 |#1|) (-588 |#1|)) 12 (|has| |#1| (-285 |#1|)))) (-2545 (($ $ |#1|) 11 (|has| |#1| (-262 |#1| |#1|)))))
+(((-313 |#1|) (-1197) (-1014)) (T -313))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1014)))))
+(-13 (-10 -8 (-15 -1391 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-262 |t#1| |t#1|)) (-6 (-262 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-285 |t#1|)) (-6 (-285 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-483 (-1085) |t#1|)) (-6 (-483 (-1085) |t#1|)) |%noBranch|)))
+(((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-1085)) $) NIL)) (-2641 (((-108)) 88) (((-108) (-108)) 89)) (-1886 (((-588 (-561 $)) $) NIL)) (-2908 (($ $) NIL)) (-2772 (($ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3305 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-1929 (($ $) NIL)) (-2884 (($ $) NIL)) (-2748 (($ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-561 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-291 |#3|)) 70) (((-3 $ "failed") (-1085)) 94) (((-3 $ "failed") (-291 (-522))) 57 (|has| |#3| (-962 (-522)))) (((-3 $ "failed") (-382 (-881 (-522)))) 63 (|has| |#3| (-962 (-522)))) (((-3 $ "failed") (-881 (-522))) 58 (|has| |#3| (-962 (-522)))) (((-3 $ "failed") (-291 (-354))) 75 (|has| |#3| (-962 (-354)))) (((-3 $ "failed") (-382 (-881 (-354)))) 81 (|has| |#3| (-962 (-354)))) (((-3 $ "failed") (-881 (-354))) 76 (|has| |#3| (-962 (-354))))) (-1484 (((-561 $) $) NIL) ((|#3| $) NIL) (($ (-291 |#3|)) 71) (($ (-1085)) 95) (($ (-291 (-522))) 59 (|has| |#3| (-962 (-522)))) (($ (-382 (-881 (-522)))) 64 (|has| |#3| (-962 (-522)))) (($ (-881 (-522))) 60 (|has| |#3| (-962 (-522)))) (($ (-291 (-354))) 77 (|has| |#3| (-962 (-354)))) (($ (-382 (-881 (-354)))) 82 (|has| |#3| (-962 (-354)))) (($ (-881 (-354))) 78 (|has| |#3| (-962 (-354))))) (-2682 (((-3 $ "failed") $) NIL)) (-2838 (($) 10)) (-1953 (($ $) NIL) (($ (-588 $)) NIL)) (-4161 (((-588 (-110)) $) NIL)) (-2626 (((-110) (-110)) NIL)) (-2782 (((-108) $) NIL)) (-2591 (((-108) $) NIL (|has| $ (-962 (-522))))) (-1711 (((-1081 $) (-561 $)) NIL (|has| $ (-971)))) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 $ $) (-561 $)) NIL)) (-3993 (((-3 (-561 $) "failed") $) NIL)) (-3167 (($ $) 91)) (-1254 (($ $) NIL)) (-2385 (((-1068) $) NIL)) (-1267 (((-588 (-561 $)) $) NIL)) (-2909 (($ (-110) $) 90) (($ (-110) (-588 $)) NIL)) (-2249 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) NIL)) (-4155 (((-708) $) NIL)) (-4151 (((-1032) $) NIL)) (-1648 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-3266 (($ $) NIL)) (-1263 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2289 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2545 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL)) (-1479 (($ $) NIL (|has| $ (-971)))) (-2896 (($ $) NIL)) (-2761 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-561 $)) NIL) (($ |#3|) NIL) (($ (-522)) NIL) (((-291 |#3|) $) 93)) (-2323 (((-708)) NIL)) (-2308 (($ $) NIL) (($ (-588 $)) NIL)) (-3614 (((-108) (-110)) NIL)) (-2836 (($ $) NIL)) (-2815 (($ $) NIL)) (-2825 (($ $) NIL)) (-2241 (($ $) NIL)) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3566 (($) 92 T CONST)) (-3577 (($) 22 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-314 |#1| |#2| |#3|) (-13 (-278) (-37 |#3|) (-962 |#3|) (-829 (-1085)) (-10 -8 (-15 -1484 ($ (-291 |#3|))) (-15 -1297 ((-3 $ "failed") (-291 |#3|))) (-15 -1484 ($ (-1085))) (-15 -1297 ((-3 $ "failed") (-1085))) (-15 -2190 ((-291 |#3|) $)) (IF (|has| |#3| (-962 (-522))) (PROGN (-15 -1484 ($ (-291 (-522)))) (-15 -1297 ((-3 $ "failed") (-291 (-522)))) (-15 -1484 ($ (-382 (-881 (-522))))) (-15 -1297 ((-3 $ "failed") (-382 (-881 (-522))))) (-15 -1484 ($ (-881 (-522)))) (-15 -1297 ((-3 $ "failed") (-881 (-522))))) |%noBranch|) (IF (|has| |#3| (-962 (-354))) (PROGN (-15 -1484 ($ (-291 (-354)))) (-15 -1297 ((-3 $ "failed") (-291 (-354)))) (-15 -1484 ($ (-382 (-881 (-354))))) (-15 -1297 ((-3 $ "failed") (-382 (-881 (-354))))) (-15 -1484 ($ (-881 (-354)))) (-15 -1297 ((-3 $ "failed") (-881 (-354))))) |%noBranch|) (-15 -2241 ($ $)) (-15 -1929 ($ $)) (-15 -3266 ($ $)) (-15 -1254 ($ $)) (-15 -3167 ($ $)) (-15 -2748 ($ $)) (-15 -2761 ($ $)) (-15 -2772 ($ $)) (-15 -2815 ($ $)) (-15 -2825 ($ $)) (-15 -2836 ($ $)) (-15 -2884 ($ $)) (-15 -2896 ($ $)) (-15 -2908 ($ $)) (-15 -2838 ($)) (-15 -4090 ((-588 (-1085)) $)) (-15 -2641 ((-108))) (-15 -2641 ((-108) (-108))))) (-588 (-1085)) (-588 (-1085)) (-362)) (T -314))
+((-1484 (*1 *1 *2) (-12 (-5 *2 (-291 *5)) (-4 *5 (-362)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 *5)) (-4 *5 (-362)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 *2)) (-14 *4 (-588 *2)) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 *2)) (-14 *4 (-588 *2)) (-4 *5 (-362)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-291 *5)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5)) (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-2241 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-1929 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-1254 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-3167 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2748 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2761 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2772 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2815 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2825 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2836 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2884 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2896 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2908 (*1 *1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-2838 (*1 *1) (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085))) (-14 *3 (-588 (-1085))) (-4 *4 (-362)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-314 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-362)))) (-2641 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))) (-2641 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362)))))
+(-13 (-278) (-37 |#3|) (-962 |#3|) (-829 (-1085)) (-10 -8 (-15 -1484 ($ (-291 |#3|))) (-15 -1297 ((-3 $ "failed") (-291 |#3|))) (-15 -1484 ($ (-1085))) (-15 -1297 ((-3 $ "failed") (-1085))) (-15 -2190 ((-291 |#3|) $)) (IF (|has| |#3| (-962 (-522))) (PROGN (-15 -1484 ($ (-291 (-522)))) (-15 -1297 ((-3 $ "failed") (-291 (-522)))) (-15 -1484 ($ (-382 (-881 (-522))))) (-15 -1297 ((-3 $ "failed") (-382 (-881 (-522))))) (-15 -1484 ($ (-881 (-522)))) (-15 -1297 ((-3 $ "failed") (-881 (-522))))) |%noBranch|) (IF (|has| |#3| (-962 (-354))) (PROGN (-15 -1484 ($ (-291 (-354)))) (-15 -1297 ((-3 $ "failed") (-291 (-354)))) (-15 -1484 ($ (-382 (-881 (-354))))) (-15 -1297 ((-3 $ "failed") (-382 (-881 (-354))))) (-15 -1484 ($ (-881 (-354)))) (-15 -1297 ((-3 $ "failed") (-881 (-354))))) |%noBranch|) (-15 -2241 ($ $)) (-15 -1929 ($ $)) (-15 -3266 ($ $)) (-15 -1254 ($ $)) (-15 -3167 ($ $)) (-15 -2748 ($ $)) (-15 -2761 ($ $)) (-15 -2772 ($ $)) (-15 -2815 ($ $)) (-15 -2825 ($ $)) (-15 -2836 ($ $)) (-15 -2884 ($ $)) (-15 -2896 ($ $)) (-15 -2908 ($ $)) (-15 -2838 ($)) (-15 -4090 ((-588 (-1085)) $)) (-15 -2641 ((-108))) (-15 -2641 ((-108) (-108)))))
+((-1391 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-315 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1391 (|#8| (-1 |#5| |#1|) |#4|))) (-1124) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|) (-1124) (-1142 |#5|) (-1142 (-382 |#6|)) (-317 |#5| |#6| |#7|)) (T -315))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1124)) (-4 *8 (-1124)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *9 (-1142 *8)) (-4 *2 (-317 *8 *9 *10)) (-5 *1 (-315 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-317 *5 *6 *7)) (-4 *10 (-1142 (-382 *9))))))
+(-10 -7 (-15 -1391 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2375 (((-2 (|:| |num| (-1166 |#3|)) (|:| |den| |#3|)) $) 38)) (-3766 (($ (-1166 (-382 |#3|)) (-1166 $)) NIL) (($ (-1166 (-382 |#3|))) NIL) (($ (-1166 |#3|) |#3|) 159)) (-3642 (((-1166 $) (-1166 $)) 143)) (-2017 (((-588 (-588 |#2|))) 116)) (-1250 (((-108) |#2| |#2|) 72)) (-2071 (($ $) 137)) (-2397 (((-708)) 31)) (-1538 (((-1166 $) (-1166 $)) 196)) (-2653 (((-588 (-881 |#2|)) (-1085)) 109)) (-2156 (((-108) $) 156)) (-1332 (((-108) $) 24) (((-108) $ |#2|) 29) (((-108) $ |#3|) 200)) (-3117 (((-3 |#3| "failed")) 49)) (-3940 (((-708)) 168)) (-2545 ((|#2| $ |#2| |#2|) 130)) (-3157 (((-3 |#3| "failed")) 67)) (-2157 (($ $ (-1 (-382 |#3|) (-382 |#3|)) (-708)) NIL) (($ $ (-1 (-382 |#3|) (-382 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 204) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-1634 (((-1166 $) (-1166 $)) 149)) (-3406 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 65)) (-2058 (((-108)) 33)))
+(((-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2017 ((-588 (-588 |#2|)))) (-15 -2653 ((-588 (-881 |#2|)) (-1085))) (-15 -3406 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3117 ((-3 |#3| "failed"))) (-15 -3157 ((-3 |#3| "failed"))) (-15 -2545 (|#2| |#1| |#2| |#2|)) (-15 -2071 (|#1| |#1|)) (-15 -3766 (|#1| (-1166 |#3|) |#3|)) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1332 ((-108) |#1| |#3|)) (-15 -1332 ((-108) |#1| |#2|)) (-15 -2375 ((-2 (|:| |num| (-1166 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3642 ((-1166 |#1|) (-1166 |#1|))) (-15 -1538 ((-1166 |#1|) (-1166 |#1|))) (-15 -1634 ((-1166 |#1|) (-1166 |#1|))) (-15 -1332 ((-108) |#1|)) (-15 -2156 ((-108) |#1|)) (-15 -1250 ((-108) |#2| |#2|)) (-15 -2058 ((-108))) (-15 -3940 ((-708))) (-15 -2397 ((-708))) (-15 -2157 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)))) (-15 -2157 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)) (-708))) (-15 -3766 (|#1| (-1166 (-382 |#3|)))) (-15 -3766 (|#1| (-1166 (-382 |#3|)) (-1166 |#1|)))) (-317 |#2| |#3| |#4|) (-1124) (-1142 |#2|) (-1142 (-382 |#3|))) (T -316))
+((-2397 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) (-3940 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) (-2058 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-108)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))) (-1250 (*1 *2 *3 *3) (-12 (-4 *3 (-1124)) (-4 *5 (-1142 *3)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-108)) (-5 *1 (-316 *4 *3 *5 *6)) (-4 *4 (-317 *3 *5 *6)))) (-3157 (*1 *2) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5)) (-4 *3 (-317 *4 *2 *5)))) (-3117 (*1 *2) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5)) (-4 *3 (-317 *4 *2 *5)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *5 (-1124)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-5 *2 (-588 (-881 *5))) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *4 (-317 *5 *6 *7)))) (-2017 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-588 (-588 *4))) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6)))))
+(-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2017 ((-588 (-588 |#2|)))) (-15 -2653 ((-588 (-881 |#2|)) (-1085))) (-15 -3406 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3117 ((-3 |#3| "failed"))) (-15 -3157 ((-3 |#3| "failed"))) (-15 -2545 (|#2| |#1| |#2| |#2|)) (-15 -2071 (|#1| |#1|)) (-15 -3766 (|#1| (-1166 |#3|) |#3|)) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1332 ((-108) |#1| |#3|)) (-15 -1332 ((-108) |#1| |#2|)) (-15 -2375 ((-2 (|:| |num| (-1166 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3642 ((-1166 |#1|) (-1166 |#1|))) (-15 -1538 ((-1166 |#1|) (-1166 |#1|))) (-15 -1634 ((-1166 |#1|) (-1166 |#1|))) (-15 -1332 ((-108) |#1|)) (-15 -2156 ((-108) |#1|)) (-15 -1250 ((-108) |#2| |#2|)) (-15 -2058 ((-108))) (-15 -3940 ((-708))) (-15 -2397 ((-708))) (-15 -2157 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)))) (-15 -2157 (|#1| |#1| (-1 (-382 |#3|) (-382 |#3|)) (-708))) (-15 -3766 (|#1| (-1166 (-382 |#3|)))) (-15 -3766 (|#1| (-1166 (-382 |#3|)) (-1166 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2375 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 196)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 93 (|has| (-382 |#2|) (-338)))) (-2022 (($ $) 94 (|has| (-382 |#2|) (-338)))) (-3739 (((-108) $) 96 (|has| (-382 |#2|) (-338)))) (-3174 (((-628 (-382 |#2|)) (-1166 $)) 46) (((-628 (-382 |#2|))) 61)) (-1865 (((-382 |#2|) $) 52)) (-1398 (((-1094 (-850) (-708)) (-522)) 147 (|has| (-382 |#2|) (-324)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 113 (|has| (-382 |#2|) (-338)))) (-3450 (((-393 $) $) 114 (|has| (-382 |#2|) (-338)))) (-1687 (((-108) $ $) 104 (|has| (-382 |#2|) (-338)))) (-1629 (((-708)) 87 (|has| (-382 |#2|) (-343)))) (-2472 (((-108)) 213)) (-2898 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 169 (|has| (-382 |#2|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 167 (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-3 (-382 |#2|) "failed") $) 166)) (-1484 (((-522) $) 170 (|has| (-382 |#2|) (-962 (-522)))) (((-382 (-522)) $) 168 (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-382 |#2|) $) 165)) (-3766 (($ (-1166 (-382 |#2|)) (-1166 $)) 48) (($ (-1166 (-382 |#2|))) 64) (($ (-1166 |#2|) |#2|) 189)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-382 |#2|) (-324)))) (-2277 (($ $ $) 108 (|has| (-382 |#2|) (-338)))) (-2109 (((-628 (-382 |#2|)) $ (-1166 $)) 53) (((-628 (-382 |#2|)) $) 59)) (-2096 (((-628 (-522)) (-628 $)) 164 (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 163 (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-382 |#2|))) (|:| |vec| (-1166 (-382 |#2|)))) (-628 $) (-1166 $)) 162) (((-628 (-382 |#2|)) (-628 $)) 161)) (-3642 (((-1166 $) (-1166 $)) 201)) (-3864 (($ |#3|) 158) (((-3 $ "failed") (-382 |#3|)) 155 (|has| (-382 |#2|) (-338)))) (-2682 (((-3 $ "failed") $) 34)) (-2017 (((-588 (-588 |#1|))) 182 (|has| |#1| (-343)))) (-1250 (((-108) |#1| |#1|) 217)) (-3166 (((-850)) 54)) (-3255 (($) 90 (|has| (-382 |#2|) (-343)))) (-3144 (((-108)) 210)) (-1228 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2254 (($ $ $) 107 (|has| (-382 |#2|) (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 102 (|has| (-382 |#2|) (-338)))) (-2071 (($ $) 188)) (-1223 (($) 149 (|has| (-382 |#2|) (-324)))) (-2511 (((-108) $) 150 (|has| (-382 |#2|) (-324)))) (-2111 (($ $ (-708)) 141 (|has| (-382 |#2|) (-324))) (($ $) 140 (|has| (-382 |#2|) (-324)))) (-2813 (((-108) $) 115 (|has| (-382 |#2|) (-338)))) (-3714 (((-850) $) 152 (|has| (-382 |#2|) (-324))) (((-770 (-850)) $) 138 (|has| (-382 |#2|) (-324)))) (-2782 (((-108) $) 31)) (-2397 (((-708)) 220)) (-1538 (((-1166 $) (-1166 $)) 202)) (-2100 (((-382 |#2|) $) 51)) (-2653 (((-588 (-881 |#1|)) (-1085)) 183 (|has| |#1| (-338)))) (-3004 (((-3 $ "failed") $) 142 (|has| (-382 |#2|) (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 111 (|has| (-382 |#2|) (-338)))) (-1712 ((|#3| $) 44 (|has| (-382 |#2|) (-338)))) (-2120 (((-850) $) 89 (|has| (-382 |#2|) (-343)))) (-3849 ((|#3| $) 156)) (-2224 (($ (-588 $)) 100 (|has| (-382 |#2|) (-338))) (($ $ $) 99 (|has| (-382 |#2|) (-338)))) (-2385 (((-1068) $) 9)) (-3293 (((-628 (-382 |#2|))) 197)) (-4178 (((-628 (-382 |#2|))) 199)) (-3098 (($ $) 116 (|has| (-382 |#2|) (-338)))) (-1249 (($ (-1166 |#2|) |#2|) 194)) (-3189 (((-628 (-382 |#2|))) 198)) (-3319 (((-628 (-382 |#2|))) 200)) (-3041 (((-2 (|:| |num| (-628 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-4066 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 195)) (-4003 (((-1166 $)) 206)) (-3882 (((-1166 $)) 207)) (-2156 (((-108) $) 205)) (-1332 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3802 (($) 143 (|has| (-382 |#2|) (-324)) CONST)) (-2717 (($ (-850)) 88 (|has| (-382 |#2|) (-343)))) (-3117 (((-3 |#2| "failed")) 185)) (-4151 (((-1032) $) 10)) (-3940 (((-708)) 219)) (-1383 (($) 160)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 101 (|has| (-382 |#2|) (-338)))) (-2259 (($ (-588 $)) 98 (|has| (-382 |#2|) (-338))) (($ $ $) 97 (|has| (-382 |#2|) (-338)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 146 (|has| (-382 |#2|) (-324)))) (-1916 (((-393 $) $) 112 (|has| (-382 |#2|) (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-382 |#2|) (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 109 (|has| (-382 |#2|) (-338)))) (-2232 (((-3 $ "failed") $ $) 92 (|has| (-382 |#2|) (-338)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 103 (|has| (-382 |#2|) (-338)))) (-3730 (((-708) $) 105 (|has| (-382 |#2|) (-338)))) (-2545 ((|#1| $ |#1| |#1|) 187)) (-3157 (((-3 |#2| "failed")) 186)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 106 (|has| (-382 |#2|) (-338)))) (-2769 (((-382 |#2|) (-1166 $)) 47) (((-382 |#2|)) 60)) (-3018 (((-708) $) 151 (|has| (-382 |#2|) (-324))) (((-3 (-708) "failed") $ $) 139 (|has| (-382 |#2|) (-324)))) (-2157 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) 123 (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) 122 (|has| (-382 |#2|) (-338))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-588 (-1085)) (-588 (-708))) 130 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085) (-708)) 131 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-588 (-1085))) 132 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085)) 133 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-708)) 135 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4015 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) 137 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4015 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1859 (((-628 (-382 |#2|)) (-1166 $) (-1 (-382 |#2|) (-382 |#2|))) 154 (|has| (-382 |#2|) (-338)))) (-1479 ((|#3|) 159)) (-2581 (($) 148 (|has| (-382 |#2|) (-324)))) (-3677 (((-1166 (-382 |#2|)) $ (-1166 $)) 50) (((-628 (-382 |#2|)) (-1166 $) (-1166 $)) 49) (((-1166 (-382 |#2|)) $) 66) (((-628 (-382 |#2|)) (-1166 $)) 65)) (-1431 (((-1166 (-382 |#2|)) $) 63) (($ (-1166 (-382 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 145 (|has| (-382 |#2|) (-324)))) (-1634 (((-1166 $) (-1166 $)) 203)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 |#2|)) 37) (($ (-382 (-522))) 86 (-3708 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-962 (-382 (-522)))))) (($ $) 91 (|has| (-382 |#2|) (-338)))) (-2143 (($ $) 144 (|has| (-382 |#2|) (-324))) (((-3 $ "failed") $) 43 (|has| (-382 |#2|) (-133)))) (-2051 ((|#3| $) 45)) (-2323 (((-708)) 29)) (-3532 (((-108)) 216)) (-4170 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-3855 (((-1166 $)) 67)) (-3958 (((-108) $ $) 95 (|has| (-382 |#2|) (-338)))) (-3406 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2058 (((-108)) 218)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 117 (|has| (-382 |#2|) (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) 125 (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) 124 (|has| (-382 |#2|) (-338))) (($ $ (-588 (-1085)) (-588 (-708))) 126 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085) (-708)) 127 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-588 (-1085))) 128 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-1085)) 129 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) (-4015 (|has| (-382 |#2|) (-829 (-1085))) (|has| (-382 |#2|) (-338))))) (($ $ (-708)) 134 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4015 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) 136 (-3708 (-4015 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-210))) (-4015 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 121 (|has| (-382 |#2|) (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 118 (|has| (-382 |#2|) (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 |#2|)) 39) (($ (-382 |#2|) $) 38) (($ (-382 (-522)) $) 120 (|has| (-382 |#2|) (-338))) (($ $ (-382 (-522))) 119 (|has| (-382 |#2|) (-338)))))
+(((-317 |#1| |#2| |#3|) (-1197) (-1124) (-1142 |t#1|) (-1142 (-382 |t#2|))) (T -317))
+((-2397 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708)))) (-3940 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708)))) (-2058 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1250 (*1 *2 *3 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-3532 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-4170 (*1 *2 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-4170 (*1 *2 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-2472 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2898 (*1 *2 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-2898 (*1 *2 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-3144 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1228 (*1 *2 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1228 (*1 *2 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-3882 (*1 *2) (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)))) (-4003 (*1 *2) (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-1538 (*1 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-3642 (*1 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-3319 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-4178 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-3189 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-3293 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4))))) (-4066 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4))))) (-1249 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124)) (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3))))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-2 (|:| |num| (-628 *5)) (|:| |den| *5))))) (-1332 (*1 *2 *1 *3) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))) (-1332 (*1 *2 *1 *3) (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))) (-3766 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124)) (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3))))) (-2071 (*1 *1 *1) (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))))) (-2545 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3))))) (-3157 (*1 *2) (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124)) (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3)))) (-3117 (*1 *2) (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124)) (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-1124)) (-4 *6 (-1142 (-382 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-317 *4 *5 *6)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *4 (-338)) (-5 *2 (-588 (-881 *4))))) (-2017 (*1 *2) (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))) (-4 *3 (-343)) (-5 *2 (-588 (-588 *3))))))
+(-13 (-662 (-382 |t#2|) |t#3|) (-10 -8 (-15 -2397 ((-708))) (-15 -3940 ((-708))) (-15 -2058 ((-108))) (-15 -1250 ((-108) |t#1| |t#1|)) (-15 -3532 ((-108))) (-15 -4170 ((-108) |t#1|)) (-15 -4170 ((-108) |t#2|)) (-15 -2472 ((-108))) (-15 -2898 ((-108) |t#1|)) (-15 -2898 ((-108) |t#2|)) (-15 -3144 ((-108))) (-15 -1228 ((-108) |t#1|)) (-15 -1228 ((-108) |t#2|)) (-15 -3882 ((-1166 $))) (-15 -4003 ((-1166 $))) (-15 -2156 ((-108) $)) (-15 -1332 ((-108) $)) (-15 -1634 ((-1166 $) (-1166 $))) (-15 -1538 ((-1166 $) (-1166 $))) (-15 -3642 ((-1166 $) (-1166 $))) (-15 -3319 ((-628 (-382 |t#2|)))) (-15 -4178 ((-628 (-382 |t#2|)))) (-15 -3189 ((-628 (-382 |t#2|)))) (-15 -3293 ((-628 (-382 |t#2|)))) (-15 -2375 ((-2 (|:| |num| (-1166 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3766 ($ (-1166 |t#2|) |t#2|)) (-15 -4066 ((-2 (|:| |num| (-1166 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1249 ($ (-1166 |t#2|) |t#2|)) (-15 -3041 ((-2 (|:| |num| (-628 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1332 ((-108) $ |t#1|)) (-15 -1332 ((-108) $ |t#2|)) (-15 -2157 ($ $ (-1 |t#2| |t#2|))) (-15 -3766 ($ (-1166 |t#2|) |t#2|)) (-15 -2071 ($ $)) (-15 -2545 (|t#1| $ |t#1| |t#1|)) (-15 -3157 ((-3 |t#2| "failed"))) (-15 -3117 ((-3 |t#2| "failed"))) (-15 -3406 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-338)) (-15 -2653 ((-588 (-881 |t#1|)) (-1085))) |%noBranch|) (IF (|has| |t#1| (-343)) (-15 -2017 ((-588 (-588 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-37 #1=(-382 |#2|)) . T) ((-37 $) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-97) . T) ((-107 #0# #0#) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-133))) ((-135) |has| (-382 |#2|) (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 |#3|) . T) ((-208 #1#) |has| (-382 |#2|) (-338)) ((-210) -3708 (|has| (-382 |#2|) (-324)) (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338)))) ((-220) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-266) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-283) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-338) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-377) |has| (-382 |#2|) (-324)) ((-343) -3708 (|has| (-382 |#2|) (-343)) (|has| (-382 |#2|) (-324))) ((-324) |has| (-382 |#2|) (-324)) ((-345 #1# |#3|) . T) ((-384 #1# |#3|) . T) ((-352 #1#) . T) ((-386 #1#) . T) ((-426) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-514) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-590 #0#) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-590 #1#) . T) ((-590 $) . T) ((-584 #1#) . T) ((-584 (-522)) |has| (-382 |#2|) (-584 (-522))) ((-655 #0#) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-655 #1#) . T) ((-655 $) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-662 #1# |#3|) . T) ((-664) . T) ((-829 (-1085)) -12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085)))) ((-849) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-962 (-382 (-522))) |has| (-382 |#2|) (-962 (-382 (-522)))) ((-962 #1#) . T) ((-962 (-522)) |has| (-382 |#2|) (-962 (-522))) ((-977 #0#) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))) ((-977 #1#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| (-382 |#2|) (-324)) ((-1124) -3708 (|has| (-382 |#2|) (-324)) (|has| (-382 |#2|) (-338))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-839 |#1|) (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| (-839 |#1|) (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-839 |#1|) "failed") $) NIL)) (-1484 (((-839 |#1|) $) NIL)) (-3766 (($ (-1166 (-839 |#1|))) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-839 |#1|) (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| (-839 |#1|) (-343)))) (-2511 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343)))) (($ $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| (-839 |#1|) (-343))) (((-770 (-850)) $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| (-839 |#1|) (-343)))) (-2741 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-2100 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 (-839 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2120 (((-850) $) NIL (|has| (-839 |#1|) (-343)))) (-3074 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343)))) (-2941 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-1081 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-343)))) (-1425 (($ $ (-1081 (-839 |#1|))) NIL (|has| (-839 |#1|) (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-839 |#1|) (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-3141 (((-886 (-1032))) NIL)) (-1383 (($) NIL (|has| (-839 |#1|) (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-839 |#1|) (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 (-839 |#1|))) NIL)) (-2581 (($) NIL (|has| (-839 |#1|) (-343)))) (-1299 (($) NIL (|has| (-839 |#1|) (-343)))) (-3677 (((-1166 (-839 |#1|)) $) NIL) (((-628 (-839 |#1|)) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-839 |#1|) (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-839 |#1|)) NIL)) (-2143 (($ $) NIL (|has| (-839 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2213 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL)))
+(((-318 |#1| |#2|) (-13 (-304 (-839 |#1|)) (-10 -7 (-15 -3141 ((-886 (-1032)))))) (-850) (-850)) (T -318))
+((-3141 (*1 *2) (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-318 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))))
+(-13 (-304 (-839 |#1|)) (-10 -7 (-15 -3141 ((-886 (-1032))))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 46)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) 43 (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 114)) (-1484 ((|#1| $) 85)) (-3766 (($ (-1166 |#1|)) 103)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 94 (|has| |#1| (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) 97 (|has| |#1| (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) 129 (|has| |#1| (-343)))) (-2511 (((-108) $) 49 (|has| |#1| (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) 47 (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) 131 (|has| |#1| (-343)))) (-2741 (((-108) $) NIL (|has| |#1| (-343)))) (-2100 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 |#1|) $) 89) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-2120 (((-850) $) 139 (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 146)) (-3802 (($) NIL (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) 70 (|has| |#1| (-343)))) (-2822 (((-108) $) 117)) (-4151 (((-1032) $) NIL)) (-3141 (((-886 (-1032))) 44)) (-1383 (($) 127 (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 92 (|has| |#1| (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) 67) (((-850)) 68)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) 130 (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) 124 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 |#1|)) 95)) (-2581 (($) 128 (|has| |#1| (-343)))) (-1299 (($) 136 (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) 59) (((-628 |#1|) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) 142) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 74)) (-2143 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) 138)) (-3855 (((-1166 $)) 116) (((-1166 $) (-850)) 72)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 32 T CONST)) (-3577 (($) 19 T CONST)) (-3428 (($ $) 80 (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2213 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1531 (((-108) $ $) 48)) (-1620 (($ $ $) 144) (($ $ |#1|) 145)) (-1612 (($ $) 126) (($ $ $) NIL)) (-1602 (($ $ $) 61)) (** (($ $ (-850)) 148) (($ $ (-708)) 149) (($ $ (-522)) 147)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 76) (($ $ $) 75) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143)))
+(((-319 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -3141 ((-886 (-1032)))))) (-324) (-1081 |#1|)) (T -319))
+((-3141 (*1 *2) (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-319 *3 *4)) (-4 *3 (-324)) (-14 *4 (-1081 *3)))))
+(-13 (-304 |#1|) (-10 -7 (-15 -3141 ((-886 (-1032))))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3766 (($ (-1166 |#1|)) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| |#1| (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| |#1| (-343)))) (-2511 (((-108) $) NIL (|has| |#1| (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| |#1| (-343)))) (-2741 (((-108) $) NIL (|has| |#1| (-343)))) (-2100 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 |#1|) $) NIL) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-3141 (((-886 (-1032))) NIL)) (-1383 (($) NIL (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| |#1| (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 |#1|)) NIL)) (-2581 (($) NIL (|has| |#1| (-343)))) (-1299 (($) NIL (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) NIL)) (-2143 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2213 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-320 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -3141 ((-886 (-1032)))))) (-324) (-850)) (T -320))
+((-3141 (*1 *2) (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-320 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))))
+(-13 (-304 |#1|) (-10 -7 (-15 -3141 ((-886 (-1032))))))
+((-1294 (((-708) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) 40)) (-3643 (((-886 (-1032)) (-1081 |#1|)) 85)) (-1317 (((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) (-1081 |#1|)) 78)) (-2637 (((-628 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) 86)) (-3833 (((-3 (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) "failed") (-850)) 10)) (-3161 (((-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) (-850)) 15)))
+(((-321 |#1|) (-10 -7 (-15 -3643 ((-886 (-1032)) (-1081 |#1|))) (-15 -1317 ((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) (-1081 |#1|))) (-15 -2637 ((-628 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -1294 ((-708) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -3833 ((-3 (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) "failed") (-850))) (-15 -3161 ((-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) (-850)))) (-324)) (T -321))
+((-3161 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-3 (-1081 *4) (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032))))))) (-5 *1 (-321 *4)) (-4 *4 (-324)))) (-3833 (*1 *2 *3) (|partial| -12 (-5 *3 (-850)) (-5 *2 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032)))))) (-5 *1 (-321 *4)) (-4 *4 (-324)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032)))))) (-4 *4 (-324)) (-5 *2 (-708)) (-5 *1 (-321 *4)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032)))))) (-4 *4 (-324)) (-5 *2 (-628 *4)) (-5 *1 (-321 *4)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032)))))) (-5 *1 (-321 *4)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-886 (-1032))) (-5 *1 (-321 *4)))))
+(-10 -7 (-15 -3643 ((-886 (-1032)) (-1081 |#1|))) (-15 -1317 ((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) (-1081 |#1|))) (-15 -2637 ((-628 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -1294 ((-708) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -3833 ((-3 (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) "failed") (-850))) (-15 -3161 ((-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) (-850))))
+((-2190 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
+(((-322 |#1| |#2| |#3|) (-10 -7 (-15 -2190 (|#3| |#1|)) (-15 -2190 (|#1| |#3|))) (-304 |#2|) (-324) (-304 |#2|)) (T -322))
+((-2190 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *2 *4 *3)) (-4 *3 (-304 *4)))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *3 *4 *2)) (-4 *3 (-304 *4)))))
+(-10 -7 (-15 -2190 (|#3| |#1|)) (-15 -2190 (|#1| |#3|)))
+((-2511 (((-108) $) 51)) (-3714 (((-770 (-850)) $) 21) (((-850) $) 52)) (-3004 (((-3 $ "failed") $) 16)) (-3802 (($) 9)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 92)) (-3018 (((-3 (-708) "failed") $ $) 71) (((-708) $) 60)) (-2157 (($ $ (-708)) NIL) (($ $) 8)) (-2581 (($) 45)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 33)) (-2143 (((-3 $ "failed") $) 39) (($ $) 38)))
+(((-323 |#1|) (-10 -8 (-15 -3714 ((-850) |#1|)) (-15 -3018 ((-708) |#1|)) (-15 -2511 ((-108) |#1|)) (-15 -2581 (|#1|)) (-15 -2412 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -2143 (|#1| |#1|)) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -3018 ((-3 (-708) "failed") |#1| |#1|)) (-15 -3714 ((-770 (-850)) |#1|)) (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|)))) (-324)) (T -323))
+NIL
+(-10 -8 (-15 -3714 ((-850) |#1|)) (-15 -3018 ((-708) |#1|)) (-15 -2511 ((-108) |#1|)) (-15 -2581 (|#1|)) (-15 -2412 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -2143 (|#1| |#1|)) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -3018 ((-3 (-708) "failed") |#1| |#1|)) (-15 -3714 ((-770 (-850)) |#1|)) (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1398 (((-1094 (-850) (-708)) (-522)) 93)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1687 (((-108) $ $) 59)) (-1629 (((-708)) 103)) (-3175 (($) 17 T CONST)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-3255 (($) 106)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-1223 (($) 91)) (-2511 (((-108) $) 90)) (-2111 (($ $) 79) (($ $ (-708)) 78)) (-2813 (((-108) $) 71)) (-3714 (((-770 (-850)) $) 81) (((-850) $) 88)) (-2782 (((-108) $) 31)) (-3004 (((-3 $ "failed") $) 102)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2120 (((-850) $) 105)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-3802 (($) 101 T CONST)) (-2717 (($ (-850)) 104)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 94)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-3018 (((-3 (-708) "failed") $ $) 80) (((-708) $) 89)) (-2157 (($ $ (-708)) 99) (($ $) 97)) (-2581 (($) 92)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 95)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-2143 (((-3 $ "failed") $) 82) (($ $) 96)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-708)) 100) (($ $) 98)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66)))
+(((-324) (-1197)) (T -324))
+((-2143 (*1 *1 *1) (-4 *1 (-324))) (-2412 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-324)) (-5 *2 (-1166 *1)))) (-4179 (*1 *2) (-12 (-4 *1 (-324)) (-5 *2 (-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))))) (-1398 (*1 *2 *3) (-12 (-4 *1 (-324)) (-5 *3 (-522)) (-5 *2 (-1094 (-850) (-708))))) (-2581 (*1 *1) (-4 *1 (-324))) (-1223 (*1 *1) (-4 *1 (-324))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-108)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-708)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-850)))) (-2128 (*1 *2) (-12 (-4 *1 (-324)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-377) (-343) (-1061) (-210) (-10 -8 (-15 -2143 ($ $)) (-15 -2412 ((-3 (-1166 $) "failed") (-628 $))) (-15 -4179 ((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522)))))) (-15 -1398 ((-1094 (-850) (-708)) (-522))) (-15 -2581 ($)) (-15 -1223 ($)) (-15 -2511 ((-108) $)) (-15 -3018 ((-708) $)) (-15 -3714 ((-850) $)) (-15 -2128 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-562 (-792)) . T) ((-157) . T) ((-210) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-377) . T) ((-343) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) . T) ((-1124) . T))
+((-3784 (((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) |#1|) 51)) (-3882 (((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))) 49)))
+(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -3882 ((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))))) (-15 -3784 ((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) |#1|))) (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))) (-1142 |#1|) (-384 |#1| |#2|)) (T -325))
+((-3784 (*1 *2 *3) (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *2 (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-3882 (*1 *2) (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *2 (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4)))))
+(-10 -7 (-15 -3882 ((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))))) (-15 -3784 ((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-839 |#1|) (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1294 (((-708)) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| (-839 |#1|) (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-839 |#1|) "failed") $) NIL)) (-1484 (((-839 |#1|) $) NIL)) (-3766 (($ (-1166 (-839 |#1|))) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-839 |#1|) (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| (-839 |#1|) (-343)))) (-2511 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343)))) (($ $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| (-839 |#1|) (-343))) (((-770 (-850)) $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| (-839 |#1|) (-343)))) (-2741 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-2100 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 (-839 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2120 (((-850) $) NIL (|has| (-839 |#1|) (-343)))) (-3074 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343)))) (-2941 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-1081 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-343)))) (-1425 (($ $ (-1081 (-839 |#1|))) NIL (|has| (-839 |#1|) (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-839 |#1|) (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1755 (((-1166 (-588 (-2 (|:| -3435 (-839 |#1|)) (|:| -2717 (-1032)))))) NIL)) (-3579 (((-628 (-839 |#1|))) NIL)) (-1383 (($) NIL (|has| (-839 |#1|) (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-839 |#1|) (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 (-839 |#1|))) NIL)) (-2581 (($) NIL (|has| (-839 |#1|) (-343)))) (-1299 (($) NIL (|has| (-839 |#1|) (-343)))) (-3677 (((-1166 (-839 |#1|)) $) NIL) (((-628 (-839 |#1|)) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-839 |#1|) (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-839 |#1|)) NIL)) (-2143 (($ $) NIL (|has| (-839 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2213 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL)))
+(((-326 |#1| |#2|) (-13 (-304 (-839 |#1|)) (-10 -7 (-15 -1755 ((-1166 (-588 (-2 (|:| -3435 (-839 |#1|)) (|:| -2717 (-1032))))))) (-15 -3579 ((-628 (-839 |#1|)))) (-15 -1294 ((-708))))) (-850) (-850)) (T -326))
+((-1755 (*1 *2) (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3435 (-839 *3)) (|:| -2717 (-1032)))))) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-3579 (*1 *2) (-12 (-5 *2 (-628 (-839 *3))) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-1294 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))))
+(-13 (-304 (-839 |#1|)) (-10 -7 (-15 -1755 ((-1166 (-588 (-2 (|:| -3435 (-839 |#1|)) (|:| -2717 (-1032))))))) (-15 -3579 ((-628 (-839 |#1|)))) (-15 -1294 ((-708)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 75)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 ((|#1| $) 93) (($ $ (-850)) 91 (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) 149 (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1294 (((-708)) 90)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) 163 (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 112)) (-1484 ((|#1| $) 92)) (-3766 (($ (-1166 |#1|)) 56)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) 159 (|has| |#1| (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) 150 (|has| |#1| (-343)))) (-2511 (((-108) $) NIL (|has| |#1| (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) 98 (|has| |#1| (-343)))) (-2741 (((-108) $) 176 (|has| |#1| (-343)))) (-2100 ((|#1| $) 95) (($ $ (-850)) 94 (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 |#1|) $) 188) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-2120 (((-850) $) 134 (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) 74 (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) 71 (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) 83 (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) 70 (|has| |#1| (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 191)) (-3802 (($) NIL (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) 137 (|has| |#1| (-343)))) (-2822 (((-108) $) 108)) (-4151 (((-1032) $) NIL)) (-1755 (((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) 84)) (-3579 (((-628 |#1|)) 88)) (-1383 (($) 97 (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 151 (|has| |#1| (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) 152)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) 63)) (-1479 (((-1081 |#1|)) 153)) (-2581 (($) 133 (|has| |#1| (-343)))) (-1299 (($) NIL (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) 106) (((-628 |#1|) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) 124) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 55)) (-2143 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) 157)) (-3855 (((-1166 $)) 173) (((-1166 $) (-850)) 101)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 29 T CONST)) (-3577 (($) 22 T CONST)) (-3428 (($ $) 107 (|has| |#1| (-343))) (($ $ (-708)) 99 (|has| |#1| (-343)))) (-2213 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1531 (((-108) $ $) 59)) (-1620 (($ $ $) 104) (($ $ |#1|) 105)) (-1612 (($ $) 178) (($ $ $) 182)) (-1602 (($ $ $) 180)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 138)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 185) (($ $ $) 143) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103)))
+(((-327 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -1755 ((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -3579 ((-628 |#1|))) (-15 -1294 ((-708))))) (-324) (-3 (-1081 |#1|) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (T -327))
+((-1755 (*1 *2) (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032)))))) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) *2)))) (-3579 (*1 *2) (-12 (-5 *2 (-628 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032))))))))) (-1294 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032))))))))))
+(-13 (-304 |#1|) (-10 -7 (-15 -1755 ((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -3579 ((-628 |#1|))) (-15 -1294 ((-708)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1294 (((-708)) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3766 (($ (-1166 |#1|)) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| |#1| (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| |#1| (-343)))) (-2511 (((-108) $) NIL (|has| |#1| (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| |#1| (-343)))) (-2741 (((-108) $) NIL (|has| |#1| (-343)))) (-2100 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 |#1|) $) NIL) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1755 (((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032)))))) NIL)) (-3579 (((-628 |#1|)) NIL)) (-1383 (($) NIL (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| |#1| (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 |#1|)) NIL)) (-2581 (($) NIL (|has| |#1| (-343)))) (-1299 (($) NIL (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) NIL)) (-2143 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2213 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-328 |#1| |#2|) (-13 (-304 |#1|) (-10 -7 (-15 -1755 ((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -3579 ((-628 |#1|))) (-15 -1294 ((-708))))) (-324) (-850)) (T -328))
+((-1755 (*1 *2) (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032)))))) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))) (-3579 (*1 *2) (-12 (-5 *2 (-628 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))) (-1294 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))))
+(-13 (-304 |#1|) (-10 -7 (-15 -1755 ((-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))))) (-15 -3579 ((-628 |#1|))) (-15 -1294 ((-708)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-839 |#1|) (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| (-839 |#1|) (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-839 |#1|) "failed") $) NIL)) (-1484 (((-839 |#1|) $) NIL)) (-3766 (($ (-1166 (-839 |#1|))) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-839 |#1|) (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-839 |#1|) (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| (-839 |#1|) (-343)))) (-2511 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343)))) (($ $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| (-839 |#1|) (-343))) (((-770 (-850)) $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| (-839 |#1|) (-343)))) (-2741 (((-108) $) NIL (|has| (-839 |#1|) (-343)))) (-2100 (((-839 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| (-839 |#1|) (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 (-839 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2120 (((-850) $) NIL (|has| (-839 |#1|) (-343)))) (-3074 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343)))) (-2941 (((-1081 (-839 |#1|)) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-1081 (-839 |#1|)) "failed") $ $) NIL (|has| (-839 |#1|) (-343)))) (-1425 (($ $ (-1081 (-839 |#1|))) NIL (|has| (-839 |#1|) (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-839 |#1|) (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| (-839 |#1|) (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1383 (($) NIL (|has| (-839 |#1|) (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-839 |#1|) (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| (-839 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 (-839 |#1|))) NIL)) (-2581 (($) NIL (|has| (-839 |#1|) (-343)))) (-1299 (($) NIL (|has| (-839 |#1|) (-343)))) (-3677 (((-1166 (-839 |#1|)) $) NIL) (((-628 (-839 |#1|)) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-839 |#1|) (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-839 |#1|)) NIL)) (-2143 (($ $) NIL (|has| (-839 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| (-839 |#1|) (-133)) (|has| (-839 |#1|) (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-2213 (($ $) NIL (|has| (-839 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-839 |#1|) (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-839 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-839 |#1|)) NIL) (($ (-839 |#1|) $) NIL)))
+(((-329 |#1| |#2|) (-304 (-839 |#1|)) (-850) (-850)) (T -329))
+NIL
+(-304 (-839 |#1|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) 119 (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) 139 (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 91)) (-1484 ((|#1| $) 88)) (-3766 (($ (-1166 |#1|)) 83)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) 80 (|has| |#1| (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) 39 (|has| |#1| (-343)))) (-2511 (((-108) $) NIL (|has| |#1| (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) 120 (|has| |#1| (-343)))) (-2741 (((-108) $) 72 (|has| |#1| (-343)))) (-2100 ((|#1| $) 38) (($ $ (-850)) 40 (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 |#1|) $) 62) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-2120 (((-850) $) 95 (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) 93 (|has| |#1| (-343)))) (-2822 (((-108) $) 141)) (-4151 (((-1032) $) NIL)) (-1383 (($) 35 (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 113 (|has| |#1| (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) 138)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) 56)) (-1479 (((-1081 |#1|)) 86)) (-2581 (($) 125 (|has| |#1| (-343)))) (-1299 (($) NIL (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) 50) (((-628 |#1|) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) 137) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 85)) (-2143 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) 143)) (-3855 (((-1166 $)) 107) (((-1166 $) (-850)) 46)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 109 T CONST)) (-3577 (($) 31 T CONST)) (-3428 (($ $) 65 (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2213 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1531 (((-108) $ $) 105)) (-1620 (($ $ $) 97) (($ $ |#1|) 98)) (-1612 (($ $) 78) (($ $ $) 103)) (-1602 (($ $ $) 101)) (** (($ $ (-850)) NIL) (($ $ (-708)) 41) (($ $ (-522)) 129)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 76) (($ $ $) 53) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
+(((-330 |#1| |#2|) (-304 |#1|) (-324) (-1081 |#1|)) (T -330))
+NIL
+(-304 |#1|)
+((-2490 ((|#1| (-1081 |#2|)) 51)))
+(((-331 |#1| |#2|) (-10 -7 (-15 -2490 (|#1| (-1081 |#2|)))) (-13 (-377) (-10 -7 (-15 -2190 (|#1| |#2|)) (-15 -2120 ((-850) |#1|)) (-15 -3855 ((-1166 |#1|) (-850))) (-15 -3428 (|#1| |#1|)))) (-324)) (T -331))
+((-2490 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-4 *2 (-13 (-377) (-10 -7 (-15 -2190 (*2 *4)) (-15 -2120 ((-850) *2)) (-15 -3855 ((-1166 *2) (-850))) (-15 -3428 (*2 *2))))) (-5 *1 (-331 *2 *4)))))
+(-10 -7 (-15 -2490 (|#1| (-1081 |#2|))))
+((-3977 (((-886 (-1081 |#1|)) (-1081 |#1|)) 37)) (-3255 (((-1081 |#1|) (-850) (-850)) 110) (((-1081 |#1|) (-850)) 109)) (-2511 (((-108) (-1081 |#1|)) 82)) (-1889 (((-850) (-850)) 72)) (-4086 (((-850) (-850)) 74)) (-2998 (((-850) (-850)) 70)) (-2741 (((-108) (-1081 |#1|)) 86)) (-2488 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 98)) (-3095 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 101)) (-2505 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 100)) (-1285 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 99)) (-3704 (((-3 (-1081 |#1|) "failed") (-1081 |#1|)) 95)) (-4213 (((-1081 |#1|) (-1081 |#1|)) 63)) (-3822 (((-1081 |#1|) (-850)) 104)) (-1603 (((-1081 |#1|) (-850)) 107)) (-1472 (((-1081 |#1|) (-850)) 106)) (-3656 (((-1081 |#1|) (-850)) 105)) (-1657 (((-1081 |#1|) (-850)) 102)))
+(((-332 |#1|) (-10 -7 (-15 -2511 ((-108) (-1081 |#1|))) (-15 -2741 ((-108) (-1081 |#1|))) (-15 -2998 ((-850) (-850))) (-15 -1889 ((-850) (-850))) (-15 -4086 ((-850) (-850))) (-15 -1657 ((-1081 |#1|) (-850))) (-15 -3822 ((-1081 |#1|) (-850))) (-15 -3656 ((-1081 |#1|) (-850))) (-15 -1472 ((-1081 |#1|) (-850))) (-15 -1603 ((-1081 |#1|) (-850))) (-15 -3704 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -2488 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -1285 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -2505 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3095 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3255 ((-1081 |#1|) (-850))) (-15 -3255 ((-1081 |#1|) (-850) (-850))) (-15 -4213 ((-1081 |#1|) (-1081 |#1|))) (-15 -3977 ((-886 (-1081 |#1|)) (-1081 |#1|)))) (-324)) (T -332))
+((-3977 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-886 (-1081 *4))) (-5 *1 (-332 *4)) (-5 *3 (-1081 *4)))) (-4213 (*1 *2 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-3255 (*1 *2 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3095 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-2505 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-1285 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-2488 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-3704 (*1 *2 *2) (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4)) (-4 *4 (-324)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))) (-2998 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-332 *4)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-332 *4)))))
+(-10 -7 (-15 -2511 ((-108) (-1081 |#1|))) (-15 -2741 ((-108) (-1081 |#1|))) (-15 -2998 ((-850) (-850))) (-15 -1889 ((-850) (-850))) (-15 -4086 ((-850) (-850))) (-15 -1657 ((-1081 |#1|) (-850))) (-15 -3822 ((-1081 |#1|) (-850))) (-15 -3656 ((-1081 |#1|) (-850))) (-15 -1472 ((-1081 |#1|) (-850))) (-15 -1603 ((-1081 |#1|) (-850))) (-15 -3704 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -2488 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -1285 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -2505 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3095 ((-3 (-1081 |#1|) "failed") (-1081 |#1|))) (-15 -3255 ((-1081 |#1|) (-850))) (-15 -3255 ((-1081 |#1|) (-850) (-850))) (-15 -4213 ((-1081 |#1|) (-1081 |#1|))) (-15 -3977 ((-886 (-1081 |#1|)) (-1081 |#1|))))
+((-1473 (((-3 (-588 |#3|) "failed") (-588 |#3|) |#3|) 34)))
+(((-333 |#1| |#2| |#3|) (-10 -7 (-15 -1473 ((-3 (-588 |#3|) "failed") (-588 |#3|) |#3|))) (-324) (-1142 |#1|) (-1142 |#2|)) (T -333))
+((-1473 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *1 (-333 *4 *5 *3)))))
+(-10 -7 (-15 -1473 ((-3 (-588 |#3|) "failed") (-588 |#3|) |#3|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3766 (($ (-1166 |#1|)) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| |#1| (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| |#1| (-343)))) (-2511 (((-108) $) NIL (|has| |#1| (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| |#1| (-343))) (((-770 (-850)) $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| |#1| (-343)))) (-2741 (((-108) $) NIL (|has| |#1| (-343)))) (-2100 ((|#1| $) NIL) (($ $ (-850)) NIL (|has| |#1| (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 |#1|) $) NIL) (((-1081 $) $ (-850)) NIL (|has| |#1| (-343)))) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-3074 (((-1081 |#1|) $) NIL (|has| |#1| (-343)))) (-2941 (((-1081 |#1|) $) NIL (|has| |#1| (-343))) (((-3 (-1081 |#1|) "failed") $ $) NIL (|has| |#1| (-343)))) (-1425 (($ $ (-1081 |#1|)) NIL (|has| |#1| (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| |#1| (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1383 (($) NIL (|has| |#1| (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| |#1| (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| |#1| (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 |#1|)) NIL)) (-2581 (($) NIL (|has| |#1| (-343)))) (-1299 (($) NIL (|has| |#1| (-343)))) (-3677 (((-1166 |#1|) $) NIL) (((-628 |#1|) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) NIL)) (-2143 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-2213 (($ $) NIL (|has| |#1| (-343))) (($ $ (-708)) NIL (|has| |#1| (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-334 |#1| |#2|) (-304 |#1|) (-324) (-850)) (T -334))
+NIL
+(-304 |#1|)
+((-3191 (((-108) (-588 (-881 |#1|))) 32)) (-4054 (((-588 (-881 |#1|)) (-588 (-881 |#1|))) 43)) (-1652 (((-3 (-588 (-881 |#1|)) "failed") (-588 (-881 |#1|))) 39)))
+(((-335 |#1| |#2|) (-10 -7 (-15 -3191 ((-108) (-588 (-881 |#1|)))) (-15 -1652 ((-3 (-588 (-881 |#1|)) "failed") (-588 (-881 |#1|)))) (-15 -4054 ((-588 (-881 |#1|)) (-588 (-881 |#1|))))) (-426) (-588 (-1085))) (T -335))
+((-4054 (*1 *2 *2) (-12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) (-5 *1 (-335 *3 *4)) (-14 *4 (-588 (-1085))))) (-1652 (*1 *2 *2) (|partial| -12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) (-5 *1 (-335 *3 *4)) (-14 *4 (-588 (-1085))))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-108)) (-5 *1 (-335 *4 *5)) (-14 *5 (-588 (-1085))))))
+(-10 -7 (-15 -3191 ((-108) (-588 (-881 |#1|)))) (-15 -1652 ((-3 (-588 (-881 |#1|)) "failed") (-588 (-881 |#1|)))) (-15 -4054 ((-588 (-881 |#1|)) (-588 (-881 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-1629 (((-708) $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) 14)) (-3750 ((|#1| $ (-522)) NIL)) (-1905 (((-522) $ (-522)) NIL)) (-3896 (($ (-1 |#1| |#1|) $) 32)) (-3941 (($ (-1 (-522) (-522)) $) 24)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 26)) (-4151 (((-1032) $) NIL)) (-2976 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-522)))) $) 28)) (-3122 (($ $ $) NIL)) (-1288 (($ $ $) NIL)) (-2190 (((-792) $) 38) (($ |#1|) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3577 (($) 9 T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ |#1| (-522)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-336 |#1|) (-13 (-447) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-522))) (-15 -1629 ((-708) $)) (-15 -1905 ((-522) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -3941 ($ (-1 (-522) (-522)) $)) (-15 -3896 ($ (-1 |#1| |#1|) $)) (-15 -2976 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-522)))) $)))) (-1014)) (T -336))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) (-1905 (*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-522) (-522))) (-5 *1 (-336 *3)) (-4 *3 (-1014)))) (-3896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-336 *3)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 (-522))))) (-5 *1 (-336 *3)) (-4 *3 (-1014)))))
+(-13 (-447) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-522))) (-15 -1629 ((-708) $)) (-15 -1905 ((-522) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -3941 ($ (-1 (-522) (-522)) $)) (-15 -3896 ($ (-1 |#1| |#1|) $)) (-15 -2976 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-522)))) $))))
+((-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 13)) (-2022 (($ $) 14)) (-3450 (((-393 $) $) 30)) (-2813 (((-108) $) 26)) (-3098 (($ $) 19)) (-2259 (($ $ $) 23) (($ (-588 $)) NIL)) (-1916 (((-393 $) $) 31)) (-2232 (((-3 $ "failed") $ $) 22)) (-3730 (((-708) $) 25)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 35)) (-3958 (((-108) $ $) 16)) (-1620 (($ $ $) 33)))
+(((-337 |#1|) (-10 -8 (-15 -1620 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -2813 ((-108) |#1|)) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2752 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -3730 ((-708) |#1|)) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2259 (|#1| |#1| |#1|)) (-15 -3958 ((-108) |#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2013 ((-2 (|:| -3210 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|))) (-338)) (T -337))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1| |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -2813 ((-108) |#1|)) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2752 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -3730 ((-708) |#1|)) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2259 (|#1| |#1| |#1|)) (-15 -3958 ((-108) |#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2013 ((-2 (|:| -3210 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2813 (((-108) $) 71)) (-2782 (((-108) $) 31)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66)))
+(((-338) (-1197)) (T -338))
+((-1620 (*1 *1 *1 *1) (-4 *1 (-338))))
+(-13 (-283) (-1124) (-220) (-10 -8 (-15 -1620 ($ $ $)) (-6 -4236) (-6 -4230)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-1416 (((-108) $ $) 7)) (-1270 ((|#2| $ |#2|) 13)) (-2563 (($ $ (-1068)) 18)) (-4045 ((|#2| $) 14)) (-1544 (($ |#1|) 20) (($ |#1| (-1068)) 19)) (-2888 ((|#1| $) 16)) (-2385 (((-1068) $) 9)) (-3469 (((-1068) $) 15)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-2152 (($ $) 17)) (-1531 (((-108) $ $) 6)))
+(((-339 |#1| |#2|) (-1197) (-1014) (-1014)) (T -339))
+((-1544 (*1 *1 *2) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1544 (*1 *1 *2 *3) (-12 (-5 *3 (-1068)) (-4 *1 (-339 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2152 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1068)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1270 (*1 *2 *1 *2) (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -1544 ($ |t#1|)) (-15 -1544 ($ |t#1| (-1068))) (-15 -2563 ($ $ (-1068))) (-15 -2152 ($ $)) (-15 -2888 (|t#1| $)) (-15 -3469 ((-1068) $)) (-15 -4045 (|t#2| $)) (-15 -1270 (|t#2| $ |t#2|))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1270 ((|#1| $ |#1|) 29)) (-2563 (($ $ (-1068)) 22)) (-1789 (((-3 |#1| "failed") $) 28)) (-4045 ((|#1| $) 26)) (-1544 (($ (-363)) 21) (($ (-363) (-1068)) 20)) (-2888 (((-363) $) 24)) (-2385 (((-1068) $) NIL)) (-3469 (((-1068) $) 25)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 19)) (-2152 (($ $) 23)) (-1531 (((-108) $ $) 18)))
+(((-340 |#1|) (-13 (-339 (-363) |#1|) (-10 -8 (-15 -1789 ((-3 |#1| "failed") $)))) (-1014)) (T -340))
+((-1789 (*1 *2 *1) (|partial| -12 (-5 *1 (-340 *2)) (-4 *2 (-1014)))))
+(-13 (-339 (-363) |#1|) (-10 -8 (-15 -1789 ((-3 |#1| "failed") $))))
+((-1588 (((-1166 (-628 |#2|)) (-1166 $)) 61)) (-1771 (((-628 |#2|) (-1166 $)) 119)) (-3594 ((|#2| $) 32)) (-2828 (((-628 |#2|) $ (-1166 $)) 123)) (-3637 (((-3 $ "failed") $) 75)) (-3076 ((|#2| $) 35)) (-2992 (((-1081 |#2|) $) 83)) (-2975 ((|#2| (-1166 $)) 106)) (-4014 (((-1081 |#2|) $) 28)) (-2878 (((-108)) 100)) (-3766 (($ (-1166 |#2|) (-1166 $)) 113)) (-2682 (((-3 $ "failed") $) 79)) (-1427 (((-108)) 95)) (-2552 (((-108)) 90)) (-2678 (((-108)) 53)) (-1943 (((-628 |#2|) (-1166 $)) 117)) (-1546 ((|#2| $) 31)) (-4142 (((-628 |#2|) $ (-1166 $)) 122)) (-2231 (((-3 $ "failed") $) 73)) (-1505 ((|#2| $) 34)) (-3630 (((-1081 |#2|) $) 82)) (-2475 ((|#2| (-1166 $)) 104)) (-2302 (((-1081 |#2|) $) 26)) (-3003 (((-108)) 99)) (-3710 (((-108)) 92)) (-3026 (((-108)) 51)) (-3055 (((-108)) 87)) (-2889 (((-108)) 101)) (-3677 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) 111)) (-4034 (((-108)) 97)) (-2901 (((-588 (-1166 |#2|))) 86)) (-2928 (((-108)) 98)) (-3065 (((-108)) 96)) (-3856 (((-108)) 46)) (-3877 (((-108)) 102)))
+(((-341 |#1| |#2|) (-10 -8 (-15 -2992 ((-1081 |#2|) |#1|)) (-15 -3630 ((-1081 |#2|) |#1|)) (-15 -2901 ((-588 (-1166 |#2|)))) (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -2231 ((-3 |#1| "failed") |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -2552 ((-108))) (-15 -3710 ((-108))) (-15 -1427 ((-108))) (-15 -3026 ((-108))) (-15 -2678 ((-108))) (-15 -3055 ((-108))) (-15 -3877 ((-108))) (-15 -2889 ((-108))) (-15 -2878 ((-108))) (-15 -3003 ((-108))) (-15 -3856 ((-108))) (-15 -2928 ((-108))) (-15 -3065 ((-108))) (-15 -4034 ((-108))) (-15 -4014 ((-1081 |#2|) |#1|)) (-15 -2302 ((-1081 |#2|) |#1|)) (-15 -1771 ((-628 |#2|) (-1166 |#1|))) (-15 -1943 ((-628 |#2|) (-1166 |#1|))) (-15 -2975 (|#2| (-1166 |#1|))) (-15 -2475 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -3076 (|#2| |#1|)) (-15 -1505 (|#2| |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -1546 (|#2| |#1|)) (-15 -2828 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -4142 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -1588 ((-1166 (-628 |#2|)) (-1166 |#1|)))) (-342 |#2|) (-157)) (T -341))
+((-4034 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3065 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2928 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3856 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3003 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2878 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2889 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3877 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3055 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2678 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3026 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-1427 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-3710 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2552 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))) (-2901 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-588 (-1166 *4))) (-5 *1 (-341 *3 *4)) (-4 *3 (-342 *4)))))
+(-10 -8 (-15 -2992 ((-1081 |#2|) |#1|)) (-15 -3630 ((-1081 |#2|) |#1|)) (-15 -2901 ((-588 (-1166 |#2|)))) (-15 -3637 ((-3 |#1| "failed") |#1|)) (-15 -2231 ((-3 |#1| "failed") |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -2552 ((-108))) (-15 -3710 ((-108))) (-15 -1427 ((-108))) (-15 -3026 ((-108))) (-15 -2678 ((-108))) (-15 -3055 ((-108))) (-15 -3877 ((-108))) (-15 -2889 ((-108))) (-15 -2878 ((-108))) (-15 -3003 ((-108))) (-15 -3856 ((-108))) (-15 -2928 ((-108))) (-15 -3065 ((-108))) (-15 -4034 ((-108))) (-15 -4014 ((-1081 |#2|) |#1|)) (-15 -2302 ((-1081 |#2|) |#1|)) (-15 -1771 ((-628 |#2|) (-1166 |#1|))) (-15 -1943 ((-628 |#2|) (-1166 |#1|))) (-15 -2975 (|#2| (-1166 |#1|))) (-15 -2475 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -3076 (|#2| |#1|)) (-15 -1505 (|#2| |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -1546 (|#2| |#1|)) (-15 -2828 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -4142 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -1588 ((-1166 (-628 |#2|)) (-1166 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3210 (((-3 $ "failed")) 37 (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) 19)) (-1588 (((-1166 (-628 |#1|)) (-1166 $)) 78)) (-1681 (((-1166 $)) 81)) (-3175 (($) 17 T CONST)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) 40 (|has| |#1| (-514)))) (-3130 (((-3 $ "failed")) 38 (|has| |#1| (-514)))) (-1771 (((-628 |#1|) (-1166 $)) 65)) (-3594 ((|#1| $) 74)) (-2828 (((-628 |#1|) $ (-1166 $)) 76)) (-3637 (((-3 $ "failed") $) 45 (|has| |#1| (-514)))) (-1679 (($ $ (-850)) 28)) (-3076 ((|#1| $) 72)) (-2992 (((-1081 |#1|) $) 42 (|has| |#1| (-514)))) (-2975 ((|#1| (-1166 $)) 67)) (-4014 (((-1081 |#1|) $) 63)) (-2878 (((-108)) 57)) (-3766 (($ (-1166 |#1|) (-1166 $)) 69)) (-2682 (((-3 $ "failed") $) 47 (|has| |#1| (-514)))) (-3166 (((-850)) 80)) (-2666 (((-108)) 54)) (-1882 (($ $ (-850)) 33)) (-1427 (((-108)) 50)) (-2552 (((-108)) 48)) (-2678 (((-108)) 52)) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) 41 (|has| |#1| (-514)))) (-2007 (((-3 $ "failed")) 39 (|has| |#1| (-514)))) (-1943 (((-628 |#1|) (-1166 $)) 66)) (-1546 ((|#1| $) 75)) (-4142 (((-628 |#1|) $ (-1166 $)) 77)) (-2231 (((-3 $ "failed") $) 46 (|has| |#1| (-514)))) (-3277 (($ $ (-850)) 29)) (-1505 ((|#1| $) 73)) (-3630 (((-1081 |#1|) $) 43 (|has| |#1| (-514)))) (-2475 ((|#1| (-1166 $)) 68)) (-2302 (((-1081 |#1|) $) 64)) (-3003 (((-108)) 58)) (-2385 (((-1068) $) 9)) (-3710 (((-108)) 49)) (-3026 (((-108)) 51)) (-3055 (((-108)) 53)) (-4151 (((-1032) $) 10)) (-2889 (((-108)) 56)) (-3677 (((-1166 |#1|) $ (-1166 $)) 71) (((-628 |#1|) (-1166 $) (-1166 $)) 70)) (-2656 (((-588 (-881 |#1|)) (-1166 $)) 79)) (-1288 (($ $ $) 25)) (-4034 (((-108)) 62)) (-2190 (((-792) $) 11)) (-2901 (((-588 (-1166 |#1|))) 44 (|has| |#1| (-514)))) (-3610 (($ $ $ $) 26)) (-2928 (((-108)) 60)) (-3024 (($ $ $) 24)) (-3065 (((-108)) 61)) (-3856 (((-108)) 59)) (-3877 (((-108)) 55)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-342 |#1|) (-1197) (-157)) (T -342))
+((-1681 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-342 *3)))) (-3166 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-850)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-588 (-881 *4))))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-1166 (-628 *4))))) (-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-2828 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-1166 *4)))) (-3677 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-3766 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157)) (-4 *1 (-342 *4)))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3)))) (-4014 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3)))) (-4034 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3065 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2928 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3856 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3003 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2878 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2889 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3877 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2666 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3055 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2678 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3026 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-1427 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-3710 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2552 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))) (-2682 (*1 *1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-2231 (*1 *1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-3637 (*1 *1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514)))) (-2901 (*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) (-5 *2 (-588 (-1166 *3))))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) (-5 *2 (-1081 *3)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514)) (-5 *2 (-1081 *3)))) (-3505 (*1 *2) (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3855 (-588 *1)))) (-4 *1 (-342 *3)))) (-1868 (*1 *2) (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3855 (-588 *1)))) (-4 *1 (-342 *3)))) (-2007 (*1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))) (-3130 (*1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))) (-3210 (*1 *1) (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))))
+(-13 (-682 |t#1|) (-10 -8 (-15 -1681 ((-1166 $))) (-15 -3166 ((-850))) (-15 -2656 ((-588 (-881 |t#1|)) (-1166 $))) (-15 -1588 ((-1166 (-628 |t#1|)) (-1166 $))) (-15 -4142 ((-628 |t#1|) $ (-1166 $))) (-15 -2828 ((-628 |t#1|) $ (-1166 $))) (-15 -1546 (|t#1| $)) (-15 -3594 (|t#1| $)) (-15 -1505 (|t#1| $)) (-15 -3076 (|t#1| $)) (-15 -3677 ((-1166 |t#1|) $ (-1166 $))) (-15 -3677 ((-628 |t#1|) (-1166 $) (-1166 $))) (-15 -3766 ($ (-1166 |t#1|) (-1166 $))) (-15 -2475 (|t#1| (-1166 $))) (-15 -2975 (|t#1| (-1166 $))) (-15 -1943 ((-628 |t#1|) (-1166 $))) (-15 -1771 ((-628 |t#1|) (-1166 $))) (-15 -2302 ((-1081 |t#1|) $)) (-15 -4014 ((-1081 |t#1|) $)) (-15 -4034 ((-108))) (-15 -3065 ((-108))) (-15 -2928 ((-108))) (-15 -3856 ((-108))) (-15 -3003 ((-108))) (-15 -2878 ((-108))) (-15 -2889 ((-108))) (-15 -3877 ((-108))) (-15 -2666 ((-108))) (-15 -3055 ((-108))) (-15 -2678 ((-108))) (-15 -3026 ((-108))) (-15 -1427 ((-108))) (-15 -3710 ((-108))) (-15 -2552 ((-108))) (IF (|has| |t#1| (-514)) (PROGN (-15 -2682 ((-3 $ "failed") $)) (-15 -2231 ((-3 $ "failed") $)) (-15 -3637 ((-3 $ "failed") $)) (-15 -2901 ((-588 (-1166 |t#1|)))) (-15 -3630 ((-1081 |t#1|) $)) (-15 -2992 ((-1081 |t#1|) $)) (-15 -3505 ((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed"))) (-15 -1868 ((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed"))) (-15 -2007 ((-3 $ "failed"))) (-15 -3130 ((-3 $ "failed"))) (-15 -3210 ((-3 $ "failed"))) (-6 -4235)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-682 |#1|) . T) ((-699) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-1629 (((-708)) 16)) (-3255 (($) 13)) (-2120 (((-850) $) 14)) (-2385 (((-1068) $) 9)) (-2717 (($ (-850)) 15)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-343) (-1197)) (T -343))
+((-1629 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-708)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-343)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-850)))) (-3255 (*1 *1) (-4 *1 (-343))))
+(-13 (-1014) (-10 -8 (-15 -1629 ((-708))) (-15 -2717 ($ (-850))) (-15 -2120 ((-850) $)) (-15 -3255 ($))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-3174 (((-628 |#2|) (-1166 $)) 40)) (-3766 (($ (-1166 |#2|) (-1166 $)) 35)) (-2109 (((-628 |#2|) $ (-1166 $)) 43)) (-2769 ((|#2| (-1166 $)) 13)) (-3677 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) 25)))
+(((-344 |#1| |#2| |#3|) (-10 -8 (-15 -3174 ((-628 |#2|) (-1166 |#1|))) (-15 -2769 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2109 ((-628 |#2|) |#1| (-1166 |#1|)))) (-345 |#2| |#3|) (-157) (-1142 |#2|)) (T -344))
+NIL
+(-10 -8 (-15 -3174 ((-628 |#2|) (-1166 |#1|))) (-15 -2769 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2109 ((-628 |#2|) |#1| (-1166 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3174 (((-628 |#1|) (-1166 $)) 46)) (-1865 ((|#1| $) 52)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3766 (($ (-1166 |#1|) (-1166 $)) 48)) (-2109 (((-628 |#1|) $ (-1166 $)) 53)) (-2682 (((-3 $ "failed") $) 34)) (-3166 (((-850)) 54)) (-2782 (((-108) $) 31)) (-2100 ((|#1| $) 51)) (-1712 ((|#2| $) 44 (|has| |#1| (-338)))) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2769 ((|#1| (-1166 $)) 47)) (-3677 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37)) (-2143 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2051 ((|#2| $) 45)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-345 |#1| |#2|) (-1197) (-157) (-1142 |t#1|)) (T -345))
+((-3166 (*1 *2) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-850)))) (-2109 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *4)))) (-3677 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-3766 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157)) (-4 *1 (-345 *4 *5)) (-4 *5 (-1142 *4)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *2 *4)) (-4 *4 (-1142 *2)) (-4 *2 (-157)))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *3 (-338)) (-4 *2 (-1142 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3166 ((-850))) (-15 -2109 ((-628 |t#1|) $ (-1166 $))) (-15 -1865 (|t#1| $)) (-15 -2100 (|t#1| $)) (-15 -3677 ((-1166 |t#1|) $ (-1166 $))) (-15 -3677 ((-628 |t#1|) (-1166 $) (-1166 $))) (-15 -3766 ($ (-1166 |t#1|) (-1166 $))) (-15 -2769 (|t#1| (-1166 $))) (-15 -3174 ((-628 |t#1|) (-1166 $))) (-15 -2051 (|t#2| $)) (IF (|has| |t#1| (-338)) (-15 -1712 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-3690 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3864 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1391 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-346 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3864 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3690 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1120) (-348 |#1|) (-1120) (-348 |#3|)) (T -346))
+((-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-4 *2 (-348 *5)) (-5 *1 (-346 *6 *4 *5 *2)) (-4 *4 (-348 *6)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-346 *5 *4 *2 *6)) (-4 *4 (-348 *5)) (-4 *6 (-348 *2)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *2 (-348 *6)) (-5 *1 (-346 *5 *4 *6 *2)) (-4 *4 (-348 *5)))))
+(-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3864 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3690 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-4187 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-3537 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3216 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1862 (($ $) 25)) (-3238 (((-522) (-1 (-108) |#2|) $) NIL) (((-522) |#2| $) 11) (((-522) |#2| $ (-522)) NIL)) (-2160 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-347 |#1| |#2|) (-10 -8 (-15 -3537 (|#1| |#1|)) (-15 -3537 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -4187 ((-108) |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -3238 ((-522) |#2| |#1| (-522))) (-15 -3238 ((-522) |#2| |#1|)) (-15 -3238 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -4187 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -2160 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-348 |#2|) (-1120)) (T -347))
+NIL
+(-10 -8 (-15 -3537 (|#1| |#1|)) (-15 -3537 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -4187 ((-108) |#1|)) (-15 -3216 (|#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -3238 ((-522) |#2| |#1| (-522))) (-15 -3238 ((-522) |#2| |#1|)) (-15 -3238 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -4187 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1862 (|#1| |#1|)) (-15 -2160 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3509 (($ $) 90 (|has| $ (-6 -4239)))) (-1862 (($ $) 100)) (-2333 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 51)) (-3238 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 87 (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 42 (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2602 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 70)) (-4165 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-348 |#1|) (-1197) (-1120)) (T -348))
+((-2160 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-1862 (*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)))) (-3216 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-4187 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-3238 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120)) (-5 *2 (-522)))) (-3238 (*1 *2 *3 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-522)))) (-3238 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)))) (-2160 (*1 *1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) (-3216 (*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-784)) (-5 *2 (-108)))) (-1577 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-3509 (*1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120)))) (-3537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4239)) (-4 *1 (-348 *3)) (-4 *3 (-1120)))) (-3537 (*1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784)))))
+(-13 (-593 |t#1|) (-10 -8 (-6 -4238) (-15 -2160 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1862 ($ $)) (-15 -3216 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -4187 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3238 ((-522) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -3238 ((-522) |t#1| $)) (-15 -3238 ((-522) |t#1| $ (-522)))) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-6 (-784)) (-15 -2160 ($ $ $)) (-15 -3216 ($ $)) (-15 -4187 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4239)) (PROGN (-15 -1577 ($ $ $ (-522))) (-15 -3509 ($ $)) (-15 -3537 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-784)) (-15 -3537 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4106 (((-588 |#1|) $) 32)) (-2613 (($ $ (-708)) 33)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1200 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 36)) (-1225 (($ $) 34)) (-2987 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 37)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2289 (($ $ |#1| $) 31) (($ $ (-588 |#1|) (-588 $)) 30)) (-2793 (((-708) $) 38)) (-2201 (($ $ $) 29)) (-2190 (((-792) $) 11) (($ |#1|) 41) (((-1179 |#1| |#2|) $) 40) (((-1188 |#1| |#2|) $) 39)) (-2977 ((|#2| (-1188 |#1| |#2|) $) 42)) (-3566 (($) 18 T CONST)) (-2131 (($ (-613 |#1|)) 35)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#2|) 28 (|has| |#2| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-349 |#1| |#2|) (-1197) (-784) (-157)) (T -349))
+((-2977 (*1 *2 *3 *1) (-12 (-5 *3 (-1188 *4 *2)) (-4 *1 (-349 *4 *2)) (-4 *4 (-784)) (-4 *2 (-157)))) (-2190 (*1 *1 *2) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-1179 *3 *4)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-1188 *3 *4)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-708)))) (-2987 (*1 *2 *2 *1) (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-1200 (*1 *2 *2 *1) (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-2131 (*1 *1 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-4 *1 (-349 *3 *4)) (-4 *4 (-157)))) (-1225 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2613 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-4106 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *2 (-588 *3)))) (-2289 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *1)) (-4 *1 (-349 *4 *5)) (-4 *4 (-784)) (-4 *5 (-157)))))
+(-13 (-579 |t#2|) (-10 -8 (-15 -2977 (|t#2| (-1188 |t#1| |t#2|) $)) (-15 -2190 ($ |t#1|)) (-15 -2190 ((-1179 |t#1| |t#2|) $)) (-15 -2190 ((-1188 |t#1| |t#2|) $)) (-15 -2793 ((-708) $)) (-15 -2987 ((-1188 |t#1| |t#2|) (-1188 |t#1| |t#2|) $)) (-15 -1200 ((-1188 |t#1| |t#2|) (-1188 |t#1| |t#2|) $)) (-15 -2131 ($ (-613 |t#1|))) (-15 -1225 ($ $)) (-15 -2613 ($ $ (-708))) (-15 -4106 ((-588 |t#1|) $)) (-15 -2289 ($ $ |t#1| $)) (-15 -2289 ($ $ (-588 |t#1|) (-588 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#2|) . T) ((-579 |#2|) . T) ((-655 |#2|) . T) ((-977 |#2|) . T) ((-1014) . T))
+((-3834 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-1618 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 12)) (-2055 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 21)))
+(((-350 |#1| |#2|) (-10 -7 (-15 -1618 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2055 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3834 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1120) (-13 (-348 |#1|) (-10 -7 (-6 -4239)))) (T -350))
+((-3834 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))) (-2055 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))) (-1618 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2)) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))))
+(-10 -7 (-15 -1618 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2055 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3834 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
+((-2096 (((-628 |#2|) (-628 $)) NIL) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 19) (((-628 (-522)) (-628 $)) 13)))
+(((-351 |#1| |#2|) (-10 -8 (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 |#2|) (-628 |#1|)))) (-352 |#2|) (-971)) (T -351))
+NIL
+(-10 -8 (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 |#2|) (-628 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2096 (((-628 |#1|) (-628 $)) 36) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 35) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 43 (|has| |#1| (-584 (-522)))) (((-628 (-522)) (-628 $)) 42 (|has| |#1| (-584 (-522))))) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-352 |#1|) (-1197) (-971)) (T -352))
+NIL
+(-13 (-584 |t#1|) (-10 -7 (IF (|has| |t#1| (-584 (-522))) (-6 (-584 (-522))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2669 (((-588 (-270 (-881 (-154 |#1|)))) (-270 (-382 (-881 (-154 (-522))))) |#1|) 50) (((-588 (-270 (-881 (-154 |#1|)))) (-382 (-881 (-154 (-522)))) |#1|) 49) (((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-270 (-382 (-881 (-154 (-522)))))) |#1|) 45) (((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-382 (-881 (-154 (-522))))) |#1|) 39)) (-2559 (((-588 (-588 (-154 |#1|))) (-588 (-382 (-881 (-154 (-522))))) (-588 (-1085)) |#1|) 27) (((-588 (-154 |#1|)) (-382 (-881 (-154 (-522)))) |#1|) 15)))
+(((-353 |#1|) (-10 -7 (-15 -2669 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -2669 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-270 (-382 (-881 (-154 (-522)))))) |#1|)) (-15 -2669 ((-588 (-270 (-881 (-154 |#1|)))) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -2669 ((-588 (-270 (-881 (-154 |#1|)))) (-270 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -2559 ((-588 (-154 |#1|)) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -2559 ((-588 (-588 (-154 |#1|))) (-588 (-382 (-881 (-154 (-522))))) (-588 (-1085)) |#1|))) (-13 (-338) (-782))) (T -353))
+((-2559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522)))))) (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 (-154 *5)))) (-5 *1 (-353 *5)) (-4 *5 (-13 (-338) (-782))))) (-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-154 (-522))))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 (-154 (-522)))))) (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-154 (-522))))) (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-270 (-382 (-881 (-154 (-522))))))) (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522)))))) (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782))))))
+(-10 -7 (-15 -2669 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -2669 ((-588 (-588 (-270 (-881 (-154 |#1|))))) (-588 (-270 (-382 (-881 (-154 (-522)))))) |#1|)) (-15 -2669 ((-588 (-270 (-881 (-154 |#1|)))) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -2669 ((-588 (-270 (-881 (-154 |#1|)))) (-270 (-382 (-881 (-154 (-522))))) |#1|)) (-15 -2559 ((-588 (-154 |#1|)) (-382 (-881 (-154 (-522)))) |#1|)) (-15 -2559 ((-588 (-588 (-154 |#1|))) (-588 (-382 (-881 (-154 (-522))))) (-588 (-1085)) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 33)) (-2229 (((-522) $) 55)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-2789 (($ $) 110)) (-2908 (($ $) 82)) (-2772 (($ $) 71)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1929 (($ $) 44)) (-1687 (((-108) $ $) NIL)) (-2884 (($ $) 80)) (-2748 (($ $) 69)) (-1341 (((-522) $) 64)) (-1662 (($ $ (-522)) 62)) (-2930 (($ $) NIL)) (-2794 (($ $) NIL)) (-3175 (($) NIL T CONST)) (-2599 (($ $) 112)) (-1297 (((-3 (-522) "failed") $) 188) (((-3 (-382 (-522)) "failed") $) 184)) (-1484 (((-522) $) 186) (((-382 (-522)) $) 182)) (-2277 (($ $ $) NIL)) (-3382 (((-522) $ $) 102)) (-2682 (((-3 $ "failed") $) 114)) (-4202 (((-382 (-522)) $ (-708)) 189) (((-382 (-522)) $ (-708) (-708)) 181)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2175 (((-850)) 73) (((-850) (-850)) 98 (|has| $ (-6 -4229)))) (-3687 (((-108) $) 106)) (-2838 (($) 40)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL)) (-3490 (((-1171) (-708)) 151)) (-3002 (((-1171)) 156) (((-1171) (-708)) 157)) (-1923 (((-1171)) 158) (((-1171) (-708)) 159)) (-1803 (((-1171)) 154) (((-1171) (-708)) 155)) (-3714 (((-522) $) 58)) (-2782 (((-108) $) 104)) (-1504 (($ $ (-522)) NIL)) (-2305 (($ $) 48)) (-2100 (($ $) NIL)) (-2556 (((-108) $) 35)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL) (($) NIL (-12 (-2401 (|has| $ (-6 -4221))) (-2401 (|has| $ (-6 -4229)))))) (-2446 (($ $ $) NIL) (($) 99 (-12 (-2401 (|has| $ (-6 -4221))) (-2401 (|has| $ (-6 -4229)))))) (-3357 (((-522) $) 17)) (-3248 (($) 87) (($ $) 92)) (-3167 (($) 91) (($ $) 93)) (-1254 (($ $) 83)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 116)) (-1941 (((-850) (-522)) 43 (|has| $ (-6 -4229)))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) 53)) (-3686 (($ $) 109)) (-3071 (($ (-522) (-522)) 107) (($ (-522) (-522) (-850)) 108)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1400 (((-522) $) 19)) (-3131 (($) 94)) (-3266 (($ $) 79)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2615 (((-850)) 100) (((-850) (-850)) 101 (|has| $ (-6 -4229)))) (-2157 (($ $ (-708)) NIL) (($ $) 115)) (-2349 (((-850) (-522)) 47 (|has| $ (-6 -4229)))) (-1738 (($ $) NIL)) (-2804 (($ $) NIL)) (-2919 (($ $) NIL)) (-2784 (($ $) NIL)) (-2896 (($ $) 81)) (-2761 (($ $) 70)) (-1431 (((-354) $) 174) (((-202) $) 176) (((-821 (-354)) $) NIL) (((-1068) $) 161) (((-498) $) 172) (($ (-202)) 180)) (-2190 (((-792) $) 163) (($ (-522)) 185) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-522)) 185) (($ (-382 (-522))) NIL) (((-202) $) 177)) (-2323 (((-708)) NIL)) (-3025 (($ $) 111)) (-3836 (((-850)) 54) (((-850) (-850)) 66 (|has| $ (-6 -4229)))) (-3355 (((-850)) 103)) (-1759 (($ $) 86)) (-2836 (($ $) 46) (($ $ $) 52)) (-3958 (((-108) $ $) NIL)) (-1745 (($ $) 84)) (-2815 (($ $) 37)) (-1776 (($ $) NIL)) (-2860 (($ $) NIL)) (-3924 (($ $) NIL)) (-2872 (($ $) NIL)) (-1768 (($ $) NIL)) (-2848 (($ $) NIL)) (-1752 (($ $) 85)) (-2825 (($ $) 49)) (-2241 (($ $) 51)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 34 T CONST)) (-3577 (($) 38 T CONST)) (-4149 (((-1068) $) 27) (((-1068) $ (-108)) 29) (((-1171) (-759) $) 30) (((-1171) (-759) $ (-108)) 31)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 39)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 42)) (-1620 (($ $ $) 45) (($ $ (-522)) 41)) (-1612 (($ $) 36) (($ $ $) 50)) (-1602 (($ $ $) 61)) (** (($ $ (-850)) 67) (($ $ (-708)) NIL) (($ $ (-522)) 88) (($ $ (-382 (-522))) 125) (($ $ $) 117)) (* (($ (-850) $) 65) (($ (-708) $) NIL) (($ (-522) $) 68) (($ $ $) 60) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-354) (-13 (-379) (-210) (-563 (-1068)) (-765) (-562 (-202)) (-1106) (-563 (-498)) (-10 -8 (-15 -1620 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -2305 ($ $)) (-15 -3382 ((-522) $ $)) (-15 -1662 ($ $ (-522))) (-15 -4202 ((-382 (-522)) $ (-708))) (-15 -4202 ((-382 (-522)) $ (-708) (-708))) (-15 -3248 ($)) (-15 -3167 ($)) (-15 -3131 ($)) (-15 -2836 ($ $ $)) (-15 -3248 ($ $)) (-15 -3167 ($ $)) (-15 -1431 ($ (-202))) (-15 -1923 ((-1171))) (-15 -1923 ((-1171) (-708))) (-15 -1803 ((-1171))) (-15 -1803 ((-1171) (-708))) (-15 -3002 ((-1171))) (-15 -3002 ((-1171) (-708))) (-15 -3490 ((-1171) (-708))) (-6 -4229) (-6 -4221)))) (T -354))
+((** (*1 *1 *1 *1) (-5 *1 (-354))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) (-2305 (*1 *1 *1) (-5 *1 (-354))) (-3382 (*1 *2 *1 *1) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) (-1662 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354)))) (-4202 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354)))) (-4202 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354)))) (-3248 (*1 *1) (-5 *1 (-354))) (-3167 (*1 *1) (-5 *1 (-354))) (-3131 (*1 *1) (-5 *1 (-354))) (-2836 (*1 *1 *1 *1) (-5 *1 (-354))) (-3248 (*1 *1 *1) (-5 *1 (-354))) (-3167 (*1 *1 *1) (-5 *1 (-354))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-354)))) (-1923 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))) (-1923 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) (-1803 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) (-3002 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))) (-3002 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))))
+(-13 (-379) (-210) (-563 (-1068)) (-765) (-562 (-202)) (-1106) (-563 (-498)) (-10 -8 (-15 -1620 ($ $ (-522))) (-15 ** ($ $ $)) (-15 -2305 ($ $)) (-15 -3382 ((-522) $ $)) (-15 -1662 ($ $ (-522))) (-15 -4202 ((-382 (-522)) $ (-708))) (-15 -4202 ((-382 (-522)) $ (-708) (-708))) (-15 -3248 ($)) (-15 -3167 ($)) (-15 -3131 ($)) (-15 -2836 ($ $ $)) (-15 -3248 ($ $)) (-15 -3167 ($ $)) (-15 -1431 ($ (-202))) (-15 -1923 ((-1171))) (-15 -1923 ((-1171) (-708))) (-15 -1803 ((-1171))) (-15 -1803 ((-1171) (-708))) (-15 -3002 ((-1171))) (-15 -3002 ((-1171) (-708))) (-15 -3490 ((-1171) (-708))) (-6 -4229) (-6 -4221)))
+((-3426 (((-588 (-270 (-881 |#1|))) (-270 (-382 (-881 (-522)))) |#1|) 46) (((-588 (-270 (-881 |#1|))) (-382 (-881 (-522))) |#1|) 45) (((-588 (-588 (-270 (-881 |#1|)))) (-588 (-270 (-382 (-881 (-522))))) |#1|) 41) (((-588 (-588 (-270 (-881 |#1|)))) (-588 (-382 (-881 (-522)))) |#1|) 35)) (-3330 (((-588 |#1|) (-382 (-881 (-522))) |#1|) 19) (((-588 (-588 |#1|)) (-588 (-382 (-881 (-522)))) (-588 (-1085)) |#1|) 30)))
+(((-355 |#1|) (-10 -7 (-15 -3426 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-382 (-881 (-522)))) |#1|)) (-15 -3426 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-270 (-382 (-881 (-522))))) |#1|)) (-15 -3426 ((-588 (-270 (-881 |#1|))) (-382 (-881 (-522))) |#1|)) (-15 -3426 ((-588 (-270 (-881 |#1|))) (-270 (-382 (-881 (-522)))) |#1|)) (-15 -3330 ((-588 (-588 |#1|)) (-588 (-382 (-881 (-522)))) (-588 (-1085)) |#1|)) (-15 -3330 ((-588 |#1|) (-382 (-881 (-522))) |#1|))) (-13 (-782) (-338))) (T -355))
+((-3330 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-3330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-382 (-881 (-522))))) (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 *5))) (-5 *1 (-355 *5)) (-4 *5 (-13 (-782) (-338))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 (-522))))) (-5 *2 (-588 (-270 (-881 *4)))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 (-270 (-881 *4)))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-270 (-382 (-881 (-522)))))) (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 (-522))))) (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338))))))
+(-10 -7 (-15 -3426 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-382 (-881 (-522)))) |#1|)) (-15 -3426 ((-588 (-588 (-270 (-881 |#1|)))) (-588 (-270 (-382 (-881 (-522))))) |#1|)) (-15 -3426 ((-588 (-270 (-881 |#1|))) (-382 (-881 (-522))) |#1|)) (-15 -3426 ((-588 (-270 (-881 |#1|))) (-270 (-382 (-881 (-522)))) |#1|)) (-15 -3330 ((-588 (-588 |#1|)) (-588 (-382 (-881 (-522)))) (-588 (-1085)) |#1|)) (-15 -3330 ((-588 |#1|) (-382 (-881 (-522))) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 25)) (-1484 ((|#2| $) 27)) (-3156 (($ $) NIL)) (-2112 (((-708) $) 10)) (-4052 (((-588 $) $) 20)) (-3340 (((-108) $) NIL)) (-2518 (($ |#2| |#1|) 18)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2834 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3128 ((|#2| $) 15)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 44) (($ |#2|) 26)) (-3916 (((-588 |#1|) $) 17)) (-3243 ((|#1| $ |#2|) 46)) (-3566 (($) 28 T CONST)) (-2238 (((-588 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 34) (($ |#2| |#1|) 35)))
+(((-356 |#1| |#2|) (-13 (-357 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-971) (-784)) (T -356))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-356 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784)))))
+(-13 (-357 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#2| "failed") $) 44)) (-1484 ((|#2| $) 43)) (-3156 (($ $) 30)) (-2112 (((-708) $) 34)) (-4052 (((-588 $) $) 35)) (-3340 (((-108) $) 38)) (-2518 (($ |#2| |#1|) 39)) (-1391 (($ (-1 |#1| |#1|) $) 40)) (-2834 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3128 ((|#2| $) 33)) (-3138 ((|#1| $) 32)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ |#2|) 45)) (-3916 (((-588 |#1|) $) 36)) (-3243 ((|#1| $ |#2|) 41)) (-3566 (($) 18 T CONST)) (-2238 (((-588 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-357 |#1| |#2|) (-1197) (-971) (-1014)) (T -357))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014)))) (-3243 (*1 *2 *1 *3) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)))) (-2518 (*1 *1 *2 *3) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-108)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 *3)))) (-4052 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 *1)) (-4 *1 (-357 *3 *4)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-708)))) (-3128 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014)))))
+(-13 (-107 |t#1| |t#1|) (-962 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3243 (|t#1| $ |t#2|)) (-15 -1391 ($ (-1 |t#1| |t#1|) $)) (-15 -2518 ($ |t#2| |t#1|)) (-15 -3340 ((-108) $)) (-15 -2238 ((-588 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3916 ((-588 |t#1|) $)) (-15 -4052 ((-588 $) $)) (-15 -2112 ((-708) $)) (-15 -3128 (|t#2| $)) (-15 -3138 (|t#1| $)) (-15 -2834 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3156 ($ $)) (IF (|has| |t#1| (-157)) (-6 (-655 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) |has| |#1| (-157)) ((-962 |#2|) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-2009 (((-1171) $) 7)) (-2190 (((-792) $) 8) (($ (-628 (-637))) 14) (($ (-588 (-305))) 13) (($ (-305)) 12) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 11)))
+(((-358) (-1197)) (T -358))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-628 (-637))) (-4 *1 (-358)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-358)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-358)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) (-4 *1 (-358)))))
+(-13 (-370) (-10 -8 (-15 -2190 ($ (-628 (-637)))) (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-305))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))))))
+(((-562 (-792)) . T) ((-370) . T) ((-1120) . T))
+((-1297 (((-3 $ "failed") (-628 (-291 (-354)))) 21) (((-3 $ "failed") (-628 (-291 (-522)))) 19) (((-3 $ "failed") (-628 (-881 (-354)))) 17) (((-3 $ "failed") (-628 (-881 (-522)))) 15) (((-3 $ "failed") (-628 (-382 (-881 (-354))))) 13) (((-3 $ "failed") (-628 (-382 (-881 (-522))))) 11)) (-1484 (($ (-628 (-291 (-354)))) 22) (($ (-628 (-291 (-522)))) 20) (($ (-628 (-881 (-354)))) 18) (($ (-628 (-881 (-522)))) 16) (($ (-628 (-382 (-881 (-354))))) 14) (($ (-628 (-382 (-881 (-522))))) 12)) (-2009 (((-1171) $) 7)) (-2190 (((-792) $) 8) (($ (-588 (-305))) 25) (($ (-305)) 24) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 23)))
+(((-359) (-1197)) (T -359))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-359)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-359)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) (-4 *1 (-359)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359)))))
+(-13 (-370) (-10 -8 (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-305))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))) (-15 -1484 ($ (-628 (-291 (-354))))) (-15 -1297 ((-3 $ "failed") (-628 (-291 (-354))))) (-15 -1484 ($ (-628 (-291 (-522))))) (-15 -1297 ((-3 $ "failed") (-628 (-291 (-522))))) (-15 -1484 ($ (-628 (-881 (-354))))) (-15 -1297 ((-3 $ "failed") (-628 (-881 (-354))))) (-15 -1484 ($ (-628 (-881 (-522))))) (-15 -1297 ((-3 $ "failed") (-628 (-881 (-522))))) (-15 -1484 ($ (-628 (-382 (-881 (-354)))))) (-15 -1297 ((-3 $ "failed") (-628 (-382 (-881 (-354)))))) (-15 -1484 ($ (-628 (-382 (-881 (-522)))))) (-15 -1297 ((-3 $ "failed") (-628 (-382 (-881 (-522))))))))
+(((-562 (-792)) . T) ((-370) . T) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-4049 (($ |#1| |#2|) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1207 ((|#2| $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 28)) (-3566 (($) 12 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-360 |#1| |#2|) (-13 (-107 |#1| |#1|) (-478 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|))) (-971) (-784)) (T -360))
+NIL
+(-13 (-107 |#1| |#1|) (-478 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-157)) (-6 (-655 |#1|)) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-1629 (((-708) $) 57)) (-3175 (($) NIL T CONST)) (-1200 (((-3 $ "failed") $ $) 59)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-4124 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2782 (((-108) $) 14)) (-3750 ((|#1| $ (-522)) NIL)) (-1905 (((-708) $ (-522)) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3896 (($ (-1 |#1| |#1|) $) 37)) (-3941 (($ (-1 (-708) (-708)) $) 34)) (-2987 (((-3 $ "failed") $ $) 50)) (-2385 (((-1068) $) NIL)) (-3599 (($ $ $) 25)) (-1671 (($ $ $) 23)) (-4151 (((-1032) $) NIL)) (-2976 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $) 31)) (-2752 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2190 (((-792) $) 21) (($ |#1|) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3577 (($) 9 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 41)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) 61 (|has| |#1| (-784)))) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ |#1| (-708)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
+(((-361 |#1|) (-13 (-664) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -1671 ($ $ $)) (-15 -3599 ($ $ $)) (-15 -2987 ((-3 $ "failed") $ $)) (-15 -1200 ((-3 $ "failed") $ $)) (-15 -2752 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4124 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1629 ((-708) $)) (-15 -2976 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $)) (-15 -1905 ((-708) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -3941 ($ (-1 (-708) (-708)) $)) (-15 -3896 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|))) (-1014)) (T -361))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-1671 (*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-3599 (*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-2987 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-1200 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-2752 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-361 *3)) (|:| |rm| (-361 *3)))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-4124 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-361 *3)) (|:| |mm| (-361 *3)) (|:| |rm| (-361 *3)))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 (-708))))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-361 *4)) (-4 *4 (-1014)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-361 *2)) (-4 *2 (-1014)))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-708) (-708))) (-5 *1 (-361 *3)) (-4 *3 (-1014)))) (-3896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-361 *3)))))
+(-13 (-664) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -1671 ($ $ $)) (-15 -3599 ($ $ $)) (-15 -2987 ((-3 $ "failed") $ $)) (-15 -1200 ((-3 $ "failed") $ $)) (-15 -2752 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4124 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1629 ((-708) $)) (-15 -2976 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $)) (-15 -1905 ((-708) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -3941 ($ (-1 (-708) (-708)) $)) (-15 -3896 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-784)) (-6 (-784)) |%noBranch|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 47)) (-1484 (((-522) $) 46)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2814 (($ $ $) 54)) (-2446 (($ $ $) 53)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ $) 42)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-522)) 48)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 51)) (-1558 (((-108) $ $) 50)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 52)) (-1549 (((-108) $ $) 49)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-362) (-1197)) (T -362))
+NIL
+(-13 (-514) (-784) (-962 (-522)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-784) . T) ((-962 (-522)) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1852 (((-108) $) 20)) (-4030 (((-108) $) 19)) (-1811 (($ (-1068) (-1068) (-1068)) 21)) (-2888 (((-1068) $) 16)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2554 (($ (-1068) (-1068) (-1068)) 14)) (-1334 (((-1068) $) 17)) (-2661 (((-108) $) 18)) (-3123 (((-1068) $) 15)) (-2190 (((-792) $) 12) (($ (-1068)) 13) (((-1068) $) 9)) (-1531 (((-108) $ $) 7)))
+(((-363) (-364)) (T -363))
+NIL
+(-364)
+((-1416 (((-108) $ $) 7)) (-1852 (((-108) $) 14)) (-4030 (((-108) $) 15)) (-1811 (($ (-1068) (-1068) (-1068)) 13)) (-2888 (((-1068) $) 18)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2554 (($ (-1068) (-1068) (-1068)) 20)) (-1334 (((-1068) $) 17)) (-2661 (((-108) $) 16)) (-3123 (((-1068) $) 19)) (-2190 (((-792) $) 11) (($ (-1068)) 22) (((-1068) $) 21)) (-1531 (((-108) $ $) 6)))
+(((-364) (-1197)) (T -364))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-2554 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))) (-1811 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-1068))) (-15 -2190 ((-1068) $)) (-15 -2554 ($ (-1068) (-1068) (-1068))) (-15 -3123 ((-1068) $)) (-15 -2888 ((-1068) $)) (-15 -1334 ((-1068) $)) (-15 -2661 ((-108) $)) (-15 -4030 ((-108) $)) (-15 -1852 ((-108) $)) (-15 -1811 ($ (-1068) (-1068) (-1068)))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-2422 (((-792) $) 50)) (-3175 (($) NIL T CONST)) (-1679 (($ $ (-850)) NIL)) (-1882 (($ $ (-850)) NIL)) (-3277 (($ $ (-850)) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1383 (($ (-708)) 26)) (-4078 (((-708)) 15)) (-1358 (((-792) $) 52)) (-1288 (($ $ $) NIL)) (-2190 (((-792) $) NIL)) (-3610 (($ $ $ $) NIL)) (-3024 (($ $ $) NIL)) (-3566 (($) 20 T CONST)) (-1531 (((-108) $ $) 28)) (-1612 (($ $) 34) (($ $ $) 36)) (-1602 (($ $ $) 37)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-365 |#1| |#2| |#3|) (-13 (-682 |#3|) (-10 -8 (-15 -4078 ((-708))) (-15 -1358 ((-792) $)) (-15 -2422 ((-792) $)) (-15 -1383 ($ (-708))))) (-708) (-708) (-157)) (T -365))
+((-4078 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)) (-4 *5 (-157)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)) (-4 *5 (-157)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-157)))))
+(-13 (-682 |#3|) (-10 -8 (-15 -4078 ((-708))) (-15 -1358 ((-792) $)) (-15 -2422 ((-792) $)) (-15 -1383 ($ (-708)))))
+((-3252 (((-1068)) 10)) (-3997 (((-1057 (-1068))) 28)) (-1981 (((-1171) (-1068)) 25) (((-1171) (-363)) 24)) (-1995 (((-1171)) 26)) (-3395 (((-1057 (-1068))) 27)))
+(((-366) (-10 -7 (-15 -3395 ((-1057 (-1068)))) (-15 -3997 ((-1057 (-1068)))) (-15 -1995 ((-1171))) (-15 -1981 ((-1171) (-363))) (-15 -1981 ((-1171) (-1068))) (-15 -3252 ((-1068))))) (T -366))
+((-3252 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-366)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-366)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-366)))) (-1995 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-366)))) (-3997 (*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366)))) (-3395 (*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366)))))
+(-10 -7 (-15 -3395 ((-1057 (-1068)))) (-15 -3997 ((-1057 (-1068)))) (-15 -1995 ((-1171))) (-15 -1981 ((-1171) (-363))) (-15 -1981 ((-1171) (-1068))) (-15 -3252 ((-1068))))
+((-3714 (((-708) (-311 |#1| |#2| |#3| |#4|)) 16)))
+(((-367 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-708) (-311 |#1| |#2| |#3| |#4|)))) (-13 (-343) (-338)) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -367))
+((-3714 (*1 *2 *3) (-12 (-5 *3 (-311 *4 *5 *6 *7)) (-4 *4 (-13 (-343) (-338))) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *7 (-317 *4 *5 *6)) (-5 *2 (-708)) (-5 *1 (-367 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3714 ((-708) (-311 |#1| |#2| |#3| |#4|))))
+((-2190 (((-369) |#1|) 11)))
+(((-368 |#1|) (-10 -7 (-15 -2190 ((-369) |#1|))) (-1014)) (T -368))
+((-2190 (*1 *2 *3) (-12 (-5 *2 (-369)) (-5 *1 (-368 *3)) (-4 *3 (-1014)))))
+(-10 -7 (-15 -2190 ((-369) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2301 (((-588 (-1068)) $ (-588 (-1068))) 37)) (-2688 (((-588 (-1068)) $ (-588 (-1068))) 38)) (-3900 (((-588 (-1068)) $ (-588 (-1068))) 39)) (-2536 (((-588 (-1068)) $) 34)) (-1811 (($) 23)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1382 (((-588 (-1068)) $) 35)) (-2185 (((-588 (-1068)) $) 36)) (-1678 (((-1171) $ (-522)) 32) (((-1171) $) 33)) (-1431 (($ (-792) (-522)) 29)) (-2190 (((-792) $) 41) (($ (-792)) 25)) (-1531 (((-108) $ $) NIL)))
+(((-369) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-792))) (-15 -1431 ($ (-792) (-522))) (-15 -1678 ((-1171) $ (-522))) (-15 -1678 ((-1171) $)) (-15 -2185 ((-588 (-1068)) $)) (-15 -1382 ((-588 (-1068)) $)) (-15 -1811 ($)) (-15 -2536 ((-588 (-1068)) $)) (-15 -3900 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2688 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2301 ((-588 (-1068)) $ (-588 (-1068))))))) (T -369))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-369)))) (-1431 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-369)))) (-1678 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-369)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-369)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-1811 (*1 *1) (-5 *1 (-369))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-3900 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-2688 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))) (-2301 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-792))) (-15 -1431 ($ (-792) (-522))) (-15 -1678 ((-1171) $ (-522))) (-15 -1678 ((-1171) $)) (-15 -2185 ((-588 (-1068)) $)) (-15 -1382 ((-588 (-1068)) $)) (-15 -1811 ($)) (-15 -2536 ((-588 (-1068)) $)) (-15 -3900 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2688 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2301 ((-588 (-1068)) $ (-588 (-1068))))))
+((-2009 (((-1171) $) 7)) (-2190 (((-792) $) 8)))
+(((-370) (-1197)) (T -370))
+((-2009 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1171)))))
+(-13 (-1120) (-562 (-792)) (-10 -8 (-15 -2009 ((-1171) $))))
+(((-562 (-792)) . T) ((-1120) . T))
+((-1297 (((-3 $ "failed") (-291 (-354))) 21) (((-3 $ "failed") (-291 (-522))) 19) (((-3 $ "failed") (-881 (-354))) 17) (((-3 $ "failed") (-881 (-522))) 15) (((-3 $ "failed") (-382 (-881 (-354)))) 13) (((-3 $ "failed") (-382 (-881 (-522)))) 11)) (-1484 (($ (-291 (-354))) 22) (($ (-291 (-522))) 20) (($ (-881 (-354))) 18) (($ (-881 (-522))) 16) (($ (-382 (-881 (-354)))) 14) (($ (-382 (-881 (-522)))) 12)) (-2009 (((-1171) $) 7)) (-2190 (((-792) $) 8) (($ (-588 (-305))) 25) (($ (-305)) 24) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 23)))
+(((-371) (-1197)) (T -371))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-371)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-371)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) (-4 *1 (-371)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-4 *1 (-371)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-354))) (-4 *1 (-371)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-4 *1 (-371)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-522))) (-4 *1 (-371)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-881 (-354))) (-4 *1 (-371)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-354))) (-4 *1 (-371)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-371)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-522))) (-4 *1 (-371)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371)))))
+(-13 (-370) (-10 -8 (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-305))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))) (-15 -1484 ($ (-291 (-354)))) (-15 -1297 ((-3 $ "failed") (-291 (-354)))) (-15 -1484 ($ (-291 (-522)))) (-15 -1297 ((-3 $ "failed") (-291 (-522)))) (-15 -1484 ($ (-881 (-354)))) (-15 -1297 ((-3 $ "failed") (-881 (-354)))) (-15 -1484 ($ (-881 (-522)))) (-15 -1297 ((-3 $ "failed") (-881 (-522)))) (-15 -1484 ($ (-382 (-881 (-354))))) (-15 -1297 ((-3 $ "failed") (-382 (-881 (-354))))) (-15 -1484 ($ (-382 (-881 (-522))))) (-15 -1297 ((-3 $ "failed") (-382 (-881 (-522)))))))
+(((-562 (-792)) . T) ((-370) . T) ((-1120) . T))
+((-2502 (((-588 (-1068)) (-588 (-1068))) 8)) (-2009 (((-1171) (-363)) 27)) (-1716 (((-1018) (-1085) (-588 (-1085)) (-1088) (-588 (-1085))) 59) (((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)) (-1085)) 35) (((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085))) 34)))
+(((-372) (-10 -7 (-15 -1716 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)))) (-15 -1716 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)) (-1085))) (-15 -1716 ((-1018) (-1085) (-588 (-1085)) (-1088) (-588 (-1085)))) (-15 -2009 ((-1171) (-363))) (-15 -2502 ((-588 (-1068)) (-588 (-1068)))))) (T -372))
+((-2502 (*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-372)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-372)))) (-1716 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-588 (-1085))) (-5 *5 (-1088)) (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-372)))) (-1716 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085))))) (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-372)))) (-1716 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085))))) (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-372)))))
+(-10 -7 (-15 -1716 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)))) (-15 -1716 ((-1018) (-1085) (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085)))) (-588 (-588 (-3 (|:| |array| (-588 (-1085))) (|:| |scalar| (-1085))))) (-588 (-1085)) (-1085))) (-15 -1716 ((-1018) (-1085) (-588 (-1085)) (-1088) (-588 (-1085)))) (-15 -2009 ((-1171) (-363))) (-15 -2502 ((-588 (-1068)) (-588 (-1068)))))
+((-2009 (((-1171) $) 37)) (-2190 (((-792) $) 89) (($ (-305)) 92) (($ (-588 (-305))) 91) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 88) (($ (-291 (-639))) 52) (($ (-291 (-637))) 66) (($ (-291 (-632))) 78) (($ (-270 (-291 (-639)))) 62) (($ (-270 (-291 (-637)))) 74) (($ (-270 (-291 (-632)))) 86) (($ (-291 (-522))) 96) (($ (-291 (-354))) 108) (($ (-291 (-154 (-354)))) 120) (($ (-270 (-291 (-522)))) 104) (($ (-270 (-291 (-354)))) 116) (($ (-270 (-291 (-154 (-354))))) 128)))
+(((-373 |#1| |#2| |#3| |#4|) (-13 (-370) (-10 -8 (-15 -2190 ($ (-305))) (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))) (-15 -2190 ($ (-291 (-639)))) (-15 -2190 ($ (-291 (-637)))) (-15 -2190 ($ (-291 (-632)))) (-15 -2190 ($ (-270 (-291 (-639))))) (-15 -2190 ($ (-270 (-291 (-637))))) (-15 -2190 ($ (-270 (-291 (-632))))) (-15 -2190 ($ (-291 (-522)))) (-15 -2190 ($ (-291 (-354)))) (-15 -2190 ($ (-291 (-154 (-354))))) (-15 -2190 ($ (-270 (-291 (-522))))) (-15 -2190 ($ (-270 (-291 (-354))))) (-15 -2190 ($ (-270 (-291 (-154 (-354)))))))) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-1085)) (-1089)) (T -373))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-305)) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-291 (-639))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-291 (-637))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-291 (-632))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-639)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-637)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-632)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-522)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-354)))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-270 (-291 (-154 (-354))))) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-14 *5 (-588 (-1085))) (-14 *6 (-1089)))))
+(-13 (-370) (-10 -8 (-15 -2190 ($ (-305))) (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))) (-15 -2190 ($ (-291 (-639)))) (-15 -2190 ($ (-291 (-637)))) (-15 -2190 ($ (-291 (-632)))) (-15 -2190 ($ (-270 (-291 (-639))))) (-15 -2190 ($ (-270 (-291 (-637))))) (-15 -2190 ($ (-270 (-291 (-632))))) (-15 -2190 ($ (-291 (-522)))) (-15 -2190 ($ (-291 (-354)))) (-15 -2190 ($ (-291 (-154 (-354))))) (-15 -2190 ($ (-270 (-291 (-522))))) (-15 -2190 ($ (-270 (-291 (-354))))) (-15 -2190 ($ (-270 (-291 (-154 (-354))))))))
+((-1416 (((-108) $ $) NIL)) (-2012 ((|#2| $) 36)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2638 (($ (-382 |#2|)) 84)) (-1320 (((-588 (-2 (|:| -1400 (-708)) (|:| -1893 |#2|) (|:| |num| |#2|))) $) 37)) (-2157 (($ $) 32) (($ $ (-708)) 34)) (-1431 (((-382 |#2|) $) 46)) (-2201 (($ (-588 (-2 (|:| -1400 (-708)) (|:| -1893 |#2|) (|:| |num| |#2|)))) 31)) (-2190 (((-792) $) 120)) (-2213 (($ $) 33) (($ $ (-708)) 35)) (-1531 (((-108) $ $) NIL)) (-1602 (($ |#2| $) 39)))
+(((-374 |#1| |#2|) (-13 (-1014) (-563 (-382 |#2|)) (-10 -8 (-15 -1602 ($ |#2| $)) (-15 -2638 ($ (-382 |#2|))) (-15 -2012 (|#2| $)) (-15 -1320 ((-588 (-2 (|:| -1400 (-708)) (|:| -1893 |#2|) (|:| |num| |#2|))) $)) (-15 -2201 ($ (-588 (-2 (|:| -1400 (-708)) (|:| -1893 |#2|) (|:| |num| |#2|))))) (-15 -2157 ($ $)) (-15 -2213 ($ $)) (-15 -2157 ($ $ (-708))) (-15 -2213 ($ $ (-708))))) (-13 (-338) (-135)) (-1142 |#1|)) (T -374))
+((-1602 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *2)) (-4 *2 (-1142 *3)))) (-2638 (*1 *1 *2) (-12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)))) (-2012 (*1 *2 *1) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-374 *3 *2)) (-4 *3 (-13 (-338) (-135))))) (-1320 (*1 *2 *1) (-12 (-4 *3 (-13 (-338) (-135))) (-5 *2 (-588 (-2 (|:| -1400 (-708)) (|:| -1893 *4) (|:| |num| *4)))) (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -1400 (-708)) (|:| -1893 *4) (|:| |num| *4)))) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)))) (-2157 (*1 *1 *1) (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3)) (-4 *3 (-1142 *2)))) (-2213 (*1 *1 *1) (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3)) (-4 *3 (-1142 *2)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3)))))
+(-13 (-1014) (-563 (-382 |#2|)) (-10 -8 (-15 -1602 ($ |#2| $)) (-15 -2638 ($ (-382 |#2|))) (-15 -2012 (|#2| $)) (-15 -1320 ((-588 (-2 (|:| -1400 (-708)) (|:| -1893 |#2|) (|:| |num| |#2|))) $)) (-15 -2201 ($ (-588 (-2 (|:| -1400 (-708)) (|:| -1893 |#2|) (|:| |num| |#2|))))) (-15 -2157 ($ $)) (-15 -2213 ($ $)) (-15 -2157 ($ $ (-708))) (-15 -2213 ($ $ (-708)))))
+((-1416 (((-108) $ $) 9 (-3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 15 (|has| |#1| (-815 (-354)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 14 (|has| |#1| (-815 (-522))))) (-2385 (((-1068) $) 13 (-3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-4151 (((-1032) $) 12 (-3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-2190 (((-792) $) 11 (-3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))) (-1531 (((-108) $ $) 10 (-3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))))))
+(((-375 |#1|) (-1197) (-1120)) (T -375))
+NIL
+(-13 (-1120) (-10 -7 (IF (|has| |t#1| (-815 (-522))) (-6 (-815 (-522))) |%noBranch|) (IF (|has| |t#1| (-815 (-354))) (-6 (-815 (-354))) |%noBranch|)))
+(((-97) -3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))) ((-562 (-792)) -3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-1014) -3708 (|has| |#1| (-815 (-522))) (|has| |#1| (-815 (-354)))) ((-1120) . T))
+((-2111 (($ $) 10) (($ $ (-708)) 11)))
+(((-376 |#1|) (-10 -8 (-15 -2111 (|#1| |#1| (-708))) (-15 -2111 (|#1| |#1|))) (-377)) (T -376))
+NIL
+(-10 -8 (-15 -2111 (|#1| |#1| (-708))) (-15 -2111 (|#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2111 (($ $) 79) (($ $ (-708)) 78)) (-2813 (((-108) $) 71)) (-3714 (((-770 (-850)) $) 81)) (-2782 (((-108) $) 31)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-3018 (((-3 (-708) "failed") $ $) 80)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65)) (-2143 (((-3 $ "failed") $) 82)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66)))
+(((-377) (-1197)) (T -377))
+((-3714 (*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-770 (-850))))) (-3018 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-377)) (-5 *2 (-708)))) (-2111 (*1 *1 *1) (-4 *1 (-377))) (-2111 (*1 *1 *1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-708)))))
+(-13 (-338) (-133) (-10 -8 (-15 -3714 ((-770 (-850)) $)) (-15 -3018 ((-3 (-708) "failed") $ $)) (-15 -2111 ($ $)) (-15 -2111 ($ $ (-708)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-133) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-3071 (($ (-522) (-522)) 11) (($ (-522) (-522) (-850)) NIL)) (-2615 (((-850)) 16) (((-850) (-850)) NIL)))
+(((-378 |#1|) (-10 -8 (-15 -2615 ((-850) (-850))) (-15 -2615 ((-850))) (-15 -3071 (|#1| (-522) (-522) (-850))) (-15 -3071 (|#1| (-522) (-522)))) (-379)) (T -378))
+((-2615 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379)))))
+(-10 -8 (-15 -2615 ((-850) (-850))) (-15 -2615 ((-850))) (-15 -3071 (|#1| (-522) (-522) (-850))) (-15 -3071 (|#1| (-522) (-522))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2229 (((-522) $) 89)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-2789 (($ $) 87)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1929 (($ $) 97)) (-1687 (((-108) $ $) 59)) (-1341 (((-522) $) 114)) (-3175 (($) 17 T CONST)) (-2599 (($ $) 86)) (-1297 (((-3 (-522) "failed") $) 102) (((-3 (-382 (-522)) "failed") $) 99)) (-1484 (((-522) $) 101) (((-382 (-522)) $) 98)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2813 (((-108) $) 71)) (-2175 (((-850)) 130) (((-850) (-850)) 127 (|has| $ (-6 -4229)))) (-3687 (((-108) $) 112)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 93)) (-3714 (((-522) $) 136)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 96)) (-2100 (($ $) 92)) (-2556 (((-108) $) 113)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2814 (($ $ $) 111) (($) 124 (-12 (-2401 (|has| $ (-6 -4229))) (-2401 (|has| $ (-6 -4221)))))) (-2446 (($ $ $) 110) (($) 123 (-12 (-2401 (|has| $ (-6 -4229))) (-2401 (|has| $ (-6 -4221)))))) (-3357 (((-522) $) 133)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-1941 (((-850) (-522)) 126 (|has| $ (-6 -4229)))) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-3933 (($ $) 88)) (-3686 (($ $) 90)) (-3071 (($ (-522) (-522)) 138) (($ (-522) (-522) (-850)) 137)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-1400 (((-522) $) 134)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-2615 (((-850)) 131) (((-850) (-850)) 128 (|has| $ (-6 -4229)))) (-2349 (((-850) (-522)) 125 (|has| $ (-6 -4229)))) (-1431 (((-354) $) 105) (((-202) $) 104) (((-821 (-354)) $) 94)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ (-522)) 103) (($ (-382 (-522))) 100)) (-2323 (((-708)) 29)) (-3025 (($ $) 91)) (-3836 (((-850)) 132) (((-850) (-850)) 129 (|has| $ (-6 -4229)))) (-3355 (((-850)) 135)) (-3958 (((-108) $ $) 39)) (-2241 (($ $) 115)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 108)) (-1558 (((-108) $ $) 107)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 109)) (-1549 (((-108) $ $) 106)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 95)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66)))
+(((-379) (-1197)) (T -379))
+((-3071 (*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-379)))) (-3071 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-4 *1 (-379)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) (-3355 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522)))) (-3836 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-2615 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-2175 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) (-2175 (*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379)) (-5 *2 (-850)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379)) (-5 *2 (-850)))) (-2814 (*1 *1) (-12 (-4 *1 (-379)) (-2401 (|has| *1 (-6 -4229))) (-2401 (|has| *1 (-6 -4221))))) (-2446 (*1 *1) (-12 (-4 *1 (-379)) (-2401 (|has| *1 (-6 -4229))) (-2401 (|has| *1 (-6 -4221))))))
+(-13 (-980) (-10 -8 (-6 -3898) (-15 -3071 ($ (-522) (-522))) (-15 -3071 ($ (-522) (-522) (-850))) (-15 -3714 ((-522) $)) (-15 -3355 ((-850))) (-15 -1400 ((-522) $)) (-15 -3357 ((-522) $)) (-15 -3836 ((-850))) (-15 -2615 ((-850))) (-15 -2175 ((-850))) (IF (|has| $ (-6 -4229)) (PROGN (-15 -3836 ((-850) (-850))) (-15 -2615 ((-850) (-850))) (-15 -2175 ((-850) (-850))) (-15 -1941 ((-850) (-522))) (-15 -2349 ((-850) (-522)))) |%noBranch|) (IF (|has| $ (-6 -4221)) |%noBranch| (IF (|has| $ (-6 -4229)) |%noBranch| (PROGN (-15 -2814 ($)) (-15 -2446 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-563 (-202)) . T) ((-563 (-354)) . T) ((-563 (-821 (-354))) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-815 (-354)) . T) ((-849) . T) ((-928) . T) ((-947) . T) ((-980) . T) ((-962 (-382 (-522))) . T) ((-962 (-522)) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-1391 (((-393 |#2|) (-1 |#2| |#1|) (-393 |#1|)) 20)))
+(((-380 |#1| |#2|) (-10 -7 (-15 -1391 ((-393 |#2|) (-1 |#2| |#1|) (-393 |#1|)))) (-514) (-514)) (T -380))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-393 *5)) (-4 *5 (-514)) (-4 *6 (-514)) (-5 *2 (-393 *6)) (-5 *1 (-380 *5 *6)))))
+(-10 -7 (-15 -1391 ((-393 |#2|) (-1 |#2| |#1|) (-393 |#1|))))
+((-1391 (((-382 |#2|) (-1 |#2| |#1|) (-382 |#1|)) 13)))
+(((-381 |#1| |#2|) (-10 -7 (-15 -1391 ((-382 |#2|) (-1 |#2| |#1|) (-382 |#1|)))) (-514) (-514)) (T -381))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-382 *5)) (-4 *5 (-514)) (-4 *6 (-514)) (-5 *2 (-382 *6)) (-5 *1 (-381 *5 *6)))))
+(-10 -7 (-15 -1391 ((-382 |#2|) (-1 |#2| |#1|) (-382 |#1|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 13)) (-2229 ((|#1| $) 21 (|has| |#1| (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| |#1| (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 17) (((-3 (-1085) "failed") $) NIL (|has| |#1| (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) 70 (|has| |#1| (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522))))) (-1484 ((|#1| $) 15) (((-1085) $) NIL (|has| |#1| (-962 (-1085)))) (((-382 (-522)) $) 67 (|has| |#1| (-962 (-522)))) (((-522) $) NIL (|has| |#1| (-962 (-522))))) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) 50)) (-3255 (($) NIL (|has| |#1| (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| |#1| (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| |#1| (-815 (-354))))) (-2782 (((-108) $) 64)) (-2902 (($ $) NIL)) (-2805 ((|#1| $) 71)) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-2556 (((-108) $) NIL (|has| |#1| (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| |#1| (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 97)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| |#1| (-283)))) (-3686 ((|#1| $) 28 (|has| |#1| (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 133 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 129 (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-3730 (((-708) $) NIL)) (-2545 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3533 (($ $) NIL)) (-2816 ((|#1| $) 73)) (-1431 (((-821 (-522)) $) NIL (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#1| (-563 (-821 (-354))))) (((-498) $) NIL (|has| |#1| (-563 (-498)))) (((-354) $) NIL (|has| |#1| (-947))) (((-202) $) NIL (|has| |#1| (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 113 (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 10) (($ (-1085)) NIL (|has| |#1| (-962 (-1085))))) (-2143 (((-3 $ "failed") $) 99 (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) 100)) (-3025 ((|#1| $) 26 (|has| |#1| (-507)))) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL (|has| |#1| (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 22 T CONST)) (-3577 (($) 8 T CONST)) (-4149 (((-1068) $) 43 (-12 (|has| |#1| (-507)) (|has| |#1| (-765)))) (((-1068) $ (-108)) 44 (-12 (|has| |#1| (-507)) (|has| |#1| (-765)))) (((-1171) (-759) $) 45 (-12 (|has| |#1| (-507)) (|has| |#1| (-765)))) (((-1171) (-759) $ (-108)) 46 (-12 (|has| |#1| (-507)) (|has| |#1| (-765))))) (-2213 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 56)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) 24 (|has| |#1| (-784)))) (-1620 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1612 (($ $) 25) (($ $ $) 55)) (-1602 (($ $ $) 53)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 123)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 60) (($ $ $) 57) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-382 |#1|) (-13 (-919 |#1|) (-10 -7 (IF (|has| |#1| (-507)) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4225)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-6 -4236)) (-6 -4225) |%noBranch|) |%noBranch|) |%noBranch|))) (-514)) (T -382))
+NIL
+(-13 (-919 |#1|) (-10 -7 (IF (|has| |#1| (-507)) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4225)) (IF (|has| |#1| (-426)) (IF (|has| |#1| (-6 -4236)) (-6 -4225) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3174 (((-628 |#2|) (-1166 $)) NIL) (((-628 |#2|)) 18)) (-3766 (($ (-1166 |#2|) (-1166 $)) NIL) (($ (-1166 |#2|)) 26)) (-2109 (((-628 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) $) 22)) (-1712 ((|#3| $) 59)) (-2769 ((|#2| (-1166 $)) NIL) ((|#2|) 20)) (-3677 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $)) 24)) (-1431 (((-1166 |#2|) $) 11) (($ (-1166 |#2|)) 13)) (-2051 ((|#3| $) 51)))
+(((-383 |#1| |#2| |#3|) (-10 -8 (-15 -2109 ((-628 |#2|) |#1|)) (-15 -2769 (|#2|)) (-15 -3174 ((-628 |#2|))) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3766 (|#1| (-1166 |#2|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -1712 (|#3| |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -3174 ((-628 |#2|) (-1166 |#1|))) (-15 -2769 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2109 ((-628 |#2|) |#1| (-1166 |#1|)))) (-384 |#2| |#3|) (-157) (-1142 |#2|)) (T -383))
+((-3174 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)) (-5 *1 (-383 *3 *4 *5)) (-4 *3 (-384 *4 *5)))) (-2769 (*1 *2) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-157)) (-5 *1 (-383 *3 *2 *4)) (-4 *3 (-384 *2 *4)))))
+(-10 -8 (-15 -2109 ((-628 |#2|) |#1|)) (-15 -2769 (|#2|)) (-15 -3174 ((-628 |#2|))) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3766 (|#1| (-1166 |#2|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -1712 (|#3| |#1|)) (-15 -2051 (|#3| |#1|)) (-15 -3174 ((-628 |#2|) (-1166 |#1|))) (-15 -2769 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2109 ((-628 |#2|) |#1| (-1166 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3174 (((-628 |#1|) (-1166 $)) 46) (((-628 |#1|)) 61)) (-1865 ((|#1| $) 52)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3766 (($ (-1166 |#1|) (-1166 $)) 48) (($ (-1166 |#1|)) 64)) (-2109 (((-628 |#1|) $ (-1166 $)) 53) (((-628 |#1|) $) 59)) (-2682 (((-3 $ "failed") $) 34)) (-3166 (((-850)) 54)) (-2782 (((-108) $) 31)) (-2100 ((|#1| $) 51)) (-1712 ((|#2| $) 44 (|has| |#1| (-338)))) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2769 ((|#1| (-1166 $)) 47) ((|#1|) 60)) (-3677 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49) (((-1166 |#1|) $) 66) (((-628 |#1|) (-1166 $)) 65)) (-1431 (((-1166 |#1|) $) 63) (($ (-1166 |#1|)) 62)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37)) (-2143 (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2051 ((|#2| $) 45)) (-2323 (((-708)) 29)) (-3855 (((-1166 $)) 67)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-384 |#1| |#2|) (-1197) (-157) (-1142 |t#1|)) (T -384))
+((-3855 (*1 *2) (-12 (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *1)) (-4 *1 (-384 *3 *4)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *3)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-384 *4 *5)) (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4)) (-4 *4 (-1142 *3)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *3)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4)) (-4 *4 (-1142 *3)))) (-3174 (*1 *2) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-628 *3)))) (-2769 (*1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157)))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-628 *3)))))
+(-13 (-345 |t#1| |t#2|) (-10 -8 (-15 -3855 ((-1166 $))) (-15 -3677 ((-1166 |t#1|) $)) (-15 -3677 ((-628 |t#1|) (-1166 $))) (-15 -3766 ($ (-1166 |t#1|))) (-15 -1431 ((-1166 |t#1|) $)) (-15 -1431 ($ (-1166 |t#1|))) (-15 -3174 ((-628 |t#1|))) (-15 -2769 (|t#1|)) (-15 -2109 ((-628 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-345 |#1| |#2|) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) 27) (((-3 (-522) "failed") $) 19)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) 24) (((-522) $) 14)) (-2190 (($ |#2|) NIL) (($ (-382 (-522))) 22) (($ (-522)) 11)))
+(((-385 |#1| |#2|) (-10 -8 (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -2190 (|#1| (-522))) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|))) (-386 |#2|) (-1120)) (T -385))
+NIL
+(-10 -8 (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -2190 (|#1| (-522))) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)))
+((-1297 (((-3 |#1| "failed") $) 7) (((-3 (-382 (-522)) "failed") $) 16 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 13 (|has| |#1| (-962 (-522))))) (-1484 ((|#1| $) 8) (((-382 (-522)) $) 15 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 12 (|has| |#1| (-962 (-522))))) (-2190 (($ |#1|) 6) (($ (-382 (-522))) 17 (|has| |#1| (-962 (-382 (-522))))) (($ (-522)) 14 (|has| |#1| (-962 (-522))))))
+(((-386 |#1|) (-1197) (-1120)) (T -386))
+NIL
+(-13 (-962 |t#1|) (-10 -7 (IF (|has| |t#1| (-962 (-522))) (-6 (-962 (-522))) |%noBranch|) (IF (|has| |t#1| (-962 (-382 (-522)))) (-6 (-962 (-382 (-522)))) |%noBranch|)))
+(((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T))
+((-1391 (((-388 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-388 |#1| |#2| |#3| |#4|)) 33)))
+(((-387 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1391 ((-388 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-388 |#1| |#2| |#3| |#4|)))) (-283) (-919 |#1|) (-1142 |#2|) (-13 (-384 |#2| |#3|) (-962 |#2|)) (-283) (-919 |#5|) (-1142 |#6|) (-13 (-384 |#6| |#7|) (-962 |#6|))) (T -387))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-388 *5 *6 *7 *8)) (-4 *5 (-283)) (-4 *6 (-919 *5)) (-4 *7 (-1142 *6)) (-4 *8 (-13 (-384 *6 *7) (-962 *6))) (-4 *9 (-283)) (-4 *10 (-919 *9)) (-4 *11 (-1142 *10)) (-5 *2 (-388 *9 *10 *11 *12)) (-5 *1 (-387 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-384 *10 *11) (-962 *10))))))
+(-10 -7 (-15 -1391 ((-388 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-388 |#1| |#2| |#3| |#4|))))
+((-1416 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-3298 ((|#4| (-708) (-1166 |#4|)) 55)) (-2782 (((-108) $) NIL)) (-2805 (((-1166 |#4|) $) 17)) (-2100 ((|#2| $) 53)) (-1385 (($ $) 136)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 98)) (-2154 (($ (-1166 |#4|)) 97)) (-4151 (((-1032) $) NIL)) (-2816 ((|#1| $) 18)) (-3122 (($ $ $) NIL)) (-1288 (($ $ $) NIL)) (-2190 (((-792) $) 131)) (-3855 (((-1166 |#4|) $) 126)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3577 (($) 11 T CONST)) (-1531 (((-108) $ $) 39)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 119)) (* (($ $ $) 118)))
+(((-388 |#1| |#2| |#3| |#4|) (-13 (-447) (-10 -8 (-15 -2154 ($ (-1166 |#4|))) (-15 -3855 ((-1166 |#4|) $)) (-15 -2100 (|#2| $)) (-15 -2805 ((-1166 |#4|) $)) (-15 -2816 (|#1| $)) (-15 -1385 ($ $)) (-15 -3298 (|#4| (-708) (-1166 |#4|))))) (-283) (-919 |#1|) (-1142 |#2|) (-13 (-384 |#2| |#3|) (-962 |#2|))) (T -388))
+((-2154 (*1 *1 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *3 (-283)) (-5 *1 (-388 *3 *4 *5 *6)))) (-3855 (*1 *2 *1) (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))))) (-2100 (*1 *2 *1) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) (-5 *1 (-388 *3 *2 *4 *5)) (-4 *3 (-283)) (-4 *5 (-13 (-384 *2 *4) (-962 *2))))) (-2805 (*1 *2 *1) (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4))))) (-2816 (*1 *2 *1) (-12 (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) (-4 *2 (-283)) (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3))))) (-1385 (*1 *1 *1) (-12 (-4 *2 (-283)) (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3))))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-1166 *2)) (-4 *5 (-283)) (-4 *6 (-919 *5)) (-4 *2 (-13 (-384 *6 *7) (-962 *6))) (-5 *1 (-388 *5 *6 *7 *2)) (-4 *7 (-1142 *6)))))
+(-13 (-447) (-10 -8 (-15 -2154 ($ (-1166 |#4|))) (-15 -3855 ((-1166 |#4|) $)) (-15 -2100 (|#2| $)) (-15 -2805 ((-1166 |#4|) $)) (-15 -2816 (|#1| $)) (-15 -1385 ($ $)) (-15 -3298 (|#4| (-708) (-1166 |#4|)))))
+((-1416 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-2100 ((|#2| $) 60)) (-2780 (($ (-1166 |#4|)) 25) (($ (-388 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-962 |#2|)))) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 34)) (-3855 (((-1166 |#4|) $) 26)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3577 (($) 23 T CONST)) (-1531 (((-108) $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ $ $) 72)))
+(((-389 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -3855 ((-1166 |#4|) $)) (-15 -2100 (|#2| $)) (-15 -2780 ($ (-1166 |#4|))) (IF (|has| |#4| (-962 |#2|)) (-15 -2780 ($ (-388 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-283) (-919 |#1|) (-1142 |#2|) (-384 |#2| |#3|) (-1166 |#4|)) (T -389))
+((-3855 (*1 *2 *1) (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7)) (-4 *6 (-384 *4 *5)) (-14 *7 *2))) (-2100 (*1 *2 *1) (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) (-5 *1 (-389 *3 *2 *4 *5 *6)) (-4 *3 (-283)) (-4 *5 (-384 *2 *4)) (-14 *6 (-1166 *5)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-384 *4 *5)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *3 (-283)) (-5 *1 (-389 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-388 *3 *4 *5 *6)) (-4 *6 (-962 *4)) (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *6 (-384 *4 *5)) (-14 *7 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7)))))
+(-13 (-664) (-10 -8 (-15 -3855 ((-1166 |#4|) $)) (-15 -2100 (|#2| $)) (-15 -2780 ($ (-1166 |#4|))) (IF (|has| |#4| (-962 |#2|)) (-15 -2780 ($ (-388 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-1391 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#3| (-1 |#4| |#2|) |#1|))) (-392 |#2|) (-157) (-392 |#4|) (-157)) (T -390))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-392 *6)) (-5 *1 (-390 *4 *5 *2 *6)) (-4 *4 (-392 *5)))))
+(-10 -7 (-15 -1391 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3210 (((-3 $ "failed")) 85)) (-1588 (((-1166 (-628 |#2|)) (-1166 $)) NIL) (((-1166 (-628 |#2|))) 90)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) 84)) (-3130 (((-3 $ "failed")) 83)) (-1771 (((-628 |#2|) (-1166 $)) NIL) (((-628 |#2|)) 101)) (-2828 (((-628 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) $) 109)) (-3549 (((-1081 (-881 |#2|))) 54)) (-2975 ((|#2| (-1166 $)) NIL) ((|#2|) 105)) (-3766 (($ (-1166 |#2|) (-1166 $)) NIL) (($ (-1166 |#2|)) 112)) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) 82)) (-2007 (((-3 $ "failed")) 74)) (-1943 (((-628 |#2|) (-1166 $)) NIL) (((-628 |#2|)) 99)) (-4142 (((-628 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) $) 107)) (-2497 (((-1081 (-881 |#2|))) 53)) (-2475 ((|#2| (-1166 $)) NIL) ((|#2|) 103)) (-3677 (((-1166 |#2|) $ (-1166 $)) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $)) 111)) (-1431 (((-1166 |#2|) $) 95) (($ (-1166 |#2|)) 97)) (-2656 (((-588 (-881 |#2|)) (-1166 $)) NIL) (((-588 (-881 |#2|))) 93)) (-1616 (($ (-628 |#2|) $) 89)))
+(((-391 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| (-628 |#2|) |#1|)) (-15 -3549 ((-1081 (-881 |#2|)))) (-15 -2497 ((-1081 (-881 |#2|)))) (-15 -2828 ((-628 |#2|) |#1|)) (-15 -4142 ((-628 |#2|) |#1|)) (-15 -1771 ((-628 |#2|))) (-15 -1943 ((-628 |#2|))) (-15 -2975 (|#2|)) (-15 -2475 (|#2|)) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3766 (|#1| (-1166 |#2|))) (-15 -2656 ((-588 (-881 |#2|)))) (-15 -1588 ((-1166 (-628 |#2|)))) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -3210 ((-3 |#1| "failed"))) (-15 -3130 ((-3 |#1| "failed"))) (-15 -2007 ((-3 |#1| "failed"))) (-15 -1868 ((-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed"))) (-15 -3505 ((-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed"))) (-15 -1771 ((-628 |#2|) (-1166 |#1|))) (-15 -1943 ((-628 |#2|) (-1166 |#1|))) (-15 -2975 (|#2| (-1166 |#1|))) (-15 -2475 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2828 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -4142 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -1588 ((-1166 (-628 |#2|)) (-1166 |#1|))) (-15 -2656 ((-588 (-881 |#2|)) (-1166 |#1|)))) (-392 |#2|) (-157)) (T -391))
+((-1588 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-2656 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-588 (-881 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-2475 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2)))) (-2975 (*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2)))) (-1943 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-1771 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-2497 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))) (-3549 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4)) (-4 *3 (-392 *4)))))
+(-10 -8 (-15 -1616 (|#1| (-628 |#2|) |#1|)) (-15 -3549 ((-1081 (-881 |#2|)))) (-15 -2497 ((-1081 (-881 |#2|)))) (-15 -2828 ((-628 |#2|) |#1|)) (-15 -4142 ((-628 |#2|) |#1|)) (-15 -1771 ((-628 |#2|))) (-15 -1943 ((-628 |#2|))) (-15 -2975 (|#2|)) (-15 -2475 (|#2|)) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3766 (|#1| (-1166 |#2|))) (-15 -2656 ((-588 (-881 |#2|)))) (-15 -1588 ((-1166 (-628 |#2|)))) (-15 -3677 ((-628 |#2|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1|)) (-15 -3210 ((-3 |#1| "failed"))) (-15 -3130 ((-3 |#1| "failed"))) (-15 -2007 ((-3 |#1| "failed"))) (-15 -1868 ((-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed"))) (-15 -3505 ((-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed"))) (-15 -1771 ((-628 |#2|) (-1166 |#1|))) (-15 -1943 ((-628 |#2|) (-1166 |#1|))) (-15 -2975 (|#2| (-1166 |#1|))) (-15 -2475 (|#2| (-1166 |#1|))) (-15 -3766 (|#1| (-1166 |#2|) (-1166 |#1|))) (-15 -3677 ((-628 |#2|) (-1166 |#1|) (-1166 |#1|))) (-15 -3677 ((-1166 |#2|) |#1| (-1166 |#1|))) (-15 -2828 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -4142 ((-628 |#2|) |#1| (-1166 |#1|))) (-15 -1588 ((-1166 (-628 |#2|)) (-1166 |#1|))) (-15 -2656 ((-588 (-881 |#2|)) (-1166 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3210 (((-3 $ "failed")) 37 (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) 19)) (-1588 (((-1166 (-628 |#1|)) (-1166 $)) 78) (((-1166 (-628 |#1|))) 100)) (-1681 (((-1166 $)) 81)) (-3175 (($) 17 T CONST)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) 40 (|has| |#1| (-514)))) (-3130 (((-3 $ "failed")) 38 (|has| |#1| (-514)))) (-1771 (((-628 |#1|) (-1166 $)) 65) (((-628 |#1|)) 92)) (-3594 ((|#1| $) 74)) (-2828 (((-628 |#1|) $ (-1166 $)) 76) (((-628 |#1|) $) 90)) (-3637 (((-3 $ "failed") $) 45 (|has| |#1| (-514)))) (-3549 (((-1081 (-881 |#1|))) 88 (|has| |#1| (-338)))) (-1679 (($ $ (-850)) 28)) (-3076 ((|#1| $) 72)) (-2992 (((-1081 |#1|) $) 42 (|has| |#1| (-514)))) (-2975 ((|#1| (-1166 $)) 67) ((|#1|) 94)) (-4014 (((-1081 |#1|) $) 63)) (-2878 (((-108)) 57)) (-3766 (($ (-1166 |#1|) (-1166 $)) 69) (($ (-1166 |#1|)) 98)) (-2682 (((-3 $ "failed") $) 47 (|has| |#1| (-514)))) (-3166 (((-850)) 80)) (-2666 (((-108)) 54)) (-1882 (($ $ (-850)) 33)) (-1427 (((-108)) 50)) (-2552 (((-108)) 48)) (-2678 (((-108)) 52)) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) 41 (|has| |#1| (-514)))) (-2007 (((-3 $ "failed")) 39 (|has| |#1| (-514)))) (-1943 (((-628 |#1|) (-1166 $)) 66) (((-628 |#1|)) 93)) (-1546 ((|#1| $) 75)) (-4142 (((-628 |#1|) $ (-1166 $)) 77) (((-628 |#1|) $) 91)) (-2231 (((-3 $ "failed") $) 46 (|has| |#1| (-514)))) (-2497 (((-1081 (-881 |#1|))) 89 (|has| |#1| (-338)))) (-3277 (($ $ (-850)) 29)) (-1505 ((|#1| $) 73)) (-3630 (((-1081 |#1|) $) 43 (|has| |#1| (-514)))) (-2475 ((|#1| (-1166 $)) 68) ((|#1|) 95)) (-2302 (((-1081 |#1|) $) 64)) (-3003 (((-108)) 58)) (-2385 (((-1068) $) 9)) (-3710 (((-108)) 49)) (-3026 (((-108)) 51)) (-3055 (((-108)) 53)) (-4151 (((-1032) $) 10)) (-2889 (((-108)) 56)) (-2545 ((|#1| $ (-522)) 101)) (-3677 (((-1166 |#1|) $ (-1166 $)) 71) (((-628 |#1|) (-1166 $) (-1166 $)) 70) (((-1166 |#1|) $) 103) (((-628 |#1|) (-1166 $)) 102)) (-1431 (((-1166 |#1|) $) 97) (($ (-1166 |#1|)) 96)) (-2656 (((-588 (-881 |#1|)) (-1166 $)) 79) (((-588 (-881 |#1|))) 99)) (-1288 (($ $ $) 25)) (-4034 (((-108)) 62)) (-2190 (((-792) $) 11)) (-3855 (((-1166 $)) 104)) (-2901 (((-588 (-1166 |#1|))) 44 (|has| |#1| (-514)))) (-3610 (($ $ $ $) 26)) (-2928 (((-108)) 60)) (-1616 (($ (-628 |#1|) $) 87)) (-3024 (($ $ $) 24)) (-3065 (((-108)) 61)) (-3856 (((-108)) 59)) (-3877 (((-108)) 55)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-392 |#1|) (-1197) (-157)) (T -392))
+((-3855 (*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-392 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-392 *4)) (-4 *4 (-157)) (-5 *2 (-628 *4)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-392 *2)) (-4 *2 (-157)))) (-1588 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 (-628 *3))))) (-2656 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-588 (-881 *3))))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3)))) (-2475 (*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157)))) (-2975 (*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157)))) (-1943 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-1771 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))) (-2497 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338)) (-5 *2 (-1081 (-881 *3))))) (-3549 (*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338)) (-5 *2 (-1081 (-881 *3))))) (-1616 (*1 *1 *2 *1) (-12 (-5 *2 (-628 *3)) (-4 *1 (-392 *3)) (-4 *3 (-157)))))
+(-13 (-342 |t#1|) (-10 -8 (-15 -3855 ((-1166 $))) (-15 -3677 ((-1166 |t#1|) $)) (-15 -3677 ((-628 |t#1|) (-1166 $))) (-15 -2545 (|t#1| $ (-522))) (-15 -1588 ((-1166 (-628 |t#1|)))) (-15 -2656 ((-588 (-881 |t#1|)))) (-15 -3766 ($ (-1166 |t#1|))) (-15 -1431 ((-1166 |t#1|) $)) (-15 -1431 ($ (-1166 |t#1|))) (-15 -2475 (|t#1|)) (-15 -2975 (|t#1|)) (-15 -1943 ((-628 |t#1|))) (-15 -1771 ((-628 |t#1|))) (-15 -4142 ((-628 |t#1|) $)) (-15 -2828 ((-628 |t#1|) $)) (IF (|has| |t#1| (-338)) (PROGN (-15 -2497 ((-1081 (-881 |t#1|)))) (-15 -3549 ((-1081 (-881 |t#1|))))) |%noBranch|) (-15 -1616 ($ (-628 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-342 |#1|) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-682 |#1|) . T) ((-699) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 41)) (-3019 (($ $) 56)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 143)) (-2022 (($ $) NIL)) (-3739 (((-108) $) 35)) (-3210 ((|#1| $) 12)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-1124)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-1124)))) (-4159 (($ |#1| (-522)) 30)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 113)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 54)) (-2682 (((-3 $ "failed") $) 128)) (-1664 (((-3 (-382 (-522)) "failed") $) 62 (|has| |#1| (-507)))) (-1770 (((-108) $) 58 (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) 60 (|has| |#1| (-507)))) (-2827 (($ |#1| (-522)) 32)) (-2813 (((-108) $) 149 (|has| |#1| (-1124)))) (-2782 (((-108) $) 42)) (-2785 (((-708) $) 37)) (-2729 (((-3 "nil" "sqfr" "irred" "prime") $ (-522)) 134)) (-3750 ((|#1| $ (-522)) 133)) (-3809 (((-522) $ (-522)) 132)) (-3365 (($ |#1| (-522)) 29)) (-1391 (($ (-1 |#1| |#1|) $) 140)) (-2473 (($ |#1| (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522))))) 57)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-2546 (($ |#1| (-522)) 31)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) 144 (|has| |#1| (-426)))) (-2991 (($ |#1| (-522) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2976 (((-588 (-2 (|:| -1916 |#1|) (|:| -1400 (-522)))) $) 53)) (-3931 (((-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))) $) 11)) (-1916 (((-393 $) $) NIL (|has| |#1| (-1124)))) (-2232 (((-3 $ "failed") $ $) 135)) (-1400 (((-522) $) 129)) (-1604 ((|#1| $) 55)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 77 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 82 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) $) NIL (|has| |#1| (-483 (-1085) $))) (($ $ (-588 (-1085)) (-588 $)) 83 (|has| |#1| (-483 (-1085) $))) (($ $ (-588 (-270 $))) 79 (|has| |#1| (-285 $))) (($ $ (-270 $)) NIL (|has| |#1| (-285 $))) (($ $ $ $) NIL (|has| |#1| (-285 $))) (($ $ (-588 $) (-588 $)) NIL (|has| |#1| (-285 $)))) (-2545 (($ $ |#1|) 69 (|has| |#1| (-262 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-262 $ $)))) (-2157 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-1431 (((-498) $) 26 (|has| |#1| (-563 (-498)))) (((-354) $) 89 (|has| |#1| (-947))) (((-202) $) 92 (|has| |#1| (-947)))) (-2190 (((-792) $) 111) (($ (-522)) 45) (($ $) NIL) (($ |#1|) 44) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522)))))) (-2323 (((-708)) 47)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 39 T CONST)) (-3577 (($) 38 T CONST)) (-2213 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1531 (((-108) $ $) 93)) (-1612 (($ $) 125) (($ $ $) NIL)) (-1602 (($ $ $) 137)) (** (($ $ (-850)) NIL) (($ $ (-708)) 99)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 49) (($ $ $) 48) (($ |#1| $) 50) (($ $ |#1|) NIL)))
+(((-393 |#1|) (-13 (-514) (-208 |#1|) (-37 |#1|) (-313 |#1|) (-386 |#1|) (-10 -8 (-15 -1604 (|#1| $)) (-15 -1400 ((-522) $)) (-15 -2473 ($ |#1| (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))))) (-15 -3931 ((-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))) $)) (-15 -3365 ($ |#1| (-522))) (-15 -2976 ((-588 (-2 (|:| -1916 |#1|) (|:| -1400 (-522)))) $)) (-15 -2546 ($ |#1| (-522))) (-15 -3809 ((-522) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -2729 ((-3 "nil" "sqfr" "irred" "prime") $ (-522))) (-15 -2785 ((-708) $)) (-15 -2827 ($ |#1| (-522))) (-15 -4159 ($ |#1| (-522))) (-15 -2991 ($ |#1| (-522) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3210 (|#1| $)) (-15 -3019 ($ $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-426)) (-6 (-426)) |%noBranch|) (IF (|has| |#1| (-947)) (-6 (-947)) |%noBranch|) (IF (|has| |#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-262 $ $)) (-6 (-262 $ $)) |%noBranch|) (IF (|has| |#1| (-285 $)) (-6 (-285 $)) |%noBranch|) (IF (|has| |#1| (-483 (-1085) $)) (-6 (-483 (-1085) $)) |%noBranch|))) (-514)) (T -393))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-514)) (-5 *1 (-393 *3)))) (-1604 (*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-2473 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-522))))) (-4 *2 (-514)) (-5 *1 (-393 *2)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-522))))) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-3365 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -1916 *3) (|:| -1400 (-522))))) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-2546 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-3809 (*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-2729 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-393 *4)) (-4 *4 (-514)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-393 *3)) (-4 *3 (-514)))) (-2827 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-4159 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-2991 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-522)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-3210 (*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-3019 (*1 *1 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514)))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514)))))
+(-13 (-514) (-208 |#1|) (-37 |#1|) (-313 |#1|) (-386 |#1|) (-10 -8 (-15 -1604 (|#1| $)) (-15 -1400 ((-522) $)) (-15 -2473 ($ |#1| (-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))))) (-15 -3931 ((-588 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-522)))) $)) (-15 -3365 ($ |#1| (-522))) (-15 -2976 ((-588 (-2 (|:| -1916 |#1|) (|:| -1400 (-522)))) $)) (-15 -2546 ($ |#1| (-522))) (-15 -3809 ((-522) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -2729 ((-3 "nil" "sqfr" "irred" "prime") $ (-522))) (-15 -2785 ((-708) $)) (-15 -2827 ($ |#1| (-522))) (-15 -4159 ($ |#1| (-522))) (-15 -2991 ($ |#1| (-522) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3210 (|#1| $)) (-15 -3019 ($ $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-426)) (-6 (-426)) |%noBranch|) (IF (|has| |#1| (-947)) (-6 (-947)) |%noBranch|) (IF (|has| |#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-262 $ $)) (-6 (-262 $ $)) |%noBranch|) (IF (|has| |#1| (-285 $)) (-6 (-285 $)) |%noBranch|) (IF (|has| |#1| (-483 (-1085) $)) (-6 (-483 (-1085) $)) |%noBranch|)))
+((-1499 (((-393 |#1|) (-393 |#1|) (-1 (-393 |#1|) |#1|)) 20)) (-1736 (((-393 |#1|) (-393 |#1|) (-393 |#1|)) 15)))
+(((-394 |#1|) (-10 -7 (-15 -1499 ((-393 |#1|) (-393 |#1|) (-1 (-393 |#1|) |#1|))) (-15 -1736 ((-393 |#1|) (-393 |#1|) (-393 |#1|)))) (-514)) (T -394))
+((-1736 (*1 *2 *2 *2) (-12 (-5 *2 (-393 *3)) (-4 *3 (-514)) (-5 *1 (-394 *3)))) (-1499 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-393 *4) *4)) (-4 *4 (-514)) (-5 *2 (-393 *4)) (-5 *1 (-394 *4)))))
+(-10 -7 (-15 -1499 ((-393 |#1|) (-393 |#1|) (-1 (-393 |#1|) |#1|))) (-15 -1736 ((-393 |#1|) (-393 |#1|) (-393 |#1|))))
+((-3745 ((|#2| |#2|) 161)) (-2439 (((-3 (|:| |%expansion| (-288 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108)) 55)))
+(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2439 ((-3 (|:| |%expansion| (-288 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108))) (-15 -3745 (|#2| |#2|))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|)) (-1085) |#2|) (T -395))
+((-3745 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-395 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1106) (-405 *3))) (-14 *4 (-1085)) (-14 *5 *2))) (-2439 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (|:| |%expansion| (-288 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) (-5 *1 (-395 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-14 *6 (-1085)) (-14 *7 *3))))
+(-10 -7 (-15 -2439 ((-3 (|:| |%expansion| (-288 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108))) (-15 -3745 (|#2| |#2|)))
+((-1391 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-971) (-784)) (-405 |#1|) (-13 (-971) (-784)) (-405 |#3|)) (T -396))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-971) (-784))) (-4 *6 (-13 (-971) (-784))) (-4 *2 (-405 *6)) (-5 *1 (-396 *5 *4 *6 *2)) (-4 *4 (-405 *5)))))
+(-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3745 ((|#2| |#2|) 88)) (-2775 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068)) 46)) (-1907 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068)) 153)))
+(((-397 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2775 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -1907 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -3745 (|#2| |#2|))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|) (-10 -8 (-15 -2190 ($ |#3|)))) (-782) (-13 (-1144 |#2| |#3|) (-338) (-1106) (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $)))) (-910 |#4|) (-1085)) (T -397))
+((-3745 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *2 (-13 (-27) (-1106) (-405 *3) (-10 -8 (-15 -2190 ($ *4))))) (-4 *4 (-782)) (-4 *5 (-13 (-1144 *2 *4) (-338) (-1106) (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $))))) (-5 *1 (-397 *3 *2 *4 *5 *6 *7)) (-4 *6 (-910 *5)) (-14 *7 (-1085)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2190 ($ *7))))) (-4 *7 (-782)) (-4 *8 (-13 (-1144 *3 *7) (-338) (-1106) (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8)) (-14 *10 (-1085)))) (-2775 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2190 ($ *7))))) (-4 *7 (-782)) (-4 *8 (-13 (-1144 *3 *7) (-338) (-1106) (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068)))))) (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8)) (-14 *10 (-1085)))))
+(-10 -7 (-15 -2775 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -1907 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))) |#2| (-108) (-1068))) (-15 -3745 (|#2| |#2|)))
+((-3690 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3864 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1391 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3864 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3690 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-400 |#1|) (-1014) (-400 |#3|)) (T -398))
+((-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-400 *5)) (-5 *1 (-398 *6 *4 *5 *2)) (-4 *4 (-400 *6)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-398 *5 *4 *2 *6)) (-4 *4 (-400 *5)) (-4 *6 (-400 *2)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-400 *6)) (-5 *1 (-398 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
+(-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3864 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3690 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-1579 (($) 44)) (-2270 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2079 (($ $ $) 39)) (-3557 (((-108) $ $) 28)) (-1629 (((-708)) 47)) (-1764 (($ (-588 |#2|)) 20) (($) NIL)) (-3255 (($) 53)) (-2814 ((|#2| $) 61)) (-2446 ((|#2| $) 59)) (-2120 (((-850) $) 55)) (-2416 (($ $ $) 35)) (-2717 (($ (-850)) 50)) (-3417 (($ $ |#2|) NIL) (($ $ $) 38)) (-4168 (((-708) (-1 (-108) |#2|) $) NIL) (((-708) |#2| $) 26)) (-2201 (($ (-588 |#2|)) 24)) (-3763 (($ $) 46)) (-2190 (((-792) $) 33)) (-2067 (((-708) $) 21)) (-3392 (($ (-588 |#2|)) 19) (($) NIL)) (-1531 (((-108) $ $) 16)) (-1549 (((-108) $ $) 13)))
+(((-399 |#1| |#2|) (-10 -8 (-15 -1629 ((-708))) (-15 -2717 (|#1| (-850))) (-15 -2120 ((-850) |#1|)) (-15 -3255 (|#1|)) (-15 -2814 (|#2| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -1579 (|#1|)) (-15 -3763 (|#1| |#1|)) (-15 -2067 ((-708) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3392 (|#1|)) (-15 -3392 (|#1| (-588 |#2|))) (-15 -1764 (|#1|)) (-15 -1764 (|#1| (-588 |#2|))) (-15 -2416 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#2|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3557 ((-108) |#1| |#1|)) (-15 -2270 (|#1| |#1| |#1|)) (-15 -2270 (|#1| |#1| |#2|)) (-15 -2270 (|#1| |#2| |#1|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -4168 ((-708) |#2| |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|))) (-400 |#2|) (-1014)) (T -399))
+((-1629 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-708)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
+(-10 -8 (-15 -1629 ((-708))) (-15 -2717 (|#1| (-850))) (-15 -2120 ((-850) |#1|)) (-15 -3255 (|#1|)) (-15 -2814 (|#2| |#1|)) (-15 -2446 (|#2| |#1|)) (-15 -1579 (|#1|)) (-15 -3763 (|#1| |#1|)) (-15 -2067 ((-708) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3392 (|#1|)) (-15 -3392 (|#1| (-588 |#2|))) (-15 -1764 (|#1|)) (-15 -1764 (|#1| (-588 |#2|))) (-15 -2416 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#2|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3557 ((-108) |#1| |#1|)) (-15 -2270 (|#1| |#1| |#1|)) (-15 -2270 (|#1| |#1| |#2|)) (-15 -2270 (|#1| |#2| |#1|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -4168 ((-708) |#2| |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)))
+((-1416 (((-108) $ $) 19)) (-1579 (($) 67 (|has| |#1| (-343)))) (-2270 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2079 (($ $ $) 78)) (-3557 (((-108) $ $) 79)) (-4141 (((-108) $ (-708)) 8)) (-1629 (((-708)) 61 (|has| |#1| (-343)))) (-1764 (($ (-588 |#1|)) 74) (($) 73)) (-2790 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2333 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3255 (($) 64 (|has| |#1| (-343)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-2814 ((|#1| $) 65 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2446 ((|#1| $) 66 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2120 (((-850) $) 63 (|has| |#1| (-343)))) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22)) (-2416 (($ $ $) 75)) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-2717 (($ (-850)) 62 (|has| |#1| (-343)))) (-4151 (((-1032) $) 21)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3417 (($ $ |#1|) 77) (($ $ $) 76)) (-3990 (($) 49) (($ (-588 |#1|)) 48)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 50)) (-3763 (($ $) 68 (|has| |#1| (-343)))) (-2190 (((-792) $) 18)) (-2067 (((-708) $) 69)) (-3392 (($ (-588 |#1|)) 72) (($) 71)) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 70)) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-400 |#1|) (-1197) (-1014)) (T -400))
+((-2067 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-1014)) (-5 *2 (-708)))) (-3763 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-343)))) (-1579 (*1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-343)) (-4 *2 (-1014)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784)))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784)))))
+(-13 (-206 |t#1|) (-1012 |t#1|) (-10 -8 (-6 -4238) (-15 -2067 ((-708) $)) (IF (|has| |t#1| (-343)) (PROGN (-6 (-343)) (-15 -3763 ($ $)) (-15 -1579 ($))) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-15 -2446 (|t#1| $)) (-15 -2814 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-206 |#1|) . T) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-343) |has| |#1| (-343)) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1012 |#1|) . T) ((-1014) . T) ((-1120) . T))
+((-3282 (((-539 |#2|) |#2| (-1085)) 35)) (-3113 (((-539 |#2|) |#2| (-1085)) 19)) (-1594 ((|#2| |#2| (-1085)) 24)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -3113 ((-539 |#2|) |#2| (-1085))) (-15 -3282 ((-539 |#2|) |#2| (-1085))) (-15 -1594 (|#2| |#2| (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-29 |#1|))) (T -401))
+((-1594 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-401 *4 *2)) (-4 *2 (-13 (-1106) (-29 *4))))) (-3282 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5))))) (-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3)) (-4 *3 (-13 (-1106) (-29 *5))))))
+(-10 -7 (-15 -3113 ((-539 |#2|) |#2| (-1085))) (-15 -3282 ((-539 |#2|) |#2| (-1085))) (-15 -1594 (|#2| |#2| (-1085))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-1330 (($ |#2| |#1|) 35)) (-3641 (($ |#2| |#1|) 33)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-306 |#2|)) 25)) (-2323 (((-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 10 T CONST)) (-3577 (($) 16 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 34)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-402 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4225)) (IF (|has| |#1| (-6 -4225)) (-6 -4225) |%noBranch|) |%noBranch|) (-15 -2190 ($ |#1|)) (-15 -2190 ($ (-306 |#2|))) (-15 -1330 ($ |#2| |#1|)) (-15 -3641 ($ |#2| |#1|)))) (-13 (-157) (-37 (-382 (-522)))) (-13 (-784) (-21))) (T -402))
+((-2190 (*1 *1 *2) (-12 (-5 *1 (-402 *2 *3)) (-4 *2 (-13 (-157) (-37 (-382 (-522))))) (-4 *3 (-13 (-784) (-21))))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-306 *4)) (-4 *4 (-13 (-784) (-21))) (-5 *1 (-402 *3 *4)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))))) (-1330 (*1 *1 *2 *3) (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))) (-4 *2 (-13 (-784) (-21))))) (-3641 (*1 *1 *2 *3) (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522))))) (-4 *2 (-13 (-784) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4225)) (IF (|has| |#1| (-6 -4225)) (-6 -4225) |%noBranch|) |%noBranch|) (-15 -2190 ($ |#1|)) (-15 -2190 ($ (-306 |#2|))) (-15 -1330 ($ |#2| |#1|)) (-15 -3641 ($ |#2| |#1|))))
+((-1858 (((-3 |#2| (-588 |#2|)) |#2| (-1085)) 105)))
+(((-403 |#1| |#2|) (-10 -7 (-15 -1858 ((-3 |#2| (-588 |#2|)) |#2| (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-29 |#1|))) (T -403))
+((-1858 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 *3 (-588 *3))) (-5 *1 (-403 *5 *3)) (-4 *3 (-13 (-1106) (-887) (-29 *5))))))
+(-10 -7 (-15 -1858 ((-3 |#2| (-588 |#2|)) |#2| (-1085))))
+((-4090 (((-588 (-1085)) $) 72)) (-1282 (((-382 (-1081 $)) $ (-561 $)) 269)) (-3305 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) 234)) (-1297 (((-3 (-561 $) "failed") $) NIL) (((-3 (-1085) "failed") $) 75) (((-3 (-522) "failed") $) NIL) (((-3 |#2| "failed") $) 230) (((-3 (-382 (-881 |#2|)) "failed") $) 320) (((-3 (-881 |#2|) "failed") $) 232) (((-3 (-382 (-522)) "failed") $) NIL)) (-1484 (((-561 $) $) NIL) (((-1085) $) 30) (((-522) $) NIL) ((|#2| $) 228) (((-382 (-881 |#2|)) $) 301) (((-881 |#2|) $) 229) (((-382 (-522)) $) NIL)) (-2626 (((-110) (-110)) 47)) (-2902 (($ $) 87)) (-3993 (((-3 (-561 $) "failed") $) 225)) (-1267 (((-588 (-561 $)) $) 226)) (-2462 (((-3 (-588 $) "failed") $) 244)) (-2170 (((-3 (-2 (|:| |val| $) (|:| -1400 (-522))) "failed") $) 251)) (-4193 (((-3 (-588 $) "failed") $) 242)) (-1241 (((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 $))) "failed") $) 260)) (-3285 (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $) 248) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-110)) 215) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-1085)) 217)) (-3108 (((-108) $) 19)) (-3118 ((|#2| $) 21)) (-2289 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) 233) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 96) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1085)) 57) (($ $ (-588 (-1085))) 237) (($ $) 238) (($ $ (-110) $ (-1085)) 60) (($ $ (-588 (-110)) (-588 $) (-1085)) 67) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) 107) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) 239) (($ $ (-1085) (-708) (-1 $ (-588 $))) 94) (($ $ (-1085) (-708) (-1 $ $)) 93)) (-2545 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) 106)) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) 235)) (-3533 (($ $) 280)) (-1431 (((-821 (-522)) $) 254) (((-821 (-354)) $) 257) (($ (-393 $)) 316) (((-498) $) NIL)) (-2190 (((-792) $) 236) (($ (-561 $)) 84) (($ (-1085)) 26) (($ |#2|) NIL) (($ (-1037 |#2| (-561 $))) NIL) (($ (-382 |#2|)) 285) (($ (-881 (-382 |#2|))) 325) (($ (-382 (-881 (-382 |#2|)))) 297) (($ (-382 (-881 |#2|))) 291) (($ $) NIL) (($ (-881 |#2|)) 184) (($ (-382 (-522))) 330) (($ (-522)) NIL)) (-2323 (((-708)) 79)) (-3614 (((-108) (-110)) 41)) (-1805 (($ (-1085) $) 33) (($ (-1085) $ $) 34) (($ (-1085) $ $ $) 35) (($ (-1085) $ $ $ $) 36) (($ (-1085) (-588 $)) 39)) (* (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ |#2| $) 262) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-404 |#1| |#2|) (-10 -8 (-15 * (|#1| (-850) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2323 ((-708))) (-15 -2190 (|#1| (-522))) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1431 ((-498) |#1|)) (-15 -1484 ((-881 |#2|) |#1|)) (-15 -1297 ((-3 (-881 |#2|) "failed") |#1|)) (-15 -2190 (|#1| (-881 |#2|))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1484 ((-382 (-881 |#2|)) |#1|)) (-15 -1297 ((-3 (-382 (-881 |#2|)) "failed") |#1|)) (-15 -2190 (|#1| (-382 (-881 |#2|)))) (-15 -1282 ((-382 (-1081 |#1|)) |#1| (-561 |#1|))) (-15 -2190 (|#1| (-382 (-881 (-382 |#2|))))) (-15 -2190 (|#1| (-881 (-382 |#2|)))) (-15 -2190 (|#1| (-382 |#2|))) (-15 -3533 (|#1| |#1|)) (-15 -1431 (|#1| (-393 |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-708) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-708) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| |#1|)))) (-15 -2170 ((-3 (-2 (|:| |val| |#1|) (|:| -1400 (-522))) "failed") |#1|)) (-15 -3285 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -1400 (-522))) "failed") |#1| (-1085))) (-15 -3285 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -1400 (-522))) "failed") |#1| (-110))) (-15 -2902 (|#1| |#1|)) (-15 -2190 (|#1| (-1037 |#2| (-561 |#1|)))) (-15 -1241 ((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 |#1|))) "failed") |#1|)) (-15 -4193 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -3285 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -1400 (-522))) "failed") |#1|)) (-15 -2462 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 |#1|) (-1085))) (-15 -2289 (|#1| |#1| (-110) |#1| (-1085))) (-15 -2289 (|#1| |#1|)) (-15 -2289 (|#1| |#1| (-588 (-1085)))) (-15 -2289 (|#1| |#1| (-1085))) (-15 -1805 (|#1| (-1085) (-588 |#1|))) (-15 -1805 (|#1| (-1085) |#1| |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1085) |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1085) |#1| |#1|)) (-15 -1805 (|#1| (-1085) |#1|)) (-15 -4090 ((-588 (-1085)) |#1|)) (-15 -3118 (|#2| |#1|)) (-15 -3108 ((-108) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1484 ((-1085) |#1|)) (-15 -1297 ((-3 (-1085) "failed") |#1|)) (-15 -2190 (|#1| (-1085))) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -1267 ((-588 (-561 |#1|)) |#1|)) (-15 -3993 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -3305 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -3305 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -3305 (|#1| |#1| (-270 |#1|))) (-15 -2545 (|#1| (-110) (-588 |#1|))) (-15 -2545 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2289 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1484 ((-561 |#1|) |#1|)) (-15 -1297 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -2190 (|#1| (-561 |#1|))) (-15 -2190 ((-792) |#1|))) (-405 |#2|) (-784)) (T -404))
+((-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-784)) (-5 *1 (-404 *3 *4)) (-4 *3 (-405 *4)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-404 *4 *5)) (-4 *4 (-405 *5)))) (-2323 (*1 *2) (-12 (-4 *4 (-784)) (-5 *2 (-708)) (-5 *1 (-404 *3 *4)) (-4 *3 (-405 *4)))))
+(-10 -8 (-15 * (|#1| (-850) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2323 ((-708))) (-15 -2190 (|#1| (-522))) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1431 ((-498) |#1|)) (-15 -1484 ((-881 |#2|) |#1|)) (-15 -1297 ((-3 (-881 |#2|) "failed") |#1|)) (-15 -2190 (|#1| (-881 |#2|))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1484 ((-382 (-881 |#2|)) |#1|)) (-15 -1297 ((-3 (-382 (-881 |#2|)) "failed") |#1|)) (-15 -2190 (|#1| (-382 (-881 |#2|)))) (-15 -1282 ((-382 (-1081 |#1|)) |#1| (-561 |#1|))) (-15 -2190 (|#1| (-382 (-881 (-382 |#2|))))) (-15 -2190 (|#1| (-881 (-382 |#2|)))) (-15 -2190 (|#1| (-382 |#2|))) (-15 -3533 (|#1| |#1|)) (-15 -1431 (|#1| (-393 |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-708) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-708) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-708)) (-588 (-1 |#1| |#1|)))) (-15 -2170 ((-3 (-2 (|:| |val| |#1|) (|:| -1400 (-522))) "failed") |#1|)) (-15 -3285 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -1400 (-522))) "failed") |#1| (-1085))) (-15 -3285 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -1400 (-522))) "failed") |#1| (-110))) (-15 -2902 (|#1| |#1|)) (-15 -2190 (|#1| (-1037 |#2| (-561 |#1|)))) (-15 -1241 ((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 |#1|))) "failed") |#1|)) (-15 -4193 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -3285 ((-3 (-2 (|:| |var| (-561 |#1|)) (|:| -1400 (-522))) "failed") |#1|)) (-15 -2462 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 |#1|) (-1085))) (-15 -2289 (|#1| |#1| (-110) |#1| (-1085))) (-15 -2289 (|#1| |#1|)) (-15 -2289 (|#1| |#1| (-588 (-1085)))) (-15 -2289 (|#1| |#1| (-1085))) (-15 -1805 (|#1| (-1085) (-588 |#1|))) (-15 -1805 (|#1| (-1085) |#1| |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1085) |#1| |#1| |#1|)) (-15 -1805 (|#1| (-1085) |#1| |#1|)) (-15 -1805 (|#1| (-1085) |#1|)) (-15 -4090 ((-588 (-1085)) |#1|)) (-15 -3118 (|#2| |#1|)) (-15 -3108 ((-108) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1484 ((-1085) |#1|)) (-15 -1297 ((-3 (-1085) "failed") |#1|)) (-15 -2190 (|#1| (-1085))) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-110) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-110)) (-588 (-1 |#1| |#1|)))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| |#1|))) (-15 -2289 (|#1| |#1| (-1085) (-1 |#1| (-588 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| (-588 |#1|))))) (-15 -2289 (|#1| |#1| (-588 (-1085)) (-588 (-1 |#1| |#1|)))) (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -1267 ((-588 (-561 |#1|)) |#1|)) (-15 -3993 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -3305 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -3305 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -3305 (|#1| |#1| (-270 |#1|))) (-15 -2545 (|#1| (-110) (-588 |#1|))) (-15 -2545 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1| |#1|)) (-15 -2545 (|#1| (-110) |#1|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2289 (|#1| |#1| (-588 (-561 |#1|)) (-588 |#1|))) (-15 -2289 (|#1| |#1| (-561 |#1|) |#1|)) (-15 -1484 ((-561 |#1|) |#1|)) (-15 -1297 ((-3 (-561 |#1|) "failed") |#1|)) (-15 -2190 (|#1| (-561 |#1|))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 116 (|has| |#1| (-25)))) (-4090 (((-588 (-1085)) $) 203)) (-1282 (((-382 (-1081 $)) $ (-561 $)) 171 (|has| |#1| (-514)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 143 (|has| |#1| (-514)))) (-2022 (($ $) 144 (|has| |#1| (-514)))) (-3739 (((-108) $) 146 (|has| |#1| (-514)))) (-1886 (((-588 (-561 $)) $) 44)) (-1233 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3305 (($ $ (-270 $)) 56) (($ $ (-588 (-270 $))) 55) (($ $ (-588 (-561 $)) (-588 $)) 54)) (-3119 (($ $) 163 (|has| |#1| (-514)))) (-3450 (((-393 $) $) 164 (|has| |#1| (-514)))) (-1687 (((-108) $ $) 154 (|has| |#1| (-514)))) (-3175 (($) 102 (-3708 (|has| |#1| (-1026)) (|has| |#1| (-25))) CONST)) (-1297 (((-3 (-561 $) "failed") $) 69) (((-3 (-1085) "failed") $) 216) (((-3 (-522) "failed") $) 209 (|has| |#1| (-962 (-522)))) (((-3 |#1| "failed") $) 207) (((-3 (-382 (-881 |#1|)) "failed") $) 169 (|has| |#1| (-514))) (((-3 (-881 |#1|) "failed") $) 123 (|has| |#1| (-971))) (((-3 (-382 (-522)) "failed") $) 95 (-3708 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-1484 (((-561 $) $) 68) (((-1085) $) 215) (((-522) $) 210 (|has| |#1| (-962 (-522)))) ((|#1| $) 206) (((-382 (-881 |#1|)) $) 168 (|has| |#1| (-514))) (((-881 |#1|) $) 122 (|has| |#1| (-971))) (((-382 (-522)) $) 94 (-3708 (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522))))))) (-2277 (($ $ $) 158 (|has| |#1| (-514)))) (-2096 (((-628 (-522)) (-628 $)) 137 (-4015 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 136 (-4015 (|has| |#1| (-584 (-522))) (|has| |#1| (-971)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 135 (|has| |#1| (-971))) (((-628 |#1|) (-628 $)) 134 (|has| |#1| (-971)))) (-2682 (((-3 $ "failed") $) 105 (|has| |#1| (-1026)))) (-2254 (($ $ $) 157 (|has| |#1| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 152 (|has| |#1| (-514)))) (-2813 (((-108) $) 165 (|has| |#1| (-514)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 212 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 211 (|has| |#1| (-815 (-354))))) (-1953 (($ $) 51) (($ (-588 $)) 50)) (-4161 (((-588 (-110)) $) 43)) (-2626 (((-110) (-110)) 42)) (-2782 (((-108) $) 103 (|has| |#1| (-1026)))) (-2591 (((-108) $) 22 (|has| $ (-962 (-522))))) (-2902 (($ $) 186 (|has| |#1| (-971)))) (-2805 (((-1037 |#1| (-561 $)) $) 187 (|has| |#1| (-971)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 161 (|has| |#1| (-514)))) (-1711 (((-1081 $) (-561 $)) 25 (|has| $ (-971)))) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-1391 (($ (-1 $ $) (-561 $)) 36)) (-3993 (((-3 (-561 $) "failed") $) 46)) (-2224 (($ (-588 $)) 150 (|has| |#1| (-514))) (($ $ $) 149 (|has| |#1| (-514)))) (-2385 (((-1068) $) 9)) (-1267 (((-588 (-561 $)) $) 45)) (-2909 (($ (-110) $) 38) (($ (-110) (-588 $)) 37)) (-2462 (((-3 (-588 $) "failed") $) 192 (|has| |#1| (-1026)))) (-2170 (((-3 (-2 (|:| |val| $) (|:| -1400 (-522))) "failed") $) 183 (|has| |#1| (-971)))) (-4193 (((-3 (-588 $) "failed") $) 190 (|has| |#1| (-25)))) (-1241 (((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3285 (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $) 191 (|has| |#1| (-1026))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-110)) 185 (|has| |#1| (-971))) (((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-1085)) 184 (|has| |#1| (-971)))) (-2249 (((-108) $ (-110)) 40) (((-108) $ (-1085)) 39)) (-3098 (($ $) 107 (-3708 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-4155 (((-708) $) 47)) (-4151 (((-1032) $) 10)) (-3108 (((-108) $) 205)) (-3118 ((|#1| $) 204)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 151 (|has| |#1| (-514)))) (-2259 (($ (-588 $)) 148 (|has| |#1| (-514))) (($ $ $) 147 (|has| |#1| (-514)))) (-1648 (((-108) $ $) 35) (((-108) $ (-1085)) 34)) (-1916 (((-393 $) $) 162 (|has| |#1| (-514)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-514))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 159 (|has| |#1| (-514)))) (-2232 (((-3 $ "failed") $ $) 142 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 153 (|has| |#1| (-514)))) (-1263 (((-108) $) 23 (|has| $ (-962 (-522))))) (-2289 (($ $ (-561 $) $) 67) (($ $ (-588 (-561 $)) (-588 $)) 66) (($ $ (-588 (-270 $))) 65) (($ $ (-270 $)) 64) (($ $ $ $) 63) (($ $ (-588 $) (-588 $)) 62) (($ $ (-588 (-1085)) (-588 (-1 $ $))) 33) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) 32) (($ $ (-1085) (-1 $ (-588 $))) 31) (($ $ (-1085) (-1 $ $)) 30) (($ $ (-588 (-110)) (-588 (-1 $ $))) 29) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) 28) (($ $ (-110) (-1 $ (-588 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1085)) 197 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085))) 196 (|has| |#1| (-563 (-498)))) (($ $) 195 (|has| |#1| (-563 (-498)))) (($ $ (-110) $ (-1085)) 194 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-110)) (-588 $) (-1085)) 193 (|has| |#1| (-563 (-498)))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $))) 182 (|has| |#1| (-971))) (($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $)))) 181 (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ (-588 $))) 180 (|has| |#1| (-971))) (($ $ (-1085) (-708) (-1 $ $)) 179 (|has| |#1| (-971)))) (-3730 (((-708) $) 155 (|has| |#1| (-514)))) (-2545 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-588 $)) 57)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 156 (|has| |#1| (-514)))) (-3043 (($ $) 49) (($ $ $) 48)) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) 128 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 127 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 126 (|has| |#1| (-971))) (($ $ (-1085)) 125 (|has| |#1| (-971)))) (-3533 (($ $) 176 (|has| |#1| (-514)))) (-2816 (((-1037 |#1| (-561 $)) $) 177 (|has| |#1| (-514)))) (-1479 (($ $) 24 (|has| $ (-971)))) (-1431 (((-821 (-522)) $) 214 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 213 (|has| |#1| (-563 (-821 (-354))))) (($ (-393 $)) 178 (|has| |#1| (-514))) (((-498) $) 97 (|has| |#1| (-563 (-498))))) (-3122 (($ $ $) 111 (|has| |#1| (-447)))) (-1288 (($ $ $) 112 (|has| |#1| (-447)))) (-2190 (((-792) $) 11) (($ (-561 $)) 70) (($ (-1085)) 217) (($ |#1|) 208) (($ (-1037 |#1| (-561 $))) 188 (|has| |#1| (-971))) (($ (-382 |#1|)) 174 (|has| |#1| (-514))) (($ (-881 (-382 |#1|))) 173 (|has| |#1| (-514))) (($ (-382 (-881 (-382 |#1|)))) 172 (|has| |#1| (-514))) (($ (-382 (-881 |#1|))) 170 (|has| |#1| (-514))) (($ $) 141 (|has| |#1| (-514))) (($ (-881 |#1|)) 124 (|has| |#1| (-971))) (($ (-382 (-522))) 96 (-3708 (|has| |#1| (-514)) (-12 (|has| |#1| (-962 (-522))) (|has| |#1| (-514))) (|has| |#1| (-962 (-382 (-522)))))) (($ (-522)) 93 (-3708 (|has| |#1| (-971)) (|has| |#1| (-962 (-522)))))) (-2143 (((-3 $ "failed") $) 138 (|has| |#1| (-133)))) (-2323 (((-708)) 133 (|has| |#1| (-971)))) (-2308 (($ $) 53) (($ (-588 $)) 52)) (-3614 (((-108) (-110)) 41)) (-3958 (((-108) $ $) 145 (|has| |#1| (-514)))) (-1805 (($ (-1085) $) 202) (($ (-1085) $ $) 201) (($ (-1085) $ $ $) 200) (($ (-1085) $ $ $ $) 199) (($ (-1085) (-588 $)) 198)) (-3510 (($ $ (-522)) 110 (-3708 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) 104 (|has| |#1| (-1026))) (($ $ (-850)) 100 (|has| |#1| (-1026)))) (-3566 (($) 115 (|has| |#1| (-25)) CONST)) (-3577 (($) 101 (|has| |#1| (-1026)) CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) 132 (|has| |#1| (-971))) (($ $ (-1085) (-708)) 131 (|has| |#1| (-971))) (($ $ (-588 (-1085))) 130 (|has| |#1| (-971))) (($ $ (-1085)) 129 (|has| |#1| (-971)))) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1620 (($ (-1037 |#1| (-561 $)) (-1037 |#1| (-561 $))) 175 (|has| |#1| (-514))) (($ $ $) 108 (-3708 (|has| |#1| (-447)) (|has| |#1| (-514))))) (-1612 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1602 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-522)) 109 (-3708 (|has| |#1| (-447)) (|has| |#1| (-514)))) (($ $ (-708)) 106 (|has| |#1| (-1026))) (($ $ (-850)) 99 (|has| |#1| (-1026)))) (* (($ (-382 (-522)) $) 167 (|has| |#1| (-514))) (($ $ (-382 (-522))) 166 (|has| |#1| (-514))) (($ |#1| $) 140 (|has| |#1| (-157))) (($ $ |#1|) 139 (|has| |#1| (-157))) (($ (-522) $) 121 (|has| |#1| (-21))) (($ (-708) $) 117 (|has| |#1| (-25))) (($ (-850) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1026)))))
+(((-405 |#1|) (-1197) (-784)) (T -405))
+((-3108 (*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-108)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-588 (-1085))))) (-1805 (*1 *1 *2 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))) (-1805 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 *1)) (-4 *1 (-405 *4)) (-4 *4 (-784)))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-563 (-498))))) (-2289 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1085))) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-563 (-498))))) (-2289 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-563 (-498))))) (-2289 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1085)) (-4 *1 (-405 *4)) (-4 *4 (-784)) (-4 *4 (-563 (-498))))) (-2289 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 *1)) (-5 *4 (-1085)) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-563 (-498))))) (-2462 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-405 *3)))) (-3285 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -1400 (-522)))) (-4 *1 (-405 *3)))) (-4193 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-405 *3)))) (-1241 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -2977 (-522)) (|:| |var| (-561 *1)))) (-4 *1 (-405 *3)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-971)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2805 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1))) (-4 *1 (-405 *3)))) (-2902 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-971)))) (-3285 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-971)) (-4 *4 (-784)) (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -1400 (-522)))) (-4 *1 (-405 *4)))) (-3285 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-971)) (-4 *4 (-784)) (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -1400 (-522)))) (-4 *1 (-405 *4)))) (-2170 (*1 *2 *1) (|partial| -12 (-4 *3 (-971)) (-4 *3 (-784)) (-5 *2 (-2 (|:| |val| *1) (|:| -1400 (-522)))) (-4 *1 (-405 *3)))) (-2289 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708))) (-5 *4 (-588 (-1 *1 *1))) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-2289 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708))) (-5 *4 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-2289 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 (-588 *1))) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-2289 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 *1)) (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-393 *1)) (-4 *1 (-405 *3)) (-4 *3 (-514)) (-4 *3 (-784)))) (-2816 (*1 *2 *1) (-12 (-4 *3 (-514)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1))) (-4 *1 (-405 *3)))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-514)))) (-1620 (*1 *1 *2 *2) (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-382 *3)) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-881 (-382 *3))) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-382 *3)))) (-4 *3 (-514)) (-4 *3 (-784)) (-4 *1 (-405 *3)))) (-1282 (*1 *2 *1 *3) (-12 (-5 *3 (-561 *1)) (-4 *1 (-405 *4)) (-4 *4 (-784)) (-4 *4 (-514)) (-5 *2 (-382 (-1081 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-1026)))))
+(-13 (-278) (-962 (-1085)) (-813 |t#1|) (-375 |t#1|) (-386 |t#1|) (-10 -8 (-15 -3108 ((-108) $)) (-15 -3118 (|t#1| $)) (-15 -4090 ((-588 (-1085)) $)) (-15 -1805 ($ (-1085) $)) (-15 -1805 ($ (-1085) $ $)) (-15 -1805 ($ (-1085) $ $ $)) (-15 -1805 ($ (-1085) $ $ $ $)) (-15 -1805 ($ (-1085) (-588 $))) (IF (|has| |t#1| (-563 (-498))) (PROGN (-6 (-563 (-498))) (-15 -2289 ($ $ (-1085))) (-15 -2289 ($ $ (-588 (-1085)))) (-15 -2289 ($ $)) (-15 -2289 ($ $ (-110) $ (-1085))) (-15 -2289 ($ $ (-588 (-110)) (-588 $) (-1085)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-15 ** ($ $ (-708))) (-15 -2462 ((-3 (-588 $) "failed") $)) (-15 -3285 ((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-447)) (-6 (-447)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4193 ((-3 (-588 $) "failed") $)) (-15 -1241 ((-3 (-2 (|:| -2977 (-522)) (|:| |var| (-561 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-971)) (PROGN (-6 (-971)) (-6 (-962 (-881 |t#1|))) (-6 (-829 (-1085))) (-6 (-352 |t#1|)) (-15 -2190 ($ (-1037 |t#1| (-561 $)))) (-15 -2805 ((-1037 |t#1| (-561 $)) $)) (-15 -2902 ($ $)) (-15 -3285 ((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-110))) (-15 -3285 ((-3 (-2 (|:| |var| (-561 $)) (|:| -1400 (-522))) "failed") $ (-1085))) (-15 -2170 ((-3 (-2 (|:| |val| $) (|:| -1400 (-522))) "failed") $)) (-15 -2289 ($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ $)))) (-15 -2289 ($ $ (-588 (-1085)) (-588 (-708)) (-588 (-1 $ (-588 $))))) (-15 -2289 ($ $ (-1085) (-708) (-1 $ (-588 $)))) (-15 -2289 ($ $ (-1085) (-708) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-6 (-338)) (-6 (-962 (-382 (-881 |t#1|)))) (-15 -1431 ($ (-393 $))) (-15 -2816 ((-1037 |t#1| (-561 $)) $)) (-15 -3533 ($ $)) (-15 -1620 ($ (-1037 |t#1| (-561 $)) (-1037 |t#1| (-561 $)))) (-15 -2190 ($ (-382 |t#1|))) (-15 -2190 ($ (-881 (-382 |t#1|)))) (-15 -2190 ($ (-382 (-881 (-382 |t#1|))))) (-15 -1282 ((-382 (-1081 $)) $ (-561 $))) (IF (|has| |t#1| (-962 (-522))) (-6 (-962 (-382 (-522)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-23) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-382 (-522))) |has| |#1| (-514)) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-514)) ((-107 |#1| |#1|) |has| |#1| (-157)) ((-107 $ $) |has| |#1| (-514)) ((-124) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133)) (|has| |#1| (-21))) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) |has| |#1| (-514)) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-220) |has| |#1| (-514)) ((-266) |has| |#1| (-514)) ((-283) |has| |#1| (-514)) ((-285 $) . T) ((-278) . T) ((-338) |has| |#1| (-514)) ((-352 |#1|) |has| |#1| (-971)) ((-375 |#1|) . T) ((-386 |#1|) . T) ((-426) |has| |#1| (-514)) ((-447) |has| |#1| (-447)) ((-483 (-561 $) $) . T) ((-483 $ $) . T) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-514)) ((-590 |#1|) |has| |#1| (-157)) ((-590 $) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-584 (-522)) -12 (|has| |#1| (-584 (-522))) (|has| |#1| (-971))) ((-584 |#1|) |has| |#1| (-971)) ((-655 #0#) |has| |#1| (-514)) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) -3708 (|has| |#1| (-1026)) (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-447)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-784) . T) ((-829 (-1085)) |has| |#1| (-971)) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-849) |has| |#1| (-514)) ((-962 (-382 (-522))) -3708 (|has| |#1| (-962 (-382 (-522)))) (-12 (|has| |#1| (-514)) (|has| |#1| (-962 (-522))))) ((-962 (-382 (-881 |#1|))) |has| |#1| (-514)) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 (-561 $)) . T) ((-962 (-881 |#1|)) |has| |#1| (-971)) ((-962 (-1085)) . T) ((-962 |#1|) . T) ((-977 #0#) |has| |#1| (-514)) ((-977 |#1|) |has| |#1| (-157)) ((-977 $) |has| |#1| (-514)) ((-971) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-978) -3708 (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1026) -3708 (|has| |#1| (-1026)) (|has| |#1| (-971)) (|has| |#1| (-514)) (|has| |#1| (-447)) (|has| |#1| (-157)) (|has| |#1| (-135)) (|has| |#1| (-133))) ((-1014) . T) ((-1120) . T) ((-1124) |has| |#1| (-514)))
+((-1967 ((|#2| |#2| |#2|) 33)) (-2626 (((-110) (-110)) 44)) (-2166 ((|#2| |#2|) 66)) (-3759 ((|#2| |#2|) 69)) (-3236 ((|#2| |#2|) 32)) (-1829 ((|#2| |#2| |#2|) 35)) (-2709 ((|#2| |#2| |#2|) 37)) (-2477 ((|#2| |#2| |#2|) 34)) (-4205 ((|#2| |#2| |#2|) 36)) (-3614 (((-108) (-110)) 42)) (-1601 ((|#2| |#2|) 39)) (-2607 ((|#2| |#2|) 38)) (-2241 ((|#2| |#2|) 27)) (-2018 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2627 ((|#2| |#2| |#2|) 31)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -2241 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2018 (|#2| |#2| |#2|)) (-15 -2627 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#2|)) (-15 -2477 (|#2| |#2| |#2|)) (-15 -1829 (|#2| |#2| |#2|)) (-15 -4205 (|#2| |#2| |#2|)) (-15 -2709 (|#2| |#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -2166 (|#2| |#2|))) (-13 (-784) (-514)) (-405 |#1|)) (T -406))
+((-2166 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2709 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-4205 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-1829 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2477 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-1967 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-3236 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2627 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2018 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2)) (-4 *2 (-405 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *4)) (-4 *4 (-405 *3)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-406 *4 *5)) (-4 *5 (-405 *4)))))
+(-10 -7 (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -2241 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2018 (|#2| |#2| |#2|)) (-15 -2627 (|#2| |#2| |#2|)) (-15 -3236 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#2|)) (-15 -2477 (|#2| |#2| |#2|)) (-15 -1829 (|#2| |#2| |#2|)) (-15 -4205 (|#2| |#2| |#2|)) (-15 -2709 (|#2| |#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)))
+((-1223 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1081 |#2|)) (|:| |pol2| (-1081 |#2|)) (|:| |prim| (-1081 |#2|))) |#2| |#2|) 94 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-588 (-1081 |#2|))) (|:| |prim| (-1081 |#2|))) (-588 |#2|)) 58)))
+(((-407 |#1| |#2|) (-10 -7 (-15 -1223 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-588 (-1081 |#2|))) (|:| |prim| (-1081 |#2|))) (-588 |#2|))) (IF (|has| |#2| (-27)) (-15 -1223 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1081 |#2|)) (|:| |pol2| (-1081 |#2|)) (|:| |prim| (-1081 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-514) (-784) (-135)) (-405 |#1|)) (T -407))
+((-1223 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-514) (-784) (-135))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1081 *3)) (|:| |pol2| (-1081 *3)) (|:| |prim| (-1081 *3)))) (-5 *1 (-407 *4 *3)) (-4 *3 (-27)) (-4 *3 (-405 *4)))) (-1223 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) (-4 *4 (-13 (-514) (-784) (-135))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-588 (-1081 *5))) (|:| |prim| (-1081 *5)))) (-5 *1 (-407 *4 *5)))))
+(-10 -7 (-15 -1223 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-588 (-1081 |#2|))) (|:| |prim| (-1081 |#2|))) (-588 |#2|))) (IF (|has| |#2| (-27)) (-15 -1223 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1081 |#2|)) (|:| |pol2| (-1081 |#2|)) (|:| |prim| (-1081 |#2|))) |#2| |#2|)) |%noBranch|))
+((-1668 (((-1171)) 18)) (-2622 (((-1081 (-382 (-522))) |#2| (-561 |#2|)) 40) (((-382 (-522)) |#2|) 23)))
+(((-408 |#1| |#2|) (-10 -7 (-15 -2622 ((-382 (-522)) |#2|)) (-15 -2622 ((-1081 (-382 (-522))) |#2| (-561 |#2|))) (-15 -1668 ((-1171)))) (-13 (-784) (-514) (-962 (-522))) (-405 |#1|)) (T -408))
+((-1668 (*1 *2) (-12 (-4 *3 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-1171)) (-5 *1 (-408 *3 *4)) (-4 *4 (-405 *3)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-561 *3)) (-4 *3 (-405 *5)) (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-408 *5 *3)))) (-2622 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-382 (-522))) (-5 *1 (-408 *4 *3)) (-4 *3 (-405 *4)))))
+(-10 -7 (-15 -2622 ((-382 (-522)) |#2|)) (-15 -2622 ((-1081 (-382 (-522))) |#2| (-561 |#2|))) (-15 -1668 ((-1171))))
+((-2405 (((-108) $) 28)) (-3552 (((-108) $) 30)) (-3096 (((-108) $) 31)) (-2189 (((-108) $) 34)) (-2221 (((-108) $) 29)) (-2214 (((-108) $) 33)) (-2190 (((-792) $) 18) (($ (-1068)) 27) (($ (-1085)) 23) (((-1085) $) 22) (((-1018) $) 21)) (-1217 (((-108) $) 32)) (-1531 (((-108) $ $) 15)))
+(((-409) (-13 (-562 (-792)) (-10 -8 (-15 -2190 ($ (-1068))) (-15 -2190 ($ (-1085))) (-15 -2190 ((-1085) $)) (-15 -2190 ((-1018) $)) (-15 -2405 ((-108) $)) (-15 -2221 ((-108) $)) (-15 -3096 ((-108) $)) (-15 -2214 ((-108) $)) (-15 -2189 ((-108) $)) (-15 -1217 ((-108) $)) (-15 -3552 ((-108) $)) (-15 -1531 ((-108) $ $))))) (T -409))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-409)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-409)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-409)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-409)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-1217 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))) (-1531 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2190 ($ (-1068))) (-15 -2190 ($ (-1085))) (-15 -2190 ((-1085) $)) (-15 -2190 ((-1018) $)) (-15 -2405 ((-108) $)) (-15 -2221 ((-108) $)) (-15 -3096 ((-108) $)) (-15 -2214 ((-108) $)) (-15 -2189 ((-108) $)) (-15 -1217 ((-108) $)) (-15 -3552 ((-108) $)) (-15 -1531 ((-108) $ $))))
+((-2597 (((-3 (-393 (-1081 (-382 (-522)))) "failed") |#3|) 69)) (-4144 (((-393 |#3|) |#3|) 33)) (-2197 (((-3 (-393 (-1081 (-47))) "failed") |#3|) 27 (|has| |#2| (-962 (-47))))) (-1621 (((-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3083 (-108))) |#3|) 35)))
+(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -4144 ((-393 |#3|) |#3|)) (-15 -2597 ((-3 (-393 (-1081 (-382 (-522)))) "failed") |#3|)) (-15 -1621 ((-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3083 (-108))) |#3|)) (IF (|has| |#2| (-962 (-47))) (-15 -2197 ((-3 (-393 (-1081 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-514) (-784) (-962 (-522))) (-405 |#1|) (-1142 |#2|)) (T -410))
+((-2197 (*1 *2 *3) (|partial| -12 (-4 *5 (-962 (-47))) (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-393 (-1081 (-47)))) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-1621 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3083 (-108)))) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-2597 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-393 (-1081 (-382 (-522))))) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-4144 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4)) (-5 *2 (-393 *3)) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))))
+(-10 -7 (-15 -4144 ((-393 |#3|) |#3|)) (-15 -2597 ((-3 (-393 (-1081 (-382 (-522)))) "failed") |#3|)) (-15 -1621 ((-3 (|:| |overq| (-1081 (-382 (-522)))) (|:| |overan| (-1081 (-47))) (|:| -3083 (-108))) |#3|)) (IF (|has| |#2| (-962 (-47))) (-15 -2197 ((-3 (-393 (-1081 (-47))) "failed") |#3|)) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-1270 (((-1068) $ (-1068)) NIL)) (-2563 (($ $ (-1068)) NIL)) (-4045 (((-1068) $) NIL)) (-2080 (((-363) (-363) (-363)) 17) (((-363) (-363)) 15)) (-1544 (($ (-363)) NIL) (($ (-363) (-1068)) NIL)) (-2888 (((-363) $) NIL)) (-2385 (((-1068) $) NIL)) (-3469 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3988 (((-1171) (-1068)) 9)) (-1944 (((-1171) (-1068)) 10)) (-1301 (((-1171)) 11)) (-2190 (((-792) $) NIL)) (-2152 (($ $) 35)) (-1531 (((-108) $ $) NIL)))
+(((-411) (-13 (-339 (-363) (-1068)) (-10 -7 (-15 -2080 ((-363) (-363) (-363))) (-15 -2080 ((-363) (-363))) (-15 -3988 ((-1171) (-1068))) (-15 -1944 ((-1171) (-1068))) (-15 -1301 ((-1171)))))) (T -411))
+((-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411)))) (-1301 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-411)))))
+(-13 (-339 (-363) (-1068)) (-10 -7 (-15 -2080 ((-363) (-363) (-363))) (-15 -2080 ((-363) (-363))) (-15 -3988 ((-1171) (-1068))) (-15 -1944 ((-1171) (-1068))) (-15 -1301 ((-1171)))))
+((-1416 (((-108) $ $) NIL)) (-3600 (((-3 (|:| |fst| (-409)) (|:| -1367 "void")) $) 10)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1677 (($) 31)) (-2296 (($) 37)) (-2649 (($) 33)) (-4113 (($) 35)) (-1649 (($) 32)) (-3503 (($) 34)) (-3473 (($) 36)) (-3797 (((-108) $) 8)) (-2832 (((-588 (-881 (-522))) $) 16)) (-2201 (($ (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-1085)) (-108)) 25) (($ (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-881 (-522))) (-108)) 26)) (-2190 (((-792) $) 21) (($ (-409)) 28)) (-1531 (((-108) $ $) NIL)))
+(((-412) (-13 (-1014) (-10 -8 (-15 -2190 ((-792) $)) (-15 -2190 ($ (-409))) (-15 -3600 ((-3 (|:| |fst| (-409)) (|:| -1367 "void")) $)) (-15 -2832 ((-588 (-881 (-522))) $)) (-15 -3797 ((-108) $)) (-15 -2201 ($ (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-1085)) (-108))) (-15 -2201 ($ (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-881 (-522))) (-108))) (-15 -1677 ($)) (-15 -1649 ($)) (-15 -2649 ($)) (-15 -2296 ($)) (-15 -3503 ($)) (-15 -4113 ($)) (-15 -3473 ($))))) (T -412))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-412)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-409)) (-5 *1 (-412)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *1 (-412)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-588 (-881 (-522)))) (-5 *1 (-412)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *3 (-588 (-1085))) (-5 *4 (-108)) (-5 *1 (-412)))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-108)) (-5 *1 (-412)))) (-1677 (*1 *1) (-5 *1 (-412))) (-1649 (*1 *1) (-5 *1 (-412))) (-2649 (*1 *1) (-5 *1 (-412))) (-2296 (*1 *1) (-5 *1 (-412))) (-3503 (*1 *1) (-5 *1 (-412))) (-4113 (*1 *1) (-5 *1 (-412))) (-3473 (*1 *1) (-5 *1 (-412))))
+(-13 (-1014) (-10 -8 (-15 -2190 ((-792) $)) (-15 -2190 ($ (-409))) (-15 -3600 ((-3 (|:| |fst| (-409)) (|:| -1367 "void")) $)) (-15 -2832 ((-588 (-881 (-522))) $)) (-15 -3797 ((-108) $)) (-15 -2201 ($ (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-1085)) (-108))) (-15 -2201 ($ (-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-588 (-881 (-522))) (-108))) (-15 -1677 ($)) (-15 -1649 ($)) (-15 -2649 ($)) (-15 -2296 ($)) (-15 -3503 ($)) (-15 -4113 ($)) (-15 -3473 ($))))
+((-1416 (((-108) $ $) NIL)) (-2888 (((-1085) $) 8)) (-2385 (((-1068) $) 16)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 13)))
+(((-413 |#1|) (-13 (-1014) (-10 -8 (-15 -2888 ((-1085) $)))) (-1085)) (T -413))
+((-2888 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-413 *3)) (-14 *3 *2))))
+(-13 (-1014) (-10 -8 (-15 -2888 ((-1085) $))))
+((-2009 (((-1171) $) 7)) (-2190 (((-792) $) 8) (($ (-1166 (-637))) 14) (($ (-588 (-305))) 13) (($ (-305)) 12) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 11)))
+(((-414) (-1197)) (T -414))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-637))) (-4 *1 (-414)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-414)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-414)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) (-4 *1 (-414)))))
+(-13 (-370) (-10 -8 (-15 -2190 ($ (-1166 (-637)))) (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-305))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))))))
+(((-562 (-792)) . T) ((-370) . T) ((-1120) . T))
+((-1297 (((-3 $ "failed") (-1166 (-291 (-354)))) 21) (((-3 $ "failed") (-1166 (-291 (-522)))) 19) (((-3 $ "failed") (-1166 (-881 (-354)))) 17) (((-3 $ "failed") (-1166 (-881 (-522)))) 15) (((-3 $ "failed") (-1166 (-382 (-881 (-354))))) 13) (((-3 $ "failed") (-1166 (-382 (-881 (-522))))) 11)) (-1484 (($ (-1166 (-291 (-354)))) 22) (($ (-1166 (-291 (-522)))) 20) (($ (-1166 (-881 (-354)))) 18) (($ (-1166 (-881 (-522)))) 16) (($ (-1166 (-382 (-881 (-354))))) 14) (($ (-1166 (-382 (-881 (-522))))) 12)) (-2009 (((-1171) $) 7)) (-2190 (((-792) $) 8) (($ (-588 (-305))) 25) (($ (-305)) 24) (($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) 23)))
+(((-415) (-1197)) (T -415))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-415)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-415)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305))))) (-4 *1 (-415)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415)))))
+(-13 (-370) (-10 -8 (-15 -2190 ($ (-588 (-305)))) (-15 -2190 ($ (-305))) (-15 -2190 ($ (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))) (-15 -1484 ($ (-1166 (-291 (-354))))) (-15 -1297 ((-3 $ "failed") (-1166 (-291 (-354))))) (-15 -1484 ($ (-1166 (-291 (-522))))) (-15 -1297 ((-3 $ "failed") (-1166 (-291 (-522))))) (-15 -1484 ($ (-1166 (-881 (-354))))) (-15 -1297 ((-3 $ "failed") (-1166 (-881 (-354))))) (-15 -1484 ($ (-1166 (-881 (-522))))) (-15 -1297 ((-3 $ "failed") (-1166 (-881 (-522))))) (-15 -1484 ($ (-1166 (-382 (-881 (-354)))))) (-15 -1297 ((-3 $ "failed") (-1166 (-382 (-881 (-354)))))) (-15 -1484 ($ (-1166 (-382 (-881 (-522)))))) (-15 -1297 ((-3 $ "failed") (-1166 (-382 (-881 (-522))))))))
+(((-562 (-792)) . T) ((-370) . T) ((-1120) . T))
+((-1571 (((-108)) 17)) (-2667 (((-108) (-108)) 18)) (-2037 (((-108)) 13)) (-1914 (((-108) (-108)) 14)) (-3066 (((-108)) 15)) (-3342 (((-108) (-108)) 16)) (-2343 (((-850) (-850)) 21) (((-850)) 20)) (-2785 (((-708) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522))))) 42)) (-2528 (((-850) (-850)) 23) (((-850)) 22)) (-2715 (((-2 (|:| -3717 (-522)) (|:| -2976 (-588 |#1|))) |#1|) 62)) (-2473 (((-393 |#1|) (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522))))))) 124)) (-3168 (((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108)) 150)) (-2571 (((-393 |#1|) |#1| (-708) (-708)) 163) (((-393 |#1|) |#1| (-588 (-708)) (-708)) 160) (((-393 |#1|) |#1| (-588 (-708))) 162) (((-393 |#1|) |#1| (-708)) 161) (((-393 |#1|) |#1|) 159)) (-3540 (((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708) (-108)) 165) (((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708)) 166) (((-3 |#1| "failed") (-850) |#1| (-588 (-708))) 168) (((-3 |#1| "failed") (-850) |#1| (-708)) 167) (((-3 |#1| "failed") (-850) |#1|) 169)) (-1916 (((-393 |#1|) |#1| (-708) (-708)) 158) (((-393 |#1|) |#1| (-588 (-708)) (-708)) 154) (((-393 |#1|) |#1| (-588 (-708))) 156) (((-393 |#1|) |#1| (-708)) 155) (((-393 |#1|) |#1|) 153)) (-4131 (((-108) |#1|) 37)) (-2933 (((-675 (-708)) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522))))) 67)) (-3274 (((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108) (-1016 (-708)) (-708)) 152)))
+(((-416 |#1|) (-10 -7 (-15 -2473 ((-393 |#1|) (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))))) (-15 -2933 ((-675 (-708)) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))))) (-15 -2528 ((-850))) (-15 -2528 ((-850) (-850))) (-15 -2343 ((-850))) (-15 -2343 ((-850) (-850))) (-15 -2785 ((-708) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))))) (-15 -2715 ((-2 (|:| -3717 (-522)) (|:| -2976 (-588 |#1|))) |#1|)) (-15 -1571 ((-108))) (-15 -2667 ((-108) (-108))) (-15 -2037 ((-108))) (-15 -1914 ((-108) (-108))) (-15 -4131 ((-108) |#1|)) (-15 -3066 ((-108))) (-15 -3342 ((-108) (-108))) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -1916 ((-393 |#1|) |#1| (-708))) (-15 -1916 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -1916 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -1916 ((-393 |#1|) |#1| (-708) (-708))) (-15 -2571 ((-393 |#1|) |#1|)) (-15 -2571 ((-393 |#1|) |#1| (-708))) (-15 -2571 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -2571 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -2571 ((-393 |#1|) |#1| (-708) (-708))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1|)) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-708))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708) (-108))) (-15 -3168 ((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108))) (-15 -3274 ((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108) (-1016 (-708)) (-708)))) (-1142 (-522))) (T -416))
+((-3274 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1016 (-708))) (-5 *6 (-708)) (-5 *2 (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522))))))) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3168 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522))))))) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3540 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *6 (-108)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-3540 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-3540 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-3540 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-850)) (-5 *4 (-708)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-3540 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-850)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522))))) (-2571 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2571 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1916 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-3066 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-4131 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2037 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-1571 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2715 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3717 (-522)) (|:| -2976 (-588 *3)))) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1916 *4) (|:| -2793 (-522))))) (-4 *4 (-1142 (-522))) (-5 *2 (-708)) (-5 *1 (-416 *4)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2343 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2528 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1916 *4) (|:| -2793 (-522))))) (-4 *4 (-1142 (-522))) (-5 *2 (-675 (-708))) (-5 *1 (-416 *4)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| *4) (|:| -2245 (-522))))))) (-4 *4 (-1142 (-522))) (-5 *2 (-393 *4)) (-5 *1 (-416 *4)))))
+(-10 -7 (-15 -2473 ((-393 |#1|) (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))))) (-15 -2933 ((-675 (-708)) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))))) (-15 -2528 ((-850))) (-15 -2528 ((-850) (-850))) (-15 -2343 ((-850))) (-15 -2343 ((-850) (-850))) (-15 -2785 ((-708) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))))) (-15 -2715 ((-2 (|:| -3717 (-522)) (|:| -2976 (-588 |#1|))) |#1|)) (-15 -1571 ((-108))) (-15 -2667 ((-108) (-108))) (-15 -2037 ((-108))) (-15 -1914 ((-108) (-108))) (-15 -4131 ((-108) |#1|)) (-15 -3066 ((-108))) (-15 -3342 ((-108) (-108))) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -1916 ((-393 |#1|) |#1| (-708))) (-15 -1916 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -1916 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -1916 ((-393 |#1|) |#1| (-708) (-708))) (-15 -2571 ((-393 |#1|) |#1|)) (-15 -2571 ((-393 |#1|) |#1| (-708))) (-15 -2571 ((-393 |#1|) |#1| (-588 (-708)))) (-15 -2571 ((-393 |#1|) |#1| (-588 (-708)) (-708))) (-15 -2571 ((-393 |#1|) |#1| (-708) (-708))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1|)) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-708))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708))) (-15 -3540 ((-3 |#1| "failed") (-850) |#1| (-588 (-708)) (-708) (-108))) (-15 -3168 ((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108))) (-15 -3274 ((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108) (-1016 (-708)) (-708))))
+((-2335 (((-522) |#2|) 48) (((-522) |#2| (-708)) 47)) (-3082 (((-522) |#2|) 55)) (-3233 ((|#3| |#2|) 25)) (-2100 ((|#3| |#2| (-850)) 14)) (-2517 ((|#3| |#2|) 15)) (-2707 ((|#3| |#2|) 9)) (-4155 ((|#3| |#2|) 10)) (-2391 ((|#3| |#2| (-850)) 62) ((|#3| |#2|) 30)) (-1790 (((-522) |#2|) 57)))
+(((-417 |#1| |#2| |#3|) (-10 -7 (-15 -1790 ((-522) |#2|)) (-15 -2391 (|#3| |#2|)) (-15 -2391 (|#3| |#2| (-850))) (-15 -3082 ((-522) |#2|)) (-15 -2335 ((-522) |#2| (-708))) (-15 -2335 ((-522) |#2|)) (-15 -2100 (|#3| |#2| (-850))) (-15 -3233 (|#3| |#2|)) (-15 -2707 (|#3| |#2|)) (-15 -4155 (|#3| |#2|)) (-15 -2517 (|#3| |#2|))) (-971) (-1142 |#1|) (-13 (-379) (-962 |#1|) (-338) (-1106) (-260))) (T -417))
+((-2517 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-2707 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-3233 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-971)) (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260))) (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5)))) (-2335 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) (-4 *3 (-1142 *4)) (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))) (-2335 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *5 *3 *6)) (-4 *3 (-1142 *5)) (-4 *6 (-13 (-379) (-962 *5) (-338) (-1106) (-260))))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) (-4 *3 (-1142 *4)) (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))) (-2391 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-971)) (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260))) (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5)))) (-2391 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260))) (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))) (-1790 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5)) (-4 *3 (-1142 *4)) (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))))
+(-10 -7 (-15 -1790 ((-522) |#2|)) (-15 -2391 (|#3| |#2|)) (-15 -2391 (|#3| |#2| (-850))) (-15 -3082 ((-522) |#2|)) (-15 -2335 ((-522) |#2| (-708))) (-15 -2335 ((-522) |#2|)) (-15 -2100 (|#3| |#2| (-850))) (-15 -3233 (|#3| |#2|)) (-15 -2707 (|#3| |#2|)) (-15 -4155 (|#3| |#2|)) (-15 -2517 (|#3| |#2|)))
+((-4204 ((|#2| (-1166 |#1|)) 36)) (-3001 ((|#2| |#2| |#1|) 49)) (-3810 ((|#2| |#2| |#1|) 41)) (-1862 ((|#2| |#2|) 38)) (-3012 (((-108) |#2|) 30)) (-2609 (((-588 |#2|) (-850) (-393 |#2|)) 16)) (-3540 ((|#2| (-850) (-393 |#2|)) 21)) (-2933 (((-675 (-708)) (-393 |#2|)) 25)))
+(((-418 |#1| |#2|) (-10 -7 (-15 -3012 ((-108) |#2|)) (-15 -4204 (|#2| (-1166 |#1|))) (-15 -1862 (|#2| |#2|)) (-15 -3810 (|#2| |#2| |#1|)) (-15 -3001 (|#2| |#2| |#1|)) (-15 -2933 ((-675 (-708)) (-393 |#2|))) (-15 -3540 (|#2| (-850) (-393 |#2|))) (-15 -2609 ((-588 |#2|) (-850) (-393 |#2|)))) (-971) (-1142 |#1|)) (T -418))
+((-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-393 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-971)) (-5 *2 (-588 *6)) (-5 *1 (-418 *5 *6)))) (-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-393 *2)) (-4 *2 (-1142 *5)) (-5 *1 (-418 *5 *2)) (-4 *5 (-971)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-393 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-971)) (-5 *2 (-675 (-708))) (-5 *1 (-418 *4 *5)))) (-3001 (*1 *2 *2 *3) (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) (-3810 (*1 *2 *2 *3) (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) (-1862 (*1 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-971)) (-4 *2 (-1142 *4)) (-5 *1 (-418 *4 *2)))) (-3012 (*1 *2 *3) (-12 (-4 *4 (-971)) (-5 *2 (-108)) (-5 *1 (-418 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -3012 ((-108) |#2|)) (-15 -4204 (|#2| (-1166 |#1|))) (-15 -1862 (|#2| |#2|)) (-15 -3810 (|#2| |#2| |#1|)) (-15 -3001 (|#2| |#2| |#1|)) (-15 -2933 ((-675 (-708)) (-393 |#2|))) (-15 -3540 (|#2| (-850) (-393 |#2|))) (-15 -2609 ((-588 |#2|) (-850) (-393 |#2|))))
+((-1722 (((-708)) 41)) (-3688 (((-708)) 23 (|has| |#1| (-379))) (((-708) (-708)) 22 (|has| |#1| (-379)))) (-2770 (((-522) |#1|) 18 (|has| |#1| (-379)))) (-2844 (((-522) |#1|) 20 (|has| |#1| (-379)))) (-2424 (((-708)) 40) (((-708) (-708)) 39)) (-1261 ((|#1| (-708) (-522)) 29)) (-3551 (((-1171)) 43)))
+(((-419 |#1|) (-10 -7 (-15 -1261 (|#1| (-708) (-522))) (-15 -2424 ((-708) (-708))) (-15 -2424 ((-708))) (-15 -1722 ((-708))) (-15 -3551 ((-1171))) (IF (|has| |#1| (-379)) (PROGN (-15 -2844 ((-522) |#1|)) (-15 -2770 ((-522) |#1|)) (-15 -3688 ((-708) (-708))) (-15 -3688 ((-708)))) |%noBranch|)) (-971)) (T -419))
+((-3688 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-2770 (*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-2844 (*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))) (-3551 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-1722 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-2424 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))) (-1261 (*1 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-522)) (-5 *1 (-419 *2)) (-4 *2 (-971)))))
+(-10 -7 (-15 -1261 (|#1| (-708) (-522))) (-15 -2424 ((-708) (-708))) (-15 -2424 ((-708))) (-15 -1722 ((-708))) (-15 -3551 ((-1171))) (IF (|has| |#1| (-379)) (PROGN (-15 -2844 ((-522) |#1|)) (-15 -2770 ((-522) |#1|)) (-15 -3688 ((-708) (-708))) (-15 -3688 ((-708)))) |%noBranch|))
+((-2046 (((-588 (-522)) (-522)) 59)) (-2813 (((-108) (-154 (-522))) 63)) (-1916 (((-393 (-154 (-522))) (-154 (-522))) 58)))
+(((-420) (-10 -7 (-15 -1916 ((-393 (-154 (-522))) (-154 (-522)))) (-15 -2046 ((-588 (-522)) (-522))) (-15 -2813 ((-108) (-154 (-522)))))) (T -420))
+((-2813 (*1 *2 *3) (-12 (-5 *3 (-154 (-522))) (-5 *2 (-108)) (-5 *1 (-420)))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-420)) (-5 *3 (-522)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-393 (-154 (-522)))) (-5 *1 (-420)) (-5 *3 (-154 (-522))))))
+(-10 -7 (-15 -1916 ((-393 (-154 (-522))) (-154 (-522)))) (-15 -2046 ((-588 (-522)) (-522))) (-15 -2813 ((-108) (-154 (-522)))))
+((-3918 ((|#4| |#4| (-588 |#4|)) 59)) (-3840 (((-588 |#4|) (-588 |#4|) (-1068) (-1068)) 17) (((-588 |#4|) (-588 |#4|) (-1068)) 16) (((-588 |#4|) (-588 |#4|)) 11)))
+(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3918 (|#4| |#4| (-588 |#4|))) (-15 -3840 ((-588 |#4|) (-588 |#4|))) (-15 -3840 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -3840 ((-588 |#4|) (-588 |#4|) (-1068) (-1068)))) (-283) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -421))
+((-3840 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *7)))) (-3840 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *7)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-421 *3 *4 *5 *6)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3918 (|#4| |#4| (-588 |#4|))) (-15 -3840 ((-588 |#4|) (-588 |#4|))) (-15 -3840 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -3840 ((-588 |#4|) (-588 |#4|) (-1068) (-1068))))
+((-1988 (((-588 (-588 |#4|)) (-588 |#4|) (-108)) 71) (((-588 (-588 |#4|)) (-588 |#4|)) 70) (((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|) (-108)) 64) (((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|)) 65)) (-2658 (((-588 (-588 |#4|)) (-588 |#4|) (-108)) 41) (((-588 (-588 |#4|)) (-588 |#4|)) 61)))
+(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2658 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -2658 ((-588 (-588 |#4|)) (-588 |#4|) (-108))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|) (-108))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|) (-108)))) (-13 (-283) (-135)) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -422))
+((-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-1988 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8))) (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))) (-2658 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(-10 -7 (-15 -2658 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -2658 ((-588 (-588 |#4|)) (-588 |#4|) (-108))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|) (-588 |#4|) (-108))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|))) (-15 -1988 ((-588 (-588 |#4|)) (-588 |#4|) (-108))))
+((-3217 (((-708) |#4|) 12)) (-2205 (((-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|))) |#4| (-708) (-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|)))) 31)) (-2841 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1271 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-4172 ((|#4| |#4| (-588 |#4|)) 40)) (-2210 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-588 |#4|)) 69)) (-1802 (((-1171) |#4|) 42)) (-1424 (((-1171) (-588 |#4|)) 51)) (-1903 (((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522)) 48)) (-3314 (((-1171) (-522)) 77)) (-3705 (((-588 |#4|) (-588 |#4|)) 75)) (-2749 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|)) |#4| (-708)) 25)) (-1956 (((-522) |#4|) 76)) (-1729 ((|#4| |#4|) 29)) (-2167 (((-588 |#4|) (-588 |#4|) (-522) (-522)) 55)) (-1295 (((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522) (-522)) 87)) (-1881 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3629 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 58)) (-3315 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 57)) (-3363 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1762 (((-108) |#2| |#2|) 56)) (-4061 (((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2248 (((-108) |#2| |#2| |#2| |#2|) 59)) (-4081 ((|#4| |#4| (-588 |#4|)) 70)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4081 (|#4| |#4| (-588 |#4|))) (-15 -4172 (|#4| |#4| (-588 |#4|))) (-15 -2167 ((-588 |#4|) (-588 |#4|) (-522) (-522))) (-15 -3629 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1762 ((-108) |#2| |#2|)) (-15 -2248 ((-108) |#2| |#2| |#2| |#2|)) (-15 -4061 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3363 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3315 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2210 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-588 |#4|))) (-15 -1729 (|#4| |#4|)) (-15 -2205 ((-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|))) |#4| (-708) (-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|))))) (-15 -1271 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2841 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3705 ((-588 |#4|) (-588 |#4|))) (-15 -1956 ((-522) |#4|)) (-15 -1802 ((-1171) |#4|)) (-15 -1903 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522))) (-15 -1295 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522) (-522))) (-15 -1424 ((-1171) (-588 |#4|))) (-15 -3314 ((-1171) (-522))) (-15 -1881 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2749 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|)) |#4| (-708))) (-15 -3217 ((-708) |#4|))) (-426) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -423))
+((-3217 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708)) (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-708)) (|:| -3892 *4))) (-5 *5 (-708)) (-4 *4 (-878 *6 *7 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-423 *6 *7 *8 *4)))) (-1881 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *7)))) (-1295 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *4)))) (-1903 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *4)))) (-1802 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-1956 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-522)) (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))) (-2841 (*1 *2 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-730)) (-4 *2 (-878 *4 *5 *6)) (-5 *1 (-423 *4 *5 *6 *2)) (-4 *4 (-426)) (-4 *6 (-784)))) (-2205 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 *3)))) (-5 *4 (-708)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *3)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-2210 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-423 *5 *6 *7 *3)))) (-3315 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-708)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-730)) (-4 *6 (-878 *4 *3 *5)) (-4 *4 (-426)) (-4 *5 (-784)) (-5 *1 (-423 *4 *3 *5 *6)))) (-3363 (*1 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))) (-4061 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-730)) (-4 *3 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *3)))) (-2248 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))) (-1762 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7)))) (-2167 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *7)))) (-4172 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2)))))
+(-10 -7 (-15 -4081 (|#4| |#4| (-588 |#4|))) (-15 -4172 (|#4| |#4| (-588 |#4|))) (-15 -2167 ((-588 |#4|) (-588 |#4|) (-522) (-522))) (-15 -3629 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1762 ((-108) |#2| |#2|)) (-15 -2248 ((-108) |#2| |#2| |#2| |#2|)) (-15 -4061 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3363 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3315 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2210 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-588 |#4|))) (-15 -1729 (|#4| |#4|)) (-15 -2205 ((-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|))) |#4| (-708) (-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|))))) (-15 -1271 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2841 ((-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-588 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3705 ((-588 |#4|) (-588 |#4|))) (-15 -1956 ((-522) |#4|)) (-15 -1802 ((-1171) |#4|)) (-15 -1903 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522))) (-15 -1295 ((-522) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-522) (-522) (-522) (-522))) (-15 -1424 ((-1171) (-588 |#4|))) (-15 -3314 ((-1171) (-522))) (-15 -1881 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2749 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-708)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-708)) (|:| -3892 |#4|)) |#4| (-708))) (-15 -3217 ((-708) |#4|)))
+((-3904 ((|#4| |#4| (-588 |#4|)) 22 (|has| |#1| (-338)))) (-4054 (((-588 |#4|) (-588 |#4|) (-1068) (-1068)) 42) (((-588 |#4|) (-588 |#4|) (-1068)) 41) (((-588 |#4|) (-588 |#4|)) 36)))
+(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 ((-588 |#4|) (-588 |#4|))) (-15 -4054 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -4054 ((-588 |#4|) (-588 |#4|) (-1068) (-1068))) (IF (|has| |#1| (-338)) (-15 -3904 (|#4| |#4| (-588 |#4|))) |%noBranch|)) (-426) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -424))
+((-3904 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-338)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-424 *4 *5 *6 *2)))) (-4054 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-424 *4 *5 *6 *7)))) (-4054 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-424 *4 *5 *6 *7)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-424 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4054 ((-588 |#4|) (-588 |#4|))) (-15 -4054 ((-588 |#4|) (-588 |#4|) (-1068))) (-15 -4054 ((-588 |#4|) (-588 |#4|) (-1068) (-1068))) (IF (|has| |#1| (-338)) (-15 -3904 (|#4| |#4| (-588 |#4|))) |%noBranch|))
+((-2224 (($ $ $) 14) (($ (-588 $)) 21)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 41)) (-2259 (($ $ $) NIL) (($ (-588 $)) 22)))
+(((-425 |#1|) (-10 -8 (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -2224 (|#1| (-588 |#1|))) (-15 -2224 (|#1| |#1| |#1|)) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2259 (|#1| |#1| |#1|))) (-426)) (T -425))
+NIL
+(-10 -8 (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -2224 (|#1| (-588 |#1|))) (-15 -2224 (|#1| |#1| |#1|)) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2259 (|#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-2232 (((-3 $ "failed") $ $) 42)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-426) (-1197)) (T -426))
+((-2259 (*1 *1 *1 *1) (-4 *1 (-426))) (-2259 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426)))) (-2224 (*1 *1 *1 *1) (-4 *1 (-426))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426)))) (-1307 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-426)))))
+(-13 (-514) (-10 -8 (-15 -2259 ($ $ $)) (-15 -2259 ($ (-588 $))) (-15 -2224 ($ $ $)) (-15 -2224 ($ (-588 $))) (-15 -1307 ((-1081 $) (-1081 $) (-1081 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3210 (((-3 $ "failed")) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1588 (((-1166 (-628 (-382 (-881 |#1|)))) (-1166 $)) NIL) (((-1166 (-628 (-382 (-881 |#1|))))) NIL)) (-1681 (((-1166 $)) NIL)) (-3175 (($) NIL T CONST)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL)) (-3130 (((-3 $ "failed")) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-1771 (((-628 (-382 (-881 |#1|))) (-1166 $)) NIL) (((-628 (-382 (-881 |#1|)))) NIL)) (-3594 (((-382 (-881 |#1|)) $) NIL)) (-2828 (((-628 (-382 (-881 |#1|))) $ (-1166 $)) NIL) (((-628 (-382 (-881 |#1|))) $) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-3549 (((-1081 (-881 (-382 (-881 |#1|))))) NIL (|has| (-382 (-881 |#1|)) (-338))) (((-1081 (-382 (-881 |#1|)))) 79 (|has| |#1| (-514)))) (-1679 (($ $ (-850)) NIL)) (-3076 (((-382 (-881 |#1|)) $) NIL)) (-2992 (((-1081 (-382 (-881 |#1|))) $) 77 (|has| (-382 (-881 |#1|)) (-514)))) (-2975 (((-382 (-881 |#1|)) (-1166 $)) NIL) (((-382 (-881 |#1|))) NIL)) (-4014 (((-1081 (-382 (-881 |#1|))) $) NIL)) (-2878 (((-108)) NIL)) (-3766 (($ (-1166 (-382 (-881 |#1|))) (-1166 $)) 97) (($ (-1166 (-382 (-881 |#1|)))) NIL)) (-2682 (((-3 $ "failed") $) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-3166 (((-850)) NIL)) (-2666 (((-108)) NIL)) (-1882 (($ $ (-850)) NIL)) (-1427 (((-108)) NIL)) (-2552 (((-108)) NIL)) (-2678 (((-108)) NIL)) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL)) (-2007 (((-3 $ "failed")) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-1943 (((-628 (-382 (-881 |#1|))) (-1166 $)) NIL) (((-628 (-382 (-881 |#1|)))) NIL)) (-1546 (((-382 (-881 |#1|)) $) NIL)) (-4142 (((-628 (-382 (-881 |#1|))) $ (-1166 $)) NIL) (((-628 (-382 (-881 |#1|))) $) NIL)) (-2231 (((-3 $ "failed") $) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-2497 (((-1081 (-881 (-382 (-881 |#1|))))) NIL (|has| (-382 (-881 |#1|)) (-338))) (((-1081 (-382 (-881 |#1|)))) 78 (|has| |#1| (-514)))) (-3277 (($ $ (-850)) NIL)) (-1505 (((-382 (-881 |#1|)) $) NIL)) (-3630 (((-1081 (-382 (-881 |#1|))) $) 72 (|has| (-382 (-881 |#1|)) (-514)))) (-2475 (((-382 (-881 |#1|)) (-1166 $)) NIL) (((-382 (-881 |#1|))) NIL)) (-2302 (((-1081 (-382 (-881 |#1|))) $) NIL)) (-3003 (((-108)) NIL)) (-2385 (((-1068) $) NIL)) (-3710 (((-108)) NIL)) (-3026 (((-108)) NIL)) (-3055 (((-108)) NIL)) (-4151 (((-1032) $) NIL)) (-1458 (((-382 (-881 |#1|)) $ $) 66 (|has| |#1| (-514)))) (-1526 (((-382 (-881 |#1|)) $) 65 (|has| |#1| (-514)))) (-3386 (((-382 (-881 |#1|)) $) 89 (|has| |#1| (-514)))) (-1795 (((-1081 (-382 (-881 |#1|))) $) 83 (|has| |#1| (-514)))) (-3887 (((-382 (-881 |#1|))) 67 (|has| |#1| (-514)))) (-3379 (((-382 (-881 |#1|)) $ $) 54 (|has| |#1| (-514)))) (-1500 (((-382 (-881 |#1|)) $) 53 (|has| |#1| (-514)))) (-1926 (((-382 (-881 |#1|)) $) 88 (|has| |#1| (-514)))) (-3664 (((-1081 (-382 (-881 |#1|))) $) 82 (|has| |#1| (-514)))) (-3689 (((-382 (-881 |#1|))) 64 (|has| |#1| (-514)))) (-2317 (($) 95) (($ (-1085)) 101) (($ (-1166 (-1085))) 100) (($ (-1166 $)) 90) (($ (-1085) (-1166 $)) 99) (($ (-1166 (-1085)) (-1166 $)) 98)) (-2889 (((-108)) NIL)) (-2545 (((-382 (-881 |#1|)) $ (-522)) NIL)) (-3677 (((-1166 (-382 (-881 |#1|))) $ (-1166 $)) 92) (((-628 (-382 (-881 |#1|))) (-1166 $) (-1166 $)) NIL) (((-1166 (-382 (-881 |#1|))) $) 37) (((-628 (-382 (-881 |#1|))) (-1166 $)) NIL)) (-1431 (((-1166 (-382 (-881 |#1|))) $) NIL) (($ (-1166 (-382 (-881 |#1|)))) 34)) (-2656 (((-588 (-881 (-382 (-881 |#1|)))) (-1166 $)) NIL) (((-588 (-881 (-382 (-881 |#1|))))) NIL) (((-588 (-881 |#1|)) (-1166 $)) 93 (|has| |#1| (-514))) (((-588 (-881 |#1|))) 94 (|has| |#1| (-514)))) (-1288 (($ $ $) NIL)) (-4034 (((-108)) NIL)) (-2190 (((-792) $) NIL) (($ (-1166 (-382 (-881 |#1|)))) NIL)) (-3855 (((-1166 $)) 56)) (-2901 (((-588 (-1166 (-382 (-881 |#1|))))) NIL (|has| (-382 (-881 |#1|)) (-514)))) (-3610 (($ $ $ $) NIL)) (-2928 (((-108)) NIL)) (-1616 (($ (-628 (-382 (-881 |#1|))) $) NIL)) (-3024 (($ $ $) NIL)) (-3065 (((-108)) NIL)) (-3856 (((-108)) NIL)) (-3877 (((-108)) NIL)) (-3566 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) 91)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 52) (($ $ (-382 (-881 |#1|))) NIL) (($ (-382 (-881 |#1|)) $) NIL) (($ (-1052 |#2| (-382 (-881 |#1|))) $) NIL)))
+(((-427 |#1| |#2| |#3| |#4|) (-13 (-392 (-382 (-881 |#1|))) (-590 (-1052 |#2| (-382 (-881 |#1|)))) (-10 -8 (-15 -2190 ($ (-1166 (-382 (-881 |#1|))))) (-15 -3505 ((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed"))) (-15 -1868 ((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed"))) (-15 -2317 ($)) (-15 -2317 ($ (-1085))) (-15 -2317 ($ (-1166 (-1085)))) (-15 -2317 ($ (-1166 $))) (-15 -2317 ($ (-1085) (-1166 $))) (-15 -2317 ($ (-1166 (-1085)) (-1166 $))) (IF (|has| |#1| (-514)) (PROGN (-15 -2497 ((-1081 (-382 (-881 |#1|))))) (-15 -3664 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1500 ((-382 (-881 |#1|)) $)) (-15 -1926 ((-382 (-881 |#1|)) $)) (-15 -3549 ((-1081 (-382 (-881 |#1|))))) (-15 -1795 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1526 ((-382 (-881 |#1|)) $)) (-15 -3386 ((-382 (-881 |#1|)) $)) (-15 -3379 ((-382 (-881 |#1|)) $ $)) (-15 -3689 ((-382 (-881 |#1|)))) (-15 -1458 ((-382 (-881 |#1|)) $ $)) (-15 -3887 ((-382 (-881 |#1|)))) (-15 -2656 ((-588 (-881 |#1|)) (-1166 $))) (-15 -2656 ((-588 (-881 |#1|))))) |%noBranch|))) (-157) (-850) (-588 (-1085)) (-1166 (-628 |#1|))) (T -427))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 *3)))) (-4 *3 (-157)) (-14 *6 (-1166 (-628 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))))) (-3505 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-427 *3 *4 *5 *6)) (|:| -3855 (-588 (-427 *3 *4 *5 *6))))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1868 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-427 *3 *4 *5 *6)) (|:| -3855 (-588 (-427 *3 *4 *5 *6))))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2317 (*1 *1) (-12 (-5 *1 (-427 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-850)) (-14 *4 (-588 (-1085))) (-14 *5 (-1166 (-628 *2))))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 *2)) (-14 *6 (-1166 (-628 *3))))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1166 (-1085))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1166 (-427 *3 *4 *5 *6))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2317 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-588 *2)) (-14 *7 (-1166 (-628 *4))))) (-2317 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-1085))) (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4))))) (-2497 (*1 *2) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3549 (*1 *2) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3379 (*1 *2 *1 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3689 (*1 *2) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-1458 (*1 *2 *1 *1) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-3887 (*1 *2) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *2 (-588 (-881 *4))) (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-514)) (-4 *4 (-157)) (-14 *5 (-850)) (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4))))) (-2656 (*1 *2) (-12 (-5 *2 (-588 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(-13 (-392 (-382 (-881 |#1|))) (-590 (-1052 |#2| (-382 (-881 |#1|)))) (-10 -8 (-15 -2190 ($ (-1166 (-382 (-881 |#1|))))) (-15 -3505 ((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed"))) (-15 -1868 ((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed"))) (-15 -2317 ($)) (-15 -2317 ($ (-1085))) (-15 -2317 ($ (-1166 (-1085)))) (-15 -2317 ($ (-1166 $))) (-15 -2317 ($ (-1085) (-1166 $))) (-15 -2317 ($ (-1166 (-1085)) (-1166 $))) (IF (|has| |#1| (-514)) (PROGN (-15 -2497 ((-1081 (-382 (-881 |#1|))))) (-15 -3664 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1500 ((-382 (-881 |#1|)) $)) (-15 -1926 ((-382 (-881 |#1|)) $)) (-15 -3549 ((-1081 (-382 (-881 |#1|))))) (-15 -1795 ((-1081 (-382 (-881 |#1|))) $)) (-15 -1526 ((-382 (-881 |#1|)) $)) (-15 -3386 ((-382 (-881 |#1|)) $)) (-15 -3379 ((-382 (-881 |#1|)) $ $)) (-15 -3689 ((-382 (-881 |#1|)))) (-15 -1458 ((-382 (-881 |#1|)) $ $)) (-15 -3887 ((-382 (-881 |#1|)))) (-15 -2656 ((-588 (-881 |#1|)) (-1166 $))) (-15 -2656 ((-588 (-881 |#1|))))) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 13)) (-4090 (((-588 (-794 |#1|)) $) 74)) (-1282 (((-1081 $) $ (-794 |#1|)) 46) (((-1081 |#2|) $) 116)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2022 (($ $) NIL (|has| |#2| (-514)))) (-3739 (((-108) $) NIL (|has| |#2| (-514)))) (-3781 (((-708) $) 21) (((-708) $ (-588 (-794 |#1|))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3119 (($ $) NIL (|has| |#2| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#2| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 44) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1484 ((|#2| $) 42) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-1950 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2388 (($ $ (-588 (-522))) 79)) (-3156 (($ $) 68)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#2| (-838)))) (-2671 (($ $ |#2| |#3| $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) 58)) (-4073 (($ (-1081 |#2|) (-794 |#1|)) 121) (($ (-1081 $) (-794 |#1|)) 52)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) 59)) (-4049 (($ |#2| |#3|) 28) (($ $ (-794 |#1|) (-708)) 30) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-794 |#1|)) NIL)) (-2925 ((|#3| $) NIL) (((-708) $ (-794 |#1|)) 50) (((-588 (-708)) $ (-588 (-794 |#1|))) 57)) (-2814 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3861 (($ (-1 |#3| |#3|) $) NIL)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-3145 (((-3 (-794 |#1|) "failed") $) 39)) (-3128 (($ $) NIL)) (-3138 ((|#2| $) 41)) (-2224 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -1400 (-708))) "failed") $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) 40)) (-3118 ((|#2| $) 114)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) 126 (|has| |#2| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) 86) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) 89) (($ $ (-794 |#1|) $) 84) (($ $ (-588 (-794 |#1|)) (-588 $)) 105)) (-2769 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2157 (($ $ (-794 |#1|)) 53) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2793 ((|#3| $) 67) (((-708) $ (-794 |#1|)) 37) (((-588 (-708)) $ (-588 (-794 |#1|))) 56)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2255 ((|#2| $) 123 (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2190 (((-792) $) 142) (($ (-522)) NIL) (($ |#2|) 85) (($ (-794 |#1|)) 31) (($ (-382 (-522))) NIL (-3708 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ |#3|) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 16 T CONST)) (-3577 (($) 25 T CONST)) (-2213 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) 64 (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 110)) (** (($ $ (-850)) NIL) (($ $ (-708)) 108)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 29) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-428 |#1| |#2| |#3|) (-13 (-878 |#2| |#3| (-794 |#1|)) (-10 -8 (-15 -2388 ($ $ (-588 (-522)))))) (-588 (-1085)) (-971) (-215 (-3480 |#1|) (-708))) (T -428))
+((-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-14 *3 (-588 (-1085))) (-5 *1 (-428 *3 *4 *5)) (-4 *4 (-971)) (-4 *5 (-215 (-3480 *3) (-708))))))
+(-13 (-878 |#2| |#3| (-794 |#1|)) (-10 -8 (-15 -2388 ($ $ (-588 (-522))))))
+((-2119 (((-108) |#1| (-588 |#2|)) 66)) (-3049 (((-3 (-1166 (-588 |#2|)) "failed") (-708) |#1| (-588 |#2|)) 75)) (-2042 (((-3 (-588 |#2|) "failed") |#2| |#1| (-1166 (-588 |#2|))) 77)) (-4048 ((|#2| |#2| |#1|) 28)) (-3057 (((-708) |#2| (-588 |#2|)) 20)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -4048 (|#2| |#2| |#1|)) (-15 -3057 ((-708) |#2| (-588 |#2|))) (-15 -3049 ((-3 (-1166 (-588 |#2|)) "failed") (-708) |#1| (-588 |#2|))) (-15 -2042 ((-3 (-588 |#2|) "failed") |#2| |#1| (-1166 (-588 |#2|)))) (-15 -2119 ((-108) |#1| (-588 |#2|)))) (-283) (-1142 |#1|)) (T -429))
+((-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *5)) (-4 *5 (-1142 *3)) (-4 *3 (-283)) (-5 *2 (-108)) (-5 *1 (-429 *3 *5)))) (-2042 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1166 (-588 *3))) (-4 *4 (-283)) (-5 *2 (-588 *3)) (-5 *1 (-429 *4 *3)) (-4 *3 (-1142 *4)))) (-3049 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-708)) (-4 *4 (-283)) (-4 *6 (-1142 *4)) (-5 *2 (-1166 (-588 *6))) (-5 *1 (-429 *4 *6)) (-5 *5 (-588 *6)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-283)) (-5 *2 (-708)) (-5 *1 (-429 *5 *3)))) (-4048 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1142 *3)))))
+(-10 -7 (-15 -4048 (|#2| |#2| |#1|)) (-15 -3057 ((-708) |#2| (-588 |#2|))) (-15 -3049 ((-3 (-1166 (-588 |#2|)) "failed") (-708) |#1| (-588 |#2|))) (-15 -2042 ((-3 (-588 |#2|) "failed") |#2| |#1| (-1166 (-588 |#2|)))) (-15 -2119 ((-108) |#1| (-588 |#2|))))
+((-1916 (((-393 |#5|) |#5|) 24)))
+(((-430 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1916 ((-393 |#5|) |#5|))) (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085))))) (-730) (-514) (-514) (-878 |#4| |#2| |#1|)) (T -430))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-4 *5 (-730)) (-4 *7 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-430 *4 *5 *6 *7 *3)) (-4 *6 (-514)) (-4 *3 (-878 *7 *5 *4)))))
+(-10 -7 (-15 -1916 ((-393 |#5|) |#5|)))
+((-2986 ((|#3|) 36)) (-1307 (((-1081 |#4|) (-1081 |#4|) (-1081 |#4|)) 32)))
+(((-431 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1307 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2986 (|#3|))) (-730) (-784) (-838) (-878 |#3| |#1| |#2|)) (T -431))
+((-2986 (*1 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838)) (-5 *1 (-431 *3 *4 *2 *5)) (-4 *5 (-878 *2 *3 *4)))) (-1307 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-838)) (-5 *1 (-431 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1307 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2986 (|#3|)))
+((-1916 (((-393 (-1081 |#1|)) (-1081 |#1|)) 41)))
+(((-432 |#1|) (-10 -7 (-15 -1916 ((-393 (-1081 |#1|)) (-1081 |#1|)))) (-283)) (T -432))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-283)) (-5 *2 (-393 (-1081 *4))) (-5 *1 (-432 *4)) (-5 *3 (-1081 *4)))))
+(-10 -7 (-15 -1916 ((-393 (-1081 |#1|)) (-1081 |#1|))))
+((-3058 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-708))) 42) (((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-708))) 41) (((-51) |#2| (-1085) (-270 |#2|)) 35) (((-51) (-1 |#2| (-522)) (-270 |#2|)) 27)) (-2773 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 80) (((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 79) (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522))) 78) (((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522))) 77) (((-51) |#2| (-1085) (-270 |#2|)) 72) (((-51) (-1 |#2| (-522)) (-270 |#2|)) 71)) (-3079 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 66) (((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))) 64)) (-3068 (((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522))) 48) (((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522))) 47)))
+(((-433 |#1| |#2|) (-10 -7 (-15 -3058 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -3058 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -3058 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-708)))) (-15 -3058 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-708)))) (-15 -3068 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -3068 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -3079 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -3079 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -2773 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -2773 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -2773 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -2773 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -2773 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -2773 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522))))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -433))
+((-2773 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522)))) (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8))) (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *8 *3)))) (-2773 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8)) (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522))) (-4 *8 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *8)))) (-2773 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) (-2773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522))) (-4 *7 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) (-2773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *3)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6)) (-4 *6 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *5 *6)))) (-3079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522)))) (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8))) (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *8 *3)))) (-3079 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8)) (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522))) (-4 *8 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *8)))) (-3068 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) (-3068 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522))) (-4 *7 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) (-3058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-708))) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *7 *3)))) (-3058 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-708))) (-4 *7 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *7)))) (-3058 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *6 *3)))) (-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6)) (-4 *6 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-51)) (-5 *1 (-433 *5 *6)))))
+(-10 -7 (-15 -3058 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -3058 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -3058 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-708)))) (-15 -3058 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-708)))) (-15 -3068 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -3068 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -3079 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -3079 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -2773 ((-51) (-1 |#2| (-522)) (-270 |#2|))) (-15 -2773 ((-51) |#2| (-1085) (-270 |#2|))) (-15 -2773 ((-51) (-1 |#2| (-522)) (-270 |#2|) (-1133 (-522)))) (-15 -2773 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-522)))) (-15 -2773 ((-51) (-1 |#2| (-382 (-522))) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))) (-15 -2773 ((-51) |#2| (-1085) (-270 |#2|) (-1133 (-382 (-522))) (-382 (-522)))))
+((-4048 ((|#2| |#2| |#1|) 15)) (-2421 (((-588 |#2|) |#2| (-588 |#2|) |#1| (-850)) 69)) (-3913 (((-2 (|:| |plist| (-588 |#2|)) (|:| |modulo| |#1|)) |#2| (-588 |#2|) |#1| (-850)) 60)))
+(((-434 |#1| |#2|) (-10 -7 (-15 -3913 ((-2 (|:| |plist| (-588 |#2|)) (|:| |modulo| |#1|)) |#2| (-588 |#2|) |#1| (-850))) (-15 -2421 ((-588 |#2|) |#2| (-588 |#2|) |#1| (-850))) (-15 -4048 (|#2| |#2| |#1|))) (-283) (-1142 |#1|)) (T -434))
+((-4048 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1142 *3)))) (-2421 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-588 *3)) (-5 *5 (-850)) (-4 *3 (-1142 *4)) (-4 *4 (-283)) (-5 *1 (-434 *4 *3)))) (-3913 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-850)) (-4 *5 (-283)) (-4 *3 (-1142 *5)) (-5 *2 (-2 (|:| |plist| (-588 *3)) (|:| |modulo| *5))) (-5 *1 (-434 *5 *3)) (-5 *4 (-588 *3)))))
+(-10 -7 (-15 -3913 ((-2 (|:| |plist| (-588 |#2|)) (|:| |modulo| |#1|)) |#2| (-588 |#2|) |#1| (-850))) (-15 -2421 ((-588 |#2|) |#2| (-588 |#2|) |#1| (-850))) (-15 -4048 (|#2| |#2| |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 28)) (-2468 (($ |#3|) 25)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3156 (($ $) 32)) (-4105 (($ |#2| |#4| $) 33)) (-4049 (($ |#2| (-651 |#3| |#4| |#5|)) 24)) (-3128 (((-651 |#3| |#4| |#5|) $) 15)) (-2322 ((|#3| $) 19)) (-2082 ((|#4| $) 17)) (-3138 ((|#2| $) 29)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-1306 (($ |#2| |#3| |#4|) 26)) (-3566 (($) 36 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 34)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-435 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3138 (|#2| $)) (-15 -3128 ((-651 |#3| |#4| |#5|) $)) (-15 -2082 (|#4| $)) (-15 -2322 (|#3| $)) (-15 -3156 ($ $)) (-15 -4049 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -2468 ($ |#3|)) (-15 -1306 ($ |#2| |#3| |#4|)) (-15 -4105 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-588 (-1085)) (-157) (-784) (-215 (-3480 |#1|) (-708)) (-1 (-108) (-2 (|:| -2717 |#3|) (|:| -1400 |#4|)) (-2 (|:| -2717 |#3|) (|:| -1400 |#4|))) (-878 |#2| |#4| (-794 |#1|))) (T -435))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *6 (-215 (-3480 *3) (-708))) (-14 *7 (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *6)) (-2 (|:| -2717 *5) (|:| -1400 *6)))) (-5 *1 (-435 *3 *4 *5 *6 *7 *2)) (-4 *5 (-784)) (-4 *2 (-878 *4 *6 (-794 *3))))) (-3138 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *5 (-215 (-3480 *3) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2717 *4) (|:| -1400 *5)) (-2 (|:| -2717 *4) (|:| -1400 *5)))) (-4 *2 (-157)) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *4 (-784)) (-4 *7 (-878 *2 *5 (-794 *3))))) (-3128 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *6 (-215 (-3480 *3) (-708))) (-14 *7 (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *6)) (-2 (|:| -2717 *5) (|:| -1400 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-435 *3 *4 *5 *6 *7 *8)) (-4 *5 (-784)) (-4 *8 (-878 *4 *6 (-794 *3))))) (-2082 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-14 *6 (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *2)) (-2 (|:| -2717 *5) (|:| -1400 *2)))) (-4 *2 (-215 (-3480 *3) (-708))) (-5 *1 (-435 *3 *4 *5 *2 *6 *7)) (-4 *5 (-784)) (-4 *7 (-878 *4 *2 (-794 *3))))) (-2322 (*1 *2 *1) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *5 (-215 (-3480 *3) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *5)) (-2 (|:| -2717 *2) (|:| -1400 *5)))) (-4 *2 (-784)) (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) (-4 *7 (-878 *4 *5 (-794 *3))))) (-3156 (*1 *1 *1) (-12 (-14 *2 (-588 (-1085))) (-4 *3 (-157)) (-4 *5 (-215 (-3480 *2) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2717 *4) (|:| -1400 *5)) (-2 (|:| -2717 *4) (|:| -1400 *5)))) (-5 *1 (-435 *2 *3 *4 *5 *6 *7)) (-4 *4 (-784)) (-4 *7 (-878 *3 *5 (-794 *2))))) (-4049 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-784)) (-4 *6 (-215 (-3480 *4) (-708))) (-14 *7 (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *6)) (-2 (|:| -2717 *5) (|:| -1400 *6)))) (-14 *4 (-588 (-1085))) (-4 *2 (-157)) (-5 *1 (-435 *4 *2 *5 *6 *7 *8)) (-4 *8 (-878 *2 *6 (-794 *4))))) (-2468 (*1 *1 *2) (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157)) (-4 *5 (-215 (-3480 *3) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *5)) (-2 (|:| -2717 *2) (|:| -1400 *5)))) (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) (-4 *2 (-784)) (-4 *7 (-878 *4 *5 (-794 *3))))) (-1306 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-588 (-1085))) (-4 *2 (-157)) (-4 *4 (-215 (-3480 *5) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2717 *3) (|:| -1400 *4)) (-2 (|:| -2717 *3) (|:| -1400 *4)))) (-5 *1 (-435 *5 *2 *3 *4 *6 *7)) (-4 *3 (-784)) (-4 *7 (-878 *2 *4 (-794 *5))))) (-4105 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-588 (-1085))) (-4 *2 (-157)) (-4 *3 (-215 (-3480 *4) (-708))) (-14 *6 (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *3)) (-2 (|:| -2717 *5) (|:| -1400 *3)))) (-5 *1 (-435 *4 *2 *5 *3 *6 *7)) (-4 *5 (-784)) (-4 *7 (-878 *2 *3 (-794 *4))))))
+(-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3138 (|#2| $)) (-15 -3128 ((-651 |#3| |#4| |#5|) $)) (-15 -2082 (|#4| $)) (-15 -2322 (|#3| $)) (-15 -3156 ($ $)) (-15 -4049 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -2468 ($ |#3|)) (-15 -1306 ($ |#2| |#3| |#4|)) (-15 -4105 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-3779 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
+(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3779 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-730) (-784) (-514) (-878 |#3| |#1| |#2|) (-13 (-962 (-382 (-522))) (-338) (-10 -8 (-15 -2190 ($ |#4|)) (-15 -2805 (|#4| $)) (-15 -2816 (|#4| $))))) (T -436))
+((-3779 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-784)) (-4 *5 (-730)) (-4 *6 (-514)) (-4 *7 (-878 *6 *5 *3)) (-5 *1 (-436 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-962 (-382 (-522))) (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))))
+(-10 -7 (-15 -3779 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-1416 (((-108) $ $) NIL)) (-4090 (((-588 |#3|) $) 41)) (-2690 (((-108) $) NIL)) (-4140 (((-108) $) NIL (|has| |#1| (-514)))) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3639 (((-108) $) NIL (|has| |#1| (-514)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3538 (((-108) $) NIL (|has| |#1| (-514)))) (-3050 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 47)) (-1484 (($ (-588 |#4|)) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238)))) (-3837 (((-588 |#4|) $) 18 (|has| $ (-6 -4238)))) (-1521 ((|#3| $) 45)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#4|) $) 14 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-3838 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 21)) (-2458 (((-588 |#3|) $) NIL)) (-1606 (((-108) |#3| $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-4151 (((-1032) $) NIL)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3053 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 39)) (-3775 (($) 17)) (-4168 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) 16)) (-1431 (((-498) $) NIL (|has| |#4| (-563 (-498)))) (($ (-588 |#4|)) 49)) (-2201 (($ (-588 |#4|)) 13)) (-2020 (($ $ |#3|) NIL)) (-3606 (($ $ |#3|) NIL)) (-2463 (($ $ |#3|) NIL)) (-2190 (((-792) $) 38) (((-588 |#4|) $) 48)) (-3648 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 30)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-437 |#1| |#2| |#3| |#4|) (-13 (-903 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1431 ($ (-588 |#4|))) (-6 -4238) (-6 -4239))) (-971) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -437))
+((-1431 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-437 *3 *4 *5 *6)))))
+(-13 (-903 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1431 ($ (-588 |#4|))) (-6 -4238) (-6 -4239)))
+((-3566 (($) 11)) (-3577 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -3577 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3566 (|#1|))) (-439 |#2| |#3|) (-157) (-23)) (T -438))
+NIL
+(-10 -8 (-15 -3577 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3566 (|#1|)))
+((-1416 (((-108) $ $) 7)) (-1297 (((-3 |#1| "failed") $) 26)) (-1484 ((|#1| $) 25)) (-1372 (($ $ $) 23)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2793 ((|#2| $) 19)) (-2190 (((-792) $) 11) (($ |#1|) 27)) (-3566 (($) 18 T CONST)) (-3577 (($) 24 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 15) (($ $ $) 13)) (-1602 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-439 |#1| |#2|) (-1197) (-157) (-23)) (T -439))
+((-3577 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1372 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
+(-13 (-444 |t#1| |t#2|) (-962 |t#1|) (-10 -8 (-15 (-3577) ($) -2677) (-15 -1372 ($ $ $))))
+(((-97) . T) ((-562 (-792)) . T) ((-444 |#1| |#2|) . T) ((-962 |#1|) . T) ((-1014) . T))
+((-3367 (((-1166 (-1166 (-522))) (-1166 (-1166 (-522))) (-850)) 18)) (-4200 (((-1166 (-1166 (-522))) (-850)) 16)))
+(((-440) (-10 -7 (-15 -3367 ((-1166 (-1166 (-522))) (-1166 (-1166 (-522))) (-850))) (-15 -4200 ((-1166 (-1166 (-522))) (-850))))) (T -440))
+((-4200 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 (-522)))) (-5 *1 (-440)))) (-3367 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-1166 (-522)))) (-5 *3 (-850)) (-5 *1 (-440)))))
+(-10 -7 (-15 -3367 ((-1166 (-1166 (-522))) (-1166 (-1166 (-522))) (-850))) (-15 -4200 ((-1166 (-1166 (-522))) (-850))))
+((-4017 (((-522) (-522)) 30) (((-522)) 22)) (-3511 (((-522) (-522)) 26) (((-522)) 18)) (-4082 (((-522) (-522)) 28) (((-522)) 20)) (-1470 (((-108) (-108)) 12) (((-108)) 10)) (-3436 (((-108) (-108)) 11) (((-108)) 9)) (-1202 (((-108) (-108)) 24) (((-108)) 15)))
+(((-441) (-10 -7 (-15 -3436 ((-108))) (-15 -1470 ((-108))) (-15 -3436 ((-108) (-108))) (-15 -1470 ((-108) (-108))) (-15 -1202 ((-108))) (-15 -4082 ((-522))) (-15 -3511 ((-522))) (-15 -4017 ((-522))) (-15 -1202 ((-108) (-108))) (-15 -4082 ((-522) (-522))) (-15 -3511 ((-522) (-522))) (-15 -4017 ((-522) (-522))))) (T -441))
+((-4017 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-3511 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-1202 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-4017 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-3511 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-4082 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441)))) (-1202 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-1470 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-3436 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-1470 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))) (-3436 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))))
+(-10 -7 (-15 -3436 ((-108))) (-15 -1470 ((-108))) (-15 -3436 ((-108) (-108))) (-15 -1470 ((-108) (-108))) (-15 -1202 ((-108))) (-15 -4082 ((-522))) (-15 -3511 ((-522))) (-15 -4017 ((-522))) (-15 -1202 ((-108) (-108))) (-15 -4082 ((-522) (-522))) (-15 -3511 ((-522) (-522))) (-15 -4017 ((-522) (-522))))
+((-1416 (((-108) $ $) NIL)) (-1968 (((-588 (-354)) $) 27) (((-588 (-354)) $ (-588 (-354))) 91)) (-3085 (((-588 (-1009 (-354))) $) 14) (((-588 (-1009 (-354))) $ (-588 (-1009 (-354)))) 88)) (-2399 (((-588 (-588 (-872 (-202)))) (-588 (-588 (-872 (-202)))) (-588 (-803))) 42)) (-2863 (((-588 (-588 (-872 (-202)))) $) 84)) (-2736 (((-1171) $ (-872 (-202)) (-803)) 104)) (-2433 (($ $) 83) (($ (-588 (-588 (-872 (-202))))) 94) (($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850))) 93) (($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)) (-588 (-239))) 95)) (-2385 (((-1068) $) NIL)) (-2530 (((-522) $) 66)) (-4151 (((-1032) $) NIL)) (-1832 (($) 92)) (-2808 (((-588 (-202)) (-588 (-588 (-872 (-202))))) 52)) (-2871 (((-1171) $ (-588 (-872 (-202))) (-803) (-803) (-850)) 98) (((-1171) $ (-872 (-202))) 100) (((-1171) $ (-872 (-202)) (-803) (-803) (-850)) 99)) (-2190 (((-792) $) 110) (($ (-588 (-588 (-872 (-202))))) 105)) (-2148 (((-1171) $ (-872 (-202))) 103)) (-1531 (((-108) $ $) NIL)))
+(((-442) (-13 (-1014) (-10 -8 (-15 -1832 ($)) (-15 -2433 ($ $)) (-15 -2433 ($ (-588 (-588 (-872 (-202)))))) (-15 -2433 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)))) (-15 -2433 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)) (-588 (-239)))) (-15 -2863 ((-588 (-588 (-872 (-202)))) $)) (-15 -2530 ((-522) $)) (-15 -3085 ((-588 (-1009 (-354))) $)) (-15 -3085 ((-588 (-1009 (-354))) $ (-588 (-1009 (-354))))) (-15 -1968 ((-588 (-354)) $)) (-15 -1968 ((-588 (-354)) $ (-588 (-354)))) (-15 -2871 ((-1171) $ (-588 (-872 (-202))) (-803) (-803) (-850))) (-15 -2871 ((-1171) $ (-872 (-202)))) (-15 -2871 ((-1171) $ (-872 (-202)) (-803) (-803) (-850))) (-15 -2148 ((-1171) $ (-872 (-202)))) (-15 -2736 ((-1171) $ (-872 (-202)) (-803))) (-15 -2190 ($ (-588 (-588 (-872 (-202)))))) (-15 -2190 ((-792) $)) (-15 -2399 ((-588 (-588 (-872 (-202)))) (-588 (-588 (-872 (-202)))) (-588 (-803)))) (-15 -2808 ((-588 (-202)) (-588 (-588 (-872 (-202))))))))) (T -442))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-442)))) (-1832 (*1 *1) (-5 *1 (-442))) (-2433 (*1 *1 *1) (-5 *1 (-442))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) (-2433 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) (-5 *4 (-588 (-850))) (-5 *1 (-442)))) (-2433 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) (-5 *4 (-588 (-850))) (-5 *5 (-588 (-239))) (-5 *1 (-442)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-442)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442)))) (-3085 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442)))) (-1968 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442)))) (-2871 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *2 (-1171)) (-5 *1 (-442)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442)))) (-2871 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *2 (-1171)) (-5 *1 (-442)))) (-2148 (*1 *2 *1 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442)))) (-2736 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-442)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))) (-2399 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803))) (-5 *1 (-442)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-588 (-202))) (-5 *1 (-442)))))
+(-13 (-1014) (-10 -8 (-15 -1832 ($)) (-15 -2433 ($ $)) (-15 -2433 ($ (-588 (-588 (-872 (-202)))))) (-15 -2433 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)))) (-15 -2433 ($ (-588 (-588 (-872 (-202)))) (-588 (-803)) (-588 (-803)) (-588 (-850)) (-588 (-239)))) (-15 -2863 ((-588 (-588 (-872 (-202)))) $)) (-15 -2530 ((-522) $)) (-15 -3085 ((-588 (-1009 (-354))) $)) (-15 -3085 ((-588 (-1009 (-354))) $ (-588 (-1009 (-354))))) (-15 -1968 ((-588 (-354)) $)) (-15 -1968 ((-588 (-354)) $ (-588 (-354)))) (-15 -2871 ((-1171) $ (-588 (-872 (-202))) (-803) (-803) (-850))) (-15 -2871 ((-1171) $ (-872 (-202)))) (-15 -2871 ((-1171) $ (-872 (-202)) (-803) (-803) (-850))) (-15 -2148 ((-1171) $ (-872 (-202)))) (-15 -2736 ((-1171) $ (-872 (-202)) (-803))) (-15 -2190 ($ (-588 (-588 (-872 (-202)))))) (-15 -2190 ((-792) $)) (-15 -2399 ((-588 (-588 (-872 (-202)))) (-588 (-588 (-872 (-202)))) (-588 (-803)))) (-15 -2808 ((-588 (-202)) (-588 (-588 (-872 (-202))))))))
+((-1612 (($ $) NIL) (($ $ $) 11)))
+(((-443 |#1| |#2| |#3|) (-10 -8 (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|))) (-444 |#2| |#3|) (-157) (-23)) (T -443))
+NIL
+(-10 -8 (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2793 ((|#2| $) 19)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 15) (($ $ $) 13)) (-1602 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-444 |#1| |#2|) (-1197) (-157) (-23)) (T -444))
+((-2793 (*1 *2 *1) (-12 (-4 *1 (-444 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23)))) (-3566 (*1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23)))))
+(-13 (-1014) (-10 -8 (-15 -2793 (|t#2| $)) (-15 (-3566) ($) -2677) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1612 ($ $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-3731 (((-3 (-588 (-454 |#1| |#2|)) "failed") (-588 (-454 |#1| |#2|)) (-588 (-794 |#1|))) 90)) (-4093 (((-588 (-588 (-224 |#1| |#2|))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))) 88)) (-3587 (((-2 (|:| |dpolys| (-588 (-224 |#1| |#2|))) (|:| |coords| (-588 (-522)))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))) 58)))
+(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -4093 ((-588 (-588 (-224 |#1| |#2|))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -3731 ((-3 (-588 (-454 |#1| |#2|)) "failed") (-588 (-454 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -3587 ((-2 (|:| |dpolys| (-588 (-224 |#1| |#2|))) (|:| |coords| (-588 (-522)))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|))))) (-588 (-1085)) (-426) (-426)) (T -445))
+((-3587 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-2 (|:| |dpolys| (-588 (-224 *5 *6))) (|:| |coords| (-588 (-522))))) (-5 *1 (-445 *5 *6 *7)) (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426)))) (-3731 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-588 (-794 *4))) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-445 *4 *5 *6)) (-4 *6 (-426)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-588 (-588 (-224 *5 *6)))) (-5 *1 (-445 *5 *6 *7)) (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426)))))
+(-10 -7 (-15 -4093 ((-588 (-588 (-224 |#1| |#2|))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -3731 ((-3 (-588 (-454 |#1| |#2|)) "failed") (-588 (-454 |#1| |#2|)) (-588 (-794 |#1|)))) (-15 -3587 ((-2 (|:| |dpolys| (-588 (-224 |#1| |#2|))) (|:| |coords| (-588 (-522)))) (-588 (-224 |#1| |#2|)) (-588 (-794 |#1|)))))
+((-2682 (((-3 $ "failed") $) 11)) (-3122 (($ $ $) 20)) (-1288 (($ $ $) 21)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 14)) (-1620 (($ $ $) 9)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 19)))
+(((-446 |#1|) (-10 -8 (-15 -1288 (|#1| |#1| |#1|)) (-15 -3122 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 -1620 (|#1| |#1| |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -3510 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -3510 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-447)) (T -446))
+NIL
+(-10 -8 (-15 -1288 (|#1| |#1| |#1|)) (-15 -3122 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| (-522))) (-15 ** (|#1| |#1| (-522))) (-15 -1620 (|#1| |#1| |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -3510 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -3510 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-3175 (($) 20 T CONST)) (-2682 (((-3 $ "failed") $) 16)) (-2782 (((-108) $) 19)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 27)) (-4151 (((-1032) $) 10)) (-3122 (($ $ $) 23)) (-1288 (($ $ $) 22)) (-2190 (((-792) $) 11)) (-3510 (($ $ (-850)) 13) (($ $ (-708)) 17) (($ $ (-522)) 24)) (-3577 (($) 21 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 26)) (** (($ $ (-850)) 14) (($ $ (-708)) 18) (($ $ (-522)) 25)) (* (($ $ $) 15)))
+(((-447) (-1197)) (T -447))
+((-3098 (*1 *1 *1) (-4 *1 (-447))) (-1620 (*1 *1 *1 *1) (-4 *1 (-447))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522)))) (-3122 (*1 *1 *1 *1) (-4 *1 (-447))) (-1288 (*1 *1 *1 *1) (-4 *1 (-447))))
+(-13 (-664) (-10 -8 (-15 -3098 ($ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ (-522))) (-15 -3510 ($ $ (-522))) (-6 -4235) (-15 -3122 ($ $ $)) (-15 -1288 ($ $ $))))
+(((-97) . T) ((-562 (-792)) . T) ((-664) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 17)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) NIL)) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) NIL)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-382 (-522))) NIL) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) 22)) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-1858 (($ $) 26 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 33 (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 27 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) NIL)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) 25 (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $ (-1162 |#2|)) 15)) (-2793 (((-382 (-522)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1162 |#2|)) NIL) (($ (-1151 |#1| |#2| |#3|)) 9) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 18)) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) 24)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-448 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2190 ($ (-1151 |#1| |#2| |#3|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -448))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-448 *3 *4 *5)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1147 |#1|) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2190 ($ (-1151 |#1| |#2| |#3|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#2| $ |#1| |#2|) 18)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) 19)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 16)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2966 (((-588 |#1|) $) NIL)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3604 (((-588 |#1|) $) NIL)) (-1405 (((-108) |#1| $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-449 |#1| |#2| |#3| |#4|) (-1097 |#1| |#2|) (-1014) (-1014) (-1097 |#1| |#2|) |#2|) (T -449))
+NIL
+(-1097 |#1| |#2|)
+((-1416 (((-108) $ $) NIL)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) NIL)) (-4125 (((-588 $) (-588 |#4|)) NIL)) (-4090 (((-588 |#3|) $) NIL)) (-2690 (((-108) $) NIL)) (-4140 (((-108) $) NIL (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3607 ((|#4| |#4| $) NIL)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3175 (($) NIL T CONST)) (-3639 (((-108) $) 26 (|has| |#1| (-514)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3538 (((-108) $) NIL (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3050 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1484 (($ (-588 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 39)) (-2806 ((|#4| |#4| $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) NIL)) (-3837 (((-588 |#4|) $) 16 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1521 ((|#3| $) 33)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#4|) $) 17 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-3838 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 21)) (-2458 (((-588 |#3|) $) NIL)) (-1606 (((-108) |#3| $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-1442 (((-3 |#4| "failed") $) 37)) (-2242 (((-588 |#4|) $) NIL)) (-3409 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1451 ((|#4| |#4| $) NIL)) (-2123 (((-108) $ $) NIL)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2680 ((|#4| |#4| $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-3 |#4| "failed") $) 35)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3307 (((-3 $ "failed") $ |#4|) 47)) (-3719 (($ $ |#4|) NIL)) (-3053 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 15)) (-3775 (($) 13)) (-2793 (((-708) $) NIL)) (-4168 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) 12)) (-1431 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 20)) (-2020 (($ $ |#3|) 42)) (-3606 (($ $ |#3|) 44)) (-3968 (($ $) NIL)) (-2463 (($ $ |#3|) NIL)) (-2190 (((-792) $) 31) (((-588 |#4|) $) 40)) (-1974 (((-708) $) NIL (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-3648 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) NIL)) (-2351 (((-108) |#3| $) NIL)) (-1531 (((-108) $ $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-450 |#1| |#2| |#3| |#4|) (-1114 |#1| |#2| |#3| |#4|) (-514) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -450))
+NIL
+(-1114 |#1| |#2| |#3| |#4|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL)) (-1484 (((-522) $) NIL) (((-382 (-522)) $) NIL)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2838 (($) 18)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-1431 (((-354) $) 22) (((-202) $) 25) (((-382 (-1081 (-522))) $) 19) (((-498) $) 53)) (-2190 (((-792) $) 51) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (((-202) $) 24) (((-354) $) 21)) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 36 T CONST)) (-3577 (($) 11 T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-451) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))) (-947) (-562 (-202)) (-562 (-354)) (-563 (-382 (-1081 (-522)))) (-563 (-498)) (-10 -8 (-15 -2838 ($))))) (T -451))
+((-2838 (*1 *1) (-5 *1 (-451))))
+(-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))) (-947) (-562 (-202)) (-562 (-354)) (-563 (-382 (-1081 (-522)))) (-563 (-498)) (-10 -8 (-15 -2838 ($))))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#2| $ |#1| |#2|) 16)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) 20)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 18)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2966 (((-588 |#1|) $) 13)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3604 (((-588 |#1|) $) NIL)) (-1405 (((-108) |#1| $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 19)) (-2545 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 11 (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3480 (((-708) $) 15 (|has| $ (-6 -4238)))))
+(((-452 |#1| |#2| |#3|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014) (-1068)) (T -452))
+NIL
+(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238)))
+((-3668 (((-522) (-522) (-522)) 7)) (-2512 (((-108) (-522) (-522) (-522) (-522)) 11)) (-1578 (((-1166 (-588 (-522))) (-708) (-708)) 23)))
+(((-453) (-10 -7 (-15 -3668 ((-522) (-522) (-522))) (-15 -2512 ((-108) (-522) (-522) (-522) (-522))) (-15 -1578 ((-1166 (-588 (-522))) (-708) (-708))))) (T -453))
+((-1578 (*1 *2 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1166 (-588 (-522)))) (-5 *1 (-453)))) (-2512 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-453)))) (-3668 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-453)))))
+(-10 -7 (-15 -3668 ((-522) (-522) (-522))) (-15 -2512 ((-108) (-522) (-522) (-522) (-522))) (-15 -1578 ((-1166 (-588 (-522))) (-708) (-708))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-794 |#1|)) $) NIL)) (-1282 (((-1081 $) $ (-794 |#1|)) NIL) (((-1081 |#2|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2022 (($ $) NIL (|has| |#2| (-514)))) (-3739 (((-108) $) NIL (|has| |#2| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-794 |#1|))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3119 (($ $) NIL (|has| |#2| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#2| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-1950 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2388 (($ $ (-588 (-522))) NIL)) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#2| (-838)))) (-2671 (($ $ |#2| (-455 (-3480 |#1|) (-708)) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#2|) (-794 |#1|)) NIL) (($ (-1081 $) (-794 |#1|)) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#2| (-455 (-3480 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-794 |#1|)) NIL)) (-2925 (((-455 (-3480 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3861 (($ (-1 (-455 (-3480 |#1|) (-708)) (-455 (-3480 |#1|) (-708))) $) NIL)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-3145 (((-3 (-794 |#1|) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#2| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -1400 (-708))) "failed") $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#2| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-588 (-794 |#1|)) (-588 $)) NIL)) (-2769 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2157 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2793 (((-455 (-3480 |#1|) (-708)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2255 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-455 (-3480 |#1|) (-708))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-454 |#1| |#2|) (-13 (-878 |#2| (-455 (-3480 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2388 ($ $ (-588 (-522)))))) (-588 (-1085)) (-971)) (T -454))
+((-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-454 *3 *4)) (-14 *3 (-588 (-1085))) (-4 *4 (-971)))))
+(-13 (-878 |#2| (-455 (-3480 |#1|) (-708)) (-794 |#1|)) (-10 -8 (-15 -2388 ($ $ (-588 (-522))))))
+((-1416 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-2250 (((-108) $) NIL (|has| |#2| (-124)))) (-2468 (($ (-850)) NIL (|has| |#2| (-971)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1210 (($ $ $) NIL (|has| |#2| (-730)))) (-1233 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| |#2| (-343)))) (-1341 (((-522) $) NIL (|has| |#2| (-782)))) (-2379 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1014)))) (-1484 (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) NIL (|has| |#2| (-1014)))) (-2096 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) NIL (|has| |#2| (-971)))) (-2682 (((-3 $ "failed") $) NIL (|has| |#2| (-971)))) (-3255 (($) NIL (|has| |#2| (-343)))) (-3854 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ (-522)) 11)) (-3687 (((-108) $) NIL (|has| |#2| (-782)))) (-3837 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL (|has| |#2| (-971)))) (-2556 (((-108) $) NIL (|has| |#2| (-782)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-3308 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-3838 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#2| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#2| (-1014)))) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-2717 (($ (-850)) NIL (|has| |#2| (-343)))) (-4151 (((-1032) $) NIL (|has| |#2| (-1014)))) (-2294 ((|#2| $) NIL (|has| (-522) (-784)))) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) NIL)) (-1883 ((|#2| $ $) NIL (|has| |#2| (-971)))) (-1962 (($ (-1166 |#2|)) NIL)) (-4078 (((-126)) NIL (|has| |#2| (-338)))) (-2157 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-4168 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1166 |#2|) $) NIL) (($ (-522)) NIL (-3708 (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) NIL (|has| |#2| (-1014))) (((-792) $) NIL (|has| |#2| (-562 (-792))))) (-2323 (((-708)) NIL (|has| |#2| (-971)))) (-3648 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2241 (($ $) NIL (|has| |#2| (-782)))) (-3510 (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (-3566 (($) NIL (|has| |#2| (-124)) CONST)) (-3577 (($) NIL (|has| |#2| (-971)) CONST)) (-2213 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-1574 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1531 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-1566 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1549 (((-108) $ $) 15 (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $ $) NIL (|has| |#2| (-971))) (($ $) NIL (|has| |#2| (-971)))) (-1602 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (* (($ $ $) NIL (|has| |#2| (-971))) (($ (-522) $) NIL (|has| |#2| (-971))) (($ $ |#2|) NIL (|has| |#2| (-664))) (($ |#2| $) NIL (|has| |#2| (-664))) (($ (-708) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-455 |#1| |#2|) (-215 |#1| |#2|) (-708) (-730)) (T -455))
NIL
(-215 |#1| |#2|)
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) NIL)) (-2231 (($) NIL T CONST)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-4162 (($ $ $) 32)) (-3389 (($ $ $) 31)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2459 ((|#1| $) 26)) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1570 ((|#1| $) 27)) (-4135 (($ |#1| $) 10)) (-1847 (($ (-587 |#1|)) 12)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2747 ((|#1| $) 23)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 9)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 29)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) 21 (|has| $ (-6 -4233)))))
-(((-455 |#1|) (-13 (-895 |#1|) (-10 -8 (-15 -1847 ($ (-587 |#1|))))) (-783)) (T -455))
-((-1847 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-455 *3)))))
-(-13 (-895 |#1|) (-10 -8 (-15 -1847 ($ (-587 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3859 (($ $) 69)) (-3955 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-2447 (((-387 |#2| (-381 |#2|) |#3| |#4|) $) 43)) (-4146 (((-1031) $) NIL)) (-1384 (((-3 |#4| "failed") $) 105)) (-2315 (($ (-387 |#2| (-381 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-521)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-3593 (((-2 (|:| -1836 (-387 |#2| (-381 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2223 (((-791) $) 100)) (-3562 (($) 33 T CONST)) (-1549 (((-108) $ $) 107)) (-1639 (($ $) 72) (($ $ $) NIL)) (-1628 (($ $ $) 70)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 73)))
-(((-456 |#1| |#2| |#3| |#4|) (-309 |#1| |#2| |#3| |#4|) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -456))
-NIL
-(-309 |#1| |#2| |#3| |#4|)
-((-1520 (((-521) (-587 (-521))) 30)) (-1305 ((|#1| (-587 |#1|)) 56)) (-2779 (((-587 |#1|) (-587 |#1|)) 57)) (-2854 (((-587 |#1|) (-587 |#1|)) 59)) (-2286 ((|#1| (-587 |#1|)) 58)) (-1391 (((-587 (-521)) (-587 |#1|)) 33)))
-(((-457 |#1|) (-10 -7 (-15 -2286 (|#1| (-587 |#1|))) (-15 -1305 (|#1| (-587 |#1|))) (-15 -2854 ((-587 |#1|) (-587 |#1|))) (-15 -2779 ((-587 |#1|) (-587 |#1|))) (-15 -1391 ((-587 (-521)) (-587 |#1|))) (-15 -1520 ((-521) (-587 (-521))))) (-1141 (-521))) (T -457))
-((-1520 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-521)) (-5 *1 (-457 *4)) (-4 *4 (-1141 *2)))) (-1391 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1141 (-521))) (-5 *2 (-587 (-521))) (-5 *1 (-457 *4)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521))))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521))))))
-(-10 -7 (-15 -2286 (|#1| (-587 |#1|))) (-15 -1305 (|#1| (-587 |#1|))) (-15 -2854 ((-587 |#1|) (-587 |#1|))) (-15 -2779 ((-587 |#1|) (-587 |#1|))) (-15 -1391 ((-587 (-521)) (-587 |#1|))) (-15 -1520 ((-521) (-587 (-521)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-521) $) NIL (|has| (-521) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-521) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-521) (-961 (-521))))) (-1496 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-521) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| (-521) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-521) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-521) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-521) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-3305 (((-108) $) NIL (|has| (-521) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-521) (-783)))) (-1393 (($ (-1 (-521) (-521)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-1566 (($ (-381 (-521))) 8)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) NIL)) (-2720 (((-521) $) NIL (|has| (-521) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-521) $) NIL)) (-1438 (((-820 (-521)) $) NIL (|has| (-521) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-521) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 7) (($ (-521)) NIL) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL) (((-929 16) $) 9)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-837))) (|has| (-521) (-133))))) (-1592 (((-707)) NIL)) (-1281 (((-521) $) NIL (|has| (-521) (-506)))) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL (|has| (-521) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1648 (($ $ $) NIL) (($ (-521) (-521)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) NIL) (($ $ (-521)) NIL)))
-(((-458) (-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -2223 ((-929 16) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -1566 ($ (-381 (-521))))))) (T -458))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-929 16)) (-5 *1 (-458)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))))
-(-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -2223 ((-929 16) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -1566 ($ (-381 (-521))))))
-((-3568 (((-587 |#2|) $) 22)) (-1785 (((-108) |#2| $) 27)) (-1936 (((-108) (-1 (-108) |#2|) $) 20)) (-2313 (($ $ (-587 (-269 |#2|))) 12) (($ $ (-269 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-587 |#2|) (-587 |#2|)) NIL)) (-4163 (((-707) (-1 (-108) |#2|) $) 21) (((-707) |#2| $) 25)) (-2223 (((-791) $) 36)) (-2006 (((-108) (-1 (-108) |#2|) $) 19)) (-1549 (((-108) $ $) 30)) (-3478 (((-707) $) 16)))
-(((-459 |#1| |#2|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#2| |#2|)) (-15 -2313 (|#1| |#1| (-269 |#2|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -1785 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3568 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3478 ((-707) |#1|))) (-460 |#2|) (-1119)) (T -459))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#2| |#2|)) (-15 -2313 (|#1| |#1| (-269 |#2|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#2|)))) (-15 -1785 ((-108) |#2| |#1|)) (-15 -4163 ((-707) |#2| |#1|)) (-15 -3568 ((-587 |#2|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#2|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3478 ((-707) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-460 |#1|) (-1196) (-1119)) (T -460))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-460 *3)) (-4 *3 (-1119)))) (-3833 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4234)) (-4 *1 (-460 *3)) (-4 *3 (-1119)))) (-2006 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-1936 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-4163 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4)) (-4 *4 (-1119)) (-5 *2 (-707)))) (-3831 (*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))) (-3568 (*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))) (-4163 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-707)))) (-1785 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-284 |t#1|)) (-6 (-284 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1393 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4234)) (-15 -3833 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4233)) (PROGN (-15 -2006 ((-108) (-1 (-108) |t#1|) $)) (-15 -1936 ((-108) (-1 (-108) |t#1|) $)) (-15 -4163 ((-707) (-1 (-108) |t#1|) $)) (-15 -3831 ((-587 |t#1|) $)) (-15 -3568 ((-587 |t#1|) $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -4163 ((-707) |t#1| $)) (-15 -1785 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-2910 (($ $) 15)) (-2886 (($ $) 24)) (-2932 (($ $) 12)) (-1787 (($ $) 10)) (-2921 (($ $) 17)) (-2898 (($ $) 22)))
-(((-461 |#1|) (-10 -8 (-15 -2898 (|#1| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2910 (|#1| |#1|))) (-462)) (T -461))
-NIL
-(-10 -8 (-15 -2898 (|#1| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)))
-((-2910 (($ $) 11)) (-2886 (($ $) 10)) (-2932 (($ $) 9)) (-1787 (($ $) 8)) (-2921 (($ $) 7)) (-2898 (($ $) 6)))
-(((-462) (-1196)) (T -462))
-((-2910 (*1 *1 *1) (-4 *1 (-462))) (-2886 (*1 *1 *1) (-4 *1 (-462))) (-2932 (*1 *1 *1) (-4 *1 (-462))) (-1787 (*1 *1 *1) (-4 *1 (-462))) (-2921 (*1 *1 *1) (-4 *1 (-462))) (-2898 (*1 *1 *1) (-4 *1 (-462))))
-(-13 (-10 -8 (-15 -2898 ($ $)) (-15 -2921 ($ $)) (-15 -1787 ($ $)) (-15 -2932 ($ $)) (-15 -2886 ($ $)) (-15 -2910 ($ $))))
-((-1974 (((-392 |#4|) |#4| (-1 (-392 |#2|) |#2|)) 42)))
-(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 |#4|) |#4| (-1 (-392 |#2|) |#2|)))) (-337) (-1141 |#1|) (-13 (-337) (-135) (-661 |#1| |#2|)) (-1141 |#3|)) (T -463))
-((-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-4 *7 (-13 (-337) (-135) (-661 *5 *6))) (-5 *2 (-392 *3)) (-5 *1 (-463 *5 *6 *7 *3)) (-4 *3 (-1141 *7)))))
-(-10 -7 (-15 -1974 ((-392 |#4|) |#4| (-1 (-392 |#2|) |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3144 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-880 $)) NIL)) (-1260 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-880 $)) NIL)) (-3398 (((-108) $) 37)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-4061 (((-108) $ $) 63)) (-1946 (((-587 (-560 $)) $) 47)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3304 (($ $ (-269 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-1984 (($ $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-1678 (((-587 $) (-1080 $) (-1084)) NIL) (((-587 $) (-1080 $)) NIL) (((-587 $) (-880 $)) NIL)) (-1444 (($ (-1080 $) (-1084)) NIL) (($ (-1080 $)) NIL) (($ (-880 $)) NIL)) (-1296 (((-3 (-560 $) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL)) (-1496 (((-560 $) $) NIL) (((-521) $) NIL) (((-381 (-521)) $) 49)) (-2302 (($ $ $) NIL)) (-1961 (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-381 (-521)))) (|:| |vec| (-1165 (-381 (-521))))) (-627 $) (-1165 $)) NIL) (((-627 (-381 (-521))) (-627 $)) NIL)) (-3859 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2707 (($ $) NIL) (($ (-587 $)) NIL)) (-2788 (((-587 (-110)) $) NIL)) (-3928 (((-110) (-110)) NIL)) (-3637 (((-108) $) 40)) (-3924 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2807 (((-1036 (-521) (-560 $)) $) 35)) (-3743 (($ $ (-521)) NIL)) (-2549 (((-1080 $) (-1080 $) (-560 $)) 78) (((-1080 $) (-1080 $) (-587 (-560 $))) 54) (($ $ (-560 $)) 67) (($ $ (-587 (-560 $))) 68)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3159 (((-1080 $) (-560 $)) 65 (|has| $ (-970)))) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 $ $) (-560 $)) NIL)) (-1656 (((-3 (-560 $) "failed") $) NIL)) (-2254 (($ (-587 $)) NIL) (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-1266 (((-587 (-560 $)) $) NIL)) (-2911 (($ (-110) $) NIL) (($ (-110) (-587 $)) NIL)) (-4013 (((-108) $ (-110)) NIL) (((-108) $ (-1084)) NIL)) (-3100 (($ $) NIL)) (-4151 (((-707) $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3457 (((-108) $ $) NIL) (((-108) $ (-1084)) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2060 (((-108) $) NIL (|has| $ (-961 (-521))))) (-2313 (($ $ (-560 $) $) NIL) (($ $ (-587 (-560 $)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-1084)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-1084) (-1 $ (-587 $))) NIL) (($ $ (-1084) (-1 $ $)) NIL) (($ $ (-587 (-110)) (-587 (-1 $ $))) NIL) (($ $ (-587 (-110)) (-587 (-1 $ (-587 $)))) NIL) (($ $ (-110) (-1 $ (-587 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3794 (((-707) $) NIL)) (-2550 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-587 $)) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-1935 (($ $) NIL) (($ $ $) NIL)) (-2193 (($ $ (-707)) NIL) (($ $) 34)) (-2818 (((-1036 (-521) (-560 $)) $) 18)) (-3436 (($ $) NIL (|has| $ (-970)))) (-1438 (((-353) $) 92) (((-202) $) 100) (((-154 (-353)) $) 108)) (-2223 (((-791) $) NIL) (($ (-560 $)) NIL) (($ (-381 (-521))) NIL) (($ $) NIL) (($ (-521)) NIL) (($ (-1036 (-521) (-560 $))) 19)) (-1592 (((-707)) NIL)) (-2342 (($ $) NIL) (($ (-587 $)) NIL)) (-1224 (((-108) (-110)) 84)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-521)) NIL) (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3562 (($) 9 T CONST)) (-3572 (($) 20 T CONST)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 22)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1648 (($ $ $) 42)) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-381 (-521))) NIL) (($ $ (-521)) 45) (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (* (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ $ $) 25) (($ (-521) $) NIL) (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-464) (-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2223 ($ (-1036 (-521) (-560 $)))) (-15 -2807 ((-1036 (-521) (-560 $)) $)) (-15 -2818 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -4061 ((-108) $ $)) (-15 -2549 ((-1080 $) (-1080 $) (-560 $))) (-15 -2549 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -2549 ($ $ (-560 $))) (-15 -2549 ($ $ (-587 (-560 $))))))) (T -464))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464)))) (-3859 (*1 *1 *1) (-5 *1 (-464))) (-4061 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-464)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-560 (-464))) (-5 *1 (-464)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-587 (-560 (-464)))) (-5 *1 (-464)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-560 (-464))) (-5 *1 (-464)))) (-2549 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-464)))) (-5 *1 (-464)))))
-(-13 (-277) (-27) (-961 (-521)) (-961 (-381 (-521))) (-583 (-521)) (-946) (-583 (-381 (-521))) (-135) (-562 (-154 (-353))) (-210) (-10 -8 (-15 -2223 ($ (-1036 (-521) (-560 $)))) (-15 -2807 ((-1036 (-521) (-560 $)) $)) (-15 -2818 ((-1036 (-521) (-560 $)) $)) (-15 -3859 ($ $)) (-15 -4061 ((-108) $ $)) (-15 -2549 ((-1080 $) (-1080 $) (-560 $))) (-15 -2549 ((-1080 $) (-1080 $) (-587 (-560 $)))) (-15 -2549 ($ $ (-560 $))) (-15 -2549 ($ $ (-587 (-560 $))))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) |#1|) 25 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 22 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 21)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 14)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 12 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) 23 (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) 10 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 13)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 24) (($ $ (-1132 (-521))) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) 9 (|has| $ (-6 -4233)))))
-(((-465 |#1| |#2|) (-19 |#1|) (-1119) (-521)) (T -465))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) NIL)) (-3175 (($) NIL T CONST)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1369 (($ $ $) 32)) (-2160 (($ $ $) 31)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2446 ((|#1| $) 26)) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2116 ((|#1| $) 27)) (-4095 (($ |#1| $) 10)) (-4028 (($ (-588 |#1|)) 12)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-4087 ((|#1| $) 23)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 9)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 29)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) 21 (|has| $ (-6 -4238)))))
+(((-456 |#1|) (-13 (-896 |#1|) (-10 -8 (-15 -4028 ($ (-588 |#1|))))) (-784)) (T -456))
+((-4028 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-456 *3)))))
+(-13 (-896 |#1|) (-10 -8 (-15 -4028 ($ (-588 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3864 (($ $) 69)) (-2900 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-2154 (((-388 |#2| (-382 |#2|) |#3| |#4|) $) 43)) (-4151 (((-1032) $) NIL)) (-1383 (((-3 |#4| "failed") $) 105)) (-4118 (($ (-388 |#2| (-382 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-522)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-3496 (((-2 (|:| -1781 (-388 |#2| (-382 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2190 (((-792) $) 100)) (-3566 (($) 33 T CONST)) (-1531 (((-108) $ $) 107)) (-1612 (($ $) 72) (($ $ $) NIL)) (-1602 (($ $ $) 70)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 73)))
+(((-457 |#1| |#2| |#3| |#4|) (-310 |#1| |#2| |#3| |#4|) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -457))
+NIL
+(-310 |#1| |#2| |#3| |#4|)
+((-3414 (((-522) (-588 (-522))) 30)) (-3232 ((|#1| (-588 |#1|)) 56)) (-1853 (((-588 |#1|) (-588 |#1|)) 57)) (-2670 (((-588 |#1|) (-588 |#1|)) 59)) (-2259 ((|#1| (-588 |#1|)) 58)) (-2255 (((-588 (-522)) (-588 |#1|)) 33)))
+(((-458 |#1|) (-10 -7 (-15 -2259 (|#1| (-588 |#1|))) (-15 -3232 (|#1| (-588 |#1|))) (-15 -2670 ((-588 |#1|) (-588 |#1|))) (-15 -1853 ((-588 |#1|) (-588 |#1|))) (-15 -2255 ((-588 (-522)) (-588 |#1|))) (-15 -3414 ((-522) (-588 (-522))))) (-1142 (-522))) (T -458))
+((-3414 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-522)) (-5 *1 (-458 *4)) (-4 *4 (-1142 *2)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1142 (-522))) (-5 *2 (-588 (-522))) (-5 *1 (-458 *4)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3)))) (-2670 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3)))) (-3232 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522))))))
+(-10 -7 (-15 -2259 (|#1| (-588 |#1|))) (-15 -3232 (|#1| (-588 |#1|))) (-15 -2670 ((-588 |#1|) (-588 |#1|))) (-15 -1853 ((-588 |#1|) (-588 |#1|))) (-15 -2255 ((-588 (-522)) (-588 |#1|))) (-15 -3414 ((-522) (-588 (-522)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-522) $) NIL (|has| (-522) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-522) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-522) (-962 (-522))))) (-1484 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-522) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| (-522) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-522) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-2556 (((-108) $) NIL (|has| (-522) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-522) (-784)))) (-1391 (($ (-1 (-522) (-522)) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-522) (-1061)) CONST)) (-2095 (($ (-382 (-522))) 8)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) NIL)) (-3686 (((-522) $) NIL (|has| (-522) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-522) $) NIL)) (-1431 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 7) (($ (-522)) NIL) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL) (((-930 16) $) 9)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2323 (((-708)) NIL)) (-3025 (((-522) $) NIL (|has| (-522) (-507)))) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL (|has| (-522) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1620 (($ $ $) NIL) (($ (-522) (-522)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) NIL) (($ $ (-522)) NIL)))
+(((-459) (-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -2190 ((-930 16) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -2095 ($ (-382 (-522))))))) (T -459))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-930 16)) (-5 *1 (-459)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))) (-2095 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))))
+(-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -2190 ((-930 16) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -2095 ($ (-382 (-522))))))
+((-3308 (((-588 |#2|) $) 22)) (-2246 (((-108) |#2| $) 27)) (-3053 (((-108) (-1 (-108) |#2|) $) 20)) (-2289 (($ $ (-588 (-270 |#2|))) 12) (($ $ (-270 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-588 |#2|) (-588 |#2|)) NIL)) (-4168 (((-708) (-1 (-108) |#2|) $) 21) (((-708) |#2| $) 25)) (-2190 (((-792) $) 36)) (-3648 (((-108) (-1 (-108) |#2|) $) 19)) (-1531 (((-108) $ $) 30)) (-3480 (((-708) $) 16)))
+(((-460 |#1| |#2|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#2| |#2|)) (-15 -2289 (|#1| |#1| (-270 |#2|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2246 ((-108) |#2| |#1|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -3308 ((-588 |#2|) |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3480 ((-708) |#1|))) (-461 |#2|) (-1120)) (T -460))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#2| |#2|)) (-15 -2289 (|#1| |#1| (-270 |#2|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#2|)))) (-15 -2246 ((-108) |#2| |#1|)) (-15 -4168 ((-708) |#2| |#1|)) (-15 -3308 ((-588 |#2|) |#1|)) (-15 -4168 ((-708) (-1 (-108) |#2|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3480 ((-708) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-461 |#1|) (-1197) (-1120)) (T -461))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-461 *3)) (-4 *3 (-1120)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4239)) (-4 *1 (-461 *3)) (-4 *3 (-1120)))) (-3648 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-3053 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4)) (-4 *4 (-1120)) (-5 *2 (-708)))) (-3837 (*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))) (-3308 (*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))) (-4168 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-708)))) (-2246 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-285 |t#1|)) (-6 (-285 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1391 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4239)) (-15 -3838 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4238)) (PROGN (-15 -3648 ((-108) (-1 (-108) |t#1|) $)) (-15 -3053 ((-108) (-1 (-108) |t#1|) $)) (-15 -4168 ((-708) (-1 (-108) |t#1|) $)) (-15 -3837 ((-588 |t#1|) $)) (-15 -3308 ((-588 |t#1|) $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -4168 ((-708) |t#1| $)) (-15 -2246 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-2908 (($ $) 15)) (-2884 (($ $) 24)) (-2930 (($ $) 12)) (-1738 (($ $) 10)) (-2919 (($ $) 17)) (-2896 (($ $) 22)))
+(((-462 |#1|) (-10 -8 (-15 -2896 (|#1| |#1|)) (-15 -2919 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2908 (|#1| |#1|))) (-463)) (T -462))
+NIL
+(-10 -8 (-15 -2896 (|#1| |#1|)) (-15 -2919 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)))
+((-2908 (($ $) 11)) (-2884 (($ $) 10)) (-2930 (($ $) 9)) (-1738 (($ $) 8)) (-2919 (($ $) 7)) (-2896 (($ $) 6)))
+(((-463) (-1197)) (T -463))
+((-2908 (*1 *1 *1) (-4 *1 (-463))) (-2884 (*1 *1 *1) (-4 *1 (-463))) (-2930 (*1 *1 *1) (-4 *1 (-463))) (-1738 (*1 *1 *1) (-4 *1 (-463))) (-2919 (*1 *1 *1) (-4 *1 (-463))) (-2896 (*1 *1 *1) (-4 *1 (-463))))
+(-13 (-10 -8 (-15 -2896 ($ $)) (-15 -2919 ($ $)) (-15 -1738 ($ $)) (-15 -2930 ($ $)) (-15 -2884 ($ $)) (-15 -2908 ($ $))))
+((-1916 (((-393 |#4|) |#4| (-1 (-393 |#2|) |#2|)) 42)))
+(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 |#4|) |#4| (-1 (-393 |#2|) |#2|)))) (-338) (-1142 |#1|) (-13 (-338) (-135) (-662 |#1| |#2|)) (-1142 |#3|)) (T -464))
+((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-4 *7 (-13 (-338) (-135) (-662 *5 *6))) (-5 *2 (-393 *3)) (-5 *1 (-464 *5 *6 *7 *3)) (-4 *3 (-1142 *7)))))
+(-10 -7 (-15 -1916 ((-393 |#4|) |#4| (-1 (-393 |#2|) |#2|))))
+((-1416 (((-108) $ $) NIL)) (-1617 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-4032 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-2250 (((-108) $) 37)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1568 (((-108) $ $) 63)) (-1886 (((-588 (-561 $)) $) 47)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3305 (($ $ (-270 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1929 (($ $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-1221 (((-588 $) (-1081 $) (-1085)) NIL) (((-588 $) (-1081 $)) NIL) (((-588 $) (-881 $)) NIL)) (-3944 (($ (-1081 $) (-1085)) NIL) (($ (-1081 $)) NIL) (($ (-881 $)) NIL)) (-1297 (((-3 (-561 $) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL)) (-1484 (((-561 $) $) NIL) (((-522) $) NIL) (((-382 (-522)) $) 49)) (-2277 (($ $ $) NIL)) (-2096 (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-382 (-522)))) (|:| |vec| (-1166 (-382 (-522))))) (-628 $) (-1166 $)) NIL) (((-628 (-382 (-522))) (-628 $)) NIL)) (-3864 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-1953 (($ $) NIL) (($ (-588 $)) NIL)) (-4161 (((-588 (-110)) $) NIL)) (-2626 (((-110) (-110)) NIL)) (-2782 (((-108) $) 40)) (-2591 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2805 (((-1037 (-522) (-561 $)) $) 35)) (-1504 (($ $ (-522)) NIL)) (-2100 (((-1081 $) (-1081 $) (-561 $)) 78) (((-1081 $) (-1081 $) (-588 (-561 $))) 54) (($ $ (-561 $)) 67) (($ $ (-588 (-561 $))) 68)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1711 (((-1081 $) (-561 $)) 65 (|has| $ (-971)))) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 $ $) (-561 $)) NIL)) (-3993 (((-3 (-561 $) "failed") $) NIL)) (-2224 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-1267 (((-588 (-561 $)) $) NIL)) (-2909 (($ (-110) $) NIL) (($ (-110) (-588 $)) NIL)) (-2249 (((-108) $ (-110)) NIL) (((-108) $ (-1085)) NIL)) (-3098 (($ $) NIL)) (-4155 (((-708) $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ (-588 $)) NIL) (($ $ $) NIL)) (-1648 (((-108) $ $) NIL) (((-108) $ (-1085)) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1263 (((-108) $) NIL (|has| $ (-962 (-522))))) (-2289 (($ $ (-561 $) $) NIL) (($ $ (-588 (-561 $)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-1085)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-1085) (-1 $ (-588 $))) NIL) (($ $ (-1085) (-1 $ $)) NIL) (($ $ (-588 (-110)) (-588 (-1 $ $))) NIL) (($ $ (-588 (-110)) (-588 (-1 $ (-588 $)))) NIL) (($ $ (-110) (-1 $ (-588 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3730 (((-708) $) NIL)) (-2545 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-588 $)) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3043 (($ $) NIL) (($ $ $) NIL)) (-2157 (($ $ (-708)) NIL) (($ $) 34)) (-2816 (((-1037 (-522) (-561 $)) $) 18)) (-1479 (($ $) NIL (|has| $ (-971)))) (-1431 (((-354) $) 92) (((-202) $) 100) (((-154 (-354)) $) 108)) (-2190 (((-792) $) NIL) (($ (-561 $)) NIL) (($ (-382 (-522))) NIL) (($ $) NIL) (($ (-522)) NIL) (($ (-1037 (-522) (-561 $))) 19)) (-2323 (((-708)) NIL)) (-2308 (($ $) NIL) (($ (-588 $)) NIL)) (-3614 (((-108) (-110)) 84)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-522)) NIL) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3566 (($) 9 T CONST)) (-3577 (($) 20 T CONST)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 22)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1620 (($ $ $) 42)) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-382 (-522))) NIL) (($ $ (-522)) 45) (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ $ $) 25) (($ (-522) $) NIL) (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-465) (-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2190 ($ (-1037 (-522) (-561 $)))) (-15 -2805 ((-1037 (-522) (-561 $)) $)) (-15 -2816 ((-1037 (-522) (-561 $)) $)) (-15 -3864 ($ $)) (-15 -1568 ((-108) $ $)) (-15 -2100 ((-1081 $) (-1081 $) (-561 $))) (-15 -2100 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -2100 ($ $ (-561 $))) (-15 -2100 ($ $ (-588 (-561 $))))))) (T -465))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465)))) (-3864 (*1 *1 *1) (-5 *1 (-465))) (-1568 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-465)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-561 (-465))) (-5 *1 (-465)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-588 (-561 (-465)))) (-5 *1 (-465)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-561 (-465))) (-5 *1 (-465)))) (-2100 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-465)))) (-5 *1 (-465)))))
+(-13 (-278) (-27) (-962 (-522)) (-962 (-382 (-522))) (-584 (-522)) (-947) (-584 (-382 (-522))) (-135) (-563 (-154 (-354))) (-210) (-10 -8 (-15 -2190 ($ (-1037 (-522) (-561 $)))) (-15 -2805 ((-1037 (-522) (-561 $)) $)) (-15 -2816 ((-1037 (-522) (-561 $)) $)) (-15 -3864 ($ $)) (-15 -1568 ((-108) $ $)) (-15 -2100 ((-1081 $) (-1081 $) (-561 $))) (-15 -2100 ((-1081 $) (-1081 $) (-588 (-561 $)))) (-15 -2100 ($ $ (-561 $))) (-15 -2100 ($ $ (-588 (-561 $))))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) |#1|) 25 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 22 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 21)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 14)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 12 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) 23 (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) 10 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 13)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 24) (($ $ (-1133 (-522))) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) 9 (|has| $ (-6 -4238)))))
+(((-466 |#1| |#2|) (-19 |#1|) (-1120) (-522)) (T -466))
NIL
(-19 |#1|)
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3419 (($ $ (-521) (-465 |#1| |#3|)) NIL)) (-3790 (($ $ (-521) (-465 |#1| |#2|)) NIL)) (-2231 (($) NIL T CONST)) (-2185 (((-465 |#1| |#3|) $ (-521)) NIL)) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-1416 (((-707) $) NIL)) (-1869 (($ (-707) (-707) |#1|) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-1698 (((-521) $) NIL)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1646 (((-521) $) NIL)) (-2809 (((-521) $) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-1335 (((-465 |#1| |#2|) $ (-521)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-466 |#1| |#2| |#3|) (-55 |#1| (-465 |#1| |#3|) (-465 |#1| |#2|)) (-1119) (-521) (-521)) (T -466))
-NIL
-(-55 |#1| (-465 |#1| |#3|) (-465 |#1| |#2|))
-((-4208 (((-587 (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-707) (-707)) 27)) (-1443 (((-587 (-1080 |#1|)) |#1| (-707) (-707) (-707)) 34)) (-3231 (((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-587 |#3|) (-587 (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-707)) 84)))
-(((-467 |#1| |#2| |#3|) (-10 -7 (-15 -1443 ((-587 (-1080 |#1|)) |#1| (-707) (-707) (-707))) (-15 -4208 ((-587 (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-707) (-707))) (-15 -3231 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-587 |#3|) (-587 (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-707)))) (-323) (-1141 |#1|) (-1141 |#2|)) (T -467))
-((-3231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-2 (|:| -1245 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7))))) (-5 *5 (-707)) (-4 *8 (-1141 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-323)) (-5 *2 (-2 (|:| -1245 (-627 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-627 *7)))) (-5 *1 (-467 *6 *7 *8)))) (-4208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-707)) (-4 *5 (-323)) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1245 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6))))) (-5 *1 (-467 *5 *6 *7)) (-5 *3 (-2 (|:| -1245 (-627 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-627 *6)))) (-4 *7 (-1141 *6)))) (-1443 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-707)) (-4 *3 (-323)) (-4 *5 (-1141 *3)) (-5 *2 (-587 (-1080 *3))) (-5 *1 (-467 *3 *5 *6)) (-4 *6 (-1141 *5)))))
-(-10 -7 (-15 -1443 ((-587 (-1080 |#1|)) |#1| (-707) (-707) (-707))) (-15 -4208 ((-587 (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-707) (-707))) (-15 -3231 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) (-587 |#3|) (-587 (-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) (-707))))
-((-3559 (((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))) 60)) (-1809 ((|#1| (-627 |#1|) |#1| (-707)) 25)) (-1841 (((-707) (-707) (-707)) 30)) (-1267 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 42)) (-2757 (((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|) 50) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 47)) (-3428 ((|#1| (-627 |#1|) (-627 |#1|) |#1| (-521)) 29)) (-3465 ((|#1| (-627 |#1|)) 18)))
-(((-468 |#1| |#2| |#3|) (-10 -7 (-15 -3465 (|#1| (-627 |#1|))) (-15 -1809 (|#1| (-627 |#1|) |#1| (-707))) (-15 -3428 (|#1| (-627 |#1|) (-627 |#1|) |#1| (-521))) (-15 -1841 ((-707) (-707) (-707))) (-15 -2757 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2757 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -1267 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3559 ((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|)))))) (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))) (-1141 |#1|) (-383 |#1| |#2|)) (T -468))
-((-3559 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-1267 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-2757 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-2757 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-1841 (*1 *2 *2 *2) (-12 (-5 *2 (-707)) (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))) (-3428 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-521)) (-4 *2 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))) (-1809 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-707)) (-4 *2 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *4 (-1141 *2)) (-4 *2 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $))))) (-5 *1 (-468 *2 *4 *5)) (-4 *5 (-383 *2 *4)))))
-(-10 -7 (-15 -3465 (|#1| (-627 |#1|))) (-15 -1809 (|#1| (-627 |#1|) |#1| (-707))) (-15 -3428 (|#1| (-627 |#1|) (-627 |#1|) |#1| (-521))) (-15 -1841 ((-707) (-707) (-707))) (-15 -2757 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2757 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -1267 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3559 ((-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))) (-2 (|:| -1245 (-627 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-627 |#1|))))))
-((-1422 (((-108) $ $) NIL)) (-1515 (($ $) NIL)) (-3348 (($ $ $) 35)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) $) NIL (|has| (-108) (-783))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1216 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-108) (-783)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-3215 (($ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2396 (((-108) $ (-1132 (-521)) (-108)) NIL (|has| $ (-6 -4234))) (((-108) $ (-521) (-108)) 36 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-1429 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3859 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3849 (((-108) $ (-521) (-108)) NIL (|has| $ (-6 -4234)))) (-3626 (((-108) $ (-521)) NIL)) (-3236 (((-521) (-108) $ (-521)) NIL (|has| (-108) (-1013))) (((-521) (-108) $) NIL (|has| (-108) (-1013))) (((-521) (-1 (-108) (-108)) $) NIL)) (-3831 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-3994 (($ $ $) 33)) (-2416 (($ $) NIL)) (-4001 (($ $ $) NIL)) (-1869 (($ (-707) (-108)) 23)) (-1550 (($ $ $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 8 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL)) (-3389 (($ $ $) NIL (|has| (-108) (-783))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3568 (((-587 (-108)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL)) (-3833 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1696 (($ $ $ (-521)) NIL) (($ (-108) $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-108) $) NIL (|has| (-521) (-783)))) (-3733 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2995 (($ $ (-108)) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-108)) (-587 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-269 (-108))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013)))) (($ $ (-587 (-269 (-108)))) NIL (-12 (|has| (-108) (-284 (-108))) (|has| (-108) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013))))) (-2481 (((-587 (-108)) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 24)) (-2550 (($ $ (-1132 (-521))) NIL) (((-108) $ (-521)) 18) (((-108) $ (-521) (-108)) NIL)) (-3694 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-4163 (((-707) (-108) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-108) (-1013)))) (((-707) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) 25)) (-1438 (((-497) $) NIL (|has| (-108) (-562 (-497))))) (-2234 (($ (-587 (-108))) NIL)) (-4159 (($ (-587 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2223 (((-791) $) 22)) (-2006 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4233)))) (-4009 (($ $ $) 31)) (-3509 (($ $) NIL)) (-2770 (($ $ $) NIL)) (-3505 (($ $ $) 39)) (-3516 (($ $) 37)) (-3497 (($ $ $) 38)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 26)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 27)) (-2345 (($ $ $) NIL)) (-3478 (((-707) $) 10 (|has| $ (-6 -4233)))))
-(((-469 |#1|) (-13 (-119) (-10 -8 (-15 -3516 ($ $)) (-15 -3505 ($ $ $)) (-15 -3497 ($ $ $)))) (-521)) (T -469))
-((-3516 (*1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521)))) (-3505 (*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521)))) (-3497 (*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521)))))
-(-13 (-119) (-10 -8 (-15 -3516 ($ $)) (-15 -3505 ($ $ $)) (-15 -3497 ($ $ $))))
-((-2792 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1080 |#4|)) 35)) (-1406 (((-1080 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1080 |#4|)) 22)) (-4104 (((-3 (-627 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-627 (-1080 |#4|))) 46)) (-4105 (((-1080 (-1080 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1406 (|#2| (-1 |#1| |#4|) (-1080 |#4|))) (-15 -1406 ((-1080 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2792 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1080 |#4|))) (-15 -4104 ((-3 (-627 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-627 (-1080 |#4|)))) (-15 -4105 ((-1080 (-1080 |#4|)) (-1 |#4| |#1|) |#3|))) (-970) (-1141 |#1|) (-1141 |#2|) (-970)) (T -470))
-((-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *6 (-1141 *5)) (-5 *2 (-1080 (-1080 *7))) (-5 *1 (-470 *5 *6 *4 *7)) (-4 *4 (-1141 *6)))) (-4104 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-627 (-1080 *8))) (-4 *5 (-970)) (-4 *8 (-970)) (-4 *6 (-1141 *5)) (-5 *2 (-627 *6)) (-5 *1 (-470 *5 *6 *7 *8)) (-4 *7 (-1141 *6)))) (-2792 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1080 *7)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-470 *5 *2 *6 *7)) (-4 *6 (-1141 *2)))) (-1406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *4 (-1141 *5)) (-5 *2 (-1080 *7)) (-5 *1 (-470 *5 *4 *6 *7)) (-4 *6 (-1141 *4)))) (-1406 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1080 *7)) (-4 *5 (-970)) (-4 *7 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-470 *5 *2 *6 *7)) (-4 *6 (-1141 *2)))))
-(-10 -7 (-15 -1406 (|#2| (-1 |#1| |#4|) (-1080 |#4|))) (-15 -1406 ((-1080 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2792 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1080 |#4|))) (-15 -4104 ((-3 (-627 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-627 (-1080 |#4|)))) (-15 -4105 ((-1080 (-1080 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1422 (((-108) $ $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2084 (((-1170) $) 18)) (-2550 (((-1067) $ (-1084)) 22)) (-1718 (((-1170) $) 14)) (-2223 (((-791) $) 20) (($ (-1067)) 19)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 8)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 7)))
-(((-471) (-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $)) (-15 -2223 ($ (-1067)))))) (T -471))
-((-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1067)) (-5 *1 (-471)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-471)))))
-(-13 (-783) (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $)) (-15 -2084 ((-1170) $)) (-15 -2223 ($ (-1067)))))
-((-1590 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1748 ((|#1| |#4|) 10)) (-1213 ((|#3| |#4|) 17)))
-(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1748 (|#1| |#4|)) (-15 -1213 (|#3| |#4|)) (-15 -1590 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-513) (-918 |#1|) (-347 |#1|) (-347 |#2|)) (T -472))
-((-1590 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-472 *4 *5 *6 *3)) (-4 *6 (-347 *4)) (-4 *3 (-347 *5)))) (-1213 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-4 *2 (-347 *4)) (-5 *1 (-472 *4 *5 *2 *3)) (-4 *3 (-347 *5)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-472 *2 *4 *5 *3)) (-4 *5 (-347 *2)) (-4 *3 (-347 *4)))))
-(-10 -7 (-15 -1748 (|#1| |#4|)) (-15 -1213 (|#3| |#4|)) (-15 -1590 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1422 (((-108) $ $) NIL)) (-1761 (((-108) $ (-587 |#3|)) 103) (((-108) $) 104)) (-3398 (((-108) $) 146)) (-3983 (($ $ |#4|) 95) (($ $ |#4| (-587 |#3|)) 99)) (-1521 (((-1074 (-587 (-880 |#1|)) (-587 (-269 (-880 |#1|)))) (-587 |#4|)) 139 (|has| |#3| (-562 (-1084))))) (-3852 (($ $ $) 89) (($ $ |#4|) 87)) (-3637 (((-108) $) 145)) (-3594 (($ $) 107)) (-4024 (((-1067) $) NIL)) (-1802 (($ $ $) 81) (($ (-587 $)) 83)) (-3054 (((-108) |#4| $) 106)) (-2933 (((-108) $ $) 70)) (-2447 (($ (-587 |#4|)) 88)) (-4146 (((-1031) $) NIL)) (-1225 (($ (-587 |#4|)) 143)) (-1994 (((-108) $) 144)) (-1453 (($ $) 72)) (-2889 (((-587 |#4|) $) 56)) (-3805 (((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|)) NIL)) (-1485 (((-108) |#4| $) 75)) (-2043 (((-521) $ (-587 |#3|)) 108) (((-521) $) 109)) (-2223 (((-791) $) 142) (($ (-587 |#4|)) 84)) (-2488 (($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $))) NIL)) (-1549 (((-108) $ $) 71)) (-1628 (($ $ $) 91)) (** (($ $ (-707)) 94)) (* (($ $ $) 93)))
-(((-473 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 -1628 ($ $ $)) (-15 -3637 ((-108) $)) (-15 -3398 ((-108) $)) (-15 -1485 ((-108) |#4| $)) (-15 -2933 ((-108) $ $)) (-15 -3054 ((-108) |#4| $)) (-15 -1761 ((-108) $ (-587 |#3|))) (-15 -1761 ((-108) $)) (-15 -1802 ($ $ $)) (-15 -1802 ($ (-587 $))) (-15 -3852 ($ $ $)) (-15 -3852 ($ $ |#4|)) (-15 -1453 ($ $)) (-15 -3805 ((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|))) (-15 -2488 ($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)))) (-15 -2043 ((-521) $ (-587 |#3|))) (-15 -2043 ((-521) $)) (-15 -3594 ($ $)) (-15 -2447 ($ (-587 |#4|))) (-15 -1225 ($ (-587 |#4|))) (-15 -1994 ((-108) $)) (-15 -2889 ((-587 |#4|) $)) (-15 -2223 ($ (-587 |#4|))) (-15 -3983 ($ $ |#4|)) (-15 -3983 ($ $ |#4| (-587 |#3|))) (IF (|has| |#3| (-562 (-1084))) (-15 -1521 ((-1074 (-587 (-880 |#1|)) (-587 (-269 (-880 |#1|)))) (-587 |#4|))) |%noBranch|))) (-337) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -473))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1628 (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-3637 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1485 (*1 *2 *3 *1) (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-2933 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-3054 (*1 *2 *3 *1) (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-1761 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-1802 (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-587 (-473 *3 *4 *5 *6))) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-3852 (*1 *1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-3852 (*1 *1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))) (-1453 (*1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *2 (-2 (|:| |mval| (-627 *4)) (|:| |invmval| (-627 *4)) (|:| |genIdeal| (-473 *4 *5 *6 *7)))) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-627 *3)) (|:| |invmval| (-627 *3)) (|:| |genIdeal| (-473 *3 *4 *5 *6)))) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *2 (-521)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))) (-2043 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-521)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-3594 (*1 *1 *1) (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783)) (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-2447 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)))) (-1225 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)))) (-1994 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2889 (*1 *2 *1) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *6)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)))) (-3983 (*1 *1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))) (-3983 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729)) (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-877 *4 *5 *6)))) (-1521 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *6 (-562 (-1084))) (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1074 (-587 (-880 *4)) (-587 (-269 (-880 *4))))) (-5 *1 (-473 *4 *5 *6 *7)))))
-(-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 -1628 ($ $ $)) (-15 -3637 ((-108) $)) (-15 -3398 ((-108) $)) (-15 -1485 ((-108) |#4| $)) (-15 -2933 ((-108) $ $)) (-15 -3054 ((-108) |#4| $)) (-15 -1761 ((-108) $ (-587 |#3|))) (-15 -1761 ((-108) $)) (-15 -1802 ($ $ $)) (-15 -1802 ($ (-587 $))) (-15 -3852 ($ $ $)) (-15 -3852 ($ $ |#4|)) (-15 -1453 ($ $)) (-15 -3805 ((-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)) $ (-587 |#3|))) (-15 -2488 ($ (-2 (|:| |mval| (-627 |#1|)) (|:| |invmval| (-627 |#1|)) (|:| |genIdeal| $)))) (-15 -2043 ((-521) $ (-587 |#3|))) (-15 -2043 ((-521) $)) (-15 -3594 ($ $)) (-15 -2447 ($ (-587 |#4|))) (-15 -1225 ($ (-587 |#4|))) (-15 -1994 ((-108) $)) (-15 -2889 ((-587 |#4|) $)) (-15 -2223 ($ (-587 |#4|))) (-15 -3983 ($ $ |#4|)) (-15 -3983 ($ $ |#4| (-587 |#3|))) (IF (|has| |#3| (-562 (-1084))) (-15 -1521 ((-1074 (-587 (-880 |#1|)) (-587 (-269 (-880 |#1|)))) (-587 |#4|))) |%noBranch|)))
-((-2497 (((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) 146)) (-2533 (((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) 147)) (-2413 (((-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) 105)) (-2100 (((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) NIL)) (-3031 (((-587 (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) 149)) (-1316 (((-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-587 (-793 |#1|))) 161)))
-(((-474 |#1| |#2|) (-10 -7 (-15 -2497 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2533 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2100 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2413 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -3031 ((-587 (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -1316 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-587 (-793 |#1|))))) (-587 (-1084)) (-707)) (T -474))
-((-1316 (*1 *2 *2 *3) (-12 (-5 *2 (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4) (-224 *4 (-381 (-521))))) (-5 *3 (-587 (-793 *4))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *1 (-474 *4 *5)))) (-3031 (*1 *2 *3) (-12 (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-587 (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4) (-224 *4 (-381 (-521)))))) (-5 *1 (-474 *4 *5)) (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4) (-224 *4 (-381 (-521))))))) (-2413 (*1 *2 *2) (-12 (-5 *2 (-473 (-381 (-521)) (-217 *4 (-707)) (-793 *3) (-224 *3 (-381 (-521))))) (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-474 *3 *4)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4) (-224 *4 (-381 (-521))))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4) (-224 *4 (-381 (-521))))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4) (-224 *4 (-381 (-521))))) (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5)))))
-(-10 -7 (-15 -2497 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2533 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2100 ((-108) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -2413 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -3031 ((-587 (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521))))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))))) (-15 -1316 ((-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-473 (-381 (-521)) (-217 |#2| (-707)) (-793 |#1|) (-224 |#1| (-381 (-521)))) (-587 (-793 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-4044 (($ |#1| |#2|) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3837 ((|#2| $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3562 (($) 12 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) 11) (($ $ $) 24)) (-1628 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 19)))
-(((-475 |#1| |#2|) (-13 (-21) (-477 |#1| |#2|)) (-21) (-783)) (T -475))
-NIL
-(-13 (-21) (-477 |#1| |#2|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 12)) (-2231 (($) NIL T CONST)) (-3157 (($ $) 27)) (-4044 (($ |#1| |#2|) 24)) (-1393 (($ (-1 |#1| |#1|) $) 26)) (-3837 ((|#2| $) NIL)) (-3140 ((|#1| $) 28)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3562 (($) 10 T CONST)) (-1549 (((-108) $ $) NIL)) (-1628 (($ $ $) 18)) (* (($ (-849) $) NIL) (($ (-707) $) 23)))
-(((-476 |#1| |#2|) (-13 (-23) (-477 |#1| |#2|)) (-23) (-783)) (T -476))
-NIL
-(-13 (-23) (-477 |#1| |#2|))
-((-1422 (((-108) $ $) 7)) (-3157 (($ $) 13)) (-4044 (($ |#1| |#2|) 16)) (-1393 (($ (-1 |#1| |#1|) $) 17)) (-3837 ((|#2| $) 14)) (-3140 ((|#1| $) 15)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-477 |#1| |#2|) (-1196) (-1013) (-783)) (T -477))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-477 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-783)))) (-4044 (*1 *1 *2 *3) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-783)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1013)))) (-3837 (*1 *2 *1) (-12 (-4 *1 (-477 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-783)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-783)))))
-(-13 (-1013) (-10 -8 (-15 -1393 ($ (-1 |t#1| |t#1|) $)) (-15 -4044 ($ |t#1| |t#2|)) (-15 -3140 (|t#1| $)) (-15 -3837 (|t#2| $)) (-15 -3157 ($ $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-4044 (($ |#1| |#2|) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3837 ((|#2| $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3562 (($) NIL T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 13)) (-1628 (($ $ $) NIL)) (* (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-478 |#1| |#2|) (-13 (-728) (-477 |#1| |#2|)) (-728) (-783)) (T -478))
-NIL
-(-13 (-728) (-477 |#1| |#2|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2303 (($ $ $) 16)) (-2057 (((-3 $ "failed") $ $) 13)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-4044 (($ |#1| |#2|) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3837 ((|#2| $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL)) (-3562 (($) NIL T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1628 (($ $ $) NIL)) (* (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-479 |#1| |#2|) (-13 (-729) (-477 |#1| |#2|)) (-729) (-783)) (T -479))
-NIL
-(-13 (-729) (-477 |#1| |#2|))
-((-1422 (((-108) $ $) NIL)) (-3157 (($ $) 25)) (-4044 (($ |#1| |#2|) 22)) (-1393 (($ (-1 |#1| |#1|) $) 24)) (-3837 ((|#2| $) 27)) (-3140 ((|#1| $) 26)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 21)) (-1549 (((-108) $ $) 14)))
-(((-480 |#1| |#2|) (-477 |#1| |#2|) (-1013) (-783)) (T -480))
-NIL
-(-477 |#1| |#2|)
-((-2313 (($ $ (-587 |#2|) (-587 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -2313 (|#1| |#1| |#2| |#3|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#3|)))) (-482 |#2| |#3|) (-1013) (-1119)) (T -481))
-NIL
-(-10 -8 (-15 -2313 (|#1| |#1| |#2| |#3|)) (-15 -2313 (|#1| |#1| (-587 |#2|) (-587 |#3|))))
-((-2313 (($ $ (-587 |#1|) (-587 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-482 |#1| |#2|) (-1196) (-1013) (-1119)) (T -482))
-((-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *5)) (-4 *1 (-482 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1119)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1119)))))
-(-13 (-10 -8 (-15 -2313 ($ $ |t#1| |t#2|)) (-15 -2313 ($ $ (-587 |t#1|) (-587 |t#2|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 16)) (-3704 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))) $) 18)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1659 (((-707) $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3493 ((|#1| $ (-521)) 23)) (-1433 ((|#2| $ (-521)) 21)) (-2205 (($ (-1 |#1| |#1|) $) 46)) (-3750 (($ (-1 |#2| |#2|) $) 43)) (-4024 (((-1067) $) NIL)) (-4198 (($ $ $) 53 (|has| |#2| (-728)))) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 42) (($ |#1|) NIL)) (-1499 ((|#2| |#1| $) 49)) (-3562 (($) 11 T CONST)) (-1549 (((-108) $ $) 29)) (-1628 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-849) $) NIL) (($ (-707) $) 36) (($ |#2| |#1|) 31)))
-(((-483 |#1| |#2| |#3|) (-297 |#1| |#2|) (-1013) (-124) |#2|) (T -483))
-NIL
-(-297 |#1| |#2|)
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-3421 (((-108) (-108)) 24)) (-2396 ((|#1| $ (-521) |#1|) 27 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) |#1|) $) 51)) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-1514 (($ $) 55 (|has| |#1| (-1013)))) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) 43)) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-4192 (($ $ (-521)) 13)) (-3259 (((-707) $) 11)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 22)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 20 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-4162 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) 19 (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4135 (($ $ $ (-521)) 50) (($ |#1| $ (-521)) 36)) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2126 (($ (-587 |#1|)) 28)) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) 18 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 39)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 14)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 32) (($ $ (-1132 (-521))) NIL)) (-3488 (($ $ (-1132 (-521))) 49) (($ $ (-521)) 44)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) 40 (|has| $ (-6 -4234)))) (-2420 (($ $) 31)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-2240 (($ $ $) 41) (($ $ |#1|) 38)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) 15 (|has| $ (-6 -4233)))))
-(((-484 |#1| |#2|) (-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2126 ($ (-587 |#1|))) (-15 -3259 ((-707) $)) (-15 -4192 ($ $ (-521))) (-15 -3421 ((-108) (-108))))) (-1119) (-521)) (T -484))
-((-2126 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-484 *3 *4)) (-14 *4 (-521)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-521)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 *2))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-521)))))
-(-13 (-19 |#1|) (-257 |#1|) (-10 -8 (-15 -2126 ($ (-587 |#1|))) (-15 -3259 ((-707) $)) (-15 -4192 ($ $ (-521))) (-15 -3421 ((-108) (-108)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 (((-534 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-534 |#1|) (-342)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-534 |#1|) (-342)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL (|has| (-534 |#1|) (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-534 |#1|) "failed") $) NIL)) (-1496 (((-534 |#1|) $) NIL)) (-3190 (($ (-1165 (-534 |#1|))) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-534 |#1|) (-342)))) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-534 |#1|) (-342)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL (|has| (-534 |#1|) (-342)))) (-3299 (((-108) $) NIL (|has| (-534 |#1|) (-342)))) (-1375 (($ $ (-707)) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342)))) (($ $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-2100 (((-108) $) NIL)) (-3490 (((-849) $) NIL (|has| (-534 |#1|) (-342))) (((-769 (-849)) $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| (-534 |#1|) (-342)))) (-2377 (((-108) $) NIL (|has| (-534 |#1|) (-342)))) (-2549 (((-534 |#1|) $) NIL) (($ $ (-849)) NIL (|has| (-534 |#1|) (-342)))) (-3035 (((-3 $ "failed") $) NIL (|has| (-534 |#1|) (-342)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 (-534 |#1|)) $) NIL) (((-1080 $) $ (-849)) NIL (|has| (-534 |#1|) (-342)))) (-3999 (((-849) $) NIL (|has| (-534 |#1|) (-342)))) (-3361 (((-1080 (-534 |#1|)) $) NIL (|has| (-534 |#1|) (-342)))) (-3959 (((-1080 (-534 |#1|)) $) NIL (|has| (-534 |#1|) (-342))) (((-3 (-1080 (-534 |#1|)) "failed") $ $) NIL (|has| (-534 |#1|) (-342)))) (-3734 (($ $ (-1080 (-534 |#1|))) NIL (|has| (-534 |#1|) (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-534 |#1|) (-342)) CONST)) (-2723 (($ (-849)) NIL (|has| (-534 |#1|) (-342)))) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1384 (($) NIL (|has| (-534 |#1|) (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-534 |#1|) (-342)))) (-1974 (((-392 $) $) NIL)) (-2239 (((-769 (-849))) NIL) (((-849)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-707) $) NIL (|has| (-534 |#1|) (-342))) (((-3 (-707) "failed") $ $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-2043 (((-126)) NIL)) (-2193 (($ $) NIL (|has| (-534 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-534 |#1|) (-342)))) (-2098 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3436 (((-1080 (-534 |#1|))) NIL)) (-3923 (($) NIL (|has| (-534 |#1|) (-342)))) (-3540 (($) NIL (|has| (-534 |#1|) (-342)))) (-1816 (((-1165 (-534 |#1|)) $) NIL) (((-627 (-534 |#1|)) (-1165 $)) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-534 |#1|) (-342)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-534 |#1|)) NIL)) (-2446 (($ $) NIL (|has| (-534 |#1|) (-342))) (((-3 $ "failed") $) NIL (-3703 (|has| (-534 |#1|) (-133)) (|has| (-534 |#1|) (-342))))) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL) (((-1165 $) (-849)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $) NIL (|has| (-534 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-534 |#1|) (-342)))) (-2244 (($ $) NIL (|has| (-534 |#1|) (-342))) (($ $ (-707)) NIL (|has| (-534 |#1|) (-342)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL) (($ $ (-534 |#1|)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-534 |#1|)) NIL) (($ (-534 |#1|) $) NIL)))
-(((-485 |#1| |#2|) (-303 (-534 |#1|)) (-849) (-849)) (T -485))
-NIL
-(-303 (-534 |#1|))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) (-521) |#1|) 33)) (-3419 (($ $ (-521) |#4|) NIL)) (-3790 (($ $ (-521) |#5|) NIL)) (-2231 (($) NIL T CONST)) (-2185 ((|#4| $ (-521)) NIL)) (-3849 ((|#1| $ (-521) (-521) |#1|) 32)) (-3626 ((|#1| $ (-521) (-521)) 30)) (-3831 (((-587 |#1|) $) NIL)) (-1416 (((-707) $) 26)) (-1869 (($ (-707) (-707) |#1|) 23)) (-1428 (((-707) $) 28)) (-1513 (((-108) $ (-707)) NIL)) (-1698 (((-521) $) 24)) (-1350 (((-521) $) 25)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1646 (((-521) $) 27)) (-2809 (((-521) $) 29)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) 36 (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 14)) (-2280 (($) 15)) (-2550 ((|#1| $ (-521) (-521)) 31) ((|#1| $ (-521) (-521) |#1|) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-1335 ((|#5| $ (-521)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-486 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1119) (-521) (-521) (-347 |#1|) (-347 |#1|)) (T -486))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) (-522) |#1|) NIL)) (-2480 (($ $ (-522) (-466 |#1| |#3|)) NIL)) (-1888 (($ $ (-522) (-466 |#1| |#2|)) NIL)) (-3175 (($) NIL T CONST)) (-1860 (((-466 |#1| |#3|) $ (-522)) NIL)) (-3854 ((|#1| $ (-522) (-522) |#1|) NIL)) (-3631 ((|#1| $ (-522) (-522)) NIL)) (-3837 (((-588 |#1|) $) NIL)) (-1411 (((-708) $) NIL)) (-1811 (($ (-708) (-708) |#1|) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-2575 (((-522) $) NIL)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3886 (((-522) $) NIL)) (-4132 (((-522) $) NIL)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-3488 (((-466 |#1| |#2|) $ (-522)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-467 |#1| |#2| |#3|) (-55 |#1| (-466 |#1| |#3|) (-466 |#1| |#2|)) (-1120) (-522) (-522)) (T -467))
+NIL
+(-55 |#1| (-466 |#1| |#3|) (-466 |#1| |#2|))
+((-3525 (((-588 (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-708) (-708)) 27)) (-3931 (((-588 (-1081 |#1|)) |#1| (-708) (-708) (-708)) 34)) (-1257 (((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-588 |#3|) (-588 (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-708)) 84)))
+(((-468 |#1| |#2| |#3|) (-10 -7 (-15 -3931 ((-588 (-1081 |#1|)) |#1| (-708) (-708) (-708))) (-15 -3525 ((-588 (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-708) (-708))) (-15 -1257 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-588 |#3|) (-588 (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-708)))) (-324) (-1142 |#1|) (-1142 |#2|)) (T -468))
+((-1257 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-2 (|:| -3855 (-628 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-628 *7))))) (-5 *5 (-708)) (-4 *8 (-1142 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-324)) (-5 *2 (-2 (|:| -3855 (-628 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-628 *7)))) (-5 *1 (-468 *6 *7 *8)))) (-3525 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-708)) (-4 *5 (-324)) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -3855 (-628 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-628 *6))))) (-5 *1 (-468 *5 *6 *7)) (-5 *3 (-2 (|:| -3855 (-628 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-628 *6)))) (-4 *7 (-1142 *6)))) (-3931 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-708)) (-4 *3 (-324)) (-4 *5 (-1142 *3)) (-5 *2 (-588 (-1081 *3))) (-5 *1 (-468 *3 *5 *6)) (-4 *6 (-1142 *5)))))
+(-10 -7 (-15 -3931 ((-588 (-1081 |#1|)) |#1| (-708) (-708) (-708))) (-15 -3525 ((-588 (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-708) (-708))) (-15 -1257 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) (-588 |#3|) (-588 (-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) (-708))))
+((-3241 (((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))) 60)) (-3613 ((|#1| (-628 |#1|) |#1| (-708)) 25)) (-3945 (((-708) (-708) (-708)) 30)) (-4120 (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 42)) (-1481 (((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|) 50) (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 47)) (-1410 ((|#1| (-628 |#1|) (-628 |#1|) |#1| (-522)) 29)) (-1708 ((|#1| (-628 |#1|)) 18)))
+(((-469 |#1| |#2| |#3|) (-10 -7 (-15 -1708 (|#1| (-628 |#1|))) (-15 -3613 (|#1| (-628 |#1|) |#1| (-708))) (-15 -1410 (|#1| (-628 |#1|) (-628 |#1|) |#1| (-522))) (-15 -3945 ((-708) (-708) (-708))) (-15 -1481 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1481 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -4120 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3241 ((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|)))))) (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))) (-1142 |#1|) (-384 |#1| |#2|)) (T -469))
+((-3241 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-4120 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1481 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1481 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-3945 (*1 *2 *2 *2) (-12 (-5 *2 (-708)) (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))) (-1410 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-628 *2)) (-5 *4 (-522)) (-4 *2 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5)))) (-3613 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-628 *2)) (-5 *4 (-708)) (-4 *2 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-628 *2)) (-4 *4 (-1142 *2)) (-4 *2 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $))))) (-5 *1 (-469 *2 *4 *5)) (-4 *5 (-384 *2 *4)))))
+(-10 -7 (-15 -1708 (|#1| (-628 |#1|))) (-15 -3613 (|#1| (-628 |#1|) |#1| (-708))) (-15 -1410 (|#1| (-628 |#1|) (-628 |#1|) |#1| (-522))) (-15 -3945 ((-708) (-708) (-708))) (-15 -1481 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -1481 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -4120 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3241 ((-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))) (-2 (|:| -3855 (-628 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-628 |#1|))))))
+((-1416 (((-108) $ $) NIL)) (-1501 (($ $) NIL)) (-3349 (($ $ $) 35)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) $) NIL (|has| (-108) (-784))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-3537 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-108) (-784)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-3216 (($ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-2379 (((-108) $ (-1133 (-522)) (-108)) NIL (|has| $ (-6 -4239))) (((-108) $ (-522) (-108)) 36 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1423 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-3864 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-3854 (((-108) $ (-522) (-108)) NIL (|has| $ (-6 -4239)))) (-3631 (((-108) $ (-522)) NIL)) (-3238 (((-522) (-108) $ (-522)) NIL (|has| (-108) (-1014))) (((-522) (-108) $) NIL (|has| (-108) (-1014))) (((-522) (-1 (-108) (-108)) $) NIL)) (-3837 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-3999 (($ $ $) 33)) (-2401 (($ $) NIL)) (-2129 (($ $ $) NIL)) (-1811 (($ (-708) (-108)) 23)) (-1920 (($ $ $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 8 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL)) (-2160 (($ $ $) NIL (|has| (-108) (-784))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3308 (((-588 (-108)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL)) (-3838 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-1661 (($ $ $ (-522)) NIL) (($ (-108) $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-108) $) NIL (|has| (-522) (-784)))) (-1414 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2602 (($ $ (-108)) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-108)) (-588 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-270 (-108))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014)))) (($ $ (-588 (-270 (-108)))) NIL (-12 (|has| (-108) (-285 (-108))) (|has| (-108) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014))))) (-1525 (((-588 (-108)) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 24)) (-2545 (($ $ (-1133 (-522))) NIL) (((-108) $ (-522)) 18) (((-108) $ (-522) (-108)) NIL)) (-3696 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-4168 (((-708) (-108) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-108) (-1014)))) (((-708) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) 25)) (-1431 (((-498) $) NIL (|has| (-108) (-563 (-498))))) (-2201 (($ (-588 (-108))) NIL)) (-4165 (($ (-588 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-2190 (((-792) $) 22)) (-3648 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4238)))) (-4015 (($ $ $) 31)) (-3510 (($ $) NIL)) (-2767 (($ $ $) NIL)) (-3506 (($ $ $) 39)) (-3517 (($ $) 37)) (-3498 (($ $ $) 38)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 26)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 27)) (-2324 (($ $ $) NIL)) (-3480 (((-708) $) 10 (|has| $ (-6 -4238)))))
+(((-470 |#1|) (-13 (-119) (-10 -8 (-15 -3517 ($ $)) (-15 -3506 ($ $ $)) (-15 -3498 ($ $ $)))) (-522)) (T -470))
+((-3517 (*1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) (-3506 (*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))) (-3498 (*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522)))))
+(-13 (-119) (-10 -8 (-15 -3517 ($ $)) (-15 -3506 ($ $ $)) (-15 -3498 ($ $ $))))
+((-3935 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1081 |#4|)) 35)) (-3560 (((-1081 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1081 |#4|)) 22)) (-1894 (((-3 (-628 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-628 (-1081 |#4|))) 46)) (-1902 (((-1081 (-1081 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3560 (|#2| (-1 |#1| |#4|) (-1081 |#4|))) (-15 -3560 ((-1081 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3935 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1081 |#4|))) (-15 -1894 ((-3 (-628 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-628 (-1081 |#4|)))) (-15 -1902 ((-1081 (-1081 |#4|)) (-1 |#4| |#1|) |#3|))) (-971) (-1142 |#1|) (-1142 |#2|) (-971)) (T -471))
+((-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *6 (-1142 *5)) (-5 *2 (-1081 (-1081 *7))) (-5 *1 (-471 *5 *6 *4 *7)) (-4 *4 (-1142 *6)))) (-1894 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-628 (-1081 *8))) (-4 *5 (-971)) (-4 *8 (-971)) (-4 *6 (-1142 *5)) (-5 *2 (-628 *6)) (-5 *1 (-471 *5 *6 *7 *8)) (-4 *7 (-1142 *6)))) (-3935 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1081 *7)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-471 *5 *2 *6 *7)) (-4 *6 (-1142 *2)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *4 (-1142 *5)) (-5 *2 (-1081 *7)) (-5 *1 (-471 *5 *4 *6 *7)) (-4 *6 (-1142 *4)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1081 *7)) (-4 *5 (-971)) (-4 *7 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-471 *5 *2 *6 *7)) (-4 *6 (-1142 *2)))))
+(-10 -7 (-15 -3560 (|#2| (-1 |#1| |#4|) (-1081 |#4|))) (-15 -3560 ((-1081 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3935 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1081 |#4|))) (-15 -1894 ((-3 (-628 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-628 (-1081 |#4|)))) (-15 -1902 ((-1081 (-1081 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-1416 (((-108) $ $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2664 (((-1171) $) 18)) (-2545 (((-1068) $ (-1085)) 22)) (-1678 (((-1171) $) 14)) (-2190 (((-792) $) 20) (($ (-1068)) 19)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 8)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 7)))
+(((-472) (-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $)) (-15 -2190 ($ (-1068)))))) (T -472))
+((-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1068)) (-5 *1 (-472)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-472)))))
+(-13 (-784) (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $)) (-15 -2664 ((-1171) $)) (-15 -2190 ($ (-1068)))))
+((-2297 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1847 ((|#1| |#4|) 10)) (-3513 ((|#3| |#4|) 17)))
+(((-473 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1847 (|#1| |#4|)) (-15 -3513 (|#3| |#4|)) (-15 -2297 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-514) (-919 |#1|) (-348 |#1|) (-348 |#2|)) (T -473))
+((-2297 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-473 *4 *5 *6 *3)) (-4 *6 (-348 *4)) (-4 *3 (-348 *5)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-4 *2 (-348 *4)) (-5 *1 (-473 *4 *5 *2 *3)) (-4 *3 (-348 *5)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-473 *2 *4 *5 *3)) (-4 *5 (-348 *2)) (-4 *3 (-348 *4)))))
+(-10 -7 (-15 -1847 (|#1| |#4|)) (-15 -3513 (|#3| |#4|)) (-15 -2297 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-1416 (((-108) $ $) NIL)) (-1989 (((-108) $ (-588 |#3|)) 103) (((-108) $) 104)) (-2250 (((-108) $) 146)) (-1945 (($ $ |#4|) 95) (($ $ |#4| (-588 |#3|)) 99)) (-3424 (((-1075 (-588 (-881 |#1|)) (-588 (-270 (-881 |#1|)))) (-588 |#4|)) 139 (|has| |#3| (-563 (-1085))))) (-1353 (($ $ $) 89) (($ $ |#4|) 87)) (-2782 (((-108) $) 145)) (-3504 (($ $) 107)) (-2385 (((-1068) $) NIL)) (-2416 (($ $ $) 81) (($ (-588 $)) 83)) (-1977 (((-108) |#4| $) 106)) (-2140 (((-108) $ $) 70)) (-2154 (($ (-588 |#4|)) 88)) (-4151 (((-1032) $) NIL)) (-3626 (($ (-588 |#4|)) 143)) (-2394 (((-108) $) 144)) (-4054 (($ $) 72)) (-2960 (((-588 |#4|) $) 56)) (-3853 (((-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)) $ (-588 |#3|)) NIL)) (-3132 (((-108) |#4| $) 75)) (-4078 (((-522) $ (-588 |#3|)) 108) (((-522) $) 109)) (-2190 (((-792) $) 142) (($ (-588 |#4|)) 84)) (-2329 (($ (-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $))) NIL)) (-1531 (((-108) $ $) 71)) (-1602 (($ $ $) 91)) (** (($ $ (-708)) 94)) (* (($ $ $) 93)))
+(((-474 |#1| |#2| |#3| |#4|) (-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 -1602 ($ $ $)) (-15 -2782 ((-108) $)) (-15 -2250 ((-108) $)) (-15 -3132 ((-108) |#4| $)) (-15 -2140 ((-108) $ $)) (-15 -1977 ((-108) |#4| $)) (-15 -1989 ((-108) $ (-588 |#3|))) (-15 -1989 ((-108) $)) (-15 -2416 ($ $ $)) (-15 -2416 ($ (-588 $))) (-15 -1353 ($ $ $)) (-15 -1353 ($ $ |#4|)) (-15 -4054 ($ $)) (-15 -3853 ((-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)) $ (-588 |#3|))) (-15 -2329 ($ (-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)))) (-15 -4078 ((-522) $ (-588 |#3|))) (-15 -4078 ((-522) $)) (-15 -3504 ($ $)) (-15 -2154 ($ (-588 |#4|))) (-15 -3626 ($ (-588 |#4|))) (-15 -2394 ((-108) $)) (-15 -2960 ((-588 |#4|) $)) (-15 -2190 ($ (-588 |#4|))) (-15 -1945 ($ $ |#4|)) (-15 -1945 ($ $ |#4| (-588 |#3|))) (IF (|has| |#3| (-563 (-1085))) (-15 -3424 ((-1075 (-588 (-881 |#1|)) (-588 (-270 (-881 |#1|)))) (-588 |#4|))) |%noBranch|))) (-338) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -474))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2782 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2250 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3132 (*1 *2 *3 *1) (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-2140 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1977 (*1 *2 *3 *1) (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-1989 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2416 (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2416 (*1 *1 *2) (-12 (-5 *2 (-588 (-474 *3 *4 *5 *6))) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-1353 (*1 *1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-1353 (*1 *1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-4054 (*1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *2 (-2 (|:| |mval| (-628 *4)) (|:| |invmval| (-628 *4)) (|:| |genIdeal| (-474 *4 *5 *6 *7)))) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-628 *3)) (|:| |invmval| (-628 *3)) (|:| |genIdeal| (-474 *3 *4 *5 *6)))) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-4078 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *2 (-522)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))) (-4078 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-3504 (*1 *1 *1) (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784)) (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-2154 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) (-3626 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) (-2394 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2960 (*1 *2 *1) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *6)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))) (-1945 (*1 *1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))) (-1945 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730)) (-5 *1 (-474 *4 *5 *6 *2)) (-4 *2 (-878 *4 *5 *6)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *6 (-563 (-1085))) (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1075 (-588 (-881 *4)) (-588 (-270 (-881 *4))))) (-5 *1 (-474 *4 *5 *6 *7)))))
+(-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 -1602 ($ $ $)) (-15 -2782 ((-108) $)) (-15 -2250 ((-108) $)) (-15 -3132 ((-108) |#4| $)) (-15 -2140 ((-108) $ $)) (-15 -1977 ((-108) |#4| $)) (-15 -1989 ((-108) $ (-588 |#3|))) (-15 -1989 ((-108) $)) (-15 -2416 ($ $ $)) (-15 -2416 ($ (-588 $))) (-15 -1353 ($ $ $)) (-15 -1353 ($ $ |#4|)) (-15 -4054 ($ $)) (-15 -3853 ((-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)) $ (-588 |#3|))) (-15 -2329 ($ (-2 (|:| |mval| (-628 |#1|)) (|:| |invmval| (-628 |#1|)) (|:| |genIdeal| $)))) (-15 -4078 ((-522) $ (-588 |#3|))) (-15 -4078 ((-522) $)) (-15 -3504 ($ $)) (-15 -2154 ($ (-588 |#4|))) (-15 -3626 ($ (-588 |#4|))) (-15 -2394 ((-108) $)) (-15 -2960 ((-588 |#4|) $)) (-15 -2190 ($ (-588 |#4|))) (-15 -1945 ($ $ |#4|)) (-15 -1945 ($ $ |#4| (-588 |#3|))) (IF (|has| |#3| (-563 (-1085))) (-15 -3424 ((-1075 (-588 (-881 |#1|)) (-588 (-270 (-881 |#1|)))) (-588 |#4|))) |%noBranch|)))
+((-2426 (((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 146)) (-3721 (((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 147)) (-2402 (((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 105)) (-2813 (((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) NIL)) (-2963 (((-588 (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) 149)) (-3322 (((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-588 (-794 |#1|))) 161)))
+(((-475 |#1| |#2|) (-10 -7 (-15 -2426 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3721 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2813 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2402 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2963 ((-588 (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3322 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-588 (-794 |#1|))))) (-588 (-1085)) (-708)) (T -475))
+((-3322 (*1 *2 *2 *3) (-12 (-5 *2 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-5 *3 (-588 (-794 *4))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *1 (-475 *4 *5)))) (-2963 (*1 *2 *3) (-12 (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-588 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522)))))) (-5 *1 (-475 *4 *5)) (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-474 (-382 (-522)) (-217 *4 (-708)) (-794 *3) (-224 *3 (-382 (-522))))) (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-475 *3 *4)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4) (-224 *4 (-382 (-522))))) (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108)) (-5 *1 (-475 *4 *5)))))
+(-10 -7 (-15 -2426 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3721 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2813 ((-108) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2402 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -2963 ((-588 (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522))))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))))) (-15 -3322 ((-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-474 (-382 (-522)) (-217 |#2| (-708)) (-794 |#1|) (-224 |#1| (-382 (-522)))) (-588 (-794 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-4049 (($ |#1| |#2|) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1207 ((|#2| $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3566 (($) 12 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) 11) (($ $ $) 24)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 19)))
+(((-476 |#1| |#2|) (-13 (-21) (-478 |#1| |#2|)) (-21) (-784)) (T -476))
+NIL
+(-13 (-21) (-478 |#1| |#2|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 12)) (-3175 (($) NIL T CONST)) (-3156 (($ $) 27)) (-4049 (($ |#1| |#2|) 24)) (-1391 (($ (-1 |#1| |#1|) $) 26)) (-1207 ((|#2| $) NIL)) (-3138 ((|#1| $) 28)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3566 (($) 10 T CONST)) (-1531 (((-108) $ $) NIL)) (-1602 (($ $ $) 18)) (* (($ (-850) $) NIL) (($ (-708) $) 23)))
+(((-477 |#1| |#2|) (-13 (-23) (-478 |#1| |#2|)) (-23) (-784)) (T -477))
+NIL
+(-13 (-23) (-478 |#1| |#2|))
+((-1416 (((-108) $ $) 7)) (-3156 (($ $) 13)) (-4049 (($ |#1| |#2|) 16)) (-1391 (($ (-1 |#1| |#1|) $) 17)) (-1207 ((|#2| $) 14)) (-3138 ((|#1| $) 15)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-478 |#1| |#2|) (-1197) (-1014) (-784)) (T -478))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-478 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-784)))) (-4049 (*1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *3 (-784)) (-4 *2 (-1014)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-784)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784)))))
+(-13 (-1014) (-10 -8 (-15 -1391 ($ (-1 |t#1| |t#1|) $)) (-15 -4049 ($ |t#1| |t#2|)) (-15 -3138 (|t#1| $)) (-15 -1207 (|t#2| $)) (-15 -3156 ($ $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-4049 (($ |#1| |#2|) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1207 ((|#2| $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3566 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 13)) (-1602 (($ $ $) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-479 |#1| |#2|) (-13 (-729) (-478 |#1| |#2|)) (-729) (-784)) (T -479))
+NIL
+(-13 (-729) (-478 |#1| |#2|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1210 (($ $ $) 16)) (-1233 (((-3 $ "failed") $ $) 13)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-4049 (($ |#1| |#2|) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1207 ((|#2| $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL)) (-3566 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-480 |#1| |#2|) (-13 (-730) (-478 |#1| |#2|)) (-730) (-784)) (T -480))
+NIL
+(-13 (-730) (-478 |#1| |#2|))
+((-1416 (((-108) $ $) NIL)) (-3156 (($ $) 25)) (-4049 (($ |#1| |#2|) 22)) (-1391 (($ (-1 |#1| |#1|) $) 24)) (-1207 ((|#2| $) 27)) (-3138 ((|#1| $) 26)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 21)) (-1531 (((-108) $ $) 14)))
+(((-481 |#1| |#2|) (-478 |#1| |#2|) (-1014) (-784)) (T -481))
+NIL
+(-478 |#1| |#2|)
+((-2289 (($ $ (-588 |#2|) (-588 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-482 |#1| |#2| |#3|) (-10 -8 (-15 -2289 (|#1| |#1| |#2| |#3|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#3|)))) (-483 |#2| |#3|) (-1014) (-1120)) (T -482))
+NIL
+(-10 -8 (-15 -2289 (|#1| |#1| |#2| |#3|)) (-15 -2289 (|#1| |#1| (-588 |#2|) (-588 |#3|))))
+((-2289 (($ $ (-588 |#1|) (-588 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-483 |#1| |#2|) (-1197) (-1014) (-1120)) (T -483))
+((-2289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *5)) (-4 *1 (-483 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1120)))) (-2289 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1120)))))
+(-13 (-10 -8 (-15 -2289 ($ $ |t#1| |t#2|)) (-15 -2289 ($ $ (-588 |t#1|) (-588 |t#2|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 16)) (-2258 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))) $) 18)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1629 (((-708) $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3750 ((|#1| $ (-522)) 23)) (-3816 ((|#2| $ (-522)) 21)) (-3896 (($ (-1 |#1| |#1|) $) 46)) (-1564 (($ (-1 |#2| |#2|) $) 43)) (-2385 (((-1068) $) NIL)) (-3443 (($ $ $) 53 (|has| |#2| (-729)))) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 42) (($ |#1|) NIL)) (-3243 ((|#2| |#1| $) 49)) (-3566 (($) 11 T CONST)) (-1531 (((-108) $ $) 29)) (-1602 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-850) $) NIL) (($ (-708) $) 36) (($ |#2| |#1|) 31)))
+(((-484 |#1| |#2| |#3|) (-298 |#1| |#2|) (-1014) (-124) |#2|) (T -484))
+NIL
+(-298 |#1| |#2|)
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2498 (((-108) (-108)) 24)) (-2379 ((|#1| $ (-522) |#1|) 27 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) |#1|) $) 51)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-3362 (($ $) 55 (|has| |#1| (-1014)))) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) 43)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3381 (($ $ (-522)) 13)) (-3260 (((-708) $) 11)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 22)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 20 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-1369 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 34)) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) 19 (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4095 (($ $ $ (-522)) 50) (($ |#1| $ (-522)) 36)) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3080 (($ (-588 |#1|)) 28)) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) 18 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 39)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 14)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 32) (($ $ (-1133 (-522))) NIL)) (-3681 (($ $ (-1133 (-522))) 49) (($ $ (-522)) 44)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) 40 (|has| $ (-6 -4239)))) (-2404 (($ $) 31)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-2630 (($ $ $) 41) (($ $ |#1|) 38)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) 15 (|has| $ (-6 -4238)))))
+(((-485 |#1| |#2|) (-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3080 ($ (-588 |#1|))) (-15 -3260 ((-708) $)) (-15 -3381 ($ $ (-522))) (-15 -2498 ((-108) (-108))))) (-1120) (-522)) (T -485))
+((-3080 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-485 *3 *4)) (-14 *4 (-522)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-522)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 *2))) (-2498 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 (-522)))))
+(-13 (-19 |#1|) (-258 |#1|) (-10 -8 (-15 -3080 ($ (-588 |#1|))) (-15 -3260 ((-708) $)) (-15 -3381 ($ $ (-522))) (-15 -2498 ((-108) (-108)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 (((-535 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-535 |#1|) (-343)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL (|has| (-535 |#1|) (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-535 |#1|) "failed") $) NIL)) (-1484 (((-535 |#1|) $) NIL)) (-3766 (($ (-1166 (-535 |#1|))) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-535 |#1|) (-343)))) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-535 |#1|) (-343)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL (|has| (-535 |#1|) (-343)))) (-2511 (((-108) $) NIL (|has| (-535 |#1|) (-343)))) (-2111 (($ $ (-708)) NIL (-3708 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343)))) (($ $) NIL (-3708 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-2813 (((-108) $) NIL)) (-3714 (((-850) $) NIL (|has| (-535 |#1|) (-343))) (((-770 (-850)) $) NIL (-3708 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| (-535 |#1|) (-343)))) (-2741 (((-108) $) NIL (|has| (-535 |#1|) (-343)))) (-2100 (((-535 |#1|) $) NIL) (($ $ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-3004 (((-3 $ "failed") $) NIL (|has| (-535 |#1|) (-343)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 (-535 |#1|)) $) NIL) (((-1081 $) $ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-2120 (((-850) $) NIL (|has| (-535 |#1|) (-343)))) (-3074 (((-1081 (-535 |#1|)) $) NIL (|has| (-535 |#1|) (-343)))) (-2941 (((-1081 (-535 |#1|)) $) NIL (|has| (-535 |#1|) (-343))) (((-3 (-1081 (-535 |#1|)) "failed") $ $) NIL (|has| (-535 |#1|) (-343)))) (-1425 (($ $ (-1081 (-535 |#1|))) NIL (|has| (-535 |#1|) (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-535 |#1|) (-343)) CONST)) (-2717 (($ (-850)) NIL (|has| (-535 |#1|) (-343)))) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1383 (($) NIL (|has| (-535 |#1|) (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-535 |#1|) (-343)))) (-1916 (((-393 $) $) NIL)) (-2621 (((-770 (-850))) NIL) (((-850)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-708) $) NIL (|has| (-535 |#1|) (-343))) (((-3 (-708) "failed") $ $) NIL (-3708 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-4078 (((-126)) NIL)) (-2157 (($ $) NIL (|has| (-535 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-535 |#1|) (-343)))) (-2793 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-1479 (((-1081 (-535 |#1|))) NIL)) (-2581 (($) NIL (|has| (-535 |#1|) (-343)))) (-1299 (($) NIL (|has| (-535 |#1|) (-343)))) (-3677 (((-1166 (-535 |#1|)) $) NIL) (((-628 (-535 |#1|)) (-1166 $)) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-535 |#1|) (-343)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-535 |#1|)) NIL)) (-2143 (($ $) NIL (|has| (-535 |#1|) (-343))) (((-3 $ "failed") $) NIL (-3708 (|has| (-535 |#1|) (-133)) (|has| (-535 |#1|) (-343))))) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL) (((-1166 $) (-850)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $) NIL (|has| (-535 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-535 |#1|) (-343)))) (-2213 (($ $) NIL (|has| (-535 |#1|) (-343))) (($ $ (-708)) NIL (|has| (-535 |#1|) (-343)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL) (($ $ (-535 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-535 |#1|)) NIL) (($ (-535 |#1|) $) NIL)))
+(((-486 |#1| |#2|) (-304 (-535 |#1|)) (-850) (-850)) (T -486))
+NIL
+(-304 (-535 |#1|))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) (-522) |#1|) 33)) (-2480 (($ $ (-522) |#4|) NIL)) (-1888 (($ $ (-522) |#5|) NIL)) (-3175 (($) NIL T CONST)) (-1860 ((|#4| $ (-522)) NIL)) (-3854 ((|#1| $ (-522) (-522) |#1|) 32)) (-3631 ((|#1| $ (-522) (-522)) 30)) (-3837 (((-588 |#1|) $) NIL)) (-1411 (((-708) $) 26)) (-1811 (($ (-708) (-708) |#1|) 23)) (-1422 (((-708) $) 28)) (-3352 (((-108) $ (-708)) NIL)) (-2575 (((-522) $) 24)) (-1885 (((-522) $) 25)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3886 (((-522) $) 27)) (-4132 (((-522) $) 29)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) 36 (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 14)) (-3775 (($) 15)) (-2545 ((|#1| $ (-522) (-522)) 31) ((|#1| $ (-522) (-522) |#1|) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-3488 ((|#5| $ (-522)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-487 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1120) (-522) (-522) (-348 |#1|) (-348 |#1|)) (T -487))
NIL
(-55 |#1| |#4| |#5|)
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-3830 (($ $) NIL)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) 58 (|has| $ (-6 -4234)))) (-2299 (((-108) $) NIL (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1216 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4234)))) (-3215 (($ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1471 (($ $ $) 23 (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) 21 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4234))) (($ $ "rest" $) 24 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) |#1|) $) NIL)) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2124 ((|#1| $) NIL)) (-2231 (($) NIL T CONST)) (-3288 (($ $) 28 (|has| $ (-6 -4234)))) (-1924 (($ $) 29)) (-2329 (($ $) 18) (($ $ (-707)) 32)) (-1514 (($ $) 54 (|has| |#1| (-1013)))) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1429 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-2125 (((-108) $) NIL)) (-3236 (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013))) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) NIL)) (-3831 (((-587 |#1|) $) 27 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 31 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-4162 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-3389 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1604 (($ |#1|) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) NIL)) (-4024 (((-1067) $) 51 (|has| |#1| (-1013)))) (-1450 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-4135 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1696 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) 13) (($ $ (-707)) NIL)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2394 (((-108) $) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 12)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) 17)) (-2280 (($) 16)) (-2550 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) NIL) ((|#1| $ (-521) |#1|) NIL)) (-1557 (((-521) $ $) NIL)) (-3488 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3694 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-1475 (((-108) $) 34)) (-1290 (($ $) NIL)) (-2780 (($ $) NIL (|has| $ (-6 -4234)))) (-1602 (((-707) $) NIL)) (-1376 (($ $) 36)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) 35)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 26)) (-2240 (($ $ $) 53) (($ $ |#1|) NIL)) (-4159 (($ $ $) NIL) (($ |#1| $) 10) (($ (-587 $)) NIL) (($ $ |#1|) NIL)) (-2223 (((-791) $) 46 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 48 (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) 9 (|has| $ (-6 -4233)))))
-(((-487 |#1| |#2|) (-607 |#1|) (-1119) (-521)) (T -487))
-NIL
-(-607 |#1|)
-((-4014 ((|#4| |#4|) 26)) (-3167 (((-707) |#4|) 31)) (-2020 (((-707) |#4|) 32)) (-3993 (((-587 |#3|) |#4|) 38 (|has| |#3| (-6 -4234)))) (-1573 (((-3 |#4| "failed") |#4|) 48)) (-4211 ((|#4| |#4|) 41)) (-1302 ((|#1| |#4|) 40)))
-(((-488 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4014 (|#4| |#4|)) (-15 -3167 ((-707) |#4|)) (-15 -2020 ((-707) |#4|)) (IF (|has| |#3| (-6 -4234)) (-15 -3993 ((-587 |#3|) |#4|)) |%noBranch|) (-15 -1302 (|#1| |#4|)) (-15 -4211 (|#4| |#4|)) (-15 -1573 ((-3 |#4| "failed") |#4|))) (-337) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -488))
-((-1573 (*1 *2 *2) (|partial| -12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-4211 (*1 *2 *2) (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-1302 (*1 *2 *3) (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-337)) (-5 *1 (-488 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5)))) (-3993 (*1 *2 *3) (-12 (|has| *6 (-6 -4234)) (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3167 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
-(-10 -7 (-15 -4014 (|#4| |#4|)) (-15 -3167 ((-707) |#4|)) (-15 -2020 ((-707) |#4|)) (IF (|has| |#3| (-6 -4234)) (-15 -3993 ((-587 |#3|) |#4|)) |%noBranch|) (-15 -1302 (|#1| |#4|)) (-15 -4211 (|#4| |#4|)) (-15 -1573 ((-3 |#4| "failed") |#4|)))
-((-4014 ((|#8| |#4|) 20)) (-3993 (((-587 |#3|) |#4|) 29 (|has| |#7| (-6 -4234)))) (-1573 (((-3 |#8| "failed") |#4|) 23)))
-(((-489 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4014 (|#8| |#4|)) (-15 -1573 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4234)) (-15 -3993 ((-587 |#3|) |#4|)) |%noBranch|)) (-513) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|) (-918 |#1|) (-347 |#5|) (-347 |#5|) (-625 |#5| |#6| |#7|)) (T -489))
-((-3993 (*1 *2 *3) (-12 (|has| *9 (-6 -4234)) (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *8 (-347 *7)) (-4 *9 (-347 *7)) (-5 *2 (-587 *6)) (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-625 *4 *5 *6)) (-4 *10 (-625 *7 *8 *9)))) (-1573 (*1 *2 *3) (|partial| -12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9)) (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6)) (-4 *8 (-347 *7)) (-4 *9 (-347 *7)))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9)) (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6)) (-4 *8 (-347 *7)) (-4 *9 (-347 *7)))))
-(-10 -7 (-15 -4014 (|#8| |#4|)) (-15 -1573 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4234)) (-15 -3993 ((-587 |#3|) |#4|)) |%noBranch|))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3482 (($ (-707) (-707)) NIL)) (-3892 (($ $ $) NIL)) (-3091 (($ (-552 |#1| |#3|)) NIL) (($ $) NIL)) (-1902 (((-108) $) NIL)) (-3415 (($ $ (-521) (-521)) 12)) (-3848 (($ $ (-521) (-521)) NIL)) (-3832 (($ $ (-521) (-521) (-521) (-521)) NIL)) (-3699 (($ $) NIL)) (-3730 (((-108) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2505 (($ $ (-521) (-521) $) NIL)) (-2396 ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) NIL)) (-3419 (($ $ (-521) (-552 |#1| |#3|)) NIL)) (-3790 (($ $ (-521) (-552 |#1| |#2|)) NIL)) (-1933 (($ (-707) |#1|) NIL)) (-2231 (($) NIL T CONST)) (-4014 (($ $) 19 (|has| |#1| (-282)))) (-2185 (((-552 |#1| |#3|) $ (-521)) NIL)) (-3167 (((-707) $) 22 (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) NIL)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-2020 (((-707) $) 24 (|has| |#1| (-513)))) (-3993 (((-587 (-552 |#1| |#2|)) $) 27 (|has| |#1| (-513)))) (-1416 (((-707) $) NIL)) (-1869 (($ (-707) (-707) |#1|) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-3666 ((|#1| $) 17 (|has| |#1| (-6 (-4235 "*"))))) (-1698 (((-521) $) 10)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1646 (((-521) $) 11)) (-2809 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#1|))) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3256 (((-587 (-587 |#1|)) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1573 (((-3 $ "failed") $) 31 (|has| |#1| (-337)))) (-2151 (($ $ $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521))) NIL)) (-3523 (($ (-587 |#1|)) NIL) (($ (-587 $)) NIL)) (-3776 (((-108) $) NIL)) (-1302 ((|#1| $) 15 (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-1335 (((-552 |#1| |#2|) $ (-521)) NIL)) (-2223 (($ (-552 |#1| |#2|)) NIL) (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2166 (((-108) $) NIL)) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-521) $) NIL) (((-552 |#1| |#2|) $ (-552 |#1| |#2|)) NIL) (((-552 |#1| |#3|) (-552 |#1| |#3|) $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-490 |#1| |#2| |#3|) (-625 |#1| (-552 |#1| |#3|) (-552 |#1| |#2|)) (-970) (-521) (-521)) (T -490))
-NIL
-(-625 |#1| (-552 |#1| |#3|) (-552 |#1| |#2|))
-((-1716 (((-1080 |#1|) (-707)) 75)) (-1927 (((-1165 |#1|) (-1165 |#1|) (-849)) 68)) (-3552 (((-1170) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) |#1|) 83)) (-1489 (((-1165 |#1|) (-1165 |#1|) (-707)) 36)) (-3254 (((-1165 |#1|) (-849)) 70)) (-3806 (((-1165 |#1|) (-1165 |#1|) (-521)) 24)) (-3201 (((-1080 |#1|) (-1165 |#1|)) 76)) (-3579 (((-1165 |#1|) (-849)) 94)) (-2377 (((-108) (-1165 |#1|)) 79)) (-2549 (((-1165 |#1|) (-1165 |#1|) (-849)) 61)) (-3769 (((-1080 |#1|) (-1165 |#1|)) 88)) (-3999 (((-849) (-1165 |#1|)) 58)) (-3100 (((-1165 |#1|) (-1165 |#1|)) 30)) (-2723 (((-1165 |#1|) (-849) (-849)) 96)) (-1972 (((-1165 |#1|) (-1165 |#1|) (-1031) (-1031)) 23)) (-2478 (((-1165 |#1|) (-1165 |#1|) (-707) (-1031)) 37)) (-1245 (((-1165 (-1165 |#1|)) (-849)) 93)) (-1648 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 80)) (** (((-1165 |#1|) (-1165 |#1|) (-521)) 45)) (* (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 25)))
-(((-491 |#1|) (-10 -7 (-15 -3552 ((-1170) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) |#1|)) (-15 -3254 ((-1165 |#1|) (-849))) (-15 -2723 ((-1165 |#1|) (-849) (-849))) (-15 -3201 ((-1080 |#1|) (-1165 |#1|))) (-15 -1716 ((-1080 |#1|) (-707))) (-15 -2478 ((-1165 |#1|) (-1165 |#1|) (-707) (-1031))) (-15 -1489 ((-1165 |#1|) (-1165 |#1|) (-707))) (-15 -1972 ((-1165 |#1|) (-1165 |#1|) (-1031) (-1031))) (-15 -3806 ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -1648 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2549 ((-1165 |#1|) (-1165 |#1|) (-849))) (-15 -1927 ((-1165 |#1|) (-1165 |#1|) (-849))) (-15 -3100 ((-1165 |#1|) (-1165 |#1|))) (-15 -3999 ((-849) (-1165 |#1|))) (-15 -2377 ((-108) (-1165 |#1|))) (-15 -1245 ((-1165 (-1165 |#1|)) (-849))) (-15 -3579 ((-1165 |#1|) (-849))) (-15 -3769 ((-1080 |#1|) (-1165 |#1|)))) (-323)) (T -491))
-((-3769 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-1245 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-491 *4)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-849)) (-5 *1 (-491 *4)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-849)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-849)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-1648 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-3806 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-1972 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1031)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-1489 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-491 *4)))) (-2478 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1165 *5)) (-5 *3 (-707)) (-5 *4 (-1031)) (-4 *5 (-323)) (-5 *1 (-491 *5)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4)))) (-2723 (*1 *2 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4)) (-4 *4 (-323)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031)))))) (-4 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-491 *4)))))
-(-10 -7 (-15 -3552 ((-1170) (-1165 (-587 (-2 (|:| -3434 |#1|) (|:| -2723 (-1031))))) |#1|)) (-15 -3254 ((-1165 |#1|) (-849))) (-15 -2723 ((-1165 |#1|) (-849) (-849))) (-15 -3201 ((-1080 |#1|) (-1165 |#1|))) (-15 -1716 ((-1080 |#1|) (-707))) (-15 -2478 ((-1165 |#1|) (-1165 |#1|) (-707) (-1031))) (-15 -1489 ((-1165 |#1|) (-1165 |#1|) (-707))) (-15 -1972 ((-1165 |#1|) (-1165 |#1|) (-1031) (-1031))) (-15 -3806 ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-521))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -1648 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2549 ((-1165 |#1|) (-1165 |#1|) (-849))) (-15 -1927 ((-1165 |#1|) (-1165 |#1|) (-849))) (-15 -3100 ((-1165 |#1|) (-1165 |#1|))) (-15 -3999 ((-849) (-1165 |#1|))) (-15 -2377 ((-108) (-1165 |#1|))) (-15 -1245 ((-1165 (-1165 |#1|)) (-849))) (-15 -3579 ((-1165 |#1|) (-849))) (-15 -3769 ((-1080 |#1|) (-1165 |#1|))))
-((-1618 (((-1 |#1| |#1|) |#1|) 11)) (-2972 (((-1 |#1| |#1|)) 10)))
-(((-492 |#1|) (-10 -7 (-15 -2972 ((-1 |#1| |#1|))) (-15 -1618 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -492))
-((-1618 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))) (-2972 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))))
-(-10 -7 (-15 -2972 ((-1 |#1| |#1|))) (-15 -1618 ((-1 |#1| |#1|) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2303 (($ $ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-4044 (($ (-707) |#1|) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 (-707) (-707)) $) NIL)) (-3837 ((|#1| $) NIL)) (-3140 (((-707) $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 20)) (-3562 (($) NIL T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1628 (($ $ $) NIL)) (* (($ (-707) $) NIL) (($ (-849) $) NIL)))
-(((-493 |#1|) (-13 (-729) (-477 (-707) |#1|)) (-783)) (T -493))
-NIL
-(-13 (-729) (-477 (-707) |#1|))
-((-1409 (((-587 |#2|) (-1080 |#1|) |#3|) 83)) (-2103 (((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-392 (-1080 |#1|)) (-1080 |#1|))) 99)) (-3021 (((-1080 |#1|) (-627 |#1|)) 95)))
-(((-494 |#1| |#2| |#3|) (-10 -7 (-15 -3021 ((-1080 |#1|) (-627 |#1|))) (-15 -1409 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -2103 ((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-392 (-1080 |#1|)) (-1080 |#1|))))) (-337) (-337) (-13 (-337) (-781))) (T -494))
-((-2103 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *6)) (-5 *5 (-1 (-392 (-1080 *6)) (-1080 *6))) (-4 *6 (-337)) (-5 *2 (-587 (-2 (|:| |outval| *7) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 *7)))))) (-5 *1 (-494 *6 *7 *4)) (-4 *7 (-337)) (-4 *4 (-13 (-337) (-781))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *5)) (-4 *5 (-337)) (-5 *2 (-587 *6)) (-5 *1 (-494 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-781))))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-337)) (-5 *2 (-1080 *4)) (-5 *1 (-494 *4 *5 *6)) (-4 *5 (-337)) (-4 *6 (-13 (-337) (-781))))))
-(-10 -7 (-15 -3021 ((-1080 |#1|) (-627 |#1|))) (-15 -1409 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -2103 ((-587 (-2 (|:| |outval| |#2|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#2|))))) (-627 |#1|) |#3| (-1 (-392 (-1080 |#1|)) (-1080 |#1|)))))
-((-2875 (((-776 (-521))) 11)) (-2888 (((-776 (-521))) 13)) (-2851 (((-769 (-521))) 8)))
-(((-495) (-10 -7 (-15 -2851 ((-769 (-521)))) (-15 -2875 ((-776 (-521)))) (-15 -2888 ((-776 (-521)))))) (T -495))
-((-2888 (*1 *2) (-12 (-5 *2 (-776 (-521))) (-5 *1 (-495)))) (-2875 (*1 *2) (-12 (-5 *2 (-776 (-521))) (-5 *1 (-495)))) (-2851 (*1 *2) (-12 (-5 *2 (-769 (-521))) (-5 *1 (-495)))))
-(-10 -7 (-15 -2851 ((-769 (-521)))) (-15 -2875 ((-776 (-521)))) (-15 -2888 ((-776 (-521)))))
-((-2487 (((-497) (-1084)) 15)) (-1584 ((|#1| (-497)) 20)))
-(((-496 |#1|) (-10 -7 (-15 -2487 ((-497) (-1084))) (-15 -1584 (|#1| (-497)))) (-1119)) (T -496))
-((-1584 (*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *1 (-496 *2)) (-4 *2 (-1119)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-497)) (-5 *1 (-496 *4)) (-4 *4 (-1119)))))
-(-10 -7 (-15 -2487 ((-497) (-1084))) (-15 -1584 (|#1| (-497))))
-((-1422 (((-108) $ $) NIL)) (-2525 (((-1067) $) 46)) (-2615 (((-108) $) 43)) (-1503 (((-1084) $) 44)) (-2397 (((-108) $) 41)) (-1523 (((-1067) $) 42)) (-4086 (((-108) $) NIL)) (-3682 (((-108) $) NIL)) (-2075 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-1289 (($ $ (-587 (-1084))) 20)) (-1584 (((-51) $) 22)) (-3976 (((-108) $) NIL)) (-1524 (((-521) $) NIL)) (-4146 (((-1031) $) NIL)) (-2136 (($ $ (-587 (-1084)) (-1084)) 58)) (-1487 (((-108) $) NIL)) (-3073 (((-202) $) NIL)) (-3856 (($ $) 38)) (-1598 (((-791) $) NIL)) (-3196 (((-108) $ $) NIL)) (-2550 (($ $ (-521)) NIL) (($ $ (-587 (-521))) NIL)) (-2042 (((-587 $) $) 28)) (-1233 (((-1084) (-587 $)) 47)) (-1438 (($ (-587 $)) 51) (($ (-1067)) NIL) (($ (-1084)) 18) (($ (-521)) 8) (($ (-202)) 25) (($ (-791)) NIL) (((-1017) $) 11) (($ (-1017)) 12)) (-1832 (((-1084) (-1084) (-587 $)) 50)) (-2223 (((-791) $) NIL)) (-3211 (($ $) 49)) (-3200 (($ $) 48)) (-4015 (($ $ (-587 $)) 55)) (-3125 (((-108) $) 27)) (-3562 (($) 9 T CONST)) (-3572 (($) 10 T CONST)) (-1549 (((-108) $ $) 59)) (-1648 (($ $ $) 64)) (-1628 (($ $ $) 60)) (** (($ $ (-707)) 63) (($ $ (-521)) 62)) (* (($ $ $) 61)) (-3478 (((-521) $) NIL)))
-(((-497) (-13 (-1016 (-1067) (-1084) (-521) (-202) (-791)) (-562 (-1017)) (-10 -8 (-15 -1584 ((-51) $)) (-15 -1438 ($ (-1017))) (-15 -4015 ($ $ (-587 $))) (-15 -2136 ($ $ (-587 (-1084)) (-1084))) (-15 -1289 ($ $ (-587 (-1084)))) (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 -1648 ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ (-521))) (-15 0 ($) -2682) (-15 1 ($) -2682) (-15 -3856 ($ $)) (-15 -2525 ((-1067) $)) (-15 -1233 ((-1084) (-587 $))) (-15 -1832 ((-1084) (-1084) (-587 $)))))) (T -497))
-((-1584 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-497)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-497)))) (-4015 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-497))) (-5 *1 (-497)))) (-2136 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1084)) (-5 *1 (-497)))) (-1289 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-497)))) (-1628 (*1 *1 *1 *1) (-5 *1 (-497))) (* (*1 *1 *1 *1) (-5 *1 (-497))) (-1648 (*1 *1 *1 *1) (-5 *1 (-497))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-497)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-497)))) (-3562 (*1 *1) (-5 *1 (-497))) (-3572 (*1 *1) (-5 *1 (-497))) (-3856 (*1 *1 *1) (-5 *1 (-497))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-497)))) (-1233 (*1 *2 *3) (-12 (-5 *3 (-587 (-497))) (-5 *2 (-1084)) (-5 *1 (-497)))) (-1832 (*1 *2 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-497))) (-5 *1 (-497)))))
-(-13 (-1016 (-1067) (-1084) (-521) (-202) (-791)) (-562 (-1017)) (-10 -8 (-15 -1584 ((-51) $)) (-15 -1438 ($ (-1017))) (-15 -4015 ($ $ (-587 $))) (-15 -2136 ($ $ (-587 (-1084)) (-1084))) (-15 -1289 ($ $ (-587 (-1084)))) (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 -1648 ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ (-521))) (-15 (-3562) ($) -2682) (-15 (-3572) ($) -2682) (-15 -3856 ($ $)) (-15 -2525 ((-1067) $)) (-15 -1233 ((-1084) (-587 $))) (-15 -1832 ((-1084) (-1084) (-587 $)))))
-((-3899 ((|#2| |#2|) 17)) (-3005 ((|#2| |#2|) 13)) (-1735 ((|#2| |#2| (-521) (-521)) 20)) (-3404 ((|#2| |#2|) 15)))
-(((-498 |#1| |#2|) (-10 -7 (-15 -3005 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -1735 (|#2| |#2| (-521) (-521)))) (-13 (-513) (-135)) (-1156 |#1|)) (T -498))
-((-1735 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-498 *4 *2)) (-4 *2 (-1156 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2)) (-4 *2 (-1156 *3)))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2)) (-4 *2 (-1156 *3)))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2)) (-4 *2 (-1156 *3)))))
-(-10 -7 (-15 -3005 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -1735 (|#2| |#2| (-521) (-521))))
-((-3459 (((-587 (-269 (-880 |#2|))) (-587 |#2|) (-587 (-1084))) 32)) (-1875 (((-587 |#2|) (-880 |#1|) |#3|) 53) (((-587 |#2|) (-1080 |#1|) |#3|) 52)) (-3659 (((-587 (-587 |#2|)) (-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084)) |#3|) 87)))
-(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -1875 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -1875 ((-587 |#2|) (-880 |#1|) |#3|)) (-15 -3659 ((-587 (-587 |#2|)) (-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084)) |#3|)) (-15 -3459 ((-587 (-269 (-880 |#2|))) (-587 |#2|) (-587 (-1084))))) (-425) (-337) (-13 (-337) (-781))) (T -499))
-((-3459 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1084))) (-4 *6 (-337)) (-5 *2 (-587 (-269 (-880 *6)))) (-5 *1 (-499 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-13 (-337) (-781))))) (-3659 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-587 (-880 *6))) (-5 *4 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-587 (-587 *7))) (-5 *1 (-499 *6 *7 *5)) (-4 *7 (-337)) (-4 *5 (-13 (-337) (-781))))) (-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6)) (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-781))))) (-1875 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6)) (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-781))))))
-(-10 -7 (-15 -1875 ((-587 |#2|) (-1080 |#1|) |#3|)) (-15 -1875 ((-587 |#2|) (-880 |#1|) |#3|)) (-15 -3659 ((-587 (-587 |#2|)) (-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084)) |#3|)) (-15 -3459 ((-587 (-269 (-880 |#2|))) (-587 |#2|) (-587 (-1084)))))
-((-1664 ((|#2| |#2| |#1|) 17)) (-3287 ((|#2| (-587 |#2|)) 27)) (-2392 ((|#2| (-587 |#2|)) 46)))
-(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3287 (|#2| (-587 |#2|))) (-15 -2392 (|#2| (-587 |#2|))) (-15 -1664 (|#2| |#2| |#1|))) (-282) (-1141 |#1|) |#1| (-1 |#1| |#1| (-707))) (T -500))
-((-1664 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-707))) (-5 *1 (-500 *3 *2 *4 *5)) (-4 *2 (-1141 *3)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6)) (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6)) (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))))
-(-10 -7 (-15 -3287 (|#2| (-587 |#2|))) (-15 -2392 (|#2| (-587 |#2|))) (-15 -1664 (|#2| |#2| |#1|)))
-((-1974 (((-392 (-1080 |#4|)) (-1080 |#4|) (-1 (-392 (-1080 |#3|)) (-1080 |#3|))) 79) (((-392 |#4|) |#4| (-1 (-392 (-1080 |#3|)) (-1080 |#3|))) 166)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 |#4|) |#4| (-1 (-392 (-1080 |#3|)) (-1080 |#3|)))) (-15 -1974 ((-392 (-1080 |#4|)) (-1080 |#4|) (-1 (-392 (-1080 |#3|)) (-1080 |#3|))))) (-783) (-729) (-13 (-282) (-135)) (-877 |#3| |#2| |#1|)) (T -501))
-((-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7))) (-4 *7 (-13 (-282) (-135))) (-4 *5 (-783)) (-4 *6 (-729)) (-4 *8 (-877 *7 *6 *5)) (-5 *2 (-392 (-1080 *8))) (-5 *1 (-501 *5 *6 *7 *8)) (-5 *3 (-1080 *8)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7))) (-4 *7 (-13 (-282) (-135))) (-4 *5 (-783)) (-4 *6 (-729)) (-5 *2 (-392 *3)) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-877 *7 *6 *5)))))
-(-10 -7 (-15 -1974 ((-392 |#4|) |#4| (-1 (-392 (-1080 |#3|)) (-1080 |#3|)))) (-15 -1974 ((-392 (-1080 |#4|)) (-1080 |#4|) (-1 (-392 (-1080 |#3|)) (-1080 |#3|)))))
-((-3899 ((|#4| |#4|) 74)) (-3005 ((|#4| |#4|) 70)) (-1735 ((|#4| |#4| (-521) (-521)) 76)) (-3404 ((|#4| |#4|) 72)))
-(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3005 (|#4| |#4|)) (-15 -3404 (|#4| |#4|)) (-15 -3899 (|#4| |#4|)) (-15 -1735 (|#4| |#4| (-521) (-521)))) (-13 (-337) (-342) (-562 (-521))) (-1141 |#1|) (-661 |#1| |#2|) (-1156 |#3|)) (T -502))
-((-1735 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3))) (-4 *5 (-1141 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-502 *4 *5 *6 *2)) (-4 *2 (-1156 *6)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5)))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5)))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5)))))
-(-10 -7 (-15 -3005 (|#4| |#4|)) (-15 -3404 (|#4| |#4|)) (-15 -3899 (|#4| |#4|)) (-15 -1735 (|#4| |#4| (-521) (-521))))
-((-3899 ((|#2| |#2|) 27)) (-3005 ((|#2| |#2|) 23)) (-1735 ((|#2| |#2| (-521) (-521)) 29)) (-3404 ((|#2| |#2|) 25)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -3005 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -1735 (|#2| |#2| (-521) (-521)))) (-13 (-337) (-342) (-562 (-521))) (-1156 |#1|)) (T -503))
-((-1735 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3))) (-5 *1 (-503 *4 *2)) (-4 *2 (-1156 *4)))) (-3899 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2)) (-4 *2 (-1156 *3)))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2)) (-4 *2 (-1156 *3)))) (-3005 (*1 *2 *2) (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2)) (-4 *2 (-1156 *3)))))
-(-10 -7 (-15 -3005 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3899 (|#2| |#2|)) (-15 -1735 (|#2| |#2| (-521) (-521))))
-((-2219 (((-3 (-521) "failed") |#2| |#1| (-1 (-3 (-521) "failed") |#1|)) 14) (((-3 (-521) "failed") |#2| |#1| (-521) (-1 (-3 (-521) "failed") |#1|)) 13) (((-3 (-521) "failed") |#2| (-521) (-1 (-3 (-521) "failed") |#1|)) 26)))
-(((-504 |#1| |#2|) (-10 -7 (-15 -2219 ((-3 (-521) "failed") |#2| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2219 ((-3 (-521) "failed") |#2| |#1| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2219 ((-3 (-521) "failed") |#2| |#1| (-1 (-3 (-521) "failed") |#1|)))) (-970) (-1141 |#1|)) (T -504))
-((-2219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4)))) (-2219 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4)))) (-2219 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-521) "failed") *5)) (-4 *5 (-970)) (-5 *2 (-521)) (-5 *1 (-504 *5 *3)) (-4 *3 (-1141 *5)))))
-(-10 -7 (-15 -2219 ((-3 (-521) "failed") |#2| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2219 ((-3 (-521) "failed") |#2| |#1| (-521) (-1 (-3 (-521) "failed") |#1|))) (-15 -2219 ((-3 (-521) "failed") |#2| |#1| (-1 (-3 (-521) "failed") |#1|))))
-((-1645 (($ $ $) 79)) (-2337 (((-392 $) $) 47)) (-1296 (((-3 (-521) "failed") $) 59)) (-1496 (((-521) $) 37)) (-3762 (((-3 (-381 (-521)) "failed") $) 74)) (-2428 (((-108) $) 24)) (-2758 (((-381 (-521)) $) 72)) (-2100 (((-108) $) 50)) (-2085 (($ $ $ $) 86)) (-2273 (((-108) $) 16)) (-3556 (($ $ $) 57)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 69)) (-3035 (((-3 $ "failed") $) 64)) (-3890 (($ $) 23)) (-2489 (($ $ $) 84)) (-3797 (($) 60)) (-3022 (($ $) 53)) (-1974 (((-392 $) $) 45)) (-2060 (((-108) $) 14)) (-3794 (((-707) $) 28)) (-2193 (($ $ (-707)) NIL) (($ $) 10)) (-2420 (($ $) 17)) (-1438 (((-521) $) NIL) (((-497) $) 36) (((-820 (-521)) $) 40) (((-353) $) 31) (((-202) $) 33)) (-1592 (((-707)) 8)) (-4212 (((-108) $ $) 20)) (-2475 (($ $ $) 55)))
-(((-505 |#1|) (-10 -8 (-15 -2489 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -2420 (|#1| |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -4212 ((-108) |#1| |#1|)) (-15 -2060 ((-108) |#1|)) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -1438 ((-202) |#1|)) (-15 -1438 ((-353) |#1|)) (-15 -3556 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1438 ((-521) |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2273 ((-108) |#1|)) (-15 -3794 ((-707) |#1|)) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -1592 ((-707)))) (-506)) (T -505))
-((-1592 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-505 *3)) (-4 *3 (-506)))))
-(-10 -8 (-15 -2489 (|#1| |#1| |#1|)) (-15 -2085 (|#1| |#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -2420 (|#1| |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -1645 (|#1| |#1| |#1|)) (-15 -4212 ((-108) |#1| |#1|)) (-15 -2060 ((-108) |#1|)) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -1438 ((-202) |#1|)) (-15 -1438 ((-353) |#1|)) (-15 -3556 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -2475 (|#1| |#1| |#1|)) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1438 ((-521) |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2273 ((-108) |#1|)) (-15 -3794 ((-707) |#1|)) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -2100 ((-108) |#1|)) (-15 -1592 ((-707))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-1645 (($ $ $) 85)) (-2057 (((-3 $ "failed") $ $) 19)) (-3591 (($ $ $ $) 73)) (-2694 (($ $) 51)) (-2337 (((-392 $) $) 52)) (-2165 (((-108) $ $) 125)) (-2578 (((-521) $) 114)) (-1697 (($ $ $) 88)) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 106)) (-1496 (((-521) $) 105)) (-2302 (($ $ $) 129)) (-1961 (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 104) (((-627 (-521)) (-627 $)) 103)) (-2783 (((-3 $ "failed") $) 34)) (-3762 (((-3 (-381 (-521)) "failed") $) 82)) (-2428 (((-108) $) 84)) (-2758 (((-381 (-521)) $) 83)) (-3254 (($) 81) (($ $) 80)) (-2282 (($ $ $) 128)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 123)) (-2100 (((-108) $) 53)) (-2085 (($ $ $ $) 71)) (-4020 (($ $ $) 86)) (-2273 (((-108) $) 116)) (-3556 (($ $ $) 97)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 100)) (-3637 (((-108) $) 31)) (-3924 (((-108) $) 92)) (-3035 (((-3 $ "failed") $) 94)) (-3305 (((-108) $) 115)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 132)) (-2830 (($ $ $ $) 72)) (-2816 (($ $ $) 117)) (-2459 (($ $ $) 118)) (-3890 (($ $) 75)) (-2522 (($ $) 89)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-2489 (($ $ $) 70)) (-3797 (($) 93 T CONST)) (-2959 (($ $) 77)) (-4146 (((-1031) $) 10) (($ $) 79)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-3022 (($ $) 98)) (-1974 (((-392 $) $) 50)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 130)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 124)) (-2060 (((-108) $) 91)) (-3794 (((-707) $) 126)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 127)) (-2193 (($ $ (-707)) 111) (($ $) 109)) (-3055 (($ $) 76)) (-2420 (($ $) 78)) (-1438 (((-521) $) 108) (((-497) $) 102) (((-820 (-521)) $) 101) (((-353) $) 96) (((-202) $) 95)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-521)) 107)) (-1592 (((-707)) 29)) (-4212 (((-108) $ $) 87)) (-2475 (($ $ $) 99)) (-3354 (($) 90)) (-1842 (((-108) $ $) 39)) (-2798 (($ $ $ $) 74)) (-4012 (($ $) 113)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-707)) 112) (($ $) 110)) (-1597 (((-108) $ $) 120)) (-1579 (((-108) $ $) 121)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 119)) (-1569 (((-108) $ $) 122)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-506) (-1196)) (T -506))
-((-3924 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-3354 (*1 *1) (-4 *1 (-506))) (-2522 (*1 *1 *1) (-4 *1 (-506))) (-1697 (*1 *1 *1 *1) (-4 *1 (-506))) (-4212 (*1 *2 *1 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-4020 (*1 *1 *1 *1) (-4 *1 (-506))) (-1645 (*1 *1 *1 *1) (-4 *1 (-506))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-381 (-521))))) (-3762 (*1 *2 *1) (|partial| -12 (-4 *1 (-506)) (-5 *2 (-381 (-521))))) (-3254 (*1 *1) (-4 *1 (-506))) (-3254 (*1 *1 *1) (-4 *1 (-506))) (-4146 (*1 *1 *1) (-4 *1 (-506))) (-2420 (*1 *1 *1) (-4 *1 (-506))) (-2959 (*1 *1 *1) (-4 *1 (-506))) (-3055 (*1 *1 *1) (-4 *1 (-506))) (-3890 (*1 *1 *1) (-4 *1 (-506))) (-2798 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-3591 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-2830 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-2085 (*1 *1 *1 *1 *1) (-4 *1 (-506))) (-2489 (*1 *1 *1 *1) (-4 *1 (-506))))
-(-13 (-1123) (-282) (-756) (-210) (-562 (-521)) (-961 (-521)) (-583 (-521)) (-562 (-497)) (-562 (-820 (-521))) (-814 (-521)) (-131) (-946) (-135) (-1060) (-10 -8 (-15 -3924 ((-108) $)) (-15 -2060 ((-108) $)) (-6 -4232) (-15 -3354 ($)) (-15 -2522 ($ $)) (-15 -1697 ($ $ $)) (-15 -4212 ((-108) $ $)) (-15 -4020 ($ $ $)) (-15 -1645 ($ $ $)) (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $)) (-15 -3254 ($)) (-15 -3254 ($ $)) (-15 -4146 ($ $)) (-15 -2420 ($ $)) (-15 -2959 ($ $)) (-15 -3055 ($ $)) (-15 -3890 ($ $)) (-15 -2798 ($ $ $ $)) (-15 -3591 ($ $ $ $)) (-15 -2830 ($ $ $ $)) (-15 -2085 ($ $ $ $)) (-15 -2489 ($ $ $)) (-6 -4231)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-791)) . T) ((-131) . T) ((-157) . T) ((-562 (-202)) . T) ((-562 (-353)) . T) ((-562 (-497)) . T) ((-562 (-521)) . T) ((-562 (-820 (-521))) . T) ((-210) . T) ((-265) . T) ((-282) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-583 (-521)) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-756) . T) ((-781) . T) ((-783) . T) ((-814 (-521)) . T) ((-848) . T) ((-946) . T) ((-961 (-521)) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) . T) ((-1123) . T))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#2| $ |#1| |#2|) NIL)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2964 (((-587 |#1|) $) NIL)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1223 (((-587 |#1|) $) NIL)) (-2131 (((-108) |#1| $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-507 |#1| |#2| |#3|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))) (T -507))
-NIL
-(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
-((-1629 (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-1 (-1080 |#2|) (-1080 |#2|))) 49)))
-(((-508 |#1| |#2|) (-10 -7 (-15 -1629 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-1 (-1080 |#2|) (-1080 |#2|))))) (-13 (-783) (-513)) (-13 (-27) (-404 |#1|))) (T -508))
-((-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-560 *3)) (-5 *5 (-1 (-1080 *3) (-1080 *3))) (-4 *3 (-13 (-27) (-404 *6))) (-4 *6 (-13 (-783) (-513))) (-5 *2 (-538 *3)) (-5 *1 (-508 *6 *3)))))
-(-10 -7 (-15 -1629 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-1 (-1080 |#2|) (-1080 |#2|)))))
-((-1270 (((-538 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-3004 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2403 (((-538 |#5|) |#5| (-1 |#3| |#3|)) 198)))
-(((-509 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2403 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1270 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3004 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-783) (-513) (-961 (-521))) (-13 (-27) (-404 |#1|)) (-1141 |#2|) (-1141 (-381 |#3|)) (-316 |#2| |#3| |#4|)) (T -509))
-((-3004 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-27) (-404 *4))) (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-4 *7 (-1141 (-381 *6))) (-5 *1 (-509 *4 *5 *6 *7 *2)) (-4 *2 (-316 *5 *6 *7)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-13 (-27) (-404 *5))) (-4 *5 (-13 (-783) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7))) (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3)) (-4 *3 (-316 *6 *7 *8)))) (-2403 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-13 (-27) (-404 *5))) (-4 *5 (-13 (-783) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7))) (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3)) (-4 *3 (-316 *6 *7 *8)))))
-(-10 -7 (-15 -2403 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1270 ((-538 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3004 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-2333 (((-108) (-521) (-521)) 10)) (-1758 (((-521) (-521)) 7)) (-3632 (((-521) (-521) (-521)) 8)))
-(((-510) (-10 -7 (-15 -1758 ((-521) (-521))) (-15 -3632 ((-521) (-521) (-521))) (-15 -2333 ((-108) (-521) (-521))))) (T -510))
-((-2333 (*1 *2 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-510)))) (-3632 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))))
-(-10 -7 (-15 -1758 ((-521) (-521))) (-15 -3632 ((-521) (-521) (-521))) (-15 -2333 ((-108) (-521) (-521))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2650 ((|#1| $) 61)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2910 (($ $) 91)) (-2775 (($ $) 74)) (-2303 ((|#1| $) 62)) (-2057 (((-3 $ "failed") $ $) 19)) (-1984 (($ $) 73)) (-2886 (($ $) 90)) (-2752 (($ $) 75)) (-2932 (($ $) 89)) (-2796 (($ $) 76)) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 69)) (-1496 (((-521) $) 68)) (-2783 (((-3 $ "failed") $) 34)) (-1380 (($ |#1| |#1|) 66)) (-2273 (((-108) $) 60)) (-2840 (($) 101)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 72)) (-3305 (((-108) $) 59)) (-2816 (($ $ $) 107)) (-2459 (($ $ $) 106)) (-1253 (($ $) 98)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-2144 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-381 (-521))) 64)) (-2912 ((|#1| $) 63)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2261 (((-3 $ "failed") $ $) 42)) (-3265 (($ $) 99)) (-1787 (($ $) 88)) (-2806 (($ $) 77)) (-2921 (($ $) 87)) (-2786 (($ $) 78)) (-2898 (($ $) 86)) (-2764 (($ $) 79)) (-3337 (((-108) $ |#1|) 58)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-521)) 70)) (-1592 (((-707)) 29)) (-1811 (($ $) 97)) (-2838 (($ $) 85)) (-1842 (((-108) $ $) 39)) (-1795 (($ $) 96)) (-2817 (($ $) 84)) (-1830 (($ $) 95)) (-2862 (($ $) 83)) (-3919 (($ $) 94)) (-2874 (($ $) 82)) (-1821 (($ $) 93)) (-2850 (($ $) 81)) (-1803 (($ $) 92)) (-2827 (($ $) 80)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 104)) (-1579 (((-108) $ $) 103)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 105)) (-1569 (((-108) $ $) 102)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ $) 100) (($ $ (-381 (-521))) 71)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-511 |#1|) (-1196) (-13 (-378) (-1105))) (T -511))
-((-2144 (*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-1380 (*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2144 (*1 *1 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))) (-2273 (*1 *2 *1) (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))) (-3337 (*1 *2 *1 *3) (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))))
-(-13 (-425) (-783) (-1105) (-927) (-961 (-521)) (-10 -8 (-6 -3893) (-15 -2144 ($ |t#1| |t#1|)) (-15 -1380 ($ |t#1| |t#1|)) (-15 -2144 ($ |t#1|)) (-15 -2144 ($ (-381 (-521)))) (-15 -2912 (|t#1| $)) (-15 -2303 (|t#1| $)) (-15 -2650 (|t#1| $)) (-15 -2273 ((-108) $)) (-15 -3305 ((-108) $)) (-15 -3337 ((-108) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-259) . T) ((-265) . T) ((-425) . T) ((-462) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-783) . T) ((-927) . T) ((-961 (-521)) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) . T) ((-1108) . T))
-((-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 9)) (-1954 (($ $) 11)) (-3795 (((-108) $) 18)) (-2783 (((-3 $ "failed") $) 16)) (-1842 (((-108) $ $) 20)))
-(((-512 |#1|) (-10 -8 (-15 -3795 ((-108) |#1|)) (-15 -1842 ((-108) |#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -2919 ((-2 (|:| -1493 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|))) (-513)) (T -512))
-NIL
-(-10 -8 (-15 -3795 ((-108) |#1|)) (-15 -1842 ((-108) |#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -2919 ((-2 (|:| -1493 |#1|) (|:| -4220 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ $) 42)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-513) (-1196)) (T -513))
-((-2261 (*1 *1 *1 *1) (|partial| -4 *1 (-513))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1493 *1) (|:| -4220 *1) (|:| |associate| *1))) (-4 *1 (-513)))) (-1954 (*1 *1 *1) (-4 *1 (-513))) (-1842 (*1 *2 *1 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))))
-(-13 (-157) (-37 $) (-265) (-10 -8 (-15 -2261 ((-3 $ "failed") $ $)) (-15 -2919 ((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $)) (-15 -1954 ($ $)) (-15 -1842 ((-108) $ $)) (-15 -3795 ((-108) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3086 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1084) (-587 |#2|)) 35)) (-1480 (((-538 |#2|) |#2| (-1084)) 58)) (-1363 (((-3 |#2| "failed") |#2| (-1084)) 149)) (-1451 (((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) (-560 |#2|) (-587 (-560 |#2|))) 152)) (-2645 (((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) |#2|) 38)))
-(((-514 |#1| |#2|) (-10 -7 (-15 -2645 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) |#2|)) (-15 -3086 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1084) (-587 |#2|))) (-15 -1363 ((-3 |#2| "failed") |#2| (-1084))) (-15 -1480 ((-538 |#2|) |#2| (-1084))) (-15 -1451 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) (-560 |#2|) (-587 (-560 |#2|))))) (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -514))
-((-1451 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1084)) (-5 *6 (-587 (-560 *3))) (-5 *5 (-560 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *7))) (-4 *7 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3))) (-5 *1 (-514 *7 *3)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-514 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-1363 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-514 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-3086 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-514 *6 *3)))) (-2645 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3))) (-5 *1 (-514 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
-(-10 -7 (-15 -2645 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) |#2|)) (-15 -3086 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1084) (-587 |#2|))) (-15 -1363 ((-3 |#2| "failed") |#2| (-1084))) (-15 -1480 ((-538 |#2|) |#2| (-1084))) (-15 -1451 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1084) (-560 |#2|) (-587 (-560 |#2|)))))
-((-2337 (((-392 |#1|) |#1|) 18)) (-1974 (((-392 |#1|) |#1|) 33)) (-1913 (((-3 |#1| "failed") |#1|) 44)) (-3613 (((-392 |#1|) |#1|) 51)))
-(((-515 |#1|) (-10 -7 (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -3613 ((-392 |#1|) |#1|)) (-15 -1913 ((-3 |#1| "failed") |#1|))) (-506)) (T -515))
-((-1913 (*1 *2 *2) (|partial| -12 (-5 *1 (-515 *2)) (-4 *2 (-506)))) (-3613 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))) (-2337 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))))
-(-10 -7 (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -3613 ((-392 |#1|) |#1|)) (-15 -1913 ((-3 |#1| "failed") |#1|)))
-((-3760 (($) 9)) (-1318 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-2964 (((-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 26)) (-4135 (($ (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2016 (($ (-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-3050 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)) (-2481 (((-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2398 (((-1170)) 12)))
-(((-516) (-10 -8 (-15 -3760 ($)) (-15 -2398 ((-1170))) (-15 -2964 ((-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2016 ($ (-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4135 ($ (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1318 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2481 ((-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3050 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -516))
-((-3050 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-516)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-516)))) (-1318 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-516)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-516)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-516)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-516)))) (-2398 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-516)))) (-3760 (*1 *1) (-5 *1 (-516))))
-(-10 -8 (-15 -3760 ($)) (-15 -2398 ((-1170))) (-15 -2964 ((-587 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2016 ($ (-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4135 ($ (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1318 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2481 ((-587 (-2 (|:| -2535 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3050 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1065 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1403 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
-((-1280 (((-1080 (-381 (-1080 |#2|))) |#2| (-560 |#2|) (-560 |#2|) (-1080 |#2|)) 28)) (-2253 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) |#2| (-1080 |#2|)) 106)) (-3667 (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 78) (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|)) 50)) (-4111 (((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| (-560 |#2|) |#2| (-381 (-1080 |#2|))) 85) (((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| |#2| (-1080 |#2|)) 105)) (-1501 (((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) |#2| (-1080 |#2|)) 107)) (-2134 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))) 124 (|has| |#3| (-597 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|)) 123 (|has| |#3| (-597 |#2|)))) (-4068 ((|#2| (-1080 (-381 (-1080 |#2|))) (-560 |#2|) |#2|) 48)) (-3843 (((-1080 (-381 (-1080 |#2|))) (-1080 |#2|) (-560 |#2|)) 27)))
-(((-517 |#1| |#2| |#3|) (-10 -7 (-15 -3667 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -3667 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -4111 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| |#2| (-1080 |#2|))) (-15 -4111 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2253 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) |#2| (-1080 |#2|))) (-15 -2253 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -1501 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) |#2| (-1080 |#2|))) (-15 -1501 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -1280 ((-1080 (-381 (-1080 |#2|))) |#2| (-560 |#2|) (-560 |#2|) (-1080 |#2|))) (-15 -4068 (|#2| (-1080 (-381 (-1080 |#2|))) (-560 |#2|) |#2|)) (-15 -3843 ((-1080 (-381 (-1080 |#2|))) (-1080 |#2|) (-560 |#2|))) (IF (|has| |#3| (-597 |#2|)) (PROGN (-15 -2134 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -2134 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))))) |%noBranch|)) (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))) (-13 (-404 |#1|) (-27) (-1105)) (-1013)) (T -517))
-((-2134 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-560 *4)) (-5 *6 (-381 (-1080 *4))) (-4 *4 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))) (-2134 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-560 *4)) (-5 *6 (-1080 *4)) (-4 *4 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))) (-3843 (*1 *2 *3 *4) (-12 (-5 *4 (-560 *6)) (-4 *6 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-1080 (-381 (-1080 *6)))) (-5 *1 (-517 *5 *6 *7)) (-5 *3 (-1080 *6)) (-4 *7 (-1013)))) (-4068 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1080 (-381 (-1080 *2)))) (-5 *4 (-560 *2)) (-4 *2 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1013)))) (-1280 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-1080 (-381 (-1080 *3)))) (-5 *1 (-517 *6 *3 *7)) (-5 *5 (-1080 *3)) (-4 *7 (-1013)))) (-1501 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-560 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-5 *5 (-381 (-1080 *2))) (-4 *2 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013)))) (-1501 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-560 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-5 *5 (-1080 *2)) (-4 *2 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013)))) (-2253 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-5 *6 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013)))) (-2253 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-5 *6 (-1080 *3)) (-4 *3 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013)))) (-4111 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))) (-4111 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))) (-3667 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))) (-3667 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))))
-(-10 -7 (-15 -3667 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -3667 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -4111 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| |#2| (-1080 |#2|))) (-15 -4111 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2| (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -2253 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) |#2| (-1080 |#2|))) (-15 -2253 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -1501 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) |#2| (-1080 |#2|))) (-15 -1501 ((-3 |#2| "failed") |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)) (-560 |#2|) |#2| (-381 (-1080 |#2|)))) (-15 -1280 ((-1080 (-381 (-1080 |#2|))) |#2| (-560 |#2|) (-560 |#2|) (-1080 |#2|))) (-15 -4068 (|#2| (-1080 (-381 (-1080 |#2|))) (-560 |#2|) |#2|)) (-15 -3843 ((-1080 (-381 (-1080 |#2|))) (-1080 |#2|) (-560 |#2|))) (IF (|has| |#3| (-597 |#2|)) (PROGN (-15 -2134 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) |#2| (-1080 |#2|))) (-15 -2134 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-560 |#2|) |#2| (-381 (-1080 |#2|))))) |%noBranch|))
-((-4022 (((-521) (-521) (-707)) 66)) (-2049 (((-521) (-521)) 65)) (-1528 (((-521) (-521)) 64)) (-2656 (((-521) (-521)) 69)) (-1627 (((-521) (-521) (-521)) 49)) (-2975 (((-521) (-521) (-521)) 46)) (-2482 (((-381 (-521)) (-521)) 20)) (-2882 (((-521) (-521)) 21)) (-3521 (((-521) (-521)) 58)) (-1530 (((-521) (-521)) 32)) (-3727 (((-587 (-521)) (-521)) 63)) (-3231 (((-521) (-521) (-521) (-521) (-521)) 44)) (-1337 (((-381 (-521)) (-521)) 41)))
-(((-518) (-10 -7 (-15 -1337 ((-381 (-521)) (-521))) (-15 -3231 ((-521) (-521) (-521) (-521) (-521))) (-15 -3727 ((-587 (-521)) (-521))) (-15 -1530 ((-521) (-521))) (-15 -3521 ((-521) (-521))) (-15 -2882 ((-521) (-521))) (-15 -2482 ((-381 (-521)) (-521))) (-15 -2975 ((-521) (-521) (-521))) (-15 -1627 ((-521) (-521) (-521))) (-15 -2656 ((-521) (-521))) (-15 -1528 ((-521) (-521))) (-15 -2049 ((-521) (-521))) (-15 -4022 ((-521) (-521) (-707))))) (T -518))
-((-4022 (*1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-707)) (-5 *1 (-518)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-1528 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-2656 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-1627 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-2975 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-2482 (*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-3521 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-3727 (*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))) (-3231 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))) (-1337 (*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))))
-(-10 -7 (-15 -1337 ((-381 (-521)) (-521))) (-15 -3231 ((-521) (-521) (-521) (-521) (-521))) (-15 -3727 ((-587 (-521)) (-521))) (-15 -1530 ((-521) (-521))) (-15 -3521 ((-521) (-521))) (-15 -2882 ((-521) (-521))) (-15 -2482 ((-381 (-521)) (-521))) (-15 -2975 ((-521) (-521) (-521))) (-15 -1627 ((-521) (-521) (-521))) (-15 -2656 ((-521) (-521))) (-15 -1528 ((-521) (-521))) (-15 -2049 ((-521) (-521))) (-15 -4022 ((-521) (-521) (-707))))
-((-2581 (((-2 (|:| |answer| |#4|) (|:| -1522 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-519 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2581 ((-2 (|:| |answer| |#4|) (|:| -1522 |#4|)) |#4| (-1 |#2| |#2|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -519))
-((-2581 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-4 *7 (-1141 (-381 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1522 *3))) (-5 *1 (-519 *5 *6 *7 *3)) (-4 *3 (-316 *5 *6 *7)))))
-(-10 -7 (-15 -2581 ((-2 (|:| |answer| |#4|) (|:| -1522 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2581 (((-2 (|:| |answer| (-381 |#2|)) (|:| -1522 (-381 |#2|)) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|)) 18)))
-(((-520 |#1| |#2|) (-10 -7 (-15 -2581 ((-2 (|:| |answer| (-381 |#2|)) (|:| -1522 (-381 |#2|)) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|)))) (-337) (-1141 |#1|)) (T -520))
-((-2581 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |answer| (-381 *6)) (|:| -1522 (-381 *6)) (|:| |specpart| (-381 *6)) (|:| |polypart| *6))) (-5 *1 (-520 *5 *6)) (-5 *3 (-381 *6)))))
-(-10 -7 (-15 -2581 ((-2 (|:| |answer| (-381 |#2|)) (|:| -1522 (-381 |#2|)) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 25)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 86)) (-1954 (($ $) 87)) (-3795 (((-108) $) NIL)) (-1645 (($ $ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3591 (($ $ $ $) 42)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL)) (-1697 (($ $ $) 80)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL)) (-1496 (((-521) $) NIL)) (-2302 (($ $ $) 79)) (-1961 (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 60) (((-627 (-521)) (-627 $)) 57)) (-2783 (((-3 $ "failed") $) 83)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL)) (-2428 (((-108) $) NIL)) (-2758 (((-381 (-521)) $) NIL)) (-3254 (($) 62) (($ $) 63)) (-2282 (($ $ $) 78)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2085 (($ $ $ $) NIL)) (-4020 (($ $ $) 54)) (-2273 (((-108) $) NIL)) (-3556 (($ $ $) NIL)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL)) (-3637 (((-108) $) 26)) (-3924 (((-108) $) 73)) (-3035 (((-3 $ "failed") $) NIL)) (-3305 (((-108) $) 34)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2830 (($ $ $ $) 43)) (-2816 (($ $ $) 75)) (-2459 (($ $ $) 74)) (-3890 (($ $) NIL)) (-2522 (($ $) 40)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) 53)) (-2489 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2959 (($ $) 31)) (-4146 (((-1031) $) NIL) (($ $) 33)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 117)) (-2286 (($ $ $) 84) (($ (-587 $)) NIL)) (-3022 (($ $) NIL)) (-1974 (((-392 $) $) 103)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) 82)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2060 (((-108) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 77)) (-2193 (($ $ (-707)) NIL) (($ $) NIL)) (-3055 (($ $) 32)) (-2420 (($ $) 30)) (-1438 (((-521) $) 39) (((-497) $) 51) (((-820 (-521)) $) NIL) (((-353) $) 46) (((-202) $) 48) (((-1067) $) 52)) (-2223 (((-791) $) 37) (($ (-521)) 38) (($ $) NIL) (($ (-521)) 38)) (-1592 (((-707)) NIL)) (-4212 (((-108) $ $) NIL)) (-2475 (($ $ $) NIL)) (-3354 (($) 29)) (-1842 (((-108) $ $) NIL)) (-2798 (($ $ $ $) 41)) (-4012 (($ $) 61)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 27 T CONST)) (-3572 (($) 28 T CONST)) (-3828 (((-1067) $) 20) (((-1067) $ (-108)) 22) (((-1170) (-758) $) 23) (((-1170) (-758) $ (-108)) 24)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 64)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 65)) (-1639 (($ $) 66) (($ $ $) 68)) (-1628 (($ $ $) 67)) (** (($ $ (-849)) NIL) (($ $ (-707)) 72)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 70) (($ $ $) 69)))
-(((-521) (-13 (-506) (-562 (-1067)) (-764) (-10 -8 (-15 -3254 ($ $)) (-6 -4220) (-6 -4225) (-6 -4221) (-6 -4215)))) (T -521))
-((-3254 (*1 *1 *1) (-5 *1 (-521))))
-(-13 (-506) (-562 (-1067)) (-764) (-10 -8 (-15 -3254 ($ $)) (-6 -4220) (-6 -4225) (-6 -4221) (-6 -4215)))
-((-1853 (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705) (-982)) 103) (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705)) 105)) (-1749 (((-3 (-959) "failed") (-290 (-353)) (-1006 (-776 (-353))) (-1084)) 168) (((-3 (-959) "failed") (-290 (-353)) (-1006 (-776 (-353))) (-1067)) 167) (((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353) (-353) (-982)) 173) (((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353) (-353)) 174) (((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353)) 175) (((-959) (-290 (-353)) (-587 (-1008 (-776 (-353))))) 176) (((-959) (-290 (-353)) (-1008 (-776 (-353)))) 163) (((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353)) 162) (((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353) (-353)) 158) (((-959) (-705)) 150) (((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353) (-353) (-982)) 157)))
-(((-522) (-10 -7 (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353) (-353) (-982))) (-15 -1749 ((-959) (-705))) (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353) (-353) (-982))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705) (-982))) (-15 -1749 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-776 (-353))) (-1067))) (-15 -1749 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-776 (-353))) (-1084))))) (T -522))
-((-1749 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-776 (-353)))) (-5 *5 (-1084)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-776 (-353)))) (-5 *5 (-1067)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-705)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) (-5 *1 (-522)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959)))) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353))))) (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353))))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353))))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353))))) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353)))) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353)))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353)))) (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-959)) (-5 *1 (-522)))) (-1749 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353)))) (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522)))))
-(-10 -7 (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353) (-353) (-982))) (-15 -1749 ((-959) (-705))) (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-1008 (-776 (-353))))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353) (-353))) (-15 -1749 ((-959) (-290 (-353)) (-587 (-1008 (-776 (-353)))) (-353) (-353) (-982))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))) (-705) (-982))) (-15 -1749 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-776 (-353))) (-1067))) (-15 -1749 ((-3 (-959) "failed") (-290 (-353)) (-1006 (-776 (-353))) (-1084))))
-((-3002 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|)) 181)) (-1220 (((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|)) 99)) (-1204 (((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2|) 177)) (-2194 (((-3 |#2| "failed") |#2| |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084))) 186)) (-1702 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-1084)) 194 (|has| |#3| (-597 |#2|)))))
-(((-523 |#1| |#2| |#3|) (-10 -7 (-15 -1220 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|))) (-15 -1204 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2|)) (-15 -3002 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|))) (-15 -2194 ((-3 |#2| "failed") |#2| |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)))) (IF (|has| |#3| (-597 |#2|)) (-15 -1702 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-1084))) |%noBranch|)) (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))) (-13 (-404 |#1|) (-27) (-1105)) (-1013)) (T -523))
-((-1702 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-560 *4)) (-5 *6 (-1084)) (-4 *4 (-13 (-404 *7) (-27) (-1105))) (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-523 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))) (-2194 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-560 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-4 *2 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *1 (-523 *5 *2 *6)) (-4 *6 (-1013)))) (-3002 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105))) (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6 *3 *7)) (-4 *7 (-1013)))) (-1204 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))) (-1220 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *5) (-27) (-1105))) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521)))) (-5 *2 (-538 *3)) (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))))
-(-10 -7 (-15 -1220 ((-538 |#2|) |#2| (-560 |#2|) (-560 |#2|))) (-15 -1204 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-560 |#2|) (-560 |#2|) |#2|)) (-15 -3002 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-560 |#2|) (-560 |#2|) (-587 |#2|))) (-15 -2194 ((-3 |#2| "failed") |#2| |#2| |#2| (-560 |#2|) (-560 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1084)))) (IF (|has| |#3| (-597 |#2|)) (-15 -1702 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1245 (-587 |#2|))) |#3| |#2| (-560 |#2|) (-560 |#2|) (-1084))) |%noBranch|))
-((-1373 (((-2 (|:| -2562 |#2|) (|:| |nconst| |#2|)) |#2| (-1084)) 62)) (-2586 (((-3 |#2| "failed") |#2| (-1084) (-776 |#2|) (-776 |#2|)) 159 (-12 (|has| |#2| (-1048)) (|has| |#1| (-562 (-820 (-521)))) (|has| |#1| (-814 (-521))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)) 133 (-12 (|has| |#2| (-573)) (|has| |#1| (-562 (-820 (-521)))) (|has| |#1| (-814 (-521)))))) (-2220 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)) 142 (-12 (|has| |#2| (-573)) (|has| |#1| (-562 (-820 (-521)))) (|has| |#1| (-814 (-521)))))))
-(((-524 |#1| |#2|) (-10 -7 (-15 -1373 ((-2 (|:| -2562 |#2|) (|:| |nconst| |#2|)) |#2| (-1084))) (IF (|has| |#1| (-562 (-820 (-521)))) (IF (|has| |#1| (-814 (-521))) (PROGN (IF (|has| |#2| (-573)) (PROGN (-15 -2220 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084))) (-15 -2586 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) (IF (|has| |#2| (-1048)) (-15 -2586 ((-3 |#2| "failed") |#2| (-1084) (-776 |#2|) (-776 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-783) (-961 (-521)) (-425) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -524))
-((-2586 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1084)) (-5 *4 (-776 *2)) (-4 *2 (-1048)) (-4 *2 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-562 (-820 (-521)))) (-4 *5 (-814 (-521))) (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521)))) (-5 *1 (-524 *5 *2)))) (-2586 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-820 (-521)))) (-4 *5 (-814 (-521))) (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-2220 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-820 (-521)))) (-4 *5 (-814 (-521))) (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-573)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-1373 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521)))) (-5 *2 (-2 (|:| -2562 *3) (|:| |nconst| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
-(-10 -7 (-15 -1373 ((-2 (|:| -2562 |#2|) (|:| |nconst| |#2|)) |#2| (-1084))) (IF (|has| |#1| (-562 (-820 (-521)))) (IF (|has| |#1| (-814 (-521))) (PROGN (IF (|has| |#2| (-573)) (PROGN (-15 -2220 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084))) (-15 -2586 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) (IF (|has| |#2| (-1048)) (-15 -2586 ((-3 |#2| "failed") |#2| (-1084) (-776 |#2|) (-776 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2306 (((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-587 (-381 |#2|))) 39)) (-1749 (((-538 (-381 |#2|)) (-381 |#2|)) 27)) (-1235 (((-3 (-381 |#2|) "failed") (-381 |#2|)) 16)) (-3046 (((-3 (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-381 |#2|)) 46)))
-(((-525 |#1| |#2|) (-10 -7 (-15 -1749 ((-538 (-381 |#2|)) (-381 |#2|))) (-15 -1235 ((-3 (-381 |#2|) "failed") (-381 |#2|))) (-15 -3046 ((-3 (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-381 |#2|))) (-15 -2306 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-587 (-381 |#2|))))) (-13 (-337) (-135) (-961 (-521))) (-1141 |#1|)) (T -525))
-((-2306 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-587 (-381 *6))) (-5 *3 (-381 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *5 *6)))) (-3046 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -1347 (-381 *5)) (|:| |coeff| (-381 *5)))) (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5)))) (-1235 (*1 *2 *2) (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135) (-961 (-521)))) (-5 *1 (-525 *3 *4)))) (-1749 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-538 (-381 *5))) (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5)))))
-(-10 -7 (-15 -1749 ((-538 (-381 |#2|)) (-381 |#2|))) (-15 -1235 ((-3 (-381 |#2|) "failed") (-381 |#2|))) (-15 -3046 ((-3 (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-381 |#2|))) (-15 -2306 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-587 (-381 |#2|)))))
-((-3720 (((-3 (-521) "failed") |#1|) 14)) (-3976 (((-108) |#1|) 13)) (-1524 (((-521) |#1|) 9)))
-(((-526 |#1|) (-10 -7 (-15 -1524 ((-521) |#1|)) (-15 -3976 ((-108) |#1|)) (-15 -3720 ((-3 (-521) "failed") |#1|))) (-961 (-521))) (T -526))
-((-3720 (*1 *2 *3) (|partial| -12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2)))) (-3976 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-526 *3)) (-4 *3 (-961 (-521))))) (-1524 (*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2)))))
-(-10 -7 (-15 -1524 ((-521) |#1|)) (-15 -3976 ((-108) |#1|)) (-15 -3720 ((-3 (-521) "failed") |#1|)))
-((-1839 (((-3 (-2 (|:| |mainpart| (-381 (-880 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 (-880 |#1|))) (|:| |logand| (-381 (-880 |#1|))))))) "failed") (-381 (-880 |#1|)) (-1084) (-587 (-381 (-880 |#1|)))) 43)) (-2340 (((-538 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-1084)) 25)) (-1738 (((-3 (-381 (-880 |#1|)) "failed") (-381 (-880 |#1|)) (-1084)) 20)) (-3093 (((-3 (-2 (|:| -1347 (-381 (-880 |#1|))) (|:| |coeff| (-381 (-880 |#1|)))) "failed") (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|))) 32)))
-(((-527 |#1|) (-10 -7 (-15 -2340 ((-538 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-1084))) (-15 -1738 ((-3 (-381 (-880 |#1|)) "failed") (-381 (-880 |#1|)) (-1084))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-381 (-880 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 (-880 |#1|))) (|:| |logand| (-381 (-880 |#1|))))))) "failed") (-381 (-880 |#1|)) (-1084) (-587 (-381 (-880 |#1|))))) (-15 -3093 ((-3 (-2 (|:| -1347 (-381 (-880 |#1|))) (|:| |coeff| (-381 (-880 |#1|)))) "failed") (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|))))) (-13 (-513) (-961 (-521)) (-135))) (T -527))
-((-3093 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-961 (-521)) (-135))) (-5 *2 (-2 (|:| -1347 (-381 (-880 *5))) (|:| |coeff| (-381 (-880 *5))))) (-5 *1 (-527 *5)) (-5 *3 (-381 (-880 *5))))) (-1839 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 (-381 (-880 *6)))) (-5 *3 (-381 (-880 *6))) (-4 *6 (-13 (-513) (-961 (-521)) (-135))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6)))) (-1738 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-381 (-880 *4))) (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-961 (-521)) (-135))) (-5 *1 (-527 *4)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-961 (-521)) (-135))) (-5 *2 (-538 (-381 (-880 *5)))) (-5 *1 (-527 *5)) (-5 *3 (-381 (-880 *5))))))
-(-10 -7 (-15 -2340 ((-538 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-1084))) (-15 -1738 ((-3 (-381 (-880 |#1|)) "failed") (-381 (-880 |#1|)) (-1084))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-381 (-880 |#1|))) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 (-880 |#1|))) (|:| |logand| (-381 (-880 |#1|))))))) "failed") (-381 (-880 |#1|)) (-1084) (-587 (-381 (-880 |#1|))))) (-15 -3093 ((-3 (-2 (|:| -1347 (-381 (-880 |#1|))) (|:| |coeff| (-381 (-880 |#1|)))) "failed") (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|)))))
-((-1422 (((-108) $ $) 59)) (-3398 (((-108) $) 36)) (-2650 ((|#1| $) 30)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) 63)) (-2910 (($ $) 123)) (-2775 (($ $) 103)) (-2303 ((|#1| $) 28)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $) NIL)) (-2886 (($ $) 125)) (-2752 (($ $) 99)) (-2932 (($ $) 127)) (-2796 (($ $) 107)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) 78)) (-1496 (((-521) $) 80)) (-2783 (((-3 $ "failed") $) 62)) (-1380 (($ |#1| |#1|) 26)) (-2273 (((-108) $) 33)) (-2840 (($) 89)) (-3637 (((-108) $) 43)) (-3743 (($ $ (-521)) NIL)) (-3305 (((-108) $) 34)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1253 (($ $) 91)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-2144 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-381 (-521))) 77)) (-2912 ((|#1| $) 27)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) 65) (($ (-587 $)) NIL)) (-2261 (((-3 $ "failed") $ $) 64)) (-3265 (($ $) 93)) (-1787 (($ $) 131)) (-2806 (($ $) 105)) (-2921 (($ $) 133)) (-2786 (($ $) 109)) (-2898 (($ $) 129)) (-2764 (($ $) 101)) (-3337 (((-108) $ |#1|) 31)) (-2223 (((-791) $) 85) (($ (-521)) 67) (($ $) NIL) (($ (-521)) 67)) (-1592 (((-707)) 87)) (-1811 (($ $) 145)) (-2838 (($ $) 115)) (-1842 (((-108) $ $) NIL)) (-1795 (($ $) 143)) (-2817 (($ $) 111)) (-1830 (($ $) 141)) (-2862 (($ $) 121)) (-3919 (($ $) 139)) (-2874 (($ $) 119)) (-1821 (($ $) 137)) (-2850 (($ $) 117)) (-1803 (($ $) 135)) (-2827 (($ $) 113)) (-3509 (($ $ (-849)) 55) (($ $ (-707)) NIL)) (-3562 (($) 21 T CONST)) (-3572 (($) 10 T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 37)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 35)) (-1639 (($ $) 41) (($ $ $) 42)) (-1628 (($ $ $) 40)) (** (($ $ (-849)) 54) (($ $ (-707)) NIL) (($ $ $) 95) (($ $ (-381 (-521))) 147)) (* (($ (-849) $) 51) (($ (-707) $) NIL) (($ (-521) $) 50) (($ $ $) 48)))
-(((-528 |#1|) (-511 |#1|) (-13 (-378) (-1105))) (T -528))
-NIL
-(-511 |#1|)
-((-4050 (((-3 (-587 (-1080 (-521))) "failed") (-587 (-1080 (-521))) (-1080 (-521))) 24)))
-(((-529) (-10 -7 (-15 -4050 ((-3 (-587 (-1080 (-521))) "failed") (-587 (-1080 (-521))) (-1080 (-521)))))) (T -529))
-((-4050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 (-521)))) (-5 *3 (-1080 (-521))) (-5 *1 (-529)))))
-(-10 -7 (-15 -4050 ((-3 (-587 (-1080 (-521))) "failed") (-587 (-1080 (-521))) (-1080 (-521)))))
-((-4060 (((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-1084)) 18)) (-1914 (((-587 (-560 |#2|)) (-587 |#2|) (-1084)) 23)) (-2296 (((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-587 (-560 |#2|))) 10)) (-2081 ((|#2| |#2| (-1084)) 52 (|has| |#1| (-513)))) (-2422 ((|#2| |#2| (-1084)) 77 (-12 (|has| |#2| (-259)) (|has| |#1| (-425))))) (-4092 (((-560 |#2|) (-560 |#2|) (-587 (-560 |#2|)) (-1084)) 25)) (-3048 (((-560 |#2|) (-587 (-560 |#2|))) 24)) (-2640 (((-538 |#2|) |#2| (-1084) (-1 (-538 |#2|) |#2| (-1084)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084))) 101 (-12 (|has| |#2| (-259)) (|has| |#2| (-573)) (|has| |#2| (-961 (-1084))) (|has| |#1| (-562 (-820 (-521)))) (|has| |#1| (-425)) (|has| |#1| (-814 (-521)))))))
-(((-530 |#1| |#2|) (-10 -7 (-15 -4060 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-1084))) (-15 -3048 ((-560 |#2|) (-587 (-560 |#2|)))) (-15 -4092 ((-560 |#2|) (-560 |#2|) (-587 (-560 |#2|)) (-1084))) (-15 -2296 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-587 (-560 |#2|)))) (-15 -1914 ((-587 (-560 |#2|)) (-587 |#2|) (-1084))) (IF (|has| |#1| (-513)) (-15 -2081 (|#2| |#2| (-1084))) |%noBranch|) (IF (|has| |#1| (-425)) (IF (|has| |#2| (-259)) (PROGN (-15 -2422 (|#2| |#2| (-1084))) (IF (|has| |#1| (-562 (-820 (-521)))) (IF (|has| |#1| (-814 (-521))) (IF (|has| |#2| (-573)) (IF (|has| |#2| (-961 (-1084))) (-15 -2640 ((-538 |#2|) |#2| (-1084) (-1 (-538 |#2|) |#2| (-1084)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-783) (-404 |#1|)) (T -530))
-((-2640 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-538 *3) *3 (-1084))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1084))) (-4 *3 (-259)) (-4 *3 (-573)) (-4 *3 (-961 *4)) (-4 *3 (-404 *7)) (-5 *4 (-1084)) (-4 *7 (-562 (-820 (-521)))) (-4 *7 (-425)) (-4 *7 (-814 (-521))) (-4 *7 (-783)) (-5 *2 (-538 *3)) (-5 *1 (-530 *7 *3)))) (-2422 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-425)) (-4 *4 (-783)) (-5 *1 (-530 *4 *2)) (-4 *2 (-259)) (-4 *2 (-404 *4)))) (-2081 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-513)) (-4 *4 (-783)) (-5 *1 (-530 *4 *2)) (-4 *2 (-404 *4)))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-1084)) (-4 *6 (-404 *5)) (-4 *5 (-783)) (-5 *2 (-587 (-560 *6))) (-5 *1 (-530 *5 *6)))) (-2296 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-560 *4))) (-4 *4 (-404 *3)) (-4 *3 (-783)) (-5 *1 (-530 *3 *4)))) (-4092 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-560 *6))) (-5 *4 (-1084)) (-5 *2 (-560 *6)) (-4 *6 (-404 *5)) (-4 *5 (-783)) (-5 *1 (-530 *5 *6)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-587 (-560 *5))) (-4 *4 (-783)) (-5 *2 (-560 *5)) (-5 *1 (-530 *4 *5)) (-4 *5 (-404 *4)))) (-4060 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-560 *5))) (-5 *3 (-1084)) (-4 *5 (-404 *4)) (-4 *4 (-783)) (-5 *1 (-530 *4 *5)))))
-(-10 -7 (-15 -4060 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-1084))) (-15 -3048 ((-560 |#2|) (-587 (-560 |#2|)))) (-15 -4092 ((-560 |#2|) (-560 |#2|) (-587 (-560 |#2|)) (-1084))) (-15 -2296 ((-587 (-560 |#2|)) (-587 (-560 |#2|)) (-587 (-560 |#2|)))) (-15 -1914 ((-587 (-560 |#2|)) (-587 |#2|) (-1084))) (IF (|has| |#1| (-513)) (-15 -2081 (|#2| |#2| (-1084))) |%noBranch|) (IF (|has| |#1| (-425)) (IF (|has| |#2| (-259)) (PROGN (-15 -2422 (|#2| |#2| (-1084))) (IF (|has| |#1| (-562 (-820 (-521)))) (IF (|has| |#1| (-814 (-521))) (IF (|has| |#2| (-573)) (IF (|has| |#2| (-961 (-1084))) (-15 -2640 ((-538 |#2|) |#2| (-1084) (-1 (-538 |#2|) |#2| (-1084)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1084)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2564 (((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) "failed") (-521) |#1| |#1|)) 168)) (-1580 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-587 (-381 |#2|))) 144)) (-1410 (((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-587 (-381 |#2|))) 141)) (-2414 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-3510 (((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3916 (((-3 (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-381 |#2|)) 171)) (-4200 (((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-381 |#2|)) 174)) (-1571 (((-2 (|:| |ir| (-538 (-381 |#2|))) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|)) 82)) (-3621 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-1594 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-587 (-381 |#2|))) 148)) (-1551 (((-3 (-568 |#1| |#2|) "failed") (-568 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|)) 134)) (-3067 (((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|)) 158)) (-1996 (((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-381 |#2|)) 179)))
-(((-531 |#1| |#2|) (-10 -7 (-15 -3510 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3067 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -2564 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) "failed") (-521) |#1| |#1|))) (-15 -4200 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-381 |#2|))) (-15 -1996 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-381 |#2|))) (-15 -1580 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-587 (-381 |#2|)))) (-15 -1594 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-587 (-381 |#2|)))) (-15 -3916 ((-3 (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-381 |#2|))) (-15 -1410 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-587 (-381 |#2|)))) (-15 -2414 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1551 ((-3 (-568 |#1| |#2|) "failed") (-568 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -1571 ((-2 (|:| |ir| (-538 (-381 |#2|))) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|))) (-15 -3621 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-337) (-1141 |#1|)) (T -531))
-((-3621 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-531 *5 *3)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |ir| (-538 (-381 *6))) (|:| |specpart| (-381 *6)) (|:| |polypart| *6))) (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))) (-1551 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-568 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1981 *4) (|:| |sol?| (-108))) (-521) *4)) (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *1 (-531 *4 *5)))) (-2414 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1347 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-337)) (-5 *1 (-531 *4 *2)) (-4 *2 (-1141 *4)))) (-1410 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-587 (-381 *7))) (-4 *7 (-1141 *6)) (-5 *3 (-381 *7)) (-4 *6 (-337)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-531 *6 *7)))) (-3916 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -1347 (-381 *6)) (|:| |coeff| (-381 *6)))) (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))) (-1594 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1981 *7) (|:| |sol?| (-108))) (-521) *7)) (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7)) (-5 *3 (-381 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-531 *7 *8)))) (-1580 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1347 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7)) (-5 *3 (-381 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-531 *7 *8)))) (-1996 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1981 *6) (|:| |sol?| (-108))) (-521) *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6)) (-2 (|:| -1347 (-381 *7)) (|:| |coeff| (-381 *7))) "failed")) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-4200 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1347 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6)) (-2 (|:| -1347 (-381 *7)) (|:| |coeff| (-381 *7))) "failed")) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-2564 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-587 *6) "failed") (-521) *6 *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6))) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-3067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1981 *6) (|:| |sol?| (-108))) (-521) *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6))) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))) (-3510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1347 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6))) (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
-(-10 -7 (-15 -3510 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3067 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -2564 ((-2 (|:| |answer| (-538 (-381 |#2|))) (|:| |a0| |#1|)) (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-587 |#1|) "failed") (-521) |#1| |#1|))) (-15 -4200 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-381 |#2|))) (-15 -1996 ((-3 (-2 (|:| |answer| (-381 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-381 |#2|))) (-15 -1580 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-587 (-381 |#2|)))) (-15 -1594 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|))))))) (|:| |a0| |#1|)) "failed") (-381 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|) (-587 (-381 |#2|)))) (-15 -3916 ((-3 (-2 (|:| -1347 (-381 |#2|)) (|:| |coeff| (-381 |#2|))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-381 |#2|))) (-15 -1410 ((-3 (-2 (|:| |mainpart| (-381 |#2|)) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| (-381 |#2|)) (|:| |logand| (-381 |#2|)))))) "failed") (-381 |#2|) (-1 |#2| |#2|) (-587 (-381 |#2|)))) (-15 -2414 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1551 ((-3 (-568 |#1| |#2|) "failed") (-568 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1981 |#1|) (|:| |sol?| (-108))) (-521) |#1|))) (-15 -1571 ((-2 (|:| |ir| (-538 (-381 |#2|))) (|:| |specpart| (-381 |#2|)) (|:| |polypart| |#2|)) (-381 |#2|) (-1 |#2| |#2|))) (-15 -3621 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-4181 (((-3 |#2| "failed") |#2| (-1084) (-1084)) 10)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -4181 ((-3 |#2| "failed") |#2| (-1084) (-1084)))) (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-886) (-1048) (-29 |#1|))) (T -532))
-((-4181 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-532 *4 *2)) (-4 *2 (-13 (-1105) (-886) (-1048) (-29 *4))))))
-(-10 -7 (-15 -4181 ((-3 |#2| "failed") |#2| (-1084) (-1084))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $ (-521)) 65)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-4093 (($ (-1080 (-521)) (-521)) 71)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) 57)) (-3751 (($ $) 33)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-3490 (((-707) $) 15)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3967 (((-521)) 27)) (-2067 (((-521) $) 31)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2191 (($ $ (-521)) 21)) (-2261 (((-3 $ "failed") $ $) 58)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) 16)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 60)) (-3312 (((-1065 (-521)) $) 18)) (-2145 (($ $) 23)) (-2223 (((-791) $) 86) (($ (-521)) 51) (($ $) NIL)) (-1592 (((-707)) 14)) (-1842 (((-108) $ $) NIL)) (-3893 (((-521) $ (-521)) 35)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 34 T CONST)) (-3572 (($) 19 T CONST)) (-1549 (((-108) $ $) 38)) (-1639 (($ $) 50) (($ $ $) 36)) (-1628 (($ $ $) 49)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 53) (($ $ $) 54)))
-(((-533 |#1| |#2|) (-797 |#1|) (-521) (-108)) (T -533))
-NIL
-(-797 |#1|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 18)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 (($ $ (-849)) NIL (|has| $ (-342))) (($ $) NIL)) (-2130 (((-1093 (-849) (-707)) (-521)) 47)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 $ "failed") $) 75)) (-1496 (($ $) 74)) (-3190 (($ (-1165 $)) 73)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) 30)) (-3254 (($) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) 49)) (-3299 (((-108) $) NIL)) (-1375 (($ $) NIL) (($ $ (-707)) NIL)) (-2100 (((-108) $) NIL)) (-3490 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3637 (((-108) $) NIL)) (-3579 (($) 35 (|has| $ (-342)))) (-2377 (((-108) $) NIL (|has| $ (-342)))) (-2549 (($ $ (-849)) NIL (|has| $ (-342))) (($ $) NIL)) (-3035 (((-3 $ "failed") $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 $) $ (-849)) NIL (|has| $ (-342))) (((-1080 $) $) 83)) (-3999 (((-849) $) 55)) (-3361 (((-1080 $) $) NIL (|has| $ (-342)))) (-3959 (((-3 (-1080 $) "failed") $ $) NIL (|has| $ (-342))) (((-1080 $) $) NIL (|has| $ (-342)))) (-3734 (($ $ (-1080 $)) NIL (|has| $ (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL T CONST)) (-2723 (($ (-849)) 48)) (-3017 (((-108) $) 67)) (-4146 (((-1031) $) NIL)) (-1384 (($) 16 (|has| $ (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 40)) (-1974 (((-392 $) $) NIL)) (-2239 (((-849)) 66) (((-769 (-849))) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-3 (-707) "failed") $ $) NIL) (((-707) $) NIL)) (-2043 (((-126)) NIL)) (-2193 (($ $ (-707)) NIL) (($ $) NIL)) (-2098 (((-849) $) 65) (((-769 (-849)) $) NIL)) (-3436 (((-1080 $)) 82)) (-3923 (($) 54)) (-3540 (($) 36 (|has| $ (-342)))) (-1816 (((-627 $) (-1165 $)) NIL) (((-1165 $) $) 71)) (-1438 (((-521) $) 26)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) 28) (($ $) NIL) (($ (-381 (-521))) NIL)) (-2446 (((-3 $ "failed") $) NIL) (($ $) 84)) (-1592 (((-707)) 37)) (-1245 (((-1165 $) (-849)) 77) (((-1165 $)) 76)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 19 T CONST)) (-3572 (($) 15 T CONST)) (-2687 (($ $ (-707)) NIL (|has| $ (-342))) (($ $) NIL (|has| $ (-342)))) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 24)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 61) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-534 |#1|) (-13 (-323) (-303 $) (-562 (-521))) (-849)) (T -534))
-NIL
-(-13 (-323) (-303 $) (-562 (-521)))
-((-1219 (((-1170) (-1067)) 10)))
-(((-535) (-10 -7 (-15 -1219 ((-1170) (-1067))))) (T -535))
-((-1219 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-535)))))
-(-10 -7 (-15 -1219 ((-1170) (-1067))))
-((-2090 (((-538 |#2|) (-538 |#2|)) 38)) (-1631 (((-587 |#2|) (-538 |#2|)) 40)) (-4118 ((|#2| (-538 |#2|)) 47)))
-(((-536 |#1| |#2|) (-10 -7 (-15 -2090 ((-538 |#2|) (-538 |#2|))) (-15 -1631 ((-587 |#2|) (-538 |#2|))) (-15 -4118 (|#2| (-538 |#2|)))) (-13 (-425) (-961 (-521)) (-783) (-583 (-521))) (-13 (-29 |#1|) (-1105))) (T -536))
-((-4118 (*1 *2 *3) (-12 (-5 *3 (-538 *2)) (-4 *2 (-13 (-29 *4) (-1105))) (-5 *1 (-536 *4 *2)) (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-538 *5)) (-4 *5 (-13 (-29 *4) (-1105))) (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *2 (-587 *5)) (-5 *1 (-536 *4 *5)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-538 *4)) (-4 *4 (-13 (-29 *3) (-1105))) (-4 *3 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *1 (-536 *3 *4)))))
-(-10 -7 (-15 -2090 ((-538 |#2|) (-538 |#2|))) (-15 -1631 ((-587 |#2|) (-538 |#2|))) (-15 -4118 (|#2| (-538 |#2|))))
-((-1393 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|)) 26)))
-(((-537 |#1| |#2|) (-10 -7 (-15 -1393 ((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|))) (-15 -1393 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1393 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1393 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-337) (-337)) (T -537))
-((-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-337)) (-4 *6 (-337)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-537 *5 *6)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-337)) (-4 *2 (-337)) (-5 *1 (-537 *5 *2)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1347 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-337)) (-4 *6 (-337)) (-5 *2 (-2 (|:| -1347 *6) (|:| |coeff| *6))) (-5 *1 (-537 *5 *6)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-337)) (-4 *6 (-337)) (-5 *2 (-538 *6)) (-5 *1 (-537 *5 *6)))))
-(-10 -7 (-15 -1393 ((-538 |#2|) (-1 |#2| |#1|) (-538 |#1|))) (-15 -1393 ((-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1347 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1393 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1393 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 69)) (-1496 ((|#1| $) NIL)) (-1347 ((|#1| $) 24)) (-3499 (((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-3029 (($ |#1| (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-1522 (((-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) $) 25)) (-4024 (((-1067) $) NIL)) (-3094 (($ |#1| |#1|) 32) (($ |#1| (-1084)) 43 (|has| |#1| (-961 (-1084))))) (-4146 (((-1031) $) NIL)) (-2906 (((-108) $) 28)) (-2193 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1084)) 82 (|has| |#1| (-828 (-1084))))) (-2223 (((-791) $) 96) (($ |#1|) 23)) (-3562 (($) 16 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) 15) (($ $ $) NIL)) (-1628 (($ $ $) 78)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 14) (($ (-381 (-521)) $) 35) (($ $ (-381 (-521))) NIL)))
-(((-538 |#1|) (-13 (-654 (-381 (-521))) (-961 |#1|) (-10 -8 (-15 -3029 ($ |#1| (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1347 (|#1| $)) (-15 -1522 ((-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) $)) (-15 -3499 ((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2906 ((-108) $)) (-15 -3094 ($ |#1| |#1|)) (-15 -2193 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-828 (-1084))) (-15 -2193 (|#1| $ (-1084))) |%noBranch|) (IF (|has| |#1| (-961 (-1084))) (-15 -3094 ($ |#1| (-1084))) |%noBranch|))) (-337)) (T -538))
-((-3029 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *2)) (|:| |logand| (-1080 *2))))) (-5 *4 (-587 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-337)) (-5 *1 (-538 *2)))) (-1347 (*1 *2 *1) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *3)) (|:| |logand| (-1080 *3))))) (-5 *1 (-538 *3)) (-4 *3 (-337)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-538 *3)) (-4 *3 (-337)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-337)))) (-3094 (*1 *1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337)))) (-2193 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-538 *2)) (-4 *2 (-337)))) (-2193 (*1 *2 *1 *3) (-12 (-4 *2 (-337)) (-4 *2 (-828 *3)) (-5 *1 (-538 *2)) (-5 *3 (-1084)))) (-3094 (*1 *1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *1 (-538 *2)) (-4 *2 (-961 *3)) (-4 *2 (-337)))))
-(-13 (-654 (-381 (-521))) (-961 |#1|) (-10 -8 (-15 -3029 ($ |#1| (-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) (-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1347 (|#1| $)) (-15 -1522 ((-587 (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 |#1|)) (|:| |logand| (-1080 |#1|)))) $)) (-15 -3499 ((-587 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2906 ((-108) $)) (-15 -3094 ($ |#1| |#1|)) (-15 -2193 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-828 (-1084))) (-15 -2193 (|#1| $ (-1084))) |%noBranch|) (IF (|has| |#1| (-961 (-1084))) (-15 -3094 ($ |#1| (-1084))) |%noBranch|)))
-((-3486 (((-108) |#1|) 16)) (-1783 (((-3 |#1| "failed") |#1|) 14)) (-1729 (((-2 (|:| -3354 |#1|) (|:| -2246 (-707))) |#1|) 31) (((-3 |#1| "failed") |#1| (-707)) 18)) (-2700 (((-108) |#1| (-707)) 19)) (-2109 ((|#1| |#1|) 32)) (-3520 ((|#1| |#1| (-707)) 34)))
-(((-539 |#1|) (-10 -7 (-15 -2700 ((-108) |#1| (-707))) (-15 -1729 ((-3 |#1| "failed") |#1| (-707))) (-15 -1729 ((-2 (|:| -3354 |#1|) (|:| -2246 (-707))) |#1|)) (-15 -3520 (|#1| |#1| (-707))) (-15 -3486 ((-108) |#1|)) (-15 -1783 ((-3 |#1| "failed") |#1|)) (-15 -2109 (|#1| |#1|))) (-506)) (T -539))
-((-2109 (*1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-1783 (*1 *2 *2) (|partial| -12 (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-3486 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))) (-3520 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-1729 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3354 *3) (|:| -2246 (-707)))) (-5 *1 (-539 *3)) (-4 *3 (-506)))) (-1729 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))))
-(-10 -7 (-15 -2700 ((-108) |#1| (-707))) (-15 -1729 ((-3 |#1| "failed") |#1| (-707))) (-15 -1729 ((-2 (|:| -3354 |#1|) (|:| -2246 (-707))) |#1|)) (-15 -3520 (|#1| |#1| (-707))) (-15 -3486 ((-108) |#1|)) (-15 -1783 ((-3 |#1| "failed") |#1|)) (-15 -2109 (|#1| |#1|)))
-((-1835 (((-1080 |#1|) (-849)) 27)))
-(((-540 |#1|) (-10 -7 (-15 -1835 ((-1080 |#1|) (-849)))) (-323)) (T -540))
-((-1835 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-540 *4)) (-4 *4 (-323)))))
-(-10 -7 (-15 -1835 ((-1080 |#1|) (-849))))
-((-2090 (((-538 (-381 (-880 |#1|))) (-538 (-381 (-880 |#1|)))) 26)) (-1749 (((-3 (-290 |#1|) (-587 (-290 |#1|))) (-381 (-880 |#1|)) (-1084)) 32 (|has| |#1| (-135)))) (-1631 (((-587 (-290 |#1|)) (-538 (-381 (-880 |#1|)))) 18)) (-3450 (((-290 |#1|) (-381 (-880 |#1|)) (-1084)) 30 (|has| |#1| (-135)))) (-4118 (((-290 |#1|) (-538 (-381 (-880 |#1|)))) 20)))
-(((-541 |#1|) (-10 -7 (-15 -2090 ((-538 (-381 (-880 |#1|))) (-538 (-381 (-880 |#1|))))) (-15 -1631 ((-587 (-290 |#1|)) (-538 (-381 (-880 |#1|))))) (-15 -4118 ((-290 |#1|) (-538 (-381 (-880 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -1749 ((-3 (-290 |#1|) (-587 (-290 |#1|))) (-381 (-880 |#1|)) (-1084))) (-15 -3450 ((-290 |#1|) (-381 (-880 |#1|)) (-1084)))) |%noBranch|)) (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (T -541))
-((-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-135)) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *2 (-290 *5)) (-5 *1 (-541 *5)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-135)) (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *2 (-3 (-290 *5) (-587 (-290 *5)))) (-5 *1 (-541 *5)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-538 (-381 (-880 *4)))) (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *2 (-290 *4)) (-5 *1 (-541 *4)))) (-1631 (*1 *2 *3) (-12 (-5 *3 (-538 (-381 (-880 *4)))) (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *2 (-587 (-290 *4))) (-5 *1 (-541 *4)))) (-2090 (*1 *2 *2) (-12 (-5 *2 (-538 (-381 (-880 *3)))) (-4 *3 (-13 (-425) (-961 (-521)) (-783) (-583 (-521)))) (-5 *1 (-541 *3)))))
-(-10 -7 (-15 -2090 ((-538 (-381 (-880 |#1|))) (-538 (-381 (-880 |#1|))))) (-15 -1631 ((-587 (-290 |#1|)) (-538 (-381 (-880 |#1|))))) (-15 -4118 ((-290 |#1|) (-538 (-381 (-880 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -1749 ((-3 (-290 |#1|) (-587 (-290 |#1|))) (-381 (-880 |#1|)) (-1084))) (-15 -3450 ((-290 |#1|) (-381 (-880 |#1|)) (-1084)))) |%noBranch|))
-((-3043 (((-587 (-627 (-521))) (-587 (-521)) (-587 (-833 (-521)))) 46) (((-587 (-627 (-521))) (-587 (-521))) 47) (((-627 (-521)) (-587 (-521)) (-833 (-521))) 42)) (-3041 (((-707) (-587 (-521))) 40)))
-(((-542) (-10 -7 (-15 -3041 ((-707) (-587 (-521)))) (-15 -3043 ((-627 (-521)) (-587 (-521)) (-833 (-521)))) (-15 -3043 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -3043 ((-587 (-627 (-521))) (-587 (-521)) (-587 (-833 (-521))))))) (T -542))
-((-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-521))) (-5 *4 (-587 (-833 (-521)))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-542)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-542)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-521))) (-5 *4 (-833 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-542)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-707)) (-5 *1 (-542)))))
-(-10 -7 (-15 -3041 ((-707) (-587 (-521)))) (-15 -3043 ((-627 (-521)) (-587 (-521)) (-833 (-521)))) (-15 -3043 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -3043 ((-587 (-627 (-521))) (-587 (-521)) (-587 (-833 (-521))))))
-((-3472 (((-587 |#5|) |#5| (-108)) 73)) (-1567 (((-108) |#5| (-587 |#5|)) 30)))
-(((-543 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3472 ((-587 |#5|) |#5| (-108))) (-15 -1567 ((-108) |#5| (-587 |#5|)))) (-13 (-282) (-135)) (-729) (-783) (-984 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -543))
-((-1567 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-1022 *5 *6 *7 *8)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-543 *5 *6 *7 *8 *3)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-587 *3)) (-5 *1 (-543 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3472 ((-587 |#5|) |#5| (-108))) (-15 -1567 ((-108) |#5| (-587 |#5|))))
-((-1422 (((-108) $ $) NIL (|has| (-132) (-1013)))) (-3599 (($ $) 34)) (-1960 (($ $) NIL)) (-3250 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3764 (((-108) $ $) 51)) (-3739 (((-108) $ $ (-521)) 46)) (-2090 (((-587 $) $ (-132)) 60) (((-587 $) $ (-129)) 61)) (-2299 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-783)))) (-1216 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-132) (-783))))) (-3215 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 (((-132) $ (-521) (-132)) 45 (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-2852 (($ $ (-132)) 64) (($ $ (-129)) 65)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2521 (($ $ (-1132 (-521)) $) 44)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-1429 (($ (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) NIL (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) NIL)) (-3788 (((-108) $ $) 71)) (-3236 (((-521) (-1 (-108) (-132)) $) NIL) (((-521) (-132) $) NIL (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) 48 (|has| (-132) (-1013))) (((-521) $ $ (-521)) 47) (((-521) (-129) $ (-521)) 50)) (-3831 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1869 (($ (-707) (-132)) 9)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 28 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| (-132) (-783)))) (-3389 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-783)))) (-3568 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3989 (((-521) $) 42 (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-132) (-783)))) (-1464 (((-108) $ $ (-132)) 72)) (-4143 (((-707) $ $ (-132)) 70)) (-3833 (($ (-1 (-132) (-132)) $) 33 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1548 (($ $) 37)) (-1800 (($ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-2864 (($ $ (-132)) 62) (($ $ (-129)) 63)) (-4024 (((-1067) $) 38 (|has| (-132) (-1013)))) (-1696 (($ (-132) $ (-521)) NIL) (($ $ $ (-521)) 23)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-521) $) 69) (((-1031) $) NIL (|has| (-132) (-1013)))) (-2319 (((-132) $) NIL (|has| (-521) (-783)))) (-3733 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2995 (($ $ (-132)) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-132)))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2481 (((-587 (-132)) $) NIL)) (-1447 (((-108) $) 12)) (-2280 (($) 10)) (-2550 (((-132) $ (-521) (-132)) NIL) (((-132) $ (-521)) 52) (($ $ (-1132 (-521))) 21) (($ $ $) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (((-707) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3448 (($ $ $ (-521)) 66 (|has| $ (-6 -4234)))) (-2420 (($ $) 17)) (-1438 (((-497) $) NIL (|has| (-132) (-562 (-497))))) (-2234 (($ (-587 (-132))) NIL)) (-4159 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) 16) (($ (-587 $)) 67)) (-2223 (($ (-132)) NIL) (((-791) $) 27 (|has| (-132) (-561 (-791))))) (-2006 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1549 (((-108) $ $) 14 (|has| (-132) (-1013)))) (-1588 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1569 (((-108) $ $) 15 (|has| (-132) (-783)))) (-3478 (((-707) $) 13 (|has| $ (-6 -4233)))))
-(((-544 |#1|) (-13 (-1053) (-10 -8 (-15 -4146 ((-521) $)))) (-521)) (T -544))
-((-4146 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-544 *3)) (-14 *3 *2))))
-(-13 (-1053) (-10 -8 (-15 -4146 ((-521) $))))
-((-3517 (((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2| (-1008 |#4|)) 32)))
-(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3517 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2| (-1008 |#4|))) (-15 -3517 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2|))) (-729) (-783) (-513) (-877 |#3| |#1| |#2|)) (T -545))
-((-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-513)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521)))) (-5 *1 (-545 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4)))) (-3517 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1008 *3)) (-4 *3 (-877 *7 *6 *4)) (-4 *6 (-729)) (-4 *4 (-783)) (-4 *7 (-513)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521)))) (-5 *1 (-545 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3517 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2| (-1008 |#4|))) (-15 -3517 ((-2 (|:| |num| |#4|) (|:| |den| (-521))) |#4| |#2|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 63)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-521)) 54) (($ $ (-521) (-521)) 55)) (-3704 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 60)) (-2466 (($ $) 100)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2128 (((-791) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) (-950 (-776 (-521))) (-1084) |#1| (-381 (-521))) 215)) (-2776 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 34)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-4193 (((-108) $) NIL)) (-3490 (((-521) $) 58) (((-521) $ (-521)) 59)) (-3637 (((-108) $) NIL)) (-3381 (($ $ (-849)) 76)) (-1653 (($ (-1 |#1| (-521)) $) 73)) (-3573 (((-108) $) 25)) (-4044 (($ |#1| (-521)) 22) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) 67)) (-1197 (($ (-950 (-776 (-521))) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 11)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-1749 (($ $) 112 (|has| |#1| (-37 (-381 (-521)))))) (-2945 (((-3 $ "failed") $ $ (-108)) 99)) (-3216 (($ $ $) 108)) (-4146 (((-1031) $) NIL)) (-2009 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 13)) (-1374 (((-950 (-776 (-521))) $) 12)) (-2191 (($ $ (-521)) 45)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-521)))))) (-2550 ((|#1| $ (-521)) 57) (($ $ $) NIL (|has| (-521) (-1025)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-2098 (((-521) $) NIL)) (-2145 (($ $) 46)) (-2223 (((-791) $) NIL) (($ (-521)) 28) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 27 (|has| |#1| (-157)))) (-1499 ((|#1| $ (-521)) 56)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) 37)) (-1952 ((|#1| $) NIL)) (-2813 (($ $) 180 (|has| |#1| (-37 (-381 (-521)))))) (-3784 (($ $) 156 (|has| |#1| (-37 (-381 (-521)))))) (-3286 (($ $) 177 (|has| |#1| (-37 (-381 (-521)))))) (-4152 (($ $) 153 (|has| |#1| (-37 (-381 (-521)))))) (-4190 (($ $) 182 (|has| |#1| (-37 (-381 (-521)))))) (-1624 (($ $) 159 (|has| |#1| (-37 (-381 (-521)))))) (-2423 (($ $ (-381 (-521))) 146 (|has| |#1| (-37 (-381 (-521)))))) (-3016 (($ $ |#1|) 121 (|has| |#1| (-37 (-381 (-521)))))) (-3649 (($ $) 150 (|has| |#1| (-37 (-381 (-521)))))) (-4169 (($ $) 148 (|has| |#1| (-37 (-381 (-521)))))) (-2214 (($ $) 183 (|has| |#1| (-37 (-381 (-521)))))) (-3974 (($ $) 160 (|has| |#1| (-37 (-381 (-521)))))) (-1949 (($ $) 181 (|has| |#1| (-37 (-381 (-521)))))) (-2474 (($ $) 158 (|has| |#1| (-37 (-381 (-521)))))) (-1778 (($ $) 178 (|has| |#1| (-37 (-381 (-521)))))) (-1650 (($ $) 154 (|has| |#1| (-37 (-381 (-521)))))) (-2587 (($ $) 188 (|has| |#1| (-37 (-381 (-521)))))) (-3349 (($ $) 168 (|has| |#1| (-37 (-381 (-521)))))) (-3518 (($ $) 185 (|has| |#1| (-37 (-381 (-521)))))) (-3372 (($ $) 163 (|has| |#1| (-37 (-381 (-521)))))) (-1282 (($ $) 192 (|has| |#1| (-37 (-381 (-521)))))) (-3447 (($ $) 172 (|has| |#1| (-37 (-381 (-521)))))) (-1562 (($ $) 194 (|has| |#1| (-37 (-381 (-521)))))) (-1435 (($ $) 174 (|has| |#1| (-37 (-381 (-521)))))) (-2790 (($ $) 190 (|has| |#1| (-37 (-381 (-521)))))) (-1982 (($ $) 170 (|has| |#1| (-37 (-381 (-521)))))) (-3792 (($ $) 187 (|has| |#1| (-37 (-381 (-521)))))) (-2462 (($ $) 166 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3893 ((|#1| $ (-521)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 29 T CONST)) (-3572 (($) 38 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-1549 (((-108) $ $) 65)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) 84) (($ $ $) 64)) (-1628 (($ $ $) 81)) (** (($ $ (-849)) NIL) (($ $ (-707)) 103)) (* (($ (-849) $) 89) (($ (-707) $) 87) (($ (-521) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-546 |#1|) (-13 (-1143 |#1| (-521)) (-10 -8 (-15 -1197 ($ (-950 (-776 (-521))) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -1374 ((-950 (-776 (-521))) $)) (-15 -2009 ((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $)) (-15 -2776 ($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -3573 ((-108) $)) (-15 -1653 ($ (-1 |#1| (-521)) $)) (-15 -2945 ((-3 $ "failed") $ $ (-108))) (-15 -2466 ($ $)) (-15 -3216 ($ $ $)) (-15 -2128 ((-791) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) (-950 (-776 (-521))) (-1084) |#1| (-381 (-521)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $)) (-15 -3016 ($ $ |#1|)) (-15 -2423 ($ $ (-381 (-521)))) (-15 -4169 ($ $)) (-15 -3649 ($ $)) (-15 -4152 ($ $)) (-15 -1650 ($ $)) (-15 -3784 ($ $)) (-15 -2474 ($ $)) (-15 -1624 ($ $)) (-15 -3974 ($ $)) (-15 -3372 ($ $)) (-15 -2462 ($ $)) (-15 -3349 ($ $)) (-15 -1982 ($ $)) (-15 -3447 ($ $)) (-15 -1435 ($ $)) (-15 -3286 ($ $)) (-15 -1778 ($ $)) (-15 -2813 ($ $)) (-15 -1949 ($ $)) (-15 -4190 ($ $)) (-15 -2214 ($ $)) (-15 -3518 ($ $)) (-15 -3792 ($ $)) (-15 -2587 ($ $)) (-15 -2790 ($ $)) (-15 -1282 ($ $)) (-15 -1562 ($ $))) |%noBranch|))) (-970)) (T -546))
-((-3573 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-1197 (*1 *1 *2 *3) (-12 (-5 *2 (-950 (-776 (-521)))) (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *4)))) (-4 *4 (-970)) (-5 *1 (-546 *4)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-950 (-776 (-521)))) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3)))) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3)))) (-4 *3 (-970)) (-5 *1 (-546 *3)))) (-1653 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-546 *3)))) (-2945 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970)))) (-2466 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))) (-2128 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *6)))) (-5 *4 (-950 (-776 (-521)))) (-5 *5 (-1084)) (-5 *7 (-381 (-521))) (-4 *6 (-970)) (-5 *2 (-791)) (-5 *1 (-546 *6)))) (-1749 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3016 (*1 *1 *1 *2) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-546 *3)) (-4 *3 (-37 *2)) (-4 *3 (-970)))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3974 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3372 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2462 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3349 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1982 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1435 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3286 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1778 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1949 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3518 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2587 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-2790 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1282 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))) (-1562 (*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(-13 (-1143 |#1| (-521)) (-10 -8 (-15 -1197 ($ (-950 (-776 (-521))) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -1374 ((-950 (-776 (-521))) $)) (-15 -2009 ((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $)) (-15 -2776 ($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))))) (-15 -3573 ((-108) $)) (-15 -1653 ($ (-1 |#1| (-521)) $)) (-15 -2945 ((-3 $ "failed") $ $ (-108))) (-15 -2466 ($ $)) (-15 -3216 ($ $ $)) (-15 -2128 ((-791) (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) (-950 (-776 (-521))) (-1084) |#1| (-381 (-521)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $)) (-15 -3016 ($ $ |#1|)) (-15 -2423 ($ $ (-381 (-521)))) (-15 -4169 ($ $)) (-15 -3649 ($ $)) (-15 -4152 ($ $)) (-15 -1650 ($ $)) (-15 -3784 ($ $)) (-15 -2474 ($ $)) (-15 -1624 ($ $)) (-15 -3974 ($ $)) (-15 -3372 ($ $)) (-15 -2462 ($ $)) (-15 -3349 ($ $)) (-15 -1982 ($ $)) (-15 -3447 ($ $)) (-15 -1435 ($ $)) (-15 -3286 ($ $)) (-15 -1778 ($ $)) (-15 -2813 ($ $)) (-15 -1949 ($ $)) (-15 -4190 ($ $)) (-15 -2214 ($ $)) (-15 -3518 ($ $)) (-15 -3792 ($ $)) (-15 -2587 ($ $)) (-15 -2790 ($ $)) (-15 -1282 ($ $)) (-15 -1562 ($ $))) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2776 (($ (-1065 |#1|)) 9)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) 42)) (-4193 (((-108) $) 52)) (-3490 (((-707) $) 55) (((-707) $ (-707)) 54)) (-3637 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ $) 44 (|has| |#1| (-513)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-1065 |#1|) $) 23)) (-1592 (((-707)) 51)) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 10 T CONST)) (-3572 (($) 14 T CONST)) (-1549 (((-108) $ $) 22)) (-1639 (($ $) 30) (($ $ $) 16)) (-1628 (($ $ $) 25)) (** (($ $ (-849)) NIL) (($ $ (-707)) 49)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-521)) 36)))
-(((-547 |#1|) (-13 (-970) (-10 -8 (-15 -2730 ((-1065 |#1|) $)) (-15 -2776 ($ (-1065 |#1|))) (-15 -4193 ((-108) $)) (-15 -3490 ((-707) $)) (-15 -3490 ((-707) $ (-707))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-521))) (IF (|has| |#1| (-513)) (-6 (-513)) |%noBranch|))) (-970)) (T -547))
-((-2730 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-547 *3)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (-3490 (*1 *2 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-547 *3)) (-4 *3 (-970)))))
-(-13 (-970) (-10 -8 (-15 -2730 ((-1065 |#1|) $)) (-15 -2776 ($ (-1065 |#1|))) (-15 -4193 ((-108) $)) (-15 -3490 ((-707) $)) (-15 -3490 ((-707) $ (-707))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-521))) (IF (|has| |#1| (-513)) (-6 (-513)) |%noBranch|)))
-((-1393 (((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|)) 15)))
-(((-548 |#1| |#2|) (-10 -7 (-15 -1393 ((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|)))) (-1119) (-1119)) (T -548))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6)))))
-(-10 -7 (-15 -1393 ((-551 |#2|) (-1 |#2| |#1|) (-551 |#1|))))
-((-1393 (((-1065 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1065 |#2|)) 20) (((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-551 |#2|)) 19) (((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|)) 18)))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|))) (-15 -1393 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-551 |#2|))) (-15 -1393 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1065 |#2|)))) (-1119) (-1119) (-1119)) (T -549))
-((-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1065 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8)) (-5 *1 (-549 *6 *7 *8)))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8)) (-5 *1 (-549 *6 *7 *8)))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-551 *8)) (-5 *1 (-549 *6 *7 *8)))))
-(-10 -7 (-15 -1393 ((-551 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-551 |#2|))) (-15 -1393 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-551 |#2|))) (-15 -1393 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-551 |#1|) (-1065 |#2|))))
-((-1461 ((|#3| |#3| (-587 (-560 |#3|)) (-587 (-1084))) 55)) (-1707 (((-154 |#2|) |#3|) 116)) (-1199 ((|#3| (-154 |#2|)) 43)) (-3988 ((|#2| |#3|) 19)) (-4119 ((|#3| |#2|) 32)))
-(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -1199 (|#3| (-154 |#2|))) (-15 -3988 (|#2| |#3|)) (-15 -4119 (|#3| |#2|)) (-15 -1707 ((-154 |#2|) |#3|)) (-15 -1461 (|#3| |#3| (-587 (-560 |#3|)) (-587 (-1084))))) (-13 (-513) (-783)) (-13 (-404 |#1|) (-927) (-1105)) (-13 (-404 (-154 |#1|)) (-927) (-1105))) (T -550))
-((-1461 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-587 (-1084))) (-4 *2 (-13 (-404 (-154 *5)) (-927) (-1105))) (-4 *5 (-13 (-513) (-783))) (-5 *1 (-550 *5 *6 *2)) (-4 *6 (-13 (-404 *5) (-927) (-1105))))) (-1707 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783))) (-5 *2 (-154 *5)) (-5 *1 (-550 *4 *5 *3)) (-4 *5 (-13 (-404 *4) (-927) (-1105))) (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783))) (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105))) (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-404 *4) (-927) (-1105))))) (-3988 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-783))) (-4 *2 (-13 (-404 *4) (-927) (-1105))) (-5 *1 (-550 *4 *2 *3)) (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))) (-1199 (*1 *2 *3) (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105))) (-4 *4 (-13 (-513) (-783))) (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105))) (-5 *1 (-550 *4 *5 *2)))))
-(-10 -7 (-15 -1199 (|#3| (-154 |#2|))) (-15 -3988 (|#2| |#3|)) (-15 -4119 (|#3| |#2|)) (-15 -1707 ((-154 |#2|) |#3|)) (-15 -1461 (|#3| |#3| (-587 (-560 |#3|)) (-587 (-1084)))))
-((-1658 (($ (-1 (-108) |#1|) $) 16)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1601 (($ (-1 |#1| |#1|) |#1|) 9)) (-1641 (($ (-1 (-108) |#1|) $) 12)) (-1651 (($ (-1 (-108) |#1|) $) 14)) (-2234 (((-1065 |#1|) $) 17)) (-2223 (((-791) $) NIL)))
-(((-551 |#1|) (-13 (-561 (-791)) (-10 -8 (-15 -1393 ($ (-1 |#1| |#1|) $)) (-15 -1641 ($ (-1 (-108) |#1|) $)) (-15 -1651 ($ (-1 (-108) |#1|) $)) (-15 -1658 ($ (-1 (-108) |#1|) $)) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -2234 ((-1065 |#1|) $)))) (-1119)) (T -551))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1641 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1651 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1658 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1119)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -1393 ($ (-1 |#1| |#1|) $)) (-15 -1641 ($ (-1 (-108) |#1|) $)) (-15 -1651 ($ (-1 (-108) |#1|) $)) (-15 -1658 ($ (-1 (-108) |#1|) $)) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -2234 ((-1065 |#1|) $))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3482 (($ (-707)) NIL (|has| |#1| (-23)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3951 (((-627 |#1|) $ $) NIL (|has| |#1| (-970)))) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3020 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-2859 (((-108) $ (-707)) NIL)) (-2522 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4103 ((|#1| $ $) NIL (|has| |#1| (-970)))) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3255 (($ $ $) NIL (|has| |#1| (-970)))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1639 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1628 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-521) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-663))) (($ $ |#1|) NIL (|has| |#1| (-663)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-552 |#1| |#2|) (-1163 |#1|) (-1119) (-521)) (T -552))
-NIL
-(-1163 |#1|)
-((-3933 (((-1170) $ |#2| |#2|) 36)) (-2658 ((|#2| $) 23)) (-3989 ((|#2| $) 21)) (-3833 (($ (-1 |#3| |#3|) $) 32)) (-1393 (($ (-1 |#3| |#3|) $) 30)) (-2319 ((|#3| $) 26)) (-2995 (($ $ |#3|) 33)) (-2174 (((-108) |#3| $) 17)) (-2481 (((-587 |#3|) $) 15)) (-2550 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -3933 ((-1170) |#1| |#2| |#2|)) (-15 -2995 (|#1| |#1| |#3|)) (-15 -2319 (|#3| |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -3989 (|#2| |#1|)) (-15 -2174 ((-108) |#3| |#1|)) (-15 -2481 ((-587 |#3|) |#1|)) (-15 -2550 (|#3| |#1| |#2|)) (-15 -2550 (|#3| |#1| |#2| |#3|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1393 (|#1| (-1 |#3| |#3|) |#1|))) (-554 |#2| |#3|) (-1013) (-1119)) (T -553))
-NIL
-(-10 -8 (-15 -3933 ((-1170) |#1| |#2| |#2|)) (-15 -2995 (|#1| |#1| |#3|)) (-15 -2319 (|#3| |#1|)) (-15 -2658 (|#2| |#1|)) (-15 -3989 (|#2| |#1|)) (-15 -2174 ((-108) |#3| |#1|)) (-15 -2481 ((-587 |#3|) |#1|)) (-15 -2550 (|#3| |#1| |#2|)) (-15 -2550 (|#3| |#1| |#2| |#3|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1393 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#2| (-1013)))) (-3933 (((-1170) $ |#1| |#1|) 40 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4234)))) (-2231 (($) 7 T CONST)) (-3849 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 51)) (-3831 (((-587 |#2|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-2658 ((|#1| $) 43 (|has| |#1| (-783)))) (-3568 (((-587 |#2|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-3989 ((|#1| $) 44 (|has| |#1| (-783)))) (-3833 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#2| (-1013)))) (-1223 (((-587 |#1|) $) 46)) (-2131 (((-108) |#1| $) 47)) (-4146 (((-1031) $) 21 (|has| |#2| (-1013)))) (-2319 ((|#2| $) 42 (|has| |#1| (-783)))) (-2995 (($ $ |#2|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) 26 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 25 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 23 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4163 (((-707) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4233))) (((-707) |#2| $) 28 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#2| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#2| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-554 |#1| |#2|) (-1196) (-1013) (-1119)) (T -554))
-((-2481 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-587 *4)))) (-2131 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-108)))) (-1223 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-587 *3)))) (-2174 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013)) (-4 *2 (-783)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013)) (-4 *2 (-783)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-783)) (-4 *2 (-1119)))) (-2995 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119)))) (-3933 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119)) (-5 *2 (-1170)))))
-(-13 (-460 |t#2|) (-263 |t#1| |t#2|) (-10 -8 (-15 -2481 ((-587 |t#2|) $)) (-15 -2131 ((-108) |t#1| $)) (-15 -1223 ((-587 |t#1|) $)) (IF (|has| |t#2| (-1013)) (IF (|has| $ (-6 -4233)) (-15 -2174 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-783)) (PROGN (-15 -3989 (|t#1| $)) (-15 -2658 (|t#1| $)) (-15 -2319 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2995 ($ $ |t#2|)) (-15 -3933 ((-1170) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1013)) ((-561 (-791)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-561 (-791)))) ((-261 |#1| |#2|) . T) ((-263 |#1| |#2|) . T) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-460 |#2|) . T) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-1013) |has| |#2| (-1013)) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1493 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2772 (((-1165 (-627 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-1165 (-627 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3765 (((-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2231 (($) NIL T CONST)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2695 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-4090 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3912 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-2872 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2604 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2262 (((-1080 (-880 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-2588 (($ $ (-849)) NIL)) (-3973 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-1276 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2115 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1449 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-3953 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3190 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (($ (-1165 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2783 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3167 (((-849)) NIL (|has| |#2| (-341 |#1|)))) (-2782 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1940 (($ $ (-849)) NIL)) (-2325 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2071 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3318 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2712 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3370 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3748 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-4138 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1389 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3726 (((-1080 (-880 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-1209 (($ $ (-849)) NIL)) (-3440 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3609 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2001 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2486 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-1743 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4024 (((-1067) $) NIL)) (-1232 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3037 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2901 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4146 (((-1031) $) NIL)) (-2880 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2550 ((|#1| $ (-521)) NIL (|has| |#2| (-391 |#1|)))) (-1816 (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $) (-1165 $)) NIL (|has| |#2| (-341 |#1|))) (((-1165 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1438 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-1894 (((-587 (-880 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-587 (-880 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2062 (($ $ $) NIL)) (-2628 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2223 (((-791) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1245 (((-1165 $)) NIL (|has| |#2| (-391 |#1|)))) (-2881 (((-587 (-1165 |#1|))) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2268 (($ $ $ $) NIL)) (-3650 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1644 (($ (-627 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-3968 (($ $ $) NIL)) (-3972 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3502 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3199 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3562 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) 24)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-555 |#1| |#2|) (-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2223 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|))) (-157) (-681 |#1|)) (T -555))
-((-2223 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-555 *3 *2)) (-4 *2 (-681 *3)))))
-(-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2223 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-2823 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) 32)) (-1857 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL) (($) NIL)) (-3933 (((-1170) $ (-1067) (-1067)) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-1067) |#1|) 42)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#1| "failed") (-1067) $) 45)) (-2231 (($) NIL T CONST)) (-3306 (($ $ (-1067)) 24)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013))))) (-2726 (((-3 |#1| "failed") (-1067) $) 46) (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (($ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (|has| $ (-6 -4233)))) (-1429 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (($ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013))))) (-3859 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013))))) (-2629 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) 31)) (-3849 ((|#1| $ (-1067) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-1067)) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1643 (($ $) 47)) (-1564 (($ (-362)) 22) (($ (-362) (-1067)) 21)) (-2890 (((-362) $) 33)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-1067) $) NIL (|has| (-1067) (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233))) (((-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (((-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013))))) (-3989 (((-1067) $) NIL (|has| (-1067) (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-2964 (((-587 (-1067)) $) 38)) (-3839 (((-108) (-1067) $) NIL)) (-3283 (((-1067) $) 34)) (-1570 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL)) (-1223 (((-587 (-1067)) $) NIL)) (-2131 (((-108) (-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 ((|#1| $) NIL (|has| (-1067) (-783)))) (-3733 (((-3 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) "failed") (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-587 (-269 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 36)) (-2550 ((|#1| $ (-1067) |#1|) NIL) ((|#1| $ (-1067)) 41)) (-2036 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL) (($) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (((-707) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (((-707) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL)) (-2223 (((-791) $) 20)) (-1777 (($ $) 25)) (-2869 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 19)) (-3478 (((-707) $) 40 (|has| $ (-6 -4233)))))
-(((-556 |#1|) (-13 (-338 (-362) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) (-1096 (-1067) |#1|) (-10 -8 (-6 -4233) (-15 -1643 ($ $)))) (-1013)) (T -556))
-((-1643 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-1013)))))
-(-13 (-338 (-362) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) (-1096 (-1067) |#1|) (-10 -8 (-6 -4233) (-15 -1643 ($ $))))
-((-1785 (((-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) $) 15)) (-2964 (((-587 |#2|) $) 19)) (-3839 (((-108) |#2| $) 12)))
-(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -2964 ((-587 |#2|) |#1|)) (-15 -3839 ((-108) |#2| |#1|)) (-15 -1785 ((-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|))) (-558 |#2| |#3|) (-1013) (-1013)) (T -557))
-NIL
-(-10 -8 (-15 -2964 ((-587 |#2|) |#1|)) (-15 -3839 ((-108) |#2| |#1|)) (-15 -1785 ((-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 55 (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) 61)) (-2231 (($) 7 T CONST)) (-2354 (($ $) 58 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 46 (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 62)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 54 (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 56 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 53 (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-2964 (((-587 |#1|) $) 63)) (-3839 (((-108) |#1| $) 64)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 39)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 40)) (-4146 (((-1031) $) 21 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 51)) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 41)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) 26 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 25 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 24 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 23 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2036 (($) 49) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 48)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 31 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 50)) (-2223 (((-791) $) 18 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 42)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-558 |#1| |#2|) (-1196) (-1013) (-1013)) (T -558))
-((-3839 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-108)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-587 *3)))) (-2726 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2754 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(-13 (-206 (-2 (|:| -2535 |t#1|) (|:| -3050 |t#2|))) (-10 -8 (-15 -3839 ((-108) |t#1| $)) (-15 -2964 ((-587 |t#1|) $)) (-15 -2726 ((-3 |t#2| "failed") |t#1| $)) (-15 -2754 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((-97) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) ((-561 (-791)) -3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791)))) ((-139 #0#) . T) ((-562 (-497)) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))) ((-206 #0#) . T) ((-212 #0#) . T) ((-284 #0#) -12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-460 #0#) . T) ((-482 #0# #0#) -12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-1013) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) ((-1119) . T))
-((-2763 (((-560 |#2|) |#1|) 15)) (-1887 (((-3 |#1| "failed") (-560 |#2|)) 19)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -2763 ((-560 |#2|) |#1|)) (-15 -1887 ((-3 |#1| "failed") (-560 |#2|)))) (-783) (-783)) (T -559))
-((-1887 (*1 *2 *3) (|partial| -12 (-5 *3 (-560 *4)) (-4 *4 (-783)) (-4 *2 (-783)) (-5 *1 (-559 *2 *4)))) (-2763 (*1 *2 *3) (-12 (-5 *2 (-560 *4)) (-5 *1 (-559 *3 *4)) (-4 *3 (-783)) (-4 *4 (-783)))))
-(-10 -7 (-15 -2763 ((-560 |#2|) |#1|)) (-15 -1887 ((-3 |#1| "failed") (-560 |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3741 (((-3 (-1084) "failed") $) 36)) (-4172 (((-1170) $ (-707)) 26)) (-3236 (((-707) $) 25)) (-3928 (((-110) $) 12)) (-2890 (((-1084) $) 20)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-2911 (($ (-110) (-587 |#1|) (-707)) 30) (($ (-1084)) 31)) (-4013 (((-108) $ (-110)) 18) (((-108) $ (-1084)) 16)) (-4151 (((-707) $) 22)) (-4146 (((-1031) $) NIL)) (-1438 (((-820 (-521)) $) 69 (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) 75 (|has| |#1| (-562 (-820 (-353))))) (((-497) $) 62 (|has| |#1| (-562 (-497))))) (-2223 (((-791) $) 51)) (-1640 (((-587 |#1|) $) 24)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 39)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 40)))
-(((-560 |#1|) (-13 (-125) (-812 |#1|) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -3928 ((-110) $)) (-15 -1640 ((-587 |#1|) $)) (-15 -4151 ((-707) $)) (-15 -2911 ($ (-110) (-587 |#1|) (-707))) (-15 -2911 ($ (-1084))) (-15 -3741 ((-3 (-1084) "failed") $)) (-15 -4013 ((-108) $ (-110))) (-15 -4013 ((-108) $ (-1084))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|))) (-783)) (T -560))
-((-2890 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-783)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-560 *3)) (-4 *3 (-783)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-560 *3)) (-4 *3 (-783)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-560 *3)) (-4 *3 (-783)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-783)) (-5 *1 (-560 *5)))) (-2911 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-783)))) (-3741 (*1 *2 *1) (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-783)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-783)))) (-4013 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-783)))))
-(-13 (-125) (-812 |#1|) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -3928 ((-110) $)) (-15 -1640 ((-587 |#1|) $)) (-15 -4151 ((-707) $)) (-15 -2911 ($ (-110) (-587 |#1|) (-707))) (-15 -2911 ($ (-1084))) (-15 -3741 ((-3 (-1084) "failed") $)) (-15 -4013 ((-108) $ (-110))) (-15 -4013 ((-108) $ (-1084))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|)))
-((-2223 ((|#1| $) 6)))
-(((-561 |#1|) (-1196) (-1119)) (T -561))
-((-2223 (*1 *2 *1) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1119)))))
-(-13 (-10 -8 (-15 -2223 (|t#1| $))))
-((-1438 ((|#1| $) 6)))
-(((-562 |#1|) (-1196) (-1119)) (T -562))
-((-1438 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1119)))))
-(-13 (-10 -8 (-15 -1438 (|t#1| $))))
-((-2674 (((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 (-392 |#2|) |#2|)) 13) (((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|)) 14)))
-(((-563 |#1| |#2|) (-10 -7 (-15 -2674 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|))) (-15 -2674 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 (-392 |#2|) |#2|)))) (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -563))
-((-2674 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-1080 (-381 *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-381 *6)))) (-2674 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-1080 (-381 *5))) (-5 *1 (-563 *4 *5)) (-5 *3 (-381 *5)))))
-(-10 -7 (-15 -2674 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|))) (-15 -2674 ((-3 (-1080 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 (-392 |#2|) |#2|))))
-((-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) 10)))
-(((-564 |#1| |#2|) (-10 -8 (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-565 |#2|) (-970)) (T -564))
-NIL
-(-10 -8 (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 36)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-565 |#1|) (-1196) (-970)) (T -565))
-((-2223 (*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-970)))))
-(-13 (-970) (-589 |t#1|) (-10 -8 (-15 -2223 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2578 (((-521) $) NIL (|has| |#1| (-781)))) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-2273 (((-108) $) NIL (|has| |#1| (-781)))) (-3637 (((-108) $) NIL)) (-2807 ((|#1| $) 13)) (-3305 (((-108) $) NIL (|has| |#1| (-781)))) (-2816 (($ $ $) NIL (|has| |#1| (-781)))) (-2459 (($ $ $) NIL (|has| |#1| (-781)))) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2818 ((|#3| $) 15)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL)) (-1592 (((-707)) 20)) (-4012 (($ $) NIL (|has| |#1| (-781)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) 12 T CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1648 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-566 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (-15 -1648 ($ $ |#3|)) (-15 -1648 ($ |#1| |#3|)) (-15 -2807 (|#1| $)) (-15 -2818 (|#3| $)))) (-37 |#2|) (-157) (|SubsetCategory| (-663) |#2|)) (T -566))
-((-1648 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-1648 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-566 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-566 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2818 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (-15 -1648 ($ $ |#3|)) (-15 -1648 ($ |#1| |#3|)) (-15 -2807 (|#1| $)) (-15 -2818 (|#3| $))))
-((-2612 ((|#2| |#2| (-1084) (-1084)) 18)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -2612 (|#2| |#2| (-1084) (-1084)))) (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-886) (-29 |#1|))) (T -567))
-((-2612 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521)))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-1105) (-886) (-29 *4))))))
-(-10 -7 (-15 -2612 (|#2| |#2| (-1084) (-1084))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 52)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-3330 ((|#1| $) 49)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-4046 (((-2 (|:| -1953 $) (|:| -2065 (-381 |#2|))) (-381 |#2|)) 97 (|has| |#1| (-337)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) 24)) (-2783 (((-3 $ "failed") $) 76)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-3490 (((-521) $) 19)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) 36)) (-4044 (($ |#1| (-521)) 21)) (-3140 ((|#1| $) 51)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) 87 (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ $) 80)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3794 (((-707) $) 99 (|has| |#1| (-337)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 98 (|has| |#1| (-337)))) (-2193 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-2098 (((-521) $) 34)) (-1438 (((-381 |#2|) $) 42)) (-2223 (((-791) $) 63) (($ (-521)) 32) (($ $) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 31) (($ |#2|) 22)) (-1499 ((|#1| $ (-521)) 64)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 9 T CONST)) (-3572 (($) 12 T CONST)) (-2244 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1549 (((-108) $ $) 17)) (-1639 (($ $) 46) (($ $ $) NIL)) (-1628 (($ $ $) 77)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 26) (($ $ $) 44)))
-(((-568 |#1| |#2|) (-13 (-208 |#2|) (-513) (-562 (-381 |#2|)) (-385 |#1|) (-961 |#2|) (-10 -8 (-15 -3573 ((-108) $)) (-15 -2098 ((-521) $)) (-15 -3490 ((-521) $)) (-15 -3157 ($ $)) (-15 -3140 (|#1| $)) (-15 -3330 (|#1| $)) (-15 -1499 (|#1| $ (-521))) (-15 -4044 ($ |#1| (-521))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-282)) (-15 -4046 ((-2 (|:| -1953 $) (|:| -2065 (-381 |#2|))) (-381 |#2|)))) |%noBranch|))) (-513) (-1141 |#1|)) (T -568))
-((-3573 (*1 *2 *1) (-12 (-4 *3 (-513)) (-5 *2 (-108)) (-5 *1 (-568 *3 *4)) (-4 *4 (-1141 *3)))) (-2098 (*1 *2 *1) (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4)) (-4 *4 (-1141 *3)))) (-3490 (*1 *2 *1) (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4)) (-4 *4 (-1141 *3)))) (-3157 (*1 *1 *1) (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))) (-3330 (*1 *2 *1) (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))) (-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4)) (-4 *4 (-1141 *2)))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4)) (-4 *4 (-1141 *2)))) (-4046 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *4 (-513)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -1953 (-568 *4 *5)) (|:| -2065 (-381 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-381 *5)))))
-(-13 (-208 |#2|) (-513) (-562 (-381 |#2|)) (-385 |#1|) (-961 |#2|) (-10 -8 (-15 -3573 ((-108) $)) (-15 -2098 ((-521) $)) (-15 -3490 ((-521) $)) (-15 -3157 ($ $)) (-15 -3140 (|#1| $)) (-15 -3330 (|#1| $)) (-15 -1499 (|#1| $ (-521))) (-15 -4044 ($ |#1| (-521))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-6 (-282)) (-15 -4046 ((-2 (|:| -1953 $) (|:| -2065 (-381 |#2|))) (-381 |#2|)))) |%noBranch|)))
-((-4137 (((-587 |#6|) (-587 |#4|) (-108)) 47)) (-1490 ((|#6| |#6|) 40)))
-(((-569 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1490 (|#6| |#6|)) (-15 -4137 ((-587 |#6|) (-587 |#4|) (-108)))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|) (-1022 |#1| |#2| |#3| |#4|)) (T -569))
-((-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 *10)) (-5 *1 (-569 *5 *6 *7 *8 *9 *10)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *10 (-1022 *5 *6 *7 *8)))) (-1490 (*1 *2 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-569 *3 *4 *5 *6 *7 *2)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1490 (|#6| |#6|)) (-15 -4137 ((-587 |#6|) (-587 |#4|) (-108))))
-((-2498 (((-108) |#3| (-707) (-587 |#3|)) 23)) (-2148 (((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1080 |#3|)))) "failed") |#3| (-587 (-1080 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3655 (-587 (-2 (|:| |irr| |#4|) (|:| -3083 (-521)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|)) 52)))
-(((-570 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2498 ((-108) |#3| (-707) (-587 |#3|))) (-15 -2148 ((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1080 |#3|)))) "failed") |#3| (-587 (-1080 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3655 (-587 (-2 (|:| |irr| |#4|) (|:| -3083 (-521)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|)))) (-783) (-729) (-282) (-877 |#3| |#2| |#1|)) (T -570))
-((-2148 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3655 (-587 (-2 (|:| |irr| *10) (|:| -3083 (-521))))))) (-5 *6 (-587 *3)) (-5 *7 (-587 *8)) (-4 *8 (-783)) (-4 *3 (-282)) (-4 *10 (-877 *3 *9 *8)) (-4 *9 (-729)) (-5 *2 (-2 (|:| |polfac| (-587 *10)) (|:| |correct| *3) (|:| |corrfact| (-587 (-1080 *3))))) (-5 *1 (-570 *8 *9 *3 *10)) (-5 *4 (-587 (-1080 *3))))) (-2498 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-707)) (-5 *5 (-587 *3)) (-4 *3 (-282)) (-4 *6 (-783)) (-4 *7 (-729)) (-5 *2 (-108)) (-5 *1 (-570 *6 *7 *3 *8)) (-4 *8 (-877 *3 *7 *6)))))
-(-10 -7 (-15 -2498 ((-108) |#3| (-707) (-587 |#3|))) (-15 -2148 ((-3 (-2 (|:| |polfac| (-587 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-587 (-1080 |#3|)))) "failed") |#3| (-587 (-1080 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3655 (-587 (-2 (|:| |irr| |#4|) (|:| -3083 (-521)))))) (-587 |#3|) (-587 |#1|) (-587 |#3|))))
-((-1422 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-2056 (($ $) 67)) (-1253 (((-605 |#1| |#2|) $) 52)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 70)) (-2808 (((-587 (-269 |#2|)) $ $) 33)) (-4146 (((-1031) $) NIL)) (-3265 (($ (-605 |#1| |#2|)) 48)) (-1484 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2223 (((-791) $) 58) (((-1178 |#1| |#2|) $) NIL) (((-1183 |#1| |#2|) $) 66)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 53 T CONST)) (-2339 (((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $) 31)) (-1497 (((-587 (-605 |#1| |#2|)) (-587 |#1|)) 65)) (-1583 (((-587 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $) 36)) (-1549 (((-108) $ $) 54)) (-1648 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ $ $) 44)))
-(((-571 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3265 ($ (-605 |#1| |#2|))) (-15 -1253 ((-605 |#1| |#2|) $)) (-15 -1583 ((-587 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $)) (-15 -2223 ((-1178 |#1| |#2|) $)) (-15 -2223 ((-1183 |#1| |#2|) $)) (-15 -2056 ($ $)) (-15 -4101 ((-587 |#1|) $)) (-15 -1497 ((-587 (-605 |#1| |#2|)) (-587 |#1|))) (-15 -2339 ((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $)) (-15 -2808 ((-587 (-269 |#2|)) $ $)))) (-783) (-13 (-157) (-654 (-381 (-521)))) (-849)) (T -571))
-((-3265 (*1 *1 *2) (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-5 *1 (-571 *3 *4 *5)) (-14 *5 (-849)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-605 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-821 *3)) (|:| |c| *4)))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1183 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))) (-2056 (*1 *1 *1) (-12 (-5 *1 (-571 *2 *3 *4)) (-4 *2 (-783)) (-4 *3 (-13 (-157) (-654 (-381 (-521))))) (-14 *4 (-849)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-783)) (-5 *2 (-587 (-605 *4 *5))) (-5 *1 (-571 *4 *5 *6)) (-4 *5 (-13 (-157) (-654 (-381 (-521))))) (-14 *6 (-849)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-612 *3)) (|:| |c| *4)))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))) (-2808 (*1 *2 *1 *1) (-12 (-5 *2 (-587 (-269 *4))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))))
-(-13 (-446) (-10 -8 (-15 -3265 ($ (-605 |#1| |#2|))) (-15 -1253 ((-605 |#1| |#2|) $)) (-15 -1583 ((-587 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $)) (-15 -2223 ((-1178 |#1| |#2|) $)) (-15 -2223 ((-1183 |#1| |#2|) $)) (-15 -2056 ($ $)) (-15 -4101 ((-587 |#1|) $)) (-15 -1497 ((-587 (-605 |#1| |#2|)) (-587 |#1|))) (-15 -2339 ((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $)) (-15 -2808 ((-587 (-269 |#2|)) $ $))))
-((-4137 (((-587 (-1055 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|)))) (-587 (-716 |#1| (-793 |#2|))) (-108)) 71) (((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-793 |#2|))) (-108)) 57)) (-1198 (((-108) (-587 (-716 |#1| (-793 |#2|)))) 22)) (-2624 (((-587 (-1055 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|)))) (-587 (-716 |#1| (-793 |#2|))) (-108)) 70)) (-3927 (((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-793 |#2|))) (-108)) 56)) (-1453 (((-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|)))) 26)) (-2584 (((-3 (-587 (-716 |#1| (-793 |#2|))) "failed") (-587 (-716 |#1| (-793 |#2|)))) 25)))
-(((-572 |#1| |#2|) (-10 -7 (-15 -1198 ((-108) (-587 (-716 |#1| (-793 |#2|))))) (-15 -2584 ((-3 (-587 (-716 |#1| (-793 |#2|))) "failed") (-587 (-716 |#1| (-793 |#2|))))) (-15 -1453 ((-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|))))) (-15 -3927 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-793 |#2|))) (-108))) (-15 -2624 ((-587 (-1055 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|)))) (-587 (-716 |#1| (-793 |#2|))) (-108))) (-15 -4137 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-793 |#2|))) (-108))) (-15 -4137 ((-587 (-1055 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|)))) (-587 (-716 |#1| (-793 |#2|))) (-108)))) (-425) (-587 (-1084))) (T -572))
-((-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-1055 *5 (-493 (-793 *6)) (-793 *6) (-716 *5 (-793 *6))))) (-5 *1 (-572 *5 *6)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-572 *5 *6)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-1055 *5 (-493 (-793 *6)) (-793 *6) (-716 *5 (-793 *6))))) (-5 *1 (-572 *5 *6)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-572 *5 *6)))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-587 (-716 *3 (-793 *4)))) (-4 *3 (-425)) (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))) (-2584 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-716 *3 (-793 *4)))) (-4 *3 (-425)) (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))) (-1198 (*1 *2 *3) (-12 (-5 *3 (-587 (-716 *4 (-793 *5)))) (-4 *4 (-425)) (-14 *5 (-587 (-1084))) (-5 *2 (-108)) (-5 *1 (-572 *4 *5)))))
-(-10 -7 (-15 -1198 ((-108) (-587 (-716 |#1| (-793 |#2|))))) (-15 -2584 ((-3 (-587 (-716 |#1| (-793 |#2|))) "failed") (-587 (-716 |#1| (-793 |#2|))))) (-15 -1453 ((-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|))))) (-15 -3927 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-793 |#2|))) (-108))) (-15 -2624 ((-587 (-1055 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|)))) (-587 (-716 |#1| (-793 |#2|))) (-108))) (-15 -4137 ((-587 (-967 |#1| |#2|)) (-587 (-716 |#1| (-793 |#2|))) (-108))) (-15 -4137 ((-587 (-1055 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|)))) (-587 (-716 |#1| (-793 |#2|))) (-108))))
-((-2910 (($ $) 38)) (-2775 (($ $) 21)) (-2886 (($ $) 37)) (-2752 (($ $) 22)) (-2932 (($ $) 36)) (-2796 (($ $) 23)) (-2840 (($) 48)) (-1253 (($ $) 45)) (-3246 (($ $) 17)) (-3094 (($ $ (-1006 $)) 7) (($ $ (-1084)) 6)) (-3265 (($ $) 46)) (-2711 (($ $) 15)) (-2740 (($ $) 16)) (-1787 (($ $) 35)) (-2806 (($ $) 24)) (-2921 (($ $) 34)) (-2786 (($ $) 25)) (-2898 (($ $) 33)) (-2764 (($ $) 26)) (-1811 (($ $) 44)) (-2838 (($ $) 32)) (-1795 (($ $) 43)) (-2817 (($ $) 31)) (-1830 (($ $) 42)) (-2862 (($ $) 30)) (-3919 (($ $) 41)) (-2874 (($ $) 29)) (-1821 (($ $) 40)) (-2850 (($ $) 28)) (-1803 (($ $) 39)) (-2827 (($ $) 27)) (-2978 (($ $) 19)) (-3761 (($ $) 20)) (-2356 (($ $) 18)) (** (($ $ $) 47)))
-(((-573) (-1196)) (T -573))
-((-3761 (*1 *1 *1) (-4 *1 (-573))) (-2978 (*1 *1 *1) (-4 *1 (-573))) (-2356 (*1 *1 *1) (-4 *1 (-573))) (-3246 (*1 *1 *1) (-4 *1 (-573))) (-2740 (*1 *1 *1) (-4 *1 (-573))) (-2711 (*1 *1 *1) (-4 *1 (-573))))
-(-13 (-886) (-1105) (-10 -8 (-15 -3761 ($ $)) (-15 -2978 ($ $)) (-15 -2356 ($ $)) (-15 -3246 ($ $)) (-15 -2740 ($ $)) (-15 -2711 ($ $))))
-(((-34) . T) ((-91) . T) ((-259) . T) ((-462) . T) ((-886) . T) ((-1105) . T) ((-1108) . T))
-((-3928 (((-110) (-110)) 83)) (-3246 ((|#2| |#2|) 30)) (-3094 ((|#2| |#2| (-1006 |#2|)) 79) ((|#2| |#2| (-1084)) 52)) (-2711 ((|#2| |#2|) 29)) (-2740 ((|#2| |#2|) 31)) (-1224 (((-108) (-110)) 34)) (-2978 ((|#2| |#2|) 26)) (-3761 ((|#2| |#2|) 28)) (-2356 ((|#2| |#2|) 27)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -3761 (|#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -3246 (|#2| |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -3094 (|#2| |#2| (-1084))) (-15 -3094 (|#2| |#2| (-1006 |#2|)))) (-13 (-783) (-513)) (-13 (-404 |#1|) (-927) (-1105))) (T -574))
-((-3094 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-927) (-1105))) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-574 *4 *2)))) (-3094 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-404 *4) (-927) (-1105))))) (-2740 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-2711 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-3246 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-2978 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2)) (-4 *2 (-13 (-404 *3) (-927) (-1105))))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *4)) (-4 *4 (-13 (-404 *3) (-927) (-1105))))) (-1224 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-574 *4 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105))))))
-(-10 -7 (-15 -1224 ((-108) (-110))) (-15 -3928 ((-110) (-110))) (-15 -3761 (|#2| |#2|)) (-15 -2978 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -3246 (|#2| |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -3094 (|#2| |#2| (-1084))) (-15 -3094 (|#2| |#2| (-1006 |#2|))))
-((-2138 (((-453 |#1| |#2|) (-224 |#1| |#2|)) 53)) (-4156 (((-587 (-224 |#1| |#2|)) (-587 (-453 |#1| |#2|))) 68)) (-1221 (((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-793 |#1|)) 70) (((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)) (-793 |#1|)) 69)) (-2365 (((-2 (|:| |gblist| (-587 (-224 |#1| |#2|))) (|:| |gvlist| (-587 (-521)))) (-587 (-453 |#1| |#2|))) 106)) (-2597 (((-587 (-453 |#1| |#2|)) (-793 |#1|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|))) 83)) (-2184 (((-2 (|:| |glbase| (-587 (-224 |#1| |#2|))) (|:| |glval| (-587 (-521)))) (-587 (-224 |#1| |#2|))) 117)) (-3433 (((-1165 |#2|) (-453 |#1| |#2|) (-587 (-453 |#1| |#2|))) 58)) (-3617 (((-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|))) 39)) (-3808 (((-224 |#1| |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|))) 49)) (-3422 (((-224 |#1| |#2|) (-587 |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|))) 90)))
-(((-575 |#1| |#2|) (-10 -7 (-15 -2365 ((-2 (|:| |gblist| (-587 (-224 |#1| |#2|))) (|:| |gvlist| (-587 (-521)))) (-587 (-453 |#1| |#2|)))) (-15 -2184 ((-2 (|:| |glbase| (-587 (-224 |#1| |#2|))) (|:| |glval| (-587 (-521)))) (-587 (-224 |#1| |#2|)))) (-15 -4156 ((-587 (-224 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -1221 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)) (-793 |#1|))) (-15 -1221 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-793 |#1|))) (-15 -3617 ((-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -3433 ((-1165 |#2|) (-453 |#1| |#2|) (-587 (-453 |#1| |#2|)))) (-15 -3422 ((-224 |#1| |#2|) (-587 |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2597 ((-587 (-453 |#1| |#2|)) (-793 |#1|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -3808 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2138 ((-453 |#1| |#2|) (-224 |#1| |#2|)))) (-587 (-1084)) (-425)) (T -575))
-((-2138 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-453 *4 *5)) (-5 *1 (-575 *4 *5)))) (-3808 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-224 *4 *5))) (-5 *2 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))) (-2597 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-793 *4)) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))) (-3422 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-224 *5 *6))) (-4 *6 (-425)) (-5 *2 (-224 *5 *6)) (-14 *5 (-587 (-1084))) (-5 *1 (-575 *5 *6)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-453 *5 *6))) (-5 *3 (-453 *5 *6)) (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-1165 *6)) (-5 *1 (-575 *5 *6)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-587 (-453 *3 *4))) (-14 *3 (-587 (-1084))) (-4 *4 (-425)) (-5 *1 (-575 *3 *4)))) (-1221 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-793 *5)) (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6)) (-4 *6 (-425)))) (-1221 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-793 *5)) (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6)) (-4 *6 (-425)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-587 (-224 *4 *5))) (-5 *1 (-575 *4 *5)))) (-2184 (*1 *2 *3) (-12 (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-2 (|:| |glbase| (-587 (-224 *4 *5))) (|:| |glval| (-587 (-521))))) (-5 *1 (-575 *4 *5)) (-5 *3 (-587 (-224 *4 *5))))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *2 (-2 (|:| |gblist| (-587 (-224 *4 *5))) (|:| |gvlist| (-587 (-521))))) (-5 *1 (-575 *4 *5)))))
-(-10 -7 (-15 -2365 ((-2 (|:| |gblist| (-587 (-224 |#1| |#2|))) (|:| |gvlist| (-587 (-521)))) (-587 (-453 |#1| |#2|)))) (-15 -2184 ((-2 (|:| |glbase| (-587 (-224 |#1| |#2|))) (|:| |glval| (-587 (-521)))) (-587 (-224 |#1| |#2|)))) (-15 -4156 ((-587 (-224 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -1221 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)) (-793 |#1|))) (-15 -1221 ((-453 |#1| |#2|) (-587 (-453 |#1| |#2|)) (-793 |#1|))) (-15 -3617 ((-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -3433 ((-1165 |#2|) (-453 |#1| |#2|) (-587 (-453 |#1| |#2|)))) (-15 -3422 ((-224 |#1| |#2|) (-587 |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2597 ((-587 (-453 |#1| |#2|)) (-793 |#1|) (-587 (-453 |#1| |#2|)) (-587 (-453 |#1| |#2|)))) (-15 -3808 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-587 (-224 |#1| |#2|)))) (-15 -2138 ((-453 |#1| |#2|) (-224 |#1| |#2|))))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) NIL)) (-3933 (((-1170) $ (-1067) (-1067)) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 (((-51) $ (-1067) (-51)) 16) (((-51) $ (-1084) (-51)) 17)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 (-51) "failed") (-1067) $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013))))) (-2726 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-3 (-51) "failed") (-1067) $) NIL)) (-1429 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $ (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (((-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $ (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-51) $ (-1067) (-51)) NIL (|has| $ (-6 -4234)))) (-3626 (((-51) $ (-1067)) NIL)) (-3831 (((-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-1643 (($ $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-1067) $) NIL (|has| (-1067) (-783)))) (-3568 (((-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-3989 (((-1067) $) NIL (|has| (-1067) (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1775 (($ (-362)) 9)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013))))) (-2964 (((-587 (-1067)) $) NIL)) (-3839 (((-108) (-1067) $) NIL)) (-1570 (((-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL)) (-4135 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL)) (-1223 (((-587 (-1067)) $) NIL)) (-2131 (((-108) (-1067) $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013))))) (-2319 (((-51) $) NIL (|has| (-1067) (-783)))) (-3733 (((-3 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) "failed") (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL)) (-2995 (($ $ (-51)) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (($ $ (-269 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (($ $ (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (($ $ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-269 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-587 (-269 (-51)))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2481 (((-587 (-51)) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 (((-51) $ (-1067)) 14) (((-51) $ (-1067) (-51)) NIL) (((-51) $ (-1084)) 15)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013)))) (((-707) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013)))) (((-707) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-51) (-561 (-791))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 (-51))) (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-576) (-13 (-1096 (-1067) (-51)) (-10 -8 (-15 -1775 ($ (-362))) (-15 -1643 ($ $)) (-15 -2550 ((-51) $ (-1084))) (-15 -2396 ((-51) $ (-1084) (-51)))))) (T -576))
-((-1775 (*1 *1 *2) (-12 (-5 *2 (-362)) (-5 *1 (-576)))) (-1643 (*1 *1 *1) (-5 *1 (-576))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-51)) (-5 *1 (-576)))) (-2396 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1084)) (-5 *1 (-576)))))
-(-13 (-1096 (-1067) (-51)) (-10 -8 (-15 -1775 ($ (-362))) (-15 -1643 ($ $)) (-15 -2550 ((-51) $ (-1084))) (-15 -2396 ((-51) $ (-1084) (-51)))))
-((-1648 (($ $ |#2|) 10)))
-(((-577 |#1| |#2|) (-10 -8 (-15 -1648 (|#1| |#1| |#2|))) (-578 |#2|) (-157)) (T -577))
-NIL
-(-10 -8 (-15 -1648 (|#1| |#1| |#2|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2234 (($ $ $) 29)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 28 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-578 |#1|) (-1196) (-157)) (T -578))
-((-2234 (*1 *1 *1 *1) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157)) (-4 *2 (-337)))))
-(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2234 ($ $ $)) (IF (|has| |t#1| (-337)) (-15 -1648 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1493 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2772 (((-1165 (-627 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-1165 (-627 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3765 (((-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2231 (($) NIL T CONST)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2695 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-4090 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3912 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-2872 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2604 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2262 (((-1080 (-880 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-2588 (($ $ (-849)) NIL)) (-3973 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-1276 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2115 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1449 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-3953 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3190 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (($ (-1165 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2783 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3167 (((-849)) NIL (|has| |#2| (-341 |#1|)))) (-2782 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1940 (($ $ (-849)) NIL)) (-2325 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2071 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3318 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2712 (((-3 $ "failed")) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3370 (((-627 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-3748 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-4138 (((-627 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1389 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-3726 (((-1080 (-880 |#1|))) NIL (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-337))))) (-1209 (($ $ (-849)) NIL)) (-3440 ((|#1| $) NIL (|has| |#2| (-341 |#1|)))) (-3609 (((-1080 |#1|) $) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2001 ((|#1|) NIL (|has| |#2| (-391 |#1|))) ((|#1| (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2486 (((-1080 |#1|) $) NIL (|has| |#2| (-341 |#1|)))) (-1743 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4024 (((-1067) $) NIL)) (-1232 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3037 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2901 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-4146 (((-1031) $) NIL)) (-2880 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2550 ((|#1| $ (-521)) NIL (|has| |#2| (-391 |#1|)))) (-1816 (((-627 |#1|) (-1165 $)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|))) (((-627 |#1|) (-1165 $) (-1165 $)) NIL (|has| |#2| (-341 |#1|))) (((-1165 |#1|) $ (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-1438 (($ (-1165 |#1|)) NIL (|has| |#2| (-391 |#1|))) (((-1165 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-1894 (((-587 (-880 |#1|))) NIL (|has| |#2| (-391 |#1|))) (((-587 (-880 |#1|)) (-1165 $)) NIL (|has| |#2| (-341 |#1|)))) (-2062 (($ $ $) NIL)) (-2628 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-2223 (((-791) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1245 (((-1165 $)) NIL (|has| |#2| (-391 |#1|)))) (-2881 (((-587 (-1165 |#1|))) NIL (-3703 (-12 (|has| |#2| (-341 |#1|)) (|has| |#1| (-513))) (-12 (|has| |#2| (-391 |#1|)) (|has| |#1| (-513)))))) (-2268 (($ $ $ $) NIL)) (-3650 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-1644 (($ (-627 |#1|) $) NIL (|has| |#2| (-391 |#1|)))) (-3968 (($ $ $) NIL)) (-3972 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3502 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3199 (((-108)) NIL (|has| |#2| (-341 |#1|)))) (-3562 (($) 15 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) 17)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-579 |#1| |#2|) (-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2223 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|))) (-157) (-681 |#1|)) (T -579))
-((-2223 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-579 *3 *2)) (-4 *2 (-681 *3)))))
-(-13 (-681 |#1|) (-561 |#2|) (-10 -8 (-15 -2223 ($ |#2|)) (IF (|has| |#2| (-391 |#1|)) (-6 (-391 |#1|)) |%noBranch|) (IF (|has| |#2| (-341 |#1|)) (-6 (-341 |#1|)) |%noBranch|)))
-((-3456 (((-3 (-776 |#2|) "failed") |#2| (-269 |#2|) (-1067)) 78) (((-3 (-776 |#2|) (-2 (|:| |leftHandLimit| (-3 (-776 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-776 |#2|) "failed"))) "failed") |#2| (-269 (-776 |#2|))) 100)) (-3347 (((-3 (-769 |#2|) "failed") |#2| (-269 (-769 |#2|))) 105)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -3456 ((-3 (-776 |#2|) (-2 (|:| |leftHandLimit| (-3 (-776 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-776 |#2|) "failed"))) "failed") |#2| (-269 (-776 |#2|)))) (-15 -3347 ((-3 (-769 |#2|) "failed") |#2| (-269 (-769 |#2|)))) (-15 -3456 ((-3 (-776 |#2|) "failed") |#2| (-269 |#2|) (-1067)))) (-13 (-425) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -580))
-((-3456 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-269 *3)) (-5 *5 (-1067)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-776 *3)) (-5 *1 (-580 *6 *3)))) (-3347 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-269 (-769 *3))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-769 *3)) (-5 *1 (-580 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))) (-3456 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-776 *3))) (-4 *3 (-13 (-27) (-1105) (-404 *5))) (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-3 (-776 *3) (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed")) (|:| |rightHandLimit| (-3 (-776 *3) "failed"))) "failed")) (-5 *1 (-580 *5 *3)))))
-(-10 -7 (-15 -3456 ((-3 (-776 |#2|) (-2 (|:| |leftHandLimit| (-3 (-776 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-776 |#2|) "failed"))) "failed") |#2| (-269 (-776 |#2|)))) (-15 -3347 ((-3 (-769 |#2|) "failed") |#2| (-269 (-769 |#2|)))) (-15 -3456 ((-3 (-776 |#2|) "failed") |#2| (-269 |#2|) (-1067))))
-((-3456 (((-3 (-776 (-381 (-880 |#1|))) "failed") (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))) (-1067)) 79) (((-3 (-776 (-381 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed"))) "failed") (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|)))) 18) (((-3 (-776 (-381 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed"))) "failed") (-381 (-880 |#1|)) (-269 (-776 (-880 |#1|)))) 34)) (-3347 (((-769 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|)))) 21) (((-769 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-269 (-769 (-880 |#1|)))) 42)))
-(((-581 |#1|) (-10 -7 (-15 -3456 ((-3 (-776 (-381 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed"))) "failed") (-381 (-880 |#1|)) (-269 (-776 (-880 |#1|))))) (-15 -3456 ((-3 (-776 (-381 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed"))) "failed") (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))))) (-15 -3347 ((-769 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-269 (-769 (-880 |#1|))))) (-15 -3347 ((-769 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))))) (-15 -3456 ((-3 (-776 (-381 (-880 |#1|))) "failed") (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))) (-1067)))) (-425)) (T -581))
-((-3456 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-269 (-381 (-880 *6)))) (-5 *5 (-1067)) (-5 *3 (-381 (-880 *6))) (-4 *6 (-425)) (-5 *2 (-776 *3)) (-5 *1 (-581 *6)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-381 (-880 *5)))) (-5 *3 (-381 (-880 *5))) (-4 *5 (-425)) (-5 *2 (-769 *3)) (-5 *1 (-581 *5)))) (-3347 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-769 (-880 *5)))) (-4 *5 (-425)) (-5 *2 (-769 (-381 (-880 *5)))) (-5 *1 (-581 *5)) (-5 *3 (-381 (-880 *5))))) (-3456 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-381 (-880 *5)))) (-5 *3 (-381 (-880 *5))) (-4 *5 (-425)) (-5 *2 (-3 (-776 *3) (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed")) (|:| |rightHandLimit| (-3 (-776 *3) "failed"))) "failed")) (-5 *1 (-581 *5)))) (-3456 (*1 *2 *3 *4) (-12 (-5 *4 (-269 (-776 (-880 *5)))) (-4 *5 (-425)) (-5 *2 (-3 (-776 (-381 (-880 *5))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 *5))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 *5))) "failed"))) "failed")) (-5 *1 (-581 *5)) (-5 *3 (-381 (-880 *5))))))
-(-10 -7 (-15 -3456 ((-3 (-776 (-381 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed"))) "failed") (-381 (-880 |#1|)) (-269 (-776 (-880 |#1|))))) (-15 -3456 ((-3 (-776 (-381 (-880 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-776 (-381 (-880 |#1|))) "failed"))) "failed") (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))))) (-15 -3347 ((-769 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-269 (-769 (-880 |#1|))))) (-15 -3347 ((-769 (-381 (-880 |#1|))) (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))))) (-15 -3456 ((-3 (-776 (-381 (-880 |#1|))) "failed") (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))) (-1067))))
-((-4203 (((-3 (-1165 (-381 |#1|)) "failed") (-1165 |#2|) |#2|) 57 (-2416 (|has| |#1| (-337)))) (((-3 (-1165 |#1|) "failed") (-1165 |#2|) |#2|) 42 (|has| |#1| (-337)))) (-2378 (((-108) (-1165 |#2|)) 30)) (-1827 (((-3 (-1165 |#1|) "failed") (-1165 |#2|)) 33)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -2378 ((-108) (-1165 |#2|))) (-15 -1827 ((-3 (-1165 |#1|) "failed") (-1165 |#2|))) (IF (|has| |#1| (-337)) (-15 -4203 ((-3 (-1165 |#1|) "failed") (-1165 |#2|) |#2|)) (-15 -4203 ((-3 (-1165 (-381 |#1|)) "failed") (-1165 |#2|) |#2|)))) (-513) (-583 |#1|)) (T -582))
-((-4203 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5)) (-2416 (-4 *5 (-337))) (-4 *5 (-513)) (-5 *2 (-1165 (-381 *5))) (-5 *1 (-582 *5 *4)))) (-4203 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5)) (-4 *5 (-337)) (-4 *5 (-513)) (-5 *2 (-1165 *5)) (-5 *1 (-582 *5 *4)))) (-1827 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513)) (-5 *2 (-1165 *4)) (-5 *1 (-582 *4 *5)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513)) (-5 *2 (-108)) (-5 *1 (-582 *4 *5)))))
-(-10 -7 (-15 -2378 ((-108) (-1165 |#2|))) (-15 -1827 ((-3 (-1165 |#1|) "failed") (-1165 |#2|))) (IF (|has| |#1| (-337)) (-15 -4203 ((-3 (-1165 |#1|) "failed") (-1165 |#2|) |#2|)) (-15 -4203 ((-3 (-1165 (-381 |#1|)) "failed") (-1165 |#2|) |#2|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-1961 (((-627 |#1|) (-627 $)) 36) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 35)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-583 |#1|) (-1196) (-970)) (T -583))
-((-1961 (*1 *2 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-583 *4)) (-4 *4 (-970)) (-5 *2 (-627 *4)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *1)) (-5 *4 (-1165 *1)) (-4 *1 (-583 *5)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3534 (-627 *5)) (|:| |vec| (-1165 *5)))))))
-(-13 (-970) (-10 -8 (-15 -1961 ((-627 |t#1|) (-627 $))) (-15 -1961 ((-2 (|:| -3534 (-627 |t#1|)) (|:| |vec| (-1165 |t#1|))) (-627 $) (-1165 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-4143 ((|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|) 17) ((|#2| (-587 |#1|) (-587 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|)) 12)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|)) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1119)) (T -584))
-((-4143 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2)))) (-4143 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *1 (-584 *5 *6)))) (-4143 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2)))) (-4143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 *5)) (-4 *6 (-1013)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *6)) (-5 *1 (-584 *6 *5)))) (-4143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-584 *5 *6)))))
-(-10 -7 (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) |#2|)) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| |#2|)) (-15 -4143 ((-1 |#2| |#1|) (-587 |#1|) (-587 |#2|) (-1 |#2| |#1|))) (-15 -4143 (|#2| (-587 |#1|) (-587 |#2|) |#1| (-1 |#2| |#1|))))
-((-3184 (((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|) 16)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|) 18)) (-1393 (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 13)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -3184 ((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -1393 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) (-1119) (-1119)) (T -585))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-587 *6)) (-5 *1 (-585 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-587 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-585 *5 *2)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-587 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-587 *5)) (-5 *1 (-585 *6 *5)))))
-(-10 -7 (-15 -3184 ((-587 |#2|) (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-587 |#1|) |#2|)) (-15 -1393 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))))
-((-1393 (((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)) 13)))
-(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)))) (-1119) (-1119) (-1119)) (T -586))
-((-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-587 *8)) (-5 *1 (-586 *6 *7 *8)))))
-(-10 -7 (-15 -1393 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-3830 (($ $) NIL)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) $) NIL (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1216 (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-3215 (($ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1471 (($ $ $) NIL (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "rest" $) NIL (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-1632 (($ $ $) 32 (|has| |#1| (-1013)))) (-1619 (($ $ $) 34 (|has| |#1| (-1013)))) (-1611 (($ $ $) 37 (|has| |#1| (-1013)))) (-3014 (($ (-1 (-108) |#1|) $) NIL)) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2124 ((|#1| $) NIL)) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2329 (($ $) NIL) (($ $ (-707)) NIL)) (-1514 (($ $) NIL (|has| |#1| (-1013)))) (-2354 (($ $) 31 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) NIL (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) NIL)) (-1429 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-2125 (((-108) $) NIL)) (-3236 (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013))) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1525 (((-108) $) 9)) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2092 (($) 7)) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-4162 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3389 (($ $ $) NIL (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1604 (($ |#1|) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1450 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-4135 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1696 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2394 (((-108) $) NIL)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) 36) ((|#1| $ (-521) |#1|) NIL)) (-1557 (((-521) $ $) NIL)) (-3488 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3694 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-1475 (((-108) $) NIL)) (-1290 (($ $) NIL)) (-2780 (($ $) NIL (|has| $ (-6 -4234)))) (-1602 (((-707) $) NIL)) (-1376 (($ $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) 45 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-3439 (($ |#1| $) 10)) (-2240 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4159 (($ $ $) 30) (($ |#1| $) NIL) (($ (-587 $)) NIL) (($ $ |#1|) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3676 (($ $ $) 11)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3828 (((-1067) $) 26 (|has| |#1| (-764))) (((-1067) $ (-108)) 27 (|has| |#1| (-764))) (((-1170) (-758) $) 28 (|has| |#1| (-764))) (((-1170) (-758) $ (-108)) 29 (|has| |#1| (-764)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-587 |#1|) (-13 (-607 |#1|) (-10 -8 (-15 -2092 ($)) (-15 -1525 ((-108) $)) (-15 -3439 ($ |#1| $)) (-15 -3676 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1632 ($ $ $)) (-15 -1619 ($ $ $)) (-15 -1611 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|))) (-1119)) (T -587))
-((-2092 (*1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-587 *3)) (-4 *3 (-1119)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))) (-3676 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))) (-1632 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))) (-1619 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))) (-1611 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
-(-13 (-607 |#1|) (-10 -8 (-15 -2092 ($)) (-15 -1525 ((-108) $)) (-15 -3439 ($ |#1| $)) (-15 -3676 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1632 ($ $ $)) (-15 -1619 ($ $ $)) (-15 -1611 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-764)) (-6 (-764)) |%noBranch|)))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2341 (($ |#1| |#1| $) 43)) (-1269 (((-108) $ (-707)) NIL)) (-3014 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-1514 (($ $) 45)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) 52 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 9 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 37)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1570 ((|#1| $) 46)) (-4135 (($ |#1| $) 26) (($ |#1| $ (-707)) 42)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2747 ((|#1| $) 48)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 21)) (-2280 (($) 25)) (-1425 (((-108) $) 50)) (-3489 (((-587 (-2 (|:| -3050 |#1|) (|:| -4163 (-707)))) $) 59)) (-2036 (($) 23) (($ (-587 |#1|)) 18)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) 56 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 19)) (-1438 (((-497) $) 34 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-2223 (((-791) $) 14 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 22)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 61 (|has| |#1| (-1013)))) (-3478 (((-707) $) 16 (|has| $ (-6 -4233)))))
-(((-588 |#1|) (-13 (-632 |#1|) (-10 -8 (-6 -4233) (-15 -1425 ((-108) $)) (-15 -2341 ($ |#1| |#1| $)))) (-1013)) (T -588))
-((-1425 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1013)))) (-2341 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1013)))))
-(-13 (-632 |#1|) (-10 -8 (-6 -4233) (-15 -1425 ((-108) $)) (-15 -2341 ($ |#1| |#1| $))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23)))
-(((-589 |#1|) (-1196) (-977)) (T -589))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-977)))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) NIL)) (-2093 ((|#1| $) NIL)) (-3835 (($ $) NIL)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) 58 (|has| $ (-6 -4239)))) (-4187 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-3537 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) 56 (|has| $ (-6 -4239)))) (-3216 (($ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1243 (($ $ $) 23 (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) 21 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4239))) (($ $ "rest" $) 24 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2081 ((|#1| $) NIL)) (-3175 (($) NIL T CONST)) (-3509 (($ $) 28 (|has| $ (-6 -4239)))) (-1862 (($ $) 29)) (-2306 (($ $) 18) (($ $ (-708)) 32)) (-3362 (($ $) 54 (|has| |#1| (-1014)))) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1423 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3069 (((-108) $) NIL)) (-3238 (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014))) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) NIL)) (-3837 (((-588 |#1|) $) 27 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 31 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-1369 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 57)) (-2160 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 52 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1580 (($ |#1|) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) NIL)) (-2385 (((-1068) $) 51 (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-4095 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1661 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) 13) (($ $ (-708)) NIL)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-2855 (((-108) $) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 12)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) 17)) (-3775 (($) 16)) (-2545 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) NIL) ((|#1| $ (-522) |#1|) NIL)) (-2011 (((-522) $ $) NIL)) (-3681 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3696 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3042 (((-108) $) 34)) (-3107 (($ $) NIL)) (-2646 (($ $) NIL (|has| $ (-6 -4239)))) (-2393 (((-708) $) NIL)) (-2122 (($ $) 36)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) 35)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 26)) (-2630 (($ $ $) 53) (($ $ |#1|) NIL)) (-4165 (($ $ $) NIL) (($ |#1| $) 10) (($ (-588 $)) NIL) (($ $ |#1|) NIL)) (-2190 (((-792) $) 46 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 48 (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) 9 (|has| $ (-6 -4238)))))
+(((-488 |#1| |#2|) (-608 |#1|) (-1120) (-522)) (T -488))
+NIL
+(-608 |#1|)
+((-2264 ((|#4| |#4|) 26)) (-3166 (((-708) |#4|) 31)) (-3799 (((-708) |#4|) 32)) (-2064 (((-588 |#3|) |#4|) 38 (|has| |#3| (-6 -4239)))) (-2147 (((-3 |#4| "failed") |#4|) 48)) (-3550 ((|#4| |#4|) 41)) (-3206 ((|#1| |#4|) 40)))
+(((-489 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2264 (|#4| |#4|)) (-15 -3166 ((-708) |#4|)) (-15 -3799 ((-708) |#4|)) (IF (|has| |#3| (-6 -4239)) (-15 -2064 ((-588 |#3|) |#4|)) |%noBranch|) (-15 -3206 (|#1| |#4|)) (-15 -3550 (|#4| |#4|)) (-15 -2147 ((-3 |#4| "failed") |#4|))) (-338) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -489))
+((-2147 (*1 *2 *2) (|partial| -12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-338)) (-5 *1 (-489 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) (-2064 (*1 *2 *3) (-12 (|has| *6 (-6 -4239)) (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3799 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(-10 -7 (-15 -2264 (|#4| |#4|)) (-15 -3166 ((-708) |#4|)) (-15 -3799 ((-708) |#4|)) (IF (|has| |#3| (-6 -4239)) (-15 -2064 ((-588 |#3|) |#4|)) |%noBranch|) (-15 -3206 (|#1| |#4|)) (-15 -3550 (|#4| |#4|)) (-15 -2147 ((-3 |#4| "failed") |#4|)))
+((-2264 ((|#8| |#4|) 20)) (-2064 (((-588 |#3|) |#4|) 29 (|has| |#7| (-6 -4239)))) (-2147 (((-3 |#8| "failed") |#4|) 23)))
+(((-490 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2264 (|#8| |#4|)) (-15 -2147 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4239)) (-15 -2064 ((-588 |#3|) |#4|)) |%noBranch|)) (-514) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|) (-919 |#1|) (-348 |#5|) (-348 |#5|) (-626 |#5| |#6| |#7|)) (T -490))
+((-2064 (*1 *2 *3) (-12 (|has| *9 (-6 -4239)) (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *8 (-348 *7)) (-4 *9 (-348 *7)) (-5 *2 (-588 *6)) (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-626 *4 *5 *6)) (-4 *10 (-626 *7 *8 *9)))) (-2147 (*1 *2 *3) (|partial| -12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-348 *7)) (-4 *9 (-348 *7)))) (-2264 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9)) (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6)) (-4 *8 (-348 *7)) (-4 *9 (-348 *7)))))
+(-10 -7 (-15 -2264 (|#8| |#4|)) (-15 -2147 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4239)) (-15 -2064 ((-588 |#3|) |#4|)) |%noBranch|))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3483 (($ (-708) (-708)) NIL)) (-3437 (($ $ $) NIL)) (-2318 (($ (-553 |#1| |#3|)) NIL) (($ $) NIL)) (-2727 (((-108) $) NIL)) (-2444 (($ $ (-522) (-522)) 12)) (-1327 (($ $ (-522) (-522)) NIL)) (-4183 (($ $ (-522) (-522) (-522) (-522)) NIL)) (-2212 (($ $) NIL)) (-2527 (((-108) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3478 (($ $ (-522) (-522) $) NIL)) (-2379 ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) NIL)) (-2480 (($ $ (-522) (-553 |#1| |#3|)) NIL)) (-1888 (($ $ (-522) (-553 |#1| |#2|)) NIL)) (-3022 (($ (-708) |#1|) NIL)) (-3175 (($) NIL T CONST)) (-2264 (($ $) 19 (|has| |#1| (-283)))) (-1860 (((-553 |#1| |#3|) $ (-522)) NIL)) (-3166 (((-708) $) 22 (|has| |#1| (-514)))) (-3854 ((|#1| $ (-522) (-522) |#1|) NIL)) (-3631 ((|#1| $ (-522) (-522)) NIL)) (-3837 (((-588 |#1|) $) NIL)) (-3799 (((-708) $) 24 (|has| |#1| (-514)))) (-2064 (((-588 (-553 |#1| |#2|)) $) 27 (|has| |#1| (-514)))) (-1411 (((-708) $) NIL)) (-1811 (($ (-708) (-708) |#1|) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-3081 ((|#1| $) 17 (|has| |#1| (-6 (-4240 "*"))))) (-2575 (((-522) $) 10)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3886 (((-522) $) 11)) (-4132 (((-522) $) NIL)) (-1366 (($ (-588 (-588 |#1|))) NIL)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3237 (((-588 (-588 |#1|)) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2147 (((-3 $ "failed") $) 31 (|has| |#1| (-338)))) (-1572 (($ $ $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522))) NIL)) (-4077 (($ (-588 |#1|)) NIL) (($ (-588 $)) NIL)) (-1767 (((-108) $) NIL)) (-3206 ((|#1| $) 15 (|has| |#1| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-3488 (((-553 |#1| |#2|) $ (-522)) NIL)) (-2190 (($ (-553 |#1| |#2|)) NIL) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1697 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-522) $) NIL) (((-553 |#1| |#2|) $ (-553 |#1| |#2|)) NIL) (((-553 |#1| |#3|) (-553 |#1| |#3|) $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-491 |#1| |#2| |#3|) (-626 |#1| (-553 |#1| |#3|) (-553 |#1| |#2|)) (-971) (-522) (-522)) (T -491))
+NIL
+(-626 |#1| (-553 |#1| |#3|) (-553 |#1| |#2|))
+((-2722 (((-1081 |#1|) (-708)) 75)) (-1865 (((-1166 |#1|) (-1166 |#1|) (-850)) 68)) (-3176 (((-1171) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) |#1|) 83)) (-3170 (((-1166 |#1|) (-1166 |#1|) (-708)) 36)) (-3255 (((-1166 |#1|) (-850)) 70)) (-3868 (((-1166 |#1|) (-1166 |#1|) (-522)) 24)) (-3892 (((-1081 |#1|) (-1166 |#1|)) 76)) (-3400 (((-1166 |#1|) (-850)) 94)) (-2741 (((-108) (-1166 |#1|)) 79)) (-2100 (((-1166 |#1|) (-1166 |#1|) (-850)) 61)) (-1712 (((-1081 |#1|) (-1166 |#1|)) 88)) (-2120 (((-850) (-1166 |#1|)) 58)) (-3098 (((-1166 |#1|) (-1166 |#1|)) 30)) (-2717 (((-1166 |#1|) (-850) (-850)) 96)) (-2193 (((-1166 |#1|) (-1166 |#1|) (-1032) (-1032)) 23)) (-1496 (((-1166 |#1|) (-1166 |#1|) (-708) (-1032)) 37)) (-3855 (((-1166 (-1166 |#1|)) (-850)) 93)) (-1620 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 80)) (** (((-1166 |#1|) (-1166 |#1|) (-522)) 45)) (* (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 25)))
+(((-492 |#1|) (-10 -7 (-15 -3176 ((-1171) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) |#1|)) (-15 -3255 ((-1166 |#1|) (-850))) (-15 -2717 ((-1166 |#1|) (-850) (-850))) (-15 -3892 ((-1081 |#1|) (-1166 |#1|))) (-15 -2722 ((-1081 |#1|) (-708))) (-15 -1496 ((-1166 |#1|) (-1166 |#1|) (-708) (-1032))) (-15 -3170 ((-1166 |#1|) (-1166 |#1|) (-708))) (-15 -2193 ((-1166 |#1|) (-1166 |#1|) (-1032) (-1032))) (-15 -3868 ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1620 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2100 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -1865 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -3098 ((-1166 |#1|) (-1166 |#1|))) (-15 -2120 ((-850) (-1166 |#1|))) (-15 -2741 ((-108) (-1166 |#1|))) (-15 -3855 ((-1166 (-1166 |#1|)) (-850))) (-15 -3400 ((-1166 |#1|) (-850))) (-15 -1712 ((-1081 |#1|) (-1166 |#1|)))) (-324)) (T -492))
+((-1712 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-492 *4)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-850)) (-5 *1 (-492 *4)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) (-1865 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-1620 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-3868 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-2193 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1032)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-3170 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-492 *4)))) (-1496 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1166 *5)) (-5 *3 (-708)) (-5 *4 (-1032)) (-4 *5 (-324)) (-5 *1 (-492 *5)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4)))) (-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4)) (-4 *4 (-324)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032)))))) (-4 *4 (-324)) (-5 *2 (-1171)) (-5 *1 (-492 *4)))))
+(-10 -7 (-15 -3176 ((-1171) (-1166 (-588 (-2 (|:| -3435 |#1|) (|:| -2717 (-1032))))) |#1|)) (-15 -3255 ((-1166 |#1|) (-850))) (-15 -2717 ((-1166 |#1|) (-850) (-850))) (-15 -3892 ((-1081 |#1|) (-1166 |#1|))) (-15 -2722 ((-1081 |#1|) (-708))) (-15 -1496 ((-1166 |#1|) (-1166 |#1|) (-708) (-1032))) (-15 -3170 ((-1166 |#1|) (-1166 |#1|) (-708))) (-15 -2193 ((-1166 |#1|) (-1166 |#1|) (-1032) (-1032))) (-15 -3868 ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-522))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1620 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2100 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -1865 ((-1166 |#1|) (-1166 |#1|) (-850))) (-15 -3098 ((-1166 |#1|) (-1166 |#1|))) (-15 -2120 ((-850) (-1166 |#1|))) (-15 -2741 ((-108) (-1166 |#1|))) (-15 -3855 ((-1166 (-1166 |#1|)) (-850))) (-15 -3400 ((-1166 |#1|) (-850))) (-15 -1712 ((-1081 |#1|) (-1166 |#1|))))
+((-1593 (((-1 |#1| |#1|) |#1|) 11)) (-2513 (((-1 |#1| |#1|)) 10)))
+(((-493 |#1|) (-10 -7 (-15 -2513 ((-1 |#1| |#1|))) (-15 -1593 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -493))
+((-1593 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25))))) (-2513 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25))))))
+(-10 -7 (-15 -2513 ((-1 |#1| |#1|))) (-15 -1593 ((-1 |#1| |#1|) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1210 (($ $ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-4049 (($ (-708) |#1|) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 (-708) (-708)) $) NIL)) (-1207 ((|#1| $) NIL)) (-3138 (((-708) $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 20)) (-3566 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL)))
+(((-494 |#1|) (-13 (-730) (-478 (-708) |#1|)) (-784)) (T -494))
+NIL
+(-13 (-730) (-478 (-708) |#1|))
+((-3589 (((-588 |#2|) (-1081 |#1|) |#3|) 83)) (-2847 (((-588 (-2 (|:| |outval| |#2|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#2|))))) (-628 |#1|) |#3| (-1 (-393 (-1081 |#1|)) (-1081 |#1|))) 99)) (-2856 (((-1081 |#1|) (-628 |#1|)) 95)))
+(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -2856 ((-1081 |#1|) (-628 |#1|))) (-15 -3589 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -2847 ((-588 (-2 (|:| |outval| |#2|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#2|))))) (-628 |#1|) |#3| (-1 (-393 (-1081 |#1|)) (-1081 |#1|))))) (-338) (-338) (-13 (-338) (-782))) (T -495))
+((-2847 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *6)) (-5 *5 (-1 (-393 (-1081 *6)) (-1081 *6))) (-4 *6 (-338)) (-5 *2 (-588 (-2 (|:| |outval| *7) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 *7)))))) (-5 *1 (-495 *6 *7 *4)) (-4 *7 (-338)) (-4 *4 (-13 (-338) (-782))))) (-3589 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *5)) (-4 *5 (-338)) (-5 *2 (-588 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-628 *4)) (-4 *4 (-338)) (-5 *2 (-1081 *4)) (-5 *1 (-495 *4 *5 *6)) (-4 *5 (-338)) (-4 *6 (-13 (-338) (-782))))))
+(-10 -7 (-15 -2856 ((-1081 |#1|) (-628 |#1|))) (-15 -3589 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -2847 ((-588 (-2 (|:| |outval| |#2|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#2|))))) (-628 |#1|) |#3| (-1 (-393 (-1081 |#1|)) (-1081 |#1|)))))
+((-2873 (((-777 (-522))) 11)) (-2886 (((-777 (-522))) 13)) (-2849 (((-770 (-522))) 8)))
+(((-496) (-10 -7 (-15 -2849 ((-770 (-522)))) (-15 -2873 ((-777 (-522)))) (-15 -2886 ((-777 (-522)))))) (T -496))
+((-2886 (*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496)))) (-2873 (*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496)))) (-2849 (*1 *2) (-12 (-5 *2 (-770 (-522))) (-5 *1 (-496)))))
+(-10 -7 (-15 -2849 ((-770 (-522)))) (-15 -2873 ((-777 (-522)))) (-15 -2886 ((-777 (-522)))))
+((-2315 (((-498) (-1085)) 15)) (-1562 ((|#1| (-498)) 20)))
+(((-497 |#1|) (-10 -7 (-15 -2315 ((-498) (-1085))) (-15 -1562 (|#1| (-498)))) (-1120)) (T -497))
+((-1562 (*1 *2 *3) (-12 (-5 *3 (-498)) (-5 *1 (-497 *2)) (-4 *2 (-1120)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-498)) (-5 *1 (-497 *4)) (-4 *4 (-1120)))))
+(-10 -7 (-15 -2315 ((-498) (-1085))) (-15 -1562 (|#1| (-498))))
+((-1416 (((-108) $ $) NIL)) (-3635 (((-1068) $) 46)) (-2031 (((-108) $) 43)) (-1490 (((-1085) $) 44)) (-2879 (((-108) $) 41)) (-1507 (((-1068) $) 42)) (-1741 (((-108) $) NIL)) (-2045 (((-108) $) NIL)) (-2586 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-1286 (($ $ (-588 (-1085))) 20)) (-1562 (((-51) $) 22)) (-3096 (((-108) $) NIL)) (-1509 (((-522) $) NIL)) (-4151 (((-1032) $) NIL)) (-2094 (($ $ (-588 (-1085)) (-1085)) 58)) (-3151 (((-108) $) NIL)) (-3071 (((-202) $) NIL)) (-3862 (($ $) 38)) (-1575 (((-792) $) NIL)) (-3197 (((-108) $ $) NIL)) (-2545 (($ $ (-522)) NIL) (($ $ (-588 (-522))) NIL)) (-1991 (((-588 $) $) 28)) (-1236 (((-1085) (-588 $)) 47)) (-1431 (($ (-588 $)) 51) (($ (-1068)) NIL) (($ (-1085)) 18) (($ (-522)) 8) (($ (-202)) 25) (($ (-792)) NIL) (((-1018) $) 11) (($ (-1018)) 12)) (-1780 (((-1085) (-1085) (-588 $)) 50)) (-2190 (((-792) $) NIL)) (-3212 (($ $) 49)) (-3201 (($ $) 48)) (-2271 (($ $ (-588 $)) 55)) (-1474 (((-108) $) 27)) (-3566 (($) 9 T CONST)) (-3577 (($) 10 T CONST)) (-1531 (((-108) $ $) 59)) (-1620 (($ $ $) 64)) (-1602 (($ $ $) 60)) (** (($ $ (-708)) 63) (($ $ (-522)) 62)) (* (($ $ $) 61)) (-3480 (((-522) $) NIL)))
+(((-498) (-13 (-1017 (-1068) (-1085) (-522) (-202) (-792)) (-563 (-1018)) (-10 -8 (-15 -1562 ((-51) $)) (-15 -1431 ($ (-1018))) (-15 -2271 ($ $ (-588 $))) (-15 -2094 ($ $ (-588 (-1085)) (-1085))) (-15 -1286 ($ $ (-588 (-1085)))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ (-522))) (-15 0 ($) -2677) (-15 1 ($) -2677) (-15 -3862 ($ $)) (-15 -3635 ((-1068) $)) (-15 -1236 ((-1085) (-588 $))) (-15 -1780 ((-1085) (-1085) (-588 $)))))) (T -498))
+((-1562 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-498)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-498)))) (-2271 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-498))) (-5 *1 (-498)))) (-2094 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1085)) (-5 *1 (-498)))) (-1286 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-498)))) (-1602 (*1 *1 *1 *1) (-5 *1 (-498))) (* (*1 *1 *1 *1) (-5 *1 (-498))) (-1620 (*1 *1 *1 *1) (-5 *1 (-498))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-498)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-498)))) (-3566 (*1 *1) (-5 *1 (-498))) (-3577 (*1 *1) (-5 *1 (-498))) (-3862 (*1 *1 *1) (-5 *1 (-498))) (-3635 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-498)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-588 (-498))) (-5 *2 (-1085)) (-5 *1 (-498)))) (-1780 (*1 *2 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-498))) (-5 *1 (-498)))))
+(-13 (-1017 (-1068) (-1085) (-522) (-202) (-792)) (-563 (-1018)) (-10 -8 (-15 -1562 ((-51) $)) (-15 -1431 ($ (-1018))) (-15 -2271 ($ $ (-588 $))) (-15 -2094 ($ $ (-588 (-1085)) (-1085))) (-15 -1286 ($ $ (-588 (-1085)))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ (-522))) (-15 (-3566) ($) -2677) (-15 (-3577) ($) -2677) (-15 -3862 ($ $)) (-15 -3635 ((-1068) $)) (-15 -1236 ((-1085) (-588 $))) (-15 -1780 ((-1085) (-1085) (-588 $)))))
+((-3486 ((|#2| |#2|) 17)) (-2703 ((|#2| |#2|) 13)) (-2927 ((|#2| |#2| (-522) (-522)) 20)) (-2312 ((|#2| |#2|) 15)))
+(((-499 |#1| |#2|) (-10 -7 (-15 -2703 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2927 (|#2| |#2| (-522) (-522)))) (-13 (-514) (-135)) (-1157 |#1|)) (T -499))
+((-2927 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1157 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1157 *3)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1157 *3)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -2703 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2927 (|#2| |#2| (-522) (-522))))
+((-1665 (((-588 (-270 (-881 |#2|))) (-588 |#2|) (-588 (-1085))) 32)) (-1314 (((-588 |#2|) (-881 |#1|) |#3|) 53) (((-588 |#2|) (-1081 |#1|) |#3|) 52)) (-3005 (((-588 (-588 |#2|)) (-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)) |#3|) 87)))
+(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -1314 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -1314 ((-588 |#2|) (-881 |#1|) |#3|)) (-15 -3005 ((-588 (-588 |#2|)) (-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)) |#3|)) (-15 -1665 ((-588 (-270 (-881 |#2|))) (-588 |#2|) (-588 (-1085))))) (-426) (-338) (-13 (-338) (-782))) (T -500))
+((-1665 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1085))) (-4 *6 (-338)) (-5 *2 (-588 (-270 (-881 *6)))) (-5 *1 (-500 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-13 (-338) (-782))))) (-3005 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-588 (-588 *7))) (-5 *1 (-500 *6 *7 *5)) (-4 *7 (-338)) (-4 *5 (-13 (-338) (-782))))) (-1314 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6)) (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))) (-1314 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6)) (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))))
+(-10 -7 (-15 -1314 ((-588 |#2|) (-1081 |#1|) |#3|)) (-15 -1314 ((-588 |#2|) (-881 |#1|) |#3|)) (-15 -3005 ((-588 (-588 |#2|)) (-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)) |#3|)) (-15 -1665 ((-588 (-270 (-881 |#2|))) (-588 |#2|) (-588 (-1085)))))
+((-4048 ((|#2| |#2| |#1|) 17)) (-3500 ((|#2| (-588 |#2|)) 27)) (-2830 ((|#2| (-588 |#2|)) 46)))
+(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3500 (|#2| (-588 |#2|))) (-15 -2830 (|#2| (-588 |#2|))) (-15 -4048 (|#2| |#2| |#1|))) (-283) (-1142 |#1|) |#1| (-1 |#1| |#1| (-708))) (T -501))
+((-4048 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-708))) (-5 *1 (-501 *3 *2 *4 *5)) (-4 *2 (-1142 *3)))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6)) (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708))))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6)) (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708))))))
+(-10 -7 (-15 -3500 (|#2| (-588 |#2|))) (-15 -2830 (|#2| (-588 |#2|))) (-15 -4048 (|#2| |#2| |#1|)))
+((-1916 (((-393 (-1081 |#4|)) (-1081 |#4|) (-1 (-393 (-1081 |#3|)) (-1081 |#3|))) 79) (((-393 |#4|) |#4| (-1 (-393 (-1081 |#3|)) (-1081 |#3|))) 166)))
+(((-502 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 |#4|) |#4| (-1 (-393 (-1081 |#3|)) (-1081 |#3|)))) (-15 -1916 ((-393 (-1081 |#4|)) (-1081 |#4|) (-1 (-393 (-1081 |#3|)) (-1081 |#3|))))) (-784) (-730) (-13 (-283) (-135)) (-878 |#3| |#2| |#1|)) (T -502))
+((-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7))) (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *8 (-878 *7 *6 *5)) (-5 *2 (-393 (-1081 *8))) (-5 *1 (-502 *5 *6 *7 *8)) (-5 *3 (-1081 *8)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7))) (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730)) (-5 *2 (-393 *3)) (-5 *1 (-502 *5 *6 *7 *3)) (-4 *3 (-878 *7 *6 *5)))))
+(-10 -7 (-15 -1916 ((-393 |#4|) |#4| (-1 (-393 (-1081 |#3|)) (-1081 |#3|)))) (-15 -1916 ((-393 (-1081 |#4|)) (-1081 |#4|) (-1 (-393 (-1081 |#3|)) (-1081 |#3|)))))
+((-3486 ((|#4| |#4|) 74)) (-2703 ((|#4| |#4|) 70)) (-2927 ((|#4| |#4| (-522) (-522)) 76)) (-2312 ((|#4| |#4|) 72)))
+(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2703 (|#4| |#4|)) (-15 -2312 (|#4| |#4|)) (-15 -3486 (|#4| |#4|)) (-15 -2927 (|#4| |#4| (-522) (-522)))) (-13 (-338) (-343) (-563 (-522))) (-1142 |#1|) (-662 |#1| |#2|) (-1157 |#3|)) (T -503))
+((-2927 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3))) (-4 *5 (-1142 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-503 *4 *5 *6 *2)) (-4 *2 (-1157 *6)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))))
+(-10 -7 (-15 -2703 (|#4| |#4|)) (-15 -2312 (|#4| |#4|)) (-15 -3486 (|#4| |#4|)) (-15 -2927 (|#4| |#4| (-522) (-522))))
+((-3486 ((|#2| |#2|) 27)) (-2703 ((|#2| |#2|) 23)) (-2927 ((|#2| |#2| (-522) (-522)) 29)) (-2312 ((|#2| |#2|) 25)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -2703 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2927 (|#2| |#2| (-522) (-522)))) (-13 (-338) (-343) (-563 (-522))) (-1157 |#1|)) (T -504))
+((-2927 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3))) (-5 *1 (-504 *4 *2)) (-4 *2 (-1157 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) (-4 *2 (-1157 *3)))) (-2312 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) (-4 *2 (-1157 *3)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2)) (-4 *2 (-1157 *3)))))
+(-10 -7 (-15 -2703 (|#2| |#2|)) (-15 -2312 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -2927 (|#2| |#2| (-522) (-522))))
+((-2431 (((-3 (-522) "failed") |#2| |#1| (-1 (-3 (-522) "failed") |#1|)) 14) (((-3 (-522) "failed") |#2| |#1| (-522) (-1 (-3 (-522) "failed") |#1|)) 13) (((-3 (-522) "failed") |#2| (-522) (-1 (-3 (-522) "failed") |#1|)) 26)))
+(((-505 |#1| |#2|) (-10 -7 (-15 -2431 ((-3 (-522) "failed") |#2| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -2431 ((-3 (-522) "failed") |#2| |#1| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -2431 ((-3 (-522) "failed") |#2| |#1| (-1 (-3 (-522) "failed") |#1|)))) (-971) (-1142 |#1|)) (T -505))
+((-2431 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4)))) (-2431 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4)))) (-2431 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-522) "failed") *5)) (-4 *5 (-971)) (-5 *2 (-522)) (-5 *1 (-505 *5 *3)) (-4 *3 (-1142 *5)))))
+(-10 -7 (-15 -2431 ((-3 (-522) "failed") |#2| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -2431 ((-3 (-522) "failed") |#2| |#1| (-522) (-1 (-3 (-522) "failed") |#1|))) (-15 -2431 ((-3 (-522) "failed") |#2| |#1| (-1 (-3 (-522) "failed") |#1|))))
+((-3871 (($ $ $) 79)) (-3450 (((-393 $) $) 47)) (-1297 (((-3 (-522) "failed") $) 59)) (-1484 (((-522) $) 37)) (-1664 (((-3 (-382 (-522)) "failed") $) 74)) (-1770 (((-108) $) 24)) (-1492 (((-382 (-522)) $) 72)) (-2813 (((-108) $) 50)) (-2676 (($ $ $ $) 86)) (-3687 (((-108) $) 16)) (-3219 (($ $ $) 57)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 69)) (-3004 (((-3 $ "failed") $) 64)) (-3893 (($ $) 23)) (-2341 (($ $ $) 84)) (-3802 (($) 60)) (-2868 (($ $) 53)) (-1916 (((-393 $) $) 45)) (-1263 (((-108) $) 14)) (-3730 (((-708) $) 28)) (-2157 (($ $ (-708)) NIL) (($ $) 10)) (-2404 (($ $) 17)) (-1431 (((-522) $) NIL) (((-498) $) 36) (((-821 (-522)) $) 40) (((-354) $) 31) (((-202) $) 33)) (-2323 (((-708)) 8)) (-3558 (((-108) $ $) 20)) (-1480 (($ $ $) 55)))
+(((-506 |#1|) (-10 -8 (-15 -2341 (|#1| |#1| |#1|)) (-15 -2676 (|#1| |#1| |#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -3558 ((-108) |#1| |#1|)) (-15 -1263 ((-108) |#1|)) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -1431 ((-202) |#1|)) (-15 -1431 ((-354) |#1|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1431 ((-522) |#1|)) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -3687 ((-108) |#1|)) (-15 -3730 ((-708) |#1|)) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -2813 ((-108) |#1|)) (-15 -2323 ((-708)))) (-507)) (T -506))
+((-2323 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-506 *3)) (-4 *3 (-507)))))
+(-10 -8 (-15 -2341 (|#1| |#1| |#1|)) (-15 -2676 (|#1| |#1| |#1| |#1|)) (-15 -3893 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -3558 ((-108) |#1| |#1|)) (-15 -1263 ((-108) |#1|)) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -1431 ((-202) |#1|)) (-15 -1431 ((-354) |#1|)) (-15 -3219 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -1480 (|#1| |#1| |#1|)) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1431 ((-522) |#1|)) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -3687 ((-108) |#1|)) (-15 -3730 ((-708) |#1|)) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -2813 ((-108) |#1|)) (-15 -2323 ((-708))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-3871 (($ $ $) 85)) (-1233 (((-3 $ "failed") $ $) 19)) (-3481 (($ $ $ $) 73)) (-3119 (($ $) 51)) (-3450 (((-393 $) $) 52)) (-1687 (((-108) $ $) 125)) (-1341 (((-522) $) 114)) (-1662 (($ $ $) 88)) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 106)) (-1484 (((-522) $) 105)) (-2277 (($ $ $) 129)) (-2096 (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 104) (((-628 (-522)) (-628 $)) 103)) (-2682 (((-3 $ "failed") $) 34)) (-1664 (((-3 (-382 (-522)) "failed") $) 82)) (-1770 (((-108) $) 84)) (-1492 (((-382 (-522)) $) 83)) (-3255 (($) 81) (($ $) 80)) (-2254 (($ $ $) 128)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 123)) (-2813 (((-108) $) 53)) (-2676 (($ $ $ $) 71)) (-2339 (($ $ $) 86)) (-3687 (((-108) $) 116)) (-3219 (($ $ $) 97)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 100)) (-2782 (((-108) $) 31)) (-2591 (((-108) $) 92)) (-3004 (((-3 $ "failed") $) 94)) (-2556 (((-108) $) 115)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 132)) (-1335 (($ $ $ $) 72)) (-2814 (($ $ $) 117)) (-2446 (($ $ $) 118)) (-3893 (($ $) 75)) (-2517 (($ $) 89)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-2341 (($ $ $) 70)) (-3802 (($) 93 T CONST)) (-2957 (($ $) 77)) (-4151 (((-1032) $) 10) (($ $) 79)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-2868 (($ $) 98)) (-1916 (((-393 $) $) 50)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 130)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 124)) (-1263 (((-108) $) 91)) (-3730 (((-708) $) 126)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 127)) (-2157 (($ $ (-708)) 111) (($ $) 109)) (-3056 (($ $) 76)) (-2404 (($ $) 78)) (-1431 (((-522) $) 108) (((-498) $) 102) (((-821 (-522)) $) 101) (((-354) $) 96) (((-202) $) 95)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-522)) 107)) (-2323 (((-708)) 29)) (-3558 (((-108) $ $) 87)) (-1480 (($ $ $) 99)) (-3355 (($) 90)) (-3958 (((-108) $ $) 39)) (-4004 (($ $ $ $) 74)) (-2241 (($ $) 113)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-708)) 112) (($ $) 110)) (-1574 (((-108) $ $) 120)) (-1558 (((-108) $ $) 121)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 119)) (-1549 (((-108) $ $) 122)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-507) (-1197)) (T -507))
+((-2591 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-3355 (*1 *1) (-4 *1 (-507))) (-2517 (*1 *1 *1) (-4 *1 (-507))) (-1662 (*1 *1 *1 *1) (-4 *1 (-507))) (-3558 (*1 *2 *1 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-2339 (*1 *1 *1 *1) (-4 *1 (-507))) (-3871 (*1 *1 *1 *1) (-4 *1 (-507))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-382 (-522))))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *1 (-507)) (-5 *2 (-382 (-522))))) (-3255 (*1 *1) (-4 *1 (-507))) (-3255 (*1 *1 *1) (-4 *1 (-507))) (-4151 (*1 *1 *1) (-4 *1 (-507))) (-2404 (*1 *1 *1) (-4 *1 (-507))) (-2957 (*1 *1 *1) (-4 *1 (-507))) (-3056 (*1 *1 *1) (-4 *1 (-507))) (-3893 (*1 *1 *1) (-4 *1 (-507))) (-4004 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-3481 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-1335 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-2676 (*1 *1 *1 *1 *1) (-4 *1 (-507))) (-2341 (*1 *1 *1 *1) (-4 *1 (-507))))
+(-13 (-1124) (-283) (-757) (-210) (-563 (-522)) (-962 (-522)) (-584 (-522)) (-563 (-498)) (-563 (-821 (-522))) (-815 (-522)) (-131) (-947) (-135) (-1061) (-10 -8 (-15 -2591 ((-108) $)) (-15 -1263 ((-108) $)) (-6 -4237) (-15 -3355 ($)) (-15 -2517 ($ $)) (-15 -1662 ($ $ $)) (-15 -3558 ((-108) $ $)) (-15 -2339 ($ $ $)) (-15 -3871 ($ $ $)) (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $)) (-15 -3255 ($)) (-15 -3255 ($ $)) (-15 -4151 ($ $)) (-15 -2404 ($ $)) (-15 -2957 ($ $)) (-15 -3056 ($ $)) (-15 -3893 ($ $)) (-15 -4004 ($ $ $ $)) (-15 -3481 ($ $ $ $)) (-15 -1335 ($ $ $ $)) (-15 -2676 ($ $ $ $)) (-15 -2341 ($ $ $)) (-6 -4236)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-131) . T) ((-157) . T) ((-563 (-202)) . T) ((-563 (-354)) . T) ((-563 (-498)) . T) ((-563 (-522)) . T) ((-563 (-821 (-522))) . T) ((-210) . T) ((-266) . T) ((-283) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-584 (-522)) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-757) . T) ((-782) . T) ((-784) . T) ((-815 (-522)) . T) ((-849) . T) ((-947) . T) ((-962 (-522)) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) . T) ((-1124) . T))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#2| $ |#1| |#2|) NIL)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2966 (((-588 |#1|) $) NIL)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3604 (((-588 |#1|) $) NIL)) (-1405 (((-108) |#1| $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-508 |#1| |#2| |#3|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238)))) (T -508))
+NIL
+(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238)))
+((-3747 (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-1 (-1081 |#2|) (-1081 |#2|))) 49)))
+(((-509 |#1| |#2|) (-10 -7 (-15 -3747 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-1 (-1081 |#2|) (-1081 |#2|))))) (-13 (-784) (-514)) (-13 (-27) (-405 |#1|))) (T -509))
+((-3747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-561 *3)) (-5 *5 (-1 (-1081 *3) (-1081 *3))) (-4 *3 (-13 (-27) (-405 *6))) (-4 *6 (-13 (-784) (-514))) (-5 *2 (-539 *3)) (-5 *1 (-509 *6 *3)))))
+(-10 -7 (-15 -3747 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-1 (-1081 |#2|) (-1081 |#2|)))))
+((-4171 (((-539 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2694 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-3954 (((-539 |#5|) |#5| (-1 |#3| |#3|)) 198)))
+(((-510 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3954 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4171 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2694 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-784) (-514) (-962 (-522))) (-13 (-27) (-405 |#1|)) (-1142 |#2|) (-1142 (-382 |#3|)) (-317 |#2| |#3| |#4|)) (T -510))
+((-2694 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-27) (-405 *4))) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-4 *7 (-1142 (-382 *6))) (-5 *1 (-510 *4 *5 *6 *7 *2)) (-4 *2 (-317 *5 *6 *7)))) (-4171 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-13 (-27) (-405 *5))) (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7))) (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3)) (-4 *3 (-317 *6 *7 *8)))) (-3954 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-13 (-27) (-405 *5))) (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7))) (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3)) (-4 *3 (-317 *6 *7 *8)))))
+(-10 -7 (-15 -3954 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4171 ((-539 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2694 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3410 (((-108) (-522) (-522)) 10)) (-1947 (((-522) (-522)) 7)) (-2733 (((-522) (-522) (-522)) 8)))
+(((-511) (-10 -7 (-15 -1947 ((-522) (-522))) (-15 -2733 ((-522) (-522) (-522))) (-15 -3410 ((-108) (-522) (-522))))) (T -511))
+((-3410 (*1 *2 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-511)))) (-2733 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511)))))
+(-10 -7 (-15 -1947 ((-522) (-522))) (-15 -2733 ((-522) (-522) (-522))) (-15 -3410 ((-108) (-522) (-522))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2645 ((|#1| $) 61)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-2908 (($ $) 91)) (-2772 (($ $) 74)) (-1210 ((|#1| $) 62)) (-1233 (((-3 $ "failed") $ $) 19)) (-1929 (($ $) 73)) (-2884 (($ $) 90)) (-2748 (($ $) 75)) (-2930 (($ $) 89)) (-2794 (($ $) 76)) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 69)) (-1484 (((-522) $) 68)) (-2682 (((-3 $ "failed") $) 34)) (-2153 (($ |#1| |#1|) 66)) (-3687 (((-108) $) 60)) (-2838 (($) 101)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 72)) (-2556 (((-108) $) 59)) (-2814 (($ $ $) 107)) (-2446 (($ $ $) 106)) (-1254 (($ $) 98)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-1514 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-382 (-522))) 64)) (-3136 ((|#1| $) 63)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-2232 (((-3 $ "failed") $ $) 42)) (-3266 (($ $) 99)) (-1738 (($ $) 88)) (-2804 (($ $) 77)) (-2919 (($ $) 87)) (-2784 (($ $) 78)) (-2896 (($ $) 86)) (-2761 (($ $) 79)) (-2875 (((-108) $ |#1|) 58)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-522)) 70)) (-2323 (((-708)) 29)) (-1759 (($ $) 97)) (-2836 (($ $) 85)) (-3958 (((-108) $ $) 39)) (-1745 (($ $) 96)) (-2815 (($ $) 84)) (-1776 (($ $) 95)) (-2860 (($ $) 83)) (-3924 (($ $) 94)) (-2872 (($ $) 82)) (-1768 (($ $) 93)) (-2848 (($ $) 81)) (-1752 (($ $) 92)) (-2825 (($ $) 80)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 104)) (-1558 (((-108) $ $) 103)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 105)) (-1549 (((-108) $ $) 102)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ $) 100) (($ $ (-382 (-522))) 71)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-512 |#1|) (-1197) (-13 (-379) (-1106))) (T -512))
+((-1514 (*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-2153 (*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-1514 (*1 *1 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))))) (-3136 (*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-1210 (*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-2645 (*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))) (-2875 (*1 *2 *1 *3) (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))))
+(-13 (-426) (-784) (-1106) (-928) (-962 (-522)) (-10 -8 (-6 -3898) (-15 -1514 ($ |t#1| |t#1|)) (-15 -2153 ($ |t#1| |t#1|)) (-15 -1514 ($ |t#1|)) (-15 -1514 ($ (-382 (-522)))) (-15 -3136 (|t#1| $)) (-15 -1210 (|t#1| $)) (-15 -2645 (|t#1| $)) (-15 -3687 ((-108) $)) (-15 -2556 ((-108) $)) (-15 -2875 ((-108) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-260) . T) ((-266) . T) ((-426) . T) ((-463) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-784) . T) ((-928) . T) ((-962 (-522)) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) . T) ((-1109) . T))
+((-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 9)) (-2022 (($ $) 11)) (-3739 (((-108) $) 18)) (-2682 (((-3 $ "failed") $) 16)) (-3958 (((-108) $ $) 20)))
+(((-513 |#1|) (-10 -8 (-15 -3739 ((-108) |#1|)) (-15 -3958 ((-108) |#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2013 ((-2 (|:| -3210 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|))) (-514)) (T -513))
+NIL
+(-10 -8 (-15 -3739 ((-108) |#1|)) (-15 -3958 ((-108) |#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2013 ((-2 (|:| -3210 |#1|) (|:| -4225 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ $) 42)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-514) (-1197)) (T -514))
+((-2232 (*1 *1 *1 *1) (|partial| -4 *1 (-514))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3210 *1) (|:| -4225 *1) (|:| |associate| *1))) (-4 *1 (-514)))) (-2022 (*1 *1 *1) (-4 *1 (-514))) (-3958 (*1 *2 *1 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108)))))
+(-13 (-157) (-37 $) (-266) (-10 -8 (-15 -2232 ((-3 $ "failed") $ $)) (-15 -2013 ((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $)) (-15 -2022 ($ $)) (-15 -3958 ((-108) $ $)) (-15 -3739 ((-108) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2267 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1085) (-588 |#2|)) 35)) (-3092 (((-539 |#2|) |#2| (-1085)) 58)) (-2002 (((-3 |#2| "failed") |#2| (-1085)) 149)) (-4027 (((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) (-561 |#2|) (-588 (-561 |#2|))) 152)) (-1226 (((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) |#2|) 38)))
+(((-515 |#1| |#2|) (-10 -7 (-15 -1226 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) |#2|)) (-15 -2267 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1085) (-588 |#2|))) (-15 -2002 ((-3 |#2| "failed") |#2| (-1085))) (-15 -3092 ((-539 |#2|) |#2| (-1085))) (-15 -4027 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) (-561 |#2|) (-588 (-561 |#2|))))) (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -515))
+((-4027 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1085)) (-5 *6 (-588 (-561 *3))) (-5 *5 (-561 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *7))) (-4 *7 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3))) (-5 *1 (-515 *7 *3)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-515 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2002 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-515 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2267 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-515 *6 *3)))) (-1226 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3))) (-5 *1 (-515 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(-10 -7 (-15 -1226 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) |#2|)) (-15 -2267 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1085) (-588 |#2|))) (-15 -2002 ((-3 |#2| "failed") |#2| (-1085))) (-15 -3092 ((-539 |#2|) |#2| (-1085))) (-15 -4027 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1085) (-561 |#2|) (-588 (-561 |#2|)))))
+((-3450 (((-393 |#1|) |#1|) 18)) (-1916 (((-393 |#1|) |#1|) 33)) (-2839 (((-3 |#1| "failed") |#1|) 44)) (-2567 (((-393 |#1|) |#1|) 51)))
+(((-516 |#1|) (-10 -7 (-15 -1916 ((-393 |#1|) |#1|)) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -2567 ((-393 |#1|) |#1|)) (-15 -2839 ((-3 |#1| "failed") |#1|))) (-507)) (T -516))
+((-2839 (*1 *2 *2) (|partial| -12 (-5 *1 (-516 *2)) (-4 *2 (-507)))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))))
+(-10 -7 (-15 -1916 ((-393 |#1|) |#1|)) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -2567 ((-393 |#1|) |#1|)) (-15 -2839 ((-3 |#1| "failed") |#1|)))
+((-1647 (($) 9)) (-1321 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 29)) (-2966 (((-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 26)) (-4095 (($ (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-3749 (($ (-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-3048 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 33)) (-1525 (((-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2891 (((-1171)) 12)))
+(((-517) (-10 -8 (-15 -1647 ($)) (-15 -2891 ((-1171))) (-15 -2966 ((-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -3749 ($ (-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4095 ($ (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1321 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1525 ((-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3048 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -517))
+((-3048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-517)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-517)))) (-1321 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-517)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-517)))) (-3749 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-517)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-517)))) (-2891 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-517)))) (-1647 (*1 *1) (-5 *1 (-517))))
+(-10 -8 (-15 -1647 ($)) (-15 -2891 ((-1171))) (-15 -2966 ((-588 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -3749 ($ (-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4095 ($ (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1321 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1525 ((-588 (-2 (|:| -2530 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3048 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1066 (-202))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2386 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-1282 (((-1081 (-382 (-1081 |#2|))) |#2| (-561 |#2|) (-561 |#2|) (-1081 |#2|)) 28)) (-1469 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) |#2| (-1081 |#2|)) 106)) (-3089 (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 78) (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|)) 50)) (-3776 (((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| (-561 |#2|) |#2| (-382 (-1081 |#2|))) 85) (((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| |#2| (-1081 |#2|)) 105)) (-3259 (((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) |#2| (-1081 |#2|)) 107)) (-1435 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))) 124 (|has| |#3| (-598 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|)) 123 (|has| |#3| (-598 |#2|)))) (-4073 ((|#2| (-1081 (-382 (-1081 |#2|))) (-561 |#2|) |#2|) 48)) (-3849 (((-1081 (-382 (-1081 |#2|))) (-1081 |#2|) (-561 |#2|)) 27)))
+(((-518 |#1| |#2| |#3|) (-10 -7 (-15 -3089 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -3089 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -3776 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| |#2| (-1081 |#2|))) (-15 -3776 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1469 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) |#2| (-1081 |#2|))) (-15 -1469 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -3259 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) |#2| (-1081 |#2|))) (-15 -3259 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1282 ((-1081 (-382 (-1081 |#2|))) |#2| (-561 |#2|) (-561 |#2|) (-1081 |#2|))) (-15 -4073 (|#2| (-1081 (-382 (-1081 |#2|))) (-561 |#2|) |#2|)) (-15 -3849 ((-1081 (-382 (-1081 |#2|))) (-1081 |#2|) (-561 |#2|))) (IF (|has| |#3| (-598 |#2|)) (PROGN (-15 -1435 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -1435 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))))) |%noBranch|)) (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))) (-13 (-405 |#1|) (-27) (-1106)) (-1014)) (T -518))
+((-1435 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-561 *4)) (-5 *6 (-382 (-1081 *4))) (-4 *4 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) (-1435 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-561 *4)) (-5 *6 (-1081 *4)) (-4 *4 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *4 (-561 *6)) (-4 *6 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-1081 (-382 (-1081 *6)))) (-5 *1 (-518 *5 *6 *7)) (-5 *3 (-1081 *6)) (-4 *7 (-1014)))) (-4073 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1081 (-382 (-1081 *2)))) (-5 *4 (-561 *2)) (-4 *2 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-518 *5 *2 *6)) (-4 *6 (-1014)))) (-1282 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-1081 (-382 (-1081 *3)))) (-5 *1 (-518 *6 *3 *7)) (-5 *5 (-1081 *3)) (-4 *7 (-1014)))) (-3259 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-561 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-5 *5 (-382 (-1081 *2))) (-4 *2 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014)))) (-3259 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-561 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-5 *5 (-1081 *2)) (-4 *2 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014)))) (-1469 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-5 *6 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014)))) (-1469 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-5 *6 (-1081 *3)) (-4 *3 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014)))) (-3776 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3))) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) (-3776 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3))) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) (-3089 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))) (-3089 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))))
+(-10 -7 (-15 -3089 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -3089 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -3776 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| |#2| (-1081 |#2|))) (-15 -3776 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2| (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1469 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) |#2| (-1081 |#2|))) (-15 -1469 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -3259 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) |#2| (-1081 |#2|))) (-15 -3259 ((-3 |#2| "failed") |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)) (-561 |#2|) |#2| (-382 (-1081 |#2|)))) (-15 -1282 ((-1081 (-382 (-1081 |#2|))) |#2| (-561 |#2|) (-561 |#2|) (-1081 |#2|))) (-15 -4073 (|#2| (-1081 (-382 (-1081 |#2|))) (-561 |#2|) |#2|)) (-15 -3849 ((-1081 (-382 (-1081 |#2|))) (-1081 |#2|) (-561 |#2|))) (IF (|has| |#3| (-598 |#2|)) (PROGN (-15 -1435 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) |#2| (-1081 |#2|))) (-15 -1435 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-561 |#2|) |#2| (-382 (-1081 |#2|))))) |%noBranch|))
+((-2362 (((-522) (-522) (-708)) 66)) (-4153 (((-522) (-522)) 65)) (-3460 (((-522) (-522)) 64)) (-1339 (((-522) (-522)) 69)) (-3735 (((-522) (-522) (-522)) 49)) (-2531 (((-522) (-522) (-522)) 46)) (-1532 (((-382 (-522)) (-522)) 20)) (-2912 (((-522) (-522)) 21)) (-4050 (((-522) (-522)) 58)) (-3475 (((-522) (-522)) 32)) (-2504 (((-588 (-522)) (-522)) 63)) (-1257 (((-522) (-522) (-522) (-522) (-522)) 44)) (-1763 (((-382 (-522)) (-522)) 41)))
+(((-519) (-10 -7 (-15 -1763 ((-382 (-522)) (-522))) (-15 -1257 ((-522) (-522) (-522) (-522) (-522))) (-15 -2504 ((-588 (-522)) (-522))) (-15 -3475 ((-522) (-522))) (-15 -4050 ((-522) (-522))) (-15 -2912 ((-522) (-522))) (-15 -1532 ((-382 (-522)) (-522))) (-15 -2531 ((-522) (-522) (-522))) (-15 -3735 ((-522) (-522) (-522))) (-15 -1339 ((-522) (-522))) (-15 -3460 ((-522) (-522))) (-15 -4153 ((-522) (-522))) (-15 -2362 ((-522) (-522) (-708))))) (T -519))
+((-2362 (*1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-708)) (-5 *1 (-519)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3460 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-1339 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3735 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-2531 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-1532 (*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-2504 (*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))) (-1257 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))) (-1763 (*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))))
+(-10 -7 (-15 -1763 ((-382 (-522)) (-522))) (-15 -1257 ((-522) (-522) (-522) (-522) (-522))) (-15 -2504 ((-588 (-522)) (-522))) (-15 -3475 ((-522) (-522))) (-15 -4050 ((-522) (-522))) (-15 -2912 ((-522) (-522))) (-15 -1532 ((-382 (-522)) (-522))) (-15 -2531 ((-522) (-522) (-522))) (-15 -3735 ((-522) (-522) (-522))) (-15 -1339 ((-522) (-522))) (-15 -3460 ((-522) (-522))) (-15 -4153 ((-522) (-522))) (-15 -2362 ((-522) (-522) (-708))))
+((-1370 (((-2 (|:| |answer| |#4|) (|:| -3434 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-520 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 ((-2 (|:| |answer| |#4|) (|:| -3434 |#4|)) |#4| (-1 |#2| |#2|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -520))
+((-1370 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-4 *7 (-1142 (-382 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3434 *3))) (-5 *1 (-520 *5 *6 *7 *3)) (-4 *3 (-317 *5 *6 *7)))))
+(-10 -7 (-15 -1370 ((-2 (|:| |answer| |#4|) (|:| -3434 |#4|)) |#4| (-1 |#2| |#2|))))
+((-1370 (((-2 (|:| |answer| (-382 |#2|)) (|:| -3434 (-382 |#2|)) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)) 18)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -1370 ((-2 (|:| |answer| (-382 |#2|)) (|:| -3434 (-382 |#2|)) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)))) (-338) (-1142 |#1|)) (T -521))
+((-1370 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |answer| (-382 *6)) (|:| -3434 (-382 *6)) (|:| |specpart| (-382 *6)) (|:| |polypart| *6))) (-5 *1 (-521 *5 *6)) (-5 *3 (-382 *6)))))
+(-10 -7 (-15 -1370 ((-2 (|:| |answer| (-382 |#2|)) (|:| -3434 (-382 |#2|)) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 25)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 86)) (-2022 (($ $) 87)) (-3739 (((-108) $) NIL)) (-3871 (($ $ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3481 (($ $ $ $) 42)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL)) (-1662 (($ $ $) 80)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL)) (-1484 (((-522) $) NIL)) (-2277 (($ $ $) 79)) (-2096 (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 60) (((-628 (-522)) (-628 $)) 57)) (-2682 (((-3 $ "failed") $) 83)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL)) (-1770 (((-108) $) NIL)) (-1492 (((-382 (-522)) $) NIL)) (-3255 (($) 62) (($ $) 63)) (-2254 (($ $ $) 78)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2676 (($ $ $ $) NIL)) (-2339 (($ $ $) 54)) (-3687 (((-108) $) NIL)) (-3219 (($ $ $) NIL)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2782 (((-108) $) 26)) (-2591 (((-108) $) 73)) (-3004 (((-3 $ "failed") $) NIL)) (-2556 (((-108) $) 34)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1335 (($ $ $ $) 43)) (-2814 (($ $ $) 75)) (-2446 (($ $ $) 74)) (-3893 (($ $) NIL)) (-2517 (($ $) 40)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) 53)) (-2341 (($ $ $) NIL)) (-3802 (($) NIL T CONST)) (-2957 (($ $) 31)) (-4151 (((-1032) $) NIL) (($ $) 33)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 117)) (-2259 (($ $ $) 84) (($ (-588 $)) NIL)) (-2868 (($ $) NIL)) (-1916 (((-393 $) $) 103)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2232 (((-3 $ "failed") $ $) 82)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1263 (((-108) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 77)) (-2157 (($ $ (-708)) NIL) (($ $) NIL)) (-3056 (($ $) 32)) (-2404 (($ $) 30)) (-1431 (((-522) $) 39) (((-498) $) 51) (((-821 (-522)) $) NIL) (((-354) $) 46) (((-202) $) 48) (((-1068) $) 52)) (-2190 (((-792) $) 37) (($ (-522)) 38) (($ $) NIL) (($ (-522)) 38)) (-2323 (((-708)) NIL)) (-3558 (((-108) $ $) NIL)) (-1480 (($ $ $) NIL)) (-3355 (($) 29)) (-3958 (((-108) $ $) NIL)) (-4004 (($ $ $ $) 41)) (-2241 (($ $) 61)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 27 T CONST)) (-3577 (($) 28 T CONST)) (-4149 (((-1068) $) 20) (((-1068) $ (-108)) 22) (((-1171) (-759) $) 23) (((-1171) (-759) $ (-108)) 24)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 64)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 65)) (-1612 (($ $) 66) (($ $ $) 68)) (-1602 (($ $ $) 67)) (** (($ $ (-850)) NIL) (($ $ (-708)) 72)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 70) (($ $ $) 69)))
+(((-522) (-13 (-507) (-563 (-1068)) (-765) (-10 -8 (-15 -3255 ($ $)) (-6 -4225) (-6 -4230) (-6 -4226) (-6 -4220)))) (T -522))
+((-3255 (*1 *1 *1) (-5 *1 (-522))))
+(-13 (-507) (-563 (-1068)) (-765) (-10 -8 (-15 -3255 ($ $)) (-6 -4225) (-6 -4230) (-6 -4226) (-6 -4220)))
+((-1798 (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706) (-983)) 103) (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706)) 105)) (-1858 (((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1085)) 168) (((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1068)) 167) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354) (-983)) 173) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354)) 174) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354)) 175) (((-960) (-291 (-354)) (-588 (-1009 (-777 (-354))))) 176) (((-960) (-291 (-354)) (-1009 (-777 (-354)))) 163) (((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354)) 162) (((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354)) 158) (((-960) (-706)) 150) (((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354) (-983)) 157)))
+(((-523) (-10 -7 (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354) (-983))) (-15 -1858 ((-960) (-706))) (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354) (-983))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706) (-983))) (-15 -1858 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1068))) (-15 -1858 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1085))))) (T -523))
+((-1858 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354)))) (-5 *5 (-1085)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354)))) (-5 *5 (-1068)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-706)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) (-5 *1 (-523)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960)))) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354))))) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-960)) (-5 *1 (-523)))) (-1858 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354)))) (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523)))))
+(-10 -7 (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354) (-983))) (-15 -1858 ((-960) (-706))) (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-1009 (-777 (-354))))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354))) (-15 -1858 ((-960) (-291 (-354)) (-588 (-1009 (-777 (-354)))) (-354) (-354) (-983))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))) (-706) (-983))) (-15 -1858 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1068))) (-15 -1858 ((-3 (-960) "failed") (-291 (-354)) (-1007 (-777 (-354))) (-1085))))
+((-2672 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|)) 181)) (-3572 (((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|)) 99)) (-3235 (((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2|) 177)) (-3743 (((-3 |#2| "failed") |#2| |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085))) 186)) (-2610 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-1085)) 194 (|has| |#3| (-598 |#2|)))))
+(((-524 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|))) (-15 -3235 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2|)) (-15 -2672 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|))) (-15 -3743 ((-3 |#2| "failed") |#2| |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)))) (IF (|has| |#3| (-598 |#2|)) (-15 -2610 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-1085))) |%noBranch|)) (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))) (-13 (-405 |#1|) (-27) (-1106)) (-1014)) (T -524))
+((-2610 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-561 *4)) (-5 *6 (-1085)) (-4 *4 (-13 (-405 *7) (-27) (-1106))) (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))) (-3743 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-561 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-4 *2 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *1 (-524 *5 *2 *6)) (-4 *6 (-1014)))) (-2672 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106))) (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1014)))) (-3235 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014)))) (-3572 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *5) (-27) (-1106))) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522)))) (-5 *2 (-539 *3)) (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014)))))
+(-10 -7 (-15 -3572 ((-539 |#2|) |#2| (-561 |#2|) (-561 |#2|))) (-15 -3235 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-561 |#2|) (-561 |#2|) |#2|)) (-15 -2672 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-561 |#2|) (-561 |#2|) (-588 |#2|))) (-15 -3743 ((-3 |#2| "failed") |#2| |#2| |#2| (-561 |#2|) (-561 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1085)))) (IF (|has| |#3| (-598 |#2|)) (-15 -2610 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3855 (-588 |#2|))) |#3| |#2| (-561 |#2|) (-561 |#2|) (-1085))) |%noBranch|))
+((-2088 (((-2 (|:| -2286 |#2|) (|:| |nconst| |#2|)) |#2| (-1085)) 62)) (-1660 (((-3 |#2| "failed") |#2| (-1085) (-777 |#2|) (-777 |#2|)) 159 (-12 (|has| |#2| (-1049)) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-815 (-522))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)) 133 (-12 (|has| |#2| (-574)) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-815 (-522)))))) (-2443 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)) 142 (-12 (|has| |#2| (-574)) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-815 (-522)))))))
+(((-525 |#1| |#2|) (-10 -7 (-15 -2088 ((-2 (|:| -2286 |#2|) (|:| |nconst| |#2|)) |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (PROGN (IF (|has| |#2| (-574)) (PROGN (-15 -2443 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085))) (-15 -1660 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) (IF (|has| |#2| (-1049)) (-15 -1660 ((-3 |#2| "failed") |#2| (-1085) (-777 |#2|) (-777 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-784) (-962 (-522)) (-426) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -525))
+((-1660 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1085)) (-5 *4 (-777 *2)) (-4 *2 (-1049)) (-4 *2 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *1 (-525 *5 *2)))) (-1660 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-525 *5 *3)) (-4 *3 (-574)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522))) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-525 *5 *3)) (-4 *3 (-574)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522)))) (-5 *2 (-2 (|:| -2286 *3) (|:| |nconst| *3))) (-5 *1 (-525 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(-10 -7 (-15 -2088 ((-2 (|:| -2286 |#2|) (|:| |nconst| |#2|)) |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (PROGN (IF (|has| |#2| (-574)) (PROGN (-15 -2443 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085))) (-15 -1660 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) (IF (|has| |#2| (-1049)) (-15 -1660 ((-3 |#2| "failed") |#2| (-1085) (-777 |#2|) (-777 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1251 (((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-588 (-382 |#2|))) 39)) (-1858 (((-539 (-382 |#2|)) (-382 |#2|)) 27)) (-3733 (((-3 (-382 |#2|) "failed") (-382 |#2|)) 16)) (-1896 (((-3 (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-382 |#2|)) 46)))
+(((-526 |#1| |#2|) (-10 -7 (-15 -1858 ((-539 (-382 |#2|)) (-382 |#2|))) (-15 -3733 ((-3 (-382 |#2|) "failed") (-382 |#2|))) (-15 -1896 ((-3 (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-382 |#2|))) (-15 -1251 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-588 (-382 |#2|))))) (-13 (-338) (-135) (-962 (-522))) (-1142 |#1|)) (T -526))
+((-1251 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-588 (-382 *6))) (-5 *3 (-382 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *5 *6)))) (-1896 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -1856 (-382 *5)) (|:| |coeff| (-382 *5)))) (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5)))) (-3733 (*1 *2 *2) (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135) (-962 (-522)))) (-5 *1 (-526 *3 *4)))) (-1858 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-539 (-382 *5))) (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5)))))
+(-10 -7 (-15 -1858 ((-539 (-382 |#2|)) (-382 |#2|))) (-15 -3733 ((-3 (-382 |#2|) "failed") (-382 |#2|))) (-15 -1896 ((-3 (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-382 |#2|))) (-15 -1251 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-588 (-382 |#2|)))))
+((-2441 (((-3 (-522) "failed") |#1|) 14)) (-3096 (((-108) |#1|) 13)) (-1509 (((-522) |#1|) 9)))
+(((-527 |#1|) (-10 -7 (-15 -1509 ((-522) |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2441 ((-3 (-522) "failed") |#1|))) (-962 (-522))) (T -527))
+((-2441 (*1 *2 *3) (|partial| -12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2)))) (-3096 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-527 *3)) (-4 *3 (-962 (-522))))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2)))))
+(-10 -7 (-15 -1509 ((-522) |#1|)) (-15 -3096 ((-108) |#1|)) (-15 -2441 ((-3 (-522) "failed") |#1|)))
+((-3919 (((-3 (-2 (|:| |mainpart| (-382 (-881 |#1|))) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 (-881 |#1|))) (|:| |logand| (-382 (-881 |#1|))))))) "failed") (-382 (-881 |#1|)) (-1085) (-588 (-382 (-881 |#1|)))) 43)) (-3113 (((-539 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-1085)) 25)) (-2951 (((-3 (-382 (-881 |#1|)) "failed") (-382 (-881 |#1|)) (-1085)) 20)) (-2344 (((-3 (-2 (|:| -1856 (-382 (-881 |#1|))) (|:| |coeff| (-382 (-881 |#1|)))) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))) 32)))
+(((-528 |#1|) (-10 -7 (-15 -3113 ((-539 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -2951 ((-3 (-382 (-881 |#1|)) "failed") (-382 (-881 |#1|)) (-1085))) (-15 -3919 ((-3 (-2 (|:| |mainpart| (-382 (-881 |#1|))) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 (-881 |#1|))) (|:| |logand| (-382 (-881 |#1|))))))) "failed") (-382 (-881 |#1|)) (-1085) (-588 (-382 (-881 |#1|))))) (-15 -2344 ((-3 (-2 (|:| -1856 (-382 (-881 |#1|))) (|:| |coeff| (-382 (-881 |#1|)))) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))))) (-13 (-514) (-962 (-522)) (-135))) (T -528))
+((-2344 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-962 (-522)) (-135))) (-5 *2 (-2 (|:| -1856 (-382 (-881 *5))) (|:| |coeff| (-382 (-881 *5))))) (-5 *1 (-528 *5)) (-5 *3 (-382 (-881 *5))))) (-3919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 (-382 (-881 *6)))) (-5 *3 (-382 (-881 *6))) (-4 *6 (-13 (-514) (-962 (-522)) (-135))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-528 *6)))) (-2951 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-962 (-522)) (-135))) (-5 *1 (-528 *4)))) (-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-962 (-522)) (-135))) (-5 *2 (-539 (-382 (-881 *5)))) (-5 *1 (-528 *5)) (-5 *3 (-382 (-881 *5))))))
+(-10 -7 (-15 -3113 ((-539 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -2951 ((-3 (-382 (-881 |#1|)) "failed") (-382 (-881 |#1|)) (-1085))) (-15 -3919 ((-3 (-2 (|:| |mainpart| (-382 (-881 |#1|))) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 (-881 |#1|))) (|:| |logand| (-382 (-881 |#1|))))))) "failed") (-382 (-881 |#1|)) (-1085) (-588 (-382 (-881 |#1|))))) (-15 -2344 ((-3 (-2 (|:| -1856 (-382 (-881 |#1|))) (|:| |coeff| (-382 (-881 |#1|)))) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)))))
+((-1416 (((-108) $ $) 59)) (-2250 (((-108) $) 36)) (-2645 ((|#1| $) 30)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) 63)) (-2908 (($ $) 123)) (-2772 (($ $) 103)) (-1210 ((|#1| $) 28)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $) NIL)) (-2884 (($ $) 125)) (-2748 (($ $) 99)) (-2930 (($ $) 127)) (-2794 (($ $) 107)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) 78)) (-1484 (((-522) $) 80)) (-2682 (((-3 $ "failed") $) 62)) (-2153 (($ |#1| |#1|) 26)) (-3687 (((-108) $) 33)) (-2838 (($) 89)) (-2782 (((-108) $) 43)) (-1504 (($ $ (-522)) NIL)) (-2556 (((-108) $) 34)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1254 (($ $) 91)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-1514 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-382 (-522))) 77)) (-3136 ((|#1| $) 27)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) 65) (($ (-588 $)) NIL)) (-2232 (((-3 $ "failed") $ $) 64)) (-3266 (($ $) 93)) (-1738 (($ $) 131)) (-2804 (($ $) 105)) (-2919 (($ $) 133)) (-2784 (($ $) 109)) (-2896 (($ $) 129)) (-2761 (($ $) 101)) (-2875 (((-108) $ |#1|) 31)) (-2190 (((-792) $) 85) (($ (-522)) 67) (($ $) NIL) (($ (-522)) 67)) (-2323 (((-708)) 87)) (-1759 (($ $) 145)) (-2836 (($ $) 115)) (-3958 (((-108) $ $) NIL)) (-1745 (($ $) 143)) (-2815 (($ $) 111)) (-1776 (($ $) 141)) (-2860 (($ $) 121)) (-3924 (($ $) 139)) (-2872 (($ $) 119)) (-1768 (($ $) 137)) (-2848 (($ $) 117)) (-1752 (($ $) 135)) (-2825 (($ $) 113)) (-3510 (($ $ (-850)) 55) (($ $ (-708)) NIL)) (-3566 (($) 21 T CONST)) (-3577 (($) 10 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 37)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 35)) (-1612 (($ $) 41) (($ $ $) 42)) (-1602 (($ $ $) 40)) (** (($ $ (-850)) 54) (($ $ (-708)) NIL) (($ $ $) 95) (($ $ (-382 (-522))) 147)) (* (($ (-850) $) 51) (($ (-708) $) NIL) (($ (-522) $) 50) (($ $ $) 48)))
+(((-529 |#1|) (-512 |#1|) (-13 (-379) (-1106))) (T -529))
+NIL
+(-512 |#1|)
+((-1473 (((-3 (-588 (-1081 (-522))) "failed") (-588 (-1081 (-522))) (-1081 (-522))) 24)))
+(((-530) (-10 -7 (-15 -1473 ((-3 (-588 (-1081 (-522))) "failed") (-588 (-1081 (-522))) (-1081 (-522)))))) (T -530))
+((-1473 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 (-522)))) (-5 *3 (-1081 (-522))) (-5 *1 (-530)))))
+(-10 -7 (-15 -1473 ((-3 (-588 (-1081 (-522))) "failed") (-588 (-1081 (-522))) (-1081 (-522)))))
+((-1560 (((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-1085)) 18)) (-2851 (((-588 (-561 |#2|)) (-588 |#2|) (-1085)) 23)) (-2270 (((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-588 (-561 |#2|))) 10)) (-2631 ((|#2| |#2| (-1085)) 52 (|has| |#1| (-514)))) (-1724 ((|#2| |#2| (-1085)) 77 (-12 (|has| |#2| (-260)) (|has| |#1| (-426))))) (-1788 (((-561 |#2|) (-561 |#2|) (-588 (-561 |#2|)) (-1085)) 25)) (-1915 (((-561 |#2|) (-588 (-561 |#2|))) 24)) (-4215 (((-539 |#2|) |#2| (-1085) (-1 (-539 |#2|) |#2| (-1085)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085))) 101 (-12 (|has| |#2| (-260)) (|has| |#2| (-574)) (|has| |#2| (-962 (-1085))) (|has| |#1| (-563 (-821 (-522)))) (|has| |#1| (-426)) (|has| |#1| (-815 (-522)))))))
+(((-531 |#1| |#2|) (-10 -7 (-15 -1560 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-1085))) (-15 -1915 ((-561 |#2|) (-588 (-561 |#2|)))) (-15 -1788 ((-561 |#2|) (-561 |#2|) (-588 (-561 |#2|)) (-1085))) (-15 -2270 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-588 (-561 |#2|)))) (-15 -2851 ((-588 (-561 |#2|)) (-588 |#2|) (-1085))) (IF (|has| |#1| (-514)) (-15 -2631 (|#2| |#2| (-1085))) |%noBranch|) (IF (|has| |#1| (-426)) (IF (|has| |#2| (-260)) (PROGN (-15 -1724 (|#2| |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (IF (|has| |#2| (-574)) (IF (|has| |#2| (-962 (-1085))) (-15 -4215 ((-539 |#2|) |#2| (-1085) (-1 (-539 |#2|) |#2| (-1085)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-784) (-405 |#1|)) (T -531))
+((-4215 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-539 *3) *3 (-1085))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1085))) (-4 *3 (-260)) (-4 *3 (-574)) (-4 *3 (-962 *4)) (-4 *3 (-405 *7)) (-5 *4 (-1085)) (-4 *7 (-563 (-821 (-522)))) (-4 *7 (-426)) (-4 *7 (-815 (-522))) (-4 *7 (-784)) (-5 *2 (-539 *3)) (-5 *1 (-531 *7 *3)))) (-1724 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-426)) (-4 *4 (-784)) (-5 *1 (-531 *4 *2)) (-4 *2 (-260)) (-4 *2 (-405 *4)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-514)) (-4 *4 (-784)) (-5 *1 (-531 *4 *2)) (-4 *2 (-405 *4)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-1085)) (-4 *6 (-405 *5)) (-4 *5 (-784)) (-5 *2 (-588 (-561 *6))) (-5 *1 (-531 *5 *6)))) (-2270 (*1 *2 *2 *2) (-12 (-5 *2 (-588 (-561 *4))) (-4 *4 (-405 *3)) (-4 *3 (-784)) (-5 *1 (-531 *3 *4)))) (-1788 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-588 (-561 *6))) (-5 *4 (-1085)) (-5 *2 (-561 *6)) (-4 *6 (-405 *5)) (-4 *5 (-784)) (-5 *1 (-531 *5 *6)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-588 (-561 *5))) (-4 *4 (-784)) (-5 *2 (-561 *5)) (-5 *1 (-531 *4 *5)) (-4 *5 (-405 *4)))) (-1560 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-561 *5))) (-5 *3 (-1085)) (-4 *5 (-405 *4)) (-4 *4 (-784)) (-5 *1 (-531 *4 *5)))))
+(-10 -7 (-15 -1560 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-1085))) (-15 -1915 ((-561 |#2|) (-588 (-561 |#2|)))) (-15 -1788 ((-561 |#2|) (-561 |#2|) (-588 (-561 |#2|)) (-1085))) (-15 -2270 ((-588 (-561 |#2|)) (-588 (-561 |#2|)) (-588 (-561 |#2|)))) (-15 -2851 ((-588 (-561 |#2|)) (-588 |#2|) (-1085))) (IF (|has| |#1| (-514)) (-15 -2631 (|#2| |#2| (-1085))) |%noBranch|) (IF (|has| |#1| (-426)) (IF (|has| |#2| (-260)) (PROGN (-15 -1724 (|#2| |#2| (-1085))) (IF (|has| |#1| (-563 (-821 (-522)))) (IF (|has| |#1| (-815 (-522))) (IF (|has| |#2| (-574)) (IF (|has| |#2| (-962 (-1085))) (-15 -4215 ((-539 |#2|) |#2| (-1085) (-1 (-539 |#2|) |#2| (-1085)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1085)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2309 (((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-588 |#1|) "failed") (-522) |#1| |#1|)) 168)) (-2204 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-588 (-382 |#2|))) 144)) (-3601 (((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-588 (-382 |#2|))) 141)) (-3706 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 130)) (-3928 (((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 154)) (-3636 (((-3 (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-382 |#2|)) 171)) (-3458 (((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-382 |#2|)) 174)) (-2126 (((-2 (|:| |ir| (-539 (-382 |#2|))) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|)) 82)) (-2632 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 89)) (-2336 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-588 (-382 |#2|))) 148)) (-1932 (((-3 (-569 |#1| |#2|) "failed") (-569 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|)) 134)) (-2101 (((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|)) 158)) (-2423 (((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-382 |#2|)) 179)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -3928 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2101 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -2309 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-588 |#1|) "failed") (-522) |#1| |#1|))) (-15 -3458 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-382 |#2|))) (-15 -2423 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-382 |#2|))) (-15 -2204 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-588 (-382 |#2|)))) (-15 -2336 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-588 (-382 |#2|)))) (-15 -3636 ((-3 (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-382 |#2|))) (-15 -3601 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-588 (-382 |#2|)))) (-15 -3706 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1932 ((-3 (-569 |#1| |#2|) "failed") (-569 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -2126 ((-2 (|:| |ir| (-539 (-382 |#2|))) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2632 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-338) (-1142 |#1|)) (T -532))
+((-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-532 *5 *3)))) (-2126 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |ir| (-539 (-382 *6))) (|:| |specpart| (-382 *6)) (|:| |polypart| *6))) (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6)))) (-1932 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-569 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108))) (-522) *4)) (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *1 (-532 *4 *5)))) (-3706 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1856 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-338)) (-5 *1 (-532 *4 *2)) (-4 *2 (-1142 *4)))) (-3601 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-588 (-382 *7))) (-4 *7 (-1142 *6)) (-5 *3 (-382 *7)) (-4 *6 (-338)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *6 *7)))) (-3636 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -1856 (-382 *6)) (|:| |coeff| (-382 *6)))) (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6)))) (-2336 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1924 *7) (|:| |sol?| (-108))) (-522) *7)) (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7)) (-5 *3 (-382 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-532 *7 *8)))) (-2204 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1856 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7)) (-5 *3 (-382 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-532 *7 *8)))) (-2423 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-522) *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6)) (-2 (|:| -1856 (-382 *7)) (|:| |coeff| (-382 *7))) "failed")) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-3458 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1856 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6)) (-2 (|:| -1856 (-382 *7)) (|:| |coeff| (-382 *7))) "failed")) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-2309 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-588 *6) "failed") (-522) *6 *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-2101 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-522) *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))) (-3928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1856 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6))) (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))))
+(-10 -7 (-15 -3928 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2101 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -2309 ((-2 (|:| |answer| (-539 (-382 |#2|))) (|:| |a0| |#1|)) (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-588 |#1|) "failed") (-522) |#1| |#1|))) (-15 -3458 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-382 |#2|))) (-15 -2423 ((-3 (-2 (|:| |answer| (-382 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-382 |#2|))) (-15 -2204 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-588 (-382 |#2|)))) (-15 -2336 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|))))))) (|:| |a0| |#1|)) "failed") (-382 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|) (-588 (-382 |#2|)))) (-15 -3636 ((-3 (-2 (|:| -1856 (-382 |#2|)) (|:| |coeff| (-382 |#2|))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-382 |#2|))) (-15 -3601 ((-3 (-2 (|:| |mainpart| (-382 |#2|)) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| (-382 |#2|)) (|:| |logand| (-382 |#2|)))))) "failed") (-382 |#2|) (-1 |#2| |#2|) (-588 (-382 |#2|)))) (-15 -3706 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1932 ((-3 (-569 |#1| |#2|) "failed") (-569 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1924 |#1|) (|:| |sol?| (-108))) (-522) |#1|))) (-15 -2126 ((-2 (|:| |ir| (-539 (-382 |#2|))) (|:| |specpart| (-382 |#2|)) (|:| |polypart| |#2|)) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2632 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3283 (((-3 |#2| "failed") |#2| (-1085) (-1085)) 10)))
+(((-533 |#1| |#2|) (-10 -7 (-15 -3283 ((-3 |#2| "failed") |#2| (-1085) (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-1049) (-29 |#1|))) (T -533))
+((-3283 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-533 *4 *2)) (-4 *2 (-13 (-1106) (-887) (-1049) (-29 *4))))))
+(-10 -7 (-15 -3283 ((-3 |#2| "failed") |#2| (-1085) (-1085))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $ (-522)) 65)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-1799 (($ (-1081 (-522)) (-522)) 71)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) 57)) (-1573 (($ $) 33)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-3714 (((-708) $) 15)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3010 (((-522)) 27)) (-1337 (((-522) $) 31)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3719 (($ $ (-522)) 21)) (-2232 (((-3 $ "failed") $ $) 58)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) 16)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 60)) (-2615 (((-1066 (-522)) $) 18)) (-1522 (($ $) 23)) (-2190 (((-792) $) 86) (($ (-522)) 51) (($ $) NIL)) (-2323 (((-708)) 14)) (-3958 (((-108) $ $) NIL)) (-3898 (((-522) $ (-522)) 35)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 34 T CONST)) (-3577 (($) 19 T CONST)) (-1531 (((-108) $ $) 38)) (-1612 (($ $) 50) (($ $ $) 36)) (-1602 (($ $ $) 49)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 53) (($ $ $) 54)))
+(((-534 |#1| |#2|) (-798 |#1|) (-522) (-108)) (T -534))
+NIL
+(-798 |#1|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 18)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-1398 (((-1094 (-850) (-708)) (-522)) 47)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 $ "failed") $) 75)) (-1484 (($ $) 74)) (-3766 (($ (-1166 $)) 73)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) 30)) (-3255 (($) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) 49)) (-2511 (((-108) $) NIL)) (-2111 (($ $) NIL) (($ $ (-708)) NIL)) (-2813 (((-108) $) NIL)) (-3714 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2782 (((-108) $) NIL)) (-3400 (($) 35 (|has| $ (-343)))) (-2741 (((-108) $) NIL (|has| $ (-343)))) (-2100 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-3004 (((-3 $ "failed") $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 $) $ (-850)) NIL (|has| $ (-343))) (((-1081 $) $) 83)) (-2120 (((-850) $) 55)) (-3074 (((-1081 $) $) NIL (|has| $ (-343)))) (-2941 (((-3 (-1081 $) "failed") $ $) NIL (|has| $ (-343))) (((-1081 $) $) NIL (|has| $ (-343)))) (-1425 (($ $ (-1081 $)) NIL (|has| $ (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL T CONST)) (-2717 (($ (-850)) 48)) (-2822 (((-108) $) 67)) (-4151 (((-1032) $) NIL)) (-1383 (($) 16 (|has| $ (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 40)) (-1916 (((-393 $) $) NIL)) (-2621 (((-850)) 66) (((-770 (-850))) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-3 (-708) "failed") $ $) NIL) (((-708) $) NIL)) (-4078 (((-126)) NIL)) (-2157 (($ $ (-708)) NIL) (($ $) NIL)) (-2793 (((-850) $) 65) (((-770 (-850)) $) NIL)) (-1479 (((-1081 $)) 82)) (-2581 (($) 54)) (-1299 (($) 36 (|has| $ (-343)))) (-3677 (((-628 $) (-1166 $)) NIL) (((-1166 $) $) 71)) (-1431 (((-522) $) 26)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) 28) (($ $) NIL) (($ (-382 (-522))) NIL)) (-2143 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2323 (((-708)) 37)) (-3855 (((-1166 $) (-850)) 77) (((-1166 $)) 76)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 19 T CONST)) (-3577 (($) 15 T CONST)) (-3428 (($ $ (-708)) NIL (|has| $ (-343))) (($ $) NIL (|has| $ (-343)))) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 24)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 61) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-535 |#1|) (-13 (-324) (-304 $) (-563 (-522))) (-850)) (T -535))
+NIL
+(-13 (-324) (-304 $) (-563 (-522)))
+((-3564 (((-1171) (-1068)) 10)))
+(((-536) (-10 -7 (-15 -3564 ((-1171) (-1068))))) (T -536))
+((-3564 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-536)))))
+(-10 -7 (-15 -3564 ((-1171) (-1068))))
+((-2724 (((-539 |#2|) (-539 |#2|)) 38)) (-1604 (((-588 |#2|) (-539 |#2|)) 40)) (-3875 ((|#2| (-539 |#2|)) 47)))
+(((-537 |#1| |#2|) (-10 -7 (-15 -2724 ((-539 |#2|) (-539 |#2|))) (-15 -1604 ((-588 |#2|) (-539 |#2|))) (-15 -3875 (|#2| (-539 |#2|)))) (-13 (-426) (-962 (-522)) (-784) (-584 (-522))) (-13 (-29 |#1|) (-1106))) (T -537))
+((-3875 (*1 *2 *3) (-12 (-5 *3 (-539 *2)) (-4 *2 (-13 (-29 *4) (-1106))) (-5 *1 (-537 *4 *2)) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-539 *5)) (-4 *5 (-13 (-29 *4) (-1106))) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-588 *5)) (-5 *1 (-537 *4 *5)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-539 *4)) (-4 *4 (-13 (-29 *3) (-1106))) (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *1 (-537 *3 *4)))))
+(-10 -7 (-15 -2724 ((-539 |#2|) (-539 |#2|))) (-15 -1604 ((-588 |#2|) (-539 |#2|))) (-15 -3875 (|#2| (-539 |#2|))))
+((-1391 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-539 |#2|) (-1 |#2| |#1|) (-539 |#1|)) 26)))
+(((-538 |#1| |#2|) (-10 -7 (-15 -1391 ((-539 |#2|) (-1 |#2| |#1|) (-539 |#1|))) (-15 -1391 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1391 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1391 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-338) (-338)) (T -538))
+((-1391 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-338)) (-4 *6 (-338)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-538 *5 *6)))) (-1391 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-338)) (-4 *2 (-338)) (-5 *1 (-538 *5 *2)))) (-1391 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1856 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-338)) (-4 *6 (-338)) (-5 *2 (-2 (|:| -1856 *6) (|:| |coeff| *6))) (-5 *1 (-538 *5 *6)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-539 *5)) (-4 *5 (-338)) (-4 *6 (-338)) (-5 *2 (-539 *6)) (-5 *1 (-538 *5 *6)))))
+(-10 -7 (-15 -1391 ((-539 |#2|) (-1 |#2| |#1|) (-539 |#1|))) (-15 -1391 ((-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1856 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1391 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1391 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 69)) (-1484 ((|#1| $) NIL)) (-1856 ((|#1| $) 24)) (-3813 (((-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-2943 (($ |#1| (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) (-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3434 (((-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) $) 25)) (-2385 (((-1068) $) NIL)) (-2355 (($ |#1| |#1|) 32) (($ |#1| (-1085)) 43 (|has| |#1| (-962 (-1085))))) (-4151 (((-1032) $) NIL)) (-3105 (((-108) $) 28)) (-2157 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1085)) 82 (|has| |#1| (-829 (-1085))))) (-2190 (((-792) $) 96) (($ |#1|) 23)) (-3566 (($) 16 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) 15) (($ $ $) NIL)) (-1602 (($ $ $) 78)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 14) (($ (-382 (-522)) $) 35) (($ $ (-382 (-522))) NIL)))
+(((-539 |#1|) (-13 (-655 (-382 (-522))) (-962 |#1|) (-10 -8 (-15 -2943 ($ |#1| (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) (-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1856 (|#1| $)) (-15 -3434 ((-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) $)) (-15 -3813 ((-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3105 ((-108) $)) (-15 -2355 ($ |#1| |#1|)) (-15 -2157 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-829 (-1085))) (-15 -2157 (|#1| $ (-1085))) |%noBranch|) (IF (|has| |#1| (-962 (-1085))) (-15 -2355 ($ |#1| (-1085))) |%noBranch|))) (-338)) (T -539))
+((-2943 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *2)) (|:| |logand| (-1081 *2))))) (-5 *4 (-588 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-338)) (-5 *1 (-539 *2)))) (-1856 (*1 *2 *1) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *3)) (|:| |logand| (-1081 *3))))) (-5 *1 (-539 *3)) (-4 *3 (-338)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-539 *3)) (-4 *3 (-338)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-338)))) (-2355 (*1 *1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338)))) (-2157 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-539 *2)) (-4 *2 (-338)))) (-2157 (*1 *2 *1 *3) (-12 (-4 *2 (-338)) (-4 *2 (-829 *3)) (-5 *1 (-539 *2)) (-5 *3 (-1085)))) (-2355 (*1 *1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *1 (-539 *2)) (-4 *2 (-962 *3)) (-4 *2 (-338)))))
+(-13 (-655 (-382 (-522))) (-962 |#1|) (-10 -8 (-15 -2943 ($ |#1| (-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) (-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1856 (|#1| $)) (-15 -3434 ((-588 (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 |#1|)) (|:| |logand| (-1081 |#1|)))) $)) (-15 -3813 ((-588 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3105 ((-108) $)) (-15 -2355 ($ |#1| |#1|)) (-15 -2157 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-829 (-1085))) (-15 -2157 (|#1| $ (-1085))) |%noBranch|) (IF (|has| |#1| (-962 (-1085))) (-15 -2355 ($ |#1| (-1085))) |%noBranch|)))
+((-3659 (((-108) |#1|) 16)) (-2222 (((-3 |#1| "failed") |#1|) 14)) (-2857 (((-2 (|:| -3355 |#1|) (|:| -1400 (-708))) |#1|) 31) (((-3 |#1| "failed") |#1| (-708)) 18)) (-3177 (((-108) |#1| (-708)) 19)) (-2917 ((|#1| |#1|) 32)) (-4035 ((|#1| |#1| (-708)) 34)))
+(((-540 |#1|) (-10 -7 (-15 -3177 ((-108) |#1| (-708))) (-15 -2857 ((-3 |#1| "failed") |#1| (-708))) (-15 -2857 ((-2 (|:| -3355 |#1|) (|:| -1400 (-708))) |#1|)) (-15 -4035 (|#1| |#1| (-708))) (-15 -3659 ((-108) |#1|)) (-15 -2222 ((-3 |#1| "failed") |#1|)) (-15 -2917 (|#1| |#1|))) (-507)) (T -540))
+((-2917 (*1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-2222 (*1 *2 *2) (|partial| -12 (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-3659 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507)))) (-4035 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-2857 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3355 *3) (|:| -1400 (-708)))) (-5 *1 (-540 *3)) (-4 *3 (-507)))) (-2857 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507)))))
+(-10 -7 (-15 -3177 ((-108) |#1| (-708))) (-15 -2857 ((-3 |#1| "failed") |#1| (-708))) (-15 -2857 ((-2 (|:| -3355 |#1|) (|:| -1400 (-708))) |#1|)) (-15 -4035 (|#1| |#1| (-708))) (-15 -3659 ((-108) |#1|)) (-15 -2222 ((-3 |#1| "failed") |#1|)) (-15 -2917 (|#1| |#1|)))
+((-3879 (((-1081 |#1|) (-850)) 27)))
+(((-541 |#1|) (-10 -7 (-15 -3879 ((-1081 |#1|) (-850)))) (-324)) (T -541))
+((-3879 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-541 *4)) (-4 *4 (-324)))))
+(-10 -7 (-15 -3879 ((-1081 |#1|) (-850))))
+((-2724 (((-539 (-382 (-881 |#1|))) (-539 (-382 (-881 |#1|)))) 26)) (-1858 (((-3 (-291 |#1|) (-588 (-291 |#1|))) (-382 (-881 |#1|)) (-1085)) 32 (|has| |#1| (-135)))) (-1604 (((-588 (-291 |#1|)) (-539 (-382 (-881 |#1|)))) 18)) (-1594 (((-291 |#1|) (-382 (-881 |#1|)) (-1085)) 30 (|has| |#1| (-135)))) (-3875 (((-291 |#1|) (-539 (-382 (-881 |#1|)))) 20)))
+(((-542 |#1|) (-10 -7 (-15 -2724 ((-539 (-382 (-881 |#1|))) (-539 (-382 (-881 |#1|))))) (-15 -1604 ((-588 (-291 |#1|)) (-539 (-382 (-881 |#1|))))) (-15 -3875 ((-291 |#1|) (-539 (-382 (-881 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -1858 ((-3 (-291 |#1|) (-588 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -1594 ((-291 |#1|) (-382 (-881 |#1|)) (-1085)))) |%noBranch|)) (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (T -542))
+((-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135)) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-291 *5)) (-5 *1 (-542 *5)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135)) (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-3 (-291 *5) (-588 (-291 *5)))) (-5 *1 (-542 *5)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-539 (-382 (-881 *4)))) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-291 *4)) (-5 *1 (-542 *4)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-539 (-382 (-881 *4)))) (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *2 (-588 (-291 *4))) (-5 *1 (-542 *4)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-539 (-382 (-881 *3)))) (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522)))) (-5 *1 (-542 *3)))))
+(-10 -7 (-15 -2724 ((-539 (-382 (-881 |#1|))) (-539 (-382 (-881 |#1|))))) (-15 -1604 ((-588 (-291 |#1|)) (-539 (-382 (-881 |#1|))))) (-15 -3875 ((-291 |#1|) (-539 (-382 (-881 |#1|))))) (IF (|has| |#1| (-135)) (PROGN (-15 -1858 ((-3 (-291 |#1|) (-588 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -1594 ((-291 |#1|) (-382 (-881 |#1|)) (-1085)))) |%noBranch|))
+((-1866 (((-588 (-628 (-522))) (-588 (-522)) (-588 (-834 (-522)))) 46) (((-588 (-628 (-522))) (-588 (-522))) 47) (((-628 (-522)) (-588 (-522)) (-834 (-522))) 42)) (-1846 (((-708) (-588 (-522))) 40)))
+(((-543) (-10 -7 (-15 -1846 ((-708) (-588 (-522)))) (-15 -1866 ((-628 (-522)) (-588 (-522)) (-834 (-522)))) (-15 -1866 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -1866 ((-588 (-628 (-522))) (-588 (-522)) (-588 (-834 (-522))))))) (T -543))
+((-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-522))) (-5 *4 (-588 (-834 (-522)))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-543)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-543)))) (-1866 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-522))) (-5 *4 (-834 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-543)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-708)) (-5 *1 (-543)))))
+(-10 -7 (-15 -1846 ((-708) (-588 (-522)))) (-15 -1866 ((-628 (-522)) (-588 (-522)) (-834 (-522)))) (-15 -1866 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -1866 ((-588 (-628 (-522))) (-588 (-522)) (-588 (-834 (-522))))))
+((-1761 (((-588 |#5|) |#5| (-108)) 73)) (-2106 (((-108) |#5| (-588 |#5|)) 30)))
+(((-544 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1761 ((-588 |#5|) |#5| (-108))) (-15 -2106 ((-108) |#5| (-588 |#5|)))) (-13 (-283) (-135)) (-730) (-784) (-985 |#1| |#2| |#3|) (-1023 |#1| |#2| |#3| |#4|)) (T -544))
+((-2106 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-1023 *5 *6 *7 *8)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-544 *5 *6 *7 *8 *3)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-588 *3)) (-5 *1 (-544 *5 *6 *7 *8 *3)) (-4 *3 (-1023 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1761 ((-588 |#5|) |#5| (-108))) (-15 -2106 ((-108) |#5| (-588 |#5|))))
+((-1416 (((-108) $ $) NIL (|has| (-132) (-1014)))) (-3539 (($ $) 34)) (-2084 (($ $) NIL)) (-3192 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3768 (((-108) $ $) 51)) (-3744 (((-108) $ $ (-522)) 46)) (-2724 (((-588 $) $ (-132)) 60) (((-588 $) $ (-129)) 61)) (-4187 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-784)))) (-3537 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-132) (-784))))) (-3216 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 (((-132) $ (-522) (-132)) 45 (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-2850 (($ $ (-132)) 64) (($ $ (-129)) 65)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2516 (($ $ (-1133 (-522)) $) 44)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1423 (($ (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3854 (((-132) $ (-522) (-132)) NIL (|has| $ (-6 -4239)))) (-3631 (((-132) $ (-522)) NIL)) (-3792 (((-108) $ $) 71)) (-3238 (((-522) (-1 (-108) (-132)) $) NIL) (((-522) (-132) $) NIL (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) 48 (|has| (-132) (-1014))) (((-522) $ $ (-522)) 47) (((-522) (-129) $ (-522)) 50)) (-3837 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-1811 (($ (-708) (-132)) 9)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 28 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| (-132) (-784)))) (-2160 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-784)))) (-3308 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2014 (((-522) $) 42 (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-132) (-784)))) (-1455 (((-108) $ $ (-132)) 72)) (-4148 (((-708) $ $ (-132)) 70)) (-3838 (($ (-1 (-132) (-132)) $) 33 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1909 (($ $) 37)) (-2390 (($ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2862 (($ $ (-132)) 62) (($ $ (-129)) 63)) (-2385 (((-1068) $) 38 (|has| (-132) (-1014)))) (-1661 (($ (-132) $ (-522)) NIL) (($ $ $ (-522)) 23)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-522) $) 69) (((-1032) $) NIL (|has| (-132) (-1014)))) (-2294 (((-132) $) NIL (|has| (-522) (-784)))) (-1414 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2602 (($ $ (-132)) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-132)))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1525 (((-588 (-132)) $) NIL)) (-3985 (((-108) $) 12)) (-3775 (($) 10)) (-2545 (((-132) $ (-522) (-132)) NIL) (((-132) $ (-522)) 52) (($ $ (-1133 (-522))) 21) (($ $ $) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (((-708) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1577 (($ $ $ (-522)) 66 (|has| $ (-6 -4239)))) (-2404 (($ $) 17)) (-1431 (((-498) $) NIL (|has| (-132) (-563 (-498))))) (-2201 (($ (-588 (-132))) NIL)) (-4165 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) 16) (($ (-588 $)) 67)) (-2190 (($ (-132)) NIL) (((-792) $) 27 (|has| (-132) (-562 (-792))))) (-3648 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1531 (((-108) $ $) 14 (|has| (-132) (-1014)))) (-1566 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1549 (((-108) $ $) 15 (|has| (-132) (-784)))) (-3480 (((-708) $) 13 (|has| $ (-6 -4238)))))
+(((-545 |#1|) (-13 (-1054) (-10 -8 (-15 -4151 ((-522) $)))) (-522)) (T -545))
+((-4151 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-545 *3)) (-14 *3 *2))))
+(-13 (-1054) (-10 -8 (-15 -4151 ((-522) $))))
+((-3518 (((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2| (-1009 |#4|)) 32)))
+(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3518 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2| (-1009 |#4|))) (-15 -3518 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2|))) (-730) (-784) (-514) (-878 |#3| |#1| |#2|)) (T -546))
+((-3518 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-514)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522)))) (-5 *1 (-546 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) (-3518 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1009 *3)) (-4 *3 (-878 *7 *6 *4)) (-4 *6 (-730)) (-4 *4 (-784)) (-4 *7 (-514)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522)))) (-5 *1 (-546 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3518 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2| (-1009 |#4|))) (-15 -3518 ((-2 (|:| |num| |#4|) (|:| |den| (-522))) |#4| |#2|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 63)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-522)) 54) (($ $ (-522) (-522)) 55)) (-2258 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 60)) (-1252 (($ $) 100)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3099 (((-792) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) (-951 (-777 (-522))) (-1085) |#1| (-382 (-522))) 215)) (-2773 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 34)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3390 (((-108) $) NIL)) (-3714 (((-522) $) 58) (((-522) $ (-522)) 59)) (-2782 (((-108) $) NIL)) (-2073 (($ $ (-850)) 76)) (-3950 (($ (-1 |#1| (-522)) $) 73)) (-3340 (((-108) $) 25)) (-4049 (($ |#1| (-522)) 22) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) 67)) (-3178 (($ (-951 (-777 (-522))) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 11)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-1858 (($ $) 112 (|has| |#1| (-37 (-382 (-522)))))) (-2275 (((-3 $ "failed") $ $ (-108)) 99)) (-4057 (($ $ $) 108)) (-4151 (((-1032) $) NIL)) (-3669 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 13)) (-2102 (((-951 (-777 (-522))) $) 12)) (-3719 (($ $ (-522)) 45)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-522)))))) (-2545 ((|#1| $ (-522)) 57) (($ $ $) NIL (|has| (-522) (-1026)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-2793 (((-522) $) NIL)) (-1522 (($ $) 46)) (-2190 (((-792) $) NIL) (($ (-522)) 28) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 27 (|has| |#1| (-157)))) (-3243 ((|#1| $ (-522)) 56)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) 37)) (-1893 ((|#1| $) NIL)) (-4198 (($ $) 180 (|has| |#1| (-37 (-382 (-522)))))) (-1848 (($ $) 156 (|has| |#1| (-37 (-382 (-522)))))) (-3492 (($ $) 177 (|has| |#1| (-37 (-382 (-522)))))) (-1277 (($ $) 153 (|has| |#1| (-37 (-382 (-522)))))) (-3361 (($ $) 182 (|has| |#1| (-37 (-382 (-522)))))) (-3711 (($ $) 159 (|has| |#1| (-37 (-382 (-522)))))) (-1731 (($ $ (-382 (-522))) 146 (|has| |#1| (-37 (-382 (-522)))))) (-2810 (($ $ |#1|) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2918 (($ $) 150 (|has| |#1| (-37 (-382 (-522)))))) (-1412 (($ $) 148 (|has| |#1| (-37 (-382 (-522)))))) (-3031 (($ $) 183 (|has| |#1| (-37 (-382 (-522)))))) (-3086 (($ $) 160 (|has| |#1| (-37 (-382 (-522)))))) (-1971 (($ $) 181 (|has| |#1| (-37 (-382 (-522)))))) (-1329 (($ $) 158 (|has| |#1| (-37 (-382 (-522)))))) (-2164 (($ $) 178 (|has| |#1| (-37 (-382 (-522)))))) (-3927 (($ $) 154 (|has| |#1| (-37 (-382 (-522)))))) (-1669 (($ $) 188 (|has| |#1| (-37 (-382 (-522)))))) (-2968 (($ $) 168 (|has| |#1| (-37 (-382 (-522)))))) (-4006 (($ $) 185 (|has| |#1| (-37 (-382 (-522)))))) (-1972 (($ $) 163 (|has| |#1| (-37 (-382 (-522)))))) (-3036 (($ $) 192 (|has| |#1| (-37 (-382 (-522)))))) (-1567 (($ $) 172 (|has| |#1| (-37 (-382 (-522)))))) (-2060 (($ $) 194 (|has| |#1| (-37 (-382 (-522)))))) (-3848 (($ $) 174 (|has| |#1| (-37 (-382 (-522)))))) (-3393 (($ $) 190 (|has| |#1| (-37 (-382 (-522)))))) (-2284 (($ $) 170 (|has| |#1| (-37 (-382 (-522)))))) (-3707 (($ $) 187 (|has| |#1| (-37 (-382 (-522)))))) (-4217 (($ $) 166 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3898 ((|#1| $ (-522)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 29 T CONST)) (-3577 (($) 38 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-1531 (((-108) $ $) 65)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) 84) (($ $ $) 64)) (-1602 (($ $ $) 81)) (** (($ $ (-850)) NIL) (($ $ (-708)) 103)) (* (($ (-850) $) 89) (($ (-708) $) 87) (($ (-522) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-547 |#1|) (-13 (-1144 |#1| (-522)) (-10 -8 (-15 -3178 ($ (-951 (-777 (-522))) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -2102 ((-951 (-777 (-522))) $)) (-15 -3669 ((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $)) (-15 -2773 ($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -3340 ((-108) $)) (-15 -3950 ($ (-1 |#1| (-522)) $)) (-15 -2275 ((-3 $ "failed") $ $ (-108))) (-15 -1252 ($ $)) (-15 -4057 ($ $ $)) (-15 -3099 ((-792) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) (-951 (-777 (-522))) (-1085) |#1| (-382 (-522)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $)) (-15 -2810 ($ $ |#1|)) (-15 -1731 ($ $ (-382 (-522)))) (-15 -1412 ($ $)) (-15 -2918 ($ $)) (-15 -1277 ($ $)) (-15 -3927 ($ $)) (-15 -1848 ($ $)) (-15 -1329 ($ $)) (-15 -3711 ($ $)) (-15 -3086 ($ $)) (-15 -1972 ($ $)) (-15 -4217 ($ $)) (-15 -2968 ($ $)) (-15 -2284 ($ $)) (-15 -1567 ($ $)) (-15 -3848 ($ $)) (-15 -3492 ($ $)) (-15 -2164 ($ $)) (-15 -4198 ($ $)) (-15 -1971 ($ $)) (-15 -3361 ($ $)) (-15 -3031 ($ $)) (-15 -4006 ($ $)) (-15 -3707 ($ $)) (-15 -1669 ($ $)) (-15 -3393 ($ $)) (-15 -3036 ($ $)) (-15 -2060 ($ $))) |%noBranch|))) (-971)) (T -547))
+((-3340 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-3178 (*1 *1 *2 *3) (-12 (-5 *2 (-951 (-777 (-522)))) (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *4)))) (-4 *4 (-971)) (-5 *1 (-547 *4)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-951 (-777 (-522)))) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) (-4 *3 (-971)) (-5 *1 (-547 *3)))) (-3950 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-547 *3)))) (-2275 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971)))) (-1252 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971)))) (-4057 (*1 *1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971)))) (-3099 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *6)))) (-5 *4 (-951 (-777 (-522)))) (-5 *5 (-1085)) (-5 *7 (-382 (-522))) (-4 *6 (-971)) (-5 *2 (-792)) (-5 *1 (-547 *6)))) (-1858 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2810 (*1 *1 *1 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1731 (*1 *1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-547 *3)) (-4 *3 (-37 *2)) (-4 *3 (-971)))) (-1412 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2918 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1277 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3927 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1848 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1329 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3711 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1972 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-4217 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2968 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1567 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3492 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1971 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3361 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3031 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-4006 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3707 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-1669 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3393 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-3036 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))) (-2060 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(-13 (-1144 |#1| (-522)) (-10 -8 (-15 -3178 ($ (-951 (-777 (-522))) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -2102 ((-951 (-777 (-522))) $)) (-15 -3669 ((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $)) (-15 -2773 ($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))))) (-15 -3340 ((-108) $)) (-15 -3950 ($ (-1 |#1| (-522)) $)) (-15 -2275 ((-3 $ "failed") $ $ (-108))) (-15 -1252 ($ $)) (-15 -4057 ($ $ $)) (-15 -3099 ((-792) (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) (-951 (-777 (-522))) (-1085) |#1| (-382 (-522)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $)) (-15 -2810 ($ $ |#1|)) (-15 -1731 ($ $ (-382 (-522)))) (-15 -1412 ($ $)) (-15 -2918 ($ $)) (-15 -1277 ($ $)) (-15 -3927 ($ $)) (-15 -1848 ($ $)) (-15 -1329 ($ $)) (-15 -3711 ($ $)) (-15 -3086 ($ $)) (-15 -1972 ($ $)) (-15 -4217 ($ $)) (-15 -2968 ($ $)) (-15 -2284 ($ $)) (-15 -1567 ($ $)) (-15 -3848 ($ $)) (-15 -3492 ($ $)) (-15 -2164 ($ $)) (-15 -4198 ($ $)) (-15 -1971 ($ $)) (-15 -3361 ($ $)) (-15 -3031 ($ $)) (-15 -4006 ($ $)) (-15 -3707 ($ $)) (-15 -1669 ($ $)) (-15 -3393 ($ $)) (-15 -3036 ($ $)) (-15 -2060 ($ $))) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-2773 (($ (-1066 |#1|)) 9)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) 42)) (-3390 (((-108) $) 52)) (-3714 (((-708) $) 55) (((-708) $ (-708)) 54)) (-2782 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ $) 44 (|has| |#1| (-514)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-1066 |#1|) $) 23)) (-2323 (((-708)) 51)) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 10 T CONST)) (-3577 (($) 14 T CONST)) (-1531 (((-108) $ $) 22)) (-1612 (($ $) 30) (($ $ $) 16)) (-1602 (($ $ $) 25)) (** (($ $ (-850)) NIL) (($ $ (-708)) 49)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-522)) 36)))
+(((-548 |#1|) (-13 (-971) (-10 -8 (-15 -3916 ((-1066 |#1|) $)) (-15 -2773 ($ (-1066 |#1|))) (-15 -3390 ((-108) $)) (-15 -3714 ((-708) $)) (-15 -3714 ((-708) $ (-708))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-522))) (IF (|has| |#1| (-514)) (-6 (-514)) |%noBranch|))) (-971)) (T -548))
+((-3916 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-548 *3)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (-3714 (*1 *2 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-548 *3)) (-4 *3 (-971)))))
+(-13 (-971) (-10 -8 (-15 -3916 ((-1066 |#1|) $)) (-15 -2773 ($ (-1066 |#1|))) (-15 -3390 ((-108) $)) (-15 -3714 ((-708) $)) (-15 -3714 ((-708) $ (-708))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-522))) (IF (|has| |#1| (-514)) (-6 (-514)) |%noBranch|)))
+((-1391 (((-552 |#2|) (-1 |#2| |#1|) (-552 |#1|)) 15)))
+(((-549 |#1| |#2|) (-10 -7 (-15 -1391 ((-552 |#2|) (-1 |#2| |#1|) (-552 |#1|)))) (-1120) (-1120)) (T -549))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-552 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-552 *6)) (-5 *1 (-549 *5 *6)))))
+(-10 -7 (-15 -1391 ((-552 |#2|) (-1 |#2| |#1|) (-552 |#1|))))
+((-1391 (((-1066 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-1066 |#2|)) 20) (((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-552 |#2|)) 19) (((-552 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-552 |#2|)) 18)))
+(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -1391 ((-552 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-552 |#2|))) (-15 -1391 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-552 |#2|))) (-15 -1391 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-1066 |#2|)))) (-1120) (-1120) (-1120)) (T -550))
+((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-1066 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) (-5 *1 (-550 *6 *7 *8)))) (-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-552 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) (-5 *1 (-550 *6 *7 *8)))) (-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-552 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-552 *8)) (-5 *1 (-550 *6 *7 *8)))))
+(-10 -7 (-15 -1391 ((-552 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-552 |#2|))) (-15 -1391 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-552 |#2|))) (-15 -1391 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-552 |#1|) (-1066 |#2|))))
+((-4145 ((|#3| |#3| (-588 (-561 |#3|)) (-588 (-1085))) 55)) (-2650 (((-154 |#2|) |#3|) 116)) (-3199 ((|#3| (-154 |#2|)) 43)) (-1996 ((|#2| |#3|) 19)) (-3889 ((|#3| |#2|) 32)))
+(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -3199 (|#3| (-154 |#2|))) (-15 -1996 (|#2| |#3|)) (-15 -3889 (|#3| |#2|)) (-15 -2650 ((-154 |#2|) |#3|)) (-15 -4145 (|#3| |#3| (-588 (-561 |#3|)) (-588 (-1085))))) (-13 (-514) (-784)) (-13 (-405 |#1|) (-928) (-1106)) (-13 (-405 (-154 |#1|)) (-928) (-1106))) (T -551))
+((-4145 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-588 (-1085))) (-4 *2 (-13 (-405 (-154 *5)) (-928) (-1106))) (-4 *5 (-13 (-514) (-784))) (-5 *1 (-551 *5 *6 *2)) (-4 *6 (-13 (-405 *5) (-928) (-1106))))) (-2650 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784))) (-5 *2 (-154 *5)) (-5 *1 (-551 *4 *5 *3)) (-4 *5 (-13 (-405 *4) (-928) (-1106))) (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106))))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784))) (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106))) (-5 *1 (-551 *4 *3 *2)) (-4 *3 (-13 (-405 *4) (-928) (-1106))))) (-1996 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-784))) (-4 *2 (-13 (-405 *4) (-928) (-1106))) (-5 *1 (-551 *4 *2 *3)) (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106))))) (-3199 (*1 *2 *3) (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106))) (-4 *4 (-13 (-514) (-784))) (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106))) (-5 *1 (-551 *4 *5 *2)))))
+(-10 -7 (-15 -3199 (|#3| (-154 |#2|))) (-15 -1996 (|#2| |#3|)) (-15 -3889 (|#3| |#2|)) (-15 -2650 ((-154 |#2|) |#3|)) (-15 -4145 (|#3| |#3| (-588 (-561 |#3|)) (-588 (-1085)))))
+((-1628 (($ (-1 (-108) |#1|) $) 16)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (($ (-1 |#1| |#1|) |#1|) 9)) (-1614 (($ (-1 (-108) |#1|) $) 12)) (-1622 (($ (-1 (-108) |#1|) $) 14)) (-2201 (((-1066 |#1|) $) 17)) (-2190 (((-792) $) NIL)))
+(((-552 |#1|) (-13 (-562 (-792)) (-10 -8 (-15 -1391 ($ (-1 |#1| |#1|) $)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $)) (-15 -1628 ($ (-1 (-108) |#1|) $)) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -2201 ((-1066 |#1|) $)))) (-1120)) (T -552))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-1578 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1120)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -1391 ($ (-1 |#1| |#1|) $)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $)) (-15 -1628 ($ (-1 (-108) |#1|) $)) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -2201 ((-1066 |#1|) $))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3483 (($ (-708)) NIL (|has| |#1| (-23)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3957 (((-628 |#1|) $ $) NIL (|has| |#1| (-971)))) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2845 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2720 (((-108) $ (-708)) NIL)) (-2517 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-1883 ((|#1| $ $) NIL (|has| |#1| (-971)))) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3230 (($ $ $) NIL (|has| |#1| (-971)))) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1602 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-522) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-664))) (($ $ |#1|) NIL (|has| |#1| (-664)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-553 |#1| |#2|) (-1164 |#1|) (-1120) (-522)) (T -553))
+NIL
+(-1164 |#1|)
+((-2679 (((-1171) $ |#2| |#2|) 36)) (-1359 ((|#2| $) 23)) (-2014 ((|#2| $) 21)) (-3838 (($ (-1 |#3| |#3|) $) 32)) (-1391 (($ (-1 |#3| |#3|) $) 30)) (-2294 ((|#3| $) 26)) (-2602 (($ $ |#3|) 33)) (-1758 (((-108) |#3| $) 17)) (-1525 (((-588 |#3|) $) 15)) (-2545 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-554 |#1| |#2| |#3|) (-10 -8 (-15 -2679 ((-1171) |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| |#3|)) (-15 -2294 (|#3| |#1|)) (-15 -1359 (|#2| |#1|)) (-15 -2014 (|#2| |#1|)) (-15 -1758 ((-108) |#3| |#1|)) (-15 -1525 ((-588 |#3|) |#1|)) (-15 -2545 (|#3| |#1| |#2|)) (-15 -2545 (|#3| |#1| |#2| |#3|)) (-15 -3838 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1391 (|#1| (-1 |#3| |#3|) |#1|))) (-555 |#2| |#3|) (-1014) (-1120)) (T -554))
+NIL
+(-10 -8 (-15 -2679 ((-1171) |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| |#3|)) (-15 -2294 (|#3| |#1|)) (-15 -1359 (|#2| |#1|)) (-15 -2014 (|#2| |#1|)) (-15 -1758 ((-108) |#3| |#1|)) (-15 -1525 ((-588 |#3|) |#1|)) (-15 -2545 (|#3| |#1| |#2|)) (-15 -2545 (|#3| |#1| |#2| |#3|)) (-15 -3838 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1391 (|#1| (-1 |#3| |#3|) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#2| (-1014)))) (-2679 (((-1171) $ |#1| |#1|) 40 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4239)))) (-3175 (($) 7 T CONST)) (-3854 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) 51)) (-3837 (((-588 |#2|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-1359 ((|#1| $) 43 (|has| |#1| (-784)))) (-3308 (((-588 |#2|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2014 ((|#1| $) 44 (|has| |#1| (-784)))) (-3838 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#2| (-1014)))) (-3604 (((-588 |#1|) $) 46)) (-1405 (((-108) |#1| $) 47)) (-4151 (((-1032) $) 21 (|has| |#2| (-1014)))) (-2294 ((|#2| $) 42 (|has| |#1| (-784)))) (-2602 (($ $ |#2|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) 26 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 25 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 23 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-4168 (((-708) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4238))) (((-708) |#2| $) 28 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#2| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#2| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-555 |#1| |#2|) (-1197) (-1014) (-1120)) (T -555))
+((-1525 (*1 *2 *1) (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-588 *4)))) (-1405 (*1 *2 *3 *1) (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-108)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-588 *3)))) (-1758 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-555 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014)) (-4 *2 (-784)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014)) (-4 *2 (-784)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-784)) (-4 *2 (-1120)))) (-2602 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120)))) (-2679 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120)) (-5 *2 (-1171)))))
+(-13 (-461 |t#2|) (-264 |t#1| |t#2|) (-10 -8 (-15 -1525 ((-588 |t#2|) $)) (-15 -1405 ((-108) |t#1| $)) (-15 -3604 ((-588 |t#1|) $)) (IF (|has| |t#2| (-1014)) (IF (|has| $ (-6 -4238)) (-15 -1758 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-784)) (PROGN (-15 -2014 (|t#1| $)) (-15 -1359 (|t#1| $)) (-15 -2294 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2602 ($ $ |t#2|)) (-15 -2679 ((-1171) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1014)) ((-562 (-792)) -3708 (|has| |#2| (-1014)) (|has| |#2| (-562 (-792)))) ((-262 |#1| |#2|) . T) ((-264 |#1| |#2|) . T) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-461 |#2|) . T) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-1014) |has| |#2| (-1014)) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3210 (((-3 $ "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1588 (((-1166 (-628 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-1166 (-628 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1681 (((-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3175 (($) NIL T CONST)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3130 (((-3 $ "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1771 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3594 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2828 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3637 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3549 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-1679 (($ $ (-850)) NIL)) (-3076 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2992 (((-1081 |#1|) $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2975 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-4014 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-2878 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3766 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (($ (-1166 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2682 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3166 (((-850)) NIL (|has| |#2| (-342 |#1|)))) (-2666 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1882 (($ $ (-850)) NIL)) (-1427 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2552 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2678 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2007 (((-3 $ "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1943 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1546 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-4142 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2231 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2497 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-3277 (($ $ (-850)) NIL)) (-1505 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-3630 (((-1081 |#1|) $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2475 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2302 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-3003 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2385 (((-1068) $) NIL)) (-3710 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3026 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3055 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-4151 (((-1032) $) NIL)) (-2889 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2545 ((|#1| $ (-522)) NIL (|has| |#2| (-392 |#1|)))) (-3677 (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $) (-1166 $)) NIL (|has| |#2| (-342 |#1|))) (((-1166 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1431 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-2656 (((-588 (-881 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-588 (-881 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1288 (($ $ $) NIL)) (-4034 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2190 (((-792) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3855 (((-1166 $)) NIL (|has| |#2| (-392 |#1|)))) (-2901 (((-588 (-1166 |#1|))) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3610 (($ $ $ $) NIL)) (-2928 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1616 (($ (-628 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-3024 (($ $ $) NIL)) (-3065 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3856 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3877 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3566 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) 24)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-556 |#1| |#2|) (-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2190 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|))) (-157) (-682 |#1|)) (T -556))
+((-2190 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-556 *3 *2)) (-4 *2 (-682 *3)))))
+(-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2190 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-1270 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) 32)) (-1800 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL) (($) NIL)) (-2679 (((-1171) $ (-1068) (-1068)) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-1068) |#1|) 42)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#1| "failed") (-1068) $) 45)) (-3175 (($) NIL T CONST)) (-2563 (($ $ (-1068)) 24)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014))))) (-3859 (((-3 |#1| "failed") (-1068) $) 46) (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (($ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (|has| $ (-6 -4238)))) (-1423 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (($ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014))))) (-3864 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014))))) (-4045 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) 31)) (-3854 ((|#1| $ (-1068) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-1068)) NIL)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-3857 (($ $) 47)) (-1544 (($ (-363)) 22) (($ (-363) (-1068)) 21)) (-2888 (((-363) $) 33)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-1068) $) NIL (|has| (-1068) (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238))) (((-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (((-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014))))) (-2014 (((-1068) $) NIL (|has| (-1068) (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-2966 (((-588 (-1068)) $) 38)) (-1231 (((-108) (-1068) $) NIL)) (-3469 (((-1068) $) 34)) (-2116 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL)) (-3604 (((-588 (-1068)) $) NIL)) (-1405 (((-108) (-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 ((|#1| $) NIL (|has| (-1068) (-784)))) (-1414 (((-3 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) "failed") (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-588 (-270 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 36)) (-2545 ((|#1| $ (-1068) |#1|) NIL) ((|#1| $ (-1068)) 41)) (-3990 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL) (($) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (((-708) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (((-708) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL)) (-2190 (((-792) $) 20)) (-2152 (($ $) 25)) (-2795 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 19)) (-3480 (((-708) $) 40 (|has| $ (-6 -4238)))))
+(((-557 |#1|) (-13 (-339 (-363) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) (-1097 (-1068) |#1|) (-10 -8 (-6 -4238) (-15 -3857 ($ $)))) (-1014)) (T -557))
+((-3857 (*1 *1 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-1014)))))
+(-13 (-339 (-363) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) (-1097 (-1068) |#1|) (-10 -8 (-6 -4238) (-15 -3857 ($ $))))
+((-2246 (((-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) $) 15)) (-2966 (((-588 |#2|) $) 19)) (-1231 (((-108) |#2| $) 12)))
+(((-558 |#1| |#2| |#3|) (-10 -8 (-15 -2966 ((-588 |#2|) |#1|)) (-15 -1231 ((-108) |#2| |#1|)) (-15 -2246 ((-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|))) (-559 |#2| |#3|) (-1014) (-1014)) (T -558))
+NIL
+(-10 -8 (-15 -2966 ((-588 |#2|) |#1|)) (-15 -1231 ((-108) |#2| |#1|)) (-15 -2246 ((-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 55 (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) 61)) (-3175 (($) 7 T CONST)) (-2333 (($ $) 58 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 46 (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 54 (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 56 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 53 (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 52 (|has| $ (-6 -4238)))) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-2966 (((-588 |#1|) $) 63)) (-1231 (((-108) |#1| $) 64)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 39)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 40)) (-4151 (((-1032) $) 21 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 51)) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 41)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) 26 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 25 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 24 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 23 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3990 (($) 49) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 48)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 31 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 50)) (-2190 (((-792) $) 18 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 42)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-559 |#1| |#2|) (-1197) (-1014) (-1014)) (T -559))
+((-1231 (*1 *2 *3 *1) (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-108)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-588 *3)))) (-3859 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2750 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(-13 (-206 (-2 (|:| -2530 |t#1|) (|:| -3048 |t#2|))) (-10 -8 (-15 -1231 ((-108) |t#1| $)) (-15 -2966 ((-588 |t#1|) $)) (-15 -3859 ((-3 |t#2| "failed") |t#1| $)) (-15 -2750 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((-97) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) ((-562 (-792)) -3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792)))) ((-139 #0#) . T) ((-563 (-498)) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))) ((-206 #0#) . T) ((-212 #0#) . T) ((-285 #0#) -12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-461 #0#) . T) ((-483 #0# #0#) -12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-1014) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) ((-1120) . T))
+((-1527 (((-561 |#2|) |#1|) 15)) (-2598 (((-3 |#1| "failed") (-561 |#2|)) 19)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -1527 ((-561 |#2|) |#1|)) (-15 -2598 ((-3 |#1| "failed") (-561 |#2|)))) (-784) (-784)) (T -560))
+((-2598 (*1 *2 *3) (|partial| -12 (-5 *3 (-561 *4)) (-4 *4 (-784)) (-4 *2 (-784)) (-5 *1 (-560 *2 *4)))) (-1527 (*1 *2 *3) (-12 (-5 *2 (-561 *4)) (-5 *1 (-560 *3 *4)) (-4 *3 (-784)) (-4 *4 (-784)))))
+(-10 -7 (-15 -1527 ((-561 |#2|) |#1|)) (-15 -2598 ((-3 |#1| "failed") (-561 |#2|))))
+((-1416 (((-108) $ $) NIL)) (-1486 (((-3 (-1085) "failed") $) 36)) (-3220 (((-1171) $ (-708)) 26)) (-3238 (((-708) $) 25)) (-2626 (((-110) $) 12)) (-2888 (((-1085) $) 20)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-2909 (($ (-110) (-588 |#1|) (-708)) 30) (($ (-1085)) 31)) (-2249 (((-108) $ (-110)) 18) (((-108) $ (-1085)) 16)) (-4155 (((-708) $) 22)) (-4151 (((-1032) $) NIL)) (-1431 (((-821 (-522)) $) 69 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 75 (|has| |#1| (-563 (-821 (-354))))) (((-498) $) 62 (|has| |#1| (-563 (-498))))) (-2190 (((-792) $) 51)) (-3824 (((-588 |#1|) $) 24)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 39)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 40)))
+(((-561 |#1|) (-13 (-125) (-813 |#1|) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -2626 ((-110) $)) (-15 -3824 ((-588 |#1|) $)) (-15 -4155 ((-708) $)) (-15 -2909 ($ (-110) (-588 |#1|) (-708))) (-15 -2909 ($ (-1085))) (-15 -1486 ((-3 (-1085) "failed") $)) (-15 -2249 ((-108) $ (-110))) (-15 -2249 ((-108) $ (-1085))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) (-784)) (T -561))
+((-2888 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-2909 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-784)) (-5 *1 (-561 *5)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-1486 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))) (-2249 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784)))) (-2249 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784)))))
+(-13 (-125) (-813 |#1|) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -2626 ((-110) $)) (-15 -3824 ((-588 |#1|) $)) (-15 -4155 ((-708) $)) (-15 -2909 ($ (-110) (-588 |#1|) (-708))) (-15 -2909 ($ (-1085))) (-15 -1486 ((-3 (-1085) "failed") $)) (-15 -2249 ((-108) $ (-110))) (-15 -2249 ((-108) $ (-1085))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|)))
+((-2190 ((|#1| $) 6)))
+(((-562 |#1|) (-1197) (-1120)) (T -562))
+((-2190 (*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1120)))))
+(-13 (-10 -8 (-15 -2190 (|t#1| $))))
+((-1431 ((|#1| $) 6)))
+(((-563 |#1|) (-1197) (-1120)) (T -563))
+((-1431 (*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1120)))))
+(-13 (-10 -8 (-15 -1431 (|t#1| $))))
+((-3313 (((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 (-393 |#2|) |#2|)) 13) (((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)) 14)))
+(((-564 |#1| |#2|) (-10 -7 (-15 -3313 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|))) (-15 -3313 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 (-393 |#2|) |#2|)))) (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -564))
+((-3313 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-1081 (-382 *6))) (-5 *1 (-564 *5 *6)) (-5 *3 (-382 *6)))) (-3313 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-1081 (-382 *5))) (-5 *1 (-564 *4 *5)) (-5 *3 (-382 *5)))))
+(-10 -7 (-15 -3313 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|))) (-15 -3313 ((-3 (-1081 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 (-393 |#2|) |#2|))))
+((-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) 10)))
+(((-565 |#1| |#2|) (-10 -8 (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-566 |#2|) (-971)) (T -565))
+NIL
+(-10 -8 (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 36)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-566 |#1|) (-1197) (-971)) (T -566))
+((-2190 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-971)))))
+(-13 (-971) (-590 |t#1|) (-10 -8 (-15 -2190 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1341 (((-522) $) NIL (|has| |#1| (-782)))) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-3687 (((-108) $) NIL (|has| |#1| (-782)))) (-2782 (((-108) $) NIL)) (-2805 ((|#1| $) 13)) (-2556 (((-108) $) NIL (|has| |#1| (-782)))) (-2814 (($ $ $) NIL (|has| |#1| (-782)))) (-2446 (($ $ $) NIL (|has| |#1| (-782)))) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2816 ((|#3| $) 15)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL)) (-2323 (((-708)) 20)) (-2241 (($ $) NIL (|has| |#1| (-782)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) 12 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1620 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-567 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2805 (|#1| $)) (-15 -2816 (|#3| $)))) (-37 |#2|) (-157) (|SubsetCategory| (-664) |#2|)) (T -567))
+((-1620 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-1620 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-567 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2805 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-567 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2816 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2805 (|#1| $)) (-15 -2816 (|#3| $))))
+((-1990 ((|#2| |#2| (-1085) (-1085)) 18)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -1990 (|#2| |#2| (-1085) (-1085)))) (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-887) (-29 |#1|))) (T -568))
+((-1990 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522)))) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-1106) (-887) (-29 *4))))))
+(-10 -7 (-15 -1990 (|#2| |#2| (-1085) (-1085))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 52)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-2797 ((|#1| $) 49)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1441 (((-2 (|:| -2012 $) (|:| -1320 (-382 |#2|))) (-382 |#2|)) 97 (|has| |#1| (-338)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 82)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) 24)) (-2682 (((-3 $ "failed") $) 76)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-3714 (((-522) $) 19)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) 36)) (-4049 (($ |#1| (-522)) 21)) (-3138 ((|#1| $) 51)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) 87 (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ $) 80)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3730 (((-708) $) 99 (|has| |#1| (-338)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 98 (|has| |#1| (-338)))) (-2157 (($ $ (-1 |#2| |#2|)) 67) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-2793 (((-522) $) 34)) (-1431 (((-382 |#2|) $) 42)) (-2190 (((-792) $) 63) (($ (-522)) 32) (($ $) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 31) (($ |#2|) 22)) (-3243 ((|#1| $ (-522)) 64)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 9 T CONST)) (-3577 (($) 12 T CONST)) (-2213 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1531 (((-108) $ $) 17)) (-1612 (($ $) 46) (($ $ $) NIL)) (-1602 (($ $ $) 77)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 26) (($ $ $) 44)))
+(((-569 |#1| |#2|) (-13 (-208 |#2|) (-514) (-563 (-382 |#2|)) (-386 |#1|) (-962 |#2|) (-10 -8 (-15 -3340 ((-108) $)) (-15 -2793 ((-522) $)) (-15 -3714 ((-522) $)) (-15 -3156 ($ $)) (-15 -3138 (|#1| $)) (-15 -2797 (|#1| $)) (-15 -3243 (|#1| $ (-522))) (-15 -4049 ($ |#1| (-522))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-283)) (-15 -1441 ((-2 (|:| -2012 $) (|:| -1320 (-382 |#2|))) (-382 |#2|)))) |%noBranch|))) (-514) (-1142 |#1|)) (T -569))
+((-3340 (*1 *2 *1) (-12 (-4 *3 (-514)) (-5 *2 (-108)) (-5 *1 (-569 *3 *4)) (-4 *4 (-1142 *3)))) (-2793 (*1 *2 *1) (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4)) (-4 *4 (-1142 *3)))) (-3714 (*1 *2 *1) (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4)) (-4 *4 (-1142 *3)))) (-3156 (*1 *1 *1) (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) (-2797 (*1 *2 *1) (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))) (-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4)) (-4 *4 (-1142 *2)))) (-4049 (*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4)) (-4 *4 (-1142 *2)))) (-1441 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *4 (-514)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -2012 (-569 *4 *5)) (|:| -1320 (-382 *5)))) (-5 *1 (-569 *4 *5)) (-5 *3 (-382 *5)))))
+(-13 (-208 |#2|) (-514) (-563 (-382 |#2|)) (-386 |#1|) (-962 |#2|) (-10 -8 (-15 -3340 ((-108) $)) (-15 -2793 ((-522) $)) (-15 -3714 ((-522) $)) (-15 -3156 ($ $)) (-15 -3138 (|#1| $)) (-15 -2797 (|#1| $)) (-15 -3243 (|#1| $ (-522))) (-15 -4049 ($ |#1| (-522))) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-6 (-283)) (-15 -1441 ((-2 (|:| -2012 $) (|:| -1320 (-382 |#2|))) (-382 |#2|)))) |%noBranch|)))
+((-4125 (((-588 |#6|) (-588 |#4|) (-108)) 47)) (-3180 ((|#6| |#6|) 40)))
+(((-570 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3180 (|#6| |#6|)) (-15 -4125 ((-588 |#6|) (-588 |#4|) (-108)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|) (-1023 |#1| |#2| |#3| |#4|)) (T -570))
+((-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *10)) (-5 *1 (-570 *5 *6 *7 *8 *9 *10)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *10 (-1023 *5 *6 *7 *8)))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-570 *3 *4 *5 *6 *7 *2)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *2 (-1023 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3180 (|#6| |#6|)) (-15 -4125 ((-588 |#6|) (-588 |#4|) (-108))))
+((-2438 (((-108) |#3| (-708) (-588 |#3|)) 23)) (-1547 (((-3 (-2 (|:| |polfac| (-588 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-588 (-1081 |#3|)))) "failed") |#3| (-588 (-1081 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2976 (-588 (-2 (|:| |irr| |#4|) (|:| -2245 (-522)))))) (-588 |#3|) (-588 |#1|) (-588 |#3|)) 52)))
+(((-571 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 ((-108) |#3| (-708) (-588 |#3|))) (-15 -1547 ((-3 (-2 (|:| |polfac| (-588 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-588 (-1081 |#3|)))) "failed") |#3| (-588 (-1081 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2976 (-588 (-2 (|:| |irr| |#4|) (|:| -2245 (-522)))))) (-588 |#3|) (-588 |#1|) (-588 |#3|)))) (-784) (-730) (-283) (-878 |#3| |#2| |#1|)) (T -571))
+((-1547 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2976 (-588 (-2 (|:| |irr| *10) (|:| -2245 (-522))))))) (-5 *6 (-588 *3)) (-5 *7 (-588 *8)) (-4 *8 (-784)) (-4 *3 (-283)) (-4 *10 (-878 *3 *9 *8)) (-4 *9 (-730)) (-5 *2 (-2 (|:| |polfac| (-588 *10)) (|:| |correct| *3) (|:| |corrfact| (-588 (-1081 *3))))) (-5 *1 (-571 *8 *9 *3 *10)) (-5 *4 (-588 (-1081 *3))))) (-2438 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-708)) (-5 *5 (-588 *3)) (-4 *3 (-283)) (-4 *6 (-784)) (-4 *7 (-730)) (-5 *2 (-108)) (-5 *1 (-571 *6 *7 *3 *8)) (-4 *8 (-878 *3 *7 *6)))))
+(-10 -7 (-15 -2438 ((-108) |#3| (-708) (-588 |#3|))) (-15 -1547 ((-3 (-2 (|:| |polfac| (-588 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-588 (-1081 |#3|)))) "failed") |#3| (-588 (-1081 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2976 (-588 (-2 (|:| |irr| |#4|) (|:| -2245 (-522)))))) (-588 |#3|) (-588 |#1|) (-588 |#3|))))
+((-1416 (((-108) $ $) NIL)) (-4106 (((-588 |#1|) $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-1225 (($ $) 67)) (-1254 (((-606 |#1| |#2|) $) 52)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 70)) (-4115 (((-588 (-270 |#2|)) $ $) 33)) (-4151 (((-1032) $) NIL)) (-3266 (($ (-606 |#1| |#2|)) 48)) (-3122 (($ $ $) NIL)) (-1288 (($ $ $) NIL)) (-2190 (((-792) $) 58) (((-1179 |#1| |#2|) $) NIL) (((-1184 |#1| |#2|) $) 66)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3577 (($) 53 T CONST)) (-3103 (((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $) 31)) (-3228 (((-588 (-606 |#1| |#2|)) (-588 |#1|)) 65)) (-2238 (((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) 36)) (-1531 (((-108) $ $) 54)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ $ $) 44)))
+(((-572 |#1| |#2| |#3|) (-13 (-447) (-10 -8 (-15 -3266 ($ (-606 |#1| |#2|))) (-15 -1254 ((-606 |#1| |#2|) $)) (-15 -2238 ((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $)) (-15 -2190 ((-1179 |#1| |#2|) $)) (-15 -2190 ((-1184 |#1| |#2|) $)) (-15 -1225 ($ $)) (-15 -4106 ((-588 |#1|) $)) (-15 -3228 ((-588 (-606 |#1| |#2|)) (-588 |#1|))) (-15 -3103 ((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $)) (-15 -4115 ((-588 (-270 |#2|)) $ $)))) (-784) (-13 (-157) (-655 (-382 (-522)))) (-850)) (T -572))
+((-3266 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-5 *1 (-572 *3 *4 *5)) (-14 *5 (-850)))) (-1254 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| (-822 *3)) (|:| |c| *4)))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-572 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-13 (-157) (-655 (-382 (-522))))) (-14 *4 (-850)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-606 *4 *5))) (-5 *1 (-572 *4 *5 *6)) (-4 *5 (-13 (-157) (-655 (-382 (-522))))) (-14 *6 (-850)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| (-613 *3)) (|:| |c| *4)))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))) (-4115 (*1 *2 *1 *1) (-12 (-5 *2 (-588 (-270 *4))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))))
+(-13 (-447) (-10 -8 (-15 -3266 ($ (-606 |#1| |#2|))) (-15 -1254 ((-606 |#1| |#2|) $)) (-15 -2238 ((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $)) (-15 -2190 ((-1179 |#1| |#2|) $)) (-15 -2190 ((-1184 |#1| |#2|) $)) (-15 -1225 ($ $)) (-15 -4106 ((-588 |#1|) $)) (-15 -3228 ((-588 (-606 |#1| |#2|)) (-588 |#1|))) (-15 -3103 ((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $)) (-15 -4115 ((-588 (-270 |#2|)) $ $))))
+((-4125 (((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)) 71) (((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108)) 57)) (-3191 (((-108) (-588 (-717 |#1| (-794 |#2|)))) 22)) (-3387 (((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)) 70)) (-2614 (((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108)) 56)) (-4054 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|)))) 26)) (-1652 (((-3 (-588 (-717 |#1| (-794 |#2|))) "failed") (-588 (-717 |#1| (-794 |#2|)))) 25)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -3191 ((-108) (-588 (-717 |#1| (-794 |#2|))))) (-15 -1652 ((-3 (-588 (-717 |#1| (-794 |#2|))) "failed") (-588 (-717 |#1| (-794 |#2|))))) (-15 -4054 ((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))))) (-15 -2614 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -3387 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -4125 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -4125 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108)))) (-426) (-588 (-1085))) (T -573))
+((-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6))))) (-5 *1 (-573 *5 *6)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-573 *5 *6)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6))))) (-5 *1 (-573 *5 *6)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-573 *5 *6)))) (-4054 (*1 *2 *2) (-12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426)) (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4)))) (-1652 (*1 *2 *2) (|partial| -12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426)) (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-588 (-717 *4 (-794 *5)))) (-4 *4 (-426)) (-14 *5 (-588 (-1085))) (-5 *2 (-108)) (-5 *1 (-573 *4 *5)))))
+(-10 -7 (-15 -3191 ((-108) (-588 (-717 |#1| (-794 |#2|))))) (-15 -1652 ((-3 (-588 (-717 |#1| (-794 |#2|))) "failed") (-588 (-717 |#1| (-794 |#2|))))) (-15 -4054 ((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))))) (-15 -2614 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -3387 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -4125 ((-588 (-968 |#1| |#2|)) (-588 (-717 |#1| (-794 |#2|))) (-108))) (-15 -4125 ((-588 (-1056 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|)))) (-588 (-717 |#1| (-794 |#2|))) (-108))))
+((-2908 (($ $) 38)) (-2772 (($ $) 21)) (-2884 (($ $) 37)) (-2748 (($ $) 22)) (-2930 (($ $) 36)) (-2794 (($ $) 23)) (-2838 (($) 48)) (-1254 (($ $) 45)) (-3247 (($ $) 17)) (-2355 (($ $ (-1007 $)) 7) (($ $ (-1085)) 6)) (-3266 (($ $) 46)) (-2706 (($ $) 15)) (-2735 (($ $) 16)) (-1738 (($ $) 35)) (-2804 (($ $) 24)) (-2919 (($ $) 34)) (-2784 (($ $) 25)) (-2896 (($ $) 33)) (-2761 (($ $) 26)) (-1759 (($ $) 44)) (-2836 (($ $) 32)) (-1745 (($ $) 43)) (-2815 (($ $) 31)) (-1776 (($ $) 42)) (-2860 (($ $) 30)) (-3924 (($ $) 41)) (-2872 (($ $) 29)) (-1768 (($ $) 40)) (-2848 (($ $) 28)) (-1752 (($ $) 39)) (-2825 (($ $) 27)) (-2558 (($ $) 19)) (-1654 (($ $) 20)) (-3543 (($ $) 18)) (** (($ $ $) 47)))
+(((-574) (-1197)) (T -574))
+((-1654 (*1 *1 *1) (-4 *1 (-574))) (-2558 (*1 *1 *1) (-4 *1 (-574))) (-3543 (*1 *1 *1) (-4 *1 (-574))) (-3247 (*1 *1 *1) (-4 *1 (-574))) (-2735 (*1 *1 *1) (-4 *1 (-574))) (-2706 (*1 *1 *1) (-4 *1 (-574))))
+(-13 (-887) (-1106) (-10 -8 (-15 -1654 ($ $)) (-15 -2558 ($ $)) (-15 -3543 ($ $)) (-15 -3247 ($ $)) (-15 -2735 ($ $)) (-15 -2706 ($ $))))
+(((-34) . T) ((-91) . T) ((-260) . T) ((-463) . T) ((-887) . T) ((-1106) . T) ((-1109) . T))
+((-2626 (((-110) (-110)) 83)) (-3247 ((|#2| |#2|) 30)) (-2355 ((|#2| |#2| (-1007 |#2|)) 79) ((|#2| |#2| (-1085)) 52)) (-2706 ((|#2| |#2|) 29)) (-2735 ((|#2| |#2|) 31)) (-3614 (((-108) (-110)) 34)) (-2558 ((|#2| |#2|) 26)) (-1654 ((|#2| |#2|) 28)) (-3543 ((|#2| |#2|) 27)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -1654 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -3247 (|#2| |#2|)) (-15 -2706 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -2355 (|#2| |#2| (-1085))) (-15 -2355 (|#2| |#2| (-1007 |#2|)))) (-13 (-784) (-514)) (-13 (-405 |#1|) (-928) (-1106))) (T -575))
+((-2355 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-928) (-1106))) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2)))) (-2355 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-405 *4) (-928) (-1106))))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-2706 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-3247 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-3543 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2)) (-4 *2 (-13 (-405 *3) (-928) (-1106))))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *4)) (-4 *4 (-13 (-405 *3) (-928) (-1106))))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-575 *4 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106))))))
+(-10 -7 (-15 -3614 ((-108) (-110))) (-15 -2626 ((-110) (-110))) (-15 -1654 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -3543 (|#2| |#2|)) (-15 -3247 (|#2| |#2|)) (-15 -2706 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -2355 (|#2| |#2| (-1085))) (-15 -2355 (|#2| |#2| (-1007 |#2|))))
+((-1456 (((-454 |#1| |#2|) (-224 |#1| |#2|)) 53)) (-1323 (((-588 (-224 |#1| |#2|)) (-588 (-454 |#1| |#2|))) 68)) (-3582 (((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-794 |#1|)) 70) (((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)) (-794 |#1|)) 69)) (-2406 (((-2 (|:| |gblist| (-588 (-224 |#1| |#2|))) (|:| |gvlist| (-588 (-522)))) (-588 (-454 |#1| |#2|))) 106)) (-3574 (((-588 (-454 |#1| |#2|)) (-794 |#1|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|))) 83)) (-1849 (((-2 (|:| |glbase| (-588 (-224 |#1| |#2|))) (|:| |glval| (-588 (-522)))) (-588 (-224 |#1| |#2|))) 117)) (-1459 (((-1166 |#2|) (-454 |#1| |#2|) (-588 (-454 |#1| |#2|))) 58)) (-2595 (((-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|))) 39)) (-3895 (((-224 |#1| |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|))) 49)) (-1374 (((-224 |#1| |#2|) (-588 |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|))) 90)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -2406 ((-2 (|:| |gblist| (-588 (-224 |#1| |#2|))) (|:| |gvlist| (-588 (-522)))) (-588 (-454 |#1| |#2|)))) (-15 -1849 ((-2 (|:| |glbase| (-588 (-224 |#1| |#2|))) (|:| |glval| (-588 (-522)))) (-588 (-224 |#1| |#2|)))) (-15 -1323 ((-588 (-224 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -3582 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -3582 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -2595 ((-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -1459 ((-1166 |#2|) (-454 |#1| |#2|) (-588 (-454 |#1| |#2|)))) (-15 -1374 ((-224 |#1| |#2|) (-588 |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -3574 ((-588 (-454 |#1| |#2|)) (-794 |#1|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -3895 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -1456 ((-454 |#1| |#2|) (-224 |#1| |#2|)))) (-588 (-1085)) (-426)) (T -576))
+((-1456 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-454 *4 *5)) (-5 *1 (-576 *4 *5)))) (-3895 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-224 *4 *5))) (-5 *2 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5)))) (-3574 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-794 *4)) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5)))) (-1374 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-224 *5 *6))) (-4 *6 (-426)) (-5 *2 (-224 *5 *6)) (-14 *5 (-588 (-1085))) (-5 *1 (-576 *5 *6)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-454 *5 *6))) (-5 *3 (-454 *5 *6)) (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-1166 *6)) (-5 *1 (-576 *5 *6)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-588 (-454 *3 *4))) (-14 *3 (-588 (-1085))) (-4 *4 (-426)) (-5 *1 (-576 *3 *4)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5)) (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6)) (-4 *6 (-426)))) (-3582 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5)) (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6)) (-4 *6 (-426)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-588 (-224 *4 *5))) (-5 *1 (-576 *4 *5)))) (-1849 (*1 *2 *3) (-12 (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-2 (|:| |glbase| (-588 (-224 *4 *5))) (|:| |glval| (-588 (-522))))) (-5 *1 (-576 *4 *5)) (-5 *3 (-588 (-224 *4 *5))))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *2 (-2 (|:| |gblist| (-588 (-224 *4 *5))) (|:| |gvlist| (-588 (-522))))) (-5 *1 (-576 *4 *5)))))
+(-10 -7 (-15 -2406 ((-2 (|:| |gblist| (-588 (-224 |#1| |#2|))) (|:| |gvlist| (-588 (-522)))) (-588 (-454 |#1| |#2|)))) (-15 -1849 ((-2 (|:| |glbase| (-588 (-224 |#1| |#2|))) (|:| |glval| (-588 (-522)))) (-588 (-224 |#1| |#2|)))) (-15 -1323 ((-588 (-224 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -3582 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -3582 ((-454 |#1| |#2|) (-588 (-454 |#1| |#2|)) (-794 |#1|))) (-15 -2595 ((-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -1459 ((-1166 |#2|) (-454 |#1| |#2|) (-588 (-454 |#1| |#2|)))) (-15 -1374 ((-224 |#1| |#2|) (-588 |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -3574 ((-588 (-454 |#1| |#2|)) (-794 |#1|) (-588 (-454 |#1| |#2|)) (-588 (-454 |#1| |#2|)))) (-15 -3895 ((-224 |#1| |#2|) (-224 |#1| |#2|) (-588 (-224 |#1| |#2|)))) (-15 -1456 ((-454 |#1| |#2|) (-224 |#1| |#2|))))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) NIL)) (-2679 (((-1171) $ (-1068) (-1068)) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 (((-51) $ (-1068) (-51)) 16) (((-51) $ (-1085) (-51)) 17)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 (-51) "failed") (-1068) $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014))))) (-3859 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-3 (-51) "failed") (-1068) $) NIL)) (-1423 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $ (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (((-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $ (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3854 (((-51) $ (-1068) (-51)) NIL (|has| $ (-6 -4239)))) (-3631 (((-51) $ (-1068)) NIL)) (-3837 (((-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-3857 (($ $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-1068) $) NIL (|has| (-1068) (-784)))) (-3308 (((-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-2014 (((-1068) $) NIL (|has| (-1068) (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1727 (($ (-363)) 9)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014))))) (-2966 (((-588 (-1068)) $) NIL)) (-1231 (((-108) (-1068) $) NIL)) (-2116 (((-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL)) (-4095 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL)) (-3604 (((-588 (-1068)) $) NIL)) (-1405 (((-108) (-1068) $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014))))) (-2294 (((-51) $) NIL (|has| (-1068) (-784)))) (-1414 (((-3 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) "failed") (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL)) (-2602 (($ $ (-51)) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (($ $ (-270 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (($ $ (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (($ $ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (($ $ (-588 (-51)) (-588 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-270 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-588 (-270 (-51)))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-1525 (((-588 (-51)) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 (((-51) $ (-1068)) 14) (((-51) $ (-1068) (-51)) NIL) (((-51) $ (-1085)) 15)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014)))) (((-708) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014)))) (((-708) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-51) (-562 (-792))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 (-51))) (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-577) (-13 (-1097 (-1068) (-51)) (-10 -8 (-15 -1727 ($ (-363))) (-15 -3857 ($ $)) (-15 -2545 ((-51) $ (-1085))) (-15 -2379 ((-51) $ (-1085) (-51)))))) (T -577))
+((-1727 (*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-577)))) (-3857 (*1 *1 *1) (-5 *1 (-577))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-577)))) (-2379 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1085)) (-5 *1 (-577)))))
+(-13 (-1097 (-1068) (-51)) (-10 -8 (-15 -1727 ($ (-363))) (-15 -3857 ($ $)) (-15 -2545 ((-51) $ (-1085))) (-15 -2379 ((-51) $ (-1085) (-51)))))
+((-1620 (($ $ |#2|) 10)))
+(((-578 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1| |#2|))) (-579 |#2|) (-157)) (T -578))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1| |#2|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2201 (($ $ $) 29)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 28 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-579 |#1|) (-1197) (-157)) (T -579))
+((-2201 (*1 *1 *1 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)) (-4 *2 (-338)))))
+(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2201 ($ $ $)) (IF (|has| |t#1| (-338)) (-15 -1620 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3210 (((-3 $ "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1588 (((-1166 (-628 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-1166 (-628 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1681 (((-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3175 (($) NIL T CONST)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3130 (((-3 $ "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1771 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3594 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2828 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-3637 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3549 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-1679 (($ $ (-850)) NIL)) (-3076 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-2992 (((-1081 |#1|) $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2975 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-4014 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-2878 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3766 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (($ (-1166 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2682 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3166 (((-850)) NIL (|has| |#2| (-342 |#1|)))) (-2666 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1882 (($ $ (-850)) NIL)) (-1427 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2552 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2678 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2007 (((-3 $ "failed")) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-1943 (((-628 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1546 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-4142 (((-628 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2231 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2497 (((-1081 (-881 |#1|))) NIL (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-338))))) (-3277 (($ $ (-850)) NIL)) (-1505 ((|#1| $) NIL (|has| |#2| (-342 |#1|)))) (-3630 (((-1081 |#1|) $) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-2475 ((|#1|) NIL (|has| |#2| (-392 |#1|))) ((|#1| (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-2302 (((-1081 |#1|) $) NIL (|has| |#2| (-342 |#1|)))) (-3003 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2385 (((-1068) $) NIL)) (-3710 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3026 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3055 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-4151 (((-1032) $) NIL)) (-2889 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2545 ((|#1| $ (-522)) NIL (|has| |#2| (-392 |#1|)))) (-3677 (((-628 |#1|) (-1166 $)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|))) (((-628 |#1|) (-1166 $) (-1166 $)) NIL (|has| |#2| (-342 |#1|))) (((-1166 |#1|) $ (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1431 (($ (-1166 |#1|)) NIL (|has| |#2| (-392 |#1|))) (((-1166 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-2656 (((-588 (-881 |#1|))) NIL (|has| |#2| (-392 |#1|))) (((-588 (-881 |#1|)) (-1166 $)) NIL (|has| |#2| (-342 |#1|)))) (-1288 (($ $ $) NIL)) (-4034 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-2190 (((-792) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3855 (((-1166 $)) NIL (|has| |#2| (-392 |#1|)))) (-2901 (((-588 (-1166 |#1|))) NIL (-3708 (-12 (|has| |#2| (-342 |#1|)) (|has| |#1| (-514))) (-12 (|has| |#2| (-392 |#1|)) (|has| |#1| (-514)))))) (-3610 (($ $ $ $) NIL)) (-2928 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-1616 (($ (-628 |#1|) $) NIL (|has| |#2| (-392 |#1|)))) (-3024 (($ $ $) NIL)) (-3065 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3856 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3877 (((-108)) NIL (|has| |#2| (-342 |#1|)))) (-3566 (($) 15 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) 17)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-580 |#1| |#2|) (-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2190 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|))) (-157) (-682 |#1|)) (T -580))
+((-2190 (*1 *1 *2) (-12 (-4 *3 (-157)) (-5 *1 (-580 *3 *2)) (-4 *2 (-682 *3)))))
+(-13 (-682 |#1|) (-562 |#2|) (-10 -8 (-15 -2190 ($ |#2|)) (IF (|has| |#2| (-392 |#1|)) (-6 (-392 |#1|)) |%noBranch|) (IF (|has| |#2| (-342 |#1|)) (-6 (-342 |#1|)) |%noBranch|)))
+((-1642 (((-3 (-777 |#2|) "failed") |#2| (-270 |#2|) (-1068)) 78) (((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-270 (-777 |#2|))) 100)) (-2958 (((-3 (-770 |#2|) "failed") |#2| (-270 (-770 |#2|))) 105)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -1642 ((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-270 (-777 |#2|)))) (-15 -2958 ((-3 (-770 |#2|) "failed") |#2| (-270 (-770 |#2|)))) (-15 -1642 ((-3 (-777 |#2|) "failed") |#2| (-270 |#2|) (-1068)))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -581))
+((-1642 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-270 *3)) (-5 *5 (-1068)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-777 *3)) (-5 *1 (-581 *6 *3)))) (-2958 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-270 (-770 *3))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-770 *3)) (-5 *1 (-581 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-777 *3))) (-4 *3 (-13 (-27) (-1106) (-405 *5))) (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-3 (-777 *3) (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) "failed")) (-5 *1 (-581 *5 *3)))))
+(-10 -7 (-15 -1642 ((-3 (-777 |#2|) (-2 (|:| |leftHandLimit| (-3 (-777 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-777 |#2|) "failed"))) "failed") |#2| (-270 (-777 |#2|)))) (-15 -2958 ((-3 (-770 |#2|) "failed") |#2| (-270 (-770 |#2|)))) (-15 -1642 ((-3 (-777 |#2|) "failed") |#2| (-270 |#2|) (-1068))))
+((-1642 (((-3 (-777 (-382 (-881 |#1|))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))) (-1068)) 79) (((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|)))) 18) (((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-777 (-881 |#1|)))) 34)) (-2958 (((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|)))) 21) (((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-770 (-881 |#1|)))) 42)))
+(((-582 |#1|) (-10 -7 (-15 -1642 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-777 (-881 |#1|))))) (-15 -1642 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2958 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-770 (-881 |#1|))))) (-15 -2958 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -1642 ((-3 (-777 (-382 (-881 |#1|))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))) (-1068)))) (-426)) (T -582))
+((-1642 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-270 (-382 (-881 *6)))) (-5 *5 (-1068)) (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-777 *3)) (-5 *1 (-582 *6)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-426)) (-5 *2 (-770 *3)) (-5 *1 (-582 *5)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-770 (-881 *5)))) (-4 *5 (-426)) (-5 *2 (-770 (-382 (-881 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-382 (-881 *5))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-426)) (-5 *2 (-3 (-777 *3) (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed")) (|:| |rightHandLimit| (-3 (-777 *3) "failed"))) "failed")) (-5 *1 (-582 *5)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-270 (-777 (-881 *5)))) (-4 *5 (-426)) (-5 *2 (-3 (-777 (-382 (-881 *5))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 *5))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 *5))) "failed"))) "failed")) (-5 *1 (-582 *5)) (-5 *3 (-382 (-881 *5))))))
+(-10 -7 (-15 -1642 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-777 (-881 |#1|))))) (-15 -1642 ((-3 (-777 (-382 (-881 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-777 (-382 (-881 |#1|))) "failed"))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2958 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-770 (-881 |#1|))))) (-15 -2958 ((-770 (-382 (-881 |#1|))) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -1642 ((-3 (-777 (-382 (-881 |#1|))) "failed") (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))) (-1068))))
+((-3482 (((-3 (-1166 (-382 |#1|)) "failed") (-1166 |#2|) |#2|) 57 (-2401 (|has| |#1| (-338)))) (((-3 (-1166 |#1|) "failed") (-1166 |#2|) |#2|) 42 (|has| |#1| (-338)))) (-2753 (((-108) (-1166 |#2|)) 30)) (-3790 (((-3 (-1166 |#1|) "failed") (-1166 |#2|)) 33)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -2753 ((-108) (-1166 |#2|))) (-15 -3790 ((-3 (-1166 |#1|) "failed") (-1166 |#2|))) (IF (|has| |#1| (-338)) (-15 -3482 ((-3 (-1166 |#1|) "failed") (-1166 |#2|) |#2|)) (-15 -3482 ((-3 (-1166 (-382 |#1|)) "failed") (-1166 |#2|) |#2|)))) (-514) (-584 |#1|)) (T -583))
+((-3482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) (-2401 (-4 *5 (-338))) (-4 *5 (-514)) (-5 *2 (-1166 (-382 *5))) (-5 *1 (-583 *5 *4)))) (-3482 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) (-4 *5 (-338)) (-4 *5 (-514)) (-5 *2 (-1166 *5)) (-5 *1 (-583 *5 *4)))) (-3790 (*1 *2 *3) (|partial| -12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514)) (-5 *2 (-1166 *4)) (-5 *1 (-583 *4 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514)) (-5 *2 (-108)) (-5 *1 (-583 *4 *5)))))
+(-10 -7 (-15 -2753 ((-108) (-1166 |#2|))) (-15 -3790 ((-3 (-1166 |#1|) "failed") (-1166 |#2|))) (IF (|has| |#1| (-338)) (-15 -3482 ((-3 (-1166 |#1|) "failed") (-1166 |#2|) |#2|)) (-15 -3482 ((-3 (-1166 (-382 |#1|)) "failed") (-1166 |#2|) |#2|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2096 (((-628 |#1|) (-628 $)) 36) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 35)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-584 |#1|) (-1197) (-971)) (T -584))
+((-2096 (*1 *2 *3) (-12 (-5 *3 (-628 *1)) (-4 *1 (-584 *4)) (-4 *4 (-971)) (-5 *2 (-628 *4)))) (-2096 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *1)) (-5 *4 (-1166 *1)) (-4 *1 (-584 *5)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -1222 (-628 *5)) (|:| |vec| (-1166 *5)))))))
+(-13 (-971) (-10 -8 (-15 -2096 ((-628 |t#1|) (-628 $))) (-15 -2096 ((-2 (|:| -1222 (-628 |t#1|)) (|:| |vec| (-1166 |t#1|))) (-628 $) (-1166 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-4148 ((|#2| (-588 |#1|) (-588 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-588 |#1|) (-588 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) |#2|) 17) ((|#2| (-588 |#1|) (-588 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|)) 12)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -4148 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|))) (-15 -4148 (|#2| (-588 |#1|) (-588 |#2|) |#1|)) (-15 -4148 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) |#2|)) (-15 -4148 (|#2| (-588 |#1|) (-588 |#2|) |#1| |#2|)) (-15 -4148 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) (-1 |#2| |#1|))) (-15 -4148 (|#2| (-588 |#1|) (-588 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1120)) (T -585))
+((-4148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) (-4148 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *1 (-585 *5 *6)))) (-4148 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 *5)) (-4 *6 (-1014)) (-4 *5 (-1120)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))))
+(-10 -7 (-15 -4148 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|))) (-15 -4148 (|#2| (-588 |#1|) (-588 |#2|) |#1|)) (-15 -4148 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) |#2|)) (-15 -4148 (|#2| (-588 |#1|) (-588 |#2|) |#1| |#2|)) (-15 -4148 ((-1 |#2| |#1|) (-588 |#1|) (-588 |#2|) (-1 |#2| |#1|))) (-15 -4148 (|#2| (-588 |#1|) (-588 |#2|) |#1| (-1 |#2| |#1|))))
+((-3690 (((-588 |#2|) (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|) 16)) (-3864 ((|#2| (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|) 18)) (-1391 (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 13)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -3690 ((-588 |#2|) (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -1391 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)))) (-1120) (-1120)) (T -586))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-588 *6)) (-5 *1 (-586 *5 *6)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-588 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-586 *5 *2)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-588 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-588 *5)) (-5 *1 (-586 *6 *5)))))
+(-10 -7 (-15 -3690 ((-588 |#2|) (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-588 |#1|) |#2|)) (-15 -1391 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))))
+((-1391 (((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|)) 13)))
+(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -1391 ((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|)))) (-1120) (-1120) (-1120)) (T -587))
+((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-588 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-588 *8)) (-5 *1 (-587 *6 *7 *8)))))
+(-10 -7 (-15 -1391 ((-588 |#3|) (-1 |#3| |#1| |#2|) (-588 |#1|) (-588 |#2|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) NIL)) (-2093 ((|#1| $) NIL)) (-3835 (($ $) NIL)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) $) NIL (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-3537 (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-3216 (($ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1243 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "rest" $) NIL (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1605 (($ $ $) 32 (|has| |#1| (-1014)))) (-1595 (($ $ $) 34 (|has| |#1| (-1014)))) (-1586 (($ $ $) 37 (|has| |#1| (-1014)))) (-2790 (($ (-1 (-108) |#1|) $) NIL)) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2081 ((|#1| $) NIL)) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2306 (($ $) NIL) (($ $ (-708)) NIL)) (-3362 (($ $) NIL (|has| |#1| (-1014)))) (-2333 (($ $) 31 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) NIL (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) NIL)) (-1423 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3069 (((-108) $) NIL)) (-3238 (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014))) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) NIL)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1506 (((-108) $) 9)) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2047 (($) 7)) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-1369 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-2160 (($ $ $) NIL (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1580 (($ |#1|) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-4095 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-1661 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-2855 (((-108) $) NIL)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) 36) ((|#1| $ (-522) |#1|) NIL)) (-2011 (((-522) $ $) NIL)) (-3681 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3696 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-3042 (((-108) $) NIL)) (-3107 (($ $) NIL)) (-2646 (($ $) NIL (|has| $ (-6 -4239)))) (-2393 (((-708) $) NIL)) (-2122 (($ $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) 45 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-3440 (($ |#1| $) 10)) (-2630 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4165 (($ $ $) 30) (($ |#1| $) NIL) (($ (-588 $)) NIL) (($ $ |#1|) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3682 (($ $ $) 11)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-4149 (((-1068) $) 26 (|has| |#1| (-765))) (((-1068) $ (-108)) 27 (|has| |#1| (-765))) (((-1171) (-759) $) 28 (|has| |#1| (-765))) (((-1171) (-759) $ (-108)) 29 (|has| |#1| (-765)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-588 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2047 ($)) (-15 -1506 ((-108) $)) (-15 -3440 ($ |#1| $)) (-15 -3682 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1605 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1586 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|))) (-1120)) (T -588))
+((-2047 (*1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1120)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) (-3682 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))) (-1595 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))) (-1586 (*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))))
+(-13 (-608 |#1|) (-10 -8 (-15 -2047 ($)) (-15 -1506 ((-108) $)) (-15 -3440 ($ |#1| $)) (-15 -3682 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1605 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1586 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-765)) (-6 (-765)) |%noBranch|)))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2319 (($ |#1| |#1| $) 43)) (-4141 (((-108) $ (-708)) NIL)) (-2790 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3362 (($ $) 45)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) 52 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 9 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 37)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2116 ((|#1| $) 46)) (-4095 (($ |#1| $) 26) (($ |#1| $ (-708)) 42)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4087 ((|#1| $) 48)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 21)) (-3775 (($) 25)) (-3752 (((-108) $) 50)) (-3698 (((-588 (-2 (|:| -3048 |#1|) (|:| -4168 (-708)))) $) 59)) (-3990 (($) 23) (($ (-588 |#1|)) 18)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) 56 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 19)) (-1431 (((-498) $) 34 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-2190 (((-792) $) 14 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 22)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 61 (|has| |#1| (-1014)))) (-3480 (((-708) $) 16 (|has| $ (-6 -4238)))))
+(((-589 |#1|) (-13 (-633 |#1|) (-10 -8 (-6 -4238) (-15 -3752 ((-108) $)) (-15 -2319 ($ |#1| |#1| $)))) (-1014)) (T -589))
+((-3752 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1014)))) (-2319 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1014)))))
+(-13 (-633 |#1|) (-10 -8 (-6 -4238) (-15 -3752 ((-108) $)) (-15 -2319 ($ |#1| |#1| $))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23)))
+(((-590 |#1|) (-1197) (-978)) (T -590))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-978)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-1659 (((-707) $) 15)) (-2383 (($ $ |#1|) 55)) (-3288 (($ $) 32)) (-1924 (($ $) 31)) (-1296 (((-3 |#1| "failed") $) 47)) (-1496 ((|#1| $) NIL)) (-2415 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-1526 (((-791) $ (-1 (-791) (-791) (-791)) (-1 (-791) (-791) (-791)) (-521)) 45)) (-3493 ((|#1| $ (-521)) 30)) (-1754 ((|#2| $ (-521)) 29)) (-2205 (($ (-1 |#1| |#1|) $) 34)) (-2031 (($ (-1 |#2| |#2|) $) 38)) (-4171 (($) 10)) (-3315 (($ |#1| |#2|) 22)) (-3907 (($ (-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|)))) 23)) (-1997 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))) $) 13)) (-1744 (($ |#1| $) 56)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1915 (((-108) $ $) 58)) (-2223 (((-791) $) 19) (($ |#1|) 16)) (-1549 (((-108) $ $) 25)))
-(((-590 |#1| |#2| |#3|) (-13 (-1013) (-961 |#1|) (-10 -8 (-15 -1526 ((-791) $ (-1 (-791) (-791) (-791)) (-1 (-791) (-791) (-791)) (-521))) (-15 -1997 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))) $)) (-15 -3315 ($ |#1| |#2|)) (-15 -3907 ($ (-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))))) (-15 -1754 (|#2| $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -1924 ($ $)) (-15 -3288 ($ $)) (-15 -1659 ((-707) $)) (-15 -4171 ($)) (-15 -2383 ($ $ |#1|)) (-15 -1744 ($ |#1| $)) (-15 -2415 ($ |#1| |#2| $)) (-15 -2415 ($ $ $)) (-15 -1915 ((-108) $ $)) (-15 -2031 ($ (-1 |#2| |#2|) $)) (-15 -2205 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -590))
-((-1526 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-791) (-791) (-791))) (-5 *4 (-521)) (-5 *2 (-791)) (-5 *1 (-590 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 *4)))) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-3315 (*1 *1 *2 *3) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-23)) (-5 *1 (-590 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *2 (-1013)) (-5 *1 (-590 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3288 (*1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-4171 (*1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2383 (*1 *1 *1 *2) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-1744 (*1 *1 *2 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2415 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2415 (*1 *1 *1 *1) (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2031 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)))) (-2205 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-590 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1013) (-961 |#1|) (-10 -8 (-15 -1526 ((-791) $ (-1 (-791) (-791) (-791)) (-1 (-791) (-791) (-791)) (-521))) (-15 -1997 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))) $)) (-15 -3315 ($ |#1| |#2|)) (-15 -3907 ($ (-587 (-2 (|:| |gen| |#1|) (|:| -3265 |#2|))))) (-15 -1754 (|#2| $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -1924 ($ $)) (-15 -3288 ($ $)) (-15 -1659 ((-707) $)) (-15 -4171 ($)) (-15 -2383 ($ $ |#1|)) (-15 -1744 ($ |#1| $)) (-15 -2415 ($ |#1| |#2| $)) (-15 -2415 ($ $ $)) (-15 -1915 ((-108) $ $)) (-15 -2031 ($ (-1 |#2| |#2|) $)) (-15 -2205 ($ (-1 |#1| |#1|) $))))
-((-3989 (((-521) $) 24)) (-1696 (($ |#2| $ (-521)) 22) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) 12)) (-2131 (((-108) (-521) $) 15)) (-4159 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-587 $)) NIL)))
-(((-591 |#1| |#2|) (-10 -8 (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -3989 ((-521) |#1|)) (-15 -1223 ((-587 (-521)) |#1|)) (-15 -2131 ((-108) (-521) |#1|))) (-592 |#2|) (-1119)) (T -591))
-NIL
-(-10 -8 (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -4159 (|#1| (-587 |#1|))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -3989 ((-521) |#1|)) (-15 -1223 ((-587 (-521)) |#1|)) (-15 -2131 ((-108) (-521) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2354 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 42 (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2995 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-592 |#1|) (-1196) (-1119)) (T -592))
-((-1869 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-4159 (*1 *1 *1 *2) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *1 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-1393 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-3694 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-1696 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-592 *2)) (-4 *2 (-1119)))) (-1696 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))) (-2396 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1132 (-521))) (|has| *1 (-6 -4234)) (-4 *1 (-592 *2)) (-4 *2 (-1119)))))
-(-13 (-554 (-521) |t#1|) (-139 |t#1|) (-10 -8 (-15 -1869 ($ (-707) |t#1|)) (-15 -4159 ($ $ |t#1|)) (-15 -4159 ($ |t#1| $)) (-15 -4159 ($ $ $)) (-15 -4159 ($ (-587 $))) (-15 -1393 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2550 ($ $ (-1132 (-521)))) (-15 -3694 ($ $ (-521))) (-15 -3694 ($ $ (-1132 (-521)))) (-15 -1696 ($ |t#1| $ (-521))) (-15 -1696 ($ $ $ (-521))) (IF (|has| $ (-6 -4234)) (-15 -2396 (|t#1| $ (-1132 (-521)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-3278 (((-3 |#2| "failed") |#3| |#2| (-1084) |#2| (-587 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) "failed") |#3| |#2| (-1084)) 43)))
-(((-593 |#1| |#2| |#3|) (-10 -7 (-15 -3278 ((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) "failed") |#3| |#2| (-1084))) (-15 -3278 ((-3 |#2| "failed") |#3| |#2| (-1084) |#2| (-587 |#2|)))) (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-886)) (-597 |#2|)) (T -593))
-((-3278 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-886))) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-593 *6 *2 *3)) (-4 *3 (-597 *2)))) (-3278 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1084)) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-4 *4 (-13 (-29 *6) (-1105) (-886))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1245 (-587 *4)))) (-5 *1 (-593 *6 *4 *3)) (-4 *3 (-597 *4)))))
-(-10 -7 (-15 -3278 ((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) "failed") |#3| |#2| (-1084))) (-15 -3278 ((-3 |#2| "failed") |#3| |#2| (-1084) |#2| (-587 |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2517 (($ $) NIL (|has| |#1| (-337)))) (-3857 (($ $ $) NIL (|has| |#1| (-337)))) (-1543 (($ $ (-707)) NIL (|has| |#1| (-337)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2681 (($ $ $) NIL (|has| |#1| (-337)))) (-3512 (($ $ $) NIL (|has| |#1| (-337)))) (-2500 (($ $ $) NIL (|has| |#1| (-337)))) (-2078 (($ $ $) NIL (|has| |#1| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2670 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425)))) (-3637 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) NIL)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-2401 (((-707) $) NIL)) (-1420 (($ $ $) NIL (|has| |#1| (-337)))) (-3881 (($ $ $) NIL (|has| |#1| (-337)))) (-3897 (($ $ $) NIL (|has| |#1| (-337)))) (-1229 (($ $ $) NIL (|has| |#1| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-4115 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2550 ((|#1| $ |#1|) NIL)) (-2805 (($ $ $) NIL (|has| |#1| (-337)))) (-2098 (((-707) $) NIL)) (-1391 ((|#1| $) NIL (|has| |#1| (-425)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) NIL)) (-1592 (((-707)) NIL)) (-1644 ((|#1| $ |#1| |#1|) NIL)) (-3496 (($ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($) NIL)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-594 |#1|) (-597 |#1|) (-210)) (T -594))
-NIL
-(-597 |#1|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2517 (($ $) NIL (|has| |#1| (-337)))) (-3857 (($ $ $) NIL (|has| |#1| (-337)))) (-1543 (($ $ (-707)) NIL (|has| |#1| (-337)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2681 (($ $ $) NIL (|has| |#1| (-337)))) (-3512 (($ $ $) NIL (|has| |#1| (-337)))) (-2500 (($ $ $) NIL (|has| |#1| (-337)))) (-2078 (($ $ $) NIL (|has| |#1| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2670 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425)))) (-3637 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) NIL)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-2401 (((-707) $) NIL)) (-1420 (($ $ $) NIL (|has| |#1| (-337)))) (-3881 (($ $ $) NIL (|has| |#1| (-337)))) (-3897 (($ $ $) NIL (|has| |#1| (-337)))) (-1229 (($ $ $) NIL (|has| |#1| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-4115 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2550 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2805 (($ $ $) NIL (|has| |#1| (-337)))) (-2098 (((-707) $) NIL)) (-1391 ((|#1| $) NIL (|has| |#1| (-425)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) NIL)) (-1592 (((-707)) NIL)) (-1644 ((|#1| $ |#1| |#1|) NIL)) (-3496 (($ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($) NIL)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-595 |#1| |#2|) (-13 (-597 |#1|) (-261 |#2| |#2|)) (-210) (-13 (-589 |#1|) (-10 -8 (-15 -2193 ($ $))))) (T -595))
-NIL
-(-13 (-597 |#1|) (-261 |#2| |#2|))
-((-2517 (($ $) 27)) (-3496 (($ $) 25)) (-2244 (($) 12)))
-(((-596 |#1| |#2|) (-10 -8 (-15 -2517 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2244 (|#1|))) (-597 |#2|) (-970)) (T -596))
-NIL
-(-10 -8 (-15 -2517 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -2244 (|#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2517 (($ $) 82 (|has| |#1| (-337)))) (-3857 (($ $ $) 84 (|has| |#1| (-337)))) (-1543 (($ $ (-707)) 83 (|has| |#1| (-337)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2681 (($ $ $) 45 (|has| |#1| (-337)))) (-3512 (($ $ $) 46 (|has| |#1| (-337)))) (-2500 (($ $ $) 48 (|has| |#1| (-337)))) (-2078 (($ $ $) 43 (|has| |#1| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 42 (|has| |#1| (-337)))) (-2670 (((-3 $ "failed") $ $) 44 (|has| |#1| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 47 (|has| |#1| (-337)))) (-1296 (((-3 (-521) "failed") $) 74 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 72 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 69)) (-1496 (((-521) $) 75 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 73 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 68)) (-3157 (($ $) 64)) (-2783 (((-3 $ "failed") $) 34)) (-1563 (($ $) 55 (|has| |#1| (-425)))) (-3637 (((-108) $) 31)) (-4044 (($ |#1| (-707)) 62)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57 (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 58 (|has| |#1| (-513)))) (-2401 (((-707) $) 66)) (-1420 (($ $ $) 52 (|has| |#1| (-337)))) (-3881 (($ $ $) 53 (|has| |#1| (-337)))) (-3897 (($ $ $) 41 (|has| |#1| (-337)))) (-1229 (($ $ $) 50 (|has| |#1| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 49 (|has| |#1| (-337)))) (-4115 (((-3 $ "failed") $ $) 51 (|has| |#1| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 54 (|has| |#1| (-337)))) (-3140 ((|#1| $) 65)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-513)))) (-2550 ((|#1| $ |#1|) 87)) (-2805 (($ $ $) 81 (|has| |#1| (-337)))) (-2098 (((-707) $) 67)) (-1391 ((|#1| $) 56 (|has| |#1| (-425)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 71 (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 70)) (-2730 (((-587 |#1|) $) 61)) (-1499 ((|#1| $ (-707)) 63)) (-1592 (((-707)) 29)) (-1644 ((|#1| $ |#1| |#1|) 60)) (-3496 (($ $) 85)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($) 86)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-597 |#1|) (-1196) (-970)) (T -597))
-((-2244 (*1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)))) (-3496 (*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)))) (-3857 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1543 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-597 *3)) (-4 *3 (-970)) (-4 *3 (-337)))) (-2517 (*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2805 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(-13 (-785 |t#1|) (-261 |t#1| |t#1|) (-10 -8 (-15 -2244 ($)) (-15 -3496 ($ $)) (IF (|has| |t#1| (-337)) (PROGN (-15 -3857 ($ $ $)) (-15 -1543 ($ $ (-707))) (-15 -2517 ($ $)) (-15 -2805 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-261 |#1| |#1|) . T) ((-385 |#1|) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-785 |#1|) . T))
-((-2405 (((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))) 73 (|has| |#1| (-27)))) (-1974 (((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))) 72 (|has| |#1| (-27))) (((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 15)))
-(((-598 |#1| |#2|) (-10 -7 (-15 -1974 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1974 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)))) (-15 -2405 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))))) |%noBranch|)) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -598))
-((-2405 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5)))) (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5))))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5)))) (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5))))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-594 (-381 *6)))) (-5 *1 (-598 *5 *6)) (-5 *3 (-594 (-381 *6))))))
-(-10 -7 (-15 -1974 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1974 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|)))) (-15 -2405 ((-587 (-594 (-381 |#2|))) (-594 (-381 |#2|))))) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2517 (($ $) NIL (|has| |#1| (-337)))) (-3857 (($ $ $) 28 (|has| |#1| (-337)))) (-1543 (($ $ (-707)) 31 (|has| |#1| (-337)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2681 (($ $ $) NIL (|has| |#1| (-337)))) (-3512 (($ $ $) NIL (|has| |#1| (-337)))) (-2500 (($ $ $) NIL (|has| |#1| (-337)))) (-2078 (($ $ $) NIL (|has| |#1| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2670 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425)))) (-3637 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) NIL)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-2401 (((-707) $) NIL)) (-1420 (($ $ $) NIL (|has| |#1| (-337)))) (-3881 (($ $ $) NIL (|has| |#1| (-337)))) (-3897 (($ $ $) NIL (|has| |#1| (-337)))) (-1229 (($ $ $) NIL (|has| |#1| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-4115 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2550 ((|#1| $ |#1|) 24)) (-2805 (($ $ $) 33 (|has| |#1| (-337)))) (-2098 (((-707) $) NIL)) (-1391 ((|#1| $) NIL (|has| |#1| (-425)))) (-2223 (((-791) $) 20) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) NIL)) (-1592 (((-707)) NIL)) (-1644 ((|#1| $ |#1| |#1|) 23)) (-3496 (($ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 21 T CONST)) (-3572 (($) 8 T CONST)) (-2244 (($) NIL)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-599 |#1| |#2|) (-597 |#1|) (-970) (-1 |#1| |#1|)) (T -599))
-NIL
-(-597 |#1|)
-((-3857 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-1543 ((|#2| |#2| (-707) (-1 |#1| |#1|)) 41)) (-2805 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
-(((-600 |#1| |#2|) (-10 -7 (-15 -3857 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1543 (|#2| |#2| (-707) (-1 |#1| |#1|))) (-15 -2805 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-337) (-597 |#1|)) (T -600))
-((-2805 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2)) (-4 *2 (-597 *4)))) (-1543 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337)) (-5 *1 (-600 *5 *2)) (-4 *2 (-597 *5)))) (-3857 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2)) (-4 *2 (-597 *4)))))
-(-10 -7 (-15 -3857 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1543 (|#2| |#2| (-707) (-1 |#1| |#1|))) (-15 -2805 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-2770 (($ $ $) 9)))
-(((-601 |#1|) (-10 -8 (-15 -2770 (|#1| |#1| |#1|))) (-602)) (T -601))
-NIL
-(-10 -8 (-15 -2770 (|#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-1515 (($ $) 10)) (-2770 (($ $ $) 8)) (-1549 (((-108) $ $) 6)) (-2345 (($ $ $) 9)))
-(((-602) (-1196)) (T -602))
-((-1515 (*1 *1 *1) (-4 *1 (-602))) (-2345 (*1 *1 *1 *1) (-4 *1 (-602))) (-2770 (*1 *1 *1 *1) (-4 *1 (-602))))
-(-13 (-97) (-10 -8 (-15 -1515 ($ $)) (-15 -2345 ($ $ $)) (-15 -2770 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1629 (((-708) $) 15)) (-3734 (($ $ |#1|) 55)) (-3509 (($ $) 32)) (-1862 (($ $) 31)) (-1297 (((-3 |#1| "failed") $) 47)) (-1484 ((|#1| $) NIL)) (-2400 (($ |#1| |#2| $) 61) (($ $ $) 62)) (-3445 (((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-522)) 45)) (-3750 ((|#1| $ (-522)) 30)) (-1905 ((|#2| $ (-522)) 29)) (-3896 (($ (-1 |#1| |#1|) $) 34)) (-3941 (($ (-1 |#2| |#2|) $) 38)) (-3209 (($) 10)) (-2644 (($ |#1| |#2|) 22)) (-3545 (($ (-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|)))) 23)) (-2434 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))) $) 13)) (-3015 (($ |#1| $) 56)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2864 (((-108) $ $) 58)) (-2190 (((-792) $) 19) (($ |#1|) 16)) (-1531 (((-108) $ $) 25)))
+(((-591 |#1| |#2| |#3|) (-13 (-1014) (-962 |#1|) (-10 -8 (-15 -3445 ((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-522))) (-15 -2434 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))) $)) (-15 -2644 ($ |#1| |#2|)) (-15 -3545 ($ (-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))))) (-15 -1905 (|#2| $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -1862 ($ $)) (-15 -3509 ($ $)) (-15 -1629 ((-708) $)) (-15 -3209 ($)) (-15 -3734 ($ $ |#1|)) (-15 -3015 ($ |#1| $)) (-15 -2400 ($ |#1| |#2| $)) (-15 -2400 ($ $ $)) (-15 -2864 ((-108) $ $)) (-15 -3941 ($ (-1 |#2| |#2|) $)) (-15 -3896 ($ (-1 |#1| |#1|) $)))) (-1014) (-23) |#2|) (T -591))
+((-3445 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-792) (-792) (-792))) (-5 *4 (-522)) (-5 *2 (-792)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2644 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 *4)))) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *2 (-1014)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1862 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3509 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-3209 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3734 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3015 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2400 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2400 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2864 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-3941 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)))) (-3896 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1014) (-962 |#1|) (-10 -8 (-15 -3445 ((-792) $ (-1 (-792) (-792) (-792)) (-1 (-792) (-792) (-792)) (-522))) (-15 -2434 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))) $)) (-15 -2644 ($ |#1| |#2|)) (-15 -3545 ($ (-588 (-2 (|:| |gen| |#1|) (|:| -3266 |#2|))))) (-15 -1905 (|#2| $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -1862 ($ $)) (-15 -3509 ($ $)) (-15 -1629 ((-708) $)) (-15 -3209 ($)) (-15 -3734 ($ $ |#1|)) (-15 -3015 ($ |#1| $)) (-15 -2400 ($ |#1| |#2| $)) (-15 -2400 ($ $ $)) (-15 -2864 ((-108) $ $)) (-15 -3941 ($ (-1 |#2| |#2|) $)) (-15 -3896 ($ (-1 |#1| |#1|) $))))
+((-2014 (((-522) $) 24)) (-1661 (($ |#2| $ (-522)) 22) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) 12)) (-1405 (((-108) (-522) $) 15)) (-4165 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-588 $)) NIL)))
+(((-592 |#1| |#2|) (-10 -8 (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -4165 (|#1| (-588 |#1|))) (-15 -4165 (|#1| |#1| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -2014 ((-522) |#1|)) (-15 -3604 ((-588 (-522)) |#1|)) (-15 -1405 ((-108) (-522) |#1|))) (-593 |#2|) (-1120)) (T -592))
+NIL
+(-10 -8 (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -4165 (|#1| (-588 |#1|))) (-15 -4165 (|#1| |#1| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -2014 ((-522) |#1|)) (-15 -3604 ((-588 (-522)) |#1|)) (-15 -1405 ((-108) (-522) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2333 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 51)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 42 (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2602 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 70)) (-4165 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-593 |#1|) (-1197) (-1120)) (T -593))
+((-1811 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-4165 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-4165 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-4165 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-4165 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-1391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-3696 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-3696 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-1661 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-593 *2)) (-4 *2 (-1120)))) (-1661 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))) (-2379 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1133 (-522))) (|has| *1 (-6 -4239)) (-4 *1 (-593 *2)) (-4 *2 (-1120)))))
+(-13 (-555 (-522) |t#1|) (-139 |t#1|) (-10 -8 (-15 -1811 ($ (-708) |t#1|)) (-15 -4165 ($ $ |t#1|)) (-15 -4165 ($ |t#1| $)) (-15 -4165 ($ $ $)) (-15 -4165 ($ (-588 $))) (-15 -1391 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2545 ($ $ (-1133 (-522)))) (-15 -3696 ($ $ (-522))) (-15 -3696 ($ $ (-1133 (-522)))) (-15 -1661 ($ |t#1| $ (-522))) (-15 -1661 ($ $ $ (-522))) (IF (|has| $ (-6 -4239)) (-15 -2379 (|t#1| $ (-1133 (-522)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-3426 (((-3 |#2| "failed") |#3| |#2| (-1085) |#2| (-588 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) "failed") |#3| |#2| (-1085)) 43)))
+(((-594 |#1| |#2| |#3|) (-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) "failed") |#3| |#2| (-1085))) (-15 -3426 ((-3 |#2| "failed") |#3| |#2| (-1085) |#2| (-588 |#2|)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887)) (-598 |#2|)) (T -594))
+((-3426 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-594 *6 *2 *3)) (-4 *3 (-598 *2)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1085)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-4 *4 (-13 (-29 *6) (-1106) (-887))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3855 (-588 *4)))) (-5 *1 (-594 *6 *4 *3)) (-4 *3 (-598 *4)))))
+(-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) "failed") |#3| |#2| (-1085))) (-15 -3426 ((-3 |#2| "failed") |#3| |#2| (-1085) |#2| (-588 |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3584 (($ $) NIL (|has| |#1| (-338)))) (-1388 (($ $ $) NIL (|has| |#1| (-338)))) (-1861 (($ $ (-708)) NIL (|has| |#1| (-338)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3376 (($ $ $) NIL (|has| |#1| (-338)))) (-3951 (($ $ $) NIL (|has| |#1| (-338)))) (-2652 (($ $ $) NIL (|has| |#1| (-338)))) (-2612 (($ $ $) NIL (|has| |#1| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426)))) (-2782 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) NIL)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-2925 (((-708) $) NIL)) (-3703 (($ $ $) NIL (|has| |#1| (-338)))) (-3344 (($ $ $) NIL (|has| |#1| (-338)))) (-3470 (($ $ $) NIL (|has| |#1| (-338)))) (-3671 (($ $ $) NIL (|has| |#1| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3829 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2545 ((|#1| $ |#1|) NIL)) (-4101 (($ $ $) NIL (|has| |#1| (-338)))) (-2793 (((-708) $) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-426)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) NIL)) (-2323 (((-708)) NIL)) (-1616 ((|#1| $ |#1| |#1|) NIL)) (-3785 (($ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($) NIL)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-595 |#1|) (-598 |#1|) (-210)) (T -595))
+NIL
+(-598 |#1|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3584 (($ $) NIL (|has| |#1| (-338)))) (-1388 (($ $ $) NIL (|has| |#1| (-338)))) (-1861 (($ $ (-708)) NIL (|has| |#1| (-338)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3376 (($ $ $) NIL (|has| |#1| (-338)))) (-3951 (($ $ $) NIL (|has| |#1| (-338)))) (-2652 (($ $ $) NIL (|has| |#1| (-338)))) (-2612 (($ $ $) NIL (|has| |#1| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426)))) (-2782 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) NIL)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-2925 (((-708) $) NIL)) (-3703 (($ $ $) NIL (|has| |#1| (-338)))) (-3344 (($ $ $) NIL (|has| |#1| (-338)))) (-3470 (($ $ $) NIL (|has| |#1| (-338)))) (-3671 (($ $ $) NIL (|has| |#1| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3829 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2545 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4101 (($ $ $) NIL (|has| |#1| (-338)))) (-2793 (((-708) $) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-426)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) NIL)) (-2323 (((-708)) NIL)) (-1616 ((|#1| $ |#1| |#1|) NIL)) (-3785 (($ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($) NIL)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-596 |#1| |#2|) (-13 (-598 |#1|) (-262 |#2| |#2|)) (-210) (-13 (-590 |#1|) (-10 -8 (-15 -2157 ($ $))))) (T -596))
+NIL
+(-13 (-598 |#1|) (-262 |#2| |#2|))
+((-3584 (($ $) 27)) (-3785 (($ $) 25)) (-2213 (($) 12)))
+(((-597 |#1| |#2|) (-10 -8 (-15 -3584 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -2213 (|#1|))) (-598 |#2|) (-971)) (T -597))
+NIL
+(-10 -8 (-15 -3584 (|#1| |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -2213 (|#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3584 (($ $) 82 (|has| |#1| (-338)))) (-1388 (($ $ $) 84 (|has| |#1| (-338)))) (-1861 (($ $ (-708)) 83 (|has| |#1| (-338)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3376 (($ $ $) 45 (|has| |#1| (-338)))) (-3951 (($ $ $) 46 (|has| |#1| (-338)))) (-2652 (($ $ $) 48 (|has| |#1| (-338)))) (-2612 (($ $ $) 43 (|has| |#1| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 42 (|has| |#1| (-338)))) (-3280 (((-3 $ "failed") $ $) 44 (|has| |#1| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 47 (|has| |#1| (-338)))) (-1297 (((-3 (-522) "failed") $) 74 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 72 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 69)) (-1484 (((-522) $) 75 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 73 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 68)) (-3156 (($ $) 64)) (-2682 (((-3 $ "failed") $) 34)) (-2071 (($ $) 55 (|has| |#1| (-426)))) (-2782 (((-108) $) 31)) (-4049 (($ |#1| (-708)) 62)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57 (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 58 (|has| |#1| (-514)))) (-2925 (((-708) $) 66)) (-3703 (($ $ $) 52 (|has| |#1| (-338)))) (-3344 (($ $ $) 53 (|has| |#1| (-338)))) (-3470 (($ $ $) 41 (|has| |#1| (-338)))) (-3671 (($ $ $) 50 (|has| |#1| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 49 (|has| |#1| (-338)))) (-3829 (((-3 $ "failed") $ $) 51 (|has| |#1| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 54 (|has| |#1| (-338)))) (-3138 ((|#1| $) 65)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-514)))) (-2545 ((|#1| $ |#1|) 87)) (-4101 (($ $ $) 81 (|has| |#1| (-338)))) (-2793 (((-708) $) 67)) (-2255 ((|#1| $) 56 (|has| |#1| (-426)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 71 (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 70)) (-3916 (((-588 |#1|) $) 61)) (-3243 ((|#1| $ (-708)) 63)) (-2323 (((-708)) 29)) (-1616 ((|#1| $ |#1| |#1|) 60)) (-3785 (($ $) 85)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($) 86)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-598 |#1|) (-1197) (-971)) (T -598))
+((-2213 (*1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)))) (-3785 (*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)))) (-1388 (*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1861 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-598 *3)) (-4 *3 (-971)) (-4 *3 (-338)))) (-3584 (*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-4101 (*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(-13 (-786 |t#1|) (-262 |t#1| |t#1|) (-10 -8 (-15 -2213 ($)) (-15 -3785 ($ $)) (IF (|has| |t#1| (-338)) (PROGN (-15 -1388 ($ $ $)) (-15 -1861 ($ $ (-708))) (-15 -3584 ($ $)) (-15 -4101 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-262 |#1| |#1|) . T) ((-386 |#1|) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-786 |#1|) . T))
+((-3983 (((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))) 73 (|has| |#1| (-27)))) (-1916 (((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))) 72 (|has| |#1| (-27))) (((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 15)))
+(((-599 |#1| |#2|) (-10 -7 (-15 -1916 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1916 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)))) (-15 -3983 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))))) |%noBranch|)) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -599))
+((-3983 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5)))) (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-595 (-382 *6)))) (-5 *1 (-599 *5 *6)) (-5 *3 (-595 (-382 *6))))))
+(-10 -7 (-15 -1916 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1916 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|)))) (-15 -3983 ((-588 (-595 (-382 |#2|))) (-595 (-382 |#2|))))) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3584 (($ $) NIL (|has| |#1| (-338)))) (-1388 (($ $ $) 28 (|has| |#1| (-338)))) (-1861 (($ $ (-708)) 31 (|has| |#1| (-338)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3376 (($ $ $) NIL (|has| |#1| (-338)))) (-3951 (($ $ $) NIL (|has| |#1| (-338)))) (-2652 (($ $ $) NIL (|has| |#1| (-338)))) (-2612 (($ $ $) NIL (|has| |#1| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426)))) (-2782 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) NIL)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-2925 (((-708) $) NIL)) (-3703 (($ $ $) NIL (|has| |#1| (-338)))) (-3344 (($ $ $) NIL (|has| |#1| (-338)))) (-3470 (($ $ $) NIL (|has| |#1| (-338)))) (-3671 (($ $ $) NIL (|has| |#1| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3829 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2545 ((|#1| $ |#1|) 24)) (-4101 (($ $ $) 33 (|has| |#1| (-338)))) (-2793 (((-708) $) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-426)))) (-2190 (((-792) $) 20) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) NIL)) (-2323 (((-708)) NIL)) (-1616 ((|#1| $ |#1| |#1|) 23)) (-3785 (($ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 21 T CONST)) (-3577 (($) 8 T CONST)) (-2213 (($) NIL)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-600 |#1| |#2|) (-598 |#1|) (-971) (-1 |#1| |#1|)) (T -600))
+NIL
+(-598 |#1|)
+((-1388 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 60)) (-1861 ((|#2| |#2| (-708) (-1 |#1| |#1|)) 41)) (-4101 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 62)))
+(((-601 |#1| |#2|) (-10 -7 (-15 -1388 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1861 (|#2| |#2| (-708) (-1 |#1| |#1|))) (-15 -4101 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-338) (-598 |#1|)) (T -601))
+((-4101 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2)) (-4 *2 (-598 *4)))) (-1861 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) (-5 *1 (-601 *5 *2)) (-4 *2 (-598 *5)))) (-1388 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2)) (-4 *2 (-598 *4)))))
+(-10 -7 (-15 -1388 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1861 (|#2| |#2| (-708) (-1 |#1| |#1|))) (-15 -4101 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2767 (($ $ $) 9)))
+(((-602 |#1|) (-10 -8 (-15 -2767 (|#1| |#1| |#1|))) (-603)) (T -602))
+NIL
+(-10 -8 (-15 -2767 (|#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-1501 (($ $) 10)) (-2767 (($ $ $) 8)) (-1531 (((-108) $ $) 6)) (-2324 (($ $ $) 9)))
+(((-603) (-1197)) (T -603))
+((-1501 (*1 *1 *1) (-4 *1 (-603))) (-2324 (*1 *1 *1 *1) (-4 *1 (-603))) (-2767 (*1 *1 *1 *1) (-4 *1 (-603))))
+(-13 (-97) (-10 -8 (-15 -1501 ($ $)) (-15 -2324 ($ $ $)) (-15 -2767 ($ $ $))))
(((-97) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 15)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2807 ((|#1| $) 21)) (-2816 (($ $ $) NIL (|has| |#1| (-727)))) (-2459 (($ $ $) NIL (|has| |#1| (-727)))) (-4024 (((-1067) $) 46)) (-4146 (((-1031) $) NIL)) (-2818 ((|#3| $) 22)) (-2223 (((-791) $) 42)) (-3562 (($) 10 T CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-727)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-727)))) (-1549 (((-108) $ $) 20)) (-1588 (((-108) $ $) NIL (|has| |#1| (-727)))) (-1569 (((-108) $ $) 24 (|has| |#1| (-727)))) (-1648 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1639 (($ $) 17) (($ $ $) NIL)) (-1628 (($ $ $) 27)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-603 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-727)) (-6 (-727)) |%noBranch|) (-15 -1648 ($ $ |#3|)) (-15 -1648 ($ |#1| |#3|)) (-15 -2807 (|#1| $)) (-15 -2818 (|#3| $)))) (-654 |#2|) (-157) (|SubsetCategory| (-663) |#2|)) (T -603))
-((-1648 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-1648 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2807 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-654 *3)) (-5 *1 (-603 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2818 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4)))))
-(-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-727)) (-6 (-727)) |%noBranch|) (-15 -1648 ($ $ |#3|)) (-15 -1648 ($ |#1| |#3|)) (-15 -2807 (|#1| $)) (-15 -2818 (|#3| $))))
-((-2281 (((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|)) 33)))
-(((-604 |#1|) (-10 -7 (-15 -2281 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|)))) (-837)) (T -604))
-((-2281 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *4))) (-5 *3 (-1080 *4)) (-4 *4 (-837)) (-5 *1 (-604 *4)))))
-(-10 -7 (-15 -2281 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 83)) (-3619 (($ $ (-707)) 91)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2301 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 48)) (-1296 (((-3 (-612 |#1|) "failed") $) NIL)) (-1496 (((-612 |#1|) $) NIL)) (-3157 (($ $) 90)) (-2443 (((-707) $) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-2523 (($ (-612 |#1|) |#2|) 69)) (-2056 (($ $) 87)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2116 (((-1187 |#1| |#2|) (-1187 |#1| |#2|) $) 47)) (-2102 (((-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3130 (((-612 |#1|) $) NIL)) (-3140 ((|#2| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2313 (($ $ |#1| $) 30) (($ $ (-587 |#1|) (-587 $)) 32)) (-2098 (((-707) $) 89)) (-2234 (($ $ $) 20) (($ (-612 |#1|) (-612 |#1|)) 78) (($ (-612 |#1|) $) 76) (($ $ (-612 |#1|)) 77)) (-2223 (((-791) $) NIL) (($ |#1|) 75) (((-1178 |#1| |#2|) $) 59) (((-1187 |#1| |#2|) $) 41) (($ (-612 |#1|)) 25)) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-612 |#1|)) NIL)) (-2979 ((|#2| (-1187 |#1| |#2|) $) 43)) (-3562 (($) 23 T CONST)) (-1583 (((-587 (-2 (|:| |k| (-612 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2835 (((-3 $ "failed") (-1178 |#1| |#2|)) 61)) (-1377 (($ (-612 |#1|)) 14)) (-1549 (((-108) $ $) 44)) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) 67) (($ $ $) NIL)) (-1628 (($ $ $) 29)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-612 |#1|)) NIL)))
-(((-605 |#1| |#2|) (-13 (-348 |#1| |#2|) (-356 |#2| (-612 |#1|)) (-10 -8 (-15 -2835 ((-3 $ "failed") (-1178 |#1| |#2|))) (-15 -2234 ($ (-612 |#1|) (-612 |#1|))) (-15 -2234 ($ (-612 |#1|) $)) (-15 -2234 ($ $ (-612 |#1|))))) (-783) (-157)) (T -605))
-((-2835 (*1 *1 *2) (|partial| -12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *1 (-605 *3 *4)))) (-2234 (*1 *1 *2 *2) (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-5 *1 (-605 *3 *4)) (-4 *4 (-157)))) (-2234 (*1 *1 *2 *1) (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-5 *1 (-605 *3 *4)) (-4 *4 (-157)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-5 *1 (-605 *3 *4)) (-4 *4 (-157)))))
-(-13 (-348 |#1| |#2|) (-356 |#2| (-612 |#1|)) (-10 -8 (-15 -2835 ((-3 $ "failed") (-1178 |#1| |#2|))) (-15 -2234 ($ (-612 |#1|) (-612 |#1|))) (-15 -2234 ($ (-612 |#1|) $)) (-15 -2234 ($ $ (-612 |#1|)))))
-((-2299 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1216 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-3014 (($ (-1 (-108) |#2|) $) 28)) (-3288 (($ $) 56)) (-1514 (($ $) 63)) (-2726 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3859 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3236 (((-521) |#2| $ (-521)) 61) (((-521) |#2| $) NIL) (((-521) (-1 (-108) |#2|) $) 47)) (-1869 (($ (-707) |#2|) 54)) (-4162 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-3389 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1393 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1604 (($ |#2|) 14)) (-4135 (($ $ $ (-521)) 36) (($ |#2| $ (-521)) 34)) (-3733 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-3488 (($ $ (-1132 (-521))) 44) (($ $ (-521)) 38)) (-3448 (($ $ $ (-521)) 60)) (-2420 (($ $) 58)) (-1569 (((-108) $ $) 65)))
-(((-606 |#1| |#2|) (-10 -8 (-15 -1604 (|#1| |#2|)) (-15 -3488 (|#1| |#1| (-521))) (-15 -3488 (|#1| |#1| (-1132 (-521)))) (-15 -2726 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4135 (|#1| |#2| |#1| (-521))) (-15 -4135 (|#1| |#1| |#1| (-521))) (-15 -4162 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3014 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2726 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1|)) (-15 -4162 (|#1| |#1| |#1|)) (-15 -3389 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2299 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3236 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -3236 ((-521) |#2| |#1|)) (-15 -3236 ((-521) |#2| |#1| (-521))) (-15 -3389 (|#1| |#1| |#1|)) (-15 -2299 ((-108) |#1|)) (-15 -3448 (|#1| |#1| |#1| (-521))) (-15 -3288 (|#1| |#1|)) (-15 -1216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3733 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1869 (|#1| (-707) |#2|)) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2420 (|#1| |#1|))) (-607 |#2|) (-1119)) (T -606))
-NIL
-(-10 -8 (-15 -1604 (|#1| |#2|)) (-15 -3488 (|#1| |#1| (-521))) (-15 -3488 (|#1| |#1| (-1132 (-521)))) (-15 -2726 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4135 (|#1| |#2| |#1| (-521))) (-15 -4135 (|#1| |#1| |#1| (-521))) (-15 -4162 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3014 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2726 (|#1| |#2| |#1|)) (-15 -1514 (|#1| |#1|)) (-15 -4162 (|#1| |#1| |#1|)) (-15 -3389 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2299 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3236 ((-521) (-1 (-108) |#2|) |#1|)) (-15 -3236 ((-521) |#2| |#1|)) (-15 -3236 ((-521) |#2| |#1| (-521))) (-15 -3389 (|#1| |#1| |#1|)) (-15 -2299 ((-108) |#1|)) (-15 -3448 (|#1| |#1| |#1| (-521))) (-15 -3288 (|#1| |#1|)) (-15 -1216 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3859 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3733 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1869 (|#1| (-707) |#2|)) (-15 -1393 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2420 (|#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-3830 (($ $) 67)) (-3933 (((-1170) $ (-521) (-521)) 97 (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-2299 (((-108) $) 142 (|has| |#1| (-783))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1216 (($ $) 146 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4234)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4234)))) (-3215 (($ $) 141 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1471 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 117 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 86 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-3014 (($ (-1 (-108) |#1|) $) 129)) (-1658 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4233)))) (-2124 ((|#1| $) 66)) (-2231 (($) 7 T CONST)) (-3288 (($ $) 144 (|has| $ (-6 -4234)))) (-1924 (($ $) 134)) (-2329 (($ $) 73) (($ $ (-707)) 71)) (-1514 (($ $) 131 (|has| |#1| (-1013)))) (-2354 (($ $) 99 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 130 (|has| |#1| (-1013))) (($ (-1 (-108) |#1|) $) 125)) (-1429 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4233))) (($ |#1| $) 100 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3849 ((|#1| $ (-521) |#1|) 85 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 87)) (-2125 (((-108) $) 83)) (-3236 (((-521) |#1| $ (-521)) 139 (|has| |#1| (-1013))) (((-521) |#1| $) 138 (|has| |#1| (-1013))) (((-521) (-1 (-108) |#1|) $) 137)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1869 (($ (-707) |#1|) 108)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 95 (|has| (-521) (-783)))) (-2816 (($ $ $) 147 (|has| |#1| (-783)))) (-4162 (($ $ $) 132 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-3389 (($ $ $) 140 (|has| |#1| (-783))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 94 (|has| (-521) (-783)))) (-2459 (($ $ $) 148 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1604 (($ |#1|) 122)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1450 ((|#1| $) 70) (($ $ (-707)) 68)) (-4135 (($ $ $ (-521)) 127) (($ |#1| $ (-521)) 126)) (-1696 (($ $ $ (-521)) 116) (($ |#1| $ (-521)) 115)) (-1223 (((-587 (-521)) $) 92)) (-2131 (((-108) (-521) $) 91)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 76) (($ $ (-707)) 74)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2995 (($ $ |#1|) 96 (|has| $ (-6 -4234)))) (-2394 (((-108) $) 84)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 90)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1132 (-521))) 112) ((|#1| $ (-521)) 89) ((|#1| $ (-521) |#1|) 88)) (-1557 (((-521) $ $) 44)) (-3488 (($ $ (-1132 (-521))) 124) (($ $ (-521)) 123)) (-3694 (($ $ (-1132 (-521))) 114) (($ $ (-521)) 113)) (-1475 (((-108) $) 46)) (-1290 (($ $) 62)) (-2780 (($ $) 59 (|has| $ (-6 -4234)))) (-1602 (((-707) $) 63)) (-1376 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 143 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 98 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 107)) (-2240 (($ $ $) 61) (($ $ |#1|) 60)) (-4159 (($ $ $) 78) (($ |#1| $) 77) (($ (-587 $)) 110) (($ $ |#1|) 109)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 150 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 151 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1588 (((-108) $ $) 149 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 152 (|has| |#1| (-783)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-607 |#1|) (-1196) (-1119)) (T -607))
-((-1604 (*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1119)))))
-(-13 (-1058 |t#1|) (-347 |t#1|) (-257 |t#1|) (-10 -8 (-15 -1604 ($ |t#1|))))
-(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-257 |#1|) . T) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-783) |has| |#1| (-783)) ((-935 |#1|) . T) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-1058 |#1|) . T) ((-1119) . T) ((-1153 |#1|) . T))
-((-3278 (((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|))))) (-587 (-587 |#1|)) (-587 (-1165 |#1|))) 21) (((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|))))) (-627 |#1|) (-587 (-1165 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-587 (-587 |#1|)) (-1165 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|)) 13)) (-3167 (((-707) (-627 |#1|) (-1165 |#1|)) 29)) (-3708 (((-3 (-1165 |#1|) "failed") (-627 |#1|) (-1165 |#1|)) 23)) (-2143 (((-108) (-627 |#1|) (-1165 |#1|)) 26)))
-(((-608 |#1|) (-10 -7 (-15 -3278 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|))) (-15 -3278 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-587 (-587 |#1|)) (-1165 |#1|))) (-15 -3278 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|))))) (-627 |#1|) (-587 (-1165 |#1|)))) (-15 -3278 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|))))) (-587 (-587 |#1|)) (-587 (-1165 |#1|)))) (-15 -3708 ((-3 (-1165 |#1|) "failed") (-627 |#1|) (-1165 |#1|))) (-15 -2143 ((-108) (-627 |#1|) (-1165 |#1|))) (-15 -3167 ((-707) (-627 |#1|) (-1165 |#1|)))) (-337)) (T -608))
-((-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-5 *2 (-707)) (-5 *1 (-608 *5)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-5 *2 (-108)) (-5 *1 (-608 *5)))) (-3708 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1165 *4)) (-5 *3 (-627 *4)) (-4 *4 (-337)) (-5 *1 (-608 *4)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337)) (-5 *2 (-587 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -1245 (-587 (-1165 *5)))))) (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-4 *5 (-337)) (-5 *2 (-587 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -1245 (-587 (-1165 *5)))))) (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -1245 (-587 (-1165 *5))))) (-5 *1 (-608 *5)) (-5 *4 (-1165 *5)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 *5) "failed")) (|:| -1245 (-587 (-1165 *5))))) (-5 *1 (-608 *5)) (-5 *4 (-1165 *5)))))
-(-10 -7 (-15 -3278 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|))) (-15 -3278 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-587 (-587 |#1|)) (-1165 |#1|))) (-15 -3278 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|))))) (-627 |#1|) (-587 (-1165 |#1|)))) (-15 -3278 ((-587 (-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|))))) (-587 (-587 |#1|)) (-587 (-1165 |#1|)))) (-15 -3708 ((-3 (-1165 |#1|) "failed") (-627 |#1|) (-1165 |#1|))) (-15 -2143 ((-108) (-627 |#1|) (-1165 |#1|))) (-15 -3167 ((-707) (-627 |#1|) (-1165 |#1|))))
-((-3278 (((-587 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|)))) |#4| (-587 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|))) |#4| |#3|) 45)) (-3167 (((-707) |#4| |#3|) 17)) (-3708 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2143 (((-108) |#4| |#3|) 13)))
-(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3278 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|))) |#4| |#3|)) (-15 -3278 ((-587 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|)))) |#4| (-587 |#3|))) (-15 -3708 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2143 ((-108) |#4| |#3|)) (-15 -3167 ((-707) |#4| |#3|))) (-337) (-13 (-347 |#1|) (-10 -7 (-6 -4234))) (-13 (-347 |#1|) (-10 -7 (-6 -4234))) (-625 |#1| |#2| |#3|)) (T -609))
-((-3167 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-707)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))) (-2143 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-108)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))) (-3708 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-337)) (-4 *5 (-13 (-347 *4) (-10 -7 (-6 -4234)))) (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-625 *4 *5 *2)))) (-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *7 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-587 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1245 (-587 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-587 *7)) (-4 *3 (-625 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))))
-(-10 -7 (-15 -3278 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|))) |#4| |#3|)) (-15 -3278 ((-587 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|)))) |#4| (-587 |#3|))) (-15 -3708 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2143 ((-108) |#4| |#3|)) (-15 -3167 ((-707) |#4| |#3|)))
-((-1771 (((-2 (|:| |particular| (-3 (-1165 (-381 |#4|)) "failed")) (|:| -1245 (-587 (-1165 (-381 |#4|))))) (-587 |#4|) (-587 |#3|)) 45)))
-(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1771 ((-2 (|:| |particular| (-3 (-1165 (-381 |#4|)) "failed")) (|:| -1245 (-587 (-1165 (-381 |#4|))))) (-587 |#4|) (-587 |#3|)))) (-513) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -610))
-((-1771 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *7)) (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 (-381 *8)) "failed")) (|:| -1245 (-587 (-1165 (-381 *8)))))) (-5 *1 (-610 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1771 ((-2 (|:| |particular| (-3 (-1165 (-381 |#4|)) "failed")) (|:| -1245 (-587 (-1165 (-381 |#4|))))) (-587 |#4|) (-587 |#3|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1493 (((-3 $ "failed")) NIL (|has| |#2| (-513)))) (-1927 ((|#2| $) NIL)) (-1902 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2772 (((-1165 (-627 |#2|))) NIL) (((-1165 (-627 |#2|)) (-1165 $)) NIL)) (-3730 (((-108) $) NIL)) (-3765 (((-1165 $)) 37)) (-1269 (((-108) $ (-707)) NIL)) (-1933 (($ |#2|) NIL)) (-2231 (($) NIL T CONST)) (-4014 (($ $) NIL (|has| |#2| (-282)))) (-2185 (((-217 |#1| |#2|) $ (-521)) NIL)) (-2186 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (|has| |#2| (-513)))) (-2695 (((-3 $ "failed")) NIL (|has| |#2| (-513)))) (-4090 (((-627 |#2|)) NIL) (((-627 |#2|) (-1165 $)) NIL)) (-3912 ((|#2| $) NIL)) (-2872 (((-627 |#2|) $) NIL) (((-627 |#2|) $ (-1165 $)) NIL)) (-2604 (((-3 $ "failed") $) NIL (|has| |#2| (-513)))) (-2262 (((-1080 (-880 |#2|))) NIL (|has| |#2| (-337)))) (-2588 (($ $ (-849)) NIL)) (-3973 ((|#2| $) NIL)) (-1276 (((-1080 |#2|) $) NIL (|has| |#2| (-513)))) (-2115 ((|#2|) NIL) ((|#2| (-1165 $)) NIL)) (-1449 (((-1080 |#2|) $) NIL)) (-3953 (((-108)) NIL)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) NIL)) (-3190 (($ (-1165 |#2|)) NIL) (($ (-1165 |#2|) (-1165 $)) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3167 (((-707) $) NIL (|has| |#2| (-513))) (((-849)) 38)) (-3626 ((|#2| $ (-521) (-521)) NIL)) (-2782 (((-108)) NIL)) (-1940 (($ $ (-849)) NIL)) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL)) (-2020 (((-707) $) NIL (|has| |#2| (-513)))) (-3993 (((-587 (-217 |#1| |#2|)) $) NIL (|has| |#2| (-513)))) (-1416 (((-707) $) NIL)) (-2325 (((-108)) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-3666 ((|#2| $) NIL (|has| |#2| (-6 (-4235 "*"))))) (-1698 (((-521) $) NIL)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-1646 (((-521) $) NIL)) (-2809 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#2|))) NIL)) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3256 (((-587 (-587 |#2|)) $) NIL)) (-2071 (((-108)) NIL)) (-3318 (((-108)) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-2256 (((-3 (-2 (|:| |particular| $) (|:| -1245 (-587 $))) "failed")) NIL (|has| |#2| (-513)))) (-2712 (((-3 $ "failed")) NIL (|has| |#2| (-513)))) (-3370 (((-627 |#2|)) NIL) (((-627 |#2|) (-1165 $)) NIL)) (-3748 ((|#2| $) NIL)) (-4138 (((-627 |#2|) $) NIL) (((-627 |#2|) $ (-1165 $)) NIL)) (-1389 (((-3 $ "failed") $) NIL (|has| |#2| (-513)))) (-3726 (((-1080 (-880 |#2|))) NIL (|has| |#2| (-337)))) (-1209 (($ $ (-849)) NIL)) (-3440 ((|#2| $) NIL)) (-3609 (((-1080 |#2|) $) NIL (|has| |#2| (-513)))) (-2001 ((|#2|) NIL) ((|#2| (-1165 $)) NIL)) (-2486 (((-1080 |#2|) $) NIL)) (-1743 (((-108)) NIL)) (-4024 (((-1067) $) NIL)) (-1232 (((-108)) NIL)) (-3037 (((-108)) NIL)) (-2901 (((-108)) NIL)) (-1573 (((-3 $ "failed") $) NIL (|has| |#2| (-337)))) (-4146 (((-1031) $) NIL)) (-2880 (((-108)) NIL)) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513)))) (-1936 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ (-521) (-521) |#2|) NIL) ((|#2| $ (-521) (-521)) 22) ((|#2| $ (-521)) NIL)) (-2193 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-3465 ((|#2| $) NIL)) (-3523 (($ (-587 |#2|)) NIL)) (-3776 (((-108) $) NIL)) (-2668 (((-217 |#1| |#2|) $) NIL)) (-1302 ((|#2| $) NIL (|has| |#2| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2420 (($ $) NIL)) (-1816 (((-627 |#2|) (-1165 $)) NIL) (((-1165 |#2|) $) NIL) (((-627 |#2|) (-1165 $) (-1165 $)) NIL) (((-1165 |#2|) $ (-1165 $)) 25)) (-1438 (($ (-1165 |#2|)) NIL) (((-1165 |#2|) $) NIL)) (-1894 (((-587 (-880 |#2|))) NIL) (((-587 (-880 |#2|)) (-1165 $)) NIL)) (-2062 (($ $ $) NIL)) (-2628 (((-108)) NIL)) (-1335 (((-217 |#1| |#2|) $ (-521)) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) NIL) (((-627 |#2|) $) NIL)) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) 36)) (-2881 (((-587 (-1165 |#2|))) NIL (|has| |#2| (-513)))) (-2268 (($ $ $ $) NIL)) (-3650 (((-108)) NIL)) (-1644 (($ (-627 |#2|) $) NIL)) (-2006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2166 (((-108) $) NIL)) (-3968 (($ $ $) NIL)) (-3972 (((-108)) NIL)) (-3502 (((-108)) NIL)) (-3199 (((-108)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#2| (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) NIL) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-611 |#1| |#2|) (-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-391 |#2|)) (-849) (-157)) (T -611))
-NIL
-(-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-391 |#2|))
-((-1422 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) NIL)) (-1981 (($ $) 51)) (-3539 (((-108) $) NIL)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-3335 (((-3 $ "failed") (-755 |#1|)) 23)) (-2662 (((-108) (-755 |#1|)) 15)) (-2939 (($ (-755 |#1|)) 24)) (-1214 (((-108) $ $) 29)) (-2522 (((-849) $) 36)) (-1970 (($ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1974 (((-587 $) (-755 |#1|)) 17)) (-2223 (((-791) $) 42) (($ |#1|) 33) (((-755 |#1|) $) 38) (((-616 |#1|) $) 43)) (-3574 (((-57 (-587 $)) (-587 |#1|) (-849)) 56)) (-4150 (((-587 $) (-587 |#1|) (-849)) 58)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 52)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 37)))
-(((-612 |#1|) (-13 (-783) (-961 |#1|) (-10 -8 (-15 -3539 ((-108) $)) (-15 -1970 ($ $)) (-15 -1981 ($ $)) (-15 -2522 ((-849) $)) (-15 -1214 ((-108) $ $)) (-15 -2223 ((-755 |#1|) $)) (-15 -2223 ((-616 |#1|) $)) (-15 -1974 ((-587 $) (-755 |#1|))) (-15 -2662 ((-108) (-755 |#1|))) (-15 -2939 ($ (-755 |#1|))) (-15 -3335 ((-3 $ "failed") (-755 |#1|))) (-15 -4101 ((-587 |#1|) $)) (-15 -3574 ((-57 (-587 $)) (-587 |#1|) (-849))) (-15 -4150 ((-587 $) (-587 |#1|) (-849))))) (-783)) (T -612))
-((-3539 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-783)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-783)))) (-1981 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-783)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-612 *3)) (-4 *3 (-783)))) (-1214 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-783)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-612 *3)) (-4 *3 (-783)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-612 *3)) (-4 *3 (-783)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-587 (-612 *4))) (-5 *1 (-612 *4)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-108)) (-5 *1 (-612 *4)))) (-2939 (*1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-612 *3)))) (-3335 (*1 *1 *2) (|partial| -12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-612 *3)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-612 *3)) (-4 *3 (-783)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-849)) (-4 *5 (-783)) (-5 *2 (-57 (-587 (-612 *5)))) (-5 *1 (-612 *5)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-849)) (-4 *5 (-783)) (-5 *2 (-587 (-612 *5))) (-5 *1 (-612 *5)))))
-(-13 (-783) (-961 |#1|) (-10 -8 (-15 -3539 ((-108) $)) (-15 -1970 ($ $)) (-15 -1981 ($ $)) (-15 -2522 ((-849) $)) (-15 -1214 ((-108) $ $)) (-15 -2223 ((-755 |#1|) $)) (-15 -2223 ((-616 |#1|) $)) (-15 -1974 ((-587 $) (-755 |#1|))) (-15 -2662 ((-108) (-755 |#1|))) (-15 -2939 ($ (-755 |#1|))) (-15 -3335 ((-3 $ "failed") (-755 |#1|))) (-15 -4101 ((-587 |#1|) $)) (-15 -3574 ((-57 (-587 $)) (-587 |#1|) (-849))) (-15 -4150 ((-587 $) (-587 |#1|) (-849)))))
-((-3434 ((|#2| $) 76)) (-3830 (($ $) 96)) (-1269 (((-108) $ (-707)) 26)) (-2329 (($ $) 85) (($ $ (-707)) 88)) (-2125 (((-108) $) 97)) (-1671 (((-587 $) $) 72)) (-1368 (((-108) $ $) 71)) (-1513 (((-108) $ (-707)) 24)) (-2658 (((-521) $) 46)) (-3989 (((-521) $) 45)) (-2859 (((-108) $ (-707)) 22)) (-2426 (((-108) $) 74)) (-1450 ((|#2| $) 89) (($ $ (-707)) 92)) (-1696 (($ $ $ (-521)) 62) (($ |#2| $ (-521)) 61)) (-1223 (((-587 (-521)) $) 44)) (-2131 (((-108) (-521) $) 42)) (-2319 ((|#2| $) NIL) (($ $ (-707)) 84)) (-2191 (($ $ (-521)) 100)) (-2394 (((-108) $) 99)) (-1936 (((-108) (-1 (-108) |#2|) $) 32)) (-2481 (((-587 |#2|) $) 33)) (-2550 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1132 (-521))) 58) ((|#2| $ (-521)) 40) ((|#2| $ (-521) |#2|) 41)) (-1557 (((-521) $ $) 70)) (-3694 (($ $ (-1132 (-521))) 57) (($ $ (-521)) 51)) (-1475 (((-108) $) 66)) (-1290 (($ $) 81)) (-1602 (((-707) $) 80)) (-1376 (($ $) 79)) (-2234 (($ (-587 |#2|)) 37)) (-2145 (($ $) 101)) (-3165 (((-587 $) $) 69)) (-2960 (((-108) $ $) 68)) (-2006 (((-108) (-1 (-108) |#2|) $) 31)) (-1549 (((-108) $ $) 18)) (-3478 (((-707) $) 29)))
-(((-613 |#1| |#2|) (-10 -8 (-15 -2145 (|#1| |#1|)) (-15 -2191 (|#1| |#1| (-521))) (-15 -2125 ((-108) |#1|)) (-15 -2394 ((-108) |#1|)) (-15 -2550 (|#2| |#1| (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521))) (-15 -2481 ((-587 |#2|) |#1|)) (-15 -2131 ((-108) (-521) |#1|)) (-15 -1223 ((-587 (-521)) |#1|)) (-15 -3989 ((-521) |#1|)) (-15 -2658 ((-521) |#1|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -3694 (|#1| |#1| (-521))) (-15 -3694 (|#1| |#1| (-1132 (-521)))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1290 (|#1| |#1|)) (-15 -1602 ((-707) |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1450 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "last")) (-15 -1450 (|#2| |#1|)) (-15 -2329 (|#1| |#1| (-707))) (-15 -2550 (|#1| |#1| "rest")) (-15 -2329 (|#1| |#1|)) (-15 -2319 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "first")) (-15 -2319 (|#2| |#1|)) (-15 -1368 ((-108) |#1| |#1|)) (-15 -2960 ((-108) |#1| |#1|)) (-15 -1557 ((-521) |#1| |#1|)) (-15 -1475 ((-108) |#1|)) (-15 -2550 (|#2| |#1| "value")) (-15 -3434 (|#2| |#1|)) (-15 -2426 ((-108) |#1|)) (-15 -1671 ((-587 |#1|) |#1|)) (-15 -3165 ((-587 |#1|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707)))) (-614 |#2|) (-1119)) (T -613))
-NIL
-(-10 -8 (-15 -2145 (|#1| |#1|)) (-15 -2191 (|#1| |#1| (-521))) (-15 -2125 ((-108) |#1|)) (-15 -2394 ((-108) |#1|)) (-15 -2550 (|#2| |#1| (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521))) (-15 -2481 ((-587 |#2|) |#1|)) (-15 -2131 ((-108) (-521) |#1|)) (-15 -1223 ((-587 (-521)) |#1|)) (-15 -3989 ((-521) |#1|)) (-15 -2658 ((-521) |#1|)) (-15 -2234 (|#1| (-587 |#2|))) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -3694 (|#1| |#1| (-521))) (-15 -3694 (|#1| |#1| (-1132 (-521)))) (-15 -1696 (|#1| |#2| |#1| (-521))) (-15 -1696 (|#1| |#1| |#1| (-521))) (-15 -1290 (|#1| |#1|)) (-15 -1602 ((-707) |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1450 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "last")) (-15 -1450 (|#2| |#1|)) (-15 -2329 (|#1| |#1| (-707))) (-15 -2550 (|#1| |#1| "rest")) (-15 -2329 (|#1| |#1|)) (-15 -2319 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "first")) (-15 -2319 (|#2| |#1|)) (-15 -1368 ((-108) |#1| |#1|)) (-15 -2960 ((-108) |#1| |#1|)) (-15 -1557 ((-521) |#1| |#1|)) (-15 -1475 ((-108) |#1|)) (-15 -2550 (|#2| |#1| "value")) (-15 -3434 (|#2| |#1|)) (-15 -2426 ((-108) |#1|)) (-15 -1671 ((-587 |#1|) |#1|)) (-15 -3165 ((-587 |#1|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1936 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-3830 (($ $) 67)) (-3933 (((-1170) $ (-521) (-521)) 97 (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1471 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 117 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 86 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 102)) (-2124 ((|#1| $) 66)) (-2231 (($) 7 T CONST)) (-3107 (($ $) 124)) (-2329 (($ $) 73) (($ $ (-707)) 71)) (-2354 (($ $) 99 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 100 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 103)) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3849 ((|#1| $ (-521) |#1|) 85 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 87)) (-2125 (((-108) $) 83)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-2742 (((-707) $) 123)) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1869 (($ (-707) |#1|) 108)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 95 (|has| (-521) (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 94 (|has| (-521) (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-3074 (($ $) 126)) (-1923 (((-108) $) 127)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1450 ((|#1| $) 70) (($ $ (-707)) 68)) (-1696 (($ $ $ (-521)) 116) (($ |#1| $ (-521)) 115)) (-1223 (((-587 (-521)) $) 92)) (-2131 (((-108) (-521) $) 91)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2866 ((|#1| $) 125)) (-2319 ((|#1| $) 76) (($ $ (-707)) 74)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2995 (($ $ |#1|) 96 (|has| $ (-6 -4234)))) (-2191 (($ $ (-521)) 122)) (-2394 (((-108) $) 84)) (-2800 (((-108) $) 128)) (-2037 (((-108) $) 129)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 90)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1132 (-521))) 112) ((|#1| $ (-521)) 89) ((|#1| $ (-521) |#1|) 88)) (-1557 (((-521) $ $) 44)) (-3694 (($ $ (-1132 (-521))) 114) (($ $ (-521)) 113)) (-1475 (((-108) $) 46)) (-1290 (($ $) 62)) (-2780 (($ $) 59 (|has| $ (-6 -4234)))) (-1602 (((-707) $) 63)) (-1376 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 98 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 107)) (-2240 (($ $ $) 61 (|has| $ (-6 -4234))) (($ $ |#1|) 60 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 78) (($ |#1| $) 77) (($ (-587 $)) 110) (($ $ |#1|) 109)) (-2145 (($ $) 121)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-614 |#1|) (-1196) (-1119)) (T -614))
-((-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119)))) (-1658 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-1923 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-3074 (*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-614 *3)) (-4 *3 (-1119)))) (-2145 (*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
-(-13 (-1058 |t#1|) (-10 -8 (-15 -1429 ($ (-1 (-108) |t#1|) $)) (-15 -1658 ($ (-1 (-108) |t#1|) $)) (-15 -2037 ((-108) $)) (-15 -2800 ((-108) $)) (-15 -1923 ((-108) $)) (-15 -3074 ($ $)) (-15 -2866 (|t#1| $)) (-15 -3107 ($ $)) (-15 -2742 ((-707) $)) (-15 -2191 ($ $ (-521))) (-15 -2145 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1058 |#1|) . T) ((-1119) . T) ((-1153 |#1|) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1969 (($ (-707) (-707) (-707)) 34 (|has| |#1| (-970)))) (-1269 (((-108) $ (-707)) NIL)) (-1436 ((|#1| $ (-707) (-707) (-707) |#1|) 29)) (-2231 (($) NIL T CONST)) (-2415 (($ $ $) 38 (|has| |#1| (-970)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3814 (((-1165 (-707)) $) 10)) (-1991 (($ (-1084) $ $) 24)) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1784 (($ (-707)) 36 (|has| |#1| (-970)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-707) (-707) (-707)) 27)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2234 (($ (-587 (-587 (-587 |#1|)))) 45)) (-2223 (($ (-885 (-885 (-885 |#1|)))) 17) (((-885 (-885 (-885 |#1|))) $) 14) (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-615 |#1|) (-13 (-460 |#1|) (-10 -8 (IF (|has| |#1| (-970)) (PROGN (-15 -1969 ($ (-707) (-707) (-707))) (-15 -1784 ($ (-707))) (-15 -2415 ($ $ $))) |%noBranch|) (-15 -2234 ($ (-587 (-587 (-587 |#1|))))) (-15 -2550 (|#1| $ (-707) (-707) (-707))) (-15 -1436 (|#1| $ (-707) (-707) (-707) |#1|)) (-15 -2223 ($ (-885 (-885 (-885 |#1|))))) (-15 -2223 ((-885 (-885 (-885 |#1|))) $)) (-15 -1991 ($ (-1084) $ $)) (-15 -3814 ((-1165 (-707)) $)))) (-1013)) (T -615))
-((-1969 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))) (-2415 (*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-970)) (-4 *2 (-1013)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-587 *3)))) (-4 *3 (-1013)) (-5 *1 (-615 *3)))) (-2550 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013)))) (-1436 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-4 *3 (-1013)) (-5 *1 (-615 *3)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-5 *1 (-615 *3)) (-4 *3 (-1013)))) (-1991 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-615 *3)) (-4 *3 (-1013)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-1165 (-707))) (-5 *1 (-615 *3)) (-4 *3 (-1013)))))
-(-13 (-460 |#1|) (-10 -8 (IF (|has| |#1| (-970)) (PROGN (-15 -1969 ($ (-707) (-707) (-707))) (-15 -1784 ($ (-707))) (-15 -2415 ($ $ $))) |%noBranch|) (-15 -2234 ($ (-587 (-587 (-587 |#1|))))) (-15 -2550 (|#1| $ (-707) (-707) (-707))) (-15 -1436 (|#1| $ (-707) (-707) (-707) |#1|)) (-15 -2223 ($ (-885 (-885 (-885 |#1|))))) (-15 -2223 ((-885 (-885 (-885 |#1|))) $)) (-15 -1991 ($ (-1084) $ $)) (-15 -3814 ((-1165 (-707)) $))))
-((-1422 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) 14)) (-1981 (($ $) 18)) (-3539 (((-108) $) 19)) (-1296 (((-3 |#1| "failed") $) 22)) (-1496 ((|#1| $) 20)) (-2329 (($ $) 36)) (-2056 (($ $) 24)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1214 (((-108) $ $) 42)) (-2522 (((-849) $) 38)) (-1970 (($ $) 17)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 ((|#1| $) 35)) (-2223 (((-791) $) 31) (($ |#1|) 23) (((-755 |#1|) $) 27)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 12)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 40)) (* (($ $ $) 34)))
-(((-616 |#1|) (-13 (-783) (-961 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2223 ((-755 |#1|) $)) (-15 -2319 (|#1| $)) (-15 -1970 ($ $)) (-15 -2522 ((-849) $)) (-15 -1214 ((-108) $ $)) (-15 -2056 ($ $)) (-15 -2329 ($ $)) (-15 -3539 ((-108) $)) (-15 -1981 ($ $)) (-15 -4101 ((-587 |#1|) $)))) (-783)) (T -616))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-616 *3)) (-4 *3 (-783)))) (-2319 (*1 *2 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-616 *3)) (-4 *3 (-783)))) (-1214 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-783)))) (-2056 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-783)))) (-1981 (*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-616 *3)) (-4 *3 (-783)))))
-(-13 (-783) (-961 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2223 ((-755 |#1|) $)) (-15 -2319 (|#1| $)) (-15 -1970 ($ $)) (-15 -2522 ((-849) $)) (-15 -1214 ((-108) $ $)) (-15 -2056 ($ $)) (-15 -2329 ($ $)) (-15 -3539 ((-108) $)) (-15 -1981 ($ $)) (-15 -4101 ((-587 |#1|) $))))
-((-1502 ((|#1| (-1 |#1| (-707) |#1|) (-707) |#1|) 11)) (-3206 ((|#1| (-1 |#1| |#1|) (-707) |#1|) 9)))
-(((-617 |#1|) (-10 -7 (-15 -3206 (|#1| (-1 |#1| |#1|) (-707) |#1|)) (-15 -1502 (|#1| (-1 |#1| (-707) |#1|) (-707) |#1|))) (-1013)) (T -617))
-((-1502 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-707) *2)) (-5 *4 (-707)) (-4 *2 (-1013)) (-5 *1 (-617 *2)))) (-3206 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-707)) (-4 *2 (-1013)) (-5 *1 (-617 *2)))))
-(-10 -7 (-15 -3206 (|#1| (-1 |#1| |#1|) (-707) |#1|)) (-15 -1502 (|#1| (-1 |#1| (-707) |#1|) (-707) |#1|)))
-((-4094 ((|#2| |#1| |#2|) 9)) (-4078 ((|#1| |#1| |#2|) 8)))
-(((-618 |#1| |#2|) (-10 -7 (-15 -4078 (|#1| |#1| |#2|)) (-15 -4094 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -618))
-((-4094 (*1 *2 *3 *2) (-12 (-5 *1 (-618 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-4078 (*1 *2 *2 *3) (-12 (-5 *1 (-618 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(-10 -7 (-15 -4078 (|#1| |#1| |#2|)) (-15 -4094 (|#2| |#1| |#2|)))
-((-3586 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-619 |#1| |#2| |#3|) (-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -619))
-((-3586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-619 *5 *6 *2)))))
-(-10 -7 (-15 -3586 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-1502 (((-1 |#1| (-707) |#1|) (-1 |#1| (-707) |#1|)) 23)) (-1752 (((-1 |#1|) |#1|) 8)) (-1836 ((|#1| |#1|) 16)) (-1293 (((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-521)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2223 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-707)) 20)))
-(((-620 |#1|) (-10 -7 (-15 -1752 ((-1 |#1|) |#1|)) (-15 -2223 ((-1 |#1|) |#1|)) (-15 -1293 (|#1| (-1 |#1| |#1|))) (-15 -1293 ((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-521))) (-15 -1836 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-707))) (-15 -1502 ((-1 |#1| (-707) |#1|) (-1 |#1| (-707) |#1|)))) (-1013)) (T -620))
-((-1502 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-707) *3)) (-4 *3 (-1013)) (-5 *1 (-620 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *4 (-1013)) (-5 *1 (-620 *4)))) (-1836 (*1 *2 *2) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1013)))) (-1293 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-587 *5) (-587 *5))) (-5 *4 (-521)) (-5 *2 (-587 *5)) (-5 *1 (-620 *5)) (-4 *5 (-1013)))) (-1293 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-620 *2)) (-4 *2 (-1013)))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013)))) (-1752 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013)))))
-(-10 -7 (-15 -1752 ((-1 |#1|) |#1|)) (-15 -2223 ((-1 |#1|) |#1|)) (-15 -1293 (|#1| (-1 |#1| |#1|))) (-15 -1293 ((-587 |#1|) (-1 (-587 |#1|) (-587 |#1|)) (-521))) (-15 -1836 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-707))) (-15 -1502 ((-1 |#1| (-707) |#1|) (-1 |#1| (-707) |#1|))))
-((-2953 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1222 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2682 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2562 (((-1 |#2| |#1|) |#2|) 11)))
-(((-621 |#1| |#2|) (-10 -7 (-15 -2562 ((-1 |#2| |#1|) |#2|)) (-15 -1222 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2682 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2953 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -621))
-((-2953 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)) (-4 *4 (-1013)))) (-1222 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-621 *4 *5)))) (-2562 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-621 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013)))))
-(-10 -7 (-15 -2562 ((-1 |#2| |#1|) |#2|)) (-15 -1222 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2682 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2953 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3679 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1215 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2484 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4121 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3860 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -1215 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2484 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4121 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3860 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3679 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -622))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-622 *5 *6 *7)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-622 *4 *5 *6)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *4 (-1013)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-1013)))) (-2484 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *4 *5 *6)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *4 *6)))))
-(-10 -7 (-15 -1215 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2484 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4121 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3860 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3679 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3859 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1393 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-623 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1393 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1393 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3859 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-970) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|) (-970) (-347 |#5|) (-347 |#5|) (-625 |#5| |#6| |#7|)) (T -623))
-((-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-970)) (-4 *2 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *8 (-347 *2)) (-4 *9 (-347 *2)) (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-625 *5 *6 *7)) (-4 *10 (-625 *2 *8 *9)))) (-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-970)) (-4 *8 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *2 (-625 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-625 *5 *6 *7)) (-4 *9 (-347 *8)) (-4 *10 (-347 *8)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-970)) (-4 *8 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *2 (-625 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-625 *5 *6 *7)) (-4 *9 (-347 *8)) (-4 *10 (-347 *8)))))
-(-10 -7 (-15 -1393 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1393 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3859 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3482 (($ (-707) (-707)) 32)) (-3892 (($ $ $) 55)) (-3091 (($ |#3|) 51) (($ $) 52)) (-1902 (((-108) $) 27)) (-3415 (($ $ (-521) (-521)) 57)) (-3848 (($ $ (-521) (-521)) 58)) (-3832 (($ $ (-521) (-521) (-521) (-521)) 62)) (-3699 (($ $) 53)) (-3730 (((-108) $) 14)) (-2505 (($ $ (-521) (-521) $) 63)) (-2396 ((|#2| $ (-521) (-521) |#2|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) 61)) (-1933 (($ (-707) |#2|) 37)) (-1365 (($ (-587 (-587 |#2|))) 35)) (-3256 (((-587 (-587 |#2|)) $) 56)) (-2151 (($ $ $) 54)) (-2261 (((-3 $ "failed") $ |#2|) 90)) (-2550 ((|#2| $ (-521) (-521)) NIL) ((|#2| $ (-521) (-521) |#2|) NIL) (($ $ (-587 (-521)) (-587 (-521))) 60)) (-3523 (($ (-587 |#2|)) 39) (($ (-587 $)) 41)) (-3776 (((-108) $) 24)) (-2223 (($ |#4|) 46) (((-791) $) NIL)) (-2166 (((-108) $) 29)) (-1648 (($ $ |#2|) 92)) (-1639 (($ $ $) 67) (($ $) 70)) (-1628 (($ $ $) 65)) (** (($ $ (-707)) 79) (($ $ (-521)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-521) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
-(((-624 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -1648 (|#1| |#1| |#2|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-707))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#1| (-521) (-521) |#1|)) (-15 -3832 (|#1| |#1| (-521) (-521) (-521) (-521))) (-15 -3848 (|#1| |#1| (-521) (-521))) (-15 -3415 (|#1| |#1| (-521) (-521))) (-15 -2396 (|#1| |#1| (-587 (-521)) (-587 (-521)) |#1|)) (-15 -2550 (|#1| |#1| (-587 (-521)) (-587 (-521)))) (-15 -3256 ((-587 (-587 |#2|)) |#1|)) (-15 -3892 (|#1| |#1| |#1|)) (-15 -2151 (|#1| |#1| |#1|)) (-15 -3699 (|#1| |#1|)) (-15 -3091 (|#1| |#1|)) (-15 -3091 (|#1| |#3|)) (-15 -2223 (|#1| |#4|)) (-15 -3523 (|#1| (-587 |#1|))) (-15 -3523 (|#1| (-587 |#2|))) (-15 -1933 (|#1| (-707) |#2|)) (-15 -1365 (|#1| (-587 (-587 |#2|)))) (-15 -3482 (|#1| (-707) (-707))) (-15 -2166 ((-108) |#1|)) (-15 -1902 ((-108) |#1|)) (-15 -3776 ((-108) |#1|)) (-15 -3730 ((-108) |#1|)) (-15 -2396 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) (-521)))) (-625 |#2| |#3| |#4|) (-970) (-347 |#2|) (-347 |#2|)) (T -624))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -1648 (|#1| |#1| |#2|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-707))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2505 (|#1| |#1| (-521) (-521) |#1|)) (-15 -3832 (|#1| |#1| (-521) (-521) (-521) (-521))) (-15 -3848 (|#1| |#1| (-521) (-521))) (-15 -3415 (|#1| |#1| (-521) (-521))) (-15 -2396 (|#1| |#1| (-587 (-521)) (-587 (-521)) |#1|)) (-15 -2550 (|#1| |#1| (-587 (-521)) (-587 (-521)))) (-15 -3256 ((-587 (-587 |#2|)) |#1|)) (-15 -3892 (|#1| |#1| |#1|)) (-15 -2151 (|#1| |#1| |#1|)) (-15 -3699 (|#1| |#1|)) (-15 -3091 (|#1| |#1|)) (-15 -3091 (|#1| |#3|)) (-15 -2223 (|#1| |#4|)) (-15 -3523 (|#1| (-587 |#1|))) (-15 -3523 (|#1| (-587 |#2|))) (-15 -1933 (|#1| (-707) |#2|)) (-15 -1365 (|#1| (-587 (-587 |#2|)))) (-15 -3482 (|#1| (-707) (-707))) (-15 -2166 ((-108) |#1|)) (-15 -1902 ((-108) |#1|)) (-15 -3776 ((-108) |#1|)) (-15 -3730 ((-108) |#1|)) (-15 -2396 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) (-521))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3482 (($ (-707) (-707)) 97)) (-3892 (($ $ $) 87)) (-3091 (($ |#2|) 91) (($ $) 90)) (-1902 (((-108) $) 99)) (-3415 (($ $ (-521) (-521)) 83)) (-3848 (($ $ (-521) (-521)) 82)) (-3832 (($ $ (-521) (-521) (-521) (-521)) 81)) (-3699 (($ $) 89)) (-3730 (((-108) $) 101)) (-1269 (((-108) $ (-707)) 8)) (-2505 (($ $ (-521) (-521) $) 80)) (-2396 ((|#1| $ (-521) (-521) |#1|) 44) (($ $ (-587 (-521)) (-587 (-521)) $) 84)) (-3419 (($ $ (-521) |#2|) 42)) (-3790 (($ $ (-521) |#3|) 41)) (-1933 (($ (-707) |#1|) 95)) (-2231 (($) 7 T CONST)) (-4014 (($ $) 67 (|has| |#1| (-282)))) (-2185 ((|#2| $ (-521)) 46)) (-3167 (((-707) $) 66 (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) 43)) (-3626 ((|#1| $ (-521) (-521)) 48)) (-3831 (((-587 |#1|) $) 30)) (-2020 (((-707) $) 65 (|has| |#1| (-513)))) (-3993 (((-587 |#3|) $) 64 (|has| |#1| (-513)))) (-1416 (((-707) $) 51)) (-1869 (($ (-707) (-707) |#1|) 57)) (-1428 (((-707) $) 50)) (-1513 (((-108) $ (-707)) 9)) (-3666 ((|#1| $) 62 (|has| |#1| (-6 (-4235 "*"))))) (-1698 (((-521) $) 55)) (-1350 (((-521) $) 53)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1646 (((-521) $) 54)) (-2809 (((-521) $) 52)) (-1365 (($ (-587 (-587 |#1|))) 96)) (-3833 (($ (-1 |#1| |#1|) $) 34)) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3256 (((-587 (-587 |#1|)) $) 86)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1573 (((-3 $ "failed") $) 61 (|has| |#1| (-337)))) (-2151 (($ $ $) 88)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) 56)) (-2261 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-513)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) (-521)) 49) ((|#1| $ (-521) (-521) |#1|) 47) (($ $ (-587 (-521)) (-587 (-521))) 85)) (-3523 (($ (-587 |#1|)) 94) (($ (-587 $)) 93)) (-3776 (((-108) $) 100)) (-1302 ((|#1| $) 63 (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1335 ((|#3| $ (-521)) 45)) (-2223 (($ |#3|) 92) (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-2166 (((-108) $) 98)) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1648 (($ $ |#1|) 68 (|has| |#1| (-337)))) (-1639 (($ $ $) 78) (($ $) 77)) (-1628 (($ $ $) 79)) (** (($ $ (-707)) 70) (($ $ (-521)) 60 (|has| |#1| (-337)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-521) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-625 |#1| |#2| |#3|) (-1196) (-970) (-347 |t#1|) (-347 |t#1|)) (T -625))
-((-3730 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-108)))) (-3482 (*1 *1 *2 *2) (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1933 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *2)) (-4 *4 (-347 *3)) (-4 *2 (-347 *3)))) (-3091 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *2 *4)) (-4 *2 (-347 *3)) (-4 *4 (-347 *3)))) (-3091 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-3699 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-2151 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-3892 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-587 (-587 *3))))) (-2550 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2396 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3415 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3848 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-3832 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2505 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-1628 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1639 (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (-1639 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-625 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *2 (-347 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-625 *3 *2 *4)) (-4 *3 (-970)) (-4 *2 (-347 *3)) (-4 *4 (-347 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-513)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-337)))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-282)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-587 *5)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-1573 (*1 *1 *1) (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-337)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-337)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4234) (-6 -4233) (-15 -3730 ((-108) $)) (-15 -3776 ((-108) $)) (-15 -1902 ((-108) $)) (-15 -2166 ((-108) $)) (-15 -3482 ($ (-707) (-707))) (-15 -1365 ($ (-587 (-587 |t#1|)))) (-15 -1933 ($ (-707) |t#1|)) (-15 -3523 ($ (-587 |t#1|))) (-15 -3523 ($ (-587 $))) (-15 -2223 ($ |t#3|)) (-15 -3091 ($ |t#2|)) (-15 -3091 ($ $)) (-15 -3699 ($ $)) (-15 -2151 ($ $ $)) (-15 -3892 ($ $ $)) (-15 -3256 ((-587 (-587 |t#1|)) $)) (-15 -2550 ($ $ (-587 (-521)) (-587 (-521)))) (-15 -2396 ($ $ (-587 (-521)) (-587 (-521)) $)) (-15 -3415 ($ $ (-521) (-521))) (-15 -3848 ($ $ (-521) (-521))) (-15 -3832 ($ $ (-521) (-521) (-521) (-521))) (-15 -2505 ($ $ (-521) (-521) $)) (-15 -1628 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -1639 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-521) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-707))) (IF (|has| |t#1| (-513)) (-15 -2261 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-337)) (-15 -1648 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-282)) (-15 -4014 ($ $)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -3167 ((-707) $)) (-15 -2020 ((-707) $)) (-15 -3993 ((-587 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4235 "*"))) (PROGN (-15 -1302 (|t#1| $)) (-15 -3666 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-15 -1573 ((-3 $ "failed") $)) (-15 ** ($ $ (-521)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-55 |#1| |#2| |#3|) . T) ((-1119) . T))
-((-4014 ((|#4| |#4|) 68 (|has| |#1| (-282)))) (-3167 (((-707) |#4|) 70 (|has| |#1| (-513)))) (-2020 (((-707) |#4|) 72 (|has| |#1| (-513)))) (-3993 (((-587 |#3|) |#4|) 79 (|has| |#1| (-513)))) (-2250 (((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|) 96 (|has| |#1| (-282)))) (-3666 ((|#1| |#4|) 34)) (-2408 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-513)))) (-1573 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-337)))) (-1731 ((|#4| |#4|) 55 (|has| |#1| (-513)))) (-2715 ((|#4| |#4| |#1| (-521) (-521)) 42)) (-2331 ((|#4| |#4| (-521) (-521)) 37)) (-3838 ((|#4| |#4| |#1| (-521) (-521)) 47)) (-1302 ((|#1| |#4|) 74)) (-3496 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-513)))))
-(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1302 (|#1| |#4|)) (-15 -3666 (|#1| |#4|)) (-15 -2331 (|#4| |#4| (-521) (-521))) (-15 -2715 (|#4| |#4| |#1| (-521) (-521))) (-15 -3838 (|#4| |#4| |#1| (-521) (-521))) (IF (|has| |#1| (-513)) (PROGN (-15 -3167 ((-707) |#4|)) (-15 -2020 ((-707) |#4|)) (-15 -3993 ((-587 |#3|) |#4|)) (-15 -1731 (|#4| |#4|)) (-15 -2408 ((-3 |#4| "failed") |#4|)) (-15 -3496 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-282)) (PROGN (-15 -4014 (|#4| |#4|)) (-15 -2250 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -1573 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-157) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -626))
-((-1573 (*1 *2 *2) (|partial| -12 (-4 *3 (-337)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-2250 (*1 *2 *3 *3) (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-626 *3 *4 *5 *6)) (-4 *6 (-625 *3 *4 *5)))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3496 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-2408 (*1 *2 *2) (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-1731 (*1 *2 *2) (-12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-2020 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3167 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3838 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3)) (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-625 *3 *5 *6)))) (-2715 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3)) (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2)) (-4 *2 (-625 *3 *5 *6)))) (-2331 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-521)) (-4 *4 (-157)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *1 (-626 *4 *5 *6 *2)) (-4 *2 (-625 *4 *5 *6)))) (-3666 (*1 *2 *3) (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157)) (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5)))) (-1302 (*1 *2 *3) (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157)) (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5)))))
-(-10 -7 (-15 -1302 (|#1| |#4|)) (-15 -3666 (|#1| |#4|)) (-15 -2331 (|#4| |#4| (-521) (-521))) (-15 -2715 (|#4| |#4| |#1| (-521) (-521))) (-15 -3838 (|#4| |#4| |#1| (-521) (-521))) (IF (|has| |#1| (-513)) (PROGN (-15 -3167 ((-707) |#4|)) (-15 -2020 ((-707) |#4|)) (-15 -3993 ((-587 |#3|) |#4|)) (-15 -1731 (|#4| |#4|)) (-15 -2408 ((-3 |#4| "failed") |#4|)) (-15 -3496 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-282)) (PROGN (-15 -4014 (|#4| |#4|)) (-15 -2250 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -1573 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3482 (($ (-707) (-707)) 45)) (-3892 (($ $ $) NIL)) (-3091 (($ (-1165 |#1|)) NIL) (($ $) NIL)) (-1902 (((-108) $) NIL)) (-3415 (($ $ (-521) (-521)) 12)) (-3848 (($ $ (-521) (-521)) NIL)) (-3832 (($ $ (-521) (-521) (-521) (-521)) NIL)) (-3699 (($ $) NIL)) (-3730 (((-108) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2505 (($ $ (-521) (-521) $) NIL)) (-2396 ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521)) $) NIL)) (-3419 (($ $ (-521) (-1165 |#1|)) NIL)) (-3790 (($ $ (-521) (-1165 |#1|)) NIL)) (-1933 (($ (-707) |#1|) 22)) (-2231 (($) NIL T CONST)) (-4014 (($ $) 30 (|has| |#1| (-282)))) (-2185 (((-1165 |#1|) $ (-521)) NIL)) (-3167 (((-707) $) 32 (|has| |#1| (-513)))) (-3849 ((|#1| $ (-521) (-521) |#1|) 50)) (-3626 ((|#1| $ (-521) (-521)) NIL)) (-3831 (((-587 |#1|) $) NIL)) (-2020 (((-707) $) 34 (|has| |#1| (-513)))) (-3993 (((-587 (-1165 |#1|)) $) 37 (|has| |#1| (-513)))) (-1416 (((-707) $) 20)) (-1869 (($ (-707) (-707) |#1|) NIL)) (-1428 (((-707) $) 21)) (-1513 (((-108) $ (-707)) NIL)) (-3666 ((|#1| $) 28 (|has| |#1| (-6 (-4235 "*"))))) (-1698 (((-521) $) 9)) (-1350 (((-521) $) 10)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1646 (((-521) $) 11)) (-2809 (((-521) $) 46)) (-1365 (($ (-587 (-587 |#1|))) NIL)) (-3833 (($ (-1 |#1| |#1|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3256 (((-587 (-587 |#1|)) $) 58)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1573 (((-3 $ "failed") $) 41 (|has| |#1| (-337)))) (-2151 (($ $ $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2995 (($ $ |#1|) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) (-521)) NIL) ((|#1| $ (-521) (-521) |#1|) NIL) (($ $ (-587 (-521)) (-587 (-521))) NIL)) (-3523 (($ (-587 |#1|)) NIL) (($ (-587 $)) NIL) (($ (-1165 |#1|)) 51)) (-3776 (((-108) $) NIL)) (-1302 ((|#1| $) 26 (|has| |#1| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-1438 (((-497) $) 62 (|has| |#1| (-562 (-497))))) (-1335 (((-1165 |#1|) $ (-521)) NIL)) (-2223 (($ (-1165 |#1|)) NIL) (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2166 (((-108) $) NIL)) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $ $) NIL) (($ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) 23) (($ $ (-521)) 44 (|has| |#1| (-337)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-521) $) NIL) (((-1165 |#1|) $ (-1165 |#1|)) NIL) (((-1165 |#1|) (-1165 |#1|) $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-627 |#1|) (-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 -3523 ($ (-1165 |#1|))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -1573 ((-3 $ "failed") $)) |%noBranch|))) (-970)) (T -627))
-((-1573 (*1 *1 *1) (|partial| -12 (-5 *1 (-627 *2)) (-4 *2 (-337)) (-4 *2 (-970)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-627 *3)))))
-(-13 (-625 |#1| (-1165 |#1|) (-1165 |#1|)) (-10 -8 (-15 -3523 ($ (-1165 |#1|))) (IF (|has| |#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |#1| (-337)) (-15 -1573 ((-3 $ "failed") $)) |%noBranch|)))
-((-1237 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 25)) (-3470 (((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|) 21)) (-3908 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-707)) 26)) (-3858 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 14)) (-2410 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|)) 18) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 16)) (-3418 (((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|)) 20)) (-3146 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 12)) (** (((-627 |#1|) (-627 |#1|) (-707)) 30)))
-(((-628 |#1|) (-10 -7 (-15 -3146 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3858 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2410 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2410 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3418 ((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|))) (-15 -3470 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -1237 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3908 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-707))) (-15 ** ((-627 |#1|) (-627 |#1|) (-707)))) (-970)) (T -628))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-628 *4)))) (-3908 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-628 *4)))) (-1237 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3470 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3418 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-2410 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-2410 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3858 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
-(-10 -7 (-15 -3146 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3858 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2410 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -2410 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3418 ((-627 |#1|) (-627 |#1|) |#1| (-627 |#1|))) (-15 -3470 ((-627 |#1|) (-627 |#1|) (-627 |#1|) |#1|)) (-15 -1237 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -3908 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-627 |#1|) (-707))) (-15 ** ((-627 |#1|) (-627 |#1|) (-707))))
-((-2546 ((|#2| |#2| |#4|) 25)) (-2199 (((-627 |#2|) |#3| |#4|) 31)) (-3141 (((-627 |#2|) |#2| |#4|) 30)) (-1734 (((-1165 |#2|) |#2| |#4|) 16)) (-1378 ((|#2| |#3| |#4|) 24)) (-2407 (((-627 |#2|) |#3| |#4| (-707) (-707)) 38)) (-3767 (((-627 |#2|) |#2| |#4| (-707)) 37)))
-(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1734 ((-1165 |#2|) |#2| |#4|)) (-15 -1378 (|#2| |#3| |#4|)) (-15 -2546 (|#2| |#2| |#4|)) (-15 -3141 ((-627 |#2|) |#2| |#4|)) (-15 -3767 ((-627 |#2|) |#2| |#4| (-707))) (-15 -2199 ((-627 |#2|) |#3| |#4|)) (-15 -2407 ((-627 |#2|) |#3| |#4| (-707) (-707)))) (-1013) (-828 |#1|) (-347 |#2|) (-13 (-347 |#1|) (-10 -7 (-6 -4233)))) (T -629))
-((-2407 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *7 (-828 *6)) (-5 *2 (-627 *7)) (-5 *1 (-629 *6 *7 *3 *4)) (-4 *3 (-347 *7)) (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))) (-2199 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-828 *5)) (-5 *2 (-627 *6)) (-5 *1 (-629 *5 *6 *3 *4)) (-4 *3 (-347 *6)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))) (-3767 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *3 (-828 *6)) (-5 *2 (-627 *3)) (-5 *1 (-629 *6 *3 *7 *4)) (-4 *7 (-347 *3)) (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))) (-3141 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *3 (-828 *5)) (-5 *2 (-627 *3)) (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))) (-2546 (*1 *2 *2 *3) (-12 (-4 *4 (-1013)) (-4 *2 (-828 *4)) (-5 *1 (-629 *4 *2 *5 *3)) (-4 *5 (-347 *2)) (-4 *3 (-13 (-347 *4) (-10 -7 (-6 -4233)))))) (-1378 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *2 (-828 *5)) (-5 *1 (-629 *5 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))) (-1734 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *3 (-828 *5)) (-5 *2 (-1165 *3)) (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
-(-10 -7 (-15 -1734 ((-1165 |#2|) |#2| |#4|)) (-15 -1378 (|#2| |#3| |#4|)) (-15 -2546 (|#2| |#2| |#4|)) (-15 -3141 ((-627 |#2|) |#2| |#4|)) (-15 -3767 ((-627 |#2|) |#2| |#4| (-707))) (-15 -2199 ((-627 |#2|) |#3| |#4|)) (-15 -2407 ((-627 |#2|) |#3| |#4| (-707) (-707))))
-((-1590 (((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|)) 18)) (-1748 ((|#1| (-627 |#2|)) 9)) (-1213 (((-627 |#1|) (-627 |#2|)) 16)))
-(((-630 |#1| |#2|) (-10 -7 (-15 -1748 (|#1| (-627 |#2|))) (-15 -1213 ((-627 |#1|) (-627 |#2|))) (-15 -1590 ((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|)))) (-513) (-918 |#1|)) (T -630))
-((-1590 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |num| (-627 *4)) (|:| |den| *4))) (-5 *1 (-630 *4 *5)))) (-1213 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513)) (-5 *2 (-627 *4)) (-5 *1 (-630 *4 *5)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-630 *2 *4)))))
-(-10 -7 (-15 -1748 (|#1| (-627 |#2|))) (-15 -1213 ((-627 |#1|) (-627 |#2|))) (-15 -1590 ((-2 (|:| |num| (-627 |#1|)) (|:| |den| |#1|)) (-627 |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-1299 (((-627 (-636))) NIL) (((-627 (-636)) (-1165 $)) NIL)) (-1927 (((-636) $) NIL)) (-2910 (($ $) NIL (|has| (-636) (-1105)))) (-2775 (($ $) NIL (|has| (-636) (-1105)))) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-636) (-323)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-837))))) (-2694 (($ $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-837))) (|has| (-636) (-337))))) (-2337 (((-392 $) $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-837))) (|has| (-636) (-337))))) (-1984 (($ $) NIL (-12 (|has| (-636) (-927)) (|has| (-636) (-1105))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-837))))) (-2165 (((-108) $ $) NIL (|has| (-636) (-282)))) (-1659 (((-707)) NIL (|has| (-636) (-342)))) (-2886 (($ $) NIL (|has| (-636) (-1105)))) (-2752 (($ $) NIL (|has| (-636) (-1105)))) (-2932 (($ $) NIL (|has| (-636) (-1105)))) (-2796 (($ $) NIL (|has| (-636) (-1105)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-636) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-636) (-961 (-381 (-521)))))) (-1496 (((-521) $) NIL) (((-636) $) NIL) (((-381 (-521)) $) NIL (|has| (-636) (-961 (-381 (-521)))))) (-3190 (($ (-1165 (-636))) NIL) (($ (-1165 (-636)) (-1165 $)) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-636) (-323)))) (-2302 (($ $ $) NIL (|has| (-636) (-282)))) (-3998 (((-627 (-636)) $) NIL) (((-627 (-636)) $ (-1165 $)) NIL)) (-1961 (((-627 (-636)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-636))) (|:| |vec| (-1165 (-636)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-636) (-583 (-521)))) (((-627 (-521)) (-627 $)) NIL (|has| (-636) (-583 (-521))))) (-3859 (((-3 $ "failed") (-381 (-1080 (-636)))) NIL (|has| (-636) (-337))) (($ (-1080 (-636))) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1993 (((-636) $) 29)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL (|has| (-636) (-506)))) (-2428 (((-108) $) NIL (|has| (-636) (-506)))) (-2758 (((-381 (-521)) $) NIL (|has| (-636) (-506)))) (-3167 (((-849)) NIL)) (-3254 (($) NIL (|has| (-636) (-342)))) (-2282 (($ $ $) NIL (|has| (-636) (-282)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| (-636) (-282)))) (-2464 (($) NIL (|has| (-636) (-323)))) (-3299 (((-108) $) NIL (|has| (-636) (-323)))) (-1375 (($ $) NIL (|has| (-636) (-323))) (($ $ (-707)) NIL (|has| (-636) (-323)))) (-2100 (((-108) $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-837))) (|has| (-636) (-337))))) (-2676 (((-2 (|:| |r| (-636)) (|:| |phi| (-636))) $) NIL (-12 (|has| (-636) (-979)) (|has| (-636) (-1105))))) (-2840 (($) NIL (|has| (-636) (-1105)))) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-636) (-814 (-353)))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-636) (-814 (-521))))) (-3490 (((-769 (-849)) $) NIL (|has| (-636) (-323))) (((-849) $) NIL (|has| (-636) (-323)))) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (-12 (|has| (-636) (-927)) (|has| (-636) (-1105))))) (-2549 (((-636) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-636) (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-636) (-282)))) (-3769 (((-1080 (-636)) $) NIL (|has| (-636) (-337)))) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1393 (($ (-1 (-636) (-636)) $) NIL)) (-3999 (((-849) $) NIL (|has| (-636) (-342)))) (-1253 (($ $) NIL (|has| (-636) (-1105)))) (-3843 (((-1080 (-636)) $) NIL)) (-2254 (($ (-587 $)) NIL (|has| (-636) (-282))) (($ $ $) NIL (|has| (-636) (-282)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| (-636) (-337)))) (-3797 (($) NIL (|has| (-636) (-323)) CONST)) (-2723 (($ (-849)) NIL (|has| (-636) (-342)))) (-3380 (($) NIL)) (-2004 (((-636) $) 31)) (-4146 (((-1031) $) NIL)) (-1384 (($) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| (-636) (-282)))) (-2286 (($ (-587 $)) NIL (|has| (-636) (-282))) (($ $ $) NIL (|has| (-636) (-282)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-636) (-323)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-837))))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-636) (-282)) (|has| (-636) (-837))))) (-1974 (((-392 $) $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| (-636) (-837))) (|has| (-636) (-337))))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-636) (-282))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| (-636) (-282)))) (-2261 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-636)) NIL (|has| (-636) (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-636) (-282)))) (-3265 (($ $) NIL (|has| (-636) (-1105)))) (-2313 (($ $ (-1084) (-636)) NIL (|has| (-636) (-482 (-1084) (-636)))) (($ $ (-587 (-1084)) (-587 (-636))) NIL (|has| (-636) (-482 (-1084) (-636)))) (($ $ (-587 (-269 (-636)))) NIL (|has| (-636) (-284 (-636)))) (($ $ (-269 (-636))) NIL (|has| (-636) (-284 (-636)))) (($ $ (-636) (-636)) NIL (|has| (-636) (-284 (-636)))) (($ $ (-587 (-636)) (-587 (-636))) NIL (|has| (-636) (-284 (-636))))) (-3794 (((-707) $) NIL (|has| (-636) (-282)))) (-2550 (($ $ (-636)) NIL (|has| (-636) (-261 (-636) (-636))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| (-636) (-282)))) (-3011 (((-636)) NIL) (((-636) (-1165 $)) NIL)) (-3660 (((-3 (-707) "failed") $ $) NIL (|has| (-636) (-323))) (((-707) $) NIL (|has| (-636) (-323)))) (-2193 (($ $ (-1 (-636) (-636))) NIL) (($ $ (-1 (-636) (-636)) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-1084)) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-707)) NIL (|has| (-636) (-210))) (($ $) NIL (|has| (-636) (-210)))) (-3785 (((-627 (-636)) (-1165 $) (-1 (-636) (-636))) NIL (|has| (-636) (-337)))) (-3436 (((-1080 (-636))) NIL)) (-1787 (($ $) NIL (|has| (-636) (-1105)))) (-2806 (($ $) NIL (|has| (-636) (-1105)))) (-3923 (($) NIL (|has| (-636) (-323)))) (-2921 (($ $) NIL (|has| (-636) (-1105)))) (-2786 (($ $) NIL (|has| (-636) (-1105)))) (-2898 (($ $) NIL (|has| (-636) (-1105)))) (-2764 (($ $) NIL (|has| (-636) (-1105)))) (-1816 (((-627 (-636)) (-1165 $)) NIL) (((-1165 (-636)) $) NIL) (((-627 (-636)) (-1165 $) (-1165 $)) NIL) (((-1165 (-636)) $ (-1165 $)) NIL)) (-1438 (((-497) $) NIL (|has| (-636) (-562 (-497)))) (((-154 (-202)) $) NIL (|has| (-636) (-946))) (((-154 (-353)) $) NIL (|has| (-636) (-946))) (((-820 (-353)) $) NIL (|has| (-636) (-562 (-820 (-353))))) (((-820 (-521)) $) NIL (|has| (-636) (-562 (-820 (-521))))) (($ (-1080 (-636))) NIL) (((-1080 (-636)) $) NIL) (($ (-1165 (-636))) NIL) (((-1165 (-636)) $) NIL)) (-1484 (($ $) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| $ (-133)) (|has| (-636) (-837))) (|has| (-636) (-323))))) (-3905 (($ (-636) (-636)) 12)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-521)) NIL) (($ (-636)) NIL) (($ (-154 (-353))) 13) (($ (-154 (-521))) 19) (($ (-154 (-636))) 28) (($ (-154 (-638))) 25) (((-154 (-353)) $) 33) (($ (-381 (-521))) NIL (-3703 (|has| (-636) (-961 (-381 (-521)))) (|has| (-636) (-337))))) (-2446 (($ $) NIL (|has| (-636) (-323))) (((-3 $ "failed") $) NIL (-3703 (-12 (|has| (-636) (-282)) (|has| $ (-133)) (|has| (-636) (-837))) (|has| (-636) (-133))))) (-3379 (((-1080 (-636)) $) NIL)) (-1592 (((-707)) NIL)) (-1245 (((-1165 $)) NIL)) (-1811 (($ $) NIL (|has| (-636) (-1105)))) (-2838 (($ $) NIL (|has| (-636) (-1105)))) (-1842 (((-108) $ $) NIL)) (-1795 (($ $) NIL (|has| (-636) (-1105)))) (-2817 (($ $) NIL (|has| (-636) (-1105)))) (-1830 (($ $) NIL (|has| (-636) (-1105)))) (-2862 (($ $) NIL (|has| (-636) (-1105)))) (-1640 (((-636) $) NIL (|has| (-636) (-1105)))) (-3919 (($ $) NIL (|has| (-636) (-1105)))) (-2874 (($ $) NIL (|has| (-636) (-1105)))) (-1821 (($ $) NIL (|has| (-636) (-1105)))) (-2850 (($ $) NIL (|has| (-636) (-1105)))) (-1803 (($ $) NIL (|has| (-636) (-1105)))) (-2827 (($ $) NIL (|has| (-636) (-1105)))) (-4012 (($ $) NIL (|has| (-636) (-979)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-636) (-337)))) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-1 (-636) (-636))) NIL) (($ $ (-1 (-636) (-636)) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-1084)) NIL (|has| (-636) (-828 (-1084)))) (($ $ (-707)) NIL (|has| (-636) (-210))) (($ $) NIL (|has| (-636) (-210)))) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL (|has| (-636) (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ $) NIL (|has| (-636) (-1105))) (($ $ (-381 (-521))) NIL (-12 (|has| (-636) (-927)) (|has| (-636) (-1105)))) (($ $ (-521)) NIL (|has| (-636) (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ (-636) $) NIL) (($ $ (-636)) NIL) (($ (-381 (-521)) $) NIL (|has| (-636) (-337))) (($ $ (-381 (-521))) NIL (|has| (-636) (-337)))))
-(((-631) (-13 (-361) (-151 (-636)) (-10 -8 (-15 -2223 ($ (-154 (-353)))) (-15 -2223 ($ (-154 (-521)))) (-15 -2223 ($ (-154 (-636)))) (-15 -2223 ($ (-154 (-638)))) (-15 -2223 ((-154 (-353)) $))))) (T -631))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-154 (-521))) (-5 *1 (-631)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-154 (-636))) (-5 *1 (-631)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-154 (-638))) (-5 *1 (-631)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631)))))
-(-13 (-361) (-151 (-636)) (-10 -8 (-15 -2223 ($ (-154 (-353)))) (-15 -2223 ($ (-154 (-521)))) (-15 -2223 ($ (-154 (-636)))) (-15 -2223 ($ (-154 (-638)))) (-15 -2223 ((-154 (-353)) $))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-3014 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-1514 (($ $) 62)) (-2354 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40) (($ |#1| $ (-707)) 63)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-3489 (((-587 (-2 (|:| -3050 |#1|) (|:| -4163 (-707)))) $) 61)) (-2036 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 50)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-632 |#1|) (-1196) (-1013)) (T -632))
-((-4135 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-632 *2)) (-4 *2 (-1013)))) (-1514 (*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1013)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-632 *3)) (-4 *3 (-1013)) (-5 *2 (-587 (-2 (|:| -3050 *3) (|:| -4163 (-707))))))))
-(-13 (-212 |t#1|) (-10 -8 (-15 -4135 ($ |t#1| $ (-707))) (-15 -1514 ($ $)) (-15 -3489 ((-587 (-2 (|:| -3050 |t#1|) (|:| -4163 (-707)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-3946 (((-587 |#1|) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))) (-521)) 46)) (-1872 ((|#1| |#1| (-521)) 45)) (-2286 ((|#1| |#1| |#1| (-521)) 35)) (-1974 (((-587 |#1|) |#1| (-521)) 38)) (-1345 ((|#1| |#1| (-521) |#1| (-521)) 32)) (-2178 (((-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))) |#1| (-521)) 44)))
-(((-633 |#1|) (-10 -7 (-15 -2286 (|#1| |#1| |#1| (-521))) (-15 -1872 (|#1| |#1| (-521))) (-15 -1974 ((-587 |#1|) |#1| (-521))) (-15 -2178 ((-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))) |#1| (-521))) (-15 -3946 ((-587 |#1|) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))) (-521))) (-15 -1345 (|#1| |#1| (-521) |#1| (-521)))) (-1141 (-521))) (T -633))
-((-1345 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| -1974 *5) (|:| -2098 (-521))))) (-5 *4 (-521)) (-4 *5 (-1141 *4)) (-5 *2 (-587 *5)) (-5 *1 (-633 *5)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-5 *2 (-587 (-2 (|:| -1974 *3) (|:| -2098 *4)))) (-5 *1 (-633 *3)) (-4 *3 (-1141 *4)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-5 *2 (-587 *3)) (-5 *1 (-633 *3)) (-4 *3 (-1141 *4)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))) (-2286 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))))
-(-10 -7 (-15 -2286 (|#1| |#1| |#1| (-521))) (-15 -1872 (|#1| |#1| (-521))) (-15 -1974 ((-587 |#1|) |#1| (-521))) (-15 -2178 ((-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))) |#1| (-521))) (-15 -3946 ((-587 |#1|) (-587 (-2 (|:| -1974 |#1|) (|:| -2098 (-521)))) (-521))) (-15 -1345 (|#1| |#1| (-521) |#1| (-521))))
-((-2260 (((-1 (-871 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 17)) (-1717 (((-1044 (-202)) (-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 38) (((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 40) (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 42)) (-2164 (((-1044 (-202)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-587 (-239))) NIL)) (-2503 (((-1044 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239))) 43)))
-(((-634) (-10 -7 (-15 -1717 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -1717 ((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -1717 ((-1044 (-202)) (-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2503 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2164 ((-1044 (-202)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2260 ((-1 (-871 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -634))
-((-2260 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1 (-202) (-202) (-202) (-202))) (-5 *2 (-1 (-871 (-202)) (-202) (-202))) (-5 *1 (-634)))) (-2164 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))) (-2503 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))) (-1717 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-202))) (-5 *5 (-587 (-239))) (-5 *1 (-634)))) (-1717 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-202))) (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))) (-1717 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634)))))
-(-10 -7 (-15 -1717 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -1717 ((-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -1717 ((-1044 (-202)) (-1044 (-202)) (-1 (-871 (-202)) (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2503 ((-1044 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1008 (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2164 ((-1044 (-202)) (-290 (-521)) (-290 (-521)) (-290 (-521)) (-1 (-202) (-202)) (-1008 (-202)) (-587 (-239)))) (-15 -2260 ((-1 (-871 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))
-((-1974 (((-392 (-1080 |#4|)) (-1080 |#4|)) 73) (((-392 |#4|) |#4|) 217)))
-(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 |#4|) |#4|)) (-15 -1974 ((-392 (-1080 |#4|)) (-1080 |#4|)))) (-783) (-729) (-323) (-877 |#3| |#2| |#1|)) (T -635))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-323)) (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-635 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-635 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(-10 -7 (-15 -1974 ((-392 |#4|) |#4|)) (-15 -1974 ((-392 (-1080 |#4|)) (-1080 |#4|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 84)) (-2556 (((-521) $) 30)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2868 (($ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-1984 (($ $) NIL)) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL)) (-2231 (($) NIL T CONST)) (-2844 (($ $) NIL)) (-1296 (((-3 (-521) "failed") $) 73) (((-3 (-381 (-521)) "failed") $) 26) (((-3 (-353) "failed") $) 70)) (-1496 (((-521) $) 75) (((-381 (-521)) $) 67) (((-353) $) 68)) (-2302 (($ $ $) 96)) (-2783 (((-3 $ "failed") $) 87)) (-2282 (($ $ $) 95)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2207 (((-849)) 77) (((-849) (-849)) 76)) (-2273 (((-108) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL)) (-3490 (((-521) $) NIL)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL)) (-2549 (($ $) NIL)) (-3305 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3652 (((-521) (-521)) 81) (((-521)) 82)) (-2816 (($ $ $) NIL) (($) NIL (-12 (-2416 (|has| $ (-6 -4216))) (-2416 (|has| $ (-6 -4224)))))) (-3672 (((-521) (-521)) 79) (((-521)) 80)) (-2459 (($ $ $) NIL) (($) NIL (-12 (-2416 (|has| $ (-6 -4216))) (-2416 (|has| $ (-6 -4224)))))) (-3356 (((-521) $) 16)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 91)) (-2914 (((-849) (-521)) NIL (|has| $ (-6 -4224)))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL)) (-2720 (($ $) NIL)) (-3073 (($ (-521) (-521)) NIL) (($ (-521) (-521) (-849)) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) 92)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2246 (((-521) $) 22)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 94)) (-3312 (((-849)) NIL) (((-849) (-849)) NIL (|has| $ (-6 -4224)))) (-1989 (((-849) (-521)) NIL (|has| $ (-6 -4224)))) (-1438 (((-353) $) NIL) (((-202) $) NIL) (((-820 (-353)) $) NIL)) (-2223 (((-791) $) 52) (($ (-521)) 63) (($ $) NIL) (($ (-381 (-521))) 66) (($ (-521)) 63) (($ (-381 (-521))) 66) (($ (-353)) 60) (((-353) $) 50) (($ (-638)) 55)) (-1592 (((-707)) 103)) (-3112 (($ (-521) (-521) (-849)) 44)) (-1281 (($ $) NIL)) (-2201 (((-849)) NIL) (((-849) (-849)) NIL (|has| $ (-6 -4224)))) (-3354 (((-849)) 35) (((-849) (-849)) 78)) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 32 T CONST)) (-3572 (($) 17 T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 83)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 101)) (-1648 (($ $ $) 65)) (-1639 (($ $) 99) (($ $ $) 100)) (-1628 (($ $ $) 98)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ $ (-381 (-521))) 90)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 97) (($ $ $) 88) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-636) (-13 (-378) (-361) (-337) (-961 (-353)) (-961 (-381 (-521))) (-135) (-10 -8 (-15 -2207 ((-849) (-849))) (-15 -2207 ((-849))) (-15 -3354 ((-849) (-849))) (-15 -3354 ((-849))) (-15 -3672 ((-521) (-521))) (-15 -3672 ((-521))) (-15 -3652 ((-521) (-521))) (-15 -3652 ((-521))) (-15 -2223 ((-353) $)) (-15 -2223 ($ (-638))) (-15 -3356 ((-521) $)) (-15 -2246 ((-521) $)) (-15 -3112 ($ (-521) (-521) (-849)))))) (T -636))
-((-3354 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-2207 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-3672 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-3652 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-353)) (-5 *1 (-636)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-638)) (-5 *1 (-636)))) (-3112 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-849)) (-5 *1 (-636)))))
-(-13 (-378) (-361) (-337) (-961 (-353)) (-961 (-381 (-521))) (-135) (-10 -8 (-15 -2207 ((-849) (-849))) (-15 -2207 ((-849))) (-15 -3354 ((-849) (-849))) (-15 -3354 ((-849))) (-15 -3672 ((-521) (-521))) (-15 -3672 ((-521))) (-15 -3652 ((-521) (-521))) (-15 -3652 ((-521))) (-15 -2223 ((-353) $)) (-15 -2223 ($ (-638))) (-15 -3356 ((-521) $)) (-15 -2246 ((-521) $)) (-15 -3112 ($ (-521) (-521) (-849)))))
-((-1556 (((-627 |#1|) (-627 |#1|) |#1| |#1|) 65)) (-4014 (((-627 |#1|) (-627 |#1|) |#1|) 48)) (-2368 (((-627 |#1|) (-627 |#1|) |#1|) 66)) (-3147 (((-627 |#1|) (-627 |#1|)) 49)) (-2250 (((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|) 64)))
-(((-637 |#1|) (-10 -7 (-15 -3147 ((-627 |#1|) (-627 |#1|))) (-15 -4014 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -2368 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -1556 ((-627 |#1|) (-627 |#1|) |#1| |#1|)) (-15 -2250 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|))) (-282)) (T -637))
-((-2250 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-637 *3)) (-4 *3 (-282)))) (-1556 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))) (-3147 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
-(-10 -7 (-15 -3147 ((-627 |#1|) (-627 |#1|))) (-15 -4014 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -2368 ((-627 |#1|) (-627 |#1|) |#1|)) (-15 -1556 ((-627 |#1|) (-627 |#1|) |#1| |#1|)) (-15 -2250 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-1645 (($ $ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3591 (($ $ $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL)) (-1697 (($ $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) 27)) (-1496 (((-521) $) 25)) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL)) (-2428 (((-108) $) NIL)) (-2758 (((-381 (-521)) $) NIL)) (-3254 (($ $) NIL) (($) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2085 (($ $ $ $) NIL)) (-4020 (($ $ $) NIL)) (-2273 (((-108) $) NIL)) (-3556 (($ $ $) NIL)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL)) (-3637 (((-108) $) NIL)) (-3924 (((-108) $) NIL)) (-3035 (((-3 $ "failed") $) NIL)) (-3305 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2830 (($ $ $ $) NIL)) (-2816 (($ $ $) NIL)) (-1200 (((-849) (-849)) 10) (((-849)) 9)) (-2459 (($ $ $) NIL)) (-3890 (($ $) NIL)) (-2522 (($ $) NIL)) (-2254 (($ (-587 $)) NIL) (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-2489 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2959 (($ $) NIL)) (-4146 (((-1031) $) NIL) (($ $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ (-587 $)) NIL) (($ $ $) NIL)) (-3022 (($ $) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2060 (((-108) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL) (($ $ (-707)) NIL)) (-3055 (($ $) NIL)) (-2420 (($ $) NIL)) (-1438 (((-202) $) NIL) (((-353) $) NIL) (((-820 (-521)) $) NIL) (((-497) $) NIL) (((-521) $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) 24) (($ $) NIL) (($ (-521)) 24) (((-290 $) (-290 (-521))) 18)) (-1592 (((-707)) NIL)) (-4212 (((-108) $ $) NIL)) (-2475 (($ $ $) NIL)) (-3354 (($) NIL)) (-1842 (((-108) $ $) NIL)) (-2798 (($ $ $ $) NIL)) (-4012 (($ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL) (($ $ (-707)) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
-(((-638) (-13 (-361) (-506) (-10 -8 (-15 -1200 ((-849) (-849))) (-15 -1200 ((-849))) (-15 -2223 ((-290 $) (-290 (-521))))))) (T -638))
-((-1200 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-638)))) (-1200 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-638)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-290 (-521))) (-5 *2 (-290 (-638))) (-5 *1 (-638)))))
-(-13 (-361) (-506) (-10 -8 (-15 -1200 ((-849) (-849))) (-15 -1200 ((-849))) (-15 -2223 ((-290 $) (-290 (-521))))))
-((-2347 (((-1 |#4| |#2| |#3|) |#1| (-1084) (-1084)) 19)) (-2375 (((-1 |#4| |#2| |#3|) (-1084)) 12)))
-(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2375 ((-1 |#4| |#2| |#3|) (-1084))) (-15 -2347 ((-1 |#4| |#2| |#3|) |#1| (-1084) (-1084)))) (-562 (-497)) (-1119) (-1119) (-1119)) (T -639))
-((-2347 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)))))
-(-10 -7 (-15 -2375 ((-1 |#4| |#2| |#3|) (-1084))) (-15 -2347 ((-1 |#4| |#2| |#3|) |#1| (-1084) (-1084))))
-((-1422 (((-108) $ $) NIL)) (-4172 (((-1170) $ (-707)) 14)) (-3236 (((-707) $) 12)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 25)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 24)))
-(((-640 |#1|) (-13 (-125) (-561 |#1|) (-10 -8 (-15 -2223 ($ |#1|)))) (-1013)) (T -640))
-((-2223 (*1 *1 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1013)))))
-(-13 (-125) (-561 |#1|) (-10 -8 (-15 -2223 ($ |#1|))))
-((-1676 (((-1 (-202) (-202) (-202)) |#1| (-1084) (-1084)) 33) (((-1 (-202) (-202)) |#1| (-1084)) 38)))
-(((-641 |#1|) (-10 -7 (-15 -1676 ((-1 (-202) (-202)) |#1| (-1084))) (-15 -1676 ((-1 (-202) (-202) (-202)) |#1| (-1084) (-1084)))) (-562 (-497))) (T -641))
-((-1676 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-641 *3)) (-4 *3 (-562 (-497))))) (-1676 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-641 *3)) (-4 *3 (-562 (-497))))))
-(-10 -7 (-15 -1676 ((-1 (-202) (-202)) |#1| (-1084))) (-15 -1676 ((-1 (-202) (-202) (-202)) |#1| (-1084) (-1084))))
-((-2136 (((-1084) |#1| (-1084) (-587 (-1084))) 9) (((-1084) |#1| (-1084) (-1084) (-1084)) 12) (((-1084) |#1| (-1084) (-1084)) 11) (((-1084) |#1| (-1084)) 10)))
-(((-642 |#1|) (-10 -7 (-15 -2136 ((-1084) |#1| (-1084))) (-15 -2136 ((-1084) |#1| (-1084) (-1084))) (-15 -2136 ((-1084) |#1| (-1084) (-1084) (-1084))) (-15 -2136 ((-1084) |#1| (-1084) (-587 (-1084))))) (-562 (-497))) (T -642))
-((-2136 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))) (-2136 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))) (-2136 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))) (-2136 (*1 *2 *3 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497))))))
-(-10 -7 (-15 -2136 ((-1084) |#1| (-1084))) (-15 -2136 ((-1084) |#1| (-1084) (-1084))) (-15 -2136 ((-1084) |#1| (-1084) (-1084) (-1084))) (-15 -2136 ((-1084) |#1| (-1084) (-587 (-1084)))))
-((-1712 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-643 |#1| |#2|) (-10 -7 (-15 -1712 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1119) (-1119)) (T -643))
-((-1712 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
-(-10 -7 (-15 -1712 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2264 (((-1 |#3| |#2|) (-1084)) 11)) (-2347 (((-1 |#3| |#2|) |#1| (-1084)) 21)))
-(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2264 ((-1 |#3| |#2|) (-1084))) (-15 -2347 ((-1 |#3| |#2|) |#1| (-1084)))) (-562 (-497)) (-1119) (-1119)) (T -644))
-((-2347 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))))
-(-10 -7 (-15 -2264 ((-1 |#3| |#2|) (-1084))) (-15 -2347 ((-1 |#3| |#2|) |#1| (-1084))))
-((-3209 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| |#4|)))) (-587 (-707)) (-1165 (-587 (-1080 |#3|))) |#3|) 59)) (-3640 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-707)) |#3|) 72)) (-1312 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-707)) (-587 (-1080 |#4|)) (-1165 (-587 (-1080 |#3|))) |#3|) 32)))
-(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1312 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-707)) (-587 (-1080 |#4|)) (-1165 (-587 (-1080 |#3|))) |#3|)) (-15 -3640 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-707)) |#3|)) (-15 -3209 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| |#4|)))) (-587 (-707)) (-1165 (-587 (-1080 |#3|))) |#3|))) (-729) (-783) (-282) (-877 |#3| |#1| |#2|)) (T -645))
-((-3209 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-587 (-1080 *13))) (-5 *3 (-1080 *13)) (-5 *4 (-587 *12)) (-5 *5 (-587 *10)) (-5 *6 (-587 *13)) (-5 *7 (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| *13))))) (-5 *8 (-587 (-707))) (-5 *9 (-1165 (-587 (-1080 *10)))) (-4 *12 (-783)) (-4 *10 (-282)) (-4 *13 (-877 *10 *11 *12)) (-4 *11 (-729)) (-5 *1 (-645 *11 *12 *10 *13)))) (-3640 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-587 *11)) (-5 *5 (-587 (-1080 *9))) (-5 *6 (-587 *9)) (-5 *7 (-587 *12)) (-5 *8 (-587 (-707))) (-4 *11 (-783)) (-4 *9 (-282)) (-4 *12 (-877 *9 *10 *11)) (-4 *10 (-729)) (-5 *2 (-587 (-1080 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1080 *12)))) (-1312 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-587 (-1080 *11))) (-5 *3 (-1080 *11)) (-5 *4 (-587 *10)) (-5 *5 (-587 *8)) (-5 *6 (-587 (-707))) (-5 *7 (-1165 (-587 (-1080 *8)))) (-4 *10 (-783)) (-4 *8 (-282)) (-4 *11 (-877 *8 *9 *10)) (-4 *9 (-729)) (-5 *1 (-645 *9 *10 *8 *11)))))
-(-10 -7 (-15 -1312 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 |#3|) (-587 (-707)) (-587 (-1080 |#4|)) (-1165 (-587 (-1080 |#3|))) |#3|)) (-15 -3640 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#3|)) (-587 |#3|) (-587 |#4|) (-587 (-707)) |#3|)) (-15 -3209 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-587 |#2|) (-587 (-1080 |#4|)) (-587 |#3|) (-587 |#4|) (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| |#4|)))) (-587 (-707)) (-1165 (-587 (-1080 |#3|))) |#3|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3157 (($ $) 41)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4044 (($ |#1| (-707)) 39)) (-2401 (((-707) $) 43)) (-3140 ((|#1| $) 42)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2098 (((-707) $) 44)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 38 (|has| |#1| (-157)))) (-1499 ((|#1| $ (-707)) 40)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-646 |#1|) (-1196) (-970)) (T -646))
-((-2098 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970)))) (-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970)))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970)))))
-(-13 (-970) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2098 ((-707) $)) (-15 -2401 ((-707) $)) (-15 -3140 (|t#1| $)) (-15 -3157 ($ $)) (-15 -1499 (|t#1| $ (-707))) (-15 -4044 ($ |t#1| (-707)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1393 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1393 (|#6| (-1 |#4| |#1|) |#3|))) (-513) (-1141 |#1|) (-1141 (-381 |#2|)) (-513) (-1141 |#4|) (-1141 (-381 |#5|))) (T -647))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-513)) (-4 *7 (-513)) (-4 *6 (-1141 *5)) (-4 *2 (-1141 (-381 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1141 (-381 *6))) (-4 *8 (-1141 *7)))))
-(-10 -7 (-15 -1393 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL)) (-3859 (($ |#1| |#2|) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3967 ((|#2| $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-4189 (((-3 $ "failed") $ $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) ((|#1| $) NIL)) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-337) (-10 -8 (-15 -3967 (|#2| $)) (-15 -2223 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -4189 ((-3 $ "failed") $ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
-((-3967 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2223 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4189 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-337) (-10 -8 (-15 -3967 (|#2| $)) (-15 -2223 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -4189 ((-3 $ "failed") $ $))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 30)) (-2794 (((-1165 |#1|) $ (-707)) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-3800 (($ (-1080 |#1|)) NIL)) (-1280 (((-1080 $) $ (-998)) NIL) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-4127 (($ $ $) NIL (|has| |#1| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-1659 (((-707)) 47 (|has| |#1| (-342)))) (-4176 (($ $ (-707)) NIL)) (-1587 (($ $ (-707)) NIL)) (-2439 ((|#2| |#2|) 44)) (-4046 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-425)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) NIL)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-998) $) NIL)) (-3052 (($ $ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $ $) NIL (|has| |#1| (-157)))) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) 34)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-3859 (($ |#2|) 42)) (-2783 (((-3 $ "failed") $) 85)) (-3254 (($) 51 (|has| |#1| (-342)))) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-2924 (($ $ $) NIL)) (-2317 (($ $ $) NIL (|has| |#1| (-513)))) (-2483 (((-2 (|:| -2979 |#1|) (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-3083 (((-885 $)) 79)) (-1709 (($ $ |#1| (-707) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-998) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-998) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3490 (((-707) $ $) NIL (|has| |#1| (-513)))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-4068 (($ (-1080 |#1|) (-998)) NIL) (($ (-1080 $) (-998)) NIL)) (-3381 (($ $ (-707)) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) 77) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-998)) NIL) (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3967 ((|#2|) 45)) (-2401 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-707) (-707)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1810 (((-1080 |#1|) $) NIL)) (-2913 (((-3 (-998) "failed") $) NIL)) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-3843 ((|#2| $) 41)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) 28)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3241 (((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707)) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-998)) (|:| -2246 (-707))) "failed") $) NIL)) (-1749 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4066 (($ $) 78 (|has| |#1| (-323)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#1|) NIL) (($ $ (-587 (-998)) (-587 |#1|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) NIL (|has| |#1| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#1| (-513)))) (-2297 (((-3 $ "failed") $ (-707)) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 86 (|has| |#1| (-337)))) (-3011 (($ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2193 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2098 (((-707) $) 32) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-998) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-998) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-4102 (((-885 $)) 36)) (-1288 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#1| (-513)))) (-2223 (((-791) $) 61) (($ (-521)) NIL) (($ |#1|) 58) (($ (-998)) NIL) (($ |#2|) 68) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) 63) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 20 T CONST)) (-2445 (((-1165 |#1|) $) 75)) (-1544 (($ (-1165 |#1|)) 50)) (-3572 (($) 8 T CONST)) (-2244 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2907 (((-1165 |#1|) $) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 69)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) 72) (($ $ $) NIL)) (-1628 (($ $ $) 33)) (** (($ $ (-849)) NIL) (($ $ (-707)) 80)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 57) (($ $ $) 74) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-649 |#1| |#2|) (-13 (-1141 |#1|) (-10 -8 (-15 -2439 (|#2| |#2|)) (-15 -3967 (|#2|)) (-15 -3859 ($ |#2|)) (-15 -3843 (|#2| $)) (-15 -2223 ($ |#2|)) (-15 -2445 ((-1165 |#1|) $)) (-15 -1544 ($ (-1165 |#1|))) (-15 -2907 ((-1165 |#1|) $)) (-15 -3083 ((-885 $))) (-15 -4102 ((-885 $))) (IF (|has| |#1| (-323)) (-15 -4066 ($ $)) |%noBranch|) (IF (|has| |#1| (-342)) (-6 (-342)) |%noBranch|))) (-970) (-1141 |#1|)) (T -649))
-((-2439 (*1 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))) (-3967 (*1 *2) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970)))) (-3859 (*1 *1 *2) (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))) (-3843 (*1 *2 *1) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))) (-2445 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-2907 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-3083 (*1 *2) (-12 (-4 *3 (-970)) (-5 *2 (-885 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-4102 (*1 *2) (-12 (-4 *3 (-970)) (-5 *2 (-885 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1141 *3)))) (-4066 (*1 *1 *1) (-12 (-4 *2 (-323)) (-4 *2 (-970)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1141 *2)))))
-(-13 (-1141 |#1|) (-10 -8 (-15 -2439 (|#2| |#2|)) (-15 -3967 (|#2|)) (-15 -3859 ($ |#2|)) (-15 -3843 (|#2| $)) (-15 -2223 ($ |#2|)) (-15 -2445 ((-1165 |#1|) $)) (-15 -1544 ($ (-1165 |#1|))) (-15 -2907 ((-1165 |#1|) $)) (-15 -3083 ((-885 $))) (-15 -4102 ((-885 $))) (IF (|has| |#1| (-323)) (-15 -4066 ($ $)) |%noBranch|) (IF (|has| |#1| (-342)) (-6 (-342)) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-2723 ((|#1| $) 13)) (-4146 (((-1031) $) NIL)) (-2246 ((|#2| $) 12)) (-2234 (($ |#1| |#2|) 16)) (-2223 (((-791) $) NIL) (($ (-2 (|:| -2723 |#1|) (|:| -2246 |#2|))) 15) (((-2 (|:| -2723 |#1|) (|:| -2246 |#2|)) $) 14)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 11)))
-(((-650 |#1| |#2| |#3|) (-13 (-783) (-10 -8 (-15 -2246 (|#2| $)) (-15 -2723 (|#1| $)) (-15 -2223 ($ (-2 (|:| -2723 |#1|) (|:| -2246 |#2|)))) (-15 -2223 ((-2 (|:| -2723 |#1|) (|:| -2246 |#2|)) $)) (-15 -2234 ($ |#1| |#2|)))) (-783) (-1013) (-1 (-108) (-2 (|:| -2723 |#1|) (|:| -2246 |#2|)) (-2 (|:| -2723 |#1|) (|:| -2246 |#2|)))) (T -650))
-((-2246 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-783)) (-14 *4 (-1 (-108) (-2 (|:| -2723 *3) (|:| -2246 *2)) (-2 (|:| -2723 *3) (|:| -2246 *2)))))) (-2723 (*1 *2 *1) (-12 (-4 *2 (-783)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *3)) (-2 (|:| -2723 *2) (|:| -2246 *3)))))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2723 *3) (|:| -2246 *4))) (-4 *3 (-783)) (-4 *4 (-1013)) (-5 *1 (-650 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2723 *3) (|:| -2246 *4))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-1013)) (-14 *5 (-1 (-108) *2 *2)))) (-2234 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-783)) (-4 *3 (-1013)) (-14 *4 (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *3)) (-2 (|:| -2723 *2) (|:| -2246 *3)))))))
-(-13 (-783) (-10 -8 (-15 -2246 (|#2| $)) (-15 -2723 (|#1| $)) (-15 -2223 ($ (-2 (|:| -2723 |#1|) (|:| -2246 |#2|)))) (-15 -2223 ((-2 (|:| -2723 |#1|) (|:| -2246 |#2|)) $)) (-15 -2234 ($ |#1| |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 59)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1496 ((|#1| $) NIL) (((-110) $) 39)) (-2783 (((-3 $ "failed") $) 90)) (-2117 ((|#2| (-110) |#2|) 82)) (-3637 (((-108) $) NIL)) (-4052 (($ |#1| (-335 (-110))) 13)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3316 (($ $ (-1 |#2| |#2|)) 58)) (-4177 (($ $ (-1 |#2| |#2|)) 44)) (-2550 ((|#2| $ |#2|) 32)) (-2430 ((|#1| |#1|) 100 (|has| |#1| (-157)))) (-2223 (((-791) $) 66) (($ (-521)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) 36)) (-3496 (($ $) 99 (|has| |#1| (-157))) (($ $ $) 103 (|has| |#1| (-157)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 20 T CONST)) (-3572 (($) 9 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) 48) (($ $ $) NIL)) (-1628 (($ $ $) 73)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ (-110) (-521)) NIL) (($ $ (-521)) 57)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-157))) (($ $ |#1|) 97 (|has| |#1| (-157)))))
-(((-651 |#1| |#2|) (-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3496 ($ $)) (-15 -3496 ($ $ $)) (-15 -2430 (|#1| |#1|))) |%noBranch|) (-15 -4177 ($ $ (-1 |#2| |#2|))) (-15 -3316 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -2117 (|#2| (-110) |#2|)) (-15 -4052 ($ |#1| (-335 (-110)))))) (-970) (-589 |#1|)) (T -651))
-((-3496 (*1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3)) (-4 *3 (-589 *2)))) (-3496 (*1 *1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3)) (-4 *3 (-589 *2)))) (-2430 (*1 *2 *2) (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3)) (-4 *3 (-589 *2)))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4)))) (-3316 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-651 *4 *5)) (-4 *5 (-589 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4)) (-4 *4 (-589 *3)))) (-2117 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-970)) (-5 *1 (-651 *4 *2)) (-4 *2 (-589 *4)))) (-4052 (*1 *1 *2 *3) (-12 (-5 *3 (-335 (-110))) (-4 *2 (-970)) (-5 *1 (-651 *2 *4)) (-4 *4 (-589 *2)))))
-(-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3496 ($ $)) (-15 -3496 ($ $ $)) (-15 -2430 (|#1| |#1|))) |%noBranch|) (-15 -4177 ($ $ (-1 |#2| |#2|))) (-15 -3316 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -2117 (|#2| (-110) |#2|)) (-15 -4052 ($ |#1| (-335 (-110))))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 33)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3859 (($ |#1| |#2|) 25)) (-2783 (((-3 $ "failed") $) 47)) (-3637 (((-108) $) 35)) (-3967 ((|#2| $) 12)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 48)) (-4146 (((-1031) $) NIL)) (-4189 (((-3 $ "failed") $ $) 46)) (-2223 (((-791) $) 24) (($ (-521)) 19) ((|#1| $) 13)) (-1592 (((-707)) 28)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 16 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 38)) (-1639 (($ $) 43) (($ $ $) 37)) (-1628 (($ $ $) 40)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 21) (($ $ $) 20)))
-(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-970) (-10 -8 (-15 -3967 (|#2| $)) (-15 -2223 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -4189 ((-3 $ "failed") $ $)) (-15 -2783 ((-3 $ "failed") $)) (-15 -3100 ($ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -652))
-((-2783 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3967 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2223 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4189 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3100 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-970) (-10 -8 (-15 -3967 (|#2| $)) (-15 -2223 (|#1| $)) (-15 -3859 ($ |#1| |#2|)) (-15 -4189 ((-3 $ "failed") $ $)) (-15 -2783 ((-3 $ "failed") $)) (-15 -3100 ($ $))))
-((* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-653 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|))) (-654 |#2|) (-157)) (T -653))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-654 |#1|) (-1196) (-157)) (T -654))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 15)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-2805 ((|#1| $) 21)) (-2814 (($ $ $) NIL (|has| |#1| (-728)))) (-2446 (($ $ $) NIL (|has| |#1| (-728)))) (-2385 (((-1068) $) 46)) (-4151 (((-1032) $) NIL)) (-2816 ((|#3| $) 22)) (-2190 (((-792) $) 42)) (-3566 (($) 10 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-728)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-728)))) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL (|has| |#1| (-728)))) (-1549 (((-108) $ $) 24 (|has| |#1| (-728)))) (-1620 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1612 (($ $) 17) (($ $ $) NIL)) (-1602 (($ $ $) 27)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-604 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-728)) (-6 (-728)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2805 (|#1| $)) (-15 -2816 (|#3| $)))) (-655 |#2|) (-157) (|SubsetCategory| (-664) |#2|)) (T -604))
+((-1620 (*1 *1 *1 *2) (-12 (-4 *4 (-157)) (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-1620 (*1 *1 *2 *3) (-12 (-4 *4 (-157)) (-5 *1 (-604 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-2805 (*1 *2 *1) (-12 (-4 *3 (-157)) (-4 *2 (-655 *3)) (-5 *1 (-604 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2816 (*1 *2 *1) (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4)))))
+(-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-728)) (-6 (-728)) |%noBranch|) (-15 -1620 ($ $ |#3|)) (-15 -1620 ($ |#1| |#3|)) (-15 -2805 (|#1| $)) (-15 -2816 (|#3| $))))
+((-3872 (((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|)) 33)))
+(((-605 |#1|) (-10 -7 (-15 -3872 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|)))) (-838)) (T -605))
+((-3872 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *4))) (-5 *3 (-1081 *4)) (-4 *4 (-838)) (-5 *1 (-605 *4)))))
+(-10 -7 (-15 -3872 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4106 (((-588 |#1|) $) 83)) (-2613 (($ $ (-708)) 91)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1200 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 48)) (-1297 (((-3 (-613 |#1|) "failed") $) NIL)) (-1484 (((-613 |#1|) $) NIL)) (-3156 (($ $) 90)) (-2112 (((-708) $) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-2518 (($ (-613 |#1|) |#2|) 69)) (-1225 (($ $) 87)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-2987 (((-1188 |#1| |#2|) (-1188 |#1| |#2|) $) 47)) (-2834 (((-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3128 (((-613 |#1|) $) NIL)) (-3138 ((|#2| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2289 (($ $ |#1| $) 30) (($ $ (-588 |#1|) (-588 $)) 32)) (-2793 (((-708) $) 89)) (-2201 (($ $ $) 20) (($ (-613 |#1|) (-613 |#1|)) 78) (($ (-613 |#1|) $) 76) (($ $ (-613 |#1|)) 77)) (-2190 (((-792) $) NIL) (($ |#1|) 75) (((-1179 |#1| |#2|) $) 59) (((-1188 |#1| |#2|) $) 41) (($ (-613 |#1|)) 25)) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-613 |#1|)) NIL)) (-2977 ((|#2| (-1188 |#1| |#2|) $) 43)) (-3566 (($) 23 T CONST)) (-2238 (((-588 (-2 (|:| |k| (-613 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1373 (((-3 $ "failed") (-1179 |#1| |#2|)) 61)) (-2131 (($ (-613 |#1|)) 14)) (-1531 (((-108) $ $) 44)) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) 67) (($ $ $) NIL)) (-1602 (($ $ $) 29)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-613 |#1|)) NIL)))
+(((-606 |#1| |#2|) (-13 (-349 |#1| |#2|) (-357 |#2| (-613 |#1|)) (-10 -8 (-15 -1373 ((-3 $ "failed") (-1179 |#1| |#2|))) (-15 -2201 ($ (-613 |#1|) (-613 |#1|))) (-15 -2201 ($ (-613 |#1|) $)) (-15 -2201 ($ $ (-613 |#1|))))) (-784) (-157)) (T -606))
+((-1373 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *1 (-606 *3 *4)))) (-2201 (*1 *1 *2 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) (-4 *4 (-157)))) (-2201 (*1 *1 *2 *1) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) (-4 *4 (-157)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4)) (-4 *4 (-157)))))
+(-13 (-349 |#1| |#2|) (-357 |#2| (-613 |#1|)) (-10 -8 (-15 -1373 ((-3 $ "failed") (-1179 |#1| |#2|))) (-15 -2201 ($ (-613 |#1|) (-613 |#1|))) (-15 -2201 ($ (-613 |#1|) $)) (-15 -2201 ($ $ (-613 |#1|)))))
+((-4187 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-3537 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 11)) (-2790 (($ (-1 (-108) |#2|) $) 28)) (-3509 (($ $) 56)) (-3362 (($ $) 63)) (-3859 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3864 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3238 (((-522) |#2| $ (-522)) 61) (((-522) |#2| $) NIL) (((-522) (-1 (-108) |#2|) $) 47)) (-1811 (($ (-708) |#2|) 54)) (-1369 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-2160 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1391 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1580 (($ |#2|) 14)) (-4095 (($ $ $ (-522)) 36) (($ |#2| $ (-522)) 34)) (-1414 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-3681 (($ $ (-1133 (-522))) 44) (($ $ (-522)) 38)) (-1577 (($ $ $ (-522)) 60)) (-2404 (($ $) 58)) (-1549 (((-108) $ $) 65)))
+(((-607 |#1| |#2|) (-10 -8 (-15 -1580 (|#1| |#2|)) (-15 -3681 (|#1| |#1| (-522))) (-15 -3681 (|#1| |#1| (-1133 (-522)))) (-15 -3859 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4095 (|#1| |#2| |#1| (-522))) (-15 -4095 (|#1| |#1| |#1| (-522))) (-15 -1369 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2790 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#1| |#2| |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -2160 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4187 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3238 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -3238 ((-522) |#2| |#1|)) (-15 -3238 ((-522) |#2| |#1| (-522))) (-15 -2160 (|#1| |#1| |#1|)) (-15 -4187 ((-108) |#1|)) (-15 -1577 (|#1| |#1| |#1| (-522))) (-15 -3509 (|#1| |#1|)) (-15 -3537 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1414 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1811 (|#1| (-708) |#2|)) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|))) (-608 |#2|) (-1120)) (T -607))
+NIL
+(-10 -8 (-15 -1580 (|#1| |#2|)) (-15 -3681 (|#1| |#1| (-522))) (-15 -3681 (|#1| |#1| (-1133 (-522)))) (-15 -3859 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4095 (|#1| |#2| |#1| (-522))) (-15 -4095 (|#1| |#1| |#1| (-522))) (-15 -1369 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2790 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3859 (|#1| |#2| |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -2160 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -4187 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3238 ((-522) (-1 (-108) |#2|) |#1|)) (-15 -3238 ((-522) |#2| |#1|)) (-15 -3238 ((-522) |#2| |#1| (-522))) (-15 -2160 (|#1| |#1| |#1|)) (-15 -4187 ((-108) |#1|)) (-15 -1577 (|#1| |#1| |#1| (-522))) (-15 -3509 (|#1| |#1|)) (-15 -3537 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3537 (|#1| |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3864 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1414 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -1811 (|#1| (-708) |#2|)) (-15 -1391 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2404 (|#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-2093 ((|#1| $) 65)) (-3835 (($ $) 67)) (-2679 (((-1171) $ (-522) (-522)) 97 (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-4187 (((-108) $) 142 (|has| |#1| (-784))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-3537 (($ $) 146 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4239)))) (-3216 (($ $) 141 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1243 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 117 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 86 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-2790 (($ (-1 (-108) |#1|) $) 129)) (-1628 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4238)))) (-2081 ((|#1| $) 66)) (-3175 (($) 7 T CONST)) (-3509 (($ $) 144 (|has| $ (-6 -4239)))) (-1862 (($ $) 134)) (-2306 (($ $) 73) (($ $ (-708)) 71)) (-3362 (($ $) 131 (|has| |#1| (-1014)))) (-2333 (($ $) 99 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 130 (|has| |#1| (-1014))) (($ (-1 (-108) |#1|) $) 125)) (-1423 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4238))) (($ |#1| $) 100 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3854 ((|#1| $ (-522) |#1|) 85 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 87)) (-3069 (((-108) $) 83)) (-3238 (((-522) |#1| $ (-522)) 139 (|has| |#1| (-1014))) (((-522) |#1| $) 138 (|has| |#1| (-1014))) (((-522) (-1 (-108) |#1|) $) 137)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1811 (($ (-708) |#1|) 108)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 95 (|has| (-522) (-784)))) (-2814 (($ $ $) 147 (|has| |#1| (-784)))) (-1369 (($ $ $) 132 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-2160 (($ $ $) 140 (|has| |#1| (-784))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 94 (|has| (-522) (-784)))) (-2446 (($ $ $) 148 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1580 (($ |#1|) 122)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-4095 (($ $ $ (-522)) 127) (($ |#1| $ (-522)) 126)) (-1661 (($ $ $ (-522)) 116) (($ |#1| $ (-522)) 115)) (-3604 (((-588 (-522)) $) 92)) (-1405 (((-108) (-522) $) 91)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 76) (($ $ (-708)) 74)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2602 (($ $ |#1|) 96 (|has| $ (-6 -4239)))) (-2855 (((-108) $) 84)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 90)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1133 (-522))) 112) ((|#1| $ (-522)) 89) ((|#1| $ (-522) |#1|) 88)) (-2011 (((-522) $ $) 44)) (-3681 (($ $ (-1133 (-522))) 124) (($ $ (-522)) 123)) (-3696 (($ $ (-1133 (-522))) 114) (($ $ (-522)) 113)) (-3042 (((-108) $) 46)) (-3107 (($ $) 62)) (-2646 (($ $) 59 (|has| $ (-6 -4239)))) (-2393 (((-708) $) 63)) (-2122 (($ $) 64)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 143 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 98 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 107)) (-2630 (($ $ $) 61) (($ $ |#1|) 60)) (-4165 (($ $ $) 78) (($ |#1| $) 77) (($ (-588 $)) 110) (($ $ |#1|) 109)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 150 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 151 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1566 (((-108) $ $) 149 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 152 (|has| |#1| (-784)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-608 |#1|) (-1197) (-1120)) (T -608))
+((-1580 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1120)))))
+(-13 (-1059 |t#1|) (-348 |t#1|) (-258 |t#1|) (-10 -8 (-15 -1580 ($ |t#1|))))
+(((-33) . T) ((-97) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-258 |#1|) . T) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-784) |has| |#1| (-784)) ((-936 |#1|) . T) ((-1014) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1059 |#1|) . T) ((-1120) . T) ((-1154 |#1|) . T))
+((-3426 (((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|))))) (-588 (-588 |#1|)) (-588 (-1166 |#1|))) 21) (((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|))))) (-628 |#1|) (-588 (-1166 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-588 (-588 |#1|)) (-1166 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)) 13)) (-3166 (((-708) (-628 |#1|) (-1166 |#1|)) 29)) (-2307 (((-3 (-1166 |#1|) "failed") (-628 |#1|) (-1166 |#1|)) 23)) (-1503 (((-108) (-628 |#1|) (-1166 |#1|)) 26)))
+(((-609 |#1|) (-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|))) (-15 -3426 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-588 (-588 |#1|)) (-1166 |#1|))) (-15 -3426 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|))))) (-628 |#1|) (-588 (-1166 |#1|)))) (-15 -3426 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|))))) (-588 (-588 |#1|)) (-588 (-1166 |#1|)))) (-15 -2307 ((-3 (-1166 |#1|) "failed") (-628 |#1|) (-1166 |#1|))) (-15 -1503 ((-108) (-628 |#1|) (-1166 |#1|))) (-15 -3166 ((-708) (-628 |#1|) (-1166 |#1|)))) (-338)) (T -609))
+((-3166 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-5 *2 (-708)) (-5 *1 (-609 *5)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-5 *2 (-108)) (-5 *1 (-609 *5)))) (-2307 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1166 *4)) (-5 *3 (-628 *4)) (-4 *4 (-338)) (-5 *1 (-609 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338)) (-5 *2 (-588 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -3855 (-588 (-1166 *5)))))) (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-4 *5 (-338)) (-5 *2 (-588 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -3855 (-588 (-1166 *5)))))) (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -3855 (-588 (-1166 *5))))) (-5 *1 (-609 *5)) (-5 *4 (-1166 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 *5) "failed")) (|:| -3855 (-588 (-1166 *5))))) (-5 *1 (-609 *5)) (-5 *4 (-1166 *5)))))
+(-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|))) (-15 -3426 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-588 (-588 |#1|)) (-1166 |#1|))) (-15 -3426 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|))))) (-628 |#1|) (-588 (-1166 |#1|)))) (-15 -3426 ((-588 (-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|))))) (-588 (-588 |#1|)) (-588 (-1166 |#1|)))) (-15 -2307 ((-3 (-1166 |#1|) "failed") (-628 |#1|) (-1166 |#1|))) (-15 -1503 ((-108) (-628 |#1|) (-1166 |#1|))) (-15 -3166 ((-708) (-628 |#1|) (-1166 |#1|))))
+((-3426 (((-588 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|)))) |#4| (-588 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|))) |#4| |#3|) 45)) (-3166 (((-708) |#4| |#3|) 17)) (-2307 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1503 (((-108) |#4| |#3|) 13)))
+(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|))) |#4| |#3|)) (-15 -3426 ((-588 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|)))) |#4| (-588 |#3|))) (-15 -2307 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1503 ((-108) |#4| |#3|)) (-15 -3166 ((-708) |#4| |#3|))) (-338) (-13 (-348 |#1|) (-10 -7 (-6 -4239))) (-13 (-348 |#1|) (-10 -7 (-6 -4239))) (-626 |#1| |#2| |#3|)) (T -610))
+((-3166 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-708)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-1503 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-108)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-2307 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-338)) (-4 *5 (-13 (-348 *4) (-10 -7 (-6 -4239)))) (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-626 *4 *5 *2)))) (-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *7 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-588 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3855 (-588 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-588 *7)) (-4 *3 (-626 *5 *6 *7)))) (-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))))
+(-10 -7 (-15 -3426 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|))) |#4| |#3|)) (-15 -3426 ((-588 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|)))) |#4| (-588 |#3|))) (-15 -2307 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1503 ((-108) |#4| |#3|)) (-15 -3166 ((-708) |#4| |#3|)))
+((-2103 (((-2 (|:| |particular| (-3 (-1166 (-382 |#4|)) "failed")) (|:| -3855 (-588 (-1166 (-382 |#4|))))) (-588 |#4|) (-588 |#3|)) 45)))
+(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2103 ((-2 (|:| |particular| (-3 (-1166 (-382 |#4|)) "failed")) (|:| -3855 (-588 (-1166 (-382 |#4|))))) (-588 |#4|) (-588 |#3|)))) (-514) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -611))
+((-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *7)) (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 (-382 *8)) "failed")) (|:| -3855 (-588 (-1166 (-382 *8)))))) (-5 *1 (-611 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2103 ((-2 (|:| |particular| (-3 (-1166 (-382 |#4|)) "failed")) (|:| -3855 (-588 (-1166 (-382 |#4|))))) (-588 |#4|) (-588 |#3|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3210 (((-3 $ "failed")) NIL (|has| |#2| (-514)))) (-1865 ((|#2| $) NIL)) (-2727 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1588 (((-1166 (-628 |#2|))) NIL) (((-1166 (-628 |#2|)) (-1166 $)) NIL)) (-2527 (((-108) $) NIL)) (-1681 (((-1166 $)) 37)) (-4141 (((-108) $ (-708)) NIL)) (-3022 (($ |#2|) NIL)) (-3175 (($) NIL T CONST)) (-2264 (($ $) NIL (|has| |#2| (-283)))) (-1860 (((-217 |#1| |#2|) $ (-522)) NIL)) (-1868 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (|has| |#2| (-514)))) (-3130 (((-3 $ "failed")) NIL (|has| |#2| (-514)))) (-1771 (((-628 |#2|)) NIL) (((-628 |#2|) (-1166 $)) NIL)) (-3594 ((|#2| $) NIL)) (-2828 (((-628 |#2|) $) NIL) (((-628 |#2|) $ (-1166 $)) NIL)) (-3637 (((-3 $ "failed") $) NIL (|has| |#2| (-514)))) (-3549 (((-1081 (-881 |#2|))) NIL (|has| |#2| (-338)))) (-1679 (($ $ (-850)) NIL)) (-3076 ((|#2| $) NIL)) (-2992 (((-1081 |#2|) $) NIL (|has| |#2| (-514)))) (-2975 ((|#2|) NIL) ((|#2| (-1166 $)) NIL)) (-4014 (((-1081 |#2|) $) NIL)) (-2878 (((-108)) NIL)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) NIL)) (-3766 (($ (-1166 |#2|)) NIL) (($ (-1166 |#2|) (-1166 $)) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3166 (((-708) $) NIL (|has| |#2| (-514))) (((-850)) 38)) (-3631 ((|#2| $ (-522) (-522)) NIL)) (-2666 (((-108)) NIL)) (-1882 (($ $ (-850)) NIL)) (-3837 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL)) (-3799 (((-708) $) NIL (|has| |#2| (-514)))) (-2064 (((-588 (-217 |#1| |#2|)) $) NIL (|has| |#2| (-514)))) (-1411 (((-708) $) NIL)) (-1427 (((-108)) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-3081 ((|#2| $) NIL (|has| |#2| (-6 (-4240 "*"))))) (-2575 (((-522) $) NIL)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-3886 (((-522) $) NIL)) (-4132 (((-522) $) NIL)) (-1366 (($ (-588 (-588 |#2|))) NIL)) (-3838 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3237 (((-588 (-588 |#2|)) $) NIL)) (-2552 (((-108)) NIL)) (-2678 (((-108)) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-3505 (((-3 (-2 (|:| |particular| $) (|:| -3855 (-588 $))) "failed")) NIL (|has| |#2| (-514)))) (-2007 (((-3 $ "failed")) NIL (|has| |#2| (-514)))) (-1943 (((-628 |#2|)) NIL) (((-628 |#2|) (-1166 $)) NIL)) (-1546 ((|#2| $) NIL)) (-4142 (((-628 |#2|) $) NIL) (((-628 |#2|) $ (-1166 $)) NIL)) (-2231 (((-3 $ "failed") $) NIL (|has| |#2| (-514)))) (-2497 (((-1081 (-881 |#2|))) NIL (|has| |#2| (-338)))) (-3277 (($ $ (-850)) NIL)) (-1505 ((|#2| $) NIL)) (-3630 (((-1081 |#2|) $) NIL (|has| |#2| (-514)))) (-2475 ((|#2|) NIL) ((|#2| (-1166 $)) NIL)) (-2302 (((-1081 |#2|) $) NIL)) (-3003 (((-108)) NIL)) (-2385 (((-1068) $) NIL)) (-3710 (((-108)) NIL)) (-3026 (((-108)) NIL)) (-3055 (((-108)) NIL)) (-2147 (((-3 $ "failed") $) NIL (|has| |#2| (-338)))) (-4151 (((-1032) $) NIL)) (-2889 (((-108)) NIL)) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514)))) (-3053 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ (-522) (-522) |#2|) NIL) ((|#2| $ (-522) (-522)) 22) ((|#2| $ (-522)) NIL)) (-2157 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1708 ((|#2| $) NIL)) (-4077 (($ (-588 |#2|)) NIL)) (-1767 (((-108) $) NIL)) (-3263 (((-217 |#1| |#2|) $) NIL)) (-3206 ((|#2| $) NIL (|has| |#2| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2404 (($ $) NIL)) (-3677 (((-628 |#2|) (-1166 $)) NIL) (((-1166 |#2|) $) NIL) (((-628 |#2|) (-1166 $) (-1166 $)) NIL) (((-1166 |#2|) $ (-1166 $)) 25)) (-1431 (($ (-1166 |#2|)) NIL) (((-1166 |#2|) $) NIL)) (-2656 (((-588 (-881 |#2|))) NIL) (((-588 (-881 |#2|)) (-1166 $)) NIL)) (-1288 (($ $ $) NIL)) (-4034 (((-108)) NIL)) (-3488 (((-217 |#1| |#2|) $ (-522)) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) NIL) (((-628 |#2|) $) NIL)) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) 36)) (-2901 (((-588 (-1166 |#2|))) NIL (|has| |#2| (-514)))) (-3610 (($ $ $ $) NIL)) (-2928 (((-108)) NIL)) (-1616 (($ (-628 |#2|) $) NIL)) (-3648 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1697 (((-108) $) NIL)) (-3024 (($ $ $) NIL)) (-3065 (((-108)) NIL)) (-3856 (((-108)) NIL)) (-3877 (((-108)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#2| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) NIL) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-612 |#1| |#2|) (-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-392 |#2|)) (-850) (-157)) (T -612))
+NIL
+(-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-392 |#2|))
+((-1416 (((-108) $ $) NIL)) (-4106 (((-588 |#1|) $) NIL)) (-1924 (($ $) 51)) (-1289 (((-108) $) NIL)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2852 (((-3 $ "failed") (-756 |#1|)) 23)) (-1392 (((-108) (-756 |#1|)) 15)) (-2207 (($ (-756 |#1|)) 24)) (-3523 (((-108) $ $) 29)) (-2517 (((-850) $) 36)) (-1913 (($ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1916 (((-588 $) (-756 |#1|)) 17)) (-2190 (((-792) $) 42) (($ |#1|) 33) (((-756 |#1|) $) 38) (((-617 |#1|) $) 43)) (-3350 (((-57 (-588 $)) (-588 |#1|) (-850)) 56)) (-1266 (((-588 $) (-588 |#1|) (-850)) 58)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 52)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 37)))
+(((-613 |#1|) (-13 (-784) (-962 |#1|) (-10 -8 (-15 -1289 ((-108) $)) (-15 -1913 ($ $)) (-15 -1924 ($ $)) (-15 -2517 ((-850) $)) (-15 -3523 ((-108) $ $)) (-15 -2190 ((-756 |#1|) $)) (-15 -2190 ((-617 |#1|) $)) (-15 -1916 ((-588 $) (-756 |#1|))) (-15 -1392 ((-108) (-756 |#1|))) (-15 -2207 ($ (-756 |#1|))) (-15 -2852 ((-3 $ "failed") (-756 |#1|))) (-15 -4106 ((-588 |#1|) $)) (-15 -3350 ((-57 (-588 $)) (-588 |#1|) (-850))) (-15 -1266 ((-588 $) (-588 |#1|) (-850))))) (-784)) (T -613))
+((-1289 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-3523 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-613 *4))) (-5 *1 (-613 *4)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-108)) (-5 *1 (-613 *4)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3)))) (-2852 (*1 *1 *2) (|partial| -12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784)) (-5 *2 (-57 (-588 (-613 *5)))) (-5 *1 (-613 *5)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784)) (-5 *2 (-588 (-613 *5))) (-5 *1 (-613 *5)))))
+(-13 (-784) (-962 |#1|) (-10 -8 (-15 -1289 ((-108) $)) (-15 -1913 ($ $)) (-15 -1924 ($ $)) (-15 -2517 ((-850) $)) (-15 -3523 ((-108) $ $)) (-15 -2190 ((-756 |#1|) $)) (-15 -2190 ((-617 |#1|) $)) (-15 -1916 ((-588 $) (-756 |#1|))) (-15 -1392 ((-108) (-756 |#1|))) (-15 -2207 ($ (-756 |#1|))) (-15 -2852 ((-3 $ "failed") (-756 |#1|))) (-15 -4106 ((-588 |#1|) $)) (-15 -3350 ((-57 (-588 $)) (-588 |#1|) (-850))) (-15 -1266 ((-588 $) (-588 |#1|) (-850)))))
+((-3435 ((|#2| $) 76)) (-3835 (($ $) 96)) (-4141 (((-108) $ (-708)) 26)) (-2306 (($ $) 85) (($ $ (-708)) 88)) (-3069 (((-108) $) 97)) (-4138 (((-588 $) $) 72)) (-2030 (((-108) $ $) 71)) (-3352 (((-108) $ (-708)) 24)) (-1359 (((-522) $) 46)) (-2014 (((-522) $) 45)) (-2720 (((-108) $ (-708)) 22)) (-1754 (((-108) $) 74)) (-1442 ((|#2| $) 89) (($ $ (-708)) 92)) (-1661 (($ $ $ (-522)) 62) (($ |#2| $ (-522)) 61)) (-3604 (((-588 (-522)) $) 44)) (-1405 (((-108) (-522) $) 42)) (-2294 ((|#2| $) NIL) (($ $ (-708)) 84)) (-3719 (($ $ (-522)) 100)) (-2855 (((-108) $) 99)) (-3053 (((-108) (-1 (-108) |#2|) $) 32)) (-1525 (((-588 |#2|) $) 33)) (-2545 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1133 (-522))) 58) ((|#2| $ (-522)) 40) ((|#2| $ (-522) |#2|) 41)) (-2011 (((-522) $ $) 70)) (-3696 (($ $ (-1133 (-522))) 57) (($ $ (-522)) 51)) (-3042 (((-108) $) 66)) (-3107 (($ $) 81)) (-2393 (((-708) $) 80)) (-2122 (($ $) 79)) (-2201 (($ (-588 |#2|)) 37)) (-1522 (($ $) 101)) (-1749 (((-588 $) $) 69)) (-2425 (((-108) $ $) 68)) (-3648 (((-108) (-1 (-108) |#2|) $) 31)) (-1531 (((-108) $ $) 18)) (-3480 (((-708) $) 29)))
+(((-614 |#1| |#2|) (-10 -8 (-15 -1522 (|#1| |#1|)) (-15 -3719 (|#1| |#1| (-522))) (-15 -3069 ((-108) |#1|)) (-15 -2855 ((-108) |#1|)) (-15 -2545 (|#2| |#1| (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522))) (-15 -1525 ((-588 |#2|) |#1|)) (-15 -1405 ((-108) (-522) |#1|)) (-15 -3604 ((-588 (-522)) |#1|)) (-15 -2014 ((-522) |#1|)) (-15 -1359 ((-522) |#1|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -3696 (|#1| |#1| (-522))) (-15 -3696 (|#1| |#1| (-1133 (-522)))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -3107 (|#1| |#1|)) (-15 -2393 ((-708) |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-708))) (-15 -2545 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2294 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "first")) (-15 -2294 (|#2| |#1|)) (-15 -2030 ((-108) |#1| |#1|)) (-15 -2425 ((-108) |#1| |#1|)) (-15 -2011 ((-522) |#1| |#1|)) (-15 -3042 ((-108) |#1|)) (-15 -2545 (|#2| |#1| "value")) (-15 -3435 (|#2| |#1|)) (-15 -1754 ((-108) |#1|)) (-15 -4138 ((-588 |#1|) |#1|)) (-15 -1749 ((-588 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708)))) (-615 |#2|) (-1120)) (T -614))
+NIL
+(-10 -8 (-15 -1522 (|#1| |#1|)) (-15 -3719 (|#1| |#1| (-522))) (-15 -3069 ((-108) |#1|)) (-15 -2855 ((-108) |#1|)) (-15 -2545 (|#2| |#1| (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522))) (-15 -1525 ((-588 |#2|) |#1|)) (-15 -1405 ((-108) (-522) |#1|)) (-15 -3604 ((-588 (-522)) |#1|)) (-15 -2014 ((-522) |#1|)) (-15 -1359 ((-522) |#1|)) (-15 -2201 (|#1| (-588 |#2|))) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -3696 (|#1| |#1| (-522))) (-15 -3696 (|#1| |#1| (-1133 (-522)))) (-15 -1661 (|#1| |#2| |#1| (-522))) (-15 -1661 (|#1| |#1| |#1| (-522))) (-15 -3107 (|#1| |#1|)) (-15 -2393 ((-708) |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-708))) (-15 -2545 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2294 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "first")) (-15 -2294 (|#2| |#1|)) (-15 -2030 ((-108) |#1| |#1|)) (-15 -2425 ((-108) |#1| |#1|)) (-15 -2011 ((-522) |#1| |#1|)) (-15 -3042 ((-108) |#1|)) (-15 -2545 (|#2| |#1| "value")) (-15 -3435 (|#2| |#1|)) (-15 -1754 ((-108) |#1|)) (-15 -4138 ((-588 |#1|) |#1|)) (-15 -1749 ((-588 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -3053 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-2093 ((|#1| $) 65)) (-3835 (($ $) 67)) (-2679 (((-1171) $ (-522) (-522)) 97 (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1243 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 117 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 86 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 102)) (-2081 ((|#1| $) 66)) (-3175 (($) 7 T CONST)) (-1351 (($ $) 124)) (-2306 (($ $) 73) (($ $ (-708)) 71)) (-2333 (($ $) 99 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 100 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 103)) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3854 ((|#1| $ (-522) |#1|) 85 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 87)) (-3069 (((-108) $) 83)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-1808 (((-708) $) 123)) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1811 (($ (-708) |#1|) 108)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 95 (|has| (-522) (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 94 (|has| (-522) (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2155 (($ $) 126)) (-2947 (((-108) $) 127)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-1661 (($ $ $ (-522)) 116) (($ |#1| $ (-522)) 115)) (-3604 (((-588 (-522)) $) 92)) (-1405 (((-108) (-522) $) 91)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2765 ((|#1| $) 125)) (-2294 ((|#1| $) 76) (($ $ (-708)) 74)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2602 (($ $ |#1|) 96 (|has| $ (-6 -4239)))) (-3719 (($ $ (-522)) 122)) (-2855 (((-108) $) 84)) (-4031 (((-108) $) 128)) (-4010 (((-108) $) 129)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 90)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1133 (-522))) 112) ((|#1| $ (-522)) 89) ((|#1| $ (-522) |#1|) 88)) (-2011 (((-522) $ $) 44)) (-3696 (($ $ (-1133 (-522))) 114) (($ $ (-522)) 113)) (-3042 (((-108) $) 46)) (-3107 (($ $) 62)) (-2646 (($ $) 59 (|has| $ (-6 -4239)))) (-2393 (((-708) $) 63)) (-2122 (($ $) 64)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 98 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 107)) (-2630 (($ $ $) 61 (|has| $ (-6 -4239))) (($ $ |#1|) 60 (|has| $ (-6 -4239)))) (-4165 (($ $ $) 78) (($ |#1| $) 77) (($ (-588 $)) 110) (($ $ |#1|) 109)) (-1522 (($ $) 121)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-615 |#1|) (-1197) (-1120)) (T -615))
+((-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) (-1628 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-2155 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) (-2765 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) (-1351 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-615 *3)) (-4 *3 (-1120)))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))))
+(-13 (-1059 |t#1|) (-10 -8 (-15 -1423 ($ (-1 (-108) |t#1|) $)) (-15 -1628 ($ (-1 (-108) |t#1|) $)) (-15 -4010 ((-108) $)) (-15 -4031 ((-108) $)) (-15 -2947 ((-108) $)) (-15 -2155 ($ $)) (-15 -2765 (|t#1| $)) (-15 -1351 ($ $)) (-15 -1808 ((-708) $)) (-15 -3719 ($ $ (-522))) (-15 -1522 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1059 |#1|) . T) ((-1120) . T) ((-1154 |#1|) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2169 (($ (-708) (-708) (-708)) 34 (|has| |#1| (-971)))) (-4141 (((-108) $ (-708)) NIL)) (-3863 ((|#1| $ (-708) (-708) (-708) |#1|) 29)) (-3175 (($) NIL T CONST)) (-2400 (($ $ $) 38 (|has| |#1| (-971)))) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3973 (((-1166 (-708)) $) 10)) (-2370 (($ (-1085) $ $) 24)) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2233 (($ (-708)) 36 (|has| |#1| (-971)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-708) (-708) (-708)) 27)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2201 (($ (-588 (-588 (-588 |#1|)))) 45)) (-2190 (($ (-886 (-886 (-886 |#1|)))) 17) (((-886 (-886 (-886 |#1|))) $) 14) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-616 |#1|) (-13 (-461 |#1|) (-10 -8 (IF (|has| |#1| (-971)) (PROGN (-15 -2169 ($ (-708) (-708) (-708))) (-15 -2233 ($ (-708))) (-15 -2400 ($ $ $))) |%noBranch|) (-15 -2201 ($ (-588 (-588 (-588 |#1|))))) (-15 -2545 (|#1| $ (-708) (-708) (-708))) (-15 -3863 (|#1| $ (-708) (-708) (-708) |#1|)) (-15 -2190 ($ (-886 (-886 (-886 |#1|))))) (-15 -2190 ((-886 (-886 (-886 |#1|))) $)) (-15 -2370 ($ (-1085) $ $)) (-15 -3973 ((-1166 (-708)) $)))) (-1014)) (T -616))
+((-2169 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014)))) (-2400 (*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-971)) (-4 *2 (-1014)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-588 *3)))) (-4 *3 (-1014)) (-5 *1 (-616 *3)))) (-2545 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014)))) (-3863 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-4 *3 (-1014)) (-5 *1 (-616 *3)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-5 *1 (-616 *3)) (-4 *3 (-1014)))) (-2370 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-616 *3)) (-4 *3 (-1014)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-1166 (-708))) (-5 *1 (-616 *3)) (-4 *3 (-1014)))))
+(-13 (-461 |#1|) (-10 -8 (IF (|has| |#1| (-971)) (PROGN (-15 -2169 ($ (-708) (-708) (-708))) (-15 -2233 ($ (-708))) (-15 -2400 ($ $ $))) |%noBranch|) (-15 -2201 ($ (-588 (-588 (-588 |#1|))))) (-15 -2545 (|#1| $ (-708) (-708) (-708))) (-15 -3863 (|#1| $ (-708) (-708) (-708) |#1|)) (-15 -2190 ($ (-886 (-886 (-886 |#1|))))) (-15 -2190 ((-886 (-886 (-886 |#1|))) $)) (-15 -2370 ($ (-1085) $ $)) (-15 -3973 ((-1166 (-708)) $))))
+((-1416 (((-108) $ $) NIL)) (-4106 (((-588 |#1|) $) 14)) (-1924 (($ $) 18)) (-1289 (((-108) $) 19)) (-1297 (((-3 |#1| "failed") $) 22)) (-1484 ((|#1| $) 20)) (-2306 (($ $) 36)) (-1225 (($ $) 24)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3523 (((-108) $ $) 42)) (-2517 (((-850) $) 38)) (-1913 (($ $) 17)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 ((|#1| $) 35)) (-2190 (((-792) $) 31) (($ |#1|) 23) (((-756 |#1|) $) 27)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 12)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 40)) (* (($ $ $) 34)))
+(((-617 |#1|) (-13 (-784) (-962 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2190 ((-756 |#1|) $)) (-15 -2294 (|#1| $)) (-15 -1913 ($ $)) (-15 -2517 ((-850) $)) (-15 -3523 ((-108) $ $)) (-15 -1225 ($ $)) (-15 -2306 ($ $)) (-15 -1289 ((-108) $)) (-15 -1924 ($ $)) (-15 -4106 ((-588 |#1|) $)))) (-784)) (T -617))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-2294 (*1 *2 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-3523 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784)))) (-1924 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784)))))
+(-13 (-784) (-962 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2190 ((-756 |#1|) $)) (-15 -2294 (|#1| $)) (-15 -1913 ($ $)) (-15 -2517 ((-850) $)) (-15 -3523 ((-108) $ $)) (-15 -1225 ($ $)) (-15 -2306 ($ $)) (-15 -1289 ((-108) $)) (-15 -1924 ($ $)) (-15 -4106 ((-588 |#1|) $))))
+((-3268 ((|#1| (-1 |#1| (-708) |#1|) (-708) |#1|) 11)) (-3207 ((|#1| (-1 |#1| |#1|) (-708) |#1|) 9)))
+(((-618 |#1|) (-10 -7 (-15 -3207 (|#1| (-1 |#1| |#1|) (-708) |#1|)) (-15 -3268 (|#1| (-1 |#1| (-708) |#1|) (-708) |#1|))) (-1014)) (T -618))
+((-3268 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-708) *2)) (-5 *4 (-708)) (-4 *2 (-1014)) (-5 *1 (-618 *2)))) (-3207 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-708)) (-4 *2 (-1014)) (-5 *1 (-618 *2)))))
+(-10 -7 (-15 -3207 (|#1| (-1 |#1| |#1|) (-708) |#1|)) (-15 -3268 (|#1| (-1 |#1| (-708) |#1|) (-708) |#1|)))
+((-4097 ((|#2| |#1| |#2|) 9)) (-4083 ((|#1| |#1| |#2|) 8)))
+(((-619 |#1| |#2|) (-10 -7 (-15 -4083 (|#1| |#1| |#2|)) (-15 -4097 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -619))
+((-4097 (*1 *2 *3 *2) (-12 (-5 *1 (-619 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-4083 (*1 *2 *2 *3) (-12 (-5 *1 (-619 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(-10 -7 (-15 -4083 (|#1| |#1| |#2|)) (-15 -4097 (|#2| |#1| |#2|)))
+((-3591 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -3591 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -620))
+((-3591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-620 *5 *6 *2)))))
+(-10 -7 (-15 -3591 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3268 (((-1 |#1| (-708) |#1|) (-1 |#1| (-708) |#1|)) 23)) (-1887 (((-1 |#1|) |#1|) 8)) (-1781 ((|#1| |#1|) 16)) (-3137 (((-588 |#1|) (-1 (-588 |#1|) (-588 |#1|)) (-522)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2190 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-708)) 20)))
+(((-621 |#1|) (-10 -7 (-15 -1887 ((-1 |#1|) |#1|)) (-15 -2190 ((-1 |#1|) |#1|)) (-15 -3137 (|#1| (-1 |#1| |#1|))) (-15 -3137 ((-588 |#1|) (-1 (-588 |#1|) (-588 |#1|)) (-522))) (-15 -1781 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-708))) (-15 -3268 ((-1 |#1| (-708) |#1|) (-1 |#1| (-708) |#1|)))) (-1014)) (T -621))
+((-3268 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-708) *3)) (-4 *3 (-1014)) (-5 *1 (-621 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *4 (-1014)) (-5 *1 (-621 *4)))) (-1781 (*1 *2 *2) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1014)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-588 *5) (-588 *5))) (-5 *4 (-522)) (-5 *2 (-588 *5)) (-5 *1 (-621 *5)) (-4 *5 (-1014)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-621 *2)) (-4 *2 (-1014)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014)))) (-1887 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014)))))
+(-10 -7 (-15 -1887 ((-1 |#1|) |#1|)) (-15 -2190 ((-1 |#1|) |#1|)) (-15 -3137 (|#1| (-1 |#1| |#1|))) (-15 -3137 ((-588 |#1|) (-1 (-588 |#1|) (-588 |#1|)) (-522))) (-15 -1781 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-708))) (-15 -3268 ((-1 |#1| (-708) |#1|) (-1 |#1| (-708) |#1|))))
+((-2371 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3595 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2677 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2286 (((-1 |#2| |#1|) |#2|) 11)))
+(((-622 |#1| |#2|) (-10 -7 (-15 -2286 ((-1 |#2| |#1|) |#2|)) (-15 -3595 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2677 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2371 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -622))
+((-2371 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-622 *4 *5)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-622 *4 *5)) (-4 *4 (-1014)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-622 *4 *5)))) (-2286 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-622 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014)))))
+(-10 -7 (-15 -2286 ((-1 |#2| |#1|) |#2|)) (-15 -3595 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2677 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2371 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2008 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3530 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1550 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3917 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3173 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -3530 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1550 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3917 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3173 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2008 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -623))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-623 *5 *6 *7)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-623 *4 *5 *6)))) (-3173 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *4 (-1014)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-1014)))) (-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *4 *5 *6)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *5 *4 *6)))))
+(-10 -7 (-15 -3530 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1550 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3917 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3173 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2008 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3864 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1391 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-624 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1391 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1391 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3864 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-971) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|) (-971) (-348 |#5|) (-348 |#5|) (-626 |#5| |#6| |#7|)) (T -624))
+((-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-971)) (-4 *2 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *8 (-348 *2)) (-4 *9 (-348 *2)) (-5 *1 (-624 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-626 *5 *6 *7)) (-4 *10 (-626 *2 *8 *9)))) (-1391 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-971)) (-4 *8 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-348 *8)) (-4 *10 (-348 *8)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-971)) (-4 *8 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-348 *8)) (-4 *10 (-348 *8)))))
+(-10 -7 (-15 -1391 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1391 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3864 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3483 (($ (-708) (-708)) 32)) (-3437 (($ $ $) 55)) (-2318 (($ |#3|) 51) (($ $) 52)) (-2727 (((-108) $) 27)) (-2444 (($ $ (-522) (-522)) 57)) (-1327 (($ $ (-522) (-522)) 58)) (-4183 (($ $ (-522) (-522) (-522) (-522)) 62)) (-2212 (($ $) 53)) (-2527 (((-108) $) 14)) (-3478 (($ $ (-522) (-522) $) 63)) (-2379 ((|#2| $ (-522) (-522) |#2|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) 61)) (-3022 (($ (-708) |#2|) 37)) (-1366 (($ (-588 (-588 |#2|))) 35)) (-3237 (((-588 (-588 |#2|)) $) 56)) (-1572 (($ $ $) 54)) (-2232 (((-3 $ "failed") $ |#2|) 90)) (-2545 ((|#2| $ (-522) (-522)) NIL) ((|#2| $ (-522) (-522) |#2|) NIL) (($ $ (-588 (-522)) (-588 (-522))) 60)) (-4077 (($ (-588 |#2|)) 39) (($ (-588 $)) 41)) (-1767 (((-108) $) 24)) (-2190 (($ |#4|) 46) (((-792) $) NIL)) (-1697 (((-108) $) 29)) (-1620 (($ $ |#2|) 92)) (-1612 (($ $ $) 67) (($ $) 70)) (-1602 (($ $ $) 65)) (** (($ $ (-708)) 79) (($ $ (-522)) 95)) (* (($ $ $) 76) (($ |#2| $) 72) (($ $ |#2|) 73) (($ (-522) $) 75) ((|#4| $ |#4|) 83) ((|#3| |#3| $) 87)))
+(((-625 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -1620 (|#1| |#1| |#2|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-708))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| (-522) (-522) |#1|)) (-15 -4183 (|#1| |#1| (-522) (-522) (-522) (-522))) (-15 -1327 (|#1| |#1| (-522) (-522))) (-15 -2444 (|#1| |#1| (-522) (-522))) (-15 -2379 (|#1| |#1| (-588 (-522)) (-588 (-522)) |#1|)) (-15 -2545 (|#1| |#1| (-588 (-522)) (-588 (-522)))) (-15 -3237 ((-588 (-588 |#2|)) |#1|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -1572 (|#1| |#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2318 (|#1| |#3|)) (-15 -2190 (|#1| |#4|)) (-15 -4077 (|#1| (-588 |#1|))) (-15 -4077 (|#1| (-588 |#2|))) (-15 -3022 (|#1| (-708) |#2|)) (-15 -1366 (|#1| (-588 (-588 |#2|)))) (-15 -3483 (|#1| (-708) (-708))) (-15 -1697 ((-108) |#1|)) (-15 -2727 ((-108) |#1|)) (-15 -1767 ((-108) |#1|)) (-15 -2527 ((-108) |#1|)) (-15 -2379 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) (-522)))) (-626 |#2| |#3| |#4|) (-971) (-348 |#2|) (-348 |#2|)) (T -625))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -1620 (|#1| |#1| |#2|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-708))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -3478 (|#1| |#1| (-522) (-522) |#1|)) (-15 -4183 (|#1| |#1| (-522) (-522) (-522) (-522))) (-15 -1327 (|#1| |#1| (-522) (-522))) (-15 -2444 (|#1| |#1| (-522) (-522))) (-15 -2379 (|#1| |#1| (-588 (-522)) (-588 (-522)) |#1|)) (-15 -2545 (|#1| |#1| (-588 (-522)) (-588 (-522)))) (-15 -3237 ((-588 (-588 |#2|)) |#1|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -1572 (|#1| |#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2318 (|#1| |#3|)) (-15 -2190 (|#1| |#4|)) (-15 -4077 (|#1| (-588 |#1|))) (-15 -4077 (|#1| (-588 |#2|))) (-15 -3022 (|#1| (-708) |#2|)) (-15 -1366 (|#1| (-588 (-588 |#2|)))) (-15 -3483 (|#1| (-708) (-708))) (-15 -1697 ((-108) |#1|)) (-15 -2727 ((-108) |#1|)) (-15 -1767 ((-108) |#1|)) (-15 -2527 ((-108) |#1|)) (-15 -2379 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) (-522))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3483 (($ (-708) (-708)) 97)) (-3437 (($ $ $) 87)) (-2318 (($ |#2|) 91) (($ $) 90)) (-2727 (((-108) $) 99)) (-2444 (($ $ (-522) (-522)) 83)) (-1327 (($ $ (-522) (-522)) 82)) (-4183 (($ $ (-522) (-522) (-522) (-522)) 81)) (-2212 (($ $) 89)) (-2527 (((-108) $) 101)) (-4141 (((-108) $ (-708)) 8)) (-3478 (($ $ (-522) (-522) $) 80)) (-2379 ((|#1| $ (-522) (-522) |#1|) 44) (($ $ (-588 (-522)) (-588 (-522)) $) 84)) (-2480 (($ $ (-522) |#2|) 42)) (-1888 (($ $ (-522) |#3|) 41)) (-3022 (($ (-708) |#1|) 95)) (-3175 (($) 7 T CONST)) (-2264 (($ $) 67 (|has| |#1| (-283)))) (-1860 ((|#2| $ (-522)) 46)) (-3166 (((-708) $) 66 (|has| |#1| (-514)))) (-3854 ((|#1| $ (-522) (-522) |#1|) 43)) (-3631 ((|#1| $ (-522) (-522)) 48)) (-3837 (((-588 |#1|) $) 30)) (-3799 (((-708) $) 65 (|has| |#1| (-514)))) (-2064 (((-588 |#3|) $) 64 (|has| |#1| (-514)))) (-1411 (((-708) $) 51)) (-1811 (($ (-708) (-708) |#1|) 57)) (-1422 (((-708) $) 50)) (-3352 (((-108) $ (-708)) 9)) (-3081 ((|#1| $) 62 (|has| |#1| (-6 (-4240 "*"))))) (-2575 (((-522) $) 55)) (-1885 (((-522) $) 53)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3886 (((-522) $) 54)) (-4132 (((-522) $) 52)) (-1366 (($ (-588 (-588 |#1|))) 96)) (-3838 (($ (-1 |#1| |#1|) $) 34)) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3237 (((-588 (-588 |#1|)) $) 86)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2147 (((-3 $ "failed") $) 61 (|has| |#1| (-338)))) (-1572 (($ $ $) 88)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) 56)) (-2232 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-514)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) (-522)) 49) ((|#1| $ (-522) (-522) |#1|) 47) (($ $ (-588 (-522)) (-588 (-522))) 85)) (-4077 (($ (-588 |#1|)) 94) (($ (-588 $)) 93)) (-1767 (((-108) $) 100)) (-3206 ((|#1| $) 63 (|has| |#1| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-3488 ((|#3| $ (-522)) 45)) (-2190 (($ |#3|) 92) (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1697 (((-108) $) 98)) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1620 (($ $ |#1|) 68 (|has| |#1| (-338)))) (-1612 (($ $ $) 78) (($ $) 77)) (-1602 (($ $ $) 79)) (** (($ $ (-708)) 70) (($ $ (-522)) 60 (|has| |#1| (-338)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-522) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-626 |#1| |#2| |#3|) (-1197) (-971) (-348 |t#1|) (-348 |t#1|)) (T -626))
+((-2527 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-108)))) (-3483 (*1 *1 *2 *2) (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3022 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *2)) (-4 *4 (-348 *3)) (-4 *2 (-348 *3)))) (-2318 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *2 *4)) (-4 *2 (-348 *3)) (-4 *4 (-348 *3)))) (-2318 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-2212 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-1572 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-3437 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-588 (-588 *3))))) (-2545 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2379 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2444 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1327 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-4183 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-3478 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-626 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *2 (-348 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-626 *3 *2 *4)) (-4 *3 (-971)) (-4 *2 (-348 *3)) (-4 *4 (-348 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))) (-2232 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-514)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-338)))) (-2264 (*1 *1 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-283)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-588 *5)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-2147 (*1 *1 *1) (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-338)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-338)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4239) (-6 -4238) (-15 -2527 ((-108) $)) (-15 -1767 ((-108) $)) (-15 -2727 ((-108) $)) (-15 -1697 ((-108) $)) (-15 -3483 ($ (-708) (-708))) (-15 -1366 ($ (-588 (-588 |t#1|)))) (-15 -3022 ($ (-708) |t#1|)) (-15 -4077 ($ (-588 |t#1|))) (-15 -4077 ($ (-588 $))) (-15 -2190 ($ |t#3|)) (-15 -2318 ($ |t#2|)) (-15 -2318 ($ $)) (-15 -2212 ($ $)) (-15 -1572 ($ $ $)) (-15 -3437 ($ $ $)) (-15 -3237 ((-588 (-588 |t#1|)) $)) (-15 -2545 ($ $ (-588 (-522)) (-588 (-522)))) (-15 -2379 ($ $ (-588 (-522)) (-588 (-522)) $)) (-15 -2444 ($ $ (-522) (-522))) (-15 -1327 ($ $ (-522) (-522))) (-15 -4183 ($ $ (-522) (-522) (-522) (-522))) (-15 -3478 ($ $ (-522) (-522) $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -1612 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-522) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-708))) (IF (|has| |t#1| (-514)) (-15 -2232 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -1620 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-283)) (-15 -2264 ($ $)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-15 -3166 ((-708) $)) (-15 -3799 ((-708) $)) (-15 -2064 ((-588 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4240 "*"))) (PROGN (-15 -3206 (|t#1| $)) (-15 -3081 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-15 -2147 ((-3 $ "failed") $)) (-15 ** ($ $ (-522)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-55 |#1| |#2| |#3|) . T) ((-1120) . T))
+((-2264 ((|#4| |#4|) 68 (|has| |#1| (-283)))) (-3166 (((-708) |#4|) 70 (|has| |#1| (-514)))) (-3799 (((-708) |#4|) 72 (|has| |#1| (-514)))) (-2064 (((-588 |#3|) |#4|) 79 (|has| |#1| (-514)))) (-1438 (((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|) 96 (|has| |#1| (-283)))) (-3081 ((|#1| |#4|) 34)) (-4012 (((-3 |#4| "failed") |#4|) 62 (|has| |#1| (-514)))) (-2147 (((-3 |#4| "failed") |#4|) 76 (|has| |#1| (-338)))) (-2880 ((|#4| |#4|) 55 (|has| |#1| (-514)))) (-3100 ((|#4| |#4| |#1| (-522) (-522)) 42)) (-3388 ((|#4| |#4| (-522) (-522)) 37)) (-1219 ((|#4| |#4| |#1| (-522) (-522)) 47)) (-3206 ((|#1| |#4|) 74)) (-3785 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 58 (|has| |#1| (-514)))))
+(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3206 (|#1| |#4|)) (-15 -3081 (|#1| |#4|)) (-15 -3388 (|#4| |#4| (-522) (-522))) (-15 -3100 (|#4| |#4| |#1| (-522) (-522))) (-15 -1219 (|#4| |#4| |#1| (-522) (-522))) (IF (|has| |#1| (-514)) (PROGN (-15 -3166 ((-708) |#4|)) (-15 -3799 ((-708) |#4|)) (-15 -2064 ((-588 |#3|) |#4|)) (-15 -2880 (|#4| |#4|)) (-15 -4012 ((-3 |#4| "failed") |#4|)) (-15 -3785 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-283)) (PROGN (-15 -2264 (|#4| |#4|)) (-15 -1438 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -2147 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-157) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -627))
+((-2147 (*1 *2 *2) (|partial| -12 (-4 *3 (-338)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-1438 (*1 *2 *3 *3) (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-627 *3 *4 *5 *6)) (-4 *6 (-626 *3 *4 *5)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-4012 (*1 *2 *2) (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3799 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-1219 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3)) (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6)))) (-3100 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3)) (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2)) (-4 *2 (-626 *3 *5 *6)))) (-3388 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-522)) (-4 *4 (-157)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *1 (-627 *4 *5 *6 *2)) (-4 *2 (-626 *4 *5 *6)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157)) (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))) (-3206 (*1 *2 *3) (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157)) (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5)))))
+(-10 -7 (-15 -3206 (|#1| |#4|)) (-15 -3081 (|#1| |#4|)) (-15 -3388 (|#4| |#4| (-522) (-522))) (-15 -3100 (|#4| |#4| |#1| (-522) (-522))) (-15 -1219 (|#4| |#4| |#1| (-522) (-522))) (IF (|has| |#1| (-514)) (PROGN (-15 -3166 ((-708) |#4|)) (-15 -3799 ((-708) |#4|)) (-15 -2064 ((-588 |#3|) |#4|)) (-15 -2880 (|#4| |#4|)) (-15 -4012 ((-3 |#4| "failed") |#4|)) (-15 -3785 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-283)) (PROGN (-15 -2264 (|#4| |#4|)) (-15 -1438 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -2147 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3483 (($ (-708) (-708)) 45)) (-3437 (($ $ $) NIL)) (-2318 (($ (-1166 |#1|)) NIL) (($ $) NIL)) (-2727 (((-108) $) NIL)) (-2444 (($ $ (-522) (-522)) 12)) (-1327 (($ $ (-522) (-522)) NIL)) (-4183 (($ $ (-522) (-522) (-522) (-522)) NIL)) (-2212 (($ $) NIL)) (-2527 (((-108) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3478 (($ $ (-522) (-522) $) NIL)) (-2379 ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522)) $) NIL)) (-2480 (($ $ (-522) (-1166 |#1|)) NIL)) (-1888 (($ $ (-522) (-1166 |#1|)) NIL)) (-3022 (($ (-708) |#1|) 22)) (-3175 (($) NIL T CONST)) (-2264 (($ $) 30 (|has| |#1| (-283)))) (-1860 (((-1166 |#1|) $ (-522)) NIL)) (-3166 (((-708) $) 32 (|has| |#1| (-514)))) (-3854 ((|#1| $ (-522) (-522) |#1|) 50)) (-3631 ((|#1| $ (-522) (-522)) NIL)) (-3837 (((-588 |#1|) $) NIL)) (-3799 (((-708) $) 34 (|has| |#1| (-514)))) (-2064 (((-588 (-1166 |#1|)) $) 37 (|has| |#1| (-514)))) (-1411 (((-708) $) 20)) (-1811 (($ (-708) (-708) |#1|) NIL)) (-1422 (((-708) $) 21)) (-3352 (((-108) $ (-708)) NIL)) (-3081 ((|#1| $) 28 (|has| |#1| (-6 (-4240 "*"))))) (-2575 (((-522) $) 9)) (-1885 (((-522) $) 10)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3886 (((-522) $) 11)) (-4132 (((-522) $) 46)) (-1366 (($ (-588 (-588 |#1|))) NIL)) (-3838 (($ (-1 |#1| |#1|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3237 (((-588 (-588 |#1|)) $) 58)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2147 (((-3 $ "failed") $) 41 (|has| |#1| (-338)))) (-1572 (($ $ $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2602 (($ $ |#1|) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) (-522)) NIL) ((|#1| $ (-522) (-522) |#1|) NIL) (($ $ (-588 (-522)) (-588 (-522))) NIL)) (-4077 (($ (-588 |#1|)) NIL) (($ (-588 $)) NIL) (($ (-1166 |#1|)) 51)) (-1767 (((-108) $) NIL)) (-3206 ((|#1| $) 26 (|has| |#1| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-1431 (((-498) $) 62 (|has| |#1| (-563 (-498))))) (-3488 (((-1166 |#1|) $ (-522)) NIL)) (-2190 (($ (-1166 |#1|)) NIL) (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1697 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $ $) NIL) (($ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) 23) (($ $ (-522)) 44 (|has| |#1| (-338)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-522) $) NIL) (((-1166 |#1|) $ (-1166 |#1|)) NIL) (((-1166 |#1|) (-1166 |#1|) $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-628 |#1|) (-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 -4077 ($ (-1166 |#1|))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -2147 ((-3 $ "failed") $)) |%noBranch|))) (-971)) (T -628))
+((-2147 (*1 *1 *1) (|partial| -12 (-5 *1 (-628 *2)) (-4 *2 (-338)) (-4 *2 (-971)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-628 *3)))))
+(-13 (-626 |#1| (-1166 |#1|) (-1166 |#1|)) (-10 -8 (-15 -4077 ($ (-1166 |#1|))) (IF (|has| |#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |#1| (-338)) (-15 -2147 ((-3 $ "failed") $)) |%noBranch|)))
+((-3758 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|)) 25)) (-1746 (((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|) 21)) (-3554 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-708)) 26)) (-3163 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|)) 14)) (-4038 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|)) 18) (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 16)) (-2476 (((-628 |#1|) (-628 |#1|) |#1| (-628 |#1|)) 20)) (-1633 (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 12)) (** (((-628 |#1|) (-628 |#1|) (-708)) 30)))
+(((-629 |#1|) (-10 -7 (-15 -1633 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3163 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4038 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4038 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -2476 ((-628 |#1|) (-628 |#1|) |#1| (-628 |#1|))) (-15 -1746 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -3758 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3554 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-708))) (-15 ** ((-628 |#1|) (-628 |#1|) (-708)))) (-971)) (T -629))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-629 *4)))) (-3554 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-629 *4)))) (-3758 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-1746 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-2476 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-4038 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-4038 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-3163 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))) (-1633 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
+(-10 -7 (-15 -1633 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3163 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4038 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -4038 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -2476 ((-628 |#1|) (-628 |#1|) |#1| (-628 |#1|))) (-15 -1746 ((-628 |#1|) (-628 |#1|) (-628 |#1|) |#1|)) (-15 -3758 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3554 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-628 |#1|) (-708))) (-15 ** ((-628 |#1|) (-628 |#1|) (-708))))
+((-2062 ((|#2| |#2| |#4|) 25)) (-3807 (((-628 |#2|) |#3| |#4|) 31)) (-1590 (((-628 |#2|) |#2| |#4|) 30)) (-2915 (((-1166 |#2|) |#2| |#4|) 16)) (-2142 ((|#2| |#3| |#4|) 24)) (-3998 (((-628 |#2|) |#3| |#4| (-708) (-708)) 38)) (-1695 (((-628 |#2|) |#2| |#4| (-708)) 37)))
+(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2915 ((-1166 |#2|) |#2| |#4|)) (-15 -2142 (|#2| |#3| |#4|)) (-15 -2062 (|#2| |#2| |#4|)) (-15 -1590 ((-628 |#2|) |#2| |#4|)) (-15 -1695 ((-628 |#2|) |#2| |#4| (-708))) (-15 -3807 ((-628 |#2|) |#3| |#4|)) (-15 -3998 ((-628 |#2|) |#3| |#4| (-708) (-708)))) (-1014) (-829 |#1|) (-348 |#2|) (-13 (-348 |#1|) (-10 -7 (-6 -4238)))) (T -630))
+((-3998 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *7 (-829 *6)) (-5 *2 (-628 *7)) (-5 *1 (-630 *6 *7 *3 *4)) (-4 *3 (-348 *7)) (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238)))))) (-3807 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-829 *5)) (-5 *2 (-628 *6)) (-5 *1 (-630 *5 *6 *3 *4)) (-4 *3 (-348 *6)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))) (-1695 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *3 (-829 *6)) (-5 *2 (-628 *3)) (-5 *1 (-630 *6 *3 *7 *4)) (-4 *7 (-348 *3)) (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238)))))) (-1590 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-628 *3)) (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))) (-2062 (*1 *2 *2 *3) (-12 (-4 *4 (-1014)) (-4 *2 (-829 *4)) (-5 *1 (-630 *4 *2 *5 *3)) (-4 *5 (-348 *2)) (-4 *3 (-13 (-348 *4) (-10 -7 (-6 -4238)))))) (-2142 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *2 (-829 *5)) (-5 *1 (-630 *5 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))) (-2915 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-1166 *3)) (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))))
+(-10 -7 (-15 -2915 ((-1166 |#2|) |#2| |#4|)) (-15 -2142 (|#2| |#3| |#4|)) (-15 -2062 (|#2| |#2| |#4|)) (-15 -1590 ((-628 |#2|) |#2| |#4|)) (-15 -1695 ((-628 |#2|) |#2| |#4| (-708))) (-15 -3807 ((-628 |#2|) |#3| |#4|)) (-15 -3998 ((-628 |#2|) |#3| |#4| (-708) (-708))))
+((-2297 (((-2 (|:| |num| (-628 |#1|)) (|:| |den| |#1|)) (-628 |#2|)) 18)) (-1847 ((|#1| (-628 |#2|)) 9)) (-3513 (((-628 |#1|) (-628 |#2|)) 16)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -1847 (|#1| (-628 |#2|))) (-15 -3513 ((-628 |#1|) (-628 |#2|))) (-15 -2297 ((-2 (|:| |num| (-628 |#1|)) (|:| |den| |#1|)) (-628 |#2|)))) (-514) (-919 |#1|)) (T -631))
+((-2297 (*1 *2 *3) (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |num| (-628 *4)) (|:| |den| *4))) (-5 *1 (-631 *4 *5)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514)) (-5 *2 (-628 *4)) (-5 *1 (-631 *4 *5)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-628 *4)) (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-631 *2 *4)))))
+(-10 -7 (-15 -1847 (|#1| (-628 |#2|))) (-15 -3513 ((-628 |#1|) (-628 |#2|))) (-15 -2297 ((-2 (|:| |num| (-628 |#1|)) (|:| |den| |#1|)) (-628 |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-3174 (((-628 (-637))) NIL) (((-628 (-637)) (-1166 $)) NIL)) (-1865 (((-637) $) NIL)) (-2908 (($ $) NIL (|has| (-637) (-1106)))) (-2772 (($ $) NIL (|has| (-637) (-1106)))) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-637) (-324)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-3119 (($ $) NIL (-3708 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-3450 (((-393 $) $) NIL (-3708 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-1929 (($ $) NIL (-12 (|has| (-637) (-928)) (|has| (-637) (-1106))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-1687 (((-108) $ $) NIL (|has| (-637) (-283)))) (-1629 (((-708)) NIL (|has| (-637) (-343)))) (-2884 (($ $) NIL (|has| (-637) (-1106)))) (-2748 (($ $) NIL (|has| (-637) (-1106)))) (-2930 (($ $) NIL (|has| (-637) (-1106)))) (-2794 (($ $) NIL (|has| (-637) (-1106)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-637) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-637) (-962 (-382 (-522)))))) (-1484 (((-522) $) NIL) (((-637) $) NIL) (((-382 (-522)) $) NIL (|has| (-637) (-962 (-382 (-522)))))) (-3766 (($ (-1166 (-637))) NIL) (($ (-1166 (-637)) (-1166 $)) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-637) (-324)))) (-2277 (($ $ $) NIL (|has| (-637) (-283)))) (-2109 (((-628 (-637)) $) NIL) (((-628 (-637)) $ (-1166 $)) NIL)) (-2096 (((-628 (-637)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-637))) (|:| |vec| (-1166 (-637)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-637) (-584 (-522)))) (((-628 (-522)) (-628 $)) NIL (|has| (-637) (-584 (-522))))) (-3864 (((-3 $ "failed") (-382 (-1081 (-637)))) NIL (|has| (-637) (-338))) (($ (-1081 (-637))) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1937 (((-637) $) 29)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL (|has| (-637) (-507)))) (-1770 (((-108) $) NIL (|has| (-637) (-507)))) (-1492 (((-382 (-522)) $) NIL (|has| (-637) (-507)))) (-3166 (((-850)) NIL)) (-3255 (($) NIL (|has| (-637) (-343)))) (-2254 (($ $ $) NIL (|has| (-637) (-283)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| (-637) (-283)))) (-1223 (($) NIL (|has| (-637) (-324)))) (-2511 (((-108) $) NIL (|has| (-637) (-324)))) (-2111 (($ $) NIL (|has| (-637) (-324))) (($ $ (-708)) NIL (|has| (-637) (-324)))) (-2813 (((-108) $) NIL (-3708 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-3329 (((-2 (|:| |r| (-637)) (|:| |phi| (-637))) $) NIL (-12 (|has| (-637) (-980)) (|has| (-637) (-1106))))) (-2838 (($) NIL (|has| (-637) (-1106)))) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-637) (-815 (-354)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-637) (-815 (-522))))) (-3714 (((-770 (-850)) $) NIL (|has| (-637) (-324))) (((-850) $) NIL (|has| (-637) (-324)))) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (-12 (|has| (-637) (-928)) (|has| (-637) (-1106))))) (-2100 (((-637) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| (-637) (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-637) (-283)))) (-1712 (((-1081 (-637)) $) NIL (|has| (-637) (-338)))) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1391 (($ (-1 (-637) (-637)) $) NIL)) (-2120 (((-850) $) NIL (|has| (-637) (-343)))) (-1254 (($ $) NIL (|has| (-637) (-1106)))) (-3849 (((-1081 (-637)) $) NIL)) (-2224 (($ (-588 $)) NIL (|has| (-637) (-283))) (($ $ $) NIL (|has| (-637) (-283)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| (-637) (-338)))) (-3802 (($) NIL (|has| (-637) (-324)) CONST)) (-2717 (($ (-850)) NIL (|has| (-637) (-343)))) (-2059 (($) NIL)) (-1948 (((-637) $) 31)) (-4151 (((-1032) $) NIL)) (-1383 (($) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| (-637) (-283)))) (-2259 (($ (-588 $)) NIL (|has| (-637) (-283))) (($ $ $) NIL (|has| (-637) (-283)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-637) (-324)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-637) (-283)) (|has| (-637) (-838))))) (-1916 (((-393 $) $) NIL (-3708 (-12 (|has| (-637) (-283)) (|has| (-637) (-838))) (|has| (-637) (-338))))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-637) (-283))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| (-637) (-283)))) (-2232 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-637)) NIL (|has| (-637) (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-637) (-283)))) (-3266 (($ $) NIL (|has| (-637) (-1106)))) (-2289 (($ $ (-1085) (-637)) NIL (|has| (-637) (-483 (-1085) (-637)))) (($ $ (-588 (-1085)) (-588 (-637))) NIL (|has| (-637) (-483 (-1085) (-637)))) (($ $ (-588 (-270 (-637)))) NIL (|has| (-637) (-285 (-637)))) (($ $ (-270 (-637))) NIL (|has| (-637) (-285 (-637)))) (($ $ (-637) (-637)) NIL (|has| (-637) (-285 (-637)))) (($ $ (-588 (-637)) (-588 (-637))) NIL (|has| (-637) (-285 (-637))))) (-3730 (((-708) $) NIL (|has| (-637) (-283)))) (-2545 (($ $ (-637)) NIL (|has| (-637) (-262 (-637) (-637))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| (-637) (-283)))) (-2769 (((-637)) NIL) (((-637) (-1166 $)) NIL)) (-3018 (((-3 (-708) "failed") $ $) NIL (|has| (-637) (-324))) (((-708) $) NIL (|has| (-637) (-324)))) (-2157 (($ $ (-1 (-637) (-637))) NIL) (($ $ (-1 (-637) (-637)) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-708)) NIL (|has| (-637) (-210))) (($ $) NIL (|has| (-637) (-210)))) (-1859 (((-628 (-637)) (-1166 $) (-1 (-637) (-637))) NIL (|has| (-637) (-338)))) (-1479 (((-1081 (-637))) NIL)) (-1738 (($ $) NIL (|has| (-637) (-1106)))) (-2804 (($ $) NIL (|has| (-637) (-1106)))) (-2581 (($) NIL (|has| (-637) (-324)))) (-2919 (($ $) NIL (|has| (-637) (-1106)))) (-2784 (($ $) NIL (|has| (-637) (-1106)))) (-2896 (($ $) NIL (|has| (-637) (-1106)))) (-2761 (($ $) NIL (|has| (-637) (-1106)))) (-3677 (((-628 (-637)) (-1166 $)) NIL) (((-1166 (-637)) $) NIL) (((-628 (-637)) (-1166 $) (-1166 $)) NIL) (((-1166 (-637)) $ (-1166 $)) NIL)) (-1431 (((-498) $) NIL (|has| (-637) (-563 (-498)))) (((-154 (-202)) $) NIL (|has| (-637) (-947))) (((-154 (-354)) $) NIL (|has| (-637) (-947))) (((-821 (-354)) $) NIL (|has| (-637) (-563 (-821 (-354))))) (((-821 (-522)) $) NIL (|has| (-637) (-563 (-821 (-522))))) (($ (-1081 (-637))) NIL) (((-1081 (-637)) $) NIL) (($ (-1166 (-637))) NIL) (((-1166 (-637)) $) NIL)) (-3122 (($ $) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-3708 (-12 (|has| (-637) (-283)) (|has| $ (-133)) (|has| (-637) (-838))) (|has| (-637) (-324))))) (-3911 (($ (-637) (-637)) 12)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-522)) NIL) (($ (-637)) NIL) (($ (-154 (-354))) 13) (($ (-154 (-522))) 19) (($ (-154 (-637))) 28) (($ (-154 (-639))) 25) (((-154 (-354)) $) 33) (($ (-382 (-522))) NIL (-3708 (|has| (-637) (-962 (-382 (-522)))) (|has| (-637) (-338))))) (-2143 (($ $) NIL (|has| (-637) (-324))) (((-3 $ "failed") $) NIL (-3708 (-12 (|has| (-637) (-283)) (|has| $ (-133)) (|has| (-637) (-838))) (|has| (-637) (-133))))) (-2051 (((-1081 (-637)) $) NIL)) (-2323 (((-708)) NIL)) (-3855 (((-1166 $)) NIL)) (-1759 (($ $) NIL (|has| (-637) (-1106)))) (-2836 (($ $) NIL (|has| (-637) (-1106)))) (-3958 (((-108) $ $) NIL)) (-1745 (($ $) NIL (|has| (-637) (-1106)))) (-2815 (($ $) NIL (|has| (-637) (-1106)))) (-1776 (($ $) NIL (|has| (-637) (-1106)))) (-2860 (($ $) NIL (|has| (-637) (-1106)))) (-3824 (((-637) $) NIL (|has| (-637) (-1106)))) (-3924 (($ $) NIL (|has| (-637) (-1106)))) (-2872 (($ $) NIL (|has| (-637) (-1106)))) (-1768 (($ $) NIL (|has| (-637) (-1106)))) (-2848 (($ $) NIL (|has| (-637) (-1106)))) (-1752 (($ $) NIL (|has| (-637) (-1106)))) (-2825 (($ $) NIL (|has| (-637) (-1106)))) (-2241 (($ $) NIL (|has| (-637) (-980)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-637) (-338)))) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-1 (-637) (-637))) NIL) (($ $ (-1 (-637) (-637)) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-1085)) NIL (|has| (-637) (-829 (-1085)))) (($ $ (-708)) NIL (|has| (-637) (-210))) (($ $) NIL (|has| (-637) (-210)))) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL (|has| (-637) (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ $) NIL (|has| (-637) (-1106))) (($ $ (-382 (-522))) NIL (-12 (|has| (-637) (-928)) (|has| (-637) (-1106)))) (($ $ (-522)) NIL (|has| (-637) (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ (-637) $) NIL) (($ $ (-637)) NIL) (($ (-382 (-522)) $) NIL (|has| (-637) (-338))) (($ $ (-382 (-522))) NIL (|has| (-637) (-338)))))
+(((-632) (-13 (-362) (-151 (-637)) (-10 -8 (-15 -2190 ($ (-154 (-354)))) (-15 -2190 ($ (-154 (-522)))) (-15 -2190 ($ (-154 (-637)))) (-15 -2190 ($ (-154 (-639)))) (-15 -2190 ((-154 (-354)) $))))) (T -632))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-154 (-522))) (-5 *1 (-632)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-154 (-637))) (-5 *1 (-632)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-154 (-639))) (-5 *1 (-632)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632)))))
+(-13 (-362) (-151 (-637)) (-10 -8 (-15 -2190 ($ (-154 (-354)))) (-15 -2190 ($ (-154 (-522)))) (-15 -2190 ($ (-154 (-637)))) (-15 -2190 ($ (-154 (-639)))) (-15 -2190 ((-154 (-354)) $))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-2790 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3362 (($ $) 62)) (-2333 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40) (($ |#1| $ (-708)) 63)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3698 (((-588 (-2 (|:| -3048 |#1|) (|:| -4168 (-708)))) $) 61)) (-3990 (($) 49) (($ (-588 |#1|)) 48)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 50)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-633 |#1|) (-1197) (-1014)) (T -633))
+((-4095 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-633 *2)) (-4 *2 (-1014)))) (-3362 (*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1014)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-633 *3)) (-4 *3 (-1014)) (-5 *2 (-588 (-2 (|:| -3048 *3) (|:| -4168 (-708))))))))
+(-13 (-212 |t#1|) (-10 -8 (-15 -4095 ($ |t#1| $ (-708))) (-15 -3362 ($ $)) (-15 -3698 ((-588 (-2 (|:| -3048 |t#1|) (|:| -4168 (-708)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-2809 (((-588 |#1|) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))) (-522)) 46)) (-1281 ((|#1| |#1| (-522)) 45)) (-2259 ((|#1| |#1| |#1| (-522)) 35)) (-1916 (((-588 |#1|) |#1| (-522)) 38)) (-1844 ((|#1| |#1| (-522) |#1| (-522)) 32)) (-1791 (((-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))) |#1| (-522)) 44)))
+(((-634 |#1|) (-10 -7 (-15 -2259 (|#1| |#1| |#1| (-522))) (-15 -1281 (|#1| |#1| (-522))) (-15 -1916 ((-588 |#1|) |#1| (-522))) (-15 -1791 ((-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))) |#1| (-522))) (-15 -2809 ((-588 |#1|) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))) (-522))) (-15 -1844 (|#1| |#1| (-522) |#1| (-522)))) (-1142 (-522))) (T -634))
+((-1844 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| -1916 *5) (|:| -2793 (-522))))) (-5 *4 (-522)) (-4 *5 (-1142 *4)) (-5 *2 (-588 *5)) (-5 *1 (-634 *5)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-5 *2 (-588 (-2 (|:| -1916 *3) (|:| -2793 *4)))) (-5 *1 (-634 *3)) (-4 *3 (-1142 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-5 *2 (-588 *3)) (-5 *1 (-634 *3)) (-4 *3 (-1142 *4)))) (-1281 (*1 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))) (-2259 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))))
+(-10 -7 (-15 -2259 (|#1| |#1| |#1| (-522))) (-15 -1281 (|#1| |#1| (-522))) (-15 -1916 ((-588 |#1|) |#1| (-522))) (-15 -1791 ((-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))) |#1| (-522))) (-15 -2809 ((-588 |#1|) (-588 (-2 (|:| -1916 |#1|) (|:| -2793 (-522)))) (-522))) (-15 -1844 (|#1| |#1| (-522) |#1| (-522))))
+((-3541 (((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202))) 17)) (-2732 (((-1045 (-202)) (-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 38) (((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 40) (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 42)) (-1682 (((-1045 (-202)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-588 (-239))) NIL)) (-2683 (((-1045 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239))) 43)))
+(((-635) (-10 -7 (-15 -2732 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2732 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2732 ((-1045 (-202)) (-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2683 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -1682 ((-1045 (-202)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3541 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))) (T -635))
+((-3541 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1 (-202) (-202) (-202) (-202))) (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *1 (-635)))) (-1682 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202))) (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) (-2683 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) (-2732 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-202))) (-5 *5 (-588 (-239))) (-5 *1 (-635)))) (-2732 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-202))) (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))) (-2732 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined")) (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635)))))
+(-10 -7 (-15 -2732 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2732 ((-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2732 ((-1045 (-202)) (-1045 (-202)) (-1 (-872 (-202)) (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -2683 ((-1045 (-202)) (-1 (-202) (-202) (-202)) (-3 (-1 (-202) (-202) (-202) (-202)) "undefined") (-1009 (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -1682 ((-1045 (-202)) (-291 (-522)) (-291 (-522)) (-291 (-522)) (-1 (-202) (-202)) (-1009 (-202)) (-588 (-239)))) (-15 -3541 ((-1 (-872 (-202)) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202)) (-1 (-202) (-202) (-202) (-202)))))
+((-1916 (((-393 (-1081 |#4|)) (-1081 |#4|)) 73) (((-393 |#4|) |#4|) 217)))
+(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 |#4|) |#4|)) (-15 -1916 ((-393 (-1081 |#4|)) (-1081 |#4|)))) (-784) (-730) (-324) (-878 |#3| |#2| |#1|)) (T -636))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-636 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(-10 -7 (-15 -1916 ((-393 |#4|) |#4|)) (-15 -1916 ((-393 (-1081 |#4|)) (-1081 |#4|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 84)) (-2229 (((-522) $) 30)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-2789 (($ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1929 (($ $) NIL)) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL)) (-3175 (($) NIL T CONST)) (-2599 (($ $) NIL)) (-1297 (((-3 (-522) "failed") $) 73) (((-3 (-382 (-522)) "failed") $) 26) (((-3 (-354) "failed") $) 70)) (-1484 (((-522) $) 75) (((-382 (-522)) $) 67) (((-354) $) 68)) (-2277 (($ $ $) 96)) (-2682 (((-3 $ "failed") $) 87)) (-2254 (($ $ $) 95)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2175 (((-850)) 77) (((-850) (-850)) 76)) (-3687 (((-108) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL)) (-3714 (((-522) $) NIL)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL)) (-2100 (($ $) NIL)) (-2556 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2945 (((-522) (-522)) 81) (((-522)) 82)) (-2814 (($ $ $) NIL) (($) NIL (-12 (-2401 (|has| $ (-6 -4221))) (-2401 (|has| $ (-6 -4229)))))) (-1930 (((-522) (-522)) 79) (((-522)) 80)) (-2446 (($ $ $) NIL) (($) NIL (-12 (-2401 (|has| $ (-6 -4221))) (-2401 (|has| $ (-6 -4229)))))) (-3357 (((-522) $) 16)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 91)) (-1941 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL)) (-3686 (($ $) NIL)) (-3071 (($ (-522) (-522)) NIL) (($ (-522) (-522) (-850)) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) 92)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1400 (((-522) $) 22)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 94)) (-2615 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-2349 (((-850) (-522)) NIL (|has| $ (-6 -4229)))) (-1431 (((-354) $) NIL) (((-202) $) NIL) (((-821 (-354)) $) NIL)) (-2190 (((-792) $) 52) (($ (-522)) 63) (($ $) NIL) (($ (-382 (-522))) 66) (($ (-522)) 63) (($ (-382 (-522))) 66) (($ (-354)) 60) (((-354) $) 50) (($ (-639)) 55)) (-2323 (((-708)) 103)) (-1387 (($ (-522) (-522) (-850)) 44)) (-3025 (($ $) NIL)) (-3836 (((-850)) NIL) (((-850) (-850)) NIL (|has| $ (-6 -4229)))) (-3355 (((-850)) 35) (((-850) (-850)) 78)) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 32 T CONST)) (-3577 (($) 17 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 83)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 101)) (-1620 (($ $ $) 65)) (-1612 (($ $) 99) (($ $ $) 100)) (-1602 (($ $ $) 98)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ $ (-382 (-522))) 90)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 97) (($ $ $) 88) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-637) (-13 (-379) (-362) (-338) (-962 (-354)) (-962 (-382 (-522))) (-135) (-10 -8 (-15 -2175 ((-850) (-850))) (-15 -2175 ((-850))) (-15 -3355 ((-850) (-850))) (-15 -3355 ((-850))) (-15 -1930 ((-522) (-522))) (-15 -1930 ((-522))) (-15 -2945 ((-522) (-522))) (-15 -2945 ((-522))) (-15 -2190 ((-354) $)) (-15 -2190 ($ (-639))) (-15 -3357 ((-522) $)) (-15 -1400 ((-522) $)) (-15 -1387 ($ (-522) (-522) (-850)))))) (T -637))
+((-3355 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-2175 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-2175 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-3355 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-1930 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-2945 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-354)) (-5 *1 (-637)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-639)) (-5 *1 (-637)))) (-1387 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-5 *1 (-637)))))
+(-13 (-379) (-362) (-338) (-962 (-354)) (-962 (-382 (-522))) (-135) (-10 -8 (-15 -2175 ((-850) (-850))) (-15 -2175 ((-850))) (-15 -3355 ((-850) (-850))) (-15 -3355 ((-850))) (-15 -1930 ((-522) (-522))) (-15 -1930 ((-522))) (-15 -2945 ((-522) (-522))) (-15 -2945 ((-522))) (-15 -2190 ((-354) $)) (-15 -2190 ($ (-639))) (-15 -3357 ((-522) $)) (-15 -1400 ((-522) $)) (-15 -1387 ($ (-522) (-522) (-850)))))
+((-1997 (((-628 |#1|) (-628 |#1|) |#1| |#1|) 65)) (-2264 (((-628 |#1|) (-628 |#1|) |#1|) 48)) (-2445 (((-628 |#1|) (-628 |#1|) |#1|) 66)) (-1638 (((-628 |#1|) (-628 |#1|)) 49)) (-1438 (((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|) 64)))
+(((-638 |#1|) (-10 -7 (-15 -1638 ((-628 |#1|) (-628 |#1|))) (-15 -2264 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -2445 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -1997 ((-628 |#1|) (-628 |#1|) |#1| |#1|)) (-15 -1438 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|))) (-283)) (T -638))
+((-1438 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-638 *3)) (-4 *3 (-283)))) (-1997 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) (-2445 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) (-2264 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))))
+(-10 -7 (-15 -1638 ((-628 |#1|) (-628 |#1|))) (-15 -2264 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -2445 ((-628 |#1|) (-628 |#1|) |#1|)) (-15 -1997 ((-628 |#1|) (-628 |#1|) |#1| |#1|)) (-15 -1438 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-3871 (($ $ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3481 (($ $ $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL)) (-1662 (($ $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) 27)) (-1484 (((-522) $) 25)) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL)) (-1770 (((-108) $) NIL)) (-1492 (((-382 (-522)) $) NIL)) (-3255 (($ $) NIL) (($) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2676 (($ $ $ $) NIL)) (-2339 (($ $ $) NIL)) (-3687 (((-108) $) NIL)) (-3219 (($ $ $) NIL)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2782 (((-108) $) NIL)) (-2591 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $) NIL)) (-2556 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1335 (($ $ $ $) NIL)) (-2814 (($ $ $) NIL)) (-3211 (((-850) (-850)) 10) (((-850)) 9)) (-2446 (($ $ $) NIL)) (-3893 (($ $) NIL)) (-2517 (($ $) NIL)) (-2224 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-2341 (($ $ $) NIL)) (-3802 (($) NIL T CONST)) (-2957 (($ $) NIL)) (-4151 (((-1032) $) NIL) (($ $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2868 (($ $) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1263 (((-108) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL) (($ $ (-708)) NIL)) (-3056 (($ $) NIL)) (-2404 (($ $) NIL)) (-1431 (((-202) $) NIL) (((-354) $) NIL) (((-821 (-522)) $) NIL) (((-498) $) NIL) (((-522) $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) 24) (($ $) NIL) (($ (-522)) 24) (((-291 $) (-291 (-522))) 18)) (-2323 (((-708)) NIL)) (-3558 (((-108) $ $) NIL)) (-1480 (($ $ $) NIL)) (-3355 (($) NIL)) (-3958 (((-108) $ $) NIL)) (-4004 (($ $ $ $) NIL)) (-2241 (($ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL) (($ $ (-708)) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL)))
+(((-639) (-13 (-362) (-507) (-10 -8 (-15 -3211 ((-850) (-850))) (-15 -3211 ((-850))) (-15 -2190 ((-291 $) (-291 (-522))))))) (T -639))
+((-3211 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639)))) (-3211 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-291 (-522))) (-5 *2 (-291 (-639))) (-5 *1 (-639)))))
+(-13 (-362) (-507) (-10 -8 (-15 -3211 ((-850) (-850))) (-15 -3211 ((-850))) (-15 -2190 ((-291 $) (-291 (-522))))))
+((-3153 (((-1 |#4| |#2| |#3|) |#1| (-1085) (-1085)) 19)) (-2716 (((-1 |#4| |#2| |#3|) (-1085)) 12)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2716 ((-1 |#4| |#2| |#3|) (-1085))) (-15 -3153 ((-1 |#4| |#2| |#3|) |#1| (-1085) (-1085)))) (-563 (-498)) (-1120) (-1120) (-1120)) (T -640))
+((-3153 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)) (-4 *7 (-1120)))))
+(-10 -7 (-15 -2716 ((-1 |#4| |#2| |#3|) (-1085))) (-15 -3153 ((-1 |#4| |#2| |#3|) |#1| (-1085) (-1085))))
+((-1416 (((-108) $ $) NIL)) (-3220 (((-1171) $ (-708)) 14)) (-3238 (((-708) $) 12)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 25)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 24)))
+(((-641 |#1|) (-13 (-125) (-562 |#1|) (-10 -8 (-15 -2190 ($ |#1|)))) (-1014)) (T -641))
+((-2190 (*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1014)))))
+(-13 (-125) (-562 |#1|) (-10 -8 (-15 -2190 ($ |#1|))))
+((-1198 (((-1 (-202) (-202) (-202)) |#1| (-1085) (-1085)) 33) (((-1 (-202) (-202)) |#1| (-1085)) 38)))
+(((-642 |#1|) (-10 -7 (-15 -1198 ((-1 (-202) (-202)) |#1| (-1085))) (-15 -1198 ((-1 (-202) (-202) (-202)) |#1| (-1085) (-1085)))) (-563 (-498))) (T -642))
+((-1198 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-642 *3)) (-4 *3 (-563 (-498))))) (-1198 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-642 *3)) (-4 *3 (-563 (-498))))))
+(-10 -7 (-15 -1198 ((-1 (-202) (-202)) |#1| (-1085))) (-15 -1198 ((-1 (-202) (-202) (-202)) |#1| (-1085) (-1085))))
+((-2094 (((-1085) |#1| (-1085) (-588 (-1085))) 9) (((-1085) |#1| (-1085) (-1085) (-1085)) 12) (((-1085) |#1| (-1085) (-1085)) 11) (((-1085) |#1| (-1085)) 10)))
+(((-643 |#1|) (-10 -7 (-15 -2094 ((-1085) |#1| (-1085))) (-15 -2094 ((-1085) |#1| (-1085) (-1085))) (-15 -2094 ((-1085) |#1| (-1085) (-1085) (-1085))) (-15 -2094 ((-1085) |#1| (-1085) (-588 (-1085))))) (-563 (-498))) (T -643))
+((-2094 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) (-2094 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) (-2094 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))) (-2094 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498))))))
+(-10 -7 (-15 -2094 ((-1085) |#1| (-1085))) (-15 -2094 ((-1085) |#1| (-1085) (-1085))) (-15 -2094 ((-1085) |#1| (-1085) (-1085) (-1085))) (-15 -2094 ((-1085) |#1| (-1085) (-588 (-1085)))))
+((-1674 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-644 |#1| |#2|) (-10 -7 (-15 -1674 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1120) (-1120)) (T -644))
+((-1674 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-644 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))))
+(-10 -7 (-15 -1674 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-3568 (((-1 |#3| |#2|) (-1085)) 11)) (-3153 (((-1 |#3| |#2|) |#1| (-1085)) 21)))
+(((-645 |#1| |#2| |#3|) (-10 -7 (-15 -3568 ((-1 |#3| |#2|) (-1085))) (-15 -3153 ((-1 |#3| |#2|) |#1| (-1085)))) (-563 (-498)) (-1120) (-1120)) (T -645))
+((-3153 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6)) (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6)) (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)))))
+(-10 -7 (-15 -3568 ((-1 |#3| |#2|) (-1085))) (-15 -3153 ((-1 |#3| |#2|) |#1| (-1085))))
+((-3986 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#4|)) (-588 |#3|) (-588 |#4|) (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| |#4|)))) (-588 (-708)) (-1166 (-588 (-1081 |#3|))) |#3|) 59)) (-2812 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#3|)) (-588 |#3|) (-588 |#4|) (-588 (-708)) |#3|) 72)) (-3289 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 |#3|) (-588 (-708)) (-588 (-1081 |#4|)) (-1166 (-588 (-1081 |#3|))) |#3|) 32)))
+(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3289 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 |#3|) (-588 (-708)) (-588 (-1081 |#4|)) (-1166 (-588 (-1081 |#3|))) |#3|)) (-15 -2812 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#3|)) (-588 |#3|) (-588 |#4|) (-588 (-708)) |#3|)) (-15 -3986 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#4|)) (-588 |#3|) (-588 |#4|) (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| |#4|)))) (-588 (-708)) (-1166 (-588 (-1081 |#3|))) |#3|))) (-730) (-784) (-283) (-878 |#3| |#1| |#2|)) (T -646))
+((-3986 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-588 (-1081 *13))) (-5 *3 (-1081 *13)) (-5 *4 (-588 *12)) (-5 *5 (-588 *10)) (-5 *6 (-588 *13)) (-5 *7 (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| *13))))) (-5 *8 (-588 (-708))) (-5 *9 (-1166 (-588 (-1081 *10)))) (-4 *12 (-784)) (-4 *10 (-283)) (-4 *13 (-878 *10 *11 *12)) (-4 *11 (-730)) (-5 *1 (-646 *11 *12 *10 *13)))) (-2812 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-588 *11)) (-5 *5 (-588 (-1081 *9))) (-5 *6 (-588 *9)) (-5 *7 (-588 *12)) (-5 *8 (-588 (-708))) (-4 *11 (-784)) (-4 *9 (-283)) (-4 *12 (-878 *9 *10 *11)) (-4 *10 (-730)) (-5 *2 (-588 (-1081 *12))) (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1081 *12)))) (-3289 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-588 (-1081 *11))) (-5 *3 (-1081 *11)) (-5 *4 (-588 *10)) (-5 *5 (-588 *8)) (-5 *6 (-588 (-708))) (-5 *7 (-1166 (-588 (-1081 *8)))) (-4 *10 (-784)) (-4 *8 (-283)) (-4 *11 (-878 *8 *9 *10)) (-4 *9 (-730)) (-5 *1 (-646 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3289 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 |#3|) (-588 (-708)) (-588 (-1081 |#4|)) (-1166 (-588 (-1081 |#3|))) |#3|)) (-15 -2812 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#3|)) (-588 |#3|) (-588 |#4|) (-588 (-708)) |#3|)) (-15 -3986 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-588 |#2|) (-588 (-1081 |#4|)) (-588 |#3|) (-588 |#4|) (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| |#4|)))) (-588 (-708)) (-1166 (-588 (-1081 |#3|))) |#3|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3156 (($ $) 41)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-4049 (($ |#1| (-708)) 39)) (-2925 (((-708) $) 43)) (-3138 ((|#1| $) 42)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2793 (((-708) $) 44)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 38 (|has| |#1| (-157)))) (-3243 ((|#1| $ (-708)) 40)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-647 |#1|) (-1197) (-971)) (T -647))
+((-2793 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971)))) (-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971)))) (-4049 (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971)))))
+(-13 (-971) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2793 ((-708) $)) (-15 -2925 ((-708) $)) (-15 -3138 (|t#1| $)) (-15 -3156 ($ $)) (-15 -3243 (|t#1| $ (-708))) (-15 -4049 ($ |t#1| (-708)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1391 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-648 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1391 (|#6| (-1 |#4| |#1|) |#3|))) (-514) (-1142 |#1|) (-1142 (-382 |#2|)) (-514) (-1142 |#4|) (-1142 (-382 |#5|))) (T -648))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-514)) (-4 *7 (-514)) (-4 *6 (-1142 *5)) (-4 *2 (-1142 (-382 *8))) (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1142 (-382 *6))) (-4 *8 (-1142 *7)))))
+(-10 -7 (-15 -1391 (|#6| (-1 |#4| |#1|) |#3|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-3864 (($ |#1| |#2|) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3010 ((|#2| $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3351 (((-3 $ "failed") $ $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) ((|#1| $) NIL)) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-338) (-10 -8 (-15 -3010 (|#2| $)) (-15 -2190 (|#1| $)) (-15 -3864 ($ |#1| |#2|)) (-15 -3351 ((-3 $ "failed") $ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -649))
+((-3010 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2190 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3864 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3351 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-338) (-10 -8 (-15 -3010 (|#2| $)) (-15 -2190 (|#1| $)) (-15 -3864 ($ |#1| |#2|)) (-15 -3351 ((-3 $ "failed") $ $))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 30)) (-3960 (((-1166 |#1|) $ (-708)) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-3793 (($ (-1081 |#1|)) NIL)) (-1282 (((-1081 $) $ (-999)) NIL) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) NIL (|has| |#1| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1629 (((-708)) 47 (|has| |#1| (-343)))) (-3242 (($ $ (-708)) NIL)) (-2272 (($ $ (-708)) NIL)) (-2076 ((|#2| |#2|) 44)) (-1441 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-426)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) NIL)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-999) $) NIL)) (-1950 (($ $ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $ $) NIL (|has| |#1| (-157)))) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) 34)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-3864 (($ |#2|) 42)) (-2682 (((-3 $ "failed") $) 85)) (-3255 (($) 51 (|has| |#1| (-343)))) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-2052 (($ $ $) NIL)) (-4152 (($ $ $) NIL (|has| |#1| (-514)))) (-1541 (((-2 (|:| -2977 |#1|) (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2245 (((-886 $)) 79)) (-2671 (($ $ |#1| (-708) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3714 (((-708) $ $) NIL (|has| |#1| (-514)))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-4073 (($ (-1081 |#1|) (-999)) NIL) (($ (-1081 $) (-999)) NIL)) (-2073 (($ $ (-708)) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) 77) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-999)) NIL) (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3010 ((|#2|) 45)) (-2925 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-708) (-708)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (((-1081 |#1|) $) NIL)) (-3145 (((-3 (-999) "failed") $) NIL)) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-3849 ((|#2| $) 41)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) 28)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-3114 (((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708)) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-999)) (|:| -1400 (-708))) "failed") $) NIL)) (-1858 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3802 (($) NIL (|has| |#1| (-1061)) CONST)) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-1615 (($ $) 78 (|has| |#1| (-324)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#1|) NIL) (($ $ (-588 (-999)) (-588 |#1|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) NIL (|has| |#1| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#1| (-514)))) (-4158 (((-3 $ "failed") $ (-708)) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 86 (|has| |#1| (-338)))) (-2769 (($ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2157 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2793 (((-708) $) 32) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-1874 (((-886 $)) 36)) (-3097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#1| (-514)))) (-2190 (((-792) $) 61) (($ (-522)) NIL) (($ |#1|) 58) (($ (-999)) NIL) (($ |#2|) 68) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) 63) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 20 T CONST)) (-2132 (((-1166 |#1|) $) 75)) (-1871 (($ (-1166 |#1|)) 50)) (-3577 (($) 8 T CONST)) (-2213 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3115 (((-1166 |#1|) $) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 69)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) 72) (($ $ $) NIL)) (-1602 (($ $ $) 33)) (** (($ $ (-850)) NIL) (($ $ (-708)) 80)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 57) (($ $ $) 74) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-650 |#1| |#2|) (-13 (-1142 |#1|) (-10 -8 (-15 -2076 (|#2| |#2|)) (-15 -3010 (|#2|)) (-15 -3864 ($ |#2|)) (-15 -3849 (|#2| $)) (-15 -2190 ($ |#2|)) (-15 -2132 ((-1166 |#1|) $)) (-15 -1871 ($ (-1166 |#1|))) (-15 -3115 ((-1166 |#1|) $)) (-15 -2245 ((-886 $))) (-15 -1874 ((-886 $))) (IF (|has| |#1| (-324)) (-15 -1615 ($ $)) |%noBranch|) (IF (|has| |#1| (-343)) (-6 (-343)) |%noBranch|))) (-971) (-1142 |#1|)) (T -650))
+((-2076 (*1 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) (-3010 (*1 *2) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971)))) (-3864 (*1 *1 *2) (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) (-3849 (*1 *2 *1) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-3115 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-2245 (*1 *2) (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-1874 (*1 *2) (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1142 *3)))) (-1615 (*1 *1 *1) (-12 (-4 *2 (-324)) (-4 *2 (-971)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1142 *2)))))
+(-13 (-1142 |#1|) (-10 -8 (-15 -2076 (|#2| |#2|)) (-15 -3010 (|#2|)) (-15 -3864 ($ |#2|)) (-15 -3849 (|#2| $)) (-15 -2190 ($ |#2|)) (-15 -2132 ((-1166 |#1|) $)) (-15 -1871 ($ (-1166 |#1|))) (-15 -3115 ((-1166 |#1|) $)) (-15 -2245 ((-886 $))) (-15 -1874 ((-886 $))) (IF (|has| |#1| (-324)) (-15 -1615 ($ $)) |%noBranch|) (IF (|has| |#1| (-343)) (-6 (-343)) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-2717 ((|#1| $) 13)) (-4151 (((-1032) $) NIL)) (-1400 ((|#2| $) 12)) (-2201 (($ |#1| |#2|) 16)) (-2190 (((-792) $) NIL) (($ (-2 (|:| -2717 |#1|) (|:| -1400 |#2|))) 15) (((-2 (|:| -2717 |#1|) (|:| -1400 |#2|)) $) 14)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 11)))
+(((-651 |#1| |#2| |#3|) (-13 (-784) (-10 -8 (-15 -1400 (|#2| $)) (-15 -2717 (|#1| $)) (-15 -2190 ($ (-2 (|:| -2717 |#1|) (|:| -1400 |#2|)))) (-15 -2190 ((-2 (|:| -2717 |#1|) (|:| -1400 |#2|)) $)) (-15 -2201 ($ |#1| |#2|)))) (-784) (-1014) (-1 (-108) (-2 (|:| -2717 |#1|) (|:| -1400 |#2|)) (-2 (|:| -2717 |#1|) (|:| -1400 |#2|)))) (T -651))
+((-1400 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-784)) (-14 *4 (-1 (-108) (-2 (|:| -2717 *3) (|:| -1400 *2)) (-2 (|:| -2717 *3) (|:| -1400 *2)))))) (-2717 (*1 *2 *1) (-12 (-4 *2 (-784)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *3)) (-2 (|:| -2717 *2) (|:| -1400 *3)))))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2717 *3) (|:| -1400 *4))) (-4 *3 (-784)) (-4 *4 (-1014)) (-5 *1 (-651 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2717 *3) (|:| -1400 *4))) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-1014)) (-14 *5 (-1 (-108) *2 *2)))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-1014)) (-14 *4 (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *3)) (-2 (|:| -2717 *2) (|:| -1400 *3)))))))
+(-13 (-784) (-10 -8 (-15 -1400 (|#2| $)) (-15 -2717 (|#1| $)) (-15 -2190 ($ (-2 (|:| -2717 |#1|) (|:| -1400 |#2|)))) (-15 -2190 ((-2 (|:| -2717 |#1|) (|:| -1400 |#2|)) $)) (-15 -2201 ($ |#1| |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 59)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-1484 ((|#1| $) NIL) (((-110) $) 39)) (-2682 (((-3 $ "failed") $) 90)) (-2995 ((|#2| (-110) |#2|) 82)) (-2782 (((-108) $) NIL)) (-1491 (($ |#1| (-336 (-110))) 13)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2657 (($ $ (-1 |#2| |#2|)) 58)) (-3250 (($ $ (-1 |#2| |#2|)) 44)) (-2545 ((|#2| $ |#2|) 32)) (-1786 ((|#1| |#1|) 100 (|has| |#1| (-157)))) (-2190 (((-792) $) 66) (($ (-522)) 17) (($ |#1|) 16) (($ (-110)) 23)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) 36)) (-3785 (($ $) 99 (|has| |#1| (-157))) (($ $ $) 103 (|has| |#1| (-157)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 20 T CONST)) (-3577 (($) 9 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) 48) (($ $ $) NIL)) (-1602 (($ $ $) 73)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ (-110) (-522)) NIL) (($ $ (-522)) 57)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-157))) (($ $ |#1|) 97 (|has| |#1| (-157)))))
+(((-652 |#1| |#2|) (-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3785 ($ $)) (-15 -3785 ($ $ $)) (-15 -1786 (|#1| |#1|))) |%noBranch|) (-15 -3250 ($ $ (-1 |#2| |#2|))) (-15 -2657 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -2995 (|#2| (-110) |#2|)) (-15 -1491 ($ |#1| (-336 (-110)))))) (-971) (-590 |#1|)) (T -652))
+((-3785 (*1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) (-4 *3 (-590 *2)))) (-3785 (*1 *1 *1 *1) (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) (-4 *3 (-590 *2)))) (-1786 (*1 *2 *2) (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3)) (-4 *3 (-590 *2)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-652 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4)) (-4 *4 (-590 *3)))) (-2995 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-971)) (-5 *1 (-652 *4 *2)) (-4 *2 (-590 *4)))) (-1491 (*1 *1 *2 *3) (-12 (-5 *3 (-336 (-110))) (-4 *2 (-971)) (-5 *1 (-652 *2 *4)) (-4 *4 (-590 *2)))))
+(-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3785 ($ $)) (-15 -3785 ($ $ $)) (-15 -1786 (|#1| |#1|))) |%noBranch|) (-15 -3250 ($ $ (-1 |#2| |#2|))) (-15 -2657 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -2995 (|#2| (-110) |#2|)) (-15 -1491 ($ |#1| (-336 (-110))))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 33)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3864 (($ |#1| |#2|) 25)) (-2682 (((-3 $ "failed") $) 47)) (-2782 (((-108) $) 35)) (-3010 ((|#2| $) 12)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 48)) (-4151 (((-1032) $) NIL)) (-3351 (((-3 $ "failed") $ $) 46)) (-2190 (((-792) $) 24) (($ (-522)) 19) ((|#1| $) 13)) (-2323 (((-708)) 28)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 16 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 38)) (-1612 (($ $) 43) (($ $ $) 37)) (-1602 (($ $ $) 40)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 21) (($ $ $) 20)))
+(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-971) (-10 -8 (-15 -3010 (|#2| $)) (-15 -2190 (|#1| $)) (-15 -3864 ($ |#1| |#2|)) (-15 -3351 ((-3 $ "failed") $ $)) (-15 -2682 ((-3 $ "failed") $)) (-15 -3098 ($ $)))) (-157) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -653))
+((-2682 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3010 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2190 (*1 *2 *1) (-12 (-4 *2 (-157)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3864 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3351 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3098 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-971) (-10 -8 (-15 -3010 (|#2| $)) (-15 -2190 (|#1| $)) (-15 -3864 ($ |#1| |#2|)) (-15 -3351 ((-3 $ "failed") $ $)) (-15 -2682 ((-3 $ "failed") $)) (-15 -3098 ($ $))))
+((* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-654 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-655 |#2|) (-157)) (T -654))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-655 |#1|) (-1197) (-157)) (T -655))
NIL
(-13 (-107 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-1697 (($ |#1|) 17) (($ $ |#1|) 20)) (-2714 (($ |#1|) 18) (($ $ |#1|) 21)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3637 (((-108) $) NIL)) (-1206 (($ |#1| |#1| |#1| |#1|) 8)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 16)) (-4146 (((-1031) $) NIL)) (-2313 ((|#1| $ |#1|) 24) (((-769 |#1|) $ (-769 |#1|)) 32)) (-1484 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-2223 (((-791) $) 39)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 9 T CONST)) (-1549 (((-108) $ $) 44)) (-1648 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ $ $) 14)))
-(((-655 |#1|) (-13 (-446) (-10 -8 (-15 -1206 ($ |#1| |#1| |#1| |#1|)) (-15 -1697 ($ |#1|)) (-15 -2714 ($ |#1|)) (-15 -2783 ($)) (-15 -1697 ($ $ |#1|)) (-15 -2714 ($ $ |#1|)) (-15 -2783 ($ $)) (-15 -2313 (|#1| $ |#1|)) (-15 -2313 ((-769 |#1|) $ (-769 |#1|))))) (-337)) (T -655))
-((-1206 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-1697 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2714 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2783 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-1697 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2714 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2783 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2313 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))) (-2313 (*1 *2 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *3 (-337)) (-5 *1 (-655 *3)))))
-(-13 (-446) (-10 -8 (-15 -1206 ($ |#1| |#1| |#1| |#1|)) (-15 -1697 ($ |#1|)) (-15 -2714 ($ |#1|)) (-15 -2783 ($)) (-15 -1697 ($ $ |#1|)) (-15 -2714 ($ $ |#1|)) (-15 -2783 ($ $)) (-15 -2313 (|#1| $ |#1|)) (-15 -2313 ((-769 |#1|) $ (-769 |#1|)))))
-((-2588 (($ $ (-849)) 12)) (-1209 (($ $ (-849)) 13)) (** (($ $ (-849)) 10)))
-(((-656 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-849))) (-15 -1209 (|#1| |#1| (-849))) (-15 -2588 (|#1| |#1| (-849)))) (-657)) (T -656))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-849))) (-15 -1209 (|#1| |#1| (-849))) (-15 -2588 (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-2588 (($ $ (-849)) 15)) (-1209 (($ $ (-849)) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)) (** (($ $ (-849)) 13)) (* (($ $ $) 16)))
-(((-657) (-1196)) (T -657))
-((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2588 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-849)))) (-1209 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-849)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-849)))))
-(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2588 ($ $ (-849))) (-15 -1209 ($ $ (-849))) (-15 ** ($ $ (-849)))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-2588 (($ $ (-849)) NIL) (($ $ (-707)) 17)) (-3637 (((-108) $) 10)) (-1209 (($ $ (-849)) NIL) (($ $ (-707)) 18)) (** (($ $ (-849)) NIL) (($ $ (-707)) 15)))
-(((-658 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-707))) (-15 -1209 (|#1| |#1| (-707))) (-15 -2588 (|#1| |#1| (-707))) (-15 -3637 ((-108) |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -1209 (|#1| |#1| (-849))) (-15 -2588 (|#1| |#1| (-849)))) (-659)) (T -658))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-707))) (-15 -1209 (|#1| |#1| (-707))) (-15 -2588 (|#1| |#1| (-707))) (-15 -3637 ((-108) |#1|)) (-15 ** (|#1| |#1| (-849))) (-15 -1209 (|#1| |#1| (-849))) (-15 -2588 (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-2604 (((-3 $ "failed") $) 17)) (-2588 (($ $ (-849)) 15) (($ $ (-707)) 22)) (-2783 (((-3 $ "failed") $) 19)) (-3637 (((-108) $) 23)) (-1389 (((-3 $ "failed") $) 18)) (-1209 (($ $ (-849)) 14) (($ $ (-707)) 21)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3572 (($) 24 T CONST)) (-1549 (((-108) $ $) 6)) (** (($ $ (-849)) 13) (($ $ (-707)) 20)) (* (($ $ $) 16)))
-(((-659) (-1196)) (T -659))
-((-3572 (*1 *1) (-4 *1 (-659))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-108)))) (-2588 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))) (-1209 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))) (-2783 (*1 *1 *1) (|partial| -4 *1 (-659))) (-1389 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2604 (*1 *1 *1) (|partial| -4 *1 (-659))))
-(-13 (-657) (-10 -8 (-15 (-3572) ($) -2682) (-15 -3637 ((-108) $)) (-15 -2588 ($ $ (-707))) (-15 -1209 ($ $ (-707))) (-15 ** ($ $ (-707))) (-15 -2783 ((-3 $ "failed") $)) (-15 -1389 ((-3 $ "failed") $)) (-15 -2604 ((-3 $ "failed") $))))
-(((-97) . T) ((-561 (-791)) . T) ((-657) . T) ((-1013) . T))
-((-1659 (((-707)) 35)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1496 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 22)) (-3859 (($ |#3|) NIL) (((-3 $ "failed") (-381 |#3|)) 45)) (-2783 (((-3 $ "failed") $) 65)) (-3254 (($) 39)) (-2549 ((|#2| $) 20)) (-1384 (($) 17)) (-2193 (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-3785 (((-627 |#2|) (-1165 $) (-1 |#2| |#2|)) 60)) (-1438 (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3379 ((|#3| $) 32)) (-1245 (((-1165 $)) 29)))
-(((-660 |#1| |#2| |#3|) (-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3254 (|#1|)) (-15 -1659 ((-707))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3785 ((-627 |#2|) (-1165 |#1|) (-1 |#2| |#2|))) (-15 -3859 ((-3 |#1| "failed") (-381 |#3|))) (-15 -1438 (|#1| |#3|)) (-15 -3859 (|#1| |#3|)) (-15 -1384 (|#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1438 (|#3| |#1|)) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -1245 ((-1165 |#1|))) (-15 -3379 (|#3| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|))) (-661 |#2| |#3|) (-157) (-1141 |#2|)) (T -660))
-((-1659 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-707)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5)))))
-(-10 -8 (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -3254 (|#1|)) (-15 -1659 ((-707))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -3785 ((-627 |#2|) (-1165 |#1|) (-1 |#2| |#2|))) (-15 -3859 ((-3 |#1| "failed") (-381 |#3|))) (-15 -1438 (|#1| |#3|)) (-15 -3859 (|#1| |#3|)) (-15 -1384 (|#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1438 (|#3| |#1|)) (-15 -1438 (|#1| (-1165 |#2|))) (-15 -1438 ((-1165 |#2|) |#1|)) (-15 -1245 ((-1165 |#1|))) (-15 -3379 (|#3| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -2783 ((-3 |#1| "failed") |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 93 (|has| |#1| (-337)))) (-1954 (($ $) 94 (|has| |#1| (-337)))) (-3795 (((-108) $) 96 (|has| |#1| (-337)))) (-1299 (((-627 |#1|) (-1165 $)) 46) (((-627 |#1|)) 61)) (-1927 ((|#1| $) 52)) (-2130 (((-1093 (-849) (-707)) (-521)) 147 (|has| |#1| (-323)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 113 (|has| |#1| (-337)))) (-2337 (((-392 $) $) 114 (|has| |#1| (-337)))) (-2165 (((-108) $ $) 104 (|has| |#1| (-337)))) (-1659 (((-707)) 87 (|has| |#1| (-342)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 169 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 167 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 166)) (-1496 (((-521) $) 170 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 168 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 165)) (-3190 (($ (-1165 |#1|) (-1165 $)) 48) (($ (-1165 |#1|)) 64)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-323)))) (-2302 (($ $ $) 108 (|has| |#1| (-337)))) (-3998 (((-627 |#1|) $ (-1165 $)) 53) (((-627 |#1|) $) 59)) (-1961 (((-627 (-521)) (-627 $)) 164 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 163 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 162) (((-627 |#1|) (-627 $)) 161)) (-3859 (($ |#2|) 158) (((-3 $ "failed") (-381 |#2|)) 155 (|has| |#1| (-337)))) (-2783 (((-3 $ "failed") $) 34)) (-3167 (((-849)) 54)) (-3254 (($) 90 (|has| |#1| (-342)))) (-2282 (($ $ $) 107 (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 102 (|has| |#1| (-337)))) (-2464 (($) 149 (|has| |#1| (-323)))) (-3299 (((-108) $) 150 (|has| |#1| (-323)))) (-1375 (($ $ (-707)) 141 (|has| |#1| (-323))) (($ $) 140 (|has| |#1| (-323)))) (-2100 (((-108) $) 115 (|has| |#1| (-337)))) (-3490 (((-849) $) 152 (|has| |#1| (-323))) (((-769 (-849)) $) 138 (|has| |#1| (-323)))) (-3637 (((-108) $) 31)) (-2549 ((|#1| $) 51)) (-3035 (((-3 $ "failed") $) 142 (|has| |#1| (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 111 (|has| |#1| (-337)))) (-3769 ((|#2| $) 44 (|has| |#1| (-337)))) (-3999 (((-849) $) 89 (|has| |#1| (-342)))) (-3843 ((|#2| $) 156)) (-2254 (($ (-587 $)) 100 (|has| |#1| (-337))) (($ $ $) 99 (|has| |#1| (-337)))) (-4024 (((-1067) $) 9)) (-3100 (($ $) 116 (|has| |#1| (-337)))) (-3797 (($) 143 (|has| |#1| (-323)) CONST)) (-2723 (($ (-849)) 88 (|has| |#1| (-342)))) (-4146 (((-1031) $) 10)) (-1384 (($) 160)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 101 (|has| |#1| (-337)))) (-2286 (($ (-587 $)) 98 (|has| |#1| (-337))) (($ $ $) 97 (|has| |#1| (-337)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) 146 (|has| |#1| (-323)))) (-1974 (((-392 $) $) 112 (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 109 (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ $) 92 (|has| |#1| (-337)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 103 (|has| |#1| (-337)))) (-3794 (((-707) $) 105 (|has| |#1| (-337)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 106 (|has| |#1| (-337)))) (-3011 ((|#1| (-1165 $)) 47) ((|#1|) 60)) (-3660 (((-707) $) 151 (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) 139 (|has| |#1| (-323)))) (-2193 (($ $) 137 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) 135 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) 133 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084))) 132 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-1084) (-707)) 131 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-707))) 130 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-1 |#1| |#1|) (-707)) 123 (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-337)))) (-3785 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-337)))) (-3436 ((|#2|) 159)) (-3923 (($) 148 (|has| |#1| (-323)))) (-1816 (((-1165 |#1|) $ (-1165 $)) 50) (((-627 |#1|) (-1165 $) (-1165 $)) 49) (((-1165 |#1|) $) 66) (((-627 |#1|) (-1165 $)) 65)) (-1438 (((-1165 |#1|) $) 63) (($ (-1165 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 145 (|has| |#1| (-323)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-337))) (($ (-381 (-521))) 86 (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-2446 (($ $) 144 (|has| |#1| (-323))) (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-3379 ((|#2| $) 45)) (-1592 (((-707)) 29)) (-1245 (((-1165 $)) 67)) (-1842 (((-108) $ $) 95 (|has| |#1| (-337)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 117 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $) 136 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) 134 (-3703 (-4009 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) 129 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084))) 128 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-1084) (-707)) 127 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-707))) 126 (-4009 (|has| |#1| (-828 (-1084))) (|has| |#1| (-337)))) (($ $ (-1 |#1| |#1|) (-707)) 125 (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-337)))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 121 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 118 (|has| |#1| (-337)))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-381 (-521)) $) 120 (|has| |#1| (-337))) (($ $ (-381 (-521))) 119 (|has| |#1| (-337)))))
-(((-661 |#1| |#2|) (-1196) (-157) (-1141 |t#1|)) (T -661))
-((-1384 (*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1141 *2)))) (-3436 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3)))) (-3859 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3)))) (-1438 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3)))) (-3859 (*1 *1 *2) (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-337)) (-4 *3 (-157)) (-4 *1 (-661 *3 *4)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337)) (-4 *1 (-661 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1141 *5)) (-5 *2 (-627 *5)))))
-(-13 (-383 |t#1| |t#2|) (-157) (-562 |t#2|) (-385 |t#1|) (-351 |t#1|) (-10 -8 (-15 -1384 ($)) (-15 -3436 (|t#2|)) (-15 -3859 ($ |t#2|)) (-15 -1438 ($ |t#2|)) (-15 -3843 (|t#2| $)) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-6 (-337)) (-6 (-208 |t#1|)) (-15 -3859 ((-3 $ "failed") (-381 |t#2|))) (-15 -3785 ((-627 |t#1|) (-1165 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-323)) (-6 (-323)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-37 |#1|) . T) ((-37 $) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-97) . T) ((-107 #0# #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-323)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) . T) ((-562 |#2|) . T) ((-208 |#1|) |has| |#1| (-337)) ((-210) -3703 (|has| |#1| (-323)) (-12 (|has| |#1| (-210)) (|has| |#1| (-337)))) ((-220) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-265) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-282) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-337) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-376) |has| |#1| (-323)) ((-342) -3703 (|has| |#1| (-342)) (|has| |#1| (-323))) ((-323) |has| |#1| (-323)) ((-344 |#1| |#2|) . T) ((-383 |#1| |#2|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-513) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-589 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-654 |#1|) . T) ((-654 $) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-663) . T) ((-828 (-1084)) -12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084)))) ((-848) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-323)) ((-1123) -3703 (|has| |#1| (-323)) (|has| |#1| (-337))))
-((-2231 (($) 14)) (-2783 (((-3 $ "failed") $) 16)) (-3637 (((-108) $) 13)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) 9)) (** (($ $ (-849)) NIL) (($ $ (-707)) 20)))
-(((-662 |#1|) (-10 -8 (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 -3509 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3637 ((-108) |#1|)) (-15 -2231 (|#1|)) (-15 -3509 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849)))) (-663)) (T -662))
-NIL
-(-10 -8 (-15 -2783 ((-3 |#1| "failed") |#1|)) (-15 -3509 (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-707))) (-15 -3637 ((-108) |#1|)) (-15 -2231 (|#1|)) (-15 -3509 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-2231 (($) 20 T CONST)) (-2783 (((-3 $ "failed") $) 16)) (-3637 (((-108) $) 19)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3509 (($ $ (-849)) 13) (($ $ (-707)) 17)) (-3572 (($) 21 T CONST)) (-1549 (((-108) $ $) 6)) (** (($ $ (-849)) 14) (($ $ (-707)) 18)) (* (($ $ $) 15)))
-(((-663) (-1196)) (T -663))
-((-3572 (*1 *1) (-4 *1 (-663))) (-2231 (*1 *1) (-4 *1 (-663))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707)))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707)))) (-2783 (*1 *1 *1) (|partial| -4 *1 (-663))))
-(-13 (-1025) (-10 -8 (-15 (-3572) ($) -2682) (-15 -2231 ($) -2682) (-15 -3637 ((-108) $)) (-15 ** ($ $ (-707))) (-15 -3509 ($ $ (-707))) (-15 -2783 ((-3 $ "failed") $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1025) . T) ((-1013) . T))
-((-2358 (((-2 (|:| -3658 (-392 |#2|)) (|:| |special| (-392 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2090 (((-2 (|:| -3658 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3664 ((|#2| (-381 |#2|) (-1 |#2| |#2|)) 13)) (-3593 (((-2 (|:| |poly| |#2|) (|:| -3658 (-381 |#2|)) (|:| |special| (-381 |#2|))) (-381 |#2|) (-1 |#2| |#2|)) 47)))
-(((-664 |#1| |#2|) (-10 -7 (-15 -2090 ((-2 (|:| -3658 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2358 ((-2 (|:| -3658 (-392 |#2|)) (|:| |special| (-392 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3664 (|#2| (-381 |#2|) (-1 |#2| |#2|))) (-15 -3593 ((-2 (|:| |poly| |#2|) (|:| -3658 (-381 |#2|)) (|:| |special| (-381 |#2|))) (-381 |#2|) (-1 |#2| |#2|)))) (-337) (-1141 |#1|)) (T -664))
-((-3593 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3658 (-381 *6)) (|:| |special| (-381 *6)))) (-5 *1 (-664 *5 *6)) (-5 *3 (-381 *6)))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-381 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1141 *5)) (-5 *1 (-664 *5 *2)) (-4 *5 (-337)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -3658 (-392 *3)) (|:| |special| (-392 *3)))) (-5 *1 (-664 *5 *3)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -3658 *3) (|:| |special| *3))) (-5 *1 (-664 *5 *3)))))
-(-10 -7 (-15 -2090 ((-2 (|:| -3658 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2358 ((-2 (|:| -3658 (-392 |#2|)) (|:| |special| (-392 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3664 (|#2| (-381 |#2|) (-1 |#2| |#2|))) (-15 -3593 ((-2 (|:| |poly| |#2|) (|:| -3658 (-381 |#2|)) (|:| |special| (-381 |#2|))) (-381 |#2|) (-1 |#2| |#2|))))
-((-3136 ((|#7| (-587 |#5|) |#6|) NIL)) (-1393 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1393 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3136 (|#7| (-587 |#5|) |#6|))) (-783) (-729) (-729) (-970) (-970) (-877 |#4| |#2| |#1|) (-877 |#5| |#3| |#1|)) (T -665))
-((-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *9)) (-4 *9 (-970)) (-4 *5 (-783)) (-4 *6 (-729)) (-4 *8 (-970)) (-4 *2 (-877 *9 *7 *5)) (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729)) (-4 *4 (-877 *8 *6 *5)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-970)) (-4 *9 (-970)) (-4 *5 (-783)) (-4 *6 (-729)) (-4 *2 (-877 *9 *7 *5)) (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729)) (-4 *4 (-877 *8 *6 *5)))))
-(-10 -7 (-15 -1393 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3136 (|#7| (-587 |#5|) |#6|)))
-((-1393 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
-(((-666 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1393 (|#7| (-1 |#2| |#1|) |#6|))) (-783) (-783) (-729) (-729) (-970) (-877 |#5| |#3| |#1|) (-877 |#5| |#4| |#2|)) (T -666))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-783)) (-4 *6 (-783)) (-4 *7 (-729)) (-4 *9 (-970)) (-4 *2 (-877 *9 *8 *6)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-729)) (-4 *4 (-877 *9 *7 *5)))))
-(-10 -7 (-15 -1393 (|#7| (-1 |#2| |#1|) |#6|)))
-((-1974 (((-392 |#4|) |#4|) 39)))
-(((-667 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 |#4|) |#4|))) (-729) (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084))))) (-282) (-877 (-880 |#3|) |#1| |#2|)) (T -667))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-667 *4 *5 *6 *3)) (-4 *3 (-877 (-880 *6) *4 *5)))))
-(-10 -7 (-15 -1974 ((-392 |#4|) |#4|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-793 |#1|)) $) NIL)) (-1280 (((-1080 $) $ (-793 |#1|)) NIL) (((-1080 |#2|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-1954 (($ $) NIL (|has| |#2| (-513)))) (-3795 (((-108) $) NIL (|has| |#2| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-793 |#1|))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2694 (($ $) NIL (|has| |#2| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#2| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-793 |#1|) "failed") $) NIL)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-793 |#1|) $) NIL)) (-3052 (($ $ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#2| (-837)))) (-1709 (($ $ |#2| (-493 (-793 |#1|)) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-793 |#1|) (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#2|) (-793 |#1|)) NIL) (($ (-1080 $) (-793 |#1|)) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#2| (-493 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-793 |#1|)) NIL)) (-2401 (((-493 (-793 |#1|)) $) NIL) (((-707) $ (-793 |#1|)) NIL) (((-587 (-707)) $ (-587 (-793 |#1|))) NIL)) (-2816 (($ $ $) NIL (|has| |#2| (-783)))) (-2459 (($ $ $) NIL (|has| |#2| (-783)))) (-2310 (($ (-1 (-493 (-793 |#1|)) (-493 (-793 |#1|))) $) NIL)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2913 (((-3 (-793 |#1|) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#2| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-793 |#1|)) (|:| -2246 (-707))) "failed") $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#2| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#2| (-837)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-793 |#1|) |#2|) NIL) (($ $ (-587 (-793 |#1|)) (-587 |#2|)) NIL) (($ $ (-793 |#1|) $) NIL) (($ $ (-587 (-793 |#1|)) (-587 $)) NIL)) (-3011 (($ $ (-793 |#1|)) NIL (|has| |#2| (-157)))) (-2193 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2098 (((-493 (-793 |#1|)) $) NIL) (((-707) $ (-793 |#1|)) NIL) (((-587 (-707)) $ (-587 (-793 |#1|))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-793 |#1|) (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-793 |#1|) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-1391 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-793 |#1|)) NIL (|has| |#2| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-793 |#1|)) NIL) (($ $) NIL (|has| |#2| (-513))) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521))))))) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-493 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-793 |#1|)) NIL) (($ $ (-587 (-793 |#1|))) NIL) (($ $ (-793 |#1|) (-707)) NIL) (($ $ (-587 (-793 |#1|)) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-668 |#1| |#2|) (-877 |#2| (-493 (-793 |#1|)) (-793 |#1|)) (-587 (-1084)) (-970)) (T -668))
-NIL
-(-877 |#2| (-493 (-793 |#1|)) (-793 |#1|))
-((-3736 (((-2 (|:| -2303 (-880 |#3|)) (|:| -2912 (-880 |#3|))) |#4|) 13)) (-3222 ((|#4| |#4| |#2|) 30)) (-2235 ((|#4| (-381 (-880 |#3|)) |#2|) 64)) (-3458 ((|#4| (-1080 (-880 |#3|)) |#2|) 77)) (-3268 ((|#4| (-1080 |#4|) |#2|) 50)) (-1348 ((|#4| |#4| |#2|) 53)) (-1974 (((-392 |#4|) |#4|) 38)))
-(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3736 ((-2 (|:| -2303 (-880 |#3|)) (|:| -2912 (-880 |#3|))) |#4|)) (-15 -1348 (|#4| |#4| |#2|)) (-15 -3268 (|#4| (-1080 |#4|) |#2|)) (-15 -3222 (|#4| |#4| |#2|)) (-15 -3458 (|#4| (-1080 (-880 |#3|)) |#2|)) (-15 -2235 (|#4| (-381 (-880 |#3|)) |#2|)) (-15 -1974 ((-392 |#4|) |#4|))) (-729) (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)))) (-513) (-877 (-381 (-880 |#3|)) |#1| |#2|)) (T -669))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *6 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-877 (-381 (-880 *6)) *4 *5)))) (-2235 (*1 *2 *3 *4) (-12 (-4 *6 (-513)) (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-669 *5 *4 *6 *2)) (-5 *3 (-381 (-880 *6))) (-4 *5 (-729)) (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))))) (-3458 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 (-880 *6))) (-4 *6 (-513)) (-4 *2 (-877 (-381 (-880 *6)) *5 *4)) (-5 *1 (-669 *5 *4 *6 *2)) (-4 *5 (-729)) (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))))) (-3222 (*1 *2 *2 *3) (-12 (-4 *4 (-729)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *5 (-513)) (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-877 (-381 (-880 *5)) *4 *3)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-877 (-381 (-880 *6)) *5 *4)) (-5 *1 (-669 *5 *4 *6 *2)) (-4 *5 (-729)) (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *6 (-513)))) (-1348 (*1 *2 *2 *3) (-12 (-4 *4 (-729)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *5 (-513)) (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-877 (-381 (-880 *5)) *4 *3)))) (-3736 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *6 (-513)) (-5 *2 (-2 (|:| -2303 (-880 *6)) (|:| -2912 (-880 *6)))) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-877 (-381 (-880 *6)) *4 *5)))))
-(-10 -7 (-15 -3736 ((-2 (|:| -2303 (-880 |#3|)) (|:| -2912 (-880 |#3|))) |#4|)) (-15 -1348 (|#4| |#4| |#2|)) (-15 -3268 (|#4| (-1080 |#4|) |#2|)) (-15 -3222 (|#4| |#4| |#2|)) (-15 -3458 (|#4| (-1080 (-880 |#3|)) |#2|)) (-15 -2235 (|#4| (-381 (-880 |#3|)) |#2|)) (-15 -1974 ((-392 |#4|) |#4|)))
-((-1974 (((-392 |#4|) |#4|) 51)))
-(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 |#4|) |#4|))) (-729) (-783) (-13 (-282) (-135)) (-877 (-381 |#3|) |#1| |#2|)) (T -670))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-13 (-282) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-877 (-381 *6) *4 *5)))))
-(-10 -7 (-15 -1974 ((-392 |#4|) |#4|)))
-((-1393 (((-672 |#2| |#3|) (-1 |#2| |#1|) (-672 |#1| |#3|)) 18)))
-(((-671 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-672 |#2| |#3|) (-1 |#2| |#1|) (-672 |#1| |#3|)))) (-970) (-970) (-663)) (T -671))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-672 *5 *7)) (-4 *5 (-970)) (-4 *6 (-970)) (-4 *7 (-663)) (-5 *2 (-672 *6 *7)) (-5 *1 (-671 *5 *6 *7)))))
-(-10 -7 (-15 -1393 ((-672 |#2| |#3|) (-1 |#2| |#1|) (-672 |#1| |#3|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 26)) (-3704 (((-587 (-2 (|:| -2979 |#1|) (|:| -2523 |#2|))) $) 27)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1659 (((-707)) 20 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-1496 ((|#2| $) NIL) ((|#1| $) NIL)) (-3157 (($ $) 76 (|has| |#2| (-783)))) (-2783 (((-3 $ "failed") $) 63)) (-3254 (($) 33 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) 54)) (-2411 (((-587 $) $) 37)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| |#2|) 16)) (-1393 (($ (-1 |#1| |#1|) $) 53)) (-3999 (((-849) $) 30 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-3130 ((|#2| $) 75 (|has| |#2| (-783)))) (-3140 ((|#1| $) 74 (|has| |#2| (-783)))) (-4024 (((-1067) $) NIL)) (-2723 (($ (-849)) 25 (-12 (|has| |#2| (-342)) (|has| |#1| (-342))))) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 73) (($ (-521)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-587 (-2 (|:| -2979 |#1|) (|:| -2523 |#2|)))) 11)) (-2730 (((-587 |#1|) $) 39)) (-1499 ((|#1| $ |#2|) 84)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 12 T CONST)) (-3572 (($) 31 T CONST)) (-1549 (((-108) $ $) 77)) (-1639 (($ $) 46) (($ $ $) NIL)) (-1628 (($ $ $) 24)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-672 |#1| |#2|) (-13 (-970) (-961 |#2|) (-961 |#1|) (-10 -8 (-15 -4044 ($ |#1| |#2|)) (-15 -1499 (|#1| $ |#2|)) (-15 -2223 ($ (-587 (-2 (|:| -2979 |#1|) (|:| -2523 |#2|))))) (-15 -3704 ((-587 (-2 (|:| -2979 |#1|) (|:| -2523 |#2|))) $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (-15 -3573 ((-108) $)) (-15 -2730 ((-587 |#1|) $)) (-15 -2411 ((-587 $) $)) (-15 -2443 ((-707) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-783)) (PROGN (-15 -3130 (|#2| $)) (-15 -3140 (|#1| $)) (-15 -3157 ($ $))) |%noBranch|))) (-970) (-663)) (T -672))
-((-4044 (*1 *1 *2 *3) (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-970)) (-4 *3 (-663)))) (-1499 (*1 *2 *1 *3) (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-663)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2979 *3) (|:| -2523 *4)))) (-4 *3 (-970)) (-4 *4 (-663)) (-5 *1 (-672 *3 *4)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -2979 *3) (|:| -2523 *4)))) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-672 *3 *4)) (-4 *4 (-663)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-2730 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-587 (-672 *3 *4))) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663)))) (-3130 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-783)) (-5 *1 (-672 *3 *2)) (-4 *3 (-970)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-783)) (-4 *3 (-663)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-672 *2 *3)) (-4 *3 (-783)) (-4 *2 (-970)) (-4 *3 (-663)))))
-(-13 (-970) (-961 |#2|) (-961 |#1|) (-10 -8 (-15 -4044 ($ |#1| |#2|)) (-15 -1499 (|#1| $ |#2|)) (-15 -2223 ($ (-587 (-2 (|:| -2979 |#1|) (|:| -2523 |#2|))))) (-15 -3704 ((-587 (-2 (|:| -2979 |#1|) (|:| -2523 |#2|))) $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (-15 -3573 ((-108) $)) (-15 -2730 ((-587 |#1|) $)) (-15 -2411 ((-587 $) $)) (-15 -2443 ((-707) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-783)) (PROGN (-15 -3130 (|#2| $)) (-15 -3140 (|#1| $)) (-15 -3157 ($ $))) |%noBranch|)))
-((-1422 (((-108) $ $) 19)) (-2296 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1769 (($ $ $) 72)) (-3601 (((-108) $ $) 73)) (-1269 (((-108) $ (-707)) 8)) (-1817 (($ (-587 |#1|)) 68) (($) 67)) (-3014 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-1514 (($ $) 62)) (-2354 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22)) (-1802 (($ $ $) 69)) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40) (($ |#1| $ (-707)) 63)) (-4146 (((-1031) $) 21)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-3489 (((-587 (-2 (|:| -3050 |#1|) (|:| -4163 (-707)))) $) 61)) (-2686 (($ $ |#1|) 71) (($ $ $) 70)) (-2036 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 50)) (-2223 (((-791) $) 18)) (-3391 (($ (-587 |#1|)) 66) (($) 65)) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20)) (-1569 (((-108) $ $) 64)) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-673 |#1|) (-1196) (-1013)) (T -673))
-NIL
-(-13 (-632 |t#1|) (-1011 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-561 (-791)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-632 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-2296 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1769 (($ $ $) 79)) (-3601 (((-108) $ $) 82)) (-1269 (((-108) $ (-707)) NIL)) (-1817 (($ (-587 |#1|)) 24) (($) 15)) (-3014 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-1514 (($ $) 71)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) 61 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4233))) (($ |#1| $ (-521)) 62) (($ (-1 (-108) |#1|) $ (-521)) 65)) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (($ |#1| $ (-521)) 67) (($ (-1 (-108) |#1|) $ (-521)) 68)) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 32 (|has| $ (-6 -4233)))) (-2773 (($) 13) (($ |#1|) 26) (($ (-587 |#1|)) 21)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) 38)) (-1785 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 75)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1802 (($ $ $) 77)) (-1570 ((|#1| $) 54)) (-4135 (($ |#1| $) 55) (($ |#1| $ (-707)) 72)) (-4146 (((-1031) $) NIL)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2747 ((|#1| $) 53)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 49)) (-2280 (($) 12)) (-3489 (((-587 (-2 (|:| -3050 |#1|) (|:| -4163 (-707)))) $) 47)) (-2686 (($ $ |#1|) NIL) (($ $ $) 78)) (-2036 (($) 14) (($ (-587 |#1|)) 23)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) 60 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 66)) (-1438 (((-497) $) 36 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 20)) (-2223 (((-791) $) 44)) (-3391 (($ (-587 |#1|)) 25) (($) 16)) (-2869 (($ (-587 |#1|)) 22)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 80)) (-1569 (((-108) $ $) 81)) (-3478 (((-707) $) 59 (|has| $ (-6 -4233)))))
-(((-674 |#1|) (-13 (-673 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -2773 ($)) (-15 -2773 ($ |#1|)) (-15 -2773 ($ (-587 |#1|))) (-15 -3568 ((-587 |#1|) $)) (-15 -1429 ($ |#1| $ (-521))) (-15 -1429 ($ (-1 (-108) |#1|) $ (-521))) (-15 -2726 ($ |#1| $ (-521))) (-15 -2726 ($ (-1 (-108) |#1|) $ (-521))))) (-1013)) (T -674))
-((-2773 (*1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-2773 (*1 *1 *2) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-674 *3)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1013)))) (-1429 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-1429 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013)) (-5 *1 (-674 *4)))) (-2726 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013)))) (-2726 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013)) (-5 *1 (-674 *4)))))
-(-13 (-673 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -2773 ($)) (-15 -2773 ($ |#1|)) (-15 -2773 ($ (-587 |#1|))) (-15 -3568 ((-587 |#1|) $)) (-15 -1429 ($ |#1| $ (-521))) (-15 -1429 ($ (-1 (-108) |#1|) $ (-521))) (-15 -2726 ($ |#1| $ (-521))) (-15 -2726 ($ (-1 (-108) |#1|) $ (-521)))))
-((-3635 (((-1170) (-1067)) 8)))
-(((-675) (-10 -7 (-15 -3635 ((-1170) (-1067))))) (T -675))
-((-3635 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-675)))))
-(-10 -7 (-15 -3635 ((-1170) (-1067))))
-((-3866 (((-587 |#1|) (-587 |#1|) (-587 |#1|)) 10)))
-(((-676 |#1|) (-10 -7 (-15 -3866 ((-587 |#1|) (-587 |#1|) (-587 |#1|)))) (-783)) (T -676))
-((-3866 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-676 *3)))))
-(-10 -7 (-15 -3866 ((-587 |#1|) (-587 |#1|) (-587 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 |#2|) $) 136)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 129 (|has| |#1| (-513)))) (-1954 (($ $) 128 (|has| |#1| (-513)))) (-3795 (((-108) $) 126 (|has| |#1| (-513)))) (-2910 (($ $) 85 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 68 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) 19)) (-1984 (($ $) 67 (|has| |#1| (-37 (-381 (-521)))))) (-2886 (($ $) 84 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 69 (|has| |#1| (-37 (-381 (-521)))))) (-2932 (($ $) 83 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 70 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) 17 T CONST)) (-3157 (($ $) 120)) (-2783 (((-3 $ "failed") $) 34)) (-2232 (((-880 |#1|) $ (-707)) 98) (((-880 |#1|) $ (-707) (-707)) 97)) (-4193 (((-108) $) 137)) (-2840 (($) 95 (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-707) $ |#2|) 100) (((-707) $ |#2| (-707)) 99)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 66 (|has| |#1| (-37 (-381 (-521)))))) (-3573 (((-108) $) 118)) (-4044 (($ $ (-587 |#2|) (-587 (-493 |#2|))) 135) (($ $ |#2| (-493 |#2|)) 134) (($ |#1| (-493 |#2|)) 119) (($ $ |#2| (-707)) 102) (($ $ (-587 |#2|) (-587 (-707))) 101)) (-1393 (($ (-1 |#1| |#1|) $) 117)) (-1253 (($ $) 92 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) 115)) (-3140 ((|#1| $) 114)) (-4024 (((-1067) $) 9)) (-1749 (($ $ |#2|) 96 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) 10)) (-2191 (($ $ (-707)) 103)) (-2261 (((-3 $ "failed") $ $) 130 (|has| |#1| (-513)))) (-3265 (($ $) 93 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (($ $ |#2| $) 111) (($ $ (-587 |#2|) (-587 $)) 110) (($ $ (-587 (-269 $))) 109) (($ $ (-269 $)) 108) (($ $ $ $) 107) (($ $ (-587 $) (-587 $)) 106)) (-2193 (($ $ |#2|) 42) (($ $ (-587 |#2|)) 41) (($ $ |#2| (-707)) 40) (($ $ (-587 |#2|) (-587 (-707))) 39)) (-2098 (((-493 |#2|) $) 116)) (-1787 (($ $) 82 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 71 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 81 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 72 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 80 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 73 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 138)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 133 (|has| |#1| (-157))) (($ $) 131 (|has| |#1| (-513))) (($ (-381 (-521))) 123 (|has| |#1| (-37 (-381 (-521)))))) (-1499 ((|#1| $ (-493 |#2|)) 121) (($ $ |#2| (-707)) 105) (($ $ (-587 |#2|) (-587 (-707))) 104)) (-2446 (((-3 $ "failed") $) 132 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1811 (($ $) 91 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 79 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) 127 (|has| |#1| (-513)))) (-1795 (($ $) 90 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 78 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 89 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 77 (|has| |#1| (-37 (-381 (-521)))))) (-3919 (($ $) 88 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 76 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 87 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 75 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 86 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 74 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ |#2|) 38) (($ $ (-587 |#2|)) 37) (($ $ |#2| (-707)) 36) (($ $ (-587 |#2|) (-587 (-707))) 35)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 122 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ $) 94 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 65 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 125 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 124 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-677 |#1| |#2|) (-1196) (-970) (-783)) (T -677))
-((-1499 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970)) (-4 *2 (-783)))) (-1499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-783)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-677 *3 *4)) (-4 *3 (-970)) (-4 *4 (-783)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970)) (-4 *2 (-783)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-783)))) (-3490 (*1 *2 *1 *3) (-12 (-4 *1 (-677 *4 *3)) (-4 *4 (-970)) (-4 *3 (-783)) (-5 *2 (-707)))) (-3490 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-707)) (-4 *1 (-677 *4 *3)) (-4 *4 (-970)) (-4 *3 (-783)))) (-2232 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-783)) (-5 *2 (-880 *4)))) (-2232 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970)) (-4 *5 (-783)) (-5 *2 (-880 *4)))) (-1749 (*1 *1 *1 *2) (-12 (-4 *1 (-677 *3 *2)) (-4 *3 (-970)) (-4 *2 (-783)) (-4 *3 (-37 (-381 (-521)))))))
-(-13 (-828 |t#2|) (-899 |t#1| (-493 |t#2|) |t#2|) (-482 |t#2| $) (-284 $) (-10 -8 (-15 -1499 ($ $ |t#2| (-707))) (-15 -1499 ($ $ (-587 |t#2|) (-587 (-707)))) (-15 -2191 ($ $ (-707))) (-15 -4044 ($ $ |t#2| (-707))) (-15 -4044 ($ $ (-587 |t#2|) (-587 (-707)))) (-15 -3490 ((-707) $ |t#2|)) (-15 -3490 ((-707) $ |t#2| (-707))) (-15 -2232 ((-880 |t#1|) $ (-707))) (-15 -2232 ((-880 |t#1|) $ (-707) (-707))) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $ |t#2|)) (-6 (-927)) (-6 (-1105))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-493 |#2|)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-265) |has| |#1| (-513)) ((-284 $) . T) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-482 |#2| $) . T) ((-482 $ $) . T) ((-513) |has| |#1| (-513)) ((-589 #1#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-828 |#2|) . T) ((-899 |#1| #0# |#2|) . T) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))))
-((-1974 (((-392 (-1080 |#4|)) (-1080 |#4|)) 28) (((-392 |#4|) |#4|) 24)))
-(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 |#4|) |#4|)) (-15 -1974 ((-392 (-1080 |#4|)) (-1080 |#4|)))) (-783) (-729) (-13 (-282) (-135)) (-877 |#3| |#2| |#1|)) (T -678))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135))) (-5 *2 (-392 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(-10 -7 (-15 -1974 ((-392 |#4|) |#4|)) (-15 -1974 ((-392 (-1080 |#4|)) (-1080 |#4|))))
-((-3202 (((-392 |#4|) |#4| |#2|) 117)) (-3397 (((-392 |#4|) |#4|) NIL)) (-2337 (((-392 (-1080 |#4|)) (-1080 |#4|)) 108) (((-392 |#4|) |#4|) 38)) (-1306 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -1974 (-1080 |#4|)) (|:| -2246 (-521)))))) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|))) 66)) (-1321 (((-1080 |#3|) (-1080 |#3|) (-521)) 134)) (-2200 (((-587 (-707)) (-1080 |#4|) (-587 |#2|) (-707)) 59)) (-3843 (((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-1080 |#3|) (-1080 |#3|) |#4| (-587 |#2|) (-587 (-707)) (-587 |#3|)) 63)) (-2039 (((-2 (|:| |upol| (-1080 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521))))) (|:| |ctpol| |#3|)) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|))) 22)) (-2937 (((-2 (|:| -3201 (-1080 |#4|)) (|:| |polval| (-1080 |#3|))) (-1080 |#4|) (-1080 |#3|) (-521)) 55)) (-2887 (((-521) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521))))) 131)) (-1926 ((|#4| (-521) (-392 |#4|)) 56)) (-2973 (((-108) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521))))) NIL)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2337 ((-392 |#4|) |#4|)) (-15 -2337 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3397 ((-392 |#4|) |#4|)) (-15 -2887 ((-521) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))))) (-15 -3202 ((-392 |#4|) |#4| |#2|)) (-15 -2937 ((-2 (|:| -3201 (-1080 |#4|)) (|:| |polval| (-1080 |#3|))) (-1080 |#4|) (-1080 |#3|) (-521))) (-15 -1306 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -1974 (-1080 |#4|)) (|:| -2246 (-521)))))) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -2039 ((-2 (|:| |upol| (-1080 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521))))) (|:| |ctpol| |#3|)) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -1926 (|#4| (-521) (-392 |#4|))) (-15 -2973 ((-108) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))))) (-15 -3843 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-1080 |#3|) (-1080 |#3|) |#4| (-587 |#2|) (-587 (-707)) (-587 |#3|))) (-15 -2200 ((-587 (-707)) (-1080 |#4|) (-587 |#2|) (-707))) (-15 -1321 ((-1080 |#3|) (-1080 |#3|) (-521)))) (-729) (-783) (-282) (-877 |#3| |#1| |#2|)) (T -679))
-((-1321 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *6)) (-5 *3 (-521)) (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-2200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-4 *7 (-783)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-729)) (-4 *8 (-282)) (-5 *2 (-587 (-707))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *5 (-707)))) (-3843 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1080 *11)) (-5 *6 (-587 *10)) (-5 *7 (-587 (-707))) (-5 *8 (-587 *11)) (-4 *10 (-783)) (-4 *11 (-282)) (-4 *9 (-729)) (-4 *5 (-877 *11 *9 *10)) (-5 *2 (-587 (-1080 *5))) (-5 *1 (-679 *9 *10 *11 *5)) (-5 *3 (-1080 *5)))) (-2973 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-2 (|:| -1974 (-1080 *6)) (|:| -2246 (-521))))) (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-521)) (-5 *4 (-392 *2)) (-4 *2 (-877 *7 *5 *6)) (-5 *1 (-679 *5 *6 *7 *2)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-282)))) (-2039 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-783)) (-4 *8 (-282)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-729)) (-5 *2 (-2 (|:| |upol| (-1080 *8)) (|:| |Lval| (-587 *8)) (|:| |Lfact| (-587 (-2 (|:| -1974 (-1080 *8)) (|:| -2246 (-521))))) (|:| |ctpol| *8))) (-5 *1 (-679 *6 *7 *8 *9)))) (-1306 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-783)) (-4 *8 (-282)) (-4 *6 (-729)) (-4 *9 (-877 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-587 (-2 (|:| -1974 (-1080 *9)) (|:| -2246 (-521))))))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)))) (-2937 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-521)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-282)) (-4 *9 (-877 *8 *6 *7)) (-5 *2 (-2 (|:| -3201 (-1080 *9)) (|:| |polval| (-1080 *8)))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)) (-5 *4 (-1080 *8)))) (-3202 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-679 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1974 (-1080 *6)) (|:| -2246 (-521))))) (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-521)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-3397 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5)))))
-(-10 -7 (-15 -2337 ((-392 |#4|) |#4|)) (-15 -2337 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3397 ((-392 |#4|) |#4|)) (-15 -2887 ((-521) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))))) (-15 -3202 ((-392 |#4|) |#4| |#2|)) (-15 -2937 ((-2 (|:| -3201 (-1080 |#4|)) (|:| |polval| (-1080 |#3|))) (-1080 |#4|) (-1080 |#3|) (-521))) (-15 -1306 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-587 (-2 (|:| -1974 (-1080 |#4|)) (|:| -2246 (-521)))))) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -2039 ((-2 (|:| |upol| (-1080 |#3|)) (|:| |Lval| (-587 |#3|)) (|:| |Lfact| (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521))))) (|:| |ctpol| |#3|)) (-1080 |#4|) (-587 |#2|) (-587 (-587 |#3|)))) (-15 -1926 (|#4| (-521) (-392 |#4|))) (-15 -2973 ((-108) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))) (-587 (-2 (|:| -1974 (-1080 |#3|)) (|:| -2246 (-521)))))) (-15 -3843 ((-3 (-587 (-1080 |#4|)) "failed") (-1080 |#4|) (-1080 |#3|) (-1080 |#3|) |#4| (-587 |#2|) (-587 (-707)) (-587 |#3|))) (-15 -2200 ((-587 (-707)) (-1080 |#4|) (-587 |#2|) (-707))) (-15 -1321 ((-1080 |#3|) (-1080 |#3|) (-521))))
-((-1940 (($ $ (-849)) 12)))
-(((-680 |#1| |#2|) (-10 -8 (-15 -1940 (|#1| |#1| (-849)))) (-681 |#2|) (-157)) (T -680))
-NIL
-(-10 -8 (-15 -1940 (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2588 (($ $ (-849)) 28)) (-1940 (($ $ (-849)) 33)) (-1209 (($ $ (-849)) 29)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2062 (($ $ $) 25)) (-2223 (((-791) $) 11)) (-2268 (($ $ $ $) 26)) (-3968 (($ $ $) 24)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-681 |#1|) (-1196) (-157)) (T -681))
-((-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-681 *3)) (-4 *3 (-157)))))
-(-13 (-698) (-654 |t#1|) (-10 -8 (-15 -1940 ($ $ (-849)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-698) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-2873 (((-959) (-627 (-202)) (-521) (-108) (-521)) 24)) (-2819 (((-959) (-627 (-202)) (-521) (-108) (-521)) 23)))
-(((-682) (-10 -7 (-15 -2819 ((-959) (-627 (-202)) (-521) (-108) (-521))) (-15 -2873 ((-959) (-627 (-202)) (-521) (-108) (-521))))) (T -682))
-((-2873 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-682)))) (-2819 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-682)))))
-(-10 -7 (-15 -2819 ((-959) (-627 (-202)) (-521) (-108) (-521))) (-15 -2873 ((-959) (-627 (-202)) (-521) (-108) (-521))))
-((-2454 (((-959) (-521) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN)))) 43)) (-4051 (((-959) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN)))) 39)) (-2980 (((-959) (-202) (-202) (-202) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 32)))
-(((-683) (-10 -7 (-15 -2980 ((-959) (-202) (-202) (-202) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -4051 ((-959) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN))))) (-15 -2454 ((-959) (-521) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN))))))) (T -683))
-((-2454 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN)))) (-5 *2 (-959)) (-5 *1 (-683)))) (-4051 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN)))) (-5 *2 (-959)) (-5 *1 (-683)))) (-2980 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-683)))))
-(-10 -7 (-15 -2980 ((-959) (-202) (-202) (-202) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -4051 ((-959) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN))))) (-15 -2454 ((-959) (-521) (-521) (-521) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN))))))
-((-2266 (((-959) (-521) (-521) (-627 (-202)) (-521)) 33)) (-2431 (((-959) (-521) (-521) (-627 (-202)) (-521)) 32)) (-1577 (((-959) (-521) (-627 (-202)) (-521)) 31)) (-3145 (((-959) (-521) (-627 (-202)) (-521)) 30)) (-1322 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 29)) (-2734 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 28)) (-3754 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521)) 27)) (-1956 (((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521)) 26)) (-2180 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 23)) (-4122 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521)) 22)) (-3861 (((-959) (-521) (-627 (-202)) (-521)) 21)) (-3059 (((-959) (-521) (-627 (-202)) (-521)) 20)))
-(((-684) (-10 -7 (-15 -3059 ((-959) (-521) (-627 (-202)) (-521))) (-15 -3861 ((-959) (-521) (-627 (-202)) (-521))) (-15 -4122 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2180 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1956 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3754 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2734 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1322 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3145 ((-959) (-521) (-627 (-202)) (-521))) (-15 -1577 ((-959) (-521) (-627 (-202)) (-521))) (-15 -2431 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -2266 ((-959) (-521) (-521) (-627 (-202)) (-521))))) (T -684))
-((-2266 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-2431 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1577 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3145 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1322 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-2734 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3754 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-1956 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-2180 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-4122 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3861 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))) (-3059 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-684)))))
-(-10 -7 (-15 -3059 ((-959) (-521) (-627 (-202)) (-521))) (-15 -3861 ((-959) (-521) (-627 (-202)) (-521))) (-15 -4122 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2180 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1956 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3754 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2734 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1322 ((-959) (-521) (-521) (-1067) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3145 ((-959) (-521) (-627 (-202)) (-521))) (-15 -1577 ((-959) (-521) (-627 (-202)) (-521))) (-15 -2431 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -2266 ((-959) (-521) (-521) (-627 (-202)) (-521))))
-((-3205 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2915 (((-959) (-627 (-202)) (-627 (-202)) (-521) (-521)) 51)) (-4005 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2855 (((-959) (-202) (-202) (-521) (-521) (-521) (-521)) 46)) (-3417 (((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 45)) (-3204 (((-959) (-202) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 44)) (-3357 (((-959) (-202) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 43)) (-1726 (((-959) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) 42)) (-2010 (((-959) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 38)) (-2931 (((-959) (-202) (-202) (-521) (-627 (-202)) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 37)) (-1973 (((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 33)) (-3889 (((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) 32)))
-(((-685) (-10 -7 (-15 -3889 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -1973 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -2931 ((-959) (-202) (-202) (-521) (-627 (-202)) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -2010 ((-959) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -1726 ((-959) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3357 ((-959) (-202) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3204 ((-959) (-202) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3417 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -2855 ((-959) (-202) (-202) (-521) (-521) (-521) (-521))) (-15 -4005 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))) (-15 -2915 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-521))) (-15 -3205 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))))) (T -685))
-((-3205 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2915 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-685)))) (-4005 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2855 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-685)))) (-3417 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-3204 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-3357 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-1726 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2010 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-2931 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-685)))) (-1973 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-685)))) (-3889 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959)) (-5 *1 (-685)))))
-(-10 -7 (-15 -3889 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -1973 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -2931 ((-959) (-202) (-202) (-521) (-627 (-202)) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -2010 ((-959) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049))))) (-15 -1726 ((-959) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3357 ((-959) (-202) (-202) (-202) (-202) (-521) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3204 ((-959) (-202) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -3417 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G))))) (-15 -2855 ((-959) (-202) (-202) (-521) (-521) (-521) (-521))) (-15 -4005 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))) (-15 -2915 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-521))) (-15 -3205 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-202) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))))
-((-3325 (((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2843 (((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))) (-362) (-362)) 69) (((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1794 (((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG)))) 57)) (-1992 (((-959) (-627 (-202)) (-627 (-202)) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) 50)) (-1962 (((-959) (-202) (-521) (-521) (-1067) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2427 (((-959) (-202) (-521) (-521) (-202) (-1067) (-202) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2175 (((-959) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) 42)) (-1682 (((-959) (-202) (-521) (-521) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-686) (-10 -7 (-15 -1682 ((-959) (-202) (-521) (-521) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -2175 ((-959) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -2427 ((-959) (-202) (-521) (-521) (-202) (-1067) (-202) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -1962 ((-959) (-202) (-521) (-521) (-1067) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -1992 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -1794 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG))))) (-15 -2843 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))) (-15 -2843 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))) (-362) (-362))) (-15 -3325 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -686))
-((-3325 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-2843 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-362)) (-5 *2 (-959)) (-5 *1 (-686)))) (-2843 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-959)) (-5 *1 (-686)))) (-1794 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-1992 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *2 (-959)) (-5 *1 (-686)))) (-1962 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-2427 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-2175 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))) (-1682 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
-(-10 -7 (-15 -1682 ((-959) (-202) (-521) (-521) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -2175 ((-959) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -2427 ((-959) (-202) (-521) (-521) (-202) (-1067) (-202) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -1962 ((-959) (-202) (-521) (-521) (-1067) (-521) (-202) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))) (-15 -1992 ((-959) (-627 (-202)) (-627 (-202)) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))) (-15 -1794 ((-959) (-202) (-202) (-521) (-202) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG))))) (-15 -2843 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))) (-15 -2843 ((-959) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))) (-362) (-362))) (-15 -3325 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-3115 (((-959) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-615 (-202)) (-521)) 45)) (-2318 (((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-1067) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY)))) 41)) (-1427 (((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 23)))
-(((-687) (-10 -7 (-15 -1427 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2318 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-1067) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY))))) (-15 -3115 ((-959) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-615 (-202)) (-521))))) (T -687))
-((-3115 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-615 (-202))) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-687)))) (-2318 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-959)) (-5 *1 (-687)))) (-1427 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-687)))))
-(-10 -7 (-15 -1427 ((-959) (-521) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2318 ((-959) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-1067) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY))))) (-15 -3115 ((-959) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-615 (-202)) (-521))))
-((-1268 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-627 (-202)) (-202) (-202) (-521)) 35)) (-1529 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-202) (-202) (-521)) 34)) (-3610 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-627 (-202)) (-202) (-202) (-521)) 33)) (-1352 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 29)) (-4183 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 28)) (-1576 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521)) 27)) (-3003 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521)) 23)) (-1537 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521)) 22)) (-3900 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521)) 21)) (-3644 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521)) 20)))
-(((-688) (-10 -7 (-15 -3644 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -3900 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1537 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -3003 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -1576 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521))) (-15 -4183 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1352 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3610 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-627 (-202)) (-202) (-202) (-521))) (-15 -1529 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-202) (-202) (-521))) (-15 -1268 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-627 (-202)) (-202) (-202) (-521))))) (T -688))
-((-1268 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-688)))) (-1529 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-688)))) (-3610 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202)) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-688)))) (-1352 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-4183 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-1576 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-688)))) (-3003 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-1537 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-3900 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))) (-3644 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-688)))))
-(-10 -7 (-15 -3644 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -3900 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1537 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -3003 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -1576 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-202) (-521))) (-15 -4183 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1352 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3610 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-627 (-202)) (-202) (-202) (-521))) (-15 -1529 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-202) (-202) (-521))) (-15 -1268 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-627 (-202)) (-202) (-202) (-521))))
-((-2139 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521)) 45)) (-4207 (((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-521)) 44)) (-1792 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521)) 43)) (-2598 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 42)) (-2108 (((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521)) 41)) (-4182 (((-959) (-1067) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521)) 40)) (-2552 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521) (-521) (-521) (-202) (-627 (-202)) (-521)) 39)) (-3023 (((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521))) 38)) (-2831 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-521)) 35)) (-2719 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521)) 34)) (-2374 (((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521)) 33)) (-2072 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 32)) (-2208 (((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521)) 31)) (-2697 (((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-521)) 30)) (-3026 (((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-521) (-521) (-521)) 29)) (-1600 (((-959) (-521) (-521) (-521) (-202) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-521)) (-521) (-521) (-521)) 28)) (-1201 (((-959) (-521) (-627 (-202)) (-202) (-521)) 24)) (-3901 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 20)))
-(((-689) (-10 -7 (-15 -3901 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1201 ((-959) (-521) (-627 (-202)) (-202) (-521))) (-15 -1600 ((-959) (-521) (-521) (-521) (-202) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-521)) (-521) (-521) (-521))) (-15 -3026 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -2697 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-521))) (-15 -2208 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521))) (-15 -2072 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2374 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521))) (-15 -2719 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521))) (-15 -2831 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3023 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)))) (-15 -2552 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521) (-521) (-521) (-202) (-627 (-202)) (-521))) (-15 -4182 ((-959) (-1067) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -2108 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2598 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1792 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -4207 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2139 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))))) (T -689))
-((-2139 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-4207 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1792 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-2598 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-2108 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-4182 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202)) (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2552 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202)) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))) (-3023 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202)) (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2831 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-2719 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2374 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2072 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))) (-2208 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-2697 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-3026 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1600 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-1201 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))) (-3901 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-689)))))
-(-10 -7 (-15 -3901 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1201 ((-959) (-521) (-627 (-202)) (-202) (-521))) (-15 -1600 ((-959) (-521) (-521) (-521) (-202) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-521)) (-521) (-521) (-521))) (-15 -3026 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -2697 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521) (-521) (-521))) (-15 -2208 ((-959) (-521) (-202) (-202) (-627 (-202)) (-521) (-521) (-202) (-521))) (-15 -2072 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2374 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521))) (-15 -2719 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521))) (-15 -2831 ((-959) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3023 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)))) (-15 -2552 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521) (-521) (-521) (-202) (-627 (-202)) (-521))) (-15 -4182 ((-959) (-1067) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -2108 ((-959) (-1067) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2598 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1792 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))) (-15 -4207 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2139 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521) (-627 (-202)) (-627 (-202)) (-521) (-521) (-521))))
-((-1510 (((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-521) (-627 (-202)) (-521)) 63)) (-1901 (((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-108) (-202) (-521) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-521) (-521) (-521) (-521) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3006 (((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-108) (-108) (-521) (-521) (-627 (-202)) (-627 (-521)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS)))) 58)) (-3171 (((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-521) (-521) (-627 (-202)) (-521)) 51)) (-2276 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2998 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2)))) 46)) (-4095 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2766 (((-959) (-521) (-202) (-202) (-521) (-202) (-108) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-690) (-10 -7 (-15 -2766 ((-959) (-521) (-202) (-202) (-521) (-202) (-108) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -4095 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1))))) (-15 -2998 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2))))) (-15 -2276 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1))))) (-15 -3171 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-521) (-521) (-627 (-202)) (-521))) (-15 -3006 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-108) (-108) (-521) (-521) (-627 (-202)) (-627 (-521)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS))))) (-15 -1901 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-108) (-202) (-521) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-521) (-521) (-521) (-521) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -1510 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-521) (-627 (-202)) (-521))))) (T -690))
-((-1510 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))) (-1901 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-627 (-521))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-690)))) (-3006 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-627 (-202))) (-5 *6 (-108)) (-5 *7 (-627 (-521))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))) (-3171 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-690)))) (-2276 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-959)) (-5 *1 (-690)))) (-2998 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-959)) (-5 *1 (-690)))) (-4095 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-959)) (-5 *1 (-690)))) (-2766 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))))
-(-10 -7 (-15 -2766 ((-959) (-521) (-202) (-202) (-521) (-202) (-108) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -4095 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1))))) (-15 -2998 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2))))) (-15 -2276 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1))))) (-15 -3171 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-521) (-521) (-627 (-202)) (-521))) (-15 -3006 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-202) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-108) (-108) (-108) (-521) (-521) (-627 (-202)) (-627 (-521)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS))))) (-15 -1901 ((-959) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-521) (-108) (-202) (-521) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-521) (-521) (-521) (-521) (-521) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-521) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))) (-15 -1510 ((-959) (-521) (-521) (-521) (-202) (-627 (-202)) (-521) (-627 (-202)) (-521))))
-((-2344 (((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521)) 46)) (-2248 (((-959) (-1067) (-1067) (-521) (-521) (-627 (-154 (-202))) (-521) (-627 (-154 (-202))) (-521) (-521) (-627 (-154 (-202))) (-521)) 45)) (-1603 (((-959) (-521) (-521) (-521) (-627 (-154 (-202))) (-521)) 44)) (-1739 (((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 40)) (-3654 (((-959) (-1067) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)) (-521)) 39)) (-3085 (((-959) (-521) (-521) (-521) (-627 (-202)) (-521)) 36)) (-3878 (((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521)) 35)) (-1308 (((-959) (-521) (-521) (-521) (-521) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-202) (-202) (-521)) 34)) (-2023 (((-959) (-521) (-521) (-521) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-108) (-202) (-108) (-627 (-521)) (-627 (-202)) (-521)) 33)) (-3253 (((-959) (-521) (-521) (-521) (-521) (-202) (-108) (-108) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-521)) 32)))
-(((-691) (-10 -7 (-15 -3253 ((-959) (-521) (-521) (-521) (-521) (-202) (-108) (-108) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-521))) (-15 -2023 ((-959) (-521) (-521) (-521) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-108) (-202) (-108) (-627 (-521)) (-627 (-202)) (-521))) (-15 -1308 ((-959) (-521) (-521) (-521) (-521) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-202) (-202) (-521))) (-15 -3878 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521))) (-15 -3085 ((-959) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -3654 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)) (-521))) (-15 -1739 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1603 ((-959) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -2248 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-154 (-202))) (-521) (-627 (-154 (-202))) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -2344 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))) (T -691))
-((-2344 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-691)))) (-2248 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-691)))) (-1603 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-691)))) (-1739 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-691)))) (-3654 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-691)))) (-3085 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-691)))) (-3878 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-691)))) (-1308 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-587 (-108))) (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *7 (-202)) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-691)))) (-2023 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-627 (-521))) (-5 *5 (-108)) (-5 *7 (-627 (-202))) (-5 *3 (-521)) (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-691)))) (-3253 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-587 (-108))) (-5 *7 (-627 (-202))) (-5 *8 (-627 (-521))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *5 (-108)) (-5 *2 (-959)) (-5 *1 (-691)))))
-(-10 -7 (-15 -3253 ((-959) (-521) (-521) (-521) (-521) (-202) (-108) (-108) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-521))) (-15 -2023 ((-959) (-521) (-521) (-521) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-627 (-521)) (-108) (-202) (-108) (-627 (-521)) (-627 (-202)) (-521))) (-15 -1308 ((-959) (-521) (-521) (-521) (-521) (-587 (-108)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-202) (-202) (-521))) (-15 -3878 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521))) (-15 -3085 ((-959) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -3654 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)) (-521))) (-15 -1739 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1603 ((-959) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -2248 ((-959) (-1067) (-1067) (-521) (-521) (-627 (-154 (-202))) (-521) (-627 (-154 (-202))) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -2344 ((-959) (-1067) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))
-((-2002 (((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521)) 64)) (-2040 (((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521)) 60)) (-2476 (((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))) (-362)) 56) (((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) 55)) (-3194 (((-959) (-521) (-521) (-521) (-202) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521)) 37)) (-4028 (((-959) (-521) (-521) (-202) (-202) (-521) (-521) (-627 (-202)) (-521)) 33)) (-1319 (((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521) (-521)) 29)) (-2698 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 28)) (-1673 (((-959) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 27)) (-1457 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 26)) (-1257 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521)) 25)) (-2161 (((-959) (-521) (-521) (-627 (-202)) (-521)) 24)) (-1667 (((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 23)) (-2536 (((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521)) 22)) (-3944 (((-959) (-627 (-202)) (-521) (-521) (-521) (-521)) 21)) (-2284 (((-959) (-521) (-521) (-627 (-202)) (-521)) 20)))
-(((-692) (-10 -7 (-15 -2284 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -3944 ((-959) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -2536 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1667 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2161 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -1257 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -1457 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1673 ((-959) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2698 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1319 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -4028 ((-959) (-521) (-521) (-202) (-202) (-521) (-521) (-627 (-202)) (-521))) (-15 -3194 ((-959) (-521) (-521) (-521) (-202) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2476 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))))) (-15 -2476 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))) (-362))) (-15 -2040 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2002 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))) (T -692))
-((-2002 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2040 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2476 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-362)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-2476 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-3194 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-4028 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))) (-1319 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-692)))) (-2698 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-1673 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-1457 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-1257 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2161 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-1667 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-2536 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))) (-3944 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-692)))) (-2284 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-692)))))
-(-10 -7 (-15 -2284 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -3944 ((-959) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -2536 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1667 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2161 ((-959) (-521) (-521) (-627 (-202)) (-521))) (-15 -1257 ((-959) (-521) (-521) (-521) (-521) (-627 (-202)) (-521))) (-15 -1457 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1673 ((-959) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2698 ((-959) (-521) (-521) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1319 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521) (-521))) (-15 -4028 ((-959) (-521) (-521) (-202) (-202) (-521) (-521) (-627 (-202)) (-521))) (-15 -3194 ((-959) (-521) (-521) (-521) (-202) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2476 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))))) (-15 -2476 ((-959) (-521) (-521) (-202) (-521) (-521) (-521) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE))) (-362))) (-15 -2040 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -2002 ((-959) (-521) (-521) (-521) (-521) (-521) (-108) (-521) (-108) (-521) (-627 (-154 (-202))) (-627 (-154 (-202))) (-521))))
-((-1491 (((-959) (-521) (-521) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD)))) 60)) (-3673 (((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521)) 56)) (-2785 (((-959) (-521) (-627 (-202)) (-108) (-202) (-521) (-521) (-521) (-521) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1753 (((-959) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521)) 36)) (-3251 (((-959) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-521)) 35)) (-2389 (((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521)) 31)) (-4124 (((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202))) 30)) (-2204 (((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521)) 26)) (-2111 (((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521)) 25)) (-3641 (((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521)) 24)) (-1815 (((-959) (-521) (-627 (-154 (-202))) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-521)) 20)))
-(((-693) (-10 -7 (-15 -1815 ((-959) (-521) (-627 (-154 (-202))) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -3641 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -2111 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -2204 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521))) (-15 -4124 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)))) (-15 -2389 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3251 ((-959) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1753 ((-959) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -2785 ((-959) (-521) (-627 (-202)) (-108) (-202) (-521) (-521) (-521) (-521) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE))))) (-15 -3673 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -1491 ((-959) (-521) (-521) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD))))))) (T -693))
-((-1491 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-693)))) (-3673 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-2785 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-959)) (-5 *1 (-693)))) (-1753 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-3251 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-693)))) (-2389 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-693)))) (-4124 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-2204 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-693)))) (-2111 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-693)))) (-3641 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-693)))) (-1815 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959)) (-5 *1 (-693)))))
-(-10 -7 (-15 -1815 ((-959) (-521) (-627 (-154 (-202))) (-521) (-521) (-521) (-521) (-627 (-154 (-202))) (-521))) (-15 -3641 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -2111 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-521))) (-15 -2204 ((-959) (-627 (-202)) (-521) (-627 (-202)) (-521) (-521) (-521))) (-15 -4124 ((-959) (-521) (-627 (-202)) (-521) (-627 (-521)) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)))) (-15 -2389 ((-959) (-521) (-521) (-627 (-202)) (-627 (-202)) (-627 (-202)) (-521))) (-15 -3251 ((-959) (-521) (-521) (-521) (-202) (-521) (-627 (-202)) (-627 (-202)) (-521))) (-15 -1753 ((-959) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-521)) (-627 (-202)) (-627 (-521)) (-627 (-521)) (-627 (-202)) (-627 (-202)) (-627 (-521)) (-521))) (-15 -2785 ((-959) (-521) (-627 (-202)) (-108) (-202) (-521) (-521) (-521) (-521) (-202) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE))))) (-15 -3673 ((-959) (-521) (-627 (-202)) (-521) (-627 (-202)) (-627 (-521)) (-521) (-627 (-202)) (-521) (-521) (-521) (-521))) (-15 -1491 ((-959) (-521) (-521) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-627 (-202)) (-521) (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD))))))
-((-1320 (((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-521) (-627 (-202))) 28)) (-3778 (((-959) (-1067) (-521) (-521) (-627 (-202))) 27)) (-2569 (((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-202))) 26)) (-1873 (((-959) (-521) (-521) (-521) (-627 (-202))) 20)))
-(((-694) (-10 -7 (-15 -1873 ((-959) (-521) (-521) (-521) (-627 (-202)))) (-15 -2569 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-202)))) (-15 -3778 ((-959) (-1067) (-521) (-521) (-627 (-202)))) (-15 -1320 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)))))) (T -694))
-((-1320 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-694)))) (-3778 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-694)))) (-2569 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-694)))) (-1873 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959)) (-5 *1 (-694)))))
-(-10 -7 (-15 -1873 ((-959) (-521) (-521) (-521) (-627 (-202)))) (-15 -2569 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-627 (-521)) (-521) (-627 (-202)))) (-15 -3778 ((-959) (-1067) (-521) (-521) (-627 (-202)))) (-15 -1320 ((-959) (-1067) (-521) (-521) (-627 (-202)) (-521) (-521) (-627 (-202)))))
-((-2647 (((-959) (-202) (-202) (-202) (-202) (-521)) 62)) (-3430 (((-959) (-202) (-202) (-202) (-521)) 61)) (-3779 (((-959) (-202) (-202) (-202) (-521)) 60)) (-3862 (((-959) (-202) (-202) (-521)) 59)) (-2701 (((-959) (-202) (-521)) 58)) (-2946 (((-959) (-202) (-521)) 57)) (-3049 (((-959) (-202) (-521)) 56)) (-2824 (((-959) (-202) (-521)) 55)) (-4100 (((-959) (-202) (-521)) 54)) (-2355 (((-959) (-202) (-521)) 53)) (-3770 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 52)) (-2928 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 51)) (-3677 (((-959) (-202) (-521)) 50)) (-2152 (((-959) (-202) (-521)) 49)) (-4007 (((-959) (-202) (-521)) 48)) (-1287 (((-959) (-202) (-521)) 47)) (-4170 (((-959) (-521) (-202) (-154 (-202)) (-521) (-1067) (-521)) 46)) (-3291 (((-959) (-1067) (-154 (-202)) (-1067) (-521)) 45)) (-2594 (((-959) (-1067) (-154 (-202)) (-1067) (-521)) 44)) (-2257 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 43)) (-1746 (((-959) (-202) (-154 (-202)) (-521) (-1067) (-521)) 42)) (-3821 (((-959) (-202) (-521)) 39)) (-3997 (((-959) (-202) (-521)) 38)) (-3825 (((-959) (-202) (-521)) 37)) (-2689 (((-959) (-202) (-521)) 36)) (-3855 (((-959) (-202) (-521)) 35)) (-2170 (((-959) (-202) (-521)) 34)) (-1254 (((-959) (-202) (-521)) 33)) (-2456 (((-959) (-202) (-521)) 32)) (-3294 (((-959) (-202) (-521)) 31)) (-3503 (((-959) (-202) (-521)) 30)) (-2140 (((-959) (-202) (-202) (-202) (-521)) 29)) (-2155 (((-959) (-202) (-521)) 28)) (-3615 (((-959) (-202) (-521)) 27)) (-2920 (((-959) (-202) (-521)) 26)) (-2591 (((-959) (-202) (-521)) 25)) (-3119 (((-959) (-202) (-521)) 24)) (-2590 (((-959) (-154 (-202)) (-521)) 20)))
-(((-695) (-10 -7 (-15 -2590 ((-959) (-154 (-202)) (-521))) (-15 -3119 ((-959) (-202) (-521))) (-15 -2591 ((-959) (-202) (-521))) (-15 -2920 ((-959) (-202) (-521))) (-15 -3615 ((-959) (-202) (-521))) (-15 -2155 ((-959) (-202) (-521))) (-15 -2140 ((-959) (-202) (-202) (-202) (-521))) (-15 -3503 ((-959) (-202) (-521))) (-15 -3294 ((-959) (-202) (-521))) (-15 -2456 ((-959) (-202) (-521))) (-15 -1254 ((-959) (-202) (-521))) (-15 -2170 ((-959) (-202) (-521))) (-15 -3855 ((-959) (-202) (-521))) (-15 -2689 ((-959) (-202) (-521))) (-15 -3825 ((-959) (-202) (-521))) (-15 -3997 ((-959) (-202) (-521))) (-15 -3821 ((-959) (-202) (-521))) (-15 -1746 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2257 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2594 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -3291 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -4170 ((-959) (-521) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -1287 ((-959) (-202) (-521))) (-15 -4007 ((-959) (-202) (-521))) (-15 -2152 ((-959) (-202) (-521))) (-15 -3677 ((-959) (-202) (-521))) (-15 -2928 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -3770 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2355 ((-959) (-202) (-521))) (-15 -4100 ((-959) (-202) (-521))) (-15 -2824 ((-959) (-202) (-521))) (-15 -3049 ((-959) (-202) (-521))) (-15 -2946 ((-959) (-202) (-521))) (-15 -2701 ((-959) (-202) (-521))) (-15 -3862 ((-959) (-202) (-202) (-521))) (-15 -3779 ((-959) (-202) (-202) (-202) (-521))) (-15 -3430 ((-959) (-202) (-202) (-202) (-521))) (-15 -2647 ((-959) (-202) (-202) (-202) (-202) (-521))))) (T -695))
-((-2647 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3430 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3779 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3862 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2824 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4100 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3770 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2928 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1287 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-4170 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-521)) (-5 *5 (-154 (-202))) (-5 *6 (-1067)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3291 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2594 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2257 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1746 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067)) (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2170 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-1254 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2456 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3294 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2140 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-3119 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-154 (-202))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(-10 -7 (-15 -2590 ((-959) (-154 (-202)) (-521))) (-15 -3119 ((-959) (-202) (-521))) (-15 -2591 ((-959) (-202) (-521))) (-15 -2920 ((-959) (-202) (-521))) (-15 -3615 ((-959) (-202) (-521))) (-15 -2155 ((-959) (-202) (-521))) (-15 -2140 ((-959) (-202) (-202) (-202) (-521))) (-15 -3503 ((-959) (-202) (-521))) (-15 -3294 ((-959) (-202) (-521))) (-15 -2456 ((-959) (-202) (-521))) (-15 -1254 ((-959) (-202) (-521))) (-15 -2170 ((-959) (-202) (-521))) (-15 -3855 ((-959) (-202) (-521))) (-15 -2689 ((-959) (-202) (-521))) (-15 -3825 ((-959) (-202) (-521))) (-15 -3997 ((-959) (-202) (-521))) (-15 -3821 ((-959) (-202) (-521))) (-15 -1746 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2257 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2594 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -3291 ((-959) (-1067) (-154 (-202)) (-1067) (-521))) (-15 -4170 ((-959) (-521) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -1287 ((-959) (-202) (-521))) (-15 -4007 ((-959) (-202) (-521))) (-15 -2152 ((-959) (-202) (-521))) (-15 -3677 ((-959) (-202) (-521))) (-15 -2928 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -3770 ((-959) (-202) (-154 (-202)) (-521) (-1067) (-521))) (-15 -2355 ((-959) (-202) (-521))) (-15 -4100 ((-959) (-202) (-521))) (-15 -2824 ((-959) (-202) (-521))) (-15 -3049 ((-959) (-202) (-521))) (-15 -2946 ((-959) (-202) (-521))) (-15 -2701 ((-959) (-202) (-521))) (-15 -3862 ((-959) (-202) (-202) (-521))) (-15 -3779 ((-959) (-202) (-202) (-202) (-521))) (-15 -3430 ((-959) (-202) (-202) (-202) (-521))) (-15 -2647 ((-959) (-202) (-202) (-202) (-202) (-521))))
-((-1928 (((-1170)) 18)) (-2245 (((-1067)) 22)) (-1559 (((-1067)) 21)) (-3019 (((-1017) (-1084) (-627 (-521))) 35) (((-1017) (-1084) (-627 (-202))) 31)) (-1626 (((-108)) 16)) (-3221 (((-1067) (-1067)) 25)))
-(((-696) (-10 -7 (-15 -1559 ((-1067))) (-15 -2245 ((-1067))) (-15 -3221 ((-1067) (-1067))) (-15 -3019 ((-1017) (-1084) (-627 (-202)))) (-15 -3019 ((-1017) (-1084) (-627 (-521)))) (-15 -1626 ((-108))) (-15 -1928 ((-1170))))) (T -696))
-((-1928 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-696)))) (-1626 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-696)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-521))) (-5 *2 (-1017)) (-5 *1 (-696)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-202))) (-5 *2 (-1017)) (-5 *1 (-696)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))) (-2245 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))) (-1559 (*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
-(-10 -7 (-15 -1559 ((-1067))) (-15 -2245 ((-1067))) (-15 -3221 ((-1067) (-1067))) (-15 -3019 ((-1017) (-1084) (-627 (-202)))) (-15 -3019 ((-1017) (-1084) (-627 (-521)))) (-15 -1626 ((-108))) (-15 -1928 ((-1170))))
-((-2062 (($ $ $) 10)) (-2268 (($ $ $ $) 9)) (-3968 (($ $ $) 12)))
-(((-697 |#1|) (-10 -8 (-15 -3968 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -2268 (|#1| |#1| |#1| |#1|))) (-698)) (T -697))
-NIL
-(-10 -8 (-15 -3968 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1| |#1|)) (-15 -2268 (|#1| |#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2588 (($ $ (-849)) 28)) (-1209 (($ $ (-849)) 29)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2062 (($ $ $) 25)) (-2223 (((-791) $) 11)) (-2268 (($ $ $ $) 26)) (-3968 (($ $ $) 24)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 30)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27)))
-(((-698) (-1196)) (T -698))
-((-2268 (*1 *1 *1 *1 *1) (-4 *1 (-698))) (-2062 (*1 *1 *1 *1) (-4 *1 (-698))) (-3968 (*1 *1 *1 *1) (-4 *1 (-698))))
-(-13 (-21) (-657) (-10 -8 (-15 -2268 ($ $ $ $)) (-15 -2062 ($ $ $)) (-15 -3968 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-657) . T) ((-1013) . T))
-((-2223 (((-791) $) NIL) (($ (-521)) 10)))
-(((-699 |#1|) (-10 -8 (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-700)) (T -699))
-NIL
-(-10 -8 (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2604 (((-3 $ "failed") $) 40)) (-2588 (($ $ (-849)) 28) (($ $ (-707)) 35)) (-2783 (((-3 $ "failed") $) 38)) (-3637 (((-108) $) 34)) (-1389 (((-3 $ "failed") $) 39)) (-1209 (($ $ (-849)) 29) (($ $ (-707)) 36)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2062 (($ $ $) 25)) (-2223 (((-791) $) 11) (($ (-521)) 31)) (-1592 (((-707)) 32)) (-2268 (($ $ $ $) 26)) (-3968 (($ $ $) 24)) (-3562 (($) 18 T CONST)) (-3572 (($) 33 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 30) (($ $ (-707)) 37)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 27)))
-(((-700) (-1196)) (T -700))
-((-1592 (*1 *2) (-12 (-4 *1 (-700)) (-5 *2 (-707)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-700)))))
-(-13 (-698) (-659) (-10 -8 (-15 -1592 ((-707))) (-15 -2223 ($ (-521)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-657) . T) ((-659) . T) ((-698) . T) ((-1013) . T))
-((-1540 (((-587 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 |#1|)))))) (-627 (-154 (-381 (-521)))) |#1|) 27)) (-3124 (((-587 (-154 |#1|)) (-627 (-154 (-381 (-521)))) |#1|) 19)) (-3379 (((-880 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))) (-1084)) 16) (((-880 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521))))) 15)))
-(((-701 |#1|) (-10 -7 (-15 -3379 ((-880 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))))) (-15 -3379 ((-880 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))) (-1084))) (-15 -3124 ((-587 (-154 |#1|)) (-627 (-154 (-381 (-521)))) |#1|)) (-15 -1540 ((-587 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 |#1|)))))) (-627 (-154 (-381 (-521)))) |#1|))) (-13 (-337) (-781))) (T -701))
-((-1540 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-587 (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 *4))))))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-781))))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-587 (-154 *4))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-781))))) (-3379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *4 (-1084)) (-5 *2 (-880 (-154 (-381 (-521))))) (-5 *1 (-701 *5)) (-4 *5 (-13 (-337) (-781))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-880 (-154 (-381 (-521))))) (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-781))))))
-(-10 -7 (-15 -3379 ((-880 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))))) (-15 -3379 ((-880 (-154 (-381 (-521)))) (-627 (-154 (-381 (-521)))) (-1084))) (-15 -3124 ((-587 (-154 |#1|)) (-627 (-154 (-381 (-521)))) |#1|)) (-15 -1540 ((-587 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 (-154 |#1|)))))) (-627 (-154 (-381 (-521)))) |#1|)))
-((-1714 (((-158 (-521)) |#1|) 25)))
-(((-702 |#1|) (-10 -7 (-15 -1714 ((-158 (-521)) |#1|))) (-378)) (T -702))
-((-1714 (*1 *2 *3) (-12 (-5 *2 (-158 (-521))) (-5 *1 (-702 *3)) (-4 *3 (-378)))))
-(-10 -7 (-15 -1714 ((-158 (-521)) |#1|)))
-((-1420 ((|#1| |#1| |#1|) 25)) (-3881 ((|#1| |#1| |#1|) 24)) (-3897 ((|#1| |#1| |#1|) 32)) (-1229 ((|#1| |#1| |#1|) 28)) (-4115 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3728 (((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|) 23)))
-(((-703 |#1| |#2|) (-10 -7 (-15 -3728 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -4115 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1229 (|#1| |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|))) (-646 |#2|) (-337)) (T -703))
-((-3897 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-1229 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-4115 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-1420 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-3881 (*1 *2 *2 *2) (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3)))) (-3728 (*1 *2 *3 *3) (-12 (-4 *4 (-337)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-703 *3 *4)) (-4 *3 (-646 *4)))))
-(-10 -7 (-15 -3728 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -4115 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1229 (|#1| |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)))
-((-1635 (((-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))) (-521)) 58)) (-3807 (((-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521))))) 56)) (-3011 (((-521)) 68)))
-(((-704 |#1| |#2|) (-10 -7 (-15 -3011 ((-521))) (-15 -3807 ((-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))))) (-15 -1635 ((-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))) (-521)))) (-1141 (-521)) (-383 (-521) |#1|)) (T -704))
-((-1635 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-1141 *3)) (-5 *2 (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-704 *4 *5)) (-4 *5 (-383 *3 *4)))) (-3807 (*1 *2) (-12 (-4 *3 (-1141 (-521))) (-5 *2 (-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521))))) (-5 *1 (-704 *3 *4)) (-4 *4 (-383 (-521) *3)))) (-3011 (*1 *2) (-12 (-4 *3 (-1141 *2)) (-5 *2 (-521)) (-5 *1 (-704 *3 *4)) (-4 *4 (-383 *2 *3)))))
-(-10 -7 (-15 -3011 ((-521))) (-15 -3807 ((-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))))) (-15 -1635 ((-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521)) (|:| |basisInv| (-627 (-521)))) (-521))))
-((-1422 (((-108) $ $) NIL)) (-1496 (((-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $) 15)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 14) (($ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8) (($ (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) 12)) (-1549 (((-108) $ $) NIL)))
-(((-705) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2223 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2223 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))) (T -705))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-705)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-705)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-705)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-705)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-705)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2223 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2223 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-3 (|:| |nia| (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))
-((-3387 (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|))) 14) (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)) (-587 (-1084))) 13)) (-3278 (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|))) 16) (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)) (-587 (-1084))) 15)))
-(((-706 |#1|) (-10 -7 (-15 -3387 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -3387 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|))))) (-513)) (T -706))
-((-3278 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-706 *4)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-706 *5)))) (-3387 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-706 *4)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-706 *5)))))
-(-10 -7 (-15 -3387 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -3387 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-880 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2303 (($ $ $) 8)) (-2057 (((-3 $ "failed") $ $) 11)) (-1697 (($ $ (-521)) 9)) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($ $) NIL)) (-2282 (($ $ $) NIL)) (-3637 (((-108) $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2286 (($ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2223 (((-791) $) NIL)) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (* (($ (-707) $) NIL) (($ (-849) $) NIL) (($ $ $) NIL)))
-(((-707) (-13 (-729) (-663) (-10 -8 (-15 -2282 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -1904 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -2261 ((-3 $ "failed") $ $)) (-15 -1697 ($ $ (-521))) (-15 -3254 ($ $)) (-6 (-4235 "*"))))) (T -707))
-((-2282 (*1 *1 *1 *1) (-5 *1 (-707))) (-2302 (*1 *1 *1 *1) (-5 *1 (-707))) (-2286 (*1 *1 *1 *1) (-5 *1 (-707))) (-1904 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3852 (-707)) (|:| -2334 (-707)))) (-5 *1 (-707)))) (-2261 (*1 *1 *1 *1) (|partial| -5 *1 (-707))) (-1697 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-707)))) (-3254 (*1 *1 *1) (-5 *1 (-707))))
-(-13 (-729) (-663) (-10 -8 (-15 -2282 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2286 ($ $ $)) (-15 -1904 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -2261 ((-3 $ "failed") $ $)) (-15 -1697 ($ $ (-521))) (-15 -3254 ($ $)) (-6 (-4235 "*"))))
-((-3278 (((-3 |#2| "failed") |#2| |#2| (-110) (-1084)) 35)))
-(((-708 |#1| |#2|) (-10 -7 (-15 -3278 ((-3 |#2| "failed") |#2| |#2| (-110) (-1084)))) (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-886))) (T -708))
-((-3278 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1084)) (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-708 *5 *2)) (-4 *2 (-13 (-29 *5) (-1105) (-886))))))
-(-10 -7 (-15 -3278 ((-3 |#2| "failed") |#2| |#2| (-110) (-1084))))
-((-2223 (((-710) |#1|) 8)))
-(((-709 |#1|) (-10 -7 (-15 -2223 ((-710) |#1|))) (-1119)) (T -709))
-((-2223 (*1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-709 *3)) (-4 *3 (-1119)))))
-(-10 -7 (-15 -2223 ((-710) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 7)) (-1549 (((-108) $ $) 9)))
-(((-710) (-1013)) (T -710))
-NIL
-(-1013)
-((-2549 ((|#2| |#4|) 35)))
-(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2549 (|#2| |#4|))) (-425) (-1141 |#1|) (-661 |#1| |#2|) (-1141 |#3|)) (T -711))
-((-2549 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-711 *4 *2 *5 *3)) (-4 *3 (-1141 *5)))))
-(-10 -7 (-15 -2549 (|#2| |#4|)))
-((-2783 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3395 (((-1170) (-1067) (-1067) |#4| |#5|) 33)) (-3098 ((|#4| |#4| |#5|) 73)) (-3090 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|) 77)) (-1531 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|) 15)))
-(((-712 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2783 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3098 (|#4| |#4| |#5|)) (-15 -3090 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3395 ((-1170) (-1067) (-1067) |#4| |#5|)) (-15 -1531 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -712))
-((-1531 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4)))) (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3395 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1067)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *4 (-984 *6 *7 *8)) (-5 *2 (-1170)) (-5 *1 (-712 *6 *7 *8 *4 *5)) (-4 *5 (-989 *6 *7 *8 *4)))) (-3090 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3098 (*1 *2 *2 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *2 (-984 *4 *5 *6)) (-5 *1 (-712 *4 *5 *6 *2 *3)) (-4 *3 (-989 *4 *5 *6 *2)))) (-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2783 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3098 (|#4| |#4| |#5|)) (-15 -3090 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3395 ((-1170) (-1067) (-1067) |#4| |#5|)) (-15 -1531 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)))
-((-1296 (((-3 (-1080 (-1080 |#1|)) "failed") |#4|) 44)) (-2566 (((-587 |#4|) |#4|) 15)) (-2687 ((|#4| |#4|) 11)))
-(((-713 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2566 ((-587 |#4|) |#4|)) (-15 -1296 ((-3 (-1080 (-1080 |#1|)) "failed") |#4|)) (-15 -2687 (|#4| |#4|))) (-323) (-303 |#1|) (-1141 |#2|) (-1141 |#3|) (-849)) (T -713))
-((-2687 (*1 *2 *2) (-12 (-4 *3 (-323)) (-4 *4 (-303 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-713 *3 *4 *5 *2 *6)) (-4 *2 (-1141 *5)) (-14 *6 (-849)))) (-1296 (*1 *2 *3) (|partial| -12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5)) (-5 *2 (-1080 (-1080 *4))) (-5 *1 (-713 *4 *5 *6 *3 *7)) (-4 *3 (-1141 *6)) (-14 *7 (-849)))) (-2566 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5)) (-5 *2 (-587 *3)) (-5 *1 (-713 *4 *5 *6 *3 *7)) (-4 *3 (-1141 *6)) (-14 *7 (-849)))))
-(-10 -7 (-15 -2566 ((-587 |#4|) |#4|)) (-15 -1296 ((-3 (-1080 (-1080 |#1|)) "failed") |#4|)) (-15 -2687 (|#4| |#4|)))
-((-1483 (((-2 (|:| |deter| (-587 (-1080 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1080 |#5|) (-587 |#1|) (-587 |#5|)) 53)) (-2450 (((-587 (-707)) |#1|) 12)))
-(((-714 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1483 ((-2 (|:| |deter| (-587 (-1080 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1080 |#5|) (-587 |#1|) (-587 |#5|))) (-15 -2450 ((-587 (-707)) |#1|))) (-1141 |#4|) (-729) (-783) (-282) (-877 |#4| |#2| |#3|)) (T -714))
-((-2450 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-5 *2 (-587 (-707))) (-5 *1 (-714 *3 *4 *5 *6 *7)) (-4 *3 (-1141 *6)) (-4 *7 (-877 *6 *4 *5)))) (-1483 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1141 *9)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-282)) (-4 *10 (-877 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-587 (-1080 *10))) (|:| |dterm| (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| *10))))) (|:| |nfacts| (-587 *6)) (|:| |nlead| (-587 *10)))) (-5 *1 (-714 *6 *7 *8 *9 *10)) (-5 *3 (-1080 *10)) (-5 *4 (-587 *6)) (-5 *5 (-587 *10)))))
-(-10 -7 (-15 -1483 ((-2 (|:| |deter| (-587 (-1080 |#5|))) (|:| |dterm| (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-587 |#1|)) (|:| |nlead| (-587 |#5|))) (-1080 |#5|) (-587 |#1|) (-587 |#5|))) (-15 -2450 ((-587 (-707)) |#1|)))
-((-2940 (((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#1|))))) (-627 (-381 (-521))) |#1|) 27)) (-3438 (((-587 |#1|) (-627 (-381 (-521))) |#1|) 19)) (-3379 (((-880 (-381 (-521))) (-627 (-381 (-521))) (-1084)) 16) (((-880 (-381 (-521))) (-627 (-381 (-521)))) 15)))
-(((-715 |#1|) (-10 -7 (-15 -3379 ((-880 (-381 (-521))) (-627 (-381 (-521))))) (-15 -3379 ((-880 (-381 (-521))) (-627 (-381 (-521))) (-1084))) (-15 -3438 ((-587 |#1|) (-627 (-381 (-521))) |#1|)) (-15 -2940 ((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#1|))))) (-627 (-381 (-521))) |#1|))) (-13 (-337) (-781))) (T -715))
-((-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-587 (-2 (|:| |outval| *4) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 *4)))))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-781))))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-781))))) (-3379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *4 (-1084)) (-5 *2 (-880 (-381 (-521)))) (-5 *1 (-715 *5)) (-4 *5 (-13 (-337) (-781))))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-880 (-381 (-521)))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-781))))))
-(-10 -7 (-15 -3379 ((-880 (-381 (-521))) (-627 (-381 (-521))))) (-15 -3379 ((-880 (-381 (-521))) (-627 (-381 (-521))) (-1084))) (-15 -3438 ((-587 |#1|) (-627 (-381 (-521))) |#1|)) (-15 -2940 ((-587 (-2 (|:| |outval| |#1|) (|:| |outmult| (-521)) (|:| |outvect| (-587 (-627 |#1|))))) (-627 (-381 (-521))) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 34)) (-4085 (((-587 |#2|) $) NIL)) (-1280 (((-1080 $) $ |#2|) NIL) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 |#2|)) NIL)) (-3830 (($ $) 28)) (-3071 (((-108) $ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-4127 (($ $ $) 93 (|has| |#1| (-513)))) (-2000 (((-587 $) $ $) 106 (|has| |#1| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-880 (-381 (-521)))) NIL (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))))) (((-3 $ "failed") (-880 (-521))) NIL (-3703 (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521)))))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084)))))) (((-3 $ "failed") (-880 |#1|)) NIL (-3703 (-12 (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521))))) (-2416 (|has| |#1| (-37 (-521))))) (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521))))) (-2416 (|has| |#1| (-506)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-918 (-521))))))) (((-3 (-1036 |#1| |#2|) "failed") $) 18)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) ((|#2| $) NIL) (($ (-880 (-381 (-521)))) NIL (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))))) (($ (-880 (-521))) NIL (-3703 (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521)))))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084)))))) (($ (-880 |#1|)) NIL (-3703 (-12 (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521))))) (-2416 (|has| |#1| (-37 (-521))))) (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521))))) (-2416 (|has| |#1| (-506)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-918 (-521))))))) (((-1036 |#1| |#2|) $) NIL)) (-3052 (($ $ $ |#2|) NIL (|has| |#1| (-157))) (($ $ $) 104 (|has| |#1| (-513)))) (-3157 (($ $) NIL) (($ $ |#2|) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-3369 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-4069 (((-108) $) NIL)) (-2483 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 70)) (-1870 (($ $) 119 (|has| |#1| (-425)))) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ |#2|) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1328 (($ $) NIL (|has| |#1| (-513)))) (-3629 (($ $) NIL (|has| |#1| (-513)))) (-3158 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-2803 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1709 (($ $ |#1| (-493 |#2|) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| |#1| (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| |#1| (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4188 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-2737 (($ $ $ $ $) 90 (|has| |#1| (-513)))) (-3131 ((|#2| $) 19)) (-4068 (($ (-1080 |#1|) |#2|) NIL) (($ (-1080 $) |#2|) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-493 |#2|)) NIL) (($ $ |#2| (-707)) 36) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2883 (($ $ $) 60)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#2|) NIL)) (-2895 (((-108) $) NIL)) (-2401 (((-493 |#2|) $) NIL) (((-707) $ |#2|) NIL) (((-587 (-707)) $ (-587 |#2|)) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2729 (((-707) $) 20)) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-493 |#2|) (-493 |#2|)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2913 (((-3 |#2| "failed") $) NIL)) (-1217 (($ $) NIL (|has| |#1| (-425)))) (-2435 (($ $) NIL (|has| |#1| (-425)))) (-3232 (((-587 $) $) NIL)) (-3894 (($ $) 37)) (-2575 (($ $) NIL (|has| |#1| (-425)))) (-3276 (((-587 $) $) 41)) (-2019 (($ $) 39)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3818 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3214 (-707))) $ $) 82)) (-3051 (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $) 67) (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $ |#2|) NIL)) (-3297 (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $) NIL) (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $ |#2|) NIL)) (-2743 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3142 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-4024 (((-1067) $) NIL)) (-3543 (($ $ $) 108 (|has| |#1| (-513)))) (-2774 (((-587 $) $) 30)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| |#2|) (|:| -2246 (-707))) "failed") $) NIL)) (-2626 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-3432 (($ $ $) NIL)) (-3797 (($ $) 21)) (-3069 (((-108) $ $) NIL)) (-2941 (((-108) $ $) NIL) (((-108) $ (-587 $)) NIL)) (-1896 (($ $ $) NIL)) (-1845 (($ $) 23)) (-4146 (((-1031) $) NIL)) (-3282 (((-2 (|:| -2286 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-513)))) (-4108 (((-2 (|:| -2286 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-513)))) (-3110 (((-108) $) 52)) (-3120 ((|#1| $) 55)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 ((|#1| |#1| $) 116 (|has| |#1| (-425))) (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-1441 (((-2 (|:| -2286 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-513)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-513)))) (-2270 (($ $ |#1|) 112 (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-1301 (($ $ |#1|) 111 (|has| |#1| (-513))) (($ $ $) NIL (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-587 |#2|) (-587 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-587 |#2|) (-587 $)) NIL)) (-3011 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2193 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2098 (((-493 |#2|) $) NIL) (((-707) $ |#2|) 43) (((-587 (-707)) $ (-587 |#2|)) NIL)) (-2616 (($ $) NIL)) (-2158 (($ $) 33)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497))))) (($ (-880 (-381 (-521)))) NIL (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084))))) (($ (-880 (-521))) NIL (-3703 (-12 (|has| |#1| (-37 (-521))) (|has| |#2| (-562 (-1084))) (-2416 (|has| |#1| (-37 (-381 (-521)))))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#2| (-562 (-1084)))))) (($ (-880 |#1|)) NIL (|has| |#2| (-562 (-1084)))) (((-1067) $) NIL (-12 (|has| |#1| (-961 (-521))) (|has| |#2| (-562 (-1084))))) (((-880 |#1|) $) NIL (|has| |#2| (-562 (-1084))))) (-1391 ((|#1| $) 115 (|has| |#1| (-425))) (($ $ |#2|) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-880 |#1|) $) NIL (|has| |#2| (-562 (-1084)))) (((-1036 |#1| |#2|) $) 15) (($ (-1036 |#1| |#2|)) 16) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-493 |#2|)) NIL) (($ $ |#2| (-707)) 44) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 13 T CONST)) (-2846 (((-3 (-108) "failed") $ $) NIL)) (-3572 (($) 35 T CONST)) (-1983 (($ $ $ $ (-707)) 88 (|has| |#1| (-513)))) (-1829 (($ $ $ (-707)) 87 (|has| |#1| (-513)))) (-2244 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 54)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) 64)) (-1628 (($ $ $) 74)) (** (($ $ (-849)) NIL) (($ $ (-707)) 61)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 59) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-716 |#1| |#2|) (-13 (-984 |#1| (-493 |#2|) |#2|) (-561 (-1036 |#1| |#2|)) (-961 (-1036 |#1| |#2|))) (-970) (-783)) (T -716))
-NIL
-(-13 (-984 |#1| (-493 |#2|) |#2|) (-561 (-1036 |#1| |#2|)) (-961 (-1036 |#1| |#2|)))
-((-1393 (((-718 |#2|) (-1 |#2| |#1|) (-718 |#1|)) 13)))
-(((-717 |#1| |#2|) (-10 -7 (-15 -1393 ((-718 |#2|) (-1 |#2| |#1|) (-718 |#1|)))) (-970) (-970)) (T -717))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-718 *6)) (-5 *1 (-717 *5 *6)))))
-(-10 -7 (-15 -1393 ((-718 |#2|) (-1 |#2| |#1|) (-718 |#1|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 12)) (-2794 (((-1165 |#1|) $ (-707)) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-3800 (($ (-1080 |#1|)) NIL)) (-1280 (((-1080 $) $ (-998)) NIL) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3162 (((-587 $) $ $) 39 (|has| |#1| (-513)))) (-4127 (($ $ $) 35 (|has| |#1| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-4176 (($ $ (-707)) NIL)) (-1587 (($ $ (-707)) NIL)) (-4046 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-425)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) NIL) (((-3 (-1080 |#1|) "failed") $) 10)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-998) $) NIL) (((-1080 |#1|) $) NIL)) (-3052 (($ $ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $ $) 43 (|has| |#1| (-157)))) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-2924 (($ $ $) NIL)) (-2317 (($ $ $) 71 (|has| |#1| (-513)))) (-2483 (((-2 (|:| -2979 |#1|) (|:| -3852 $) (|:| -2334 $)) $ $) 70 (|has| |#1| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-707) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-998) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-998) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3490 (((-707) $ $) NIL (|has| |#1| (-513)))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-4068 (($ (-1080 |#1|) (-998)) NIL) (($ (-1080 $) (-998)) NIL)) (-3381 (($ $ (-707)) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2883 (($ $ $) 20)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-998)) NIL) (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2401 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-707) (-707)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1810 (((-1080 |#1|) $) NIL)) (-2913 (((-3 (-998) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3818 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3214 (-707))) $ $) 26)) (-1905 (($ $ $) 29)) (-3554 (($ $ $) 32)) (-3051 (((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $) 31)) (-4024 (((-1067) $) NIL)) (-3543 (($ $ $) 41 (|has| |#1| (-513)))) (-3241 (((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707)) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-998)) (|:| -2246 (-707))) "failed") $) NIL)) (-1749 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-3282 (((-2 (|:| -2286 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-513)))) (-4108 (((-2 (|:| -2286 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-513)))) (-2167 (((-2 (|:| -3052 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-513)))) (-3134 (((-2 (|:| -3052 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-513)))) (-3110 (((-108) $) 13)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-3925 (($ $ (-707) |#1| $) 19)) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-1441 (((-2 (|:| -2286 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-513)))) (-3464 (((-2 (|:| -3052 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-513)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#1|) NIL) (($ $ (-587 (-998)) (-587 |#1|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) NIL (|has| |#1| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#1| (-513)))) (-2297 (((-3 $ "failed") $ (-707)) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-3011 (($ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2193 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2098 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-998) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-998) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-1288 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#1| (-513)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-998)) NIL) (((-1080 |#1|) $) 7) (($ (-1080 |#1|)) 8) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 21 T CONST)) (-3572 (($) 24 T CONST)) (-2244 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) 28) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-718 |#1|) (-13 (-1141 |#1|) (-561 (-1080 |#1|)) (-961 (-1080 |#1|)) (-10 -8 (-15 -3925 ($ $ (-707) |#1| $)) (-15 -2883 ($ $ $)) (-15 -3818 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3214 (-707))) $ $)) (-15 -1905 ($ $ $)) (-15 -3051 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3554 ($ $ $)) (IF (|has| |#1| (-513)) (PROGN (-15 -3162 ((-587 $) $ $)) (-15 -3543 ($ $ $)) (-15 -1441 ((-2 (|:| -2286 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4108 ((-2 (|:| -2286 $) (|:| |coef1| $)) $ $)) (-15 -3282 ((-2 (|:| -2286 $) (|:| |coef2| $)) $ $)) (-15 -3464 ((-2 (|:| -3052 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3134 ((-2 (|:| -3052 |#1|) (|:| |coef1| $)) $ $)) (-15 -2167 ((-2 (|:| -3052 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-970)) (T -718))
-((-3925 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-707)) (-5 *1 (-718 *3)) (-4 *3 (-970)))) (-2883 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))) (-3818 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-718 *3)) (|:| |polden| *3) (|:| -3214 (-707)))) (-5 *1 (-718 *3)) (-4 *3 (-970)))) (-1905 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))) (-3051 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2979 *3) (|:| |gap| (-707)) (|:| -3852 (-718 *3)) (|:| -2334 (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-970)))) (-3554 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))) (-3162 (*1 *2 *1 *1) (-12 (-5 *2 (-587 (-718 *3))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-3543 (*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-513)) (-4 *2 (-970)))) (-1441 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2286 (-718 *3)) (|:| |coef1| (-718 *3)) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-4108 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2286 (-718 *3)) (|:| |coef1| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-3282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2286 (-718 *3)) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-3464 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3052 *3) (|:| |coef1| (-718 *3)) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-3134 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3052 *3) (|:| |coef1| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))) (-2167 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3052 *3) (|:| |coef2| (-718 *3)))) (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
-(-13 (-1141 |#1|) (-561 (-1080 |#1|)) (-961 (-1080 |#1|)) (-10 -8 (-15 -3925 ($ $ (-707) |#1| $)) (-15 -2883 ($ $ $)) (-15 -3818 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3214 (-707))) $ $)) (-15 -1905 ($ $ $)) (-15 -3051 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3554 ($ $ $)) (IF (|has| |#1| (-513)) (PROGN (-15 -3162 ((-587 $) $ $)) (-15 -3543 ($ $ $)) (-15 -1441 ((-2 (|:| -2286 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4108 ((-2 (|:| -2286 $) (|:| |coef1| $)) $ $)) (-15 -3282 ((-2 (|:| -2286 $) (|:| |coef2| $)) $ $)) (-15 -3464 ((-2 (|:| -3052 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3134 ((-2 (|:| -3052 |#1|) (|:| |coef1| $)) $ $)) (-15 -2167 ((-2 (|:| -3052 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-2814 ((|#1| (-707) |#1|) 33 (|has| |#1| (-37 (-381 (-521)))))) (-2326 ((|#1| (-707) |#1|) 23)) (-2438 ((|#1| (-707) |#1|) 35 (|has| |#1| (-37 (-381 (-521)))))))
-(((-719 |#1|) (-10 -7 (-15 -2326 (|#1| (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2438 (|#1| (-707) |#1|)) (-15 -2814 (|#1| (-707) |#1|))) |%noBranch|)) (-157)) (T -719))
-((-2814 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-157)))) (-2438 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-157)))) (-2326 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-157)))))
-(-10 -7 (-15 -2326 (|#1| (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -2438 (|#1| (-707) |#1|)) (-15 -2814 (|#1| (-707) |#1|))) |%noBranch|))
-((-1422 (((-108) $ $) 7)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) 85)) (-4137 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4085 (((-587 |#3|) $) 33)) (-2856 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) 101) (((-108) $) 97)) (-1613 ((|#4| |#4| $) 92)) (-2694 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| $) 126)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-108) $ (-707)) 44)) (-1658 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2231 (($) 45 T CONST)) (-1616 (((-108) $) 22 (|has| |#1| (-513)))) (-3514 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3515 (((-108) $ $) 23 (|has| |#1| (-513)))) (-2512 (((-108) $) 25 (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2122 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 36)) (-1496 (($ (-587 |#4|)) 35)) (-2329 (((-3 $ "failed") $) 82)) (-1910 ((|#4| |#4| $) 89)) (-2354 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1860 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) 105)) (-4008 (((-108) |#4| $) 136)) (-3547 (((-108) |#4| $) 133)) (-1781 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) 104) (((-108) $) 103)) (-3131 ((|#3| $) 34)) (-1513 (((-108) $ (-707)) 43)) (-3568 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 47)) (-2963 (((-587 |#3|) $) 32)) (-4065 (((-108) |#3| $) 31)) (-2859 (((-108) $ (-707)) 42)) (-4024 (((-1067) $) 9)) (-3207 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-3543 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| |#4| $) 127)) (-1450 (((-3 |#4| "failed") $) 83)) (-1732 (((-587 $) |#4| $) 129)) (-2051 (((-3 (-108) (-587 $)) |#4| $) 132)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1802 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3691 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2942 (((-587 |#4|) $) 107)) (-2626 (((-108) |#4| $) 99) (((-108) $) 95)) (-3432 ((|#4| |#4| $) 90)) (-3069 (((-108) $ $) 110)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) 100) (((-108) $) 96)) (-1896 ((|#4| |#4| $) 91)) (-4146 (((-1031) $) 10)) (-2319 (((-3 |#4| "failed") $) 84)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1314 (((-3 $ "failed") $ |#4|) 78)) (-2191 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1936 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) 38)) (-1447 (((-108) $) 41)) (-2280 (($) 40)) (-2098 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2420 (($ $) 39)) (-1438 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 60)) (-3680 (($ $ |#3|) 28)) (-2600 (($ $ |#3|) 30)) (-2404 (($ $) 88)) (-2222 (($ $ |#3|) 29)) (-2223 (((-791) $) 11) (((-587 |#4|) $) 37)) (-2537 (((-707) $) 76 (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-3077 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-2006 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) 81)) (-3355 (((-108) |#4| $) 135)) (-2567 (((-108) |#3| $) 80)) (-1549 (((-108) $ $) 6)) (-3478 (((-707) $) 46 (|has| $ (-6 -4233)))))
-(((-720 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-783) (-984 |t#1| |t#2| |t#3|)) (T -720))
-NIL
-(-13 (-989 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-791)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
-((-2077 (((-3 (-353) "failed") (-290 |#1|) (-849)) 60 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-3 (-353) "failed") (-290 |#1|)) 52 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-3 (-353) "failed") (-381 (-880 |#1|)) (-849)) 39 (|has| |#1| (-513))) (((-3 (-353) "failed") (-381 (-880 |#1|))) 35 (|has| |#1| (-513))) (((-3 (-353) "failed") (-880 |#1|) (-849)) 30 (|has| |#1| (-970))) (((-3 (-353) "failed") (-880 |#1|)) 24 (|has| |#1| (-970)))) (-2406 (((-353) (-290 |#1|) (-849)) 92 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-353) (-290 |#1|)) 87 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-353) (-381 (-880 |#1|)) (-849)) 84 (|has| |#1| (-513))) (((-353) (-381 (-880 |#1|))) 81 (|has| |#1| (-513))) (((-353) (-880 |#1|) (-849)) 80 (|has| |#1| (-970))) (((-353) (-880 |#1|)) 77 (|has| |#1| (-970))) (((-353) |#1| (-849)) 73) (((-353) |#1|) 22)) (-3281 (((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)) (-849)) 68 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-3 (-154 (-353)) "failed") (-290 (-154 |#1|))) 58 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-3 (-154 (-353)) "failed") (-290 |#1|) (-849)) 61 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-3 (-154 (-353)) "failed") (-290 |#1|)) 59 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-3 (-154 (-353)) "failed") (-381 (-880 (-154 |#1|))) (-849)) 44 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-381 (-880 (-154 |#1|)))) 43 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-381 (-880 |#1|)) (-849)) 38 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-381 (-880 |#1|))) 37 (|has| |#1| (-513))) (((-3 (-154 (-353)) "failed") (-880 |#1|) (-849)) 28 (|has| |#1| (-970))) (((-3 (-154 (-353)) "failed") (-880 |#1|)) 26 (|has| |#1| (-970))) (((-3 (-154 (-353)) "failed") (-880 (-154 |#1|)) (-849)) 17 (|has| |#1| (-157))) (((-3 (-154 (-353)) "failed") (-880 (-154 |#1|))) 14 (|has| |#1| (-157)))) (-1242 (((-154 (-353)) (-290 (-154 |#1|)) (-849)) 95 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-154 (-353)) (-290 (-154 |#1|))) 94 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-154 (-353)) (-290 |#1|) (-849)) 93 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-154 (-353)) (-290 |#1|)) 91 (-12 (|has| |#1| (-513)) (|has| |#1| (-783)))) (((-154 (-353)) (-381 (-880 (-154 |#1|))) (-849)) 86 (|has| |#1| (-513))) (((-154 (-353)) (-381 (-880 (-154 |#1|)))) 85 (|has| |#1| (-513))) (((-154 (-353)) (-381 (-880 |#1|)) (-849)) 83 (|has| |#1| (-513))) (((-154 (-353)) (-381 (-880 |#1|))) 82 (|has| |#1| (-513))) (((-154 (-353)) (-880 |#1|) (-849)) 79 (|has| |#1| (-970))) (((-154 (-353)) (-880 |#1|)) 78 (|has| |#1| (-970))) (((-154 (-353)) (-880 (-154 |#1|)) (-849)) 75 (|has| |#1| (-157))) (((-154 (-353)) (-880 (-154 |#1|))) 74 (|has| |#1| (-157))) (((-154 (-353)) (-154 |#1|) (-849)) 16 (|has| |#1| (-157))) (((-154 (-353)) (-154 |#1|)) 12 (|has| |#1| (-157))) (((-154 (-353)) |#1| (-849)) 27) (((-154 (-353)) |#1|) 25)))
-(((-721 |#1|) (-10 -7 (-15 -2406 ((-353) |#1|)) (-15 -2406 ((-353) |#1| (-849))) (-15 -1242 ((-154 (-353)) |#1|)) (-15 -1242 ((-154 (-353)) |#1| (-849))) (IF (|has| |#1| (-157)) (PROGN (-15 -1242 ((-154 (-353)) (-154 |#1|))) (-15 -1242 ((-154 (-353)) (-154 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-880 (-154 |#1|)))) (-15 -1242 ((-154 (-353)) (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2406 ((-353) (-880 |#1|))) (-15 -2406 ((-353) (-880 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-880 |#1|))) (-15 -1242 ((-154 (-353)) (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2406 ((-353) (-381 (-880 |#1|)))) (-15 -2406 ((-353) (-381 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-353)) (-381 (-880 |#1|)))) (-15 -1242 ((-154 (-353)) (-381 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-353)) (-381 (-880 (-154 |#1|))))) (-15 -1242 ((-154 (-353)) (-381 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -2406 ((-353) (-290 |#1|))) (-15 -2406 ((-353) (-290 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-290 |#1|))) (-15 -1242 ((-154 (-353)) (-290 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-290 (-154 |#1|)))) (-15 -1242 ((-154 (-353)) (-290 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 (-154 |#1|)))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2077 ((-3 (-353) "failed") (-880 |#1|))) (-15 -2077 ((-3 (-353) "failed") (-880 |#1|) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 |#1|))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2077 ((-3 (-353) "failed") (-381 (-880 |#1|)))) (-15 -2077 ((-3 (-353) "failed") (-381 (-880 |#1|)) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 |#1|)))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 |#1|)) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 (-154 |#1|))))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -2077 ((-3 (-353) "failed") (-290 |#1|))) (-15 -2077 ((-3 (-353) "failed") (-290 |#1|) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 |#1|))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 |#1|) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|)) (-562 (-353))) (T -721))
-((-3281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-3281 (*1 *2 *3) (|partial| -12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-783)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-3281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-3281 (*1 *2 *3) (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2077 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2077 (*1 *2 *3) (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-3281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-381 (-880 (-154 *5)))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-3281 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-880 (-154 *4)))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-3281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-3281 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2077 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2077 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-3281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-3281 (*1 *2 *3) (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2077 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2077 (*1 *2 *3) (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-3281 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-3281 (*1 *2 *3) (|partial| -12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-783)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 (-154 *5)))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 (-154 *4)))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-2406 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970)) (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *3 (-154 *5)) (-5 *4 (-849)) (-4 *5 (-157)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5)))) (-1242 (*1 *2 *3) (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4)))) (-1242 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-154 (-353))) (-5 *1 (-721 *3)) (-4 *3 (-562 (-353))))) (-1242 (*1 *2 *3) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-721 *3)) (-4 *3 (-562 (-353))))) (-2406 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-353)) (-5 *1 (-721 *3)) (-4 *3 (-562 *2)))) (-2406 (*1 *2 *3) (-12 (-5 *2 (-353)) (-5 *1 (-721 *3)) (-4 *3 (-562 *2)))))
-(-10 -7 (-15 -2406 ((-353) |#1|)) (-15 -2406 ((-353) |#1| (-849))) (-15 -1242 ((-154 (-353)) |#1|)) (-15 -1242 ((-154 (-353)) |#1| (-849))) (IF (|has| |#1| (-157)) (PROGN (-15 -1242 ((-154 (-353)) (-154 |#1|))) (-15 -1242 ((-154 (-353)) (-154 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-880 (-154 |#1|)))) (-15 -1242 ((-154 (-353)) (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2406 ((-353) (-880 |#1|))) (-15 -2406 ((-353) (-880 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-880 |#1|))) (-15 -1242 ((-154 (-353)) (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2406 ((-353) (-381 (-880 |#1|)))) (-15 -2406 ((-353) (-381 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-353)) (-381 (-880 |#1|)))) (-15 -1242 ((-154 (-353)) (-381 (-880 |#1|)) (-849))) (-15 -1242 ((-154 (-353)) (-381 (-880 (-154 |#1|))))) (-15 -1242 ((-154 (-353)) (-381 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -2406 ((-353) (-290 |#1|))) (-15 -2406 ((-353) (-290 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-290 |#1|))) (-15 -1242 ((-154 (-353)) (-290 |#1|) (-849))) (-15 -1242 ((-154 (-353)) (-290 (-154 |#1|)))) (-15 -1242 ((-154 (-353)) (-290 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 (-154 |#1|)))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 (-154 |#1|)) (-849)))) |%noBranch|) (IF (|has| |#1| (-970)) (PROGN (-15 -2077 ((-3 (-353) "failed") (-880 |#1|))) (-15 -2077 ((-3 (-353) "failed") (-880 |#1|) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 |#1|))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-880 |#1|) (-849)))) |%noBranch|) (IF (|has| |#1| (-513)) (PROGN (-15 -2077 ((-3 (-353) "failed") (-381 (-880 |#1|)))) (-15 -2077 ((-3 (-353) "failed") (-381 (-880 |#1|)) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 |#1|)))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 |#1|)) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 (-154 |#1|))))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-381 (-880 (-154 |#1|))) (-849))) (IF (|has| |#1| (-783)) (PROGN (-15 -2077 ((-3 (-353) "failed") (-290 |#1|))) (-15 -2077 ((-3 (-353) "failed") (-290 |#1|) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 |#1|))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 |#1|) (-849))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)))) (-15 -3281 ((-3 (-154 (-353)) "failed") (-290 (-154 |#1|)) (-849)))) |%noBranch|)) |%noBranch|))
-((-1541 (((-849) (-1067)) 64)) (-3592 (((-3 (-353) "failed") (-1067)) 33)) (-3525 (((-353) (-1067)) 31)) (-2935 (((-849) (-1067)) 54)) (-1766 (((-1067) (-849)) 55)) (-3646 (((-1067) (-849)) 53)))
-(((-722) (-10 -7 (-15 -3646 ((-1067) (-849))) (-15 -2935 ((-849) (-1067))) (-15 -1766 ((-1067) (-849))) (-15 -1541 ((-849) (-1067))) (-15 -3525 ((-353) (-1067))) (-15 -3592 ((-3 (-353) "failed") (-1067))))) (T -722))
-((-3592 (*1 *2 *3) (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-849)) (-5 *1 (-722)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1067)) (-5 *1 (-722)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-849)) (-5 *1 (-722)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1067)) (-5 *1 (-722)))))
-(-10 -7 (-15 -3646 ((-1067) (-849))) (-15 -2935 ((-849) (-1067))) (-15 -1766 ((-1067) (-849))) (-15 -1541 ((-849) (-1067))) (-15 -3525 ((-353) (-1067))) (-15 -3592 ((-3 (-353) "failed") (-1067))))
-((-1422 (((-108) $ $) 7)) (-2832 (((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 15) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)) 13)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 16) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-723) (-1196)) (T -723))
-((-1853 (*1 *2 *3 *4) (-12 (-4 *1 (-723)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959)))))) (-2832 (*1 *2 *3 *2) (-12 (-4 *1 (-723)) (-5 *2 (-959)) (-5 *3 (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-1853 (*1 *2 *3 *4) (-12 (-4 *1 (-723)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959)))))) (-2832 (*1 *2 *3 *2) (-12 (-4 *1 (-723)) (-5 *2 (-959)) (-5 *3 (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))))
-(-13 (-1013) (-10 -7 (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2832 ((-959) (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202))) (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)) (|:| |extra| (-959))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2832 ((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-959)))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-3285 (((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353))) 44) (((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 43)) (-1999 (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 50)) (-2137 (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 41)) (-3548 (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353))) 52) (((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353))) 51)))
-(((-724) (-10 -7 (-15 -3548 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -3548 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -2137 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -3285 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -3285 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -1999 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))))) (T -724))
-((-1999 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-3285 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-521)) (-5 *6 (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353)))) (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-3285 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-521)) (-5 *6 (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353)))) (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-2137 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-3548 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))) (-3548 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353))) (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170)) (-5 *1 (-724)))))
-(-10 -7 (-15 -3548 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -3548 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -2137 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -3285 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))) (-15 -3285 ((-1170) (-1165 (-353)) (-521) (-353) (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))) (-353) (-1165 (-353)) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)) (-1165 (-353)))) (-15 -1999 ((-1170) (-1165 (-353)) (-521) (-353) (-353) (-521) (-1 (-1170) (-1165 (-353)) (-1165 (-353)) (-353)))))
-((-2659 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 53)) (-4187 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 30)) (-1418 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 52)) (-3513 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 28)) (-2599 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 51)) (-2947 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521)) 18)) (-2725 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521)) 31)) (-1630 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521)) 29)) (-4130 (((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521)) 27)))
-(((-725) (-10 -7 (-15 -4130 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -1630 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2725 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2947 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3513 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -4187 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -2599 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -1418 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -2659 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))))) (T -725))
-((-2659 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-1418 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-2599 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-4187 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-3513 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-2947 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-2725 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-1630 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))) (-4130 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353)) (-5 *2 (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521)) (|:| |success| (-108)))) (-5 *1 (-725)) (-5 *5 (-521)))))
-(-10 -7 (-15 -4130 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -1630 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2725 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521) (-521))) (-15 -2947 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -3513 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -4187 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -2599 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -1418 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))) (-15 -2659 ((-2 (|:| -3434 (-353)) (|:| -2974 (-353)) (|:| |totalpts| (-521)) (|:| |success| (-108))) (-1 (-353) (-353)) (-353) (-353) (-353) (-353) (-521) (-521))))
-((-1773 (((-1115 |#1|) |#1| (-202) (-521)) 45)))
-(((-726 |#1|) (-10 -7 (-15 -1773 ((-1115 |#1|) |#1| (-202) (-521)))) (-900)) (T -726))
-((-1773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-202)) (-5 *5 (-521)) (-5 *2 (-1115 *3)) (-5 *1 (-726 *3)) (-4 *3 (-900)))))
-(-10 -7 (-15 -1773 ((-1115 |#1|) |#1| (-202) (-521))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 24)) (-2057 (((-3 $ "failed") $ $) 26)) (-2231 (($) 23 T CONST)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 22 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1639 (($ $ $) 28) (($ $) 27)) (-1628 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-849) $) 21) (($ (-521) $) 29)))
-(((-727) (-1196)) (T -727))
-NIL
-(-13 (-731) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-783) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 24)) (-2231 (($) 23 T CONST)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 22 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1628 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-849) $) 21)))
-(((-728) (-1196)) (T -728))
-NIL
-(-13 (-730) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-561 (-791)) . T) ((-730) . T) ((-783) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 24)) (-2303 (($ $ $) 27)) (-2057 (((-3 $ "failed") $ $) 26)) (-2231 (($) 23 T CONST)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 22 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1628 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-849) $) 21)))
-(((-729) (-1196)) (T -729))
-((-2303 (*1 *1 *1 *1) (-4 *1 (-729))))
-(-13 (-731) (-10 -8 (-15 -2303 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-783) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 24)) (-2231 (($) 23 T CONST)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 22 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1628 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-849) $) 21)))
-(((-730) (-1196)) (T -730))
-NIL
-(-13 (-783) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-561 (-791)) . T) ((-783) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 24)) (-2057 (((-3 $ "failed") $ $) 26)) (-2231 (($) 23 T CONST)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 22 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1628 (($ $ $) 20)) (* (($ (-707) $) 25) (($ (-849) $) 21)))
-(((-731) (-1196)) (T -731))
-NIL
-(-13 (-728) (-124))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-728) . T) ((-730) . T) ((-783) . T) ((-1013) . T))
-((-3398 (((-108) $) 41)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1496 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 42)) (-3762 (((-3 (-381 (-521)) "failed") $) 78)) (-2428 (((-108) $) 72)) (-2758 (((-381 (-521)) $) 76)) (-2549 ((|#2| $) 26)) (-1393 (($ (-1 |#2| |#2|) $) 23)) (-3100 (($ $) 61)) (-1438 (((-497) $) 67)) (-1484 (($ $) 21)) (-2223 (((-791) $) 56) (($ (-521)) 39) (($ |#2|) 37) (($ (-381 (-521))) NIL)) (-1592 (((-707)) 10)) (-4012 ((|#2| $) 71)) (-1549 (((-108) $ $) 29)) (-1569 (((-108) $ $) 69)) (-1639 (($ $) 31) (($ $ $) NIL)) (-1628 (($ $ $) 30)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-732 |#1| |#2|) (-10 -8 (-15 -1569 ((-108) |#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -3100 (|#1| |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -4012 (|#2| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -2223 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -3398 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-733 |#2|) (-157)) (T -732))
-((-1592 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-732 *3 *4)) (-4 *3 (-733 *4)))))
-(-10 -8 (-15 -1569 ((-108) |#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -3100 (|#1| |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -4012 (|#2| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -2223 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -3398 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-1659 (((-707)) 53 (|has| |#1| (-342)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 94 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 92 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 90)) (-1496 (((-521) $) 95 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 93 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 89)) (-2783 (((-3 $ "failed") $) 34)) (-1993 ((|#1| $) 79)) (-3762 (((-3 (-381 (-521)) "failed") $) 66 (|has| |#1| (-506)))) (-2428 (((-108) $) 68 (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) 67 (|has| |#1| (-506)))) (-3254 (($) 56 (|has| |#1| (-342)))) (-3637 (((-108) $) 31)) (-2540 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2549 ((|#1| $) 71)) (-2816 (($ $ $) 62 (|has| |#1| (-783)))) (-2459 (($ $ $) 61 (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) 81)) (-3999 (((-849) $) 55 (|has| |#1| (-342)))) (-4024 (((-1067) $) 9)) (-3100 (($ $) 65 (|has| |#1| (-337)))) (-2723 (($ (-849)) 54 (|has| |#1| (-342)))) (-1243 ((|#1| $) 76)) (-3979 ((|#1| $) 77)) (-2292 ((|#1| $) 78)) (-2943 ((|#1| $) 72)) (-1868 ((|#1| $) 73)) (-2263 ((|#1| $) 74)) (-2739 ((|#1| $) 75)) (-4146 (((-1031) $) 10)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) 87 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 85 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 84 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 83 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 82 (|has| |#1| (-482 (-1084) |#1|)))) (-2550 (($ $ |#1|) 88 (|has| |#1| (-261 |#1| |#1|)))) (-1438 (((-497) $) 63 (|has| |#1| (-562 (-497))))) (-1484 (($ $) 80)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ (-381 (-521))) 91 (|has| |#1| (-961 (-381 (-521)))))) (-2446 (((-3 $ "failed") $) 64 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-4012 ((|#1| $) 69 (|has| |#1| (-979)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 59 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 58 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 60 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 57 (|has| |#1| (-783)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-733 |#1|) (-1196) (-157)) (T -733))
-((-1484 (*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1243 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-2540 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-979)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-3762 (*1 *2 *1) (|partial| -12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-3100 (*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-337)))))
-(-13 (-37 |t#1|) (-385 |t#1|) (-312 |t#1|) (-10 -8 (-15 -1484 ($ $)) (-15 -1993 (|t#1| $)) (-15 -2292 (|t#1| $)) (-15 -3979 (|t#1| $)) (-15 -1243 (|t#1| $)) (-15 -2739 (|t#1| $)) (-15 -2263 (|t#1| $)) (-15 -1868 (|t#1| $)) (-15 -2943 (|t#1| $)) (-15 -2549 (|t#1| $)) (-15 -2540 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-342)) (-6 (-342)) |%noBranch|) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -4012 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-337)) (-15 -3100 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-342) |has| |#1| (-342)) ((-312 |#1|) . T) ((-385 |#1|) . T) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) . T) ((-663) . T) ((-783) |has| |#1| (-783)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1393 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#3| (-1 |#4| |#2|) |#1|))) (-733 |#2|) (-157) (-733 |#4|) (-157)) (T -734))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-733 *6)) (-5 *1 (-734 *4 *5 *2 *6)) (-4 *4 (-733 *5)))))
-(-10 -7 (-15 -1393 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-924 |#1|) "failed") $) 35) (((-3 (-521) "failed") $) NIL (-3703 (|has| (-924 |#1|) (-961 (-521))) (|has| |#1| (-961 (-521))))) (((-3 (-381 (-521)) "failed") $) NIL (-3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-1496 ((|#1| $) NIL) (((-924 |#1|) $) 33) (((-521) $) NIL (-3703 (|has| (-924 |#1|) (-961 (-521))) (|has| |#1| (-961 (-521))))) (((-381 (-521)) $) NIL (-3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2783 (((-3 $ "failed") $) NIL)) (-1993 ((|#1| $) 16)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-506)))) (-2428 (((-108) $) NIL (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) NIL (|has| |#1| (-506)))) (-3254 (($) NIL (|has| |#1| (-342)))) (-3637 (((-108) $) NIL)) (-2540 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-924 |#1|) (-924 |#1|)) 29)) (-2549 ((|#1| $) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-1243 ((|#1| $) 22)) (-3979 ((|#1| $) 20)) (-2292 ((|#1| $) 18)) (-2943 ((|#1| $) 26)) (-1868 ((|#1| $) 25)) (-2263 ((|#1| $) 24)) (-2739 ((|#1| $) 23)) (-4146 (((-1031) $) NIL)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-2550 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-1484 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-924 |#1|)) 30) (($ (-381 (-521))) NIL (-3703 (|has| (-924 |#1|) (-961 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-4012 ((|#1| $) NIL (|has| |#1| (-979)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 8 T CONST)) (-3572 (($) 12 T CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-735 |#1|) (-13 (-733 |#1|) (-385 (-924 |#1|)) (-10 -8 (-15 -2540 ($ (-924 |#1|) (-924 |#1|))))) (-157)) (T -735))
-((-2540 (*1 *1 *2 *2) (-12 (-5 *2 (-924 *3)) (-4 *3 (-157)) (-5 *1 (-735 *3)))))
-(-13 (-733 |#1|) (-385 (-924 |#1|)) (-10 -8 (-15 -2540 ($ (-924 |#1|) (-924 |#1|)))))
-((-1422 (((-108) $ $) 7)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3896 (((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 13)) (-1549 (((-108) $ $) 6)))
-(((-736) (-1196)) (T -736))
-((-1853 (*1 *2 *3 *4) (-12 (-4 *1 (-736)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)))))) (-3896 (*1 *2 *3) (-12 (-4 *1 (-736)) (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-959)))))
-(-13 (-1013) (-10 -7 (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3896 ((-959) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-4033 (((-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#3| |#2| (-1084)) 19)))
-(((-737 |#1| |#2| |#3|) (-10 -7 (-15 -4033 ((-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#3| |#2| (-1084)))) (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-886)) (-597 |#2|)) (T -737))
-((-4033 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1084)) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-4 *4 (-13 (-29 *6) (-1105) (-886))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1245 (-587 *4)))) (-5 *1 (-737 *6 *4 *3)) (-4 *3 (-597 *4)))))
-(-10 -7 (-15 -4033 ((-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#3| |#2| (-1084))))
-((-3278 (((-3 |#2| "failed") |#2| (-110) (-269 |#2|) (-587 |#2|)) 26) (((-3 |#2| "failed") (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#2| "failed") |#2| (-110) (-1084)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#2| "failed") (-269 |#2|) (-110) (-1084)) 17) (((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-587 |#2|) (-587 (-110)) (-1084)) 22) (((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-587 (-269 |#2|)) (-587 (-110)) (-1084)) 24) (((-3 (-587 (-1165 |#2|)) "failed") (-627 |#2|) (-1084)) 36) (((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-627 |#2|) (-1165 |#2|) (-1084)) 34)))
-(((-738 |#1| |#2|) (-10 -7 (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-627 |#2|) (-1165 |#2|) (-1084))) (-15 -3278 ((-3 (-587 (-1165 |#2|)) "failed") (-627 |#2|) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-587 (-269 |#2|)) (-587 (-110)) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-587 |#2|) (-587 (-110)) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#2| "failed") (-269 |#2|) (-110) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#2| "failed") |#2| (-110) (-1084))) (-15 -3278 ((-3 |#2| "failed") (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -3278 ((-3 |#2| "failed") |#2| (-110) (-269 |#2|) (-587 |#2|)))) (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-886))) (T -738))
-((-3278 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-269 *2)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-886))) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-738 *6 *2)))) (-3278 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-269 *2)) (-5 *4 (-110)) (-5 *5 (-587 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-886))) (-5 *1 (-738 *6 *2)) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))))) (-3278 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1084)) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1245 (-587 *3))) *3 "failed")) (-5 *1 (-738 *6 *3)) (-4 *3 (-13 (-29 *6) (-1105) (-886))))) (-3278 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-886))) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1245 (-587 *7))) *7 "failed")) (-5 *1 (-738 *6 *7)))) (-3278 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110))) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-886))) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-2 (|:| |particular| (-1165 *7)) (|:| -1245 (-587 (-1165 *7))))) (-5 *1 (-738 *6 *7)))) (-3278 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110))) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-886))) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-2 (|:| |particular| (-1165 *7)) (|:| -1245 (-587 (-1165 *7))))) (-5 *1 (-738 *6 *7)))) (-3278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 *6)) (-5 *4 (-1084)) (-4 *6 (-13 (-29 *5) (-1105) (-886))) (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-1165 *6))) (-5 *1 (-738 *5 *6)))) (-3278 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 *7)) (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-886))) (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-2 (|:| |particular| (-1165 *7)) (|:| -1245 (-587 (-1165 *7))))) (-5 *1 (-738 *6 *7)) (-5 *4 (-1165 *7)))))
-(-10 -7 (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-627 |#2|) (-1165 |#2|) (-1084))) (-15 -3278 ((-3 (-587 (-1165 |#2|)) "failed") (-627 |#2|) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-587 (-269 |#2|)) (-587 (-110)) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#2|)) (|:| -1245 (-587 (-1165 |#2|)))) "failed") (-587 |#2|) (-587 (-110)) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#2| "failed") (-269 |#2|) (-110) (-1084))) (-15 -3278 ((-3 (-2 (|:| |particular| |#2|) (|:| -1245 (-587 |#2|))) |#2| "failed") |#2| (-110) (-1084))) (-15 -3278 ((-3 |#2| "failed") (-269 |#2|) (-110) (-269 |#2|) (-587 |#2|))) (-15 -3278 ((-3 |#2| "failed") |#2| (-110) (-269 |#2|) (-587 |#2|))))
-((-3176 (($) 9)) (-2386 (((-3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-2964 (((-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 23)) (-4135 (($ (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))) 20)) (-2744 (($ (-587 (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) 18)) (-4018 (((-1170)) 12)))
-(((-739) (-10 -8 (-15 -3176 ($)) (-15 -4018 ((-1170))) (-15 -2964 ((-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2744 ($ (-587 (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))))) (-15 -4135 ($ (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) (-15 -2386 ((-3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -739))
-((-2386 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))) (-5 *1 (-739)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))) (-5 *1 (-739)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) (-5 *1 (-739)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-739)))) (-4018 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-739)))) (-3176 (*1 *1) (-5 *1 (-739))))
-(-10 -8 (-15 -3176 ($)) (-15 -4018 ((-1170))) (-15 -2964 ((-587 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -2744 ($ (-587 (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353)))))))) (-15 -4135 ($ (-2 (|:| -2535 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3050 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))))))) (-15 -2386 ((-3 (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353)) (|:| |expense| (-353)) (|:| |accuracy| (-353)) (|:| |intermediateResults| (-353))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
-((-1412 ((|#2| |#2| (-1084)) 15)) (-1780 ((|#2| |#2| (-1084)) 47)) (-3274 (((-1 |#2| |#2|) (-1084)) 11)))
-(((-740 |#1| |#2|) (-10 -7 (-15 -1412 (|#2| |#2| (-1084))) (-15 -1780 (|#2| |#2| (-1084))) (-15 -3274 ((-1 |#2| |#2|) (-1084)))) (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)) (-13 (-29 |#1|) (-1105) (-886))) (T -740))
-((-3274 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-1 *5 *5)) (-5 *1 (-740 *4 *5)) (-4 *5 (-13 (-29 *4) (-1105) (-886))))) (-1780 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-886))))) (-1412 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-886))))))
-(-10 -7 (-15 -1412 (|#2| |#2| (-1084))) (-15 -1780 (|#2| |#2| (-1084))) (-15 -3274 ((-1 |#2| |#2|) (-1084))))
-((-3278 (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353) (-353)) 114) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353)) 115) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-587 (-353)) (-353)) 117) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-353)) 118) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-353)) 119) (((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353))) 120) (((-959) (-744) (-982)) 105) (((-959) (-744)) 106)) (-1853 (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-744) (-982)) 71) (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-744)) 73)))
-(((-741) (-10 -7 (-15 -3278 ((-959) (-744))) (-15 -3278 ((-959) (-744) (-982))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-587 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353) (-353))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-744))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-744) (-982))))) (T -741))
-((-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-744)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-741)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-744)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353))) (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353))) (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353))) (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-744)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-741)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-744)) (-5 *2 (-959)) (-5 *1 (-741)))))
-(-10 -7 (-15 -3278 ((-959) (-744))) (-15 -3278 ((-959) (-744) (-982))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-587 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353))) (-15 -3278 ((-959) (-1165 (-290 (-353))) (-353) (-353) (-587 (-353)) (-290 (-353)) (-587 (-353)) (-353) (-353))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-744))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-744) (-982))))
-((-3875 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1245 (-587 |#4|))) (-594 |#4|) |#4|) 32)))
-(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3875 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1245 (-587 |#4|))) (-594 |#4|) |#4|))) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|)) (T -742))
-((-3875 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *4)) (-4 *4 (-316 *5 *6 *7)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-742 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3875 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1245 (-587 |#4|))) (-594 |#4|) |#4|)))
-((-1590 (((-2 (|:| -3196 |#3|) (|:| |rh| (-587 (-381 |#2|)))) |#4| (-587 (-381 |#2|))) 52)) (-2206 (((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#4| |#2|) 60) (((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#4|) 59) (((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#3| |#2|) 20) (((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#3|) 21)) (-3532 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3385 ((|#2| |#3| (-587 (-381 |#2|))) 94) (((-3 |#2| "failed") |#3| (-381 |#2|)) 91)))
-(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3385 ((-3 |#2| "failed") |#3| (-381 |#2|))) (-15 -3385 (|#2| |#3| (-587 (-381 |#2|)))) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#3|)) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#3| |#2|)) (-15 -3532 (|#2| |#3| |#1|)) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#4|)) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#4| |#2|)) (-15 -3532 (|#2| |#4| |#1|)) (-15 -1590 ((-2 (|:| -3196 |#3|) (|:| |rh| (-587 (-381 |#2|)))) |#4| (-587 (-381 |#2|))))) (-13 (-337) (-135) (-961 (-381 (-521)))) (-1141 |#1|) (-597 |#2|) (-597 (-381 |#2|))) (T -743))
-((-1590 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-2 (|:| -3196 *7) (|:| |rh| (-587 (-381 *6))))) (-5 *1 (-743 *5 *6 *7 *3)) (-5 *4 (-587 (-381 *6))) (-4 *7 (-597 *6)) (-4 *3 (-597 (-381 *6))))) (-3532 (*1 *2 *3 *4) (-12 (-4 *2 (-1141 *4)) (-5 *1 (-743 *4 *2 *5 *3)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-597 *2)) (-4 *3 (-597 (-381 *2))))) (-2206 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1952 *4) (|:| -1634 *4)))) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *6 (-597 *4)) (-4 *3 (-597 (-381 *4))))) (-2206 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1952 *5) (|:| -1634 *5)))) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 (-381 *5))))) (-3532 (*1 *2 *3 *4) (-12 (-4 *2 (-1141 *4)) (-5 *1 (-743 *4 *2 *3 *5)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *5 (-597 (-381 *2))))) (-2206 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1952 *4) (|:| -1634 *4)))) (-5 *1 (-743 *5 *4 *3 *6)) (-4 *3 (-597 *4)) (-4 *6 (-597 (-381 *4))))) (-2206 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1952 *5) (|:| -1634 *5)))) (-5 *1 (-743 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-381 *5))))) (-3385 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-381 *2))) (-4 *2 (-1141 *5)) (-5 *1 (-743 *5 *2 *3 *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *6 (-597 (-381 *2))))) (-3385 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-381 *2)) (-4 *2 (-1141 *5)) (-5 *1 (-743 *5 *2 *3 *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *6 (-597 *4)))))
-(-10 -7 (-15 -3385 ((-3 |#2| "failed") |#3| (-381 |#2|))) (-15 -3385 (|#2| |#3| (-587 (-381 |#2|)))) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#3|)) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#3| |#2|)) (-15 -3532 (|#2| |#3| |#1|)) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#4|)) (-15 -2206 ((-587 (-2 (|:| -1952 |#2|) (|:| -1634 |#2|))) |#4| |#2|)) (-15 -3532 (|#2| |#4| |#1|)) (-15 -1590 ((-2 (|:| -3196 |#3|) (|:| |rh| (-587 (-381 |#2|)))) |#4| (-587 (-381 |#2|)))))
-((-1422 (((-108) $ $) NIL)) (-1496 (((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $) 9)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 11) (($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8)) (-1549 (((-108) $ $) NIL)))
-(((-744) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))) (T -744))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-744)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-744)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-744)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))
-((-2502 (((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3196 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1080 |#2|)) (-1 (-392 |#2|) |#2|)) 117)) (-2330 (((-587 (-2 (|:| |poly| |#2|) (|:| -3196 |#3|))) |#3| (-1 (-587 |#1|) |#2|)) 45)) (-2074 (((-587 (-2 (|:| |deg| (-707)) (|:| -3196 |#2|))) |#3|) 94)) (-3560 ((|#2| |#3|) 37)) (-1329 (((-587 (-2 (|:| -2682 |#1|) (|:| -3196 |#3|))) |#3| (-1 (-587 |#1|) |#2|)) 81)) (-2580 ((|#3| |#3| (-381 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
-(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3560 (|#2| |#3|)) (-15 -2074 ((-587 (-2 (|:| |deg| (-707)) (|:| -3196 |#2|))) |#3|)) (-15 -1329 ((-587 (-2 (|:| -2682 |#1|) (|:| -3196 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -2330 ((-587 (-2 (|:| |poly| |#2|) (|:| -3196 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -2502 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3196 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1080 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -2580 (|#3| |#3| |#2|)) (-15 -2580 (|#3| |#3| (-381 |#2|)))) (-13 (-337) (-135) (-961 (-381 (-521)))) (-1141 |#1|) (-597 |#2|) (-597 (-381 |#2|))) (T -745))
-((-2580 (*1 *2 *2 *3) (-12 (-5 *3 (-381 *5)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *1 (-745 *4 *5 *2 *6)) (-4 *2 (-597 *5)) (-4 *6 (-597 *3)))) (-2580 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-1141 *4)) (-5 *1 (-745 *4 *3 *2 *5)) (-4 *2 (-597 *3)) (-4 *5 (-597 (-381 *3))))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-587 *7) *7 (-1080 *7))) (-5 *5 (-1 (-392 *7) *7)) (-4 *7 (-1141 *6)) (-4 *6 (-13 (-337) (-135) (-961 (-381 (-521))))) (-5 *2 (-587 (-2 (|:| |frac| (-381 *7)) (|:| -3196 *3)))) (-5 *1 (-745 *6 *7 *3 *8)) (-4 *3 (-597 *7)) (-4 *8 (-597 (-381 *7))))) (-2330 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3196 *3)))) (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-381 *6))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -2682 *5) (|:| -3196 *3)))) (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-597 *6)) (-4 *7 (-597 (-381 *6))))) (-2074 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -3196 *5)))) (-5 *1 (-745 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-597 (-381 *5))))) (-3560 (*1 *2 *3) (-12 (-4 *2 (-1141 *4)) (-5 *1 (-745 *4 *2 *3 *5)) (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2)) (-4 *5 (-597 (-381 *2))))))
-(-10 -7 (-15 -3560 (|#2| |#3|)) (-15 -2074 ((-587 (-2 (|:| |deg| (-707)) (|:| -3196 |#2|))) |#3|)) (-15 -1329 ((-587 (-2 (|:| -2682 |#1|) (|:| -3196 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -2330 ((-587 (-2 (|:| |poly| |#2|) (|:| -3196 |#3|))) |#3| (-1 (-587 |#1|) |#2|))) (-15 -2502 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3196 |#3|))) |#3| (-1 (-587 |#2|) |#2| (-1080 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -2580 (|#3| |#3| |#2|)) (-15 -2580 (|#3| |#3| (-381 |#2|))))
-((-3392 (((-2 (|:| -1245 (-587 (-381 |#2|))) (|:| -3534 (-627 |#1|))) (-595 |#2| (-381 |#2|)) (-587 (-381 |#2|))) 118) (((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -1245 (-587 (-381 |#2|)))) (-595 |#2| (-381 |#2|)) (-381 |#2|)) 117) (((-2 (|:| -1245 (-587 (-381 |#2|))) (|:| -3534 (-627 |#1|))) (-594 (-381 |#2|)) (-587 (-381 |#2|))) 112) (((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -1245 (-587 (-381 |#2|)))) (-594 (-381 |#2|)) (-381 |#2|)) 110)) (-1945 ((|#2| (-595 |#2| (-381 |#2|))) 77) ((|#2| (-594 (-381 |#2|))) 81)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -3392 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -1245 (-587 (-381 |#2|)))) (-594 (-381 |#2|)) (-381 |#2|))) (-15 -3392 ((-2 (|:| -1245 (-587 (-381 |#2|))) (|:| -3534 (-627 |#1|))) (-594 (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -3392 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -1245 (-587 (-381 |#2|)))) (-595 |#2| (-381 |#2|)) (-381 |#2|))) (-15 -3392 ((-2 (|:| -1245 (-587 (-381 |#2|))) (|:| -3534 (-627 |#1|))) (-595 |#2| (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -1945 (|#2| (-594 (-381 |#2|)))) (-15 -1945 (|#2| (-595 |#2| (-381 |#2|))))) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -746))
-((-1945 (*1 *2 *3) (-12 (-5 *3 (-595 *2 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-746 *4 *2)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-594 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-746 *4 *2)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| -1245 (-587 (-381 *6))) (|:| -3534 (-627 *5)))) (-5 *1 (-746 *5 *6)) (-5 *4 (-587 (-381 *6))))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-746 *5 *6)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| -1245 (-587 (-381 *6))) (|:| -3534 (-627 *5)))) (-5 *1 (-746 *5 *6)) (-5 *4 (-587 (-381 *6))))) (-3392 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-746 *5 *6)))))
-(-10 -7 (-15 -3392 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -1245 (-587 (-381 |#2|)))) (-594 (-381 |#2|)) (-381 |#2|))) (-15 -3392 ((-2 (|:| -1245 (-587 (-381 |#2|))) (|:| -3534 (-627 |#1|))) (-594 (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -3392 ((-2 (|:| |particular| (-3 (-381 |#2|) "failed")) (|:| -1245 (-587 (-381 |#2|)))) (-595 |#2| (-381 |#2|)) (-381 |#2|))) (-15 -3392 ((-2 (|:| -1245 (-587 (-381 |#2|))) (|:| -3534 (-627 |#1|))) (-595 |#2| (-381 |#2|)) (-587 (-381 |#2|)))) (-15 -1945 (|#2| (-594 (-381 |#2|)))) (-15 -1945 (|#2| (-595 |#2| (-381 |#2|)))))
-((-3109 (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) |#5| |#4|) 47)))
-(((-747 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3109 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) |#5| |#4|))) (-337) (-597 |#1|) (-1141 |#1|) (-661 |#1| |#3|) (-597 |#4|)) (T -747))
-((-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *7 (-1141 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| -3534 (-627 *6)) (|:| |vec| (-1165 *5)))) (-5 *1 (-747 *5 *6 *7 *4 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 *4)))))
-(-10 -7 (-15 -3109 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) |#5| |#4|)))
-((-2502 (((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3196 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)) 43)) (-2916 (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|))) 135 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-392 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-594 (-381 |#2|))) 137 (|has| |#1| (-27))) (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|)) 36) (((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 37) (((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|)) 34) (((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 35)) (-2330 (((-587 (-2 (|:| |poly| |#2|) (|:| -3196 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|)) 81)))
-(((-748 |#1| |#2|) (-10 -7 (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -2502 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3196 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -2330 ((-587 (-2 (|:| |poly| |#2|) (|:| -3196 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)))) (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)))) |%noBranch|)) (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))) (-1141 |#1|)) (T -748))
-((-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-595 *5 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *5))) (-5 *1 (-748 *4 *5)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-594 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-381 *5))) (-5 *1 (-748 *4 *5)))) (-2330 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3196 (-595 *6 (-381 *6)))))) (-5 *1 (-748 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-5 *2 (-587 (-2 (|:| |frac| (-381 *6)) (|:| -3196 (-595 *6 (-381 *6)))))) (-5 *1 (-748 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 *7 (-381 *7))) (-5 *4 (-1 (-587 *6) *7)) (-5 *5 (-1 (-392 *7) *7)) (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-748 *6 *7)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 (-381 *7))) (-5 *4 (-1 (-587 *6) *7)) (-5 *5 (-1 (-392 *7) *7)) (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-748 *6 *7)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-587 *5) *6)) (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))) (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6)))))
-(-10 -7 (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|) (-1 (-392 |#2|) |#2|))) (-15 -2502 ((-587 (-2 (|:| |frac| (-381 |#2|)) (|:| -3196 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -2330 ((-587 (-2 (|:| |poly| |#2|) (|:| -3196 (-595 |#2| (-381 |#2|))))) (-595 |#2| (-381 |#2|)) (-1 (-587 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)))) (-15 -2916 ((-587 (-381 |#2|)) (-594 (-381 |#2|)) (-1 (-392 |#2|) |#2|))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)))) (-15 -2916 ((-587 (-381 |#2|)) (-595 |#2| (-381 |#2|)) (-1 (-392 |#2|) |#2|)))) |%noBranch|))
-((-1685 (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) (-627 |#2|) (-1165 |#1|)) 85) (((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)) (|:| -3196 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1165 |#1|)) 14)) (-3387 (((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-627 |#2|) (-1165 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1245 (-587 |#1|))) |#2| |#1|)) 91)) (-3278 (((-3 (-2 (|:| |particular| (-1165 |#1|)) (|:| -1245 (-627 |#1|))) "failed") (-627 |#1|) (-1165 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed") |#2| |#1|)) 44)))
-(((-749 |#1| |#2|) (-10 -7 (-15 -1685 ((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)) (|:| -3196 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1165 |#1|))) (-15 -1685 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) (-627 |#2|) (-1165 |#1|))) (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#1|)) (|:| -1245 (-627 |#1|))) "failed") (-627 |#1|) (-1165 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed") |#2| |#1|))) (-15 -3387 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-627 |#2|) (-1165 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1245 (-587 |#1|))) |#2| |#1|)))) (-337) (-597 |#1|)) (T -749))
-((-3387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1245 (-587 *6))) *7 *6)) (-4 *6 (-337)) (-4 *7 (-597 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1165 *6) "failed")) (|:| -1245 (-587 (-1165 *6))))) (-5 *1 (-749 *6 *7)) (-5 *4 (-1165 *6)))) (-3278 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1245 (-587 *6))) "failed") *7 *6)) (-4 *6 (-337)) (-4 *7 (-597 *6)) (-5 *2 (-2 (|:| |particular| (-1165 *6)) (|:| -1245 (-627 *6)))) (-5 *1 (-749 *6 *7)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *6)))) (-1685 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-4 *6 (-597 *5)) (-5 *2 (-2 (|:| -3534 (-627 *6)) (|:| |vec| (-1165 *5)))) (-5 *1 (-749 *5 *6)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *5)))) (-1685 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-5 *2 (-2 (|:| A (-627 *5)) (|:| |eqs| (-587 (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5)) (|:| -3196 *6) (|:| |rh| *5)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *6 (-597 *5)))))
-(-10 -7 (-15 -1685 ((-2 (|:| A (-627 |#1|)) (|:| |eqs| (-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)) (|:| -3196 |#2|) (|:| |rh| |#1|))))) (-627 |#1|) (-1165 |#1|))) (-15 -1685 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#1|))) (-627 |#2|) (-1165 |#1|))) (-15 -3278 ((-3 (-2 (|:| |particular| (-1165 |#1|)) (|:| -1245 (-627 |#1|))) "failed") (-627 |#1|) (-1165 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1245 (-587 |#1|))) "failed") |#2| |#1|))) (-15 -3387 ((-2 (|:| |particular| (-3 (-1165 |#1|) "failed")) (|:| -1245 (-587 (-1165 |#1|)))) (-627 |#2|) (-1165 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1245 (-587 |#1|))) |#2| |#1|))))
-((-4048 (((-627 |#1|) (-587 |#1|) (-707)) 13) (((-627 |#1|) (-587 |#1|)) 14)) (-3749 (((-3 (-1165 |#1|) "failed") |#2| |#1| (-587 |#1|)) 34)) (-3708 (((-3 |#1| "failed") |#2| |#1| (-587 |#1|) (-1 |#1| |#1|)) 42)))
-(((-750 |#1| |#2|) (-10 -7 (-15 -4048 ((-627 |#1|) (-587 |#1|))) (-15 -4048 ((-627 |#1|) (-587 |#1|) (-707))) (-15 -3749 ((-3 (-1165 |#1|) "failed") |#2| |#1| (-587 |#1|))) (-15 -3708 ((-3 |#1| "failed") |#2| |#1| (-587 |#1|) (-1 |#1| |#1|)))) (-337) (-597 |#1|)) (T -750))
-((-3708 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-587 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-337)) (-5 *1 (-750 *2 *3)) (-4 *3 (-597 *2)))) (-3749 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-1165 *4)) (-5 *1 (-750 *4 *3)) (-4 *3 (-597 *4)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-337)) (-5 *2 (-627 *5)) (-5 *1 (-750 *5 *6)) (-4 *6 (-597 *5)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-627 *4)) (-5 *1 (-750 *4 *5)) (-4 *5 (-597 *4)))))
-(-10 -7 (-15 -4048 ((-627 |#1|) (-587 |#1|))) (-15 -4048 ((-627 |#1|) (-587 |#1|) (-707))) (-15 -3749 ((-3 (-1165 |#1|) "failed") |#2| |#1| (-587 |#1|))) (-15 -3708 ((-3 |#1| "failed") |#2| |#1| (-587 |#1|) (-1 |#1| |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-3398 (((-108) $) NIL (|has| |#2| (-124)))) (-2965 (($ (-849)) NIL (|has| |#2| (-970)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2303 (($ $ $) NIL (|has| |#2| (-729)))) (-2057 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| |#2| (-342)))) (-2578 (((-521) $) NIL (|has| |#2| (-781)))) (-2396 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1013)))) (-1496 (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) ((|#2| $) NIL (|has| |#2| (-1013)))) (-1961 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#2| (-970)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#2| (-970))) (((-627 |#2|) (-627 $)) NIL (|has| |#2| (-970)))) (-2783 (((-3 $ "failed") $) NIL (|has| |#2| (-970)))) (-3254 (($) NIL (|has| |#2| (-342)))) (-3849 ((|#2| $ (-521) |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ (-521)) NIL)) (-2273 (((-108) $) NIL (|has| |#2| (-781)))) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL (|has| |#2| (-970)))) (-3305 (((-108) $) NIL (|has| |#2| (-781)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-3568 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#2| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#2| (-1013)))) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-2723 (($ (-849)) NIL (|has| |#2| (-342)))) (-4146 (((-1031) $) NIL (|has| |#2| (-1013)))) (-2319 ((|#2| $) NIL (|has| (-521) (-783)))) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ (-521) |#2|) NIL) ((|#2| $ (-521)) NIL)) (-4103 ((|#2| $ $) NIL (|has| |#2| (-970)))) (-2015 (($ (-1165 |#2|)) NIL)) (-2043 (((-126)) NIL (|has| |#2| (-337)))) (-2193 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1165 |#2|) $) NIL) (($ (-521)) NIL (-3703 (-12 (|has| |#2| (-961 (-521))) (|has| |#2| (-1013))) (|has| |#2| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#2| (-961 (-381 (-521)))) (|has| |#2| (-1013)))) (($ |#2|) NIL (|has| |#2| (-1013))) (((-791) $) NIL (|has| |#2| (-561 (-791))))) (-1592 (((-707)) NIL (|has| |#2| (-970)))) (-2006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-4012 (($ $) NIL (|has| |#2| (-781)))) (-3509 (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-849)) NIL (|has| |#2| (-970)))) (-3562 (($) NIL (|has| |#2| (-124)) CONST)) (-3572 (($) NIL (|has| |#2| (-970)) CONST)) (-2244 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#2| (-828 (-1084))) (|has| |#2| (-970)))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#2| (-970))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-970)))) (-1597 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1549 (((-108) $ $) NIL (|has| |#2| (-1013)))) (-1588 (((-108) $ $) NIL (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1569 (((-108) $ $) 11 (-3703 (|has| |#2| (-729)) (|has| |#2| (-781))))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $ $) NIL (|has| |#2| (-970))) (($ $) NIL (|has| |#2| (-970)))) (-1628 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-707)) NIL (|has| |#2| (-970))) (($ $ (-849)) NIL (|has| |#2| (-970)))) (* (($ $ $) NIL (|has| |#2| (-970))) (($ (-521) $) NIL (|has| |#2| (-970))) (($ $ |#2|) NIL (|has| |#2| (-663))) (($ |#2| $) NIL (|has| |#2| (-663))) (($ (-707) $) NIL (|has| |#2| (-124))) (($ (-849) $) NIL (|has| |#2| (-25)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-751 |#1| |#2| |#3|) (-215 |#1| |#2|) (-707) (-729) (-1 (-108) (-1165 |#2|) (-1165 |#2|))) (T -751))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1662 (($ |#1|) 17) (($ $ |#1|) 20)) (-3091 (($ |#1|) 18) (($ $ |#1|) 21)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2782 (((-108) $) NIL)) (-3253 (($ |#1| |#1| |#1| |#1|) 8)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 16)) (-4151 (((-1032) $) NIL)) (-2289 ((|#1| $ |#1|) 24) (((-770 |#1|) $ (-770 |#1|)) 32)) (-3122 (($ $ $) NIL)) (-1288 (($ $ $) NIL)) (-2190 (((-792) $) 39)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3577 (($) 9 T CONST)) (-1531 (((-108) $ $) 44)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ $ $) 14)))
+(((-656 |#1|) (-13 (-447) (-10 -8 (-15 -3253 ($ |#1| |#1| |#1| |#1|)) (-15 -1662 ($ |#1|)) (-15 -3091 ($ |#1|)) (-15 -2682 ($)) (-15 -1662 ($ $ |#1|)) (-15 -3091 ($ $ |#1|)) (-15 -2682 ($ $)) (-15 -2289 (|#1| $ |#1|)) (-15 -2289 ((-770 |#1|) $ (-770 |#1|))))) (-338)) (T -656))
+((-3253 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-1662 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-3091 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-2682 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-1662 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-2682 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-2289 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))) (-2289 (*1 *2 *1 *2) (-12 (-5 *2 (-770 *3)) (-4 *3 (-338)) (-5 *1 (-656 *3)))))
+(-13 (-447) (-10 -8 (-15 -3253 ($ |#1| |#1| |#1| |#1|)) (-15 -1662 ($ |#1|)) (-15 -3091 ($ |#1|)) (-15 -2682 ($)) (-15 -1662 ($ $ |#1|)) (-15 -3091 ($ $ |#1|)) (-15 -2682 ($ $)) (-15 -2289 (|#1| $ |#1|)) (-15 -2289 ((-770 |#1|) $ (-770 |#1|)))))
+((-1679 (($ $ (-850)) 12)) (-3277 (($ $ (-850)) 13)) (** (($ $ (-850)) 10)))
+(((-657 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-850))) (-15 -3277 (|#1| |#1| (-850))) (-15 -1679 (|#1| |#1| (-850)))) (-658)) (T -657))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-850))) (-15 -3277 (|#1| |#1| (-850))) (-15 -1679 (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-1679 (($ $ (-850)) 15)) (-3277 (($ $ (-850)) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 13)) (* (($ $ $) 16)))
+(((-658) (-1197)) (T -658))
+((* (*1 *1 *1 *1) (-4 *1 (-658))) (-1679 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) (-3277 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850)))))
+(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 -1679 ($ $ (-850))) (-15 -3277 ($ $ (-850))) (-15 ** ($ $ (-850)))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1679 (($ $ (-850)) NIL) (($ $ (-708)) 17)) (-2782 (((-108) $) 10)) (-3277 (($ $ (-850)) NIL) (($ $ (-708)) 18)) (** (($ $ (-850)) NIL) (($ $ (-708)) 15)))
+(((-659 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-708))) (-15 -3277 (|#1| |#1| (-708))) (-15 -1679 (|#1| |#1| (-708))) (-15 -2782 ((-108) |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3277 (|#1| |#1| (-850))) (-15 -1679 (|#1| |#1| (-850)))) (-660)) (T -659))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-708))) (-15 -3277 (|#1| |#1| (-708))) (-15 -1679 (|#1| |#1| (-708))) (-15 -2782 ((-108) |#1|)) (-15 ** (|#1| |#1| (-850))) (-15 -3277 (|#1| |#1| (-850))) (-15 -1679 (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-3637 (((-3 $ "failed") $) 17)) (-1679 (($ $ (-850)) 15) (($ $ (-708)) 22)) (-2682 (((-3 $ "failed") $) 19)) (-2782 (((-108) $) 23)) (-2231 (((-3 $ "failed") $) 18)) (-3277 (($ $ (-850)) 14) (($ $ (-708)) 21)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3577 (($) 24 T CONST)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 13) (($ $ (-708)) 20)) (* (($ $ $) 16)))
+(((-660) (-1197)) (T -660))
+((-3577 (*1 *1) (-4 *1 (-660))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-108)))) (-1679 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) (-3277 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))) (-2682 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2231 (*1 *1 *1) (|partial| -4 *1 (-660))) (-3637 (*1 *1 *1) (|partial| -4 *1 (-660))))
+(-13 (-658) (-10 -8 (-15 (-3577) ($) -2677) (-15 -2782 ((-108) $)) (-15 -1679 ($ $ (-708))) (-15 -3277 ($ $ (-708))) (-15 ** ($ $ (-708))) (-15 -2682 ((-3 $ "failed") $)) (-15 -2231 ((-3 $ "failed") $)) (-15 -3637 ((-3 $ "failed") $))))
+(((-97) . T) ((-562 (-792)) . T) ((-658) . T) ((-1014) . T))
+((-1629 (((-708)) 35)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1484 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 22)) (-3864 (($ |#3|) NIL) (((-3 $ "failed") (-382 |#3|)) 45)) (-2682 (((-3 $ "failed") $) 65)) (-3255 (($) 39)) (-2100 ((|#2| $) 20)) (-1383 (($) 17)) (-2157 (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-1859 (((-628 |#2|) (-1166 $) (-1 |#2| |#2|)) 60)) (-1431 (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2051 ((|#3| $) 32)) (-3855 (((-1166 $)) 29)))
+(((-661 |#1| |#2| |#3|) (-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -3255 (|#1|)) (-15 -1629 ((-708))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -1859 ((-628 |#2|) (-1166 |#1|) (-1 |#2| |#2|))) (-15 -3864 ((-3 |#1| "failed") (-382 |#3|))) (-15 -1431 (|#1| |#3|)) (-15 -3864 (|#1| |#3|)) (-15 -1383 (|#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1431 (|#3| |#1|)) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3855 ((-1166 |#1|))) (-15 -2051 (|#3| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|))) (-662 |#2| |#3|) (-157) (-1142 |#2|)) (T -661))
+((-1629 (*1 *2) (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-708)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5)))))
+(-10 -8 (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -3255 (|#1|)) (-15 -1629 ((-708))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -1859 ((-628 |#2|) (-1166 |#1|) (-1 |#2| |#2|))) (-15 -3864 ((-3 |#1| "failed") (-382 |#3|))) (-15 -1431 (|#1| |#3|)) (-15 -3864 (|#1| |#3|)) (-15 -1383 (|#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1431 (|#3| |#1|)) (-15 -1431 (|#1| (-1166 |#2|))) (-15 -1431 ((-1166 |#2|) |#1|)) (-15 -3855 ((-1166 |#1|))) (-15 -2051 (|#3| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -2682 ((-3 |#1| "failed") |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 93 (|has| |#1| (-338)))) (-2022 (($ $) 94 (|has| |#1| (-338)))) (-3739 (((-108) $) 96 (|has| |#1| (-338)))) (-3174 (((-628 |#1|) (-1166 $)) 46) (((-628 |#1|)) 61)) (-1865 ((|#1| $) 52)) (-1398 (((-1094 (-850) (-708)) (-522)) 147 (|has| |#1| (-324)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 113 (|has| |#1| (-338)))) (-3450 (((-393 $) $) 114 (|has| |#1| (-338)))) (-1687 (((-108) $ $) 104 (|has| |#1| (-338)))) (-1629 (((-708)) 87 (|has| |#1| (-343)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 169 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 167 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 166)) (-1484 (((-522) $) 170 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 168 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 165)) (-3766 (($ (-1166 |#1|) (-1166 $)) 48) (($ (-1166 |#1|)) 64)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-324)))) (-2277 (($ $ $) 108 (|has| |#1| (-338)))) (-2109 (((-628 |#1|) $ (-1166 $)) 53) (((-628 |#1|) $) 59)) (-2096 (((-628 (-522)) (-628 $)) 164 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 163 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 162) (((-628 |#1|) (-628 $)) 161)) (-3864 (($ |#2|) 158) (((-3 $ "failed") (-382 |#2|)) 155 (|has| |#1| (-338)))) (-2682 (((-3 $ "failed") $) 34)) (-3166 (((-850)) 54)) (-3255 (($) 90 (|has| |#1| (-343)))) (-2254 (($ $ $) 107 (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 102 (|has| |#1| (-338)))) (-1223 (($) 149 (|has| |#1| (-324)))) (-2511 (((-108) $) 150 (|has| |#1| (-324)))) (-2111 (($ $ (-708)) 141 (|has| |#1| (-324))) (($ $) 140 (|has| |#1| (-324)))) (-2813 (((-108) $) 115 (|has| |#1| (-338)))) (-3714 (((-850) $) 152 (|has| |#1| (-324))) (((-770 (-850)) $) 138 (|has| |#1| (-324)))) (-2782 (((-108) $) 31)) (-2100 ((|#1| $) 51)) (-3004 (((-3 $ "failed") $) 142 (|has| |#1| (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 111 (|has| |#1| (-338)))) (-1712 ((|#2| $) 44 (|has| |#1| (-338)))) (-2120 (((-850) $) 89 (|has| |#1| (-343)))) (-3849 ((|#2| $) 156)) (-2224 (($ (-588 $)) 100 (|has| |#1| (-338))) (($ $ $) 99 (|has| |#1| (-338)))) (-2385 (((-1068) $) 9)) (-3098 (($ $) 116 (|has| |#1| (-338)))) (-3802 (($) 143 (|has| |#1| (-324)) CONST)) (-2717 (($ (-850)) 88 (|has| |#1| (-343)))) (-4151 (((-1032) $) 10)) (-1383 (($) 160)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 101 (|has| |#1| (-338)))) (-2259 (($ (-588 $)) 98 (|has| |#1| (-338))) (($ $ $) 97 (|has| |#1| (-338)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) 146 (|has| |#1| (-324)))) (-1916 (((-393 $) $) 112 (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 109 (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ $) 92 (|has| |#1| (-338)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 103 (|has| |#1| (-338)))) (-3730 (((-708) $) 105 (|has| |#1| (-338)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 106 (|has| |#1| (-338)))) (-2769 ((|#1| (-1166 $)) 47) ((|#1|) 60)) (-3018 (((-708) $) 151 (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) 139 (|has| |#1| (-324)))) (-2157 (($ $) 137 (-3708 (-4015 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) 135 (-3708 (-4015 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) 133 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085))) 132 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1085) (-708)) 131 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-708))) 130 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1 |#1| |#1|) (-708)) 123 (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-338)))) (-1859 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-338)))) (-1479 ((|#2|) 159)) (-2581 (($) 148 (|has| |#1| (-324)))) (-3677 (((-1166 |#1|) $ (-1166 $)) 50) (((-628 |#1|) (-1166 $) (-1166 $)) 49) (((-1166 |#1|) $) 66) (((-628 |#1|) (-1166 $)) 65)) (-1431 (((-1166 |#1|) $) 63) (($ (-1166 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 145 (|has| |#1| (-324)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-338))) (($ (-382 (-522))) 86 (-3708 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-2143 (($ $) 144 (|has| |#1| (-324))) (((-3 $ "failed") $) 43 (|has| |#1| (-133)))) (-2051 ((|#2| $) 45)) (-2323 (((-708)) 29)) (-3855 (((-1166 $)) 67)) (-3958 (((-108) $ $) 95 (|has| |#1| (-338)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 117 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $) 136 (-3708 (-4015 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) 134 (-3708 (-4015 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) 129 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085))) 128 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1085) (-708)) 127 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-708))) 126 (-4015 (|has| |#1| (-829 (-1085))) (|has| |#1| (-338)))) (($ $ (-1 |#1| |#1|) (-708)) 125 (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-338)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 121 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 118 (|has| |#1| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-382 (-522)) $) 120 (|has| |#1| (-338))) (($ $ (-382 (-522))) 119 (|has| |#1| (-338)))))
+(((-662 |#1| |#2|) (-1197) (-157) (-1142 |t#1|)) (T -662))
+((-1383 (*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1142 *2)))) (-1479 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) (-3864 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3)))) (-1431 (*1 *1 *2) (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3)))) (-3864 (*1 *1 *2) (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-338)) (-4 *3 (-157)) (-4 *1 (-662 *3 *4)))) (-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) (-4 *1 (-662 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1142 *5)) (-5 *2 (-628 *5)))))
+(-13 (-384 |t#1| |t#2|) (-157) (-563 |t#2|) (-386 |t#1|) (-352 |t#1|) (-10 -8 (-15 -1383 ($)) (-15 -1479 (|t#2|)) (-15 -3864 ($ |t#2|)) (-15 -1431 ($ |t#2|)) (-15 -3849 (|t#2| $)) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-6 (-208 |t#1|)) (-15 -3864 ((-3 $ "failed") (-382 |t#2|))) (-15 -1859 ((-628 |t#1|) (-1166 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-324)) (-6 (-324)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-37 |#1|) . T) ((-37 $) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-97) . T) ((-107 #0# #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3708 (|has| |#1| (-324)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 |#2|) . T) ((-208 |#1|) |has| |#1| (-338)) ((-210) -3708 (|has| |#1| (-324)) (-12 (|has| |#1| (-210)) (|has| |#1| (-338)))) ((-220) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-266) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-283) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-338) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-377) |has| |#1| (-324)) ((-343) -3708 (|has| |#1| (-343)) (|has| |#1| (-324))) ((-324) |has| |#1| (-324)) ((-345 |#1| |#2|) . T) ((-384 |#1| |#2|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-514) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-590 #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-655 |#1|) . T) ((-655 $) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085)))) ((-849) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-324)) ((-1124) -3708 (|has| |#1| (-324)) (|has| |#1| (-338))))
+((-3175 (($) 14)) (-2682 (((-3 $ "failed") $) 16)) (-2782 (((-108) $) 13)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) 9)) (** (($ $ (-850)) NIL) (($ $ (-708)) 20)))
+(((-663 |#1|) (-10 -8 (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -3510 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -2782 ((-108) |#1|)) (-15 -3175 (|#1|)) (-15 -3510 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-664)) (T -663))
+NIL
+(-10 -8 (-15 -2682 ((-3 |#1| "failed") |#1|)) (-15 -3510 (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-708))) (-15 -2782 ((-108) |#1|)) (-15 -3175 (|#1|)) (-15 -3510 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-3175 (($) 20 T CONST)) (-2682 (((-3 $ "failed") $) 16)) (-2782 (((-108) $) 19)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3510 (($ $ (-850)) 13) (($ $ (-708)) 17)) (-3577 (($) 21 T CONST)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 14) (($ $ (-708)) 18)) (* (($ $ $) 15)))
+(((-664) (-1197)) (T -664))
+((-3577 (*1 *1) (-4 *1 (-664))) (-3175 (*1 *1) (-4 *1 (-664))) (-2782 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708)))) (-2682 (*1 *1 *1) (|partial| -4 *1 (-664))))
+(-13 (-1026) (-10 -8 (-15 (-3577) ($) -2677) (-15 -3175 ($) -2677) (-15 -2782 ((-108) $)) (-15 ** ($ $ (-708))) (-15 -3510 ($ $ (-708))) (-15 -2682 ((-3 $ "failed") $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1026) . T) ((-1014) . T))
+((-3413 (((-2 (|:| -3663 (-393 |#2|)) (|:| |special| (-393 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2724 (((-2 (|:| -3663 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3060 ((|#2| (-382 |#2|) (-1 |#2| |#2|)) 13)) (-3496 (((-2 (|:| |poly| |#2|) (|:| -3663 (-382 |#2|)) (|:| |special| (-382 |#2|))) (-382 |#2|) (-1 |#2| |#2|)) 47)))
+(((-665 |#1| |#2|) (-10 -7 (-15 -2724 ((-2 (|:| -3663 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3413 ((-2 (|:| -3663 (-393 |#2|)) (|:| |special| (-393 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3060 (|#2| (-382 |#2|) (-1 |#2| |#2|))) (-15 -3496 ((-2 (|:| |poly| |#2|) (|:| -3663 (-382 |#2|)) (|:| |special| (-382 |#2|))) (-382 |#2|) (-1 |#2| |#2|)))) (-338) (-1142 |#1|)) (T -665))
+((-3496 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3663 (-382 *6)) (|:| |special| (-382 *6)))) (-5 *1 (-665 *5 *6)) (-5 *3 (-382 *6)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-382 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1142 *5)) (-5 *1 (-665 *5 *2)) (-4 *5 (-338)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -3663 (-393 *3)) (|:| |special| (-393 *3)))) (-5 *1 (-665 *5 *3)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -3663 *3) (|:| |special| *3))) (-5 *1 (-665 *5 *3)))))
+(-10 -7 (-15 -2724 ((-2 (|:| -3663 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3413 ((-2 (|:| -3663 (-393 |#2|)) (|:| |special| (-393 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3060 (|#2| (-382 |#2|) (-1 |#2| |#2|))) (-15 -3496 ((-2 (|:| |poly| |#2|) (|:| -3663 (-382 |#2|)) (|:| |special| (-382 |#2|))) (-382 |#2|) (-1 |#2| |#2|))))
+((-3133 ((|#7| (-588 |#5|) |#6|) NIL)) (-1391 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-666 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1391 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3133 (|#7| (-588 |#5|) |#6|))) (-784) (-730) (-730) (-971) (-971) (-878 |#4| |#2| |#1|) (-878 |#5| |#3| |#1|)) (T -666))
+((-3133 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *9)) (-4 *9 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *8 (-971)) (-4 *2 (-878 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730)) (-4 *4 (-878 *8 *6 *5)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-971)) (-4 *9 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) (-4 *2 (-878 *9 *7 *5)) (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730)) (-4 *4 (-878 *8 *6 *5)))))
+(-10 -7 (-15 -1391 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3133 (|#7| (-588 |#5|) |#6|)))
+((-1391 ((|#7| (-1 |#2| |#1|) |#6|) 29)))
+(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1391 (|#7| (-1 |#2| |#1|) |#6|))) (-784) (-784) (-730) (-730) (-971) (-878 |#5| |#3| |#1|) (-878 |#5| |#4| |#2|)) (T -667))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-4 *7 (-730)) (-4 *9 (-971)) (-4 *2 (-878 *9 *8 *6)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-730)) (-4 *4 (-878 *9 *7 *5)))))
+(-10 -7 (-15 -1391 (|#7| (-1 |#2| |#1|) |#6|)))
+((-1916 (((-393 |#4|) |#4|) 39)))
+(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 |#4|) |#4|))) (-730) (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085))))) (-283) (-878 (-881 |#3|) |#1| |#2|)) (T -668))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-878 (-881 *6) *4 *5)))))
+(-10 -7 (-15 -1916 ((-393 |#4|) |#4|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-794 |#1|)) $) NIL)) (-1282 (((-1081 $) $ (-794 |#1|)) NIL) (((-1081 |#2|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2022 (($ $) NIL (|has| |#2| (-514)))) (-3739 (((-108) $) NIL (|has| |#2| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-794 |#1|))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3119 (($ $) NIL (|has| |#2| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#2| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-794 |#1|) "failed") $) NIL)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-794 |#1|) $) NIL)) (-1950 (($ $ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#2| (-838)))) (-2671 (($ $ |#2| (-494 (-794 |#1|)) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-794 |#1|) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#2|) (-794 |#1|)) NIL) (($ (-1081 $) (-794 |#1|)) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#2| (-494 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-794 |#1|)) NIL)) (-2925 (((-494 (-794 |#1|)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3861 (($ (-1 (-494 (-794 |#1|)) (-494 (-794 |#1|))) $) NIL)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-3145 (((-3 (-794 |#1|) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#2| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-794 |#1|)) (|:| -1400 (-708))) "failed") $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#2| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#2| (-838)))) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-794 |#1|) |#2|) NIL) (($ $ (-588 (-794 |#1|)) (-588 |#2|)) NIL) (($ $ (-794 |#1|) $) NIL) (($ $ (-588 (-794 |#1|)) (-588 $)) NIL)) (-2769 (($ $ (-794 |#1|)) NIL (|has| |#2| (-157)))) (-2157 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2793 (((-494 (-794 |#1|)) $) NIL) (((-708) $ (-794 |#1|)) NIL) (((-588 (-708)) $ (-588 (-794 |#1|))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-794 |#1|) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-794 |#1|) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2255 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-794 |#1|)) NIL (|has| |#2| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-794 |#1|)) NIL) (($ $) NIL (|has| |#2| (-514))) (($ (-382 (-522))) NIL (-3708 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522))))))) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-494 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-794 |#1|)) NIL) (($ $ (-588 (-794 |#1|))) NIL) (($ $ (-794 |#1|) (-708)) NIL) (($ $ (-588 (-794 |#1|)) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-669 |#1| |#2|) (-878 |#2| (-494 (-794 |#1|)) (-794 |#1|)) (-588 (-1085)) (-971)) (T -669))
+NIL
+(-878 |#2| (-494 (-794 |#1|)) (-794 |#1|))
+((-1444 (((-2 (|:| -1210 (-881 |#3|)) (|:| -3136 (-881 |#3|))) |#4|) 13)) (-4146 ((|#4| |#4| |#2|) 30)) (-3194 ((|#4| (-382 (-881 |#3|)) |#2|) 64)) (-1656 ((|#4| (-1081 (-881 |#3|)) |#2|) 77)) (-3327 ((|#4| (-1081 |#4|) |#2|) 50)) (-1864 ((|#4| |#4| |#2|) 53)) (-1916 (((-393 |#4|) |#4|) 38)))
+(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1444 ((-2 (|:| -1210 (-881 |#3|)) (|:| -3136 (-881 |#3|))) |#4|)) (-15 -1864 (|#4| |#4| |#2|)) (-15 -3327 (|#4| (-1081 |#4|) |#2|)) (-15 -4146 (|#4| |#4| |#2|)) (-15 -1656 (|#4| (-1081 (-881 |#3|)) |#2|)) (-15 -3194 (|#4| (-382 (-881 |#3|)) |#2|)) (-15 -1916 ((-393 |#4|) |#4|))) (-730) (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)))) (-514) (-878 (-382 (-881 |#3|)) |#1| |#2|)) (T -670))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *6 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-382 (-881 *6)) *4 *5)))) (-3194 (*1 *2 *3 *4) (-12 (-4 *6 (-514)) (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-5 *3 (-382 (-881 *6))) (-4 *5 (-730)) (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))))) (-1656 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 (-881 *6))) (-4 *6 (-514)) (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-730)) (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))))) (-4146 (*1 *2 *2 *3) (-12 (-4 *4 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *5 (-514)) (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-1081 *2)) (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-730)) (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *6 (-514)))) (-1864 (*1 *2 *2 *3) (-12 (-4 *4 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *5 (-514)) (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3)))) (-1444 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *6 (-514)) (-5 *2 (-2 (|:| -1210 (-881 *6)) (|:| -3136 (-881 *6)))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-382 (-881 *6)) *4 *5)))))
+(-10 -7 (-15 -1444 ((-2 (|:| -1210 (-881 |#3|)) (|:| -3136 (-881 |#3|))) |#4|)) (-15 -1864 (|#4| |#4| |#2|)) (-15 -3327 (|#4| (-1081 |#4|) |#2|)) (-15 -4146 (|#4| |#4| |#2|)) (-15 -1656 (|#4| (-1081 (-881 |#3|)) |#2|)) (-15 -3194 (|#4| (-382 (-881 |#3|)) |#2|)) (-15 -1916 ((-393 |#4|) |#4|)))
+((-1916 (((-393 |#4|) |#4|) 51)))
+(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 |#4|) |#4|))) (-730) (-784) (-13 (-283) (-135)) (-878 (-382 |#3|) |#1| |#2|)) (T -671))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-13 (-283) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-878 (-382 *6) *4 *5)))))
+(-10 -7 (-15 -1916 ((-393 |#4|) |#4|)))
+((-1391 (((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)) 18)))
+(((-672 |#1| |#2| |#3|) (-10 -7 (-15 -1391 ((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|)))) (-971) (-971) (-664)) (T -672))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5 *7)) (-4 *5 (-971)) (-4 *6 (-971)) (-4 *7 (-664)) (-5 *2 (-673 *6 *7)) (-5 *1 (-672 *5 *6 *7)))))
+(-10 -7 (-15 -1391 ((-673 |#2| |#3|) (-1 |#2| |#1|) (-673 |#1| |#3|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 26)) (-2258 (((-588 (-2 (|:| -2977 |#1|) (|:| -2518 |#2|))) $) 27)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1629 (((-708)) 20 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 56) (((-3 |#1| "failed") $) 59)) (-1484 ((|#2| $) NIL) ((|#1| $) NIL)) (-3156 (($ $) 76 (|has| |#2| (-784)))) (-2682 (((-3 $ "failed") $) 63)) (-3255 (($) 33 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) 54)) (-4052 (((-588 $) $) 37)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| |#2|) 16)) (-1391 (($ (-1 |#1| |#1|) $) 53)) (-2120 (((-850) $) 30 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-3128 ((|#2| $) 75 (|has| |#2| (-784)))) (-3138 ((|#1| $) 74 (|has| |#2| (-784)))) (-2385 (((-1068) $) NIL)) (-2717 (($ (-850)) 25 (-12 (|has| |#2| (-343)) (|has| |#1| (-343))))) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 73) (($ (-522)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-588 (-2 (|:| -2977 |#1|) (|:| -2518 |#2|)))) 11)) (-3916 (((-588 |#1|) $) 39)) (-3243 ((|#1| $ |#2|) 84)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 12 T CONST)) (-3577 (($) 31 T CONST)) (-1531 (((-108) $ $) 77)) (-1612 (($ $) 46) (($ $ $) NIL)) (-1602 (($ $ $) 24)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 51) (($ $ $) 86) (($ |#1| $) 48 (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-673 |#1| |#2|) (-13 (-971) (-962 |#2|) (-962 |#1|) (-10 -8 (-15 -4049 ($ |#1| |#2|)) (-15 -3243 (|#1| $ |#2|)) (-15 -2190 ($ (-588 (-2 (|:| -2977 |#1|) (|:| -2518 |#2|))))) (-15 -2258 ((-588 (-2 (|:| -2977 |#1|) (|:| -2518 |#2|))) $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (-15 -3340 ((-108) $)) (-15 -3916 ((-588 |#1|) $)) (-15 -4052 ((-588 $) $)) (-15 -2112 ((-708) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-784)) (PROGN (-15 -3128 (|#2| $)) (-15 -3138 (|#1| $)) (-15 -3156 ($ $))) |%noBranch|))) (-971) (-664)) (T -673))
+((-4049 (*1 *1 *2 *3) (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-971)) (-4 *3 (-664)))) (-3243 (*1 *2 *1 *3) (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-664)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2977 *3) (|:| -2518 *4)))) (-4 *3 (-971)) (-4 *4 (-664)) (-5 *1 (-673 *3 *4)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -2977 *3) (|:| -2518 *4)))) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-673 *3 *4)) (-4 *4 (-664)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-588 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664)))) (-3128 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-784)) (-5 *1 (-673 *3 *2)) (-4 *3 (-971)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) (-4 *3 (-664)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) (-4 *2 (-971)) (-4 *3 (-664)))))
+(-13 (-971) (-962 |#2|) (-962 |#1|) (-10 -8 (-15 -4049 ($ |#1| |#2|)) (-15 -3243 (|#1| $ |#2|)) (-15 -2190 ($ (-588 (-2 (|:| -2977 |#1|) (|:| -2518 |#2|))))) (-15 -2258 ((-588 (-2 (|:| -2977 |#1|) (|:| -2518 |#2|))) $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (-15 -3340 ((-108) $)) (-15 -3916 ((-588 |#1|) $)) (-15 -4052 ((-588 $) $)) (-15 -2112 ((-708) $)) (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-784)) (PROGN (-15 -3128 (|#2| $)) (-15 -3138 (|#1| $)) (-15 -3156 ($ $))) |%noBranch|)))
+((-1416 (((-108) $ $) 19)) (-2270 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2079 (($ $ $) 72)) (-3557 (((-108) $ $) 73)) (-4141 (((-108) $ (-708)) 8)) (-1764 (($ (-588 |#1|)) 68) (($) 67)) (-2790 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3362 (($ $) 62)) (-2333 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22)) (-2416 (($ $ $) 69)) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40) (($ |#1| $ (-708)) 63)) (-4151 (((-1032) $) 21)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3698 (((-588 (-2 (|:| -3048 |#1|) (|:| -4168 (-708)))) $) 61)) (-3417 (($ $ |#1|) 71) (($ $ $) 70)) (-3990 (($) 49) (($ (-588 |#1|)) 48)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 50)) (-2190 (((-792) $) 18)) (-3392 (($ (-588 |#1|)) 66) (($) 65)) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 64)) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-674 |#1|) (-1197) (-1014)) (T -674))
+NIL
+(-13 (-633 |t#1|) (-1012 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-633 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2270 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2079 (($ $ $) 79)) (-3557 (((-108) $ $) 82)) (-4141 (((-108) $ (-708)) NIL)) (-1764 (($ (-588 |#1|)) 24) (($) 15)) (-2790 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3362 (($ $) 71)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) 61 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4238))) (($ |#1| $ (-522)) 62) (($ (-1 (-108) |#1|) $ (-522)) 65)) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (($ |#1| $ (-522)) 67) (($ (-1 (-108) |#1|) $ (-522)) 68)) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 32 (|has| $ (-6 -4238)))) (-1596 (($) 13) (($ |#1|) 26) (($ (-588 |#1|)) 21)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) 38)) (-2246 (((-108) |#1| $) 57 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 75)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-2416 (($ $ $) 77)) (-2116 ((|#1| $) 54)) (-4095 (($ |#1| $) 55) (($ |#1| $ (-708)) 72)) (-4151 (((-1032) $) NIL)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-4087 ((|#1| $) 53)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 49)) (-3775 (($) 12)) (-3698 (((-588 (-2 (|:| -3048 |#1|) (|:| -4168 (-708)))) $) 47)) (-3417 (($ $ |#1|) NIL) (($ $ $) 78)) (-3990 (($) 14) (($ (-588 |#1|)) 23)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) 60 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 66)) (-1431 (((-498) $) 36 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 20)) (-2190 (((-792) $) 44)) (-3392 (($ (-588 |#1|)) 25) (($) 16)) (-2795 (($ (-588 |#1|)) 22)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 80)) (-1549 (((-108) $ $) 81)) (-3480 (((-708) $) 59 (|has| $ (-6 -4238)))))
+(((-675 |#1|) (-13 (-674 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -1596 ($)) (-15 -1596 ($ |#1|)) (-15 -1596 ($ (-588 |#1|))) (-15 -3308 ((-588 |#1|) $)) (-15 -1423 ($ |#1| $ (-522))) (-15 -1423 ($ (-1 (-108) |#1|) $ (-522))) (-15 -3859 ($ |#1| $ (-522))) (-15 -3859 ($ (-1 (-108) |#1|) $ (-522))))) (-1014)) (T -675))
+((-1596 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-1596 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-675 *3)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1014)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-1423 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014)) (-5 *1 (-675 *4)))) (-3859 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014)))) (-3859 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014)) (-5 *1 (-675 *4)))))
+(-13 (-674 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -1596 ($)) (-15 -1596 ($ |#1|)) (-15 -1596 ($ (-588 |#1|))) (-15 -3308 ((-588 |#1|) $)) (-15 -1423 ($ |#1| $ (-522))) (-15 -1423 ($ (-1 (-108) |#1|) $ (-522))) (-15 -3859 ($ |#1| $ (-522))) (-15 -3859 ($ (-1 (-108) |#1|) $ (-522)))))
+((-3640 (((-1171) (-1068)) 8)))
+(((-676) (-10 -7 (-15 -3640 ((-1171) (-1068))))) (T -676))
+((-3640 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-676)))))
+(-10 -7 (-15 -3640 ((-1171) (-1068))))
+((-3231 (((-588 |#1|) (-588 |#1|) (-588 |#1|)) 10)))
+(((-677 |#1|) (-10 -7 (-15 -3231 ((-588 |#1|) (-588 |#1|) (-588 |#1|)))) (-784)) (T -677))
+((-3231 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-677 *3)))))
+(-10 -7 (-15 -3231 ((-588 |#1|) (-588 |#1|) (-588 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 |#2|) $) 136)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 129 (|has| |#1| (-514)))) (-2022 (($ $) 128 (|has| |#1| (-514)))) (-3739 (((-108) $) 126 (|has| |#1| (-514)))) (-2908 (($ $) 85 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 68 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) 19)) (-1929 (($ $) 67 (|has| |#1| (-37 (-382 (-522)))))) (-2884 (($ $) 84 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 69 (|has| |#1| (-37 (-382 (-522)))))) (-2930 (($ $) 83 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 70 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) 17 T CONST)) (-3156 (($ $) 120)) (-2682 (((-3 $ "failed") $) 34)) (-2199 (((-881 |#1|) $ (-708)) 98) (((-881 |#1|) $ (-708) (-708)) 97)) (-3390 (((-108) $) 137)) (-2838 (($) 95 (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-708) $ |#2|) 100) (((-708) $ |#2| (-708)) 99)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 66 (|has| |#1| (-37 (-382 (-522)))))) (-3340 (((-108) $) 118)) (-4049 (($ $ (-588 |#2|) (-588 (-494 |#2|))) 135) (($ $ |#2| (-494 |#2|)) 134) (($ |#1| (-494 |#2|)) 119) (($ $ |#2| (-708)) 102) (($ $ (-588 |#2|) (-588 (-708))) 101)) (-1391 (($ (-1 |#1| |#1|) $) 117)) (-1254 (($ $) 92 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) 115)) (-3138 ((|#1| $) 114)) (-2385 (((-1068) $) 9)) (-1858 (($ $ |#2|) 96 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) 10)) (-3719 (($ $ (-708)) 103)) (-2232 (((-3 $ "failed") $ $) 130 (|has| |#1| (-514)))) (-3266 (($ $) 93 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (($ $ |#2| $) 111) (($ $ (-588 |#2|) (-588 $)) 110) (($ $ (-588 (-270 $))) 109) (($ $ (-270 $)) 108) (($ $ $ $) 107) (($ $ (-588 $) (-588 $)) 106)) (-2157 (($ $ |#2|) 42) (($ $ (-588 |#2|)) 41) (($ $ |#2| (-708)) 40) (($ $ (-588 |#2|) (-588 (-708))) 39)) (-2793 (((-494 |#2|) $) 116)) (-1738 (($ $) 82 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 71 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 81 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 72 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 80 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 73 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 138)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 133 (|has| |#1| (-157))) (($ $) 131 (|has| |#1| (-514))) (($ (-382 (-522))) 123 (|has| |#1| (-37 (-382 (-522)))))) (-3243 ((|#1| $ (-494 |#2|)) 121) (($ $ |#2| (-708)) 105) (($ $ (-588 |#2|) (-588 (-708))) 104)) (-2143 (((-3 $ "failed") $) 132 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-1759 (($ $) 91 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 79 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) 127 (|has| |#1| (-514)))) (-1745 (($ $) 90 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 78 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 89 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 77 (|has| |#1| (-37 (-382 (-522)))))) (-3924 (($ $) 88 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 76 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 87 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 75 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 86 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 74 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ |#2|) 38) (($ $ (-588 |#2|)) 37) (($ $ |#2| (-708)) 36) (($ $ (-588 |#2|) (-588 (-708))) 35)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 122 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ $) 94 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 65 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 125 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 124 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-678 |#1| |#2|) (-1197) (-971) (-784)) (T -678))
+((-3243 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971)) (-4 *2 (-784)))) (-3243 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-678 *3 *4)) (-4 *3 (-971)) (-4 *4 (-784)))) (-4049 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971)) (-4 *2 (-784)))) (-4049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)))) (-3714 (*1 *2 *1 *3) (-12 (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) (-4 *3 (-784)) (-5 *2 (-708)))) (-3714 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-708)) (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) (-4 *3 (-784)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)) (-5 *2 (-881 *4)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971)) (-4 *5 (-784)) (-5 *2 (-881 *4)))) (-1858 (*1 *1 *1 *2) (-12 (-4 *1 (-678 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784)) (-4 *3 (-37 (-382 (-522)))))))
+(-13 (-829 |t#2|) (-900 |t#1| (-494 |t#2|) |t#2|) (-483 |t#2| $) (-285 $) (-10 -8 (-15 -3243 ($ $ |t#2| (-708))) (-15 -3243 ($ $ (-588 |t#2|) (-588 (-708)))) (-15 -3719 ($ $ (-708))) (-15 -4049 ($ $ |t#2| (-708))) (-15 -4049 ($ $ (-588 |t#2|) (-588 (-708)))) (-15 -3714 ((-708) $ |t#2|)) (-15 -3714 ((-708) $ |t#2| (-708))) (-15 -2199 ((-881 |t#1|) $ (-708))) (-15 -2199 ((-881 |t#1|) $ (-708) (-708))) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $ |t#2|)) (-6 (-928)) (-6 (-1106))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-494 |#2|)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-266) |has| |#1| (-514)) ((-285 $) . T) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-483 |#2| $) . T) ((-483 $ $) . T) ((-514) |has| |#1| (-514)) ((-590 #1#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-829 |#2|) . T) ((-900 |#1| #0# |#2|) . T) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))))
+((-1916 (((-393 (-1081 |#4|)) (-1081 |#4|)) 28) (((-393 |#4|) |#4|) 24)))
+(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 |#4|) |#4|)) (-15 -1916 ((-393 (-1081 |#4|)) (-1081 |#4|)))) (-784) (-730) (-13 (-283) (-135)) (-878 |#3| |#2| |#1|)) (T -679))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135))) (-5 *2 (-393 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(-10 -7 (-15 -1916 ((-393 |#4|) |#4|)) (-15 -1916 ((-393 (-1081 |#4|)) (-1081 |#4|))))
+((-3906 (((-393 |#4|) |#4| |#2|) 117)) (-2236 (((-393 |#4|) |#4|) NIL)) (-3450 (((-393 (-1081 |#4|)) (-1081 |#4|)) 108) (((-393 |#4|) |#4|) 38)) (-3240 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-588 (-2 (|:| -1916 (-1081 |#4|)) (|:| -1400 (-522)))))) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|))) 66)) (-3358 (((-1081 |#3|) (-1081 |#3|) (-522)) 134)) (-3820 (((-588 (-708)) (-1081 |#4|) (-588 |#2|) (-708)) 59)) (-3849 (((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-1081 |#3|) (-1081 |#3|) |#4| (-588 |#2|) (-588 (-708)) (-588 |#3|)) 63)) (-4036 (((-2 (|:| |upol| (-1081 |#3|)) (|:| |Lval| (-588 |#3|)) (|:| |Lfact| (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522))))) (|:| |ctpol| |#3|)) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|))) 22)) (-2182 (((-2 (|:| -3892 (-1081 |#4|)) (|:| |polval| (-1081 |#3|))) (-1081 |#4|) (-1081 |#3|) (-522)) 55)) (-2949 (((-522) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522))))) 131)) (-2969 ((|#4| (-522) (-393 |#4|)) 56)) (-2523 (((-108) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522))))) NIL)))
+(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3450 ((-393 |#4|) |#4|)) (-15 -3450 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -2236 ((-393 |#4|) |#4|)) (-15 -2949 ((-522) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))))) (-15 -3906 ((-393 |#4|) |#4| |#2|)) (-15 -2182 ((-2 (|:| -3892 (-1081 |#4|)) (|:| |polval| (-1081 |#3|))) (-1081 |#4|) (-1081 |#3|) (-522))) (-15 -3240 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-588 (-2 (|:| -1916 (-1081 |#4|)) (|:| -1400 (-522)))))) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -4036 ((-2 (|:| |upol| (-1081 |#3|)) (|:| |Lval| (-588 |#3|)) (|:| |Lfact| (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522))))) (|:| |ctpol| |#3|)) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -2969 (|#4| (-522) (-393 |#4|))) (-15 -2523 ((-108) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))))) (-15 -3849 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-1081 |#3|) (-1081 |#3|) |#4| (-588 |#2|) (-588 (-708)) (-588 |#3|))) (-15 -3820 ((-588 (-708)) (-1081 |#4|) (-588 |#2|) (-708))) (-15 -3358 ((-1081 |#3|) (-1081 |#3|) (-522)))) (-730) (-784) (-283) (-878 |#3| |#1| |#2|)) (T -680))
+((-3358 (*1 *2 *2 *3) (-12 (-5 *2 (-1081 *6)) (-5 *3 (-522)) (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-3820 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-4 *7 (-784)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-4 *8 (-283)) (-5 *2 (-588 (-708))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *5 (-708)))) (-3849 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1081 *11)) (-5 *6 (-588 *10)) (-5 *7 (-588 (-708))) (-5 *8 (-588 *11)) (-4 *10 (-784)) (-4 *11 (-283)) (-4 *9 (-730)) (-4 *5 (-878 *11 *9 *10)) (-5 *2 (-588 (-1081 *5))) (-5 *1 (-680 *9 *10 *11 *5)) (-5 *3 (-1081 *5)))) (-2523 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-2 (|:| -1916 (-1081 *6)) (|:| -1400 (-522))))) (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2969 (*1 *2 *3 *4) (-12 (-5 *3 (-522)) (-5 *4 (-393 *2)) (-4 *2 (-878 *7 *5 *6)) (-5 *1 (-680 *5 *6 *7 *2)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-283)))) (-4036 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) (-4 *7 (-784)) (-4 *8 (-283)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-5 *2 (-2 (|:| |upol| (-1081 *8)) (|:| |Lval| (-588 *8)) (|:| |Lfact| (-588 (-2 (|:| -1916 (-1081 *8)) (|:| -1400 (-522))))) (|:| |ctpol| *8))) (-5 *1 (-680 *6 *7 *8 *9)))) (-3240 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) (-4 *7 (-784)) (-4 *8 (-283)) (-4 *6 (-730)) (-4 *9 (-878 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-588 (-2 (|:| -1916 (-1081 *9)) (|:| -1400 (-522))))))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)))) (-2182 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-522)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-283)) (-4 *9 (-878 *8 *6 *7)) (-5 *2 (-2 (|:| -3892 (-1081 *9)) (|:| |polval| (-1081 *8)))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)) (-5 *4 (-1081 *8)))) (-3906 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-680 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1916 (-1081 *6)) (|:| -1400 (-522))))) (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2236 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))) (-3450 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-3450 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))))
+(-10 -7 (-15 -3450 ((-393 |#4|) |#4|)) (-15 -3450 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -2236 ((-393 |#4|) |#4|)) (-15 -2949 ((-522) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))))) (-15 -3906 ((-393 |#4|) |#4| |#2|)) (-15 -2182 ((-2 (|:| -3892 (-1081 |#4|)) (|:| |polval| (-1081 |#3|))) (-1081 |#4|) (-1081 |#3|) (-522))) (-15 -3240 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-588 (-2 (|:| -1916 (-1081 |#4|)) (|:| -1400 (-522)))))) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -4036 ((-2 (|:| |upol| (-1081 |#3|)) (|:| |Lval| (-588 |#3|)) (|:| |Lfact| (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522))))) (|:| |ctpol| |#3|)) (-1081 |#4|) (-588 |#2|) (-588 (-588 |#3|)))) (-15 -2969 (|#4| (-522) (-393 |#4|))) (-15 -2523 ((-108) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))) (-588 (-2 (|:| -1916 (-1081 |#3|)) (|:| -1400 (-522)))))) (-15 -3849 ((-3 (-588 (-1081 |#4|)) "failed") (-1081 |#4|) (-1081 |#3|) (-1081 |#3|) |#4| (-588 |#2|) (-588 (-708)) (-588 |#3|))) (-15 -3820 ((-588 (-708)) (-1081 |#4|) (-588 |#2|) (-708))) (-15 -3358 ((-1081 |#3|) (-1081 |#3|) (-522))))
+((-1882 (($ $ (-850)) 12)))
+(((-681 |#1| |#2|) (-10 -8 (-15 -1882 (|#1| |#1| (-850)))) (-682 |#2|) (-157)) (T -681))
+NIL
+(-10 -8 (-15 -1882 (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1679 (($ $ (-850)) 28)) (-1882 (($ $ (-850)) 33)) (-3277 (($ $ (-850)) 29)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1288 (($ $ $) 25)) (-2190 (((-792) $) 11)) (-3610 (($ $ $ $) 26)) (-3024 (($ $ $) 24)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-682 |#1|) (-1197) (-157)) (T -682))
+((-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-682 *3)) (-4 *3 (-157)))))
+(-13 (-699) (-655 |t#1|) (-10 -8 (-15 -1882 ($ $ (-850)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-699) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-2842 (((-960) (-628 (-202)) (-522) (-108) (-522)) 24)) (-1220 (((-960) (-628 (-202)) (-522) (-108) (-522)) 23)))
+(((-683) (-10 -7 (-15 -1220 ((-960) (-628 (-202)) (-522) (-108) (-522))) (-15 -2842 ((-960) (-628 (-202)) (-522) (-108) (-522))))) (T -683))
+((-2842 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-683)))) (-1220 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-683)))))
+(-10 -7 (-15 -1220 ((-960) (-628 (-202)) (-522) (-108) (-522))) (-15 -2842 ((-960) (-628 (-202)) (-522) (-108) (-522))))
+((-4107 (((-960) (-522) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))) 43)) (-1482 (((-960) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN)))) 39)) (-2485 (((-960) (-202) (-202) (-202) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) 32)))
+(((-684) (-10 -7 (-15 -2485 ((-960) (-202) (-202) (-202) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -1482 ((-960) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN))))) (-15 -4107 ((-960) (-522) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN))))))) (T -684))
+((-4107 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))) (-5 *2 (-960)) (-5 *1 (-684)))) (-1482 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN)))) (-5 *2 (-960)) (-5 *1 (-684)))) (-2485 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960)) (-5 *1 (-684)))))
+(-10 -7 (-15 -2485 ((-960) (-202) (-202) (-202) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -1482 ((-960) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN))))) (-15 -4107 ((-960) (-522) (-522) (-522) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN))))))
+((-3588 (((-960) (-522) (-522) (-628 (-202)) (-522)) 33)) (-1796 (((-960) (-522) (-522) (-628 (-202)) (-522)) 32)) (-2181 (((-960) (-522) (-628 (-202)) (-522)) 31)) (-1624 (((-960) (-522) (-628 (-202)) (-522)) 30)) (-3366 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 29)) (-1428 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 28)) (-1598 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522)) 27)) (-2048 (((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522)) 26)) (-1814 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 23)) (-3930 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522)) 22)) (-3184 (((-960) (-522) (-628 (-202)) (-522)) 21)) (-2029 (((-960) (-522) (-628 (-202)) (-522)) 20)))
+(((-685) (-10 -7 (-15 -2029 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3184 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3930 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1814 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2048 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1598 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1428 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3366 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1624 ((-960) (-522) (-628 (-202)) (-522))) (-15 -2181 ((-960) (-522) (-628 (-202)) (-522))) (-15 -1796 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -3588 ((-960) (-522) (-522) (-628 (-202)) (-522))))) (T -685))
+((-3588 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-1796 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2181 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-1624 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3366 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-1428 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-1598 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2048 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-1814 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3930 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-3184 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))) (-2029 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-685)))))
+(-10 -7 (-15 -2029 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3184 ((-960) (-522) (-628 (-202)) (-522))) (-15 -3930 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1814 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2048 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1598 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1428 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3366 ((-960) (-522) (-522) (-1068) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1624 ((-960) (-522) (-628 (-202)) (-522))) (-15 -2181 ((-960) (-522) (-628 (-202)) (-522))) (-15 -1796 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -3588 ((-960) (-522) (-522) (-628 (-202)) (-522))))
+((-3946 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1957 (((-960) (-628 (-202)) (-628 (-202)) (-522) (-522)) 51)) (-2171 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2681 (((-960) (-202) (-202) (-522) (-522) (-522) (-522)) 46)) (-2464 (((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 45)) (-3932 (((-960) (-202) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 44)) (-3032 (((-960) (-202) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 43)) (-2821 (((-960) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) 42)) (-3684 (((-960) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) 38)) (-2130 (((-960) (-202) (-202) (-522) (-628 (-202)) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) 37)) (-2206 (((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) 33)) (-3416 (((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) 32)))
+(((-686) (-10 -7 (-15 -3416 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -2206 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -2130 ((-960) (-202) (-202) (-522) (-628 (-202)) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -3684 ((-960) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -2821 ((-960) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -3032 ((-960) (-202) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -3932 ((-960) (-202) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -2464 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -2681 ((-960) (-202) (-202) (-522) (-522) (-522) (-522))) (-15 -2171 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))) (-15 -1957 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-522))) (-15 -3946 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))))) (T -686))
+((-3946 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-1957 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-686)))) (-2171 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-2681 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-686)))) (-2464 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3932 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3032 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-2821 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3684 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-2130 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-686)))) (-2206 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960)) (-5 *1 (-686)))) (-3416 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960)) (-5 *1 (-686)))))
+(-10 -7 (-15 -3416 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -2206 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -2130 ((-960) (-202) (-202) (-522) (-628 (-202)) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -3684 ((-960) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055))))) (-15 -2821 ((-960) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -3032 ((-960) (-202) (-202) (-202) (-202) (-522) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -3932 ((-960) (-202) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -2464 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G))))) (-15 -2681 ((-960) (-202) (-202) (-522) (-522) (-522) (-522))) (-15 -2171 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))) (-15 -1957 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-522))) (-15 -3946 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-202) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))))
+((-2738 (((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2590 (((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))) (-363) (-363)) 69) (((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2331 (((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG)))) 57)) (-2382 (((-960) (-628 (-202)) (-628 (-202)) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) 50)) (-2108 (((-960) (-202) (-522) (-522) (-1068) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1760 (((-960) (-202) (-522) (-522) (-202) (-1068) (-202) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1766 (((-960) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) 42)) (-1274 (((-960) (-202) (-522) (-522) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-687) (-10 -7 (-15 -1274 ((-960) (-202) (-522) (-522) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -1766 ((-960) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -1760 ((-960) (-202) (-522) (-522) (-202) (-1068) (-202) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -2108 ((-960) (-202) (-522) (-522) (-1068) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -2382 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -2331 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG))))) (-15 -2590 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))))) (-15 -2590 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))) (-363) (-363))) (-15 -2738 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -687))
+((-2738 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-2590 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-363)) (-5 *2 (-960)) (-5 *1 (-687)))) (-2590 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-960)) (-5 *1 (-687)))) (-2331 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-2382 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *2 (-960)) (-5 *1 (-687)))) (-2108 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-1760 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-1766 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))) (-1274 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))))
+(-10 -7 (-15 -1274 ((-960) (-202) (-522) (-522) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -1766 ((-960) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -1760 ((-960) (-202) (-522) (-522) (-202) (-1068) (-202) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -2108 ((-960) (-202) (-522) (-522) (-1068) (-522) (-202) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))) (-15 -2382 ((-960) (-628 (-202)) (-628 (-202)) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))) (-15 -2331 ((-960) (-202) (-202) (-522) (-202) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG))))) (-15 -2590 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))))) (-15 -2590 ((-960) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))) (-363) (-363))) (-15 -2738 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-1404 (((-960) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-616 (-202)) (-522)) 45)) (-4169 (((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-1068) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY)))) 41)) (-3765 (((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 23)))
+(((-688) (-10 -7 (-15 -3765 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4169 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-1068) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY))))) (-15 -1404 ((-960) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-616 (-202)) (-522))))) (T -688))
+((-1404 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-616 (-202))) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-688)))) (-4169 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-960)) (-5 *1 (-688)))) (-3765 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-688)))))
+(-10 -7 (-15 -3765 ((-960) (-522) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4169 ((-960) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-1068) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY))))) (-15 -1404 ((-960) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-616 (-202)) (-522))))
+((-4135 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-628 (-202)) (-202) (-202) (-522)) 35)) (-3468 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-202) (-202) (-522)) 34)) (-2543 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-628 (-202)) (-202) (-202) (-522)) 33)) (-1895 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 29)) (-3300 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 28)) (-2168 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522)) 27)) (-2684 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522)) 23)) (-1794 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522)) 22)) (-3493 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522)) 21)) (-2858 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)) 20)))
+(((-689) (-10 -7 (-15 -2858 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -3493 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1794 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -2684 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -2168 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522))) (-15 -3300 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1895 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2543 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-628 (-202)) (-202) (-202) (-522))) (-15 -3468 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-202) (-202) (-522))) (-15 -4135 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-628 (-202)) (-202) (-202) (-522))))) (T -689))
+((-4135 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-689)))) (-3468 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-689)))) (-2543 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-689)))) (-1895 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-3300 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-2168 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-689)))) (-2684 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-1794 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-3493 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))) (-2858 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-689)))))
+(-10 -7 (-15 -2858 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -3493 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1794 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -2684 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -2168 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-202) (-522))) (-15 -3300 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1895 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2543 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-628 (-202)) (-202) (-202) (-522))) (-15 -3468 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-202) (-202) (-522))) (-15 -4135 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-628 (-202)) (-202) (-202) (-522))))
+((-1466 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)) 45)) (-3515 (((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-522)) 44)) (-2304 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522)) 43)) (-3585 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 42)) (-2906 (((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522)) 41)) (-3291 (((-960) (-1068) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522)) 40)) (-2184 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522) (-522) (-522) (-202) (-628 (-202)) (-522)) 39)) (-2881 (((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522))) 38)) (-1344 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-522)) 35)) (-3672 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522)) 34)) (-2708 (((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522)) 33)) (-2561 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 32)) (-3920 (((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522)) 31)) (-3149 (((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-522)) 30)) (-2916 (((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-522) (-522) (-522)) 29)) (-2381 (((-960) (-522) (-522) (-522) (-202) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-522)) (-522) (-522) (-522)) 28)) (-3222 (((-960) (-522) (-628 (-202)) (-202) (-522)) 24)) (-3501 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 20)))
+(((-690) (-10 -7 (-15 -3501 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3222 ((-960) (-522) (-628 (-202)) (-202) (-522))) (-15 -2381 ((-960) (-522) (-522) (-522) (-202) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-522)) (-522) (-522) (-522))) (-15 -2916 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -3149 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-522))) (-15 -3920 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522))) (-15 -2561 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2708 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522))) (-15 -3672 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522))) (-15 -1344 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2881 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)))) (-15 -2184 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522) (-522) (-522) (-202) (-628 (-202)) (-522))) (-15 -3291 ((-960) (-1068) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -2906 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3585 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2304 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -3515 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1466 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))))) (T -690))
+((-1466 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-3515 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2304 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-3585 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-2906 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3291 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2184 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2881 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202)) (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))) (-1344 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-3672 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2708 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2561 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))) (-3920 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3149 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2916 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-2381 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3222 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))) (-3501 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-690)))))
+(-10 -7 (-15 -3501 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3222 ((-960) (-522) (-628 (-202)) (-202) (-522))) (-15 -2381 ((-960) (-522) (-522) (-522) (-202) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-522)) (-522) (-522) (-522))) (-15 -2916 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -3149 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522) (-522) (-522))) (-15 -3920 ((-960) (-522) (-202) (-202) (-628 (-202)) (-522) (-522) (-202) (-522))) (-15 -2561 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2708 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522))) (-15 -3672 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522))) (-15 -1344 ((-960) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2881 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)))) (-15 -2184 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522) (-522) (-522) (-202) (-628 (-202)) (-522))) (-15 -3291 ((-960) (-1068) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -2906 ((-960) (-1068) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3585 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2304 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))) (-15 -3515 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1466 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522) (-628 (-202)) (-628 (-202)) (-522) (-522) (-522))))
+((-3326 (((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-522) (-628 (-202)) (-522)) 63)) (-2718 (((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-108) (-202) (-522) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-522) (-522) (-522) (-522) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2712 (((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-108) (-108) (-522) (-522) (-628 (-202)) (-628 (-522)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS)))) 58)) (-1783 (((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-522) (-522) (-628 (-202)) (-522)) 51)) (-3723 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2629 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1810 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1543 (((-960) (-522) (-202) (-202) (-522) (-202) (-108) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-691) (-10 -7 (-15 -1543 ((-960) (-522) (-202) (-202) (-522) (-202) (-108) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -1810 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1))))) (-15 -2629 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2))))) (-15 -3723 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1))))) (-15 -1783 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-522) (-522) (-628 (-202)) (-522))) (-15 -2712 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-108) (-108) (-522) (-522) (-628 (-202)) (-628 (-522)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS))))) (-15 -2718 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-108) (-202) (-522) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-522) (-522) (-522) (-522) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -3326 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-522) (-628 (-202)) (-522))))) (T -691))
+((-3326 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))) (-2718 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-628 (-522))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-691)))) (-2712 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-628 (-202))) (-5 *6 (-108)) (-5 *7 (-628 (-522))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))) (-1783 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-691)))) (-3723 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-960)) (-5 *1 (-691)))) (-2629 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-960)) (-5 *1 (-691)))) (-1810 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-960)) (-5 *1 (-691)))) (-1543 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))))
+(-10 -7 (-15 -1543 ((-960) (-522) (-202) (-202) (-522) (-202) (-108) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -1810 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1))))) (-15 -2629 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2))))) (-15 -3723 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1))))) (-15 -1783 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-522) (-522) (-628 (-202)) (-522))) (-15 -2712 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-202) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-108) (-108) (-108) (-522) (-522) (-628 (-202)) (-628 (-522)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS))))) (-15 -2718 ((-960) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-522) (-108) (-202) (-522) (-202) (-202) (-108) (-202) (-202) (-202) (-202) (-108) (-522) (-522) (-522) (-522) (-522) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-522) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))) (-15 -3326 ((-960) (-522) (-522) (-522) (-202) (-628 (-202)) (-522) (-628 (-202)) (-522))))
+((-3134 (((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522)) 46)) (-1419 (((-960) (-1068) (-1068) (-522) (-522) (-628 (-154 (-202))) (-522) (-628 (-154 (-202))) (-522) (-522) (-628 (-154 (-202))) (-522)) 45)) (-2408 (((-960) (-522) (-522) (-522) (-628 (-154 (-202))) (-522)) 44)) (-2964 (((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 40)) (-2965 (((-960) (-1068) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)) (-522)) 39)) (-2257 (((-960) (-522) (-522) (-522) (-628 (-202)) (-522)) 36)) (-3320 (((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522)) 35)) (-3256 (((-960) (-522) (-522) (-522) (-522) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-202) (-202) (-522)) 34)) (-3826 (((-960) (-522) (-522) (-522) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-108) (-202) (-108) (-628 (-522)) (-628 (-202)) (-522)) 33)) (-3223 (((-960) (-522) (-522) (-522) (-522) (-202) (-108) (-108) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-522)) 32)))
+(((-692) (-10 -7 (-15 -3223 ((-960) (-522) (-522) (-522) (-522) (-202) (-108) (-108) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-522))) (-15 -3826 ((-960) (-522) (-522) (-522) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-108) (-202) (-108) (-628 (-522)) (-628 (-202)) (-522))) (-15 -3256 ((-960) (-522) (-522) (-522) (-522) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-202) (-202) (-522))) (-15 -3320 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522))) (-15 -2257 ((-960) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -2965 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)) (-522))) (-15 -2964 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2408 ((-960) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -1419 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-154 (-202))) (-522) (-628 (-154 (-202))) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -3134 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522))))) (T -692))
+((-3134 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-692)))) (-1419 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-692)))) (-2408 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-692)))) (-2964 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-692)))) (-2965 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-692)))) (-2257 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-692)))) (-3320 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-692)))) (-3256 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-588 (-108))) (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *7 (-202)) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-692)))) (-3826 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-628 (-522))) (-5 *5 (-108)) (-5 *7 (-628 (-202))) (-5 *3 (-522)) (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-692)))) (-3223 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-588 (-108))) (-5 *7 (-628 (-202))) (-5 *8 (-628 (-522))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *5 (-108)) (-5 *2 (-960)) (-5 *1 (-692)))))
+(-10 -7 (-15 -3223 ((-960) (-522) (-522) (-522) (-522) (-202) (-108) (-108) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-522))) (-15 -3826 ((-960) (-522) (-522) (-522) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-628 (-522)) (-108) (-202) (-108) (-628 (-522)) (-628 (-202)) (-522))) (-15 -3256 ((-960) (-522) (-522) (-522) (-522) (-588 (-108)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-202) (-202) (-522))) (-15 -3320 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522))) (-15 -2257 ((-960) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -2965 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)) (-522))) (-15 -2964 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2408 ((-960) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -1419 ((-960) (-1068) (-1068) (-522) (-522) (-628 (-154 (-202))) (-522) (-628 (-154 (-202))) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -3134 ((-960) (-1068) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522))))
+((-2481 (((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522)) 64)) (-4051 (((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522)) 60)) (-1489 (((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))) (-363)) 56) (((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) 55)) (-3817 (((-960) (-522) (-522) (-522) (-202) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522)) 37)) (-2436 (((-960) (-522) (-522) (-202) (-202) (-522) (-522) (-628 (-202)) (-522)) 33)) (-3337 (((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522) (-522)) 29)) (-3158 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 28)) (-4173 (((-960) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 27)) (-4098 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 26)) (-3992 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522)) 25)) (-1655 (((-960) (-522) (-522) (-628 (-202)) (-522)) 24)) (-4089 (((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 23)) (-1959 (((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522)) 22)) (-2786 (((-960) (-628 (-202)) (-522) (-522) (-522) (-522)) 21)) (-3897 (((-960) (-522) (-522) (-628 (-202)) (-522)) 20)))
+(((-693) (-10 -7 (-15 -3897 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -2786 ((-960) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -1959 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4089 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1655 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -3992 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -4098 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4173 ((-960) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3158 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3337 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -2436 ((-960) (-522) (-522) (-202) (-202) (-522) (-522) (-628 (-202)) (-522))) (-15 -3817 ((-960) (-522) (-522) (-522) (-202) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1489 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))))) (-15 -1489 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))) (-363))) (-15 -4051 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2481 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522))))) (T -693))
+((-2481 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-693)))) (-4051 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-1489 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-363)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-1489 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-3817 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-2436 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))) (-3337 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-693)))) (-3158 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-4173 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-4098 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-3992 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-1655 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-4089 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-1959 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))) (-2786 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-693)))) (-3897 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-693)))))
+(-10 -7 (-15 -3897 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -2786 ((-960) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -1959 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4089 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1655 ((-960) (-522) (-522) (-628 (-202)) (-522))) (-15 -3992 ((-960) (-522) (-522) (-522) (-522) (-628 (-202)) (-522))) (-15 -4098 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -4173 ((-960) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3158 ((-960) (-522) (-522) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3337 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522) (-522))) (-15 -2436 ((-960) (-522) (-522) (-202) (-202) (-522) (-522) (-628 (-202)) (-522))) (-15 -3817 ((-960) (-522) (-522) (-522) (-202) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1489 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))))) (-15 -1489 ((-960) (-522) (-522) (-202) (-522) (-522) (-522) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE))) (-363))) (-15 -4051 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -2481 ((-960) (-522) (-522) (-522) (-522) (-522) (-108) (-522) (-108) (-522) (-628 (-154 (-202))) (-628 (-154 (-202))) (-522))))
+((-3190 (((-960) (-522) (-522) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))) 60)) (-1939 (((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522)) 56)) (-4126 (((-960) (-522) (-628 (-202)) (-108) (-202) (-522) (-522) (-522) (-522) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE)))) 55)) (-1897 (((-960) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522)) 36)) (-3202 (((-960) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-522)) 35)) (-3811 (((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522)) 31)) (-3955 (((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202))) 30)) (-3880 (((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522)) 26)) (-2937 (((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522)) 25)) (-2824 (((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522)) 24)) (-3665 (((-960) (-522) (-628 (-154 (-202))) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-522)) 20)))
+(((-694) (-10 -7 (-15 -3665 ((-960) (-522) (-628 (-154 (-202))) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -2824 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -2937 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3880 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522))) (-15 -3955 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)))) (-15 -3811 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3202 ((-960) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1897 ((-960) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -4126 ((-960) (-522) (-628 (-202)) (-108) (-202) (-522) (-522) (-522) (-522) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE))))) (-15 -1939 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -3190 ((-960) (-522) (-522) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD))))))) (T -694))
+((-3190 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-694)))) (-1939 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-4126 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-960)) (-5 *1 (-694)))) (-1897 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-3202 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-694)))) (-3811 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-694)))) (-3955 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-3880 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-694)))) (-2937 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-694)))) (-2824 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-694)))) (-3665 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960)) (-5 *1 (-694)))))
+(-10 -7 (-15 -3665 ((-960) (-522) (-628 (-154 (-202))) (-522) (-522) (-522) (-522) (-628 (-154 (-202))) (-522))) (-15 -2824 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -2937 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-522))) (-15 -3880 ((-960) (-628 (-202)) (-522) (-628 (-202)) (-522) (-522) (-522))) (-15 -3955 ((-960) (-522) (-628 (-202)) (-522) (-628 (-522)) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)))) (-15 -3811 ((-960) (-522) (-522) (-628 (-202)) (-628 (-202)) (-628 (-202)) (-522))) (-15 -3202 ((-960) (-522) (-522) (-522) (-202) (-522) (-628 (-202)) (-628 (-202)) (-522))) (-15 -1897 ((-960) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-522)) (-628 (-202)) (-628 (-522)) (-628 (-522)) (-628 (-202)) (-628 (-202)) (-628 (-522)) (-522))) (-15 -4126 ((-960) (-522) (-628 (-202)) (-108) (-202) (-522) (-522) (-522) (-522) (-202) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE))))) (-15 -1939 ((-960) (-522) (-628 (-202)) (-522) (-628 (-202)) (-628 (-522)) (-522) (-628 (-202)) (-522) (-522) (-522) (-522))) (-15 -3190 ((-960) (-522) (-522) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-628 (-202)) (-522) (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD))))))
+((-3347 (((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-522) (-628 (-202))) 28)) (-1784 (((-960) (-1068) (-522) (-522) (-628 (-202))) 27)) (-2372 (((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-202))) 26)) (-1293 (((-960) (-522) (-522) (-522) (-628 (-202))) 20)))
+(((-695) (-10 -7 (-15 -1293 ((-960) (-522) (-522) (-522) (-628 (-202)))) (-15 -2372 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-202)))) (-15 -1784 ((-960) (-1068) (-522) (-522) (-628 (-202)))) (-15 -3347 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)))))) (T -695))
+((-3347 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-695)))) (-1784 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-695)))) (-2372 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-695)))) (-1293 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960)) (-5 *1 (-695)))))
+(-10 -7 (-15 -1293 ((-960) (-522) (-522) (-522) (-628 (-202)))) (-15 -2372 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-628 (-522)) (-522) (-628 (-202)))) (-15 -1784 ((-960) (-1068) (-522) (-522) (-628 (-202)))) (-15 -3347 ((-960) (-1068) (-522) (-522) (-628 (-202)) (-522) (-522) (-628 (-202)))))
+((-1255 (((-960) (-202) (-202) (-202) (-202) (-522)) 62)) (-1430 (((-960) (-202) (-202) (-202) (-522)) 61)) (-1792 (((-960) (-202) (-202) (-202) (-522)) 60)) (-3193 (((-960) (-202) (-202) (-522)) 59)) (-3188 (((-960) (-202) (-522)) 58)) (-2288 (((-960) (-202) (-522)) 57)) (-1928 (((-960) (-202) (-522)) 56)) (-1283 (((-960) (-202) (-522)) 55)) (-1863 (((-960) (-202) (-522)) 54)) (-3213 (((-960) (-202) (-522)) 53)) (-1723 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 52)) (-2099 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 51)) (-1980 (((-960) (-202) (-522)) 50)) (-1584 (((-960) (-202) (-522)) 49)) (-2195 (((-960) (-202) (-522)) 48)) (-3088 (((-960) (-202) (-522)) 47)) (-3198 (((-960) (-522) (-202) (-154 (-202)) (-522) (-1068) (-522)) 46)) (-3535 (((-960) (-1068) (-154 (-202)) (-1068) (-522)) 45)) (-1719 (((-960) (-1068) (-154 (-202)) (-1068) (-522)) 44)) (-3516 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 43)) (-3039 (((-960) (-202) (-154 (-202)) (-522) (-1068) (-522)) 42)) (-4059 (((-960) (-202) (-522)) 39)) (-2097 (((-960) (-202) (-522)) 38)) (-4116 (((-960) (-202) (-522)) 37)) (-1689 (((-960) (-202) (-522)) 36)) (-1380 (((-960) (-202) (-522)) 35)) (-1730 (((-960) (-202) (-522)) 34)) (-3949 (((-960) (-202) (-522)) 33)) (-4136 (((-960) (-202) (-522)) 32)) (-3561 (((-960) (-202) (-522)) 31)) (-3873 (((-960) (-202) (-522)) 30)) (-1476 (((-960) (-202) (-202) (-202) (-522)) 29)) (-1609 (((-960) (-202) (-522)) 28)) (-2585 (((-960) (-202) (-522)) 27)) (-2024 (((-960) (-202) (-522)) 26)) (-1702 (((-960) (-202) (-522)) 25)) (-1443 (((-960) (-202) (-522)) 24)) (-1694 (((-960) (-154 (-202)) (-522)) 20)))
+(((-696) (-10 -7 (-15 -1694 ((-960) (-154 (-202)) (-522))) (-15 -1443 ((-960) (-202) (-522))) (-15 -1702 ((-960) (-202) (-522))) (-15 -2024 ((-960) (-202) (-522))) (-15 -2585 ((-960) (-202) (-522))) (-15 -1609 ((-960) (-202) (-522))) (-15 -1476 ((-960) (-202) (-202) (-202) (-522))) (-15 -3873 ((-960) (-202) (-522))) (-15 -3561 ((-960) (-202) (-522))) (-15 -4136 ((-960) (-202) (-522))) (-15 -3949 ((-960) (-202) (-522))) (-15 -1730 ((-960) (-202) (-522))) (-15 -1380 ((-960) (-202) (-522))) (-15 -1689 ((-960) (-202) (-522))) (-15 -4116 ((-960) (-202) (-522))) (-15 -2097 ((-960) (-202) (-522))) (-15 -4059 ((-960) (-202) (-522))) (-15 -3039 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3516 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1719 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -3535 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -3198 ((-960) (-522) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3088 ((-960) (-202) (-522))) (-15 -2195 ((-960) (-202) (-522))) (-15 -1584 ((-960) (-202) (-522))) (-15 -1980 ((-960) (-202) (-522))) (-15 -2099 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1723 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3213 ((-960) (-202) (-522))) (-15 -1863 ((-960) (-202) (-522))) (-15 -1283 ((-960) (-202) (-522))) (-15 -1928 ((-960) (-202) (-522))) (-15 -2288 ((-960) (-202) (-522))) (-15 -3188 ((-960) (-202) (-522))) (-15 -3193 ((-960) (-202) (-202) (-522))) (-15 -1792 ((-960) (-202) (-202) (-202) (-522))) (-15 -1430 ((-960) (-202) (-202) (-202) (-522))) (-15 -1255 ((-960) (-202) (-202) (-202) (-202) (-522))))) (T -696))
+((-1255 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1430 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1792 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3193 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1928 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1283 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1723 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2099 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1980 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3198 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-522)) (-5 *5 (-154 (-202))) (-5 *6 (-1068)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3535 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1719 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3516 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3039 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068)) (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1689 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1380 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3561 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-3873 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1476 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-2024 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1702 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-154 (-202))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(-10 -7 (-15 -1694 ((-960) (-154 (-202)) (-522))) (-15 -1443 ((-960) (-202) (-522))) (-15 -1702 ((-960) (-202) (-522))) (-15 -2024 ((-960) (-202) (-522))) (-15 -2585 ((-960) (-202) (-522))) (-15 -1609 ((-960) (-202) (-522))) (-15 -1476 ((-960) (-202) (-202) (-202) (-522))) (-15 -3873 ((-960) (-202) (-522))) (-15 -3561 ((-960) (-202) (-522))) (-15 -4136 ((-960) (-202) (-522))) (-15 -3949 ((-960) (-202) (-522))) (-15 -1730 ((-960) (-202) (-522))) (-15 -1380 ((-960) (-202) (-522))) (-15 -1689 ((-960) (-202) (-522))) (-15 -4116 ((-960) (-202) (-522))) (-15 -2097 ((-960) (-202) (-522))) (-15 -4059 ((-960) (-202) (-522))) (-15 -3039 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3516 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1719 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -3535 ((-960) (-1068) (-154 (-202)) (-1068) (-522))) (-15 -3198 ((-960) (-522) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3088 ((-960) (-202) (-522))) (-15 -2195 ((-960) (-202) (-522))) (-15 -1584 ((-960) (-202) (-522))) (-15 -1980 ((-960) (-202) (-522))) (-15 -2099 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -1723 ((-960) (-202) (-154 (-202)) (-522) (-1068) (-522))) (-15 -3213 ((-960) (-202) (-522))) (-15 -1863 ((-960) (-202) (-522))) (-15 -1283 ((-960) (-202) (-522))) (-15 -1928 ((-960) (-202) (-522))) (-15 -2288 ((-960) (-202) (-522))) (-15 -3188 ((-960) (-202) (-522))) (-15 -3193 ((-960) (-202) (-202) (-522))) (-15 -1792 ((-960) (-202) (-202) (-202) (-522))) (-15 -1430 ((-960) (-202) (-202) (-202) (-522))) (-15 -1255 ((-960) (-202) (-202) (-202) (-202) (-522))))
+((-2978 (((-1171)) 18)) (-2673 (((-1068)) 22)) (-2023 (((-1068)) 21)) (-2832 (((-1018) (-1085) (-628 (-522))) 35) (((-1018) (-1085) (-628 (-202))) 31)) (-1600 (((-108)) 16)) (-4127 (((-1068) (-1068)) 25)))
+(((-697) (-10 -7 (-15 -2023 ((-1068))) (-15 -2673 ((-1068))) (-15 -4127 ((-1068) (-1068))) (-15 -2832 ((-1018) (-1085) (-628 (-202)))) (-15 -2832 ((-1018) (-1085) (-628 (-522)))) (-15 -1600 ((-108))) (-15 -2978 ((-1171))))) (T -697))
+((-2978 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-697)))) (-1600 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-697)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-522))) (-5 *2 (-1018)) (-5 *1 (-697)))) (-2832 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-202))) (-5 *2 (-1018)) (-5 *1 (-697)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))) (-2673 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))) (-2023 (*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))))
+(-10 -7 (-15 -2023 ((-1068))) (-15 -2673 ((-1068))) (-15 -4127 ((-1068) (-1068))) (-15 -2832 ((-1018) (-1085) (-628 (-202)))) (-15 -2832 ((-1018) (-1085) (-628 (-522)))) (-15 -1600 ((-108))) (-15 -2978 ((-1171))))
+((-1288 (($ $ $) 10)) (-3610 (($ $ $ $) 9)) (-3024 (($ $ $) 12)))
+(((-698 |#1|) (-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -1288 (|#1| |#1| |#1|)) (-15 -3610 (|#1| |#1| |#1| |#1|))) (-699)) (T -698))
+NIL
+(-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -1288 (|#1| |#1| |#1|)) (-15 -3610 (|#1| |#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1679 (($ $ (-850)) 28)) (-3277 (($ $ (-850)) 29)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1288 (($ $ $) 25)) (-2190 (((-792) $) 11)) (-3610 (($ $ $ $) 26)) (-3024 (($ $ $) 24)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27)))
+(((-699) (-1197)) (T -699))
+((-3610 (*1 *1 *1 *1 *1) (-4 *1 (-699))) (-1288 (*1 *1 *1 *1) (-4 *1 (-699))) (-3024 (*1 *1 *1 *1) (-4 *1 (-699))))
+(-13 (-21) (-658) (-10 -8 (-15 -3610 ($ $ $ $)) (-15 -1288 ($ $ $)) (-15 -3024 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-658) . T) ((-1014) . T))
+((-2190 (((-792) $) NIL) (($ (-522)) 10)))
+(((-700 |#1|) (-10 -8 (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-701)) (T -700))
+NIL
+(-10 -8 (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3637 (((-3 $ "failed") $) 40)) (-1679 (($ $ (-850)) 28) (($ $ (-708)) 35)) (-2682 (((-3 $ "failed") $) 38)) (-2782 (((-108) $) 34)) (-2231 (((-3 $ "failed") $) 39)) (-3277 (($ $ (-850)) 29) (($ $ (-708)) 36)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1288 (($ $ $) 25)) (-2190 (((-792) $) 11) (($ (-522)) 31)) (-2323 (((-708)) 32)) (-3610 (($ $ $ $) 26)) (-3024 (($ $ $) 24)) (-3566 (($) 18 T CONST)) (-3577 (($) 33 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 30) (($ $ (-708)) 37)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 27)))
+(((-701) (-1197)) (T -701))
+((-2323 (*1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-708)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-701)))))
+(-13 (-699) (-660) (-10 -8 (-15 -2323 ((-708))) (-15 -2190 ($ (-522)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-658) . T) ((-660) . T) ((-699) . T) ((-1014) . T))
+((-1825 (((-588 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 |#1|)))))) (-628 (-154 (-382 (-522)))) |#1|) 27)) (-1465 (((-588 (-154 |#1|)) (-628 (-154 (-382 (-522)))) |#1|) 19)) (-2051 (((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))) (-1085)) 16) (((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522))))) 15)))
+(((-702 |#1|) (-10 -7 (-15 -2051 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))))) (-15 -2051 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))) (-1085))) (-15 -1465 ((-588 (-154 |#1|)) (-628 (-154 (-382 (-522)))) |#1|)) (-15 -1825 ((-588 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 |#1|)))))) (-628 (-154 (-382 (-522)))) |#1|))) (-13 (-338) (-782))) (T -702))
+((-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-588 (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 *4))))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-588 (-154 *4))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *4 (-1085)) (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-338) (-782))))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))))
+(-10 -7 (-15 -2051 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))))) (-15 -2051 ((-881 (-154 (-382 (-522)))) (-628 (-154 (-382 (-522)))) (-1085))) (-15 -1465 ((-588 (-154 |#1|)) (-628 (-154 (-382 (-522)))) |#1|)) (-15 -1825 ((-588 (-2 (|:| |outval| (-154 |#1|)) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 (-154 |#1|)))))) (-628 (-154 (-382 (-522)))) |#1|)))
+((-2702 (((-158 (-522)) |#1|) 25)))
+(((-703 |#1|) (-10 -7 (-15 -2702 ((-158 (-522)) |#1|))) (-379)) (T -703))
+((-2702 (*1 *2 *3) (-12 (-5 *2 (-158 (-522))) (-5 *1 (-703 *3)) (-4 *3 (-379)))))
+(-10 -7 (-15 -2702 ((-158 (-522)) |#1|)))
+((-3703 ((|#1| |#1| |#1|) 25)) (-3344 ((|#1| |#1| |#1|) 24)) (-3470 ((|#1| |#1| |#1|) 32)) (-3671 ((|#1| |#1| |#1|) 28)) (-3829 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2509 (((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|) 23)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -2509 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|))) (-647 |#2|) (-338)) (T -704))
+((-3470 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-3671 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-3829 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-3703 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-3344 (*1 *2 *2 *2) (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3)))) (-2509 (*1 *2 *3 *3) (-12 (-4 *4 (-338)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-704 *3 *4)) (-4 *3 (-647 *4)))))
+(-10 -7 (-15 -2509 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)))
+((-3784 (((-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))) (-522)) 58)) (-3882 (((-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522))))) 56)) (-2769 (((-522)) 68)))
+(((-705 |#1| |#2|) (-10 -7 (-15 -2769 ((-522))) (-15 -3882 ((-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))))) (-15 -3784 ((-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))) (-522)))) (-1142 (-522)) (-384 (-522) |#1|)) (T -705))
+((-3784 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-1142 *3)) (-5 *2 (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-705 *4 *5)) (-4 *5 (-384 *3 *4)))) (-3882 (*1 *2) (-12 (-4 *3 (-1142 (-522))) (-5 *2 (-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522))))) (-5 *1 (-705 *3 *4)) (-4 *4 (-384 (-522) *3)))) (-2769 (*1 *2) (-12 (-4 *3 (-1142 *2)) (-5 *2 (-522)) (-5 *1 (-705 *3 *4)) (-4 *4 (-384 *2 *3)))))
+(-10 -7 (-15 -2769 ((-522))) (-15 -3882 ((-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))))) (-15 -3784 ((-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522)) (|:| |basisInv| (-628 (-522)))) (-522))))
+((-1416 (((-108) $ $) NIL)) (-1484 (((-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $) 15)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 14) (($ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8) (($ (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) 12)) (-1531 (((-108) $ $) NIL)))
+(((-706) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2190 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2190 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))) (T -706))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-706)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-706)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-706)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-706)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-5 *1 (-706)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2190 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2190 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-3 (|:| |nia| (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| |mdnia| (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) $))))
+((-2138 (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))) 14) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085))) 13)) (-3426 (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))) 16) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085))) 15)))
+(((-707 |#1|) (-10 -7 (-15 -2138 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2138 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|))))) (-514)) (T -707))
+((-3426 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5)))))
+(-10 -7 (-15 -2138 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -2138 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-881 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1210 (($ $ $) 8)) (-1233 (((-3 $ "failed") $ $) 11)) (-1662 (($ $ (-522)) 9)) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($ $) NIL)) (-2254 (($ $ $) NIL)) (-2782 (((-108) $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2259 (($ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2190 (((-792) $) NIL)) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-708) $) NIL) (($ (-850) $) NIL) (($ $ $) NIL)))
+(((-708) (-13 (-730) (-664) (-10 -8 (-15 -2254 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2752 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -2232 ((-3 $ "failed") $ $)) (-15 -1662 ($ $ (-522))) (-15 -3255 ($ $)) (-6 (-4240 "*"))))) (T -708))
+((-2254 (*1 *1 *1 *1) (-5 *1 (-708))) (-2277 (*1 *1 *1 *1) (-5 *1 (-708))) (-2259 (*1 *1 *1 *1) (-5 *1 (-708))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1353 (-708)) (|:| -3421 (-708)))) (-5 *1 (-708)))) (-2232 (*1 *1 *1 *1) (|partial| -5 *1 (-708))) (-1662 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-708)))) (-3255 (*1 *1 *1) (-5 *1 (-708))))
+(-13 (-730) (-664) (-10 -8 (-15 -2254 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2259 ($ $ $)) (-15 -2752 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -2232 ((-3 $ "failed") $ $)) (-15 -1662 ($ $ (-522))) (-15 -3255 ($ $)) (-6 (-4240 "*"))))
+((-3426 (((-3 |#2| "failed") |#2| |#2| (-110) (-1085)) 35)))
+(((-709 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 |#2| "failed") |#2| |#2| (-110) (-1085)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887))) (T -709))
+((-3426 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-709 *5 *2)) (-4 *2 (-13 (-29 *5) (-1106) (-887))))))
+(-10 -7 (-15 -3426 ((-3 |#2| "failed") |#2| |#2| (-110) (-1085))))
+((-2190 (((-711) |#1|) 8)))
+(((-710 |#1|) (-10 -7 (-15 -2190 ((-711) |#1|))) (-1120)) (T -710))
+((-2190 (*1 *2 *3) (-12 (-5 *2 (-711)) (-5 *1 (-710 *3)) (-4 *3 (-1120)))))
+(-10 -7 (-15 -2190 ((-711) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 7)) (-1531 (((-108) $ $) 9)))
+(((-711) (-1014)) (T -711))
+NIL
+(-1014)
+((-2100 ((|#2| |#4|) 35)))
+(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2100 (|#2| |#4|))) (-426) (-1142 |#1|) (-662 |#1| |#2|) (-1142 |#3|)) (T -712))
+((-2100 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-712 *4 *2 *5 *3)) (-4 *3 (-1142 *5)))))
+(-10 -7 (-15 -2100 (|#2| |#4|)))
+((-2682 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2216 (((-1171) (-1068) (-1068) |#4| |#5|) 33)) (-2403 ((|#4| |#4| |#5|) 73)) (-2305 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|) 77)) (-3484 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|) 15)))
+(((-713 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2682 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2403 (|#4| |#4| |#5|)) (-15 -2305 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -2216 ((-1171) (-1068) (-1068) |#4| |#5|)) (-15 -3484 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -713))
+((-3484 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4)))) (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2216 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1068)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *4 (-985 *6 *7 *8)) (-5 *2 (-1171)) (-5 *1 (-713 *6 *7 *8 *4 *5)) (-4 *5 (-990 *6 *7 *8 *4)))) (-2305 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2403 (*1 *2 *2 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *2 (-985 *4 *5 *6)) (-5 *1 (-713 *4 *5 *6 *2 *3)) (-4 *3 (-990 *4 *5 *6 *2)))) (-2682 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(-10 -7 (-15 -2682 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2403 (|#4| |#4| |#5|)) (-15 -2305 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -2216 ((-1171) (-1068) (-1068) |#4| |#5|)) (-15 -3484 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)))
+((-1297 (((-3 (-1081 (-1081 |#1|)) "failed") |#4|) 44)) (-2340 (((-588 |#4|) |#4|) 15)) (-3428 ((|#4| |#4|) 11)))
+(((-714 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2340 ((-588 |#4|) |#4|)) (-15 -1297 ((-3 (-1081 (-1081 |#1|)) "failed") |#4|)) (-15 -3428 (|#4| |#4|))) (-324) (-304 |#1|) (-1142 |#2|) (-1142 |#3|) (-850)) (T -714))
+((-3428 (*1 *2 *2) (-12 (-4 *3 (-324)) (-4 *4 (-304 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-714 *3 *4 *5 *2 *6)) (-4 *2 (-1142 *5)) (-14 *6 (-850)))) (-1297 (*1 *2 *3) (|partial| -12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5)) (-5 *2 (-1081 (-1081 *4))) (-5 *1 (-714 *4 *5 *6 *3 *7)) (-4 *3 (-1142 *6)) (-14 *7 (-850)))) (-2340 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5)) (-5 *2 (-588 *3)) (-5 *1 (-714 *4 *5 *6 *3 *7)) (-4 *3 (-1142 *6)) (-14 *7 (-850)))))
+(-10 -7 (-15 -2340 ((-588 |#4|) |#4|)) (-15 -1297 ((-3 (-1081 (-1081 |#1|)) "failed") |#4|)) (-15 -3428 (|#4| |#4|)))
+((-3112 (((-2 (|:| |deter| (-588 (-1081 |#5|))) (|:| |dterm| (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-588 |#1|)) (|:| |nlead| (-588 |#5|))) (-1081 |#5|) (-588 |#1|) (-588 |#5|)) 53)) (-4008 (((-588 (-708)) |#1|) 12)))
+(((-715 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3112 ((-2 (|:| |deter| (-588 (-1081 |#5|))) (|:| |dterm| (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-588 |#1|)) (|:| |nlead| (-588 |#5|))) (-1081 |#5|) (-588 |#1|) (-588 |#5|))) (-15 -4008 ((-588 (-708)) |#1|))) (-1142 |#4|) (-730) (-784) (-283) (-878 |#4| |#2| |#3|)) (T -715))
+((-4008 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-588 (-708))) (-5 *1 (-715 *3 *4 *5 *6 *7)) (-4 *3 (-1142 *6)) (-4 *7 (-878 *6 *4 *5)))) (-3112 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1142 *9)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-283)) (-4 *10 (-878 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-588 (-1081 *10))) (|:| |dterm| (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| *10))))) (|:| |nfacts| (-588 *6)) (|:| |nlead| (-588 *10)))) (-5 *1 (-715 *6 *7 *8 *9 *10)) (-5 *3 (-1081 *10)) (-5 *4 (-588 *6)) (-5 *5 (-588 *10)))))
+(-10 -7 (-15 -3112 ((-2 (|:| |deter| (-588 (-1081 |#5|))) (|:| |dterm| (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-588 |#1|)) (|:| |nlead| (-588 |#5|))) (-1081 |#5|) (-588 |#1|) (-588 |#5|))) (-15 -4008 ((-588 (-708)) |#1|)))
+((-2217 (((-588 (-2 (|:| |outval| |#1|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#1|))))) (-628 (-382 (-522))) |#1|) 27)) (-1497 (((-588 |#1|) (-628 (-382 (-522))) |#1|) 19)) (-2051 (((-881 (-382 (-522))) (-628 (-382 (-522))) (-1085)) 16) (((-881 (-382 (-522))) (-628 (-382 (-522)))) 15)))
+(((-716 |#1|) (-10 -7 (-15 -2051 ((-881 (-382 (-522))) (-628 (-382 (-522))))) (-15 -2051 ((-881 (-382 (-522))) (-628 (-382 (-522))) (-1085))) (-15 -1497 ((-588 |#1|) (-628 (-382 (-522))) |#1|)) (-15 -2217 ((-588 (-2 (|:| |outval| |#1|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#1|))))) (-628 (-382 (-522))) |#1|))) (-13 (-338) (-782))) (T -716))
+((-2217 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-588 (-2 (|:| |outval| *4) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 *4)))))) (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))) (-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *4 (-1085)) (-5 *2 (-881 (-382 (-522)))) (-5 *1 (-716 *5)) (-4 *5 (-13 (-338) (-782))))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-881 (-382 (-522)))) (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))))
+(-10 -7 (-15 -2051 ((-881 (-382 (-522))) (-628 (-382 (-522))))) (-15 -2051 ((-881 (-382 (-522))) (-628 (-382 (-522))) (-1085))) (-15 -1497 ((-588 |#1|) (-628 (-382 (-522))) |#1|)) (-15 -2217 ((-588 (-2 (|:| |outval| |#1|) (|:| |outmult| (-522)) (|:| |outvect| (-588 (-628 |#1|))))) (-628 (-382 (-522))) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 34)) (-4090 (((-588 |#2|) $) NIL)) (-1282 (((-1081 $) $ |#2|) NIL) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 |#2|)) NIL)) (-3835 (($ $) 28)) (-2134 (((-108) $ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) 93 (|has| |#1| (-514)))) (-2467 (((-588 $) $ $) 106 (|has| |#1| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-881 (-382 (-522)))) NIL (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))))) (((-3 $ "failed") (-881 (-522))) NIL (-3708 (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522)))))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085)))))) (((-3 $ "failed") (-881 |#1|)) NIL (-3708 (-12 (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522))))) (-2401 (|has| |#1| (-37 (-522))))) (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522))))) (-2401 (|has| |#1| (-507)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-919 (-522))))))) (((-3 (-1037 |#1| |#2|) "failed") $) 18)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) ((|#2| $) NIL) (($ (-881 (-382 (-522)))) NIL (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))))) (($ (-881 (-522))) NIL (-3708 (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522)))))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085)))))) (($ (-881 |#1|)) NIL (-3708 (-12 (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522))))) (-2401 (|has| |#1| (-37 (-522))))) (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522))))) (-2401 (|has| |#1| (-507)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-919 (-522))))))) (((-1037 |#1| |#2|) $) NIL)) (-1950 (($ $ $ |#2|) NIL (|has| |#1| (-157))) (($ $ $) 104 (|has| |#1| (-514)))) (-3156 (($ $) NIL) (($ $ |#2|) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-1934 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1630 (((-108) $) NIL)) (-1541 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 70)) (-1258 (($ $) 119 (|has| |#1| (-426)))) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ |#2|) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-3429 (($ $) NIL (|has| |#1| (-514)))) (-2705 (($ $) NIL (|has| |#1| (-514)))) (-1704 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-4069 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2671 (($ $ |#1| (-494 |#2|) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-3341 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-1460 (($ $ $ $ $) 90 (|has| |#1| (-514)))) (-1521 ((|#2| $) 19)) (-4073 (($ (-1081 |#1|) |#2|) NIL) (($ (-1081 $) |#2|) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-494 |#2|)) NIL) (($ $ |#2| (-708)) 36) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2924 (($ $ $) 60)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#2|) NIL)) (-3012 (((-108) $) NIL)) (-2925 (((-494 |#2|) $) NIL) (((-708) $ |#2|) NIL) (((-588 (-708)) $ (-588 |#2|)) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-3903 (((-708) $) 20)) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-494 |#2|) (-494 |#2|)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3145 (((-3 |#2| "failed") $) NIL)) (-3547 (($ $) NIL (|has| |#1| (-426)))) (-1842 (($ $) NIL (|has| |#1| (-426)))) (-1269 (((-588 $) $) NIL)) (-3447 (($ $) 37)) (-1313 (($ $) NIL (|has| |#1| (-426)))) (-3405 (((-588 $) $) 41)) (-3786 (($ $) 39)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4019 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4042 (-708))) $ $) 82)) (-1938 (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $) 67) (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $ |#2|) NIL)) (-3592 (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $) NIL) (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $ |#2|) NIL)) (-1819 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-1599 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2385 (((-1068) $) NIL)) (-1331 (($ $ $) 108 (|has| |#1| (-514)))) (-1817 (((-588 $) $) 30)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| |#2|) (|:| -1400 (-708))) "failed") $) NIL)) (-3409 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-1451 (($ $ $) NIL)) (-3802 (($ $) 21)) (-2123 (((-108) $ $) NIL)) (-2230 (((-108) $ $) NIL) (((-108) $ (-588 $)) NIL)) (-2680 (($ $ $) NIL)) (-4002 (($ $) 23)) (-4151 (((-1032) $) NIL)) (-3461 (((-2 (|:| -2259 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-514)))) (-3738 (((-2 (|:| -2259 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-514)))) (-3108 (((-108) $) 52)) (-3118 ((|#1| $) 55)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 ((|#1| |#1| $) 116 (|has| |#1| (-426))) (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-3905 (((-2 (|:| -2259 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-514)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-514)))) (-3620 (($ $ |#1|) 112 (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-3195 (($ $ |#1|) 111 (|has| |#1| (-514))) (($ $ $) NIL (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-588 |#2|) (-588 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-588 |#2|) (-588 $)) NIL)) (-2769 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2157 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2793 (((-494 |#2|) $) NIL) (((-708) $ |#2|) 43) (((-588 (-708)) $ (-588 |#2|)) NIL)) (-2044 (($ $) NIL)) (-1635 (($ $) 33)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498))))) (($ (-881 (-382 (-522)))) NIL (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085))))) (($ (-881 (-522))) NIL (-3708 (-12 (|has| |#1| (-37 (-522))) (|has| |#2| (-563 (-1085))) (-2401 (|has| |#1| (-37 (-382 (-522)))))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#2| (-563 (-1085)))))) (($ (-881 |#1|)) NIL (|has| |#2| (-563 (-1085)))) (((-1068) $) NIL (-12 (|has| |#1| (-962 (-522))) (|has| |#2| (-563 (-1085))))) (((-881 |#1|) $) NIL (|has| |#2| (-563 (-1085))))) (-2255 ((|#1| $) 115 (|has| |#1| (-426))) (($ $ |#2|) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-881 |#1|) $) NIL (|has| |#2| (-563 (-1085)))) (((-1037 |#1| |#2|) $) 15) (($ (-1037 |#1| |#2|)) 16) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-494 |#2|)) NIL) (($ $ |#2| (-708)) 44) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 13 T CONST)) (-2618 (((-3 (-108) "failed") $ $) NIL)) (-3577 (($) 35 T CONST)) (-2298 (($ $ $ $ (-708)) 88 (|has| |#1| (-514)))) (-3818 (($ $ $ (-708)) 87 (|has| |#1| (-514)))) (-2213 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 54)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) 64)) (-1602 (($ $ $) 74)) (** (($ $ (-850)) NIL) (($ $ (-708)) 61)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 59) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-717 |#1| |#2|) (-13 (-985 |#1| (-494 |#2|) |#2|) (-562 (-1037 |#1| |#2|)) (-962 (-1037 |#1| |#2|))) (-971) (-784)) (T -717))
+NIL
+(-13 (-985 |#1| (-494 |#2|) |#2|) (-562 (-1037 |#1| |#2|)) (-962 (-1037 |#1| |#2|)))
+((-1391 (((-719 |#2|) (-1 |#2| |#1|) (-719 |#1|)) 13)))
+(((-718 |#1| |#2|) (-10 -7 (-15 -1391 ((-719 |#2|) (-1 |#2| |#1|) (-719 |#1|)))) (-971) (-971)) (T -718))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-719 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-719 *6)) (-5 *1 (-718 *5 *6)))))
+(-10 -7 (-15 -1391 ((-719 |#2|) (-1 |#2| |#1|) (-719 |#1|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 12)) (-3960 (((-1166 |#1|) $ (-708)) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-3793 (($ (-1081 |#1|)) NIL)) (-1282 (((-1081 $) $ (-999)) NIL) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1728 (((-588 $) $ $) 39 (|has| |#1| (-514)))) (-3984 (($ $ $) 35 (|has| |#1| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3242 (($ $ (-708)) NIL)) (-2272 (($ $ (-708)) NIL)) (-1441 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-426)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) NIL) (((-3 (-1081 |#1|) "failed") $) 10)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-999) $) NIL) (((-1081 |#1|) $) NIL)) (-1950 (($ $ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $ $) 43 (|has| |#1| (-157)))) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-2052 (($ $ $) NIL)) (-4152 (($ $ $) 71 (|has| |#1| (-514)))) (-1541 (((-2 (|:| -2977 |#1|) (|:| -1353 $) (|:| -3421 $)) $ $) 70 (|has| |#1| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-708) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3714 (((-708) $ $) NIL (|has| |#1| (-514)))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-4073 (($ (-1081 |#1|) (-999)) NIL) (($ (-1081 $) (-999)) NIL)) (-2073 (($ $ (-708)) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2924 (($ $ $) 20)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-999)) NIL) (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2925 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-708) (-708)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (((-1081 |#1|) $) NIL)) (-3145 (((-3 (-999) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-4019 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4042 (-708))) $ $) 26)) (-2763 (($ $ $) 29)) (-3196 (($ $ $) 32)) (-1938 (((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $) 31)) (-2385 (((-1068) $) NIL)) (-1331 (($ $ $) 41 (|has| |#1| (-514)))) (-3114 (((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708)) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-999)) (|:| -1400 (-708))) "failed") $) NIL)) (-1858 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3802 (($) NIL (|has| |#1| (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-3461 (((-2 (|:| -2259 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-514)))) (-3738 (((-2 (|:| -2259 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-514)))) (-1705 (((-2 (|:| -1950 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-514)))) (-1545 (((-2 (|:| -1950 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-514)))) (-3108 (((-108) $) 13)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2600 (($ $ (-708) |#1| $) 19)) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-3905 (((-2 (|:| -2259 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-514)))) (-1699 (((-2 (|:| -1950 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-514)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#1|) NIL) (($ $ (-588 (-999)) (-588 |#1|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) NIL (|has| |#1| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#1| (-514)))) (-4158 (((-3 $ "failed") $ (-708)) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2769 (($ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $) NIL (|has| |#1| (-157)))) (-2157 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2793 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-3097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#1| (-514)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-999)) NIL) (((-1081 |#1|) $) 7) (($ (-1081 |#1|)) 8) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 21 T CONST)) (-3577 (($) 24 T CONST)) (-2213 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) 28) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-719 |#1|) (-13 (-1142 |#1|) (-562 (-1081 |#1|)) (-962 (-1081 |#1|)) (-10 -8 (-15 -2600 ($ $ (-708) |#1| $)) (-15 -2924 ($ $ $)) (-15 -4019 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4042 (-708))) $ $)) (-15 -2763 ($ $ $)) (-15 -1938 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -3196 ($ $ $)) (IF (|has| |#1| (-514)) (PROGN (-15 -1728 ((-588 $) $ $)) (-15 -1331 ($ $ $)) (-15 -3905 ((-2 (|:| -2259 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3738 ((-2 (|:| -2259 $) (|:| |coef1| $)) $ $)) (-15 -3461 ((-2 (|:| -2259 $) (|:| |coef2| $)) $ $)) (-15 -1699 ((-2 (|:| -1950 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1545 ((-2 (|:| -1950 |#1|) (|:| |coef1| $)) $ $)) (-15 -1705 ((-2 (|:| -1950 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-971)) (T -719))
+((-2600 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-708)) (-5 *1 (-719 *3)) (-4 *3 (-971)))) (-2924 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) (-4019 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-719 *3)) (|:| |polden| *3) (|:| -4042 (-708)))) (-5 *1 (-719 *3)) (-4 *3 (-971)))) (-2763 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) (-1938 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2977 *3) (|:| |gap| (-708)) (|:| -1353 (-719 *3)) (|:| -3421 (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-971)))) (-3196 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))) (-1728 (*1 *2 *1 *1) (-12 (-5 *2 (-588 (-719 *3))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-1331 (*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-514)) (-4 *2 (-971)))) (-3905 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2259 (-719 *3)) (|:| |coef1| (-719 *3)) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-3738 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2259 (-719 *3)) (|:| |coef1| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-3461 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2259 (-719 *3)) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-1699 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1950 *3) (|:| |coef1| (-719 *3)) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-1545 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1950 *3) (|:| |coef1| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))) (-1705 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1950 *3) (|:| |coef2| (-719 *3)))) (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))))
+(-13 (-1142 |#1|) (-562 (-1081 |#1|)) (-962 (-1081 |#1|)) (-10 -8 (-15 -2600 ($ $ (-708) |#1| $)) (-15 -2924 ($ $ $)) (-15 -4019 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4042 (-708))) $ $)) (-15 -2763 ($ $ $)) (-15 -1938 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -3196 ($ $ $)) (IF (|has| |#1| (-514)) (PROGN (-15 -1728 ((-588 $) $ $)) (-15 -1331 ($ $ $)) (-15 -3905 ((-2 (|:| -2259 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3738 ((-2 (|:| -2259 $) (|:| |coef1| $)) $ $)) (-15 -3461 ((-2 (|:| -2259 $) (|:| |coef2| $)) $ $)) (-15 -1699 ((-2 (|:| -1950 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1545 ((-2 (|:| -1950 |#1|) (|:| |coef1| $)) $ $)) (-15 -1705 ((-2 (|:| -1950 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-4214 ((|#1| (-708) |#1|) 33 (|has| |#1| (-37 (-382 (-522)))))) (-1437 ((|#1| (-708) |#1|) 23)) (-2068 ((|#1| (-708) |#1|) 35 (|has| |#1| (-37 (-382 (-522)))))))
+(((-720 |#1|) (-10 -7 (-15 -1437 (|#1| (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2068 (|#1| (-708) |#1|)) (-15 -4214 (|#1| (-708) |#1|))) |%noBranch|)) (-157)) (T -720))
+((-4214 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-157)))) (-2068 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-157)))) (-1437 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-157)))))
+(-10 -7 (-15 -1437 (|#1| (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -2068 (|#1| (-708) |#1|)) (-15 -4214 (|#1| (-708) |#1|))) |%noBranch|))
+((-1416 (((-108) $ $) 7)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) 85)) (-4125 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-4090 (((-588 |#3|) $) 33)) (-2690 (((-108) $) 26)) (-4140 (((-108) $) 17 (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) 101) (((-108) $) 97)) (-3607 ((|#4| |#4| $) 92)) (-3119 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| $) 126)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) 27)) (-4141 (((-108) $ (-708)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3175 (($) 45 T CONST)) (-3639 (((-108) $) 22 (|has| |#1| (-514)))) (-3982 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3996 (((-108) $ $) 23 (|has| |#1| (-514)))) (-3538 (((-108) $) 25 (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3050 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 36)) (-1484 (($ (-588 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-2806 ((|#4| |#4| $) 89)) (-2333 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-4164 ((|#4| |#4| $) 87)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) 105)) (-2208 (((-108) |#4| $) 136)) (-3129 (((-108) |#4| $) 133)) (-2198 (((-108) |#4| $) 137) (((-108) $) 134)) (-3837 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) 104) (((-108) $) 103)) (-1521 ((|#3| $) 34)) (-3352 (((-108) $ (-708)) 43)) (-3308 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 47)) (-2458 (((-588 |#3|) $) 32)) (-1606 (((-108) |#3| $) 31)) (-2720 (((-108) $ (-708)) 42)) (-2385 (((-1068) $) 9)) (-3959 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1331 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-2893 (((-588 $) |#4| $) 129)) (-4190 (((-3 (-108) (-588 $)) |#4| $) 132)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2416 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2135 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-2242 (((-588 |#4|) $) 107)) (-3409 (((-108) |#4| $) 99) (((-108) $) 95)) (-1451 ((|#4| |#4| $) 90)) (-2123 (((-108) $ $) 110)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) 100) (((-108) $) 96)) (-2680 ((|#4| |#4| $) 91)) (-4151 (((-1032) $) 10)) (-2294 (((-3 |#4| "failed") $) 84)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3307 (((-3 $ "failed") $ |#4|) 78)) (-3719 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3053 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) 38)) (-3985 (((-108) $) 41)) (-3775 (($) 40)) (-2793 (((-708) $) 106)) (-4168 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2404 (($ $) 39)) (-1431 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 60)) (-2020 (($ $ |#3|) 28)) (-3606 (($ $ |#3|) 30)) (-3968 (($ $) 88)) (-2463 (($ $ |#3|) 29)) (-2190 (((-792) $) 11) (((-588 |#4|) $) 37)) (-1974 (((-708) $) 76 (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-2188 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-3648 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) 81)) (-3021 (((-108) |#4| $) 135)) (-2351 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3480 (((-708) $) 46 (|has| $ (-6 -4238)))))
+(((-721 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -721))
+NIL
+(-13 (-990 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-990 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T))
+((-2603 (((-3 (-354) "failed") (-291 |#1|) (-850)) 60 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-354) "failed") (-291 |#1|)) 52 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-354) "failed") (-382 (-881 |#1|)) (-850)) 39 (|has| |#1| (-514))) (((-3 (-354) "failed") (-382 (-881 |#1|))) 35 (|has| |#1| (-514))) (((-3 (-354) "failed") (-881 |#1|) (-850)) 30 (|has| |#1| (-971))) (((-3 (-354) "failed") (-881 |#1|)) 24 (|has| |#1| (-971)))) (-2389 (((-354) (-291 |#1|) (-850)) 92 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-354) (-291 |#1|)) 87 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-354) (-382 (-881 |#1|)) (-850)) 84 (|has| |#1| (-514))) (((-354) (-382 (-881 |#1|))) 81 (|has| |#1| (-514))) (((-354) (-881 |#1|) (-850)) 80 (|has| |#1| (-971))) (((-354) (-881 |#1|)) 77 (|has| |#1| (-971))) (((-354) |#1| (-850)) 73) (((-354) |#1|) 22)) (-3454 (((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)) (-850)) 68 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-291 (-154 |#1|))) 58 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-291 |#1|) (-850)) 61 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-291 |#1|)) 59 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))) (-850)) 44 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|)))) 43 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)) (-850)) 38 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-382 (-881 |#1|))) 37 (|has| |#1| (-514))) (((-3 (-154 (-354)) "failed") (-881 |#1|) (-850)) 28 (|has| |#1| (-971))) (((-3 (-154 (-354)) "failed") (-881 |#1|)) 26 (|has| |#1| (-971))) (((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)) (-850)) 17 (|has| |#1| (-157))) (((-3 (-154 (-354)) "failed") (-881 (-154 |#1|))) 14 (|has| |#1| (-157)))) (-1244 (((-154 (-354)) (-291 (-154 |#1|)) (-850)) 95 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-291 (-154 |#1|))) 94 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-291 |#1|) (-850)) 93 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-291 |#1|)) 91 (-12 (|has| |#1| (-514)) (|has| |#1| (-784)))) (((-154 (-354)) (-382 (-881 (-154 |#1|))) (-850)) 86 (|has| |#1| (-514))) (((-154 (-354)) (-382 (-881 (-154 |#1|)))) 85 (|has| |#1| (-514))) (((-154 (-354)) (-382 (-881 |#1|)) (-850)) 83 (|has| |#1| (-514))) (((-154 (-354)) (-382 (-881 |#1|))) 82 (|has| |#1| (-514))) (((-154 (-354)) (-881 |#1|) (-850)) 79 (|has| |#1| (-971))) (((-154 (-354)) (-881 |#1|)) 78 (|has| |#1| (-971))) (((-154 (-354)) (-881 (-154 |#1|)) (-850)) 75 (|has| |#1| (-157))) (((-154 (-354)) (-881 (-154 |#1|))) 74 (|has| |#1| (-157))) (((-154 (-354)) (-154 |#1|) (-850)) 16 (|has| |#1| (-157))) (((-154 (-354)) (-154 |#1|)) 12 (|has| |#1| (-157))) (((-154 (-354)) |#1| (-850)) 27) (((-154 (-354)) |#1|) 25)))
+(((-722 |#1|) (-10 -7 (-15 -2389 ((-354) |#1|)) (-15 -2389 ((-354) |#1| (-850))) (-15 -1244 ((-154 (-354)) |#1|)) (-15 -1244 ((-154 (-354)) |#1| (-850))) (IF (|has| |#1| (-157)) (PROGN (-15 -1244 ((-154 (-354)) (-154 |#1|))) (-15 -1244 ((-154 (-354)) (-154 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-881 (-154 |#1|)))) (-15 -1244 ((-154 (-354)) (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -2389 ((-354) (-881 |#1|))) (-15 -2389 ((-354) (-881 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-881 |#1|))) (-15 -1244 ((-154 (-354)) (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -2389 ((-354) (-382 (-881 |#1|)))) (-15 -2389 ((-354) (-382 (-881 |#1|)) (-850))) (-15 -1244 ((-154 (-354)) (-382 (-881 |#1|)))) (-15 -1244 ((-154 (-354)) (-382 (-881 |#1|)) (-850))) (-15 -1244 ((-154 (-354)) (-382 (-881 (-154 |#1|))))) (-15 -1244 ((-154 (-354)) (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2389 ((-354) (-291 |#1|))) (-15 -2389 ((-354) (-291 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-291 |#1|))) (-15 -1244 ((-154 (-354)) (-291 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-291 (-154 |#1|)))) (-15 -1244 ((-154 (-354)) (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -2603 ((-3 (-354) "failed") (-881 |#1|))) (-15 -2603 ((-3 (-354) "failed") (-881 |#1|) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 |#1|))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -2603 ((-3 (-354) "failed") (-382 (-881 |#1|)))) (-15 -2603 ((-3 (-354) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2603 ((-3 (-354) "failed") (-291 |#1|))) (-15 -2603 ((-3 (-354) "failed") (-291 |#1|) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 |#1|))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 |#1|) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|)) (-563 (-354))) (T -722))
+((-3454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3454 (*1 *2 *3) (|partial| -12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3454 (*1 *2 *3) (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-2603 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-2603 (*1 *2 *3) (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-3454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3454 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-3454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3454 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-2603 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-2603 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-3454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3454 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-2603 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-2603 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-3454 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-3454 (*1 *2 *3) (|partial| -12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-2389 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971)) (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))) (-2389 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *3 (-154 *5)) (-5 *4 (-850)) (-4 *5 (-157)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4)))) (-1244 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) (-4 *3 (-563 (-354))))) (-1244 (*1 *2 *3) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) (-4 *3 (-563 (-354))))) (-2389 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-354)) (-5 *1 (-722 *3)) (-4 *3 (-563 *2)))) (-2389 (*1 *2 *3) (-12 (-5 *2 (-354)) (-5 *1 (-722 *3)) (-4 *3 (-563 *2)))))
+(-10 -7 (-15 -2389 ((-354) |#1|)) (-15 -2389 ((-354) |#1| (-850))) (-15 -1244 ((-154 (-354)) |#1|)) (-15 -1244 ((-154 (-354)) |#1| (-850))) (IF (|has| |#1| (-157)) (PROGN (-15 -1244 ((-154 (-354)) (-154 |#1|))) (-15 -1244 ((-154 (-354)) (-154 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-881 (-154 |#1|)))) (-15 -1244 ((-154 (-354)) (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -2389 ((-354) (-881 |#1|))) (-15 -2389 ((-354) (-881 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-881 |#1|))) (-15 -1244 ((-154 (-354)) (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -2389 ((-354) (-382 (-881 |#1|)))) (-15 -2389 ((-354) (-382 (-881 |#1|)) (-850))) (-15 -1244 ((-154 (-354)) (-382 (-881 |#1|)))) (-15 -1244 ((-154 (-354)) (-382 (-881 |#1|)) (-850))) (-15 -1244 ((-154 (-354)) (-382 (-881 (-154 |#1|))))) (-15 -1244 ((-154 (-354)) (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2389 ((-354) (-291 |#1|))) (-15 -2389 ((-354) (-291 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-291 |#1|))) (-15 -1244 ((-154 (-354)) (-291 |#1|) (-850))) (-15 -1244 ((-154 (-354)) (-291 (-154 |#1|)))) (-15 -1244 ((-154 (-354)) (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 (-154 |#1|)) (-850)))) |%noBranch|) (IF (|has| |#1| (-971)) (PROGN (-15 -2603 ((-3 (-354) "failed") (-881 |#1|))) (-15 -2603 ((-3 (-354) "failed") (-881 |#1|) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 |#1|))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-881 |#1|) (-850)))) |%noBranch|) (IF (|has| |#1| (-514)) (PROGN (-15 -2603 ((-3 (-354) "failed") (-382 (-881 |#1|)))) (-15 -2603 ((-3 (-354) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 |#1|)) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-382 (-881 (-154 |#1|))) (-850))) (IF (|has| |#1| (-784)) (PROGN (-15 -2603 ((-3 (-354) "failed") (-291 |#1|))) (-15 -2603 ((-3 (-354) "failed") (-291 |#1|) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 |#1|))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 |#1|) (-850))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)))) (-15 -3454 ((-3 (-154 (-354)) "failed") (-291 (-154 |#1|)) (-850)))) |%noBranch|)) |%noBranch|))
+((-1838 (((-850) (-1068)) 64)) (-3489 (((-3 (-354) "failed") (-1068)) 33)) (-4109 (((-354) (-1068)) 31)) (-2161 (((-850) (-1068)) 54)) (-2043 (((-1068) (-850)) 55)) (-2882 (((-1068) (-850)) 53)))
+(((-723) (-10 -7 (-15 -2882 ((-1068) (-850))) (-15 -2161 ((-850) (-1068))) (-15 -2043 ((-1068) (-850))) (-15 -1838 ((-850) (-1068))) (-15 -4109 ((-354) (-1068))) (-15 -3489 ((-3 (-354) "failed") (-1068))))) (T -723))
+((-3489 (*1 *2 *3) (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723)))))
+(-10 -7 (-15 -2882 ((-1068) (-850))) (-15 -2161 ((-850) (-1068))) (-15 -2043 ((-1068) (-850))) (-15 -1838 ((-850) (-1068))) (-15 -4109 ((-354) (-1068))) (-15 -3489 ((-3 (-354) "failed") (-1068))))
+((-1416 (((-108) $ $) 7)) (-1354 (((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 15) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)) 13)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 16) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-724) (-1197)) (T -724))
+((-1798 (*1 *2 *3 *4) (-12 (-4 *1 (-724)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960)))))) (-1354 (*1 *2 *3 *2) (-12 (-4 *1 (-724)) (-5 *2 (-960)) (-5 *3 (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))) (-1798 (*1 *2 *3 *4) (-12 (-4 *1 (-724)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960)))))) (-1354 (*1 *2 *3 *2) (-12 (-4 *1 (-724)) (-5 *2 (-960)) (-5 *3 (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))))
+(-13 (-1014) (-10 -7 (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1354 ((-960) (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202))) (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)) (|:| |extra| (-960))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -1354 ((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) (-960)))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-3485 (((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354))) 44) (((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 43)) (-2455 (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 50)) (-1445 (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 41)) (-3139 (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354))) 52) (((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354))) 51)))
+(((-725) (-10 -7 (-15 -3139 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3139 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -1445 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3485 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3485 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -2455 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))))) (T -725))
+((-2455 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3485 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-522)) (-5 *6 (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354)))) (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3485 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-522)) (-5 *6 (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354)))) (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-1445 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3139 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))) (-3139 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354))) (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171)) (-5 *1 (-725)))))
+(-10 -7 (-15 -3139 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3139 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -1445 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3485 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))) (-15 -3485 ((-1171) (-1166 (-354)) (-522) (-354) (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))) (-354) (-1166 (-354)) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)) (-1166 (-354)))) (-15 -2455 ((-1171) (-1166 (-354)) (-522) (-354) (-354) (-522) (-1 (-1171) (-1166 (-354)) (-1166 (-354)) (-354)))))
+((-1368 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 53)) (-3332 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 30)) (-3676 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 52)) (-3965 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 28)) (-3597 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 51)) (-2300 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522)) 18)) (-3843 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522)) 31)) (-3760 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522)) 29)) (-4026 (((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522)) 27)))
+(((-726) (-10 -7 (-15 -4026 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -3760 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -3843 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -2300 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3965 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3332 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3597 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3676 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -1368 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))))) (T -726))
+((-1368 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3676 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3597 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3332 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3965 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-2300 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3843 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-3760 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))) (-4026 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354)) (-5 *2 (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522)) (|:| |success| (-108)))) (-5 *1 (-726)) (-5 *5 (-522)))))
+(-10 -7 (-15 -4026 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -3760 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -3843 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522) (-522))) (-15 -2300 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3965 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3332 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3597 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -3676 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))) (-15 -1368 ((-2 (|:| -3435 (-354)) (|:| -2972 (-354)) (|:| |totalpts| (-522)) (|:| |success| (-108))) (-1 (-354) (-354)) (-354) (-354) (-354) (-354) (-522) (-522))))
+((-2124 (((-1116 |#1|) |#1| (-202) (-522)) 45)))
+(((-727 |#1|) (-10 -7 (-15 -2124 ((-1116 |#1|) |#1| (-202) (-522)))) (-901)) (T -727))
+((-2124 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-202)) (-5 *5 (-522)) (-5 *2 (-1116 *3)) (-5 *1 (-727 *3)) (-4 *3 (-901)))))
+(-10 -7 (-15 -2124 ((-1116 |#1|) |#1| (-202) (-522))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 24)) (-1233 (((-3 $ "failed") $ $) 26)) (-3175 (($) 23 T CONST)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1612 (($ $ $) 28) (($ $) 27)) (-1602 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21) (($ (-522) $) 29)))
+(((-728) (-1197)) (T -728))
+NIL
+(-13 (-732) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-784) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 24)) (-3175 (($) 23 T CONST)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21)))
+(((-729) (-1197)) (T -729))
+NIL
+(-13 (-731) (-23))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-731) . T) ((-784) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 24)) (-1210 (($ $ $) 27)) (-1233 (((-3 $ "failed") $ $) 26)) (-3175 (($) 23 T CONST)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21)))
+(((-730) (-1197)) (T -730))
+((-1210 (*1 *1 *1 *1) (-4 *1 (-730))))
+(-13 (-732) (-10 -8 (-15 -1210 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-784) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 24)) (-3175 (($) 23 T CONST)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21)))
+(((-731) (-1197)) (T -731))
+NIL
+(-13 (-784) (-23))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-562 (-792)) . T) ((-784) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 24)) (-1233 (((-3 $ "failed") $ $) 26)) (-3175 (($) 23 T CONST)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 22 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1602 (($ $ $) 20)) (* (($ (-708) $) 25) (($ (-850) $) 21)))
+(((-732) (-1197)) (T -732))
+NIL
+(-13 (-729) (-124))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-729) . T) ((-731) . T) ((-784) . T) ((-1014) . T))
+((-2250 (((-108) $) 41)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1484 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 42)) (-1664 (((-3 (-382 (-522)) "failed") $) 78)) (-1770 (((-108) $) 72)) (-1492 (((-382 (-522)) $) 76)) (-2100 ((|#2| $) 26)) (-1391 (($ (-1 |#2| |#2|) $) 23)) (-3098 (($ $) 61)) (-1431 (((-498) $) 67)) (-3122 (($ $) 21)) (-2190 (((-792) $) 56) (($ (-522)) 39) (($ |#2|) 37) (($ (-382 (-522))) NIL)) (-2323 (((-708)) 10)) (-2241 ((|#2| $) 71)) (-1531 (((-108) $ $) 29)) (-1549 (((-108) $ $) 69)) (-1612 (($ $) 31) (($ $ $) NIL)) (-1602 (($ $ $) 30)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-733 |#1| |#2|) (-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -2190 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-734 |#2|) (-157)) (T -733))
+((-2323 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-733 *3 *4)) (-4 *3 (-734 *4)))))
+(-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -3098 (|#1| |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -2190 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-1629 (((-708)) 53 (|has| |#1| (-343)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 94 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 92 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 90)) (-1484 (((-522) $) 95 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 93 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 89)) (-2682 (((-3 $ "failed") $) 34)) (-1937 ((|#1| $) 79)) (-1664 (((-3 (-382 (-522)) "failed") $) 66 (|has| |#1| (-507)))) (-1770 (((-108) $) 68 (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) 67 (|has| |#1| (-507)))) (-3255 (($) 56 (|has| |#1| (-343)))) (-2782 (((-108) $) 31)) (-2015 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2100 ((|#1| $) 71)) (-2814 (($ $ $) 62 (|has| |#1| (-784)))) (-2446 (($ $ $) 61 (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) 81)) (-2120 (((-850) $) 55 (|has| |#1| (-343)))) (-2385 (((-1068) $) 9)) (-3098 (($ $) 65 (|has| |#1| (-338)))) (-2717 (($ (-850)) 54 (|has| |#1| (-343)))) (-3823 ((|#1| $) 76)) (-3116 ((|#1| $) 77)) (-3995 ((|#1| $) 78)) (-2252 ((|#1| $) 72)) (-1245 ((|#1| $) 73)) (-3559 ((|#1| $) 74)) (-1477 ((|#1| $) 75)) (-4151 (((-1032) $) 10)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) 87 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 85 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 84 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 83 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 82 (|has| |#1| (-483 (-1085) |#1|)))) (-2545 (($ $ |#1|) 88 (|has| |#1| (-262 |#1| |#1|)))) (-1431 (((-498) $) 63 (|has| |#1| (-563 (-498))))) (-3122 (($ $) 80)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ (-382 (-522))) 91 (|has| |#1| (-962 (-382 (-522)))))) (-2143 (((-3 $ "failed") $) 64 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-2241 ((|#1| $) 69 (|has| |#1| (-980)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 59 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 58 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 60 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 57 (|has| |#1| (-784)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-734 |#1|) (-1197) (-157)) (T -734))
+((-3122 (*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-3559 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-1245 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2015 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-3098 (*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-338)))))
+(-13 (-37 |t#1|) (-386 |t#1|) (-313 |t#1|) (-10 -8 (-15 -3122 ($ $)) (-15 -1937 (|t#1| $)) (-15 -3995 (|t#1| $)) (-15 -3116 (|t#1| $)) (-15 -3823 (|t#1| $)) (-15 -1477 (|t#1| $)) (-15 -3559 (|t#1| $)) (-15 -1245 (|t#1| $)) (-15 -2252 (|t#1| $)) (-15 -2100 (|t#1| $)) (-15 -2015 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -2241 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-338)) (-15 -3098 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-343) |has| |#1| (-343)) ((-313 |#1|) . T) ((-386 |#1|) . T) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) . T) ((-664) . T) ((-784) |has| |#1| (-784)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1391 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#3| (-1 |#4| |#2|) |#1|))) (-734 |#2|) (-157) (-734 |#4|) (-157)) (T -735))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-734 *6)) (-5 *1 (-735 *4 *5 *2 *6)) (-4 *4 (-734 *5)))))
+(-10 -7 (-15 -1391 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-925 |#1|) "failed") $) 35) (((-3 (-522) "failed") $) NIL (-3708 (|has| (-925 |#1|) (-962 (-522))) (|has| |#1| (-962 (-522))))) (((-3 (-382 (-522)) "failed") $) NIL (-3708 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-1484 ((|#1| $) NIL) (((-925 |#1|) $) 33) (((-522) $) NIL (-3708 (|has| (-925 |#1|) (-962 (-522))) (|has| |#1| (-962 (-522))))) (((-382 (-522)) $) NIL (-3708 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2682 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 16)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-507)))) (-1770 (((-108) $) NIL (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) NIL (|has| |#1| (-507)))) (-3255 (($) NIL (|has| |#1| (-343)))) (-2782 (((-108) $) NIL)) (-2015 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-925 |#1|) (-925 |#1|)) 29)) (-2100 ((|#1| $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-3823 ((|#1| $) 22)) (-3116 ((|#1| $) 20)) (-3995 ((|#1| $) 18)) (-2252 ((|#1| $) 26)) (-1245 ((|#1| $) 25)) (-3559 ((|#1| $) 24)) (-1477 ((|#1| $) 23)) (-4151 (((-1032) $) NIL)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-2545 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-3122 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-925 |#1|)) 30) (($ (-382 (-522))) NIL (-3708 (|has| (-925 |#1|) (-962 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-2241 ((|#1| $) NIL (|has| |#1| (-980)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 8 T CONST)) (-3577 (($) 12 T CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-736 |#1|) (-13 (-734 |#1|) (-386 (-925 |#1|)) (-10 -8 (-15 -2015 ($ (-925 |#1|) (-925 |#1|))))) (-157)) (T -736))
+((-2015 (*1 *1 *2 *2) (-12 (-5 *2 (-925 *3)) (-4 *3 (-157)) (-5 *1 (-736 *3)))))
+(-13 (-734 |#1|) (-386 (-925 |#1|)) (-10 -8 (-15 -2015 ($ (-925 |#1|) (-925 |#1|)))))
+((-1416 (((-108) $ $) 7)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3462 (((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 13)) (-1531 (((-108) $ $) 6)))
+(((-737) (-1197)) (T -737))
+((-1798 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)))))) (-3462 (*1 *2 *3) (-12 (-4 *1 (-737)) (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-960)))))
+(-13 (-1014) (-10 -7 (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -3462 ((-960) (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-2483 (((-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#3| |#2| (-1085)) 19)))
+(((-738 |#1| |#2| |#3|) (-10 -7 (-15 -2483 ((-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#3| |#2| (-1085)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887)) (-598 |#2|)) (T -738))
+((-2483 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1085)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-4 *4 (-13 (-29 *6) (-1106) (-887))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3855 (-588 *4)))) (-5 *1 (-738 *6 *4 *3)) (-4 *3 (-598 *4)))))
+(-10 -7 (-15 -2483 ((-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#3| |#2| (-1085))))
+((-3426 (((-3 |#2| "failed") |#2| (-110) (-270 |#2|) (-588 |#2|)) 26) (((-3 |#2| "failed") (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#2| "failed") |#2| (-110) (-1085)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#2| "failed") (-270 |#2|) (-110) (-1085)) 17) (((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-588 |#2|) (-588 (-110)) (-1085)) 22) (((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-588 (-270 |#2|)) (-588 (-110)) (-1085)) 24) (((-3 (-588 (-1166 |#2|)) "failed") (-628 |#2|) (-1085)) 36) (((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-628 |#2|) (-1166 |#2|) (-1085)) 34)))
+(((-739 |#1| |#2|) (-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-628 |#2|) (-1166 |#2|) (-1085))) (-15 -3426 ((-3 (-588 (-1166 |#2|)) "failed") (-628 |#2|) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-588 (-270 |#2|)) (-588 (-110)) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-588 |#2|) (-588 (-110)) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#2| "failed") (-270 |#2|) (-110) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#2| "failed") |#2| (-110) (-1085))) (-15 -3426 ((-3 |#2| "failed") (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -3426 ((-3 |#2| "failed") |#2| (-110) (-270 |#2|) (-588 |#2|)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887))) (T -739))
+((-3426 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-270 *2)) (-5 *5 (-588 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-739 *6 *2)))) (-3426 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-270 *2)) (-5 *4 (-110)) (-5 *5 (-588 *2)) (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-5 *1 (-739 *6 *2)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1085)) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3855 (-588 *3))) *3 "failed")) (-5 *1 (-739 *6 *3)) (-4 *3 (-13 (-29 *6) (-1106) (-887))))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3855 (-588 *7))) *7 "failed")) (-5 *1 (-739 *6 *7)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-2 (|:| |particular| (-1166 *7)) (|:| -3855 (-588 (-1166 *7))))) (-5 *1 (-739 *6 *7)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-2 (|:| |particular| (-1166 *7)) (|:| -3855 (-588 (-1166 *7))))) (-5 *1 (-739 *6 *7)))) (-3426 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-628 *6)) (-5 *4 (-1085)) (-4 *6 (-13 (-29 *5) (-1106) (-887))) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-1166 *6))) (-5 *1 (-739 *5 *6)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-628 *7)) (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887))) (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-2 (|:| |particular| (-1166 *7)) (|:| -3855 (-588 (-1166 *7))))) (-5 *1 (-739 *6 *7)) (-5 *4 (-1166 *7)))))
+(-10 -7 (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-628 |#2|) (-1166 |#2|) (-1085))) (-15 -3426 ((-3 (-588 (-1166 |#2|)) "failed") (-628 |#2|) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-588 (-270 |#2|)) (-588 (-110)) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#2|)) (|:| -3855 (-588 (-1166 |#2|)))) "failed") (-588 |#2|) (-588 (-110)) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#2| "failed") (-270 |#2|) (-110) (-1085))) (-15 -3426 ((-3 (-2 (|:| |particular| |#2|) (|:| -3855 (-588 |#2|))) |#2| "failed") |#2| (-110) (-1085))) (-15 -3426 ((-3 |#2| "failed") (-270 |#2|) (-110) (-270 |#2|) (-588 |#2|))) (-15 -3426 ((-3 |#2| "failed") |#2| (-110) (-270 |#2|) (-588 |#2|))))
+((-3623 (($) 9)) (-3773 (((-3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 26)) (-2966 (((-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $) 23)) (-4095 (($ (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))) 20)) (-1827 (($ (-588 (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) 18)) (-2313 (((-1171)) 12)))
+(((-740) (-10 -8 (-15 -3623 ($)) (-15 -2313 ((-1171))) (-15 -2966 ((-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -1827 ($ (-588 (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))))) (-15 -4095 ($ (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) (-15 -3773 ((-3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))) (T -740))
+((-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *2 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))) (-5 *1 (-740)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))) (-5 *1 (-740)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) (-5 *1 (-740)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-5 *1 (-740)))) (-2313 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-740)))) (-3623 (*1 *1) (-5 *1 (-740))))
+(-10 -8 (-15 -3623 ($)) (-15 -2313 ((-1171))) (-15 -2966 ((-588 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) $)) (-15 -1827 ($ (-588 (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354)))))))) (-15 -4095 ($ (-2 (|:| -2530 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (|:| -3048 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))))))) (-15 -3773 ((-3 (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354)) (|:| |expense| (-354)) (|:| |accuracy| (-354)) (|:| |intermediateResults| (-354))) "failed") (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))))
+((-3622 ((|#2| |#2| (-1085)) 15)) (-2187 ((|#2| |#2| (-1085)) 47)) (-3383 (((-1 |#2| |#2|) (-1085)) 11)))
+(((-741 |#1| |#2|) (-10 -7 (-15 -3622 (|#2| |#2| (-1085))) (-15 -2187 (|#2| |#2| (-1085))) (-15 -3383 ((-1 |#2| |#2|) (-1085)))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)) (-13 (-29 |#1|) (-1106) (-887))) (T -741))
+((-3383 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-1 *5 *5)) (-5 *1 (-741 *4 *5)) (-4 *5 (-13 (-29 *4) (-1106) (-887))))) (-2187 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887))))) (-3622 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887))))))
+(-10 -7 (-15 -3622 (|#2| |#2| (-1085))) (-15 -2187 (|#2| |#2| (-1085))) (-15 -3383 ((-1 |#2| |#2|) (-1085))))
+((-3426 (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354) (-354)) 114) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354)) 115) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-588 (-354)) (-354)) 117) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-354)) 118) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-354)) 119) (((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354))) 120) (((-960) (-745) (-983)) 105) (((-960) (-745)) 106)) (-1798 (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745) (-983)) 71) (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745)) 73)))
+(((-742) (-10 -7 (-15 -3426 ((-960) (-745))) (-15 -3426 ((-960) (-745) (-983))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-588 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354) (-354))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745) (-983))))) (T -742))
+((-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-742)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354))) (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-745)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-742)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-960)) (-5 *1 (-742)))))
+(-10 -7 (-15 -3426 ((-960) (-745))) (-15 -3426 ((-960) (-745) (-983))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-588 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354))) (-15 -3426 ((-960) (-1166 (-291 (-354))) (-354) (-354) (-588 (-354)) (-291 (-354)) (-588 (-354)) (-354) (-354))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-745) (-983))))
+((-3304 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3855 (-588 |#4|))) (-595 |#4|) |#4|) 32)))
+(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3304 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3855 (-588 |#4|))) (-595 |#4|) |#4|))) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|)) (T -743))
+((-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-595 *4)) (-4 *4 (-317 *5 *6 *7)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-743 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3304 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3855 (-588 |#4|))) (-595 |#4|) |#4|)))
+((-2297 (((-2 (|:| -3197 |#3|) (|:| |rh| (-588 (-382 |#2|)))) |#4| (-588 (-382 |#2|))) 52)) (-3908 (((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#4| |#2|) 60) (((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#4|) 59) (((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#3| |#2|) 20) (((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#3|) 21)) (-1201 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2117 ((|#2| |#3| (-588 (-382 |#2|))) 94) (((-3 |#2| "failed") |#3| (-382 |#2|)) 91)))
+(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2117 ((-3 |#2| "failed") |#3| (-382 |#2|))) (-15 -2117 (|#2| |#3| (-588 (-382 |#2|)))) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#3|)) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#3| |#2|)) (-15 -1201 (|#2| |#3| |#1|)) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#4|)) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#4| |#2|)) (-15 -1201 (|#2| |#4| |#1|)) (-15 -2297 ((-2 (|:| -3197 |#3|) (|:| |rh| (-588 (-382 |#2|)))) |#4| (-588 (-382 |#2|))))) (-13 (-338) (-135) (-962 (-382 (-522)))) (-1142 |#1|) (-598 |#2|) (-598 (-382 |#2|))) (T -744))
+((-2297 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-2 (|:| -3197 *7) (|:| |rh| (-588 (-382 *6))))) (-5 *1 (-744 *5 *6 *7 *3)) (-5 *4 (-588 (-382 *6))) (-4 *7 (-598 *6)) (-4 *3 (-598 (-382 *6))))) (-1201 (*1 *2 *3 *4) (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *5 *3)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-598 *2)) (-4 *3 (-598 (-382 *2))))) (-3908 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1893 *4) (|:| -1607 *4)))) (-5 *1 (-744 *5 *4 *6 *3)) (-4 *6 (-598 *4)) (-4 *3 (-598 (-382 *4))))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1893 *5) (|:| -1607 *5)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *6 (-598 *5)) (-4 *3 (-598 (-382 *5))))) (-1201 (*1 *2 *3 *4) (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *3 *5)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *5 (-598 (-382 *2))))) (-3908 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1893 *4) (|:| -1607 *4)))) (-5 *1 (-744 *5 *4 *3 *6)) (-4 *3 (-598 *4)) (-4 *6 (-598 (-382 *4))))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1893 *5) (|:| -1607 *5)))) (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-598 (-382 *5))))) (-2117 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-382 *2))) (-4 *2 (-1142 *5)) (-5 *1 (-744 *5 *2 *3 *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *6 (-598 (-382 *2))))) (-2117 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-382 *2)) (-4 *2 (-1142 *5)) (-5 *1 (-744 *5 *2 *3 *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *6 (-598 *4)))))
+(-10 -7 (-15 -2117 ((-3 |#2| "failed") |#3| (-382 |#2|))) (-15 -2117 (|#2| |#3| (-588 (-382 |#2|)))) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#3|)) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#3| |#2|)) (-15 -1201 (|#2| |#3| |#1|)) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#4|)) (-15 -3908 ((-588 (-2 (|:| -1893 |#2|) (|:| -1607 |#2|))) |#4| |#2|)) (-15 -1201 (|#2| |#4| |#1|)) (-15 -2297 ((-2 (|:| -3197 |#3|) (|:| |rh| (-588 (-382 |#2|)))) |#4| (-588 (-382 |#2|)))))
+((-1416 (((-108) $ $) NIL)) (-1484 (((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $) 9)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 11) (($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) 8)) (-1531 (((-108) $ $) NIL)))
+(((-745) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))) (T -745))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-745)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-745)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202)))) (-5 *1 (-745)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-2 (|:| |xinit| (-202)) (|:| |xend| (-202)) (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202))) (|:| |abserr| (-202)) (|:| |relerr| (-202))) $))))
+((-2674 (((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3197 |#3|))) |#3| (-1 (-588 |#2|) |#2| (-1081 |#2|)) (-1 (-393 |#2|) |#2|)) 117)) (-3380 (((-588 (-2 (|:| |poly| |#2|) (|:| -3197 |#3|))) |#3| (-1 (-588 |#1|) |#2|)) 45)) (-2576 (((-588 (-2 (|:| |deg| (-708)) (|:| -3197 |#2|))) |#3|) 94)) (-3249 ((|#2| |#3|) 37)) (-3439 (((-588 (-2 (|:| -2677 |#1|) (|:| -3197 |#3|))) |#3| (-1 (-588 |#1|) |#2|)) 81)) (-1360 ((|#3| |#3| (-382 |#2|)) 62) ((|#3| |#3| |#2|) 78)))
+(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3249 (|#2| |#3|)) (-15 -2576 ((-588 (-2 (|:| |deg| (-708)) (|:| -3197 |#2|))) |#3|)) (-15 -3439 ((-588 (-2 (|:| -2677 |#1|) (|:| -3197 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -3380 ((-588 (-2 (|:| |poly| |#2|) (|:| -3197 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -2674 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3197 |#3|))) |#3| (-1 (-588 |#2|) |#2| (-1081 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -1360 (|#3| |#3| |#2|)) (-15 -1360 (|#3| |#3| (-382 |#2|)))) (-13 (-338) (-135) (-962 (-382 (-522)))) (-1142 |#1|) (-598 |#2|) (-598 (-382 |#2|))) (T -746))
+((-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-382 *5)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *2 (-598 *5)) (-4 *6 (-598 *3)))) (-1360 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-1142 *4)) (-5 *1 (-746 *4 *3 *2 *5)) (-4 *2 (-598 *3)) (-4 *5 (-598 (-382 *3))))) (-2674 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-588 *7) *7 (-1081 *7))) (-5 *5 (-1 (-393 *7) *7)) (-4 *7 (-1142 *6)) (-4 *6 (-13 (-338) (-135) (-962 (-382 (-522))))) (-5 *2 (-588 (-2 (|:| |frac| (-382 *7)) (|:| -3197 *3)))) (-5 *1 (-746 *6 *7 *3 *8)) (-4 *3 (-598 *7)) (-4 *8 (-598 (-382 *7))))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3197 *3)))) (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6)) (-4 *7 (-598 (-382 *6))))) (-3439 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -2677 *5) (|:| -3197 *3)))) (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6)) (-4 *7 (-598 (-382 *6))))) (-2576 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -3197 *5)))) (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-598 (-382 *5))))) (-3249 (*1 *2 *3) (-12 (-4 *2 (-1142 *4)) (-5 *1 (-746 *4 *2 *3 *5)) (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2)) (-4 *5 (-598 (-382 *2))))))
+(-10 -7 (-15 -3249 (|#2| |#3|)) (-15 -2576 ((-588 (-2 (|:| |deg| (-708)) (|:| -3197 |#2|))) |#3|)) (-15 -3439 ((-588 (-2 (|:| -2677 |#1|) (|:| -3197 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -3380 ((-588 (-2 (|:| |poly| |#2|) (|:| -3197 |#3|))) |#3| (-1 (-588 |#1|) |#2|))) (-15 -2674 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3197 |#3|))) |#3| (-1 (-588 |#2|) |#2| (-1081 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -1360 (|#3| |#3| |#2|)) (-15 -1360 (|#3| |#3| (-382 |#2|))))
+((-2183 (((-2 (|:| -3855 (-588 (-382 |#2|))) (|:| -1222 (-628 |#1|))) (-596 |#2| (-382 |#2|)) (-588 (-382 |#2|))) 118) (((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -3855 (-588 (-382 |#2|)))) (-596 |#2| (-382 |#2|)) (-382 |#2|)) 117) (((-2 (|:| -3855 (-588 (-382 |#2|))) (|:| -1222 (-628 |#1|))) (-595 (-382 |#2|)) (-588 (-382 |#2|))) 112) (((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -3855 (-588 (-382 |#2|)))) (-595 (-382 |#2|)) (-382 |#2|)) 110)) (-1933 ((|#2| (-596 |#2| (-382 |#2|))) 77) ((|#2| (-595 (-382 |#2|))) 81)))
+(((-747 |#1| |#2|) (-10 -7 (-15 -2183 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -3855 (-588 (-382 |#2|)))) (-595 (-382 |#2|)) (-382 |#2|))) (-15 -2183 ((-2 (|:| -3855 (-588 (-382 |#2|))) (|:| -1222 (-628 |#1|))) (-595 (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -2183 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -3855 (-588 (-382 |#2|)))) (-596 |#2| (-382 |#2|)) (-382 |#2|))) (-15 -2183 ((-2 (|:| -3855 (-588 (-382 |#2|))) (|:| -1222 (-628 |#1|))) (-596 |#2| (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -1933 (|#2| (-595 (-382 |#2|)))) (-15 -1933 (|#2| (-596 |#2| (-382 |#2|))))) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -747))
+((-1933 (*1 *2 *3) (-12 (-5 *3 (-596 *2 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-747 *4 *2)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-595 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-747 *4 *2)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))))) (-2183 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| -3855 (-588 (-382 *6))) (|:| -1222 (-628 *5)))) (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6))))) (-2183 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-747 *5 *6)))) (-2183 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| -3855 (-588 (-382 *6))) (|:| -1222 (-628 *5)))) (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6))))) (-2183 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-747 *5 *6)))))
+(-10 -7 (-15 -2183 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -3855 (-588 (-382 |#2|)))) (-595 (-382 |#2|)) (-382 |#2|))) (-15 -2183 ((-2 (|:| -3855 (-588 (-382 |#2|))) (|:| -1222 (-628 |#1|))) (-595 (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -2183 ((-2 (|:| |particular| (-3 (-382 |#2|) "failed")) (|:| -3855 (-588 (-382 |#2|)))) (-596 |#2| (-382 |#2|)) (-382 |#2|))) (-15 -2183 ((-2 (|:| -3855 (-588 (-382 |#2|))) (|:| -1222 (-628 |#1|))) (-596 |#2| (-382 |#2|)) (-588 (-382 |#2|)))) (-15 -1933 (|#2| (-595 (-382 |#2|)))) (-15 -1933 (|#2| (-596 |#2| (-382 |#2|)))))
+((-1371 (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) |#5| |#4|) 47)))
+(((-748 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1371 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) |#5| |#4|))) (-338) (-598 |#1|) (-1142 |#1|) (-662 |#1| |#3|) (-598 |#4|)) (T -748))
+((-1371 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *7 (-1142 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| -1222 (-628 *6)) (|:| |vec| (-1166 *5)))) (-5 *1 (-748 *5 *6 *7 *4 *3)) (-4 *6 (-598 *5)) (-4 *3 (-598 *4)))))
+(-10 -7 (-15 -1371 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) |#5| |#4|)))
+((-2674 (((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3197 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)) 43)) (-1973 (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)) 134 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|))) 135 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-393 |#2|) |#2|)) 136 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-595 (-382 |#2|))) 137 (|has| |#1| (-27))) (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|)) 36) (((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 37) (((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|)) 34) (((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 35)) (-3380 (((-588 (-2 (|:| |poly| |#2|) (|:| -3197 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|)) 81)))
+(((-749 |#1| |#2|) (-10 -7 (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -2674 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3197 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3380 ((-588 (-2 (|:| |poly| |#2|) (|:| -3197 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)))) (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)))) |%noBranch|)) (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))) (-1142 |#1|)) (T -749))
+((-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-596 *5 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) (-1973 (*1 *2 *3) (-12 (-5 *3 (-595 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3197 (-596 *6 (-382 *6)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6))))) (-2674 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-5 *2 (-588 (-2 (|:| |frac| (-382 *6)) (|:| -3197 (-596 *6 (-382 *6)))))) (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6))))) (-1973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-596 *7 (-382 *7))) (-5 *4 (-1 (-588 *6) *7)) (-5 *5 (-1 (-393 *7) *7)) (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))) (-1973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-595 (-382 *7))) (-5 *4 (-1 (-588 *6) *7)) (-5 *5 (-1 (-393 *7) *7)) (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-588 *5) *6)) (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))) (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))))
+(-10 -7 (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|) (-1 (-393 |#2|) |#2|))) (-15 -2674 ((-588 (-2 (|:| |frac| (-382 |#2|)) (|:| -3197 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -3380 ((-588 (-2 (|:| |poly| |#2|) (|:| -3197 (-596 |#2| (-382 |#2|))))) (-596 |#2| (-382 |#2|)) (-1 (-588 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)))) (-15 -1973 ((-588 (-382 |#2|)) (-595 (-382 |#2|)) (-1 (-393 |#2|) |#2|))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)))) (-15 -1973 ((-588 (-382 |#2|)) (-596 |#2| (-382 |#2|)) (-1 (-393 |#2|) |#2|)))) |%noBranch|))
+((-2486 (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) (-628 |#2|) (-1166 |#1|)) 85) (((-2 (|:| A (-628 |#1|)) (|:| |eqs| (-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)) (|:| -3197 |#2|) (|:| |rh| |#1|))))) (-628 |#1|) (-1166 |#1|)) 14)) (-2138 (((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-628 |#2|) (-1166 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3855 (-588 |#1|))) |#2| |#1|)) 91)) (-3426 (((-3 (-2 (|:| |particular| (-1166 |#1|)) (|:| -3855 (-628 |#1|))) "failed") (-628 |#1|) (-1166 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed") |#2| |#1|)) 44)))
+(((-750 |#1| |#2|) (-10 -7 (-15 -2486 ((-2 (|:| A (-628 |#1|)) (|:| |eqs| (-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)) (|:| -3197 |#2|) (|:| |rh| |#1|))))) (-628 |#1|) (-1166 |#1|))) (-15 -2486 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) (-628 |#2|) (-1166 |#1|))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#1|)) (|:| -3855 (-628 |#1|))) "failed") (-628 |#1|) (-1166 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed") |#2| |#1|))) (-15 -2138 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-628 |#2|) (-1166 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3855 (-588 |#1|))) |#2| |#1|)))) (-338) (-598 |#1|)) (T -750))
+((-2138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3855 (-588 *6))) *7 *6)) (-4 *6 (-338)) (-4 *7 (-598 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1166 *6) "failed")) (|:| -3855 (-588 (-1166 *6))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1166 *6)))) (-3426 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3855 (-588 *6))) "failed") *7 *6)) (-4 *6 (-338)) (-4 *7 (-598 *6)) (-5 *2 (-2 (|:| |particular| (-1166 *6)) (|:| -3855 (-628 *6)))) (-5 *1 (-750 *6 *7)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *6)))) (-2486 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-4 *6 (-598 *5)) (-5 *2 (-2 (|:| -1222 (-628 *6)) (|:| |vec| (-1166 *5)))) (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *5)))) (-2486 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-5 *2 (-2 (|:| A (-628 *5)) (|:| |eqs| (-588 (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5)) (|:| -3197 *6) (|:| |rh| *5)))))) (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *6 (-598 *5)))))
+(-10 -7 (-15 -2486 ((-2 (|:| A (-628 |#1|)) (|:| |eqs| (-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)) (|:| -3197 |#2|) (|:| |rh| |#1|))))) (-628 |#1|) (-1166 |#1|))) (-15 -2486 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#1|))) (-628 |#2|) (-1166 |#1|))) (-15 -3426 ((-3 (-2 (|:| |particular| (-1166 |#1|)) (|:| -3855 (-628 |#1|))) "failed") (-628 |#1|) (-1166 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3855 (-588 |#1|))) "failed") |#2| |#1|))) (-15 -2138 ((-2 (|:| |particular| (-3 (-1166 |#1|) "failed")) (|:| -3855 (-588 (-1166 |#1|)))) (-628 |#2|) (-1166 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3855 (-588 |#1|))) |#2| |#1|))))
+((-1463 (((-628 |#1|) (-588 |#1|) (-708)) 13) (((-628 |#1|) (-588 |#1|)) 14)) (-1556 (((-3 (-1166 |#1|) "failed") |#2| |#1| (-588 |#1|)) 34)) (-2307 (((-3 |#1| "failed") |#2| |#1| (-588 |#1|) (-1 |#1| |#1|)) 42)))
+(((-751 |#1| |#2|) (-10 -7 (-15 -1463 ((-628 |#1|) (-588 |#1|))) (-15 -1463 ((-628 |#1|) (-588 |#1|) (-708))) (-15 -1556 ((-3 (-1166 |#1|) "failed") |#2| |#1| (-588 |#1|))) (-15 -2307 ((-3 |#1| "failed") |#2| |#1| (-588 |#1|) (-1 |#1| |#1|)))) (-338) (-598 |#1|)) (T -751))
+((-2307 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-588 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-338)) (-5 *1 (-751 *2 *3)) (-4 *3 (-598 *2)))) (-1556 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-1166 *4)) (-5 *1 (-751 *4 *3)) (-4 *3 (-598 *4)))) (-1463 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-338)) (-5 *2 (-628 *5)) (-5 *1 (-751 *5 *6)) (-4 *6 (-598 *5)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-628 *4)) (-5 *1 (-751 *4 *5)) (-4 *5 (-598 *4)))))
+(-10 -7 (-15 -1463 ((-628 |#1|) (-588 |#1|))) (-15 -1463 ((-628 |#1|) (-588 |#1|) (-708))) (-15 -1556 ((-3 (-1166 |#1|) "failed") |#2| |#1| (-588 |#1|))) (-15 -2307 ((-3 |#1| "failed") |#2| |#1| (-588 |#1|) (-1 |#1| |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-2250 (((-108) $) NIL (|has| |#2| (-124)))) (-2468 (($ (-850)) NIL (|has| |#2| (-971)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1210 (($ $ $) NIL (|has| |#2| (-730)))) (-1233 (((-3 $ "failed") $ $) NIL (|has| |#2| (-124)))) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| |#2| (-343)))) (-1341 (((-522) $) NIL (|has| |#2| (-782)))) (-2379 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1014)))) (-1484 (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) ((|#2| $) NIL (|has| |#2| (-1014)))) (-2096 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#2| (-971)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#2| (-971))) (((-628 |#2|) (-628 $)) NIL (|has| |#2| (-971)))) (-2682 (((-3 $ "failed") $) NIL (|has| |#2| (-971)))) (-3255 (($) NIL (|has| |#2| (-343)))) (-3854 ((|#2| $ (-522) |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ (-522)) NIL)) (-3687 (((-108) $) NIL (|has| |#2| (-782)))) (-3837 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL (|has| |#2| (-971)))) (-2556 (((-108) $) NIL (|has| |#2| (-782)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-3308 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-3838 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#2| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#2| (-1014)))) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-2717 (($ (-850)) NIL (|has| |#2| (-343)))) (-4151 (((-1032) $) NIL (|has| |#2| (-1014)))) (-2294 ((|#2| $) NIL (|has| (-522) (-784)))) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ (-522) |#2|) NIL) ((|#2| $ (-522)) NIL)) (-1883 ((|#2| $ $) NIL (|has| |#2| (-971)))) (-1962 (($ (-1166 |#2|)) NIL)) (-4078 (((-126)) NIL (|has| |#2| (-338)))) (-2157 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-4168 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1166 |#2|) $) NIL) (($ (-522)) NIL (-3708 (-12 (|has| |#2| (-962 (-522))) (|has| |#2| (-1014))) (|has| |#2| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#2| (-962 (-382 (-522)))) (|has| |#2| (-1014)))) (($ |#2|) NIL (|has| |#2| (-1014))) (((-792) $) NIL (|has| |#2| (-562 (-792))))) (-2323 (((-708)) NIL (|has| |#2| (-971)))) (-3648 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2241 (($ $) NIL (|has| |#2| (-782)))) (-3510 (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (-3566 (($) NIL (|has| |#2| (-124)) CONST)) (-3577 (($) NIL (|has| |#2| (-971)) CONST)) (-2213 (($ $) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#2| (-210)) (|has| |#2| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#2| (-829 (-1085))) (|has| |#2| (-971)))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#2| (-971))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-971)))) (-1574 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1531 (((-108) $ $) NIL (|has| |#2| (-1014)))) (-1566 (((-108) $ $) NIL (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1549 (((-108) $ $) 11 (-3708 (|has| |#2| (-730)) (|has| |#2| (-782))))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $ $) NIL (|has| |#2| (-971))) (($ $) NIL (|has| |#2| (-971)))) (-1602 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-708)) NIL (|has| |#2| (-971))) (($ $ (-850)) NIL (|has| |#2| (-971)))) (* (($ $ $) NIL (|has| |#2| (-971))) (($ (-522) $) NIL (|has| |#2| (-971))) (($ $ |#2|) NIL (|has| |#2| (-664))) (($ |#2| $) NIL (|has| |#2| (-664))) (($ (-708) $) NIL (|has| |#2| (-124))) (($ (-850) $) NIL (|has| |#2| (-25)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-752 |#1| |#2| |#3|) (-215 |#1| |#2|) (-708) (-730) (-1 (-108) (-1166 |#2|) (-1166 |#2|))) (T -752))
NIL
(-215 |#1| |#2|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1452 (((-587 (-707)) $) NIL) (((-587 (-707)) $ (-1084)) NIL)) (-3245 (((-707) $) NIL) (((-707) $ (-1084)) NIL)) (-4085 (((-587 (-754 (-1084))) $) NIL)) (-1280 (((-1080 $) $ (-754 (-1084))) NIL) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-754 (-1084)))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-3234 (($ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-754 (-1084)) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL) (((-3 (-1036 |#1| (-1084)) "failed") $) NIL)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-754 (-1084)) $) NIL) (((-1084) $) NIL) (((-1036 |#1| (-1084)) $) NIL)) (-3052 (($ $ $ (-754 (-1084))) NIL (|has| |#1| (-157)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ (-754 (-1084))) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-493 (-754 (-1084))) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-754 (-1084)) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-754 (-1084)) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3490 (((-707) $ (-1084)) NIL) (((-707) $) NIL)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#1|) (-754 (-1084))) NIL) (($ (-1080 $) (-754 (-1084))) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-493 (-754 (-1084)))) NIL) (($ $ (-754 (-1084)) (-707)) NIL) (($ $ (-587 (-754 (-1084))) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-754 (-1084))) NIL)) (-2401 (((-493 (-754 (-1084))) $) NIL) (((-707) $ (-754 (-1084))) NIL) (((-587 (-707)) $ (-587 (-754 (-1084)))) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-493 (-754 (-1084))) (-493 (-754 (-1084)))) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2308 (((-1 $ (-707)) (-1084)) NIL) (((-1 $ (-707)) $) NIL (|has| |#1| (-210)))) (-2913 (((-3 (-754 (-1084)) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-1593 (((-754 (-1084)) $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3742 (((-108) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-754 (-1084))) (|:| -2246 (-707))) "failed") $) NIL)) (-1959 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-754 (-1084)) |#1|) NIL) (($ $ (-587 (-754 (-1084))) (-587 |#1|)) NIL) (($ $ (-754 (-1084)) $) NIL) (($ $ (-587 (-754 (-1084))) (-587 $)) NIL) (($ $ (-1084) $) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 $)) NIL (|has| |#1| (-210))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-210)))) (-3011 (($ $ (-754 (-1084))) NIL (|has| |#1| (-157)))) (-2193 (($ $ (-754 (-1084))) NIL) (($ $ (-587 (-754 (-1084)))) NIL) (($ $ (-754 (-1084)) (-707)) NIL) (($ $ (-587 (-754 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1279 (((-587 (-1084)) $) NIL)) (-2098 (((-493 (-754 (-1084))) $) NIL) (((-707) $ (-754 (-1084))) NIL) (((-587 (-707)) $ (-587 (-754 (-1084)))) NIL) (((-707) $ (-1084)) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-754 (-1084)) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-754 (-1084)) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-754 (-1084)) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-754 (-1084))) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-754 (-1084))) NIL) (($ (-1084)) NIL) (($ (-1036 |#1| (-1084))) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-493 (-754 (-1084)))) NIL) (($ $ (-754 (-1084)) (-707)) NIL) (($ $ (-587 (-754 (-1084))) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-754 (-1084))) NIL) (($ $ (-587 (-754 (-1084)))) NIL) (($ $ (-754 (-1084)) (-707)) NIL) (($ $ (-587 (-754 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-752 |#1|) (-13 (-229 |#1| (-1084) (-754 (-1084)) (-493 (-754 (-1084)))) (-961 (-1036 |#1| (-1084)))) (-970)) (T -752))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4040 (((-588 (-708)) $) NIL) (((-588 (-708)) $ (-1085)) NIL)) (-3152 (((-708) $) NIL) (((-708) $ (-1085)) NIL)) (-4090 (((-588 (-755 (-1085))) $) NIL)) (-1282 (((-1081 $) $ (-755 (-1085))) NIL) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-755 (-1085)))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1292 (($ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-755 (-1085)) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL) (((-3 (-1037 |#1| (-1085)) "failed") $) NIL)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-755 (-1085)) $) NIL) (((-1085) $) NIL) (((-1037 |#1| (-1085)) $) NIL)) (-1950 (($ $ $ (-755 (-1085))) NIL (|has| |#1| (-157)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ (-755 (-1085))) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-494 (-755 (-1085))) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-755 (-1085)) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-755 (-1085)) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3714 (((-708) $ (-1085)) NIL) (((-708) $) NIL)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#1|) (-755 (-1085))) NIL) (($ (-1081 $) (-755 (-1085))) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-494 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-755 (-1085))) NIL)) (-2925 (((-494 (-755 (-1085))) $) NIL) (((-708) $ (-755 (-1085))) NIL) (((-588 (-708)) $ (-588 (-755 (-1085)))) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-494 (-755 (-1085))) (-494 (-755 (-1085)))) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-1 $ (-708)) (-1085)) NIL) (((-1 $ (-708)) $) NIL (|has| |#1| (-210)))) (-3145 (((-3 (-755 (-1085)) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-1570 (((-755 (-1085)) $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-1494 (((-108) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-755 (-1085))) (|:| -1400 (-708))) "failed") $) NIL)) (-1901 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-755 (-1085)) |#1|) NIL) (($ $ (-588 (-755 (-1085))) (-588 |#1|)) NIL) (($ $ (-755 (-1085)) $) NIL) (($ $ (-588 (-755 (-1085))) (-588 $)) NIL) (($ $ (-1085) $) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 $)) NIL (|has| |#1| (-210))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-210)))) (-2769 (($ $ (-755 (-1085))) NIL (|has| |#1| (-157)))) (-2157 (($ $ (-755 (-1085))) NIL) (($ $ (-588 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3013 (((-588 (-1085)) $) NIL)) (-2793 (((-494 (-755 (-1085))) $) NIL) (((-708) $ (-755 (-1085))) NIL) (((-588 (-708)) $ (-588 (-755 (-1085)))) NIL) (((-708) $ (-1085)) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-755 (-1085)) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-755 (-1085)) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-755 (-1085)) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-755 (-1085))) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-755 (-1085))) NIL) (($ (-1085)) NIL) (($ (-1037 |#1| (-1085))) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-494 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-755 (-1085))) NIL) (($ $ (-588 (-755 (-1085)))) NIL) (($ $ (-755 (-1085)) (-708)) NIL) (($ $ (-588 (-755 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-753 |#1|) (-13 (-229 |#1| (-1085) (-755 (-1085)) (-494 (-755 (-1085)))) (-962 (-1037 |#1| (-1085)))) (-971)) (T -753))
NIL
-(-13 (-229 |#1| (-1084) (-754 (-1084)) (-493 (-754 (-1084)))) (-961 (-1036 |#1| (-1084))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-337)))) (-1954 (($ $) NIL (|has| |#2| (-337)))) (-3795 (((-108) $) NIL (|has| |#2| (-337)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#2| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#2| (-337)))) (-2165 (((-108) $ $) NIL (|has| |#2| (-337)))) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL (|has| |#2| (-337)))) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL (|has| |#2| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#2| (-337)))) (-2100 (((-108) $) NIL (|has| |#2| (-337)))) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-2254 (($ (-587 $)) NIL (|has| |#2| (-337))) (($ $ $) NIL (|has| |#2| (-337)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 20 (|has| |#2| (-337)))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#2| (-337))) (($ $ $) NIL (|has| |#2| (-337)))) (-1974 (((-392 $) $) NIL (|has| |#2| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#2| (-337)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#2| (-337)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-3794 (((-707) $) NIL (|has| |#2| (-337)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-337)))) (-2193 (($ $ (-707)) NIL) (($ $) 13)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-381 (-521))) NIL (|has| |#2| (-337))) (($ $) NIL (|has| |#2| (-337)))) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL (|has| |#2| (-337)))) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL) (($ $ (-521)) NIL (|has| |#2| (-337)))) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) 15 (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL) (($ $ (-521)) 18 (|has| |#2| (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-381 (-521)) $) NIL (|has| |#2| (-337))) (($ $ (-381 (-521))) NIL (|has| |#2| (-337)))))
-(((-753 |#1| |#2| |#3|) (-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-337)) (-6 (-337)) |%noBranch|) (-15 -2223 ($ |#2|)) (-15 -2223 (|#2| $)))) (-1013) (-828 |#1|) |#1|) (T -753))
-((-2223 (*1 *1 *2) (-12 (-4 *3 (-1013)) (-14 *4 *3) (-5 *1 (-753 *3 *2 *4)) (-4 *2 (-828 *3)))) (-2223 (*1 *2 *1) (-12 (-4 *2 (-828 *3)) (-5 *1 (-753 *3 *2 *4)) (-4 *3 (-1013)) (-14 *4 *3))))
-(-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-337)) (-6 (-337)) |%noBranch|) (-15 -2223 ($ |#2|)) (-15 -2223 (|#2| $))))
-((-1422 (((-108) $ $) NIL)) (-3245 (((-707) $) NIL)) (-1638 ((|#1| $) 10)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3490 (((-707) $) 11)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-2308 (($ |#1| (-707)) 9)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2193 (($ $) NIL) (($ $ (-707)) NIL)) (-2223 (((-791) $) NIL) (($ |#1|) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)))
-(((-754 |#1|) (-242 |#1|) (-783)) (T -754))
+(-13 (-229 |#1| (-1085) (-755 (-1085)) (-494 (-755 (-1085)))) (-962 (-1037 |#1| (-1085))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-338)))) (-2022 (($ $) NIL (|has| |#2| (-338)))) (-3739 (((-108) $) NIL (|has| |#2| (-338)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#2| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#2| (-338)))) (-1687 (((-108) $ $) NIL (|has| |#2| (-338)))) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL (|has| |#2| (-338)))) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL (|has| |#2| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#2| (-338)))) (-2813 (((-108) $) NIL (|has| |#2| (-338)))) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-2224 (($ (-588 $)) NIL (|has| |#2| (-338))) (($ $ $) NIL (|has| |#2| (-338)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 20 (|has| |#2| (-338)))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#2| (-338))) (($ $ $) NIL (|has| |#2| (-338)))) (-1916 (((-393 $) $) NIL (|has| |#2| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-338)))) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#2| (-338)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-3730 (((-708) $) NIL (|has| |#2| (-338)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-338)))) (-2157 (($ $ (-708)) NIL) (($ $) 13)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-382 (-522))) NIL (|has| |#2| (-338))) (($ $) NIL (|has| |#2| (-338)))) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL (|has| |#2| (-338)))) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ $ (-522)) NIL (|has| |#2| (-338)))) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) 15 (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ $ (-522)) 18 (|has| |#2| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-382 (-522)) $) NIL (|has| |#2| (-338))) (($ $ (-382 (-522))) NIL (|has| |#2| (-338)))))
+(((-754 |#1| |#2| |#3|) (-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) (-15 -2190 ($ |#2|)) (-15 -2190 (|#2| $)))) (-1014) (-829 |#1|) |#1|) (T -754))
+((-2190 (*1 *1 *2) (-12 (-4 *3 (-1014)) (-14 *4 *3) (-5 *1 (-754 *3 *2 *4)) (-4 *2 (-829 *3)))) (-2190 (*1 *2 *1) (-12 (-4 *2 (-829 *3)) (-5 *1 (-754 *3 *2 *4)) (-4 *3 (-1014)) (-14 *4 *3))))
+(-13 (-107 $ $) (-210) (-10 -8 (IF (|has| |#2| (-338)) (-6 (-338)) |%noBranch|) (-15 -2190 ($ |#2|)) (-15 -2190 (|#2| $))))
+((-1416 (((-108) $ $) NIL)) (-3152 (((-708) $) NIL)) (-1611 ((|#1| $) 10)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3714 (((-708) $) 11)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3830 (($ |#1| (-708)) 9)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2157 (($ $) NIL) (($ $ (-708)) NIL)) (-2190 (((-792) $) NIL) (($ |#1|) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)))
+(((-755 |#1|) (-242 |#1|) (-784)) (T -755))
NIL
(-242 |#1|)
-((-1422 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) 29)) (-1659 (((-707) $) NIL)) (-2231 (($) NIL T CONST)) (-2301 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-2329 (($ $) 31)) (-2783 (((-3 $ "failed") $) NIL)) (-3526 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3637 (((-108) $) NIL)) (-3493 ((|#1| $ (-521)) NIL)) (-1754 (((-707) $ (-521)) NIL)) (-2056 (($ $) 36)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-2116 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-1214 (((-108) $ $) 34)) (-2522 (((-707) $) 25)) (-4024 (((-1067) $) NIL)) (-3606 (($ $ $) NIL)) (-3763 (($ $ $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 ((|#1| $) 30)) (-3655 (((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $) NIL)) (-2271 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2223 (((-791) $) NIL) (($ |#1|) NIL)) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3572 (($) 14 T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 35)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL) (($ |#1| (-707)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-755 |#1|) (-13 (-779) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -2319 (|#1| $)) (-15 -2329 ($ $)) (-15 -2056 ($ $)) (-15 -1214 ((-108) $ $)) (-15 -3763 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2116 ((-3 $ "failed") $ $)) (-15 -2301 ((-3 $ "failed") $ $)) (-15 -2116 ((-3 $ "failed") $ |#1|)) (-15 -2301 ((-3 $ "failed") $ |#1|)) (-15 -2271 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3526 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1659 ((-707) $)) (-15 -1754 ((-707) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -3655 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $)) (-15 -2522 ((-707) $)) (-15 -4101 ((-587 |#1|) $)))) (-783)) (T -755))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2319 (*1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2056 (*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-1214 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-3763 (*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-3606 (*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2116 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2301 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2116 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2301 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-2271 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-755 *3)) (|:| |rm| (-755 *3)))) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-3526 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-755 *3)) (|:| |mm| (-755 *3)) (|:| |rm| (-755 *3)))) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-755 *4)) (-4 *4 (-783)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-755 *2)) (-4 *2 (-783)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 (-707))))) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-755 *3)) (-4 *3 (-783)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(-13 (-779) (-961 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-707))) (-15 -2319 (|#1| $)) (-15 -2329 ($ $)) (-15 -2056 ($ $)) (-15 -1214 ((-108) $ $)) (-15 -3763 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2116 ((-3 $ "failed") $ $)) (-15 -2301 ((-3 $ "failed") $ $)) (-15 -2116 ((-3 $ "failed") $ |#1|)) (-15 -2301 ((-3 $ "failed") $ |#1|)) (-15 -2271 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3526 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1659 ((-707) $)) (-15 -1754 ((-707) $ (-521))) (-15 -3493 (|#1| $ (-521))) (-15 -3655 ((-587 (-2 (|:| |gen| |#1|) (|:| -3265 (-707)))) $)) (-15 -2522 ((-707) $)) (-15 -4101 ((-587 |#1|) $))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2578 (((-521) $) 53)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-2273 (((-108) $) 51)) (-3637 (((-108) $) 31)) (-3305 (((-108) $) 52)) (-2816 (($ $ $) 50)) (-2459 (($ $ $) 49)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ $) 42)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-4012 (($ $) 54)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 47)) (-1579 (((-108) $ $) 46)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 48)) (-1569 (((-108) $ $) 45)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-756) (-1196)) (T -756))
-NIL
-(-13 (-513) (-781))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3289 (($ (-1031)) 7)) (-3947 (((-108) $ (-1067) (-1031)) 15)) (-2836 (((-758) $) 12)) (-3261 (((-758) $) 11)) (-2230 (((-1170) $) 9)) (-3359 (((-108) $ (-1031)) 16)))
-(((-757) (-10 -8 (-15 -3289 ($ (-1031))) (-15 -2230 ((-1170) $)) (-15 -3261 ((-758) $)) (-15 -2836 ((-758) $)) (-15 -3947 ((-108) $ (-1067) (-1031))) (-15 -3359 ((-108) $ (-1031))))) (T -757))
-((-3359 (*1 *2 *1 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-108)) (-5 *1 (-757)))) (-3947 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-1031)) (-5 *2 (-108)) (-5 *1 (-757)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-757)))) (-3289 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-757)))))
-(-10 -8 (-15 -3289 ($ (-1031))) (-15 -2230 ((-1170) $)) (-15 -3261 ((-758) $)) (-15 -2836 ((-758) $)) (-15 -3947 ((-108) $ (-1067) (-1031))) (-15 -3359 ((-108) $ (-1031))))
-((-3627 (((-1170) $ (-759)) 12)) (-2311 (((-1170) $ (-1084)) 32)) (-4083 (((-1170) $ (-1067) (-1067)) 34)) (-1657 (((-1170) $ (-1067)) 33)) (-2279 (((-1170) $) 19)) (-1797 (((-1170) $ (-521)) 28)) (-2054 (((-1170) $ (-202)) 30)) (-2112 (((-1170) $) 18)) (-1261 (((-1170) $) 26)) (-1879 (((-1170) $) 25)) (-2560 (((-1170) $) 23)) (-2967 (((-1170) $) 24)) (-2918 (((-1170) $) 22)) (-2669 (((-1170) $) 21)) (-2510 (((-1170) $) 20)) (-1762 (((-1170) $) 16)) (-3871 (((-1170) $) 17)) (-3729 (((-1170) $) 15)) (-3766 (((-1170) $) 14)) (-1691 (((-1170) $) 13)) (-2555 (($ (-1067) (-759)) 9)) (-1338 (($ (-1067) (-1067) (-759)) 8)) (-2110 (((-1084) $) 51)) (-2290 (((-1084) $) 55)) (-2086 (((-2 (|:| |cd| (-1067)) (|:| -2890 (-1067))) $) 54)) (-4029 (((-1067) $) 52)) (-3311 (((-1170) $) 41)) (-2954 (((-521) $) 49)) (-1387 (((-202) $) 50)) (-1980 (((-1170) $) 40)) (-2440 (((-1170) $) 48)) (-1285 (((-1170) $) 47)) (-2424 (((-1170) $) 45)) (-4021 (((-1170) $) 46)) (-3161 (((-1170) $) 44)) (-2988 (((-1170) $) 43)) (-3744 (((-1170) $) 42)) (-1545 (((-1170) $) 38)) (-2672 (((-1170) $) 39)) (-3891 (((-1170) $) 37)) (-2309 (((-1170) $) 36)) (-3210 (((-1170) $) 35)) (-3575 (((-1170) $) 11)))
-(((-758) (-10 -8 (-15 -1338 ($ (-1067) (-1067) (-759))) (-15 -2555 ($ (-1067) (-759))) (-15 -3575 ((-1170) $)) (-15 -3627 ((-1170) $ (-759))) (-15 -1691 ((-1170) $)) (-15 -3766 ((-1170) $)) (-15 -3729 ((-1170) $)) (-15 -1762 ((-1170) $)) (-15 -3871 ((-1170) $)) (-15 -2112 ((-1170) $)) (-15 -2279 ((-1170) $)) (-15 -2510 ((-1170) $)) (-15 -2669 ((-1170) $)) (-15 -2918 ((-1170) $)) (-15 -2560 ((-1170) $)) (-15 -2967 ((-1170) $)) (-15 -1879 ((-1170) $)) (-15 -1261 ((-1170) $)) (-15 -1797 ((-1170) $ (-521))) (-15 -2054 ((-1170) $ (-202))) (-15 -2311 ((-1170) $ (-1084))) (-15 -1657 ((-1170) $ (-1067))) (-15 -4083 ((-1170) $ (-1067) (-1067))) (-15 -3210 ((-1170) $)) (-15 -2309 ((-1170) $)) (-15 -3891 ((-1170) $)) (-15 -1545 ((-1170) $)) (-15 -2672 ((-1170) $)) (-15 -1980 ((-1170) $)) (-15 -3311 ((-1170) $)) (-15 -3744 ((-1170) $)) (-15 -2988 ((-1170) $)) (-15 -3161 ((-1170) $)) (-15 -2424 ((-1170) $)) (-15 -4021 ((-1170) $)) (-15 -1285 ((-1170) $)) (-15 -2440 ((-1170) $)) (-15 -2954 ((-521) $)) (-15 -1387 ((-202) $)) (-15 -2110 ((-1084) $)) (-15 -4029 ((-1067) $)) (-15 -2086 ((-2 (|:| |cd| (-1067)) (|:| -2890 (-1067))) $)) (-15 -2290 ((-1084) $)))) (T -758))
-((-2290 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-758)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1067)) (|:| -2890 (-1067)))) (-5 *1 (-758)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-758)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-758)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-758)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-758)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-4083 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-758)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-758)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-758)))) (-2054 (*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1170)) (-5 *1 (-758)))) (-1797 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-758)))) (-1261 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-3627 (*1 *2 *1 *3) (-12 (-5 *3 (-759)) (-5 *2 (-1170)) (-5 *1 (-758)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))) (-2555 (*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-759)) (-5 *1 (-758)))) (-1338 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-759)) (-5 *1 (-758)))))
-(-10 -8 (-15 -1338 ($ (-1067) (-1067) (-759))) (-15 -2555 ($ (-1067) (-759))) (-15 -3575 ((-1170) $)) (-15 -3627 ((-1170) $ (-759))) (-15 -1691 ((-1170) $)) (-15 -3766 ((-1170) $)) (-15 -3729 ((-1170) $)) (-15 -1762 ((-1170) $)) (-15 -3871 ((-1170) $)) (-15 -2112 ((-1170) $)) (-15 -2279 ((-1170) $)) (-15 -2510 ((-1170) $)) (-15 -2669 ((-1170) $)) (-15 -2918 ((-1170) $)) (-15 -2560 ((-1170) $)) (-15 -2967 ((-1170) $)) (-15 -1879 ((-1170) $)) (-15 -1261 ((-1170) $)) (-15 -1797 ((-1170) $ (-521))) (-15 -2054 ((-1170) $ (-202))) (-15 -2311 ((-1170) $ (-1084))) (-15 -1657 ((-1170) $ (-1067))) (-15 -4083 ((-1170) $ (-1067) (-1067))) (-15 -3210 ((-1170) $)) (-15 -2309 ((-1170) $)) (-15 -3891 ((-1170) $)) (-15 -1545 ((-1170) $)) (-15 -2672 ((-1170) $)) (-15 -1980 ((-1170) $)) (-15 -3311 ((-1170) $)) (-15 -3744 ((-1170) $)) (-15 -2988 ((-1170) $)) (-15 -3161 ((-1170) $)) (-15 -2424 ((-1170) $)) (-15 -4021 ((-1170) $)) (-15 -1285 ((-1170) $)) (-15 -2440 ((-1170) $)) (-15 -2954 ((-521) $)) (-15 -1387 ((-202) $)) (-15 -2110 ((-1084) $)) (-15 -4029 ((-1067) $)) (-15 -2086 ((-2 (|:| |cd| (-1067)) (|:| -2890 (-1067))) $)) (-15 -2290 ((-1084) $)))
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 12)) (-3990 (($) 15)) (-1356 (($) 13)) (-1825 (($) 16)) (-1459 (($) 14)) (-1549 (((-108) $ $) 8)))
-(((-759) (-13 (-1013) (-10 -8 (-15 -1356 ($)) (-15 -3990 ($)) (-15 -1825 ($)) (-15 -1459 ($))))) (T -759))
-((-1356 (*1 *1) (-5 *1 (-759))) (-3990 (*1 *1) (-5 *1 (-759))) (-1825 (*1 *1) (-5 *1 (-759))) (-1459 (*1 *1) (-5 *1 (-759))))
-(-13 (-1013) (-10 -8 (-15 -1356 ($)) (-15 -3990 ($)) (-15 -1825 ($)) (-15 -1459 ($))))
-((-1422 (((-108) $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 21) (($ (-1084)) 17)) (-4175 (((-108) $) 10)) (-3969 (((-108) $) 9)) (-2025 (((-108) $) 11)) (-3154 (((-108) $) 8)) (-1549 (((-108) $ $) 19)))
-(((-760) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-1084))) (-15 -3154 ((-108) $)) (-15 -3969 ((-108) $)) (-15 -4175 ((-108) $)) (-15 -2025 ((-108) $))))) (T -760))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-760)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))) (-4175 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-1084))) (-15 -3154 ((-108) $)) (-15 -3969 ((-108) $)) (-15 -4175 ((-108) $)) (-15 -2025 ((-108) $))))
-((-1422 (((-108) $ $) NIL)) (-3105 (($ (-760) (-587 (-1084))) 24)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1660 (((-760) $) 25)) (-1325 (((-587 (-1084)) $) 26)) (-2223 (((-791) $) 23)) (-1549 (((-108) $ $) NIL)))
-(((-761) (-13 (-1013) (-10 -8 (-15 -1660 ((-760) $)) (-15 -1325 ((-587 (-1084)) $)) (-15 -3105 ($ (-760) (-587 (-1084))))))) (T -761))
-((-1660 (*1 *2 *1) (-12 (-5 *2 (-760)) (-5 *1 (-761)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-761)))) (-3105 (*1 *1 *2 *3) (-12 (-5 *2 (-760)) (-5 *3 (-587 (-1084))) (-5 *1 (-761)))))
-(-13 (-1013) (-10 -8 (-15 -1660 ((-760) $)) (-15 -1325 ((-587 (-1084)) $)) (-15 -3105 ($ (-760) (-587 (-1084))))))
-((-3828 (((-1170) (-758) (-290 |#1|) (-108)) 22) (((-1170) (-758) (-290 |#1|)) 76) (((-1067) (-290 |#1|) (-108)) 75) (((-1067) (-290 |#1|)) 74)))
-(((-762 |#1|) (-10 -7 (-15 -3828 ((-1067) (-290 |#1|))) (-15 -3828 ((-1067) (-290 |#1|) (-108))) (-15 -3828 ((-1170) (-758) (-290 |#1|))) (-15 -3828 ((-1170) (-758) (-290 |#1|) (-108)))) (-13 (-764) (-783) (-970))) (T -762))
-((-3828 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-758)) (-5 *4 (-290 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-764) (-783) (-970))) (-5 *2 (-1170)) (-5 *1 (-762 *6)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-290 *5)) (-4 *5 (-13 (-764) (-783) (-970))) (-5 *2 (-1170)) (-5 *1 (-762 *5)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-290 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-764) (-783) (-970))) (-5 *2 (-1067)) (-5 *1 (-762 *5)))) (-3828 (*1 *2 *3) (-12 (-5 *3 (-290 *4)) (-4 *4 (-13 (-764) (-783) (-970))) (-5 *2 (-1067)) (-5 *1 (-762 *4)))))
-(-10 -7 (-15 -3828 ((-1067) (-290 |#1|))) (-15 -3828 ((-1067) (-290 |#1|) (-108))) (-15 -3828 ((-1170) (-758) (-290 |#1|))) (-15 -3828 ((-1170) (-758) (-290 |#1|) (-108))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2557 ((|#1| $) 10)) (-1426 (($ |#1|) 9)) (-3637 (((-108) $) NIL)) (-4044 (($ |#2| (-707)) NIL)) (-2401 (((-707) $) NIL)) (-3140 ((|#2| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2193 (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-2098 (((-707) $) NIL)) (-2223 (((-791) $) 17) (($ (-521)) NIL) (($ |#2|) NIL (|has| |#2| (-157)))) (-1499 ((|#2| $ (-707)) NIL)) (-1592 (((-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-763 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1426 ($ |#1|)) (-15 -2557 (|#1| $)))) (-646 |#2|) (-970)) (T -763))
-((-1426 (*1 *1 *2) (-12 (-4 *3 (-970)) (-5 *1 (-763 *2 *3)) (-4 *2 (-646 *3)))) (-2557 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-763 *2 *3)) (-4 *3 (-970)))))
-(-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1426 ($ |#1|)) (-15 -2557 (|#1| $))))
-((-3828 (((-1170) (-758) $ (-108)) 9) (((-1170) (-758) $) 8) (((-1067) $ (-108)) 7) (((-1067) $) 6)))
-(((-764) (-1196)) (T -764))
-((-3828 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *4 (-108)) (-5 *2 (-1170)))) (-3828 (*1 *2 *3 *1) (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *2 (-1170)))) (-3828 (*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *3 (-108)) (-5 *2 (-1067)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-764)) (-5 *2 (-1067)))))
-(-13 (-10 -8 (-15 -3828 ((-1067) $)) (-15 -3828 ((-1067) $ (-108))) (-15 -3828 ((-1170) (-758) $)) (-15 -3828 ((-1170) (-758) $ (-108)))))
-((-1636 (((-286) (-1067) (-1067)) 12)) (-3229 (((-108) (-1067) (-1067)) 34)) (-3352 (((-108) (-1067)) 33)) (-3103 (((-51) (-1067)) 25)) (-1250 (((-51) (-1067)) 23)) (-1625 (((-51) (-758)) 17)) (-2511 (((-587 (-1067)) (-1067)) 28)) (-2149 (((-587 (-1067))) 27)))
-(((-765) (-10 -7 (-15 -1625 ((-51) (-758))) (-15 -1250 ((-51) (-1067))) (-15 -3103 ((-51) (-1067))) (-15 -2149 ((-587 (-1067)))) (-15 -2511 ((-587 (-1067)) (-1067))) (-15 -3352 ((-108) (-1067))) (-15 -3229 ((-108) (-1067) (-1067))) (-15 -1636 ((-286) (-1067) (-1067))))) (T -765))
-((-1636 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-765)))) (-3229 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-765)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-765)))) (-2511 (*1 *2 *3) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-765)) (-5 *3 (-1067)))) (-2149 (*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-765)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-765)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-765)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(-10 -7 (-15 -1625 ((-51) (-758))) (-15 -1250 ((-51) (-1067))) (-15 -3103 ((-51) (-1067))) (-15 -2149 ((-587 (-1067)))) (-15 -2511 ((-587 (-1067)) (-1067))) (-15 -3352 ((-108) (-1067))) (-15 -3229 ((-108) (-1067) (-1067))) (-15 -1636 ((-286) (-1067) (-1067))))
-((-1422 (((-108) $ $) 19)) (-2296 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1769 (($ $ $) 72)) (-3601 (((-108) $ $) 73)) (-1269 (((-108) $ (-707)) 8)) (-1817 (($ (-587 |#1|)) 68) (($) 67)) (-3014 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-1514 (($ $) 62)) (-2354 (($ $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ |#1| $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-2816 ((|#1| $) 78)) (-4162 (($ $ $) 81)) (-3389 (($ $ $) 80)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2459 ((|#1| $) 79)) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22)) (-1802 (($ $ $) 69)) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40) (($ |#1| $ (-707)) 63)) (-4146 (((-1031) $) 21)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-3489 (((-587 (-2 (|:| -3050 |#1|) (|:| -4163 (-707)))) $) 61)) (-2686 (($ $ |#1|) 71) (($ $ $) 70)) (-2036 (($) 49) (($ (-587 |#1|)) 48)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 50)) (-2223 (((-791) $) 18)) (-3391 (($ (-587 |#1|)) 66) (($) 65)) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20)) (-1569 (((-108) $ $) 64)) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-766 |#1|) (-1196) (-783)) (T -766))
-((-2816 (*1 *2 *1) (-12 (-4 *1 (-766 *2)) (-4 *2 (-783)))))
-(-13 (-673 |t#1|) (-895 |t#1|) (-10 -8 (-15 -2816 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-561 (-791)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-212 |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-632 |#1|) . T) ((-673 |#1|) . T) ((-895 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1119) . T))
-((-2351 (((-1170) (-1031) (-1031)) 47)) (-1248 (((-1170) (-757) (-51)) 44)) (-2595 (((-51) (-757)) 16)))
-(((-767) (-10 -7 (-15 -2595 ((-51) (-757))) (-15 -1248 ((-1170) (-757) (-51))) (-15 -2351 ((-1170) (-1031) (-1031))))) (T -767))
-((-2351 (*1 *2 *3 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-1170)) (-5 *1 (-767)))) (-1248 (*1 *2 *3 *4) (-12 (-5 *3 (-757)) (-5 *4 (-51)) (-5 *2 (-1170)) (-5 *1 (-767)))) (-2595 (*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-51)) (-5 *1 (-767)))))
-(-10 -7 (-15 -2595 ((-51) (-757))) (-15 -1248 ((-1170) (-757) (-51))) (-15 -2351 ((-1170) (-1031) (-1031))))
-((-1393 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|)) 12) (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 13)))
-(((-768 |#1| |#2|) (-10 -7 (-15 -1393 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1393 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|)))) (-1013) (-1013)) (T -768))
-((-1393 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-768 *5 *6)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6)))))
-(-10 -7 (-15 -1393 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1393 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL (|has| |#1| (-21)))) (-2057 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2578 (((-521) $) NIL (|has| |#1| (-781)))) (-2231 (($) NIL (|has| |#1| (-21)) CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 15)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 9)) (-2783 (((-3 $ "failed") $) 40 (|has| |#1| (-781)))) (-3762 (((-3 (-381 (-521)) "failed") $) 48 (|has| |#1| (-506)))) (-2428 (((-108) $) 43 (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) 45 (|has| |#1| (-506)))) (-2273 (((-108) $) NIL (|has| |#1| (-781)))) (-3637 (((-108) $) NIL (|has| |#1| (-781)))) (-3305 (((-108) $) NIL (|has| |#1| (-781)))) (-2816 (($ $ $) NIL (|has| |#1| (-781)))) (-2459 (($ $ $) NIL (|has| |#1| (-781)))) (-4024 (((-1067) $) NIL)) (-2851 (($) 13)) (-3095 (((-108) $) 12)) (-4146 (((-1031) $) NIL)) (-2724 (((-108) $) 11)) (-2223 (((-791) $) 18) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 8) (($ (-521)) NIL (-3703 (|has| |#1| (-781)) (|has| |#1| (-961 (-521)))))) (-1592 (((-707)) 34 (|has| |#1| (-781)))) (-4012 (($ $) NIL (|has| |#1| (-781)))) (-3509 (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-707)) NIL (|has| |#1| (-781)))) (-3562 (($) 22 (|has| |#1| (-21)) CONST)) (-3572 (($) 31 (|has| |#1| (-781)) CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1549 (((-108) $ $) 20)) (-1588 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1569 (((-108) $ $) 42 (|has| |#1| (-781)))) (-1639 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1628 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-707)) NIL (|has| |#1| (-781)))) (* (($ $ $) 37 (|has| |#1| (-781))) (($ (-521) $) 25 (|has| |#1| (-21))) (($ (-707) $) NIL (|has| |#1| (-21))) (($ (-849) $) NIL (|has| |#1| (-21)))))
-(((-769 |#1|) (-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2851 ($)) (-15 -2724 ((-108) $)) (-15 -3095 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|))) (-1013)) (T -769))
-((-2851 (*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1013)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1013)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1013)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-769 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-3762 (*1 *2 *1) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-769 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))))
-(-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2851 ($)) (-15 -2724 ((-108) $)) (-15 -3095 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1496 ((|#1| $) NIL) (((-110) $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2117 ((|#1| (-110) |#1|) NIL)) (-3637 (((-108) $) NIL)) (-4052 (($ |#1| (-335 (-110))) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3316 (($ $ (-1 |#1| |#1|)) NIL)) (-4177 (($ $ (-1 |#1| |#1|)) NIL)) (-2550 ((|#1| $ |#1|) NIL)) (-2430 ((|#1| |#1|) NIL (|has| |#1| (-157)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-3496 (($ $) NIL (|has| |#1| (-157))) (($ $ $) NIL (|has| |#1| (-157)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ (-110) (-521)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-770 |#1|) (-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3496 ($ $)) (-15 -3496 ($ $ $)) (-15 -2430 (|#1| |#1|))) |%noBranch|) (-15 -4177 ($ $ (-1 |#1| |#1|))) (-15 -3316 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -2117 (|#1| (-110) |#1|)) (-15 -4052 ($ |#1| (-335 (-110)))))) (-970)) (T -770))
-((-3496 (*1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-970)))) (-3496 (*1 *1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-970)))) (-2430 (*1 *2 *2) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-970)))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-770 *3)))) (-3316 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-770 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-5 *1 (-770 *4)) (-4 *4 (-970)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-770 *3)) (-4 *3 (-970)))) (-2117 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-770 *2)) (-4 *2 (-970)))) (-4052 (*1 *1 *2 *3) (-12 (-5 *3 (-335 (-110))) (-5 *1 (-770 *2)) (-4 *2 (-970)))))
-(-13 (-970) (-961 |#1|) (-961 (-110)) (-261 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3496 ($ $)) (-15 -3496 ($ $ $)) (-15 -2430 (|#1| |#1|))) |%noBranch|) (-15 -4177 ($ $ (-1 |#1| |#1|))) (-15 -3316 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-521))) (-15 ** ($ $ (-521))) (-15 -2117 (|#1| (-110) |#1|)) (-15 -4052 ($ |#1| (-335 (-110))))))
-((-1572 (((-192 (-471)) (-1067)) 8)))
-(((-771) (-10 -7 (-15 -1572 ((-192 (-471)) (-1067))))) (T -771))
-((-1572 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-192 (-471))) (-5 *1 (-771)))))
-(-10 -7 (-15 -1572 ((-192 (-471)) (-1067))))
-((-1422 (((-108) $ $) 7)) (-3608 (((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 14) (((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 13)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 16) (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 15)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-772) (-1196)) (T -772))
-((-1853 (*1 *2 *3 *4) (-12 (-4 *1 (-772)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)))))) (-1853 (*1 *2 *3 *4) (-12 (-4 *1 (-772)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)))))) (-3608 (*1 *2 *3) (-12 (-4 *1 (-772)) (-5 *3 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *2 (-959)))) (-3608 (*1 *2 *3) (-12 (-4 *1 (-772)) (-5 *3 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (-5 *2 (-959)))))
-(-13 (-1013) (-10 -7 (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -3608 ((-959) (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -3608 ((-959) (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-2052 (((-959) (-587 (-290 (-353))) (-587 (-353))) 143) (((-959) (-290 (-353)) (-587 (-353))) 141) (((-959) (-290 (-353)) (-587 (-353)) (-587 (-776 (-353))) (-587 (-776 (-353)))) 140) (((-959) (-290 (-353)) (-587 (-353)) (-587 (-776 (-353))) (-587 (-290 (-353))) (-587 (-776 (-353)))) 139) (((-959) (-774)) 112) (((-959) (-774) (-982)) 111)) (-1853 (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-774) (-982)) 76) (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-774)) 78)) (-3508 (((-959) (-587 (-290 (-353))) (-587 (-353))) 144) (((-959) (-774)) 128)))
-(((-773) (-10 -7 (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-774))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-774) (-982))) (-15 -2052 ((-959) (-774) (-982))) (-15 -2052 ((-959) (-774))) (-15 -3508 ((-959) (-774))) (-15 -2052 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-776 (-353))) (-587 (-290 (-353))) (-587 (-776 (-353))))) (-15 -2052 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-776 (-353))) (-587 (-776 (-353))))) (-15 -2052 ((-959) (-290 (-353)) (-587 (-353)))) (-15 -2052 ((-959) (-587 (-290 (-353))) (-587 (-353)))) (-15 -3508 ((-959) (-587 (-290 (-353))) (-587 (-353)))))) (T -773))
-((-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353))) (-5 *2 (-959)) (-5 *1 (-773)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353))) (-5 *2 (-959)) (-5 *1 (-773)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353))) (-5 *2 (-959)) (-5 *1 (-773)))) (-2052 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353))) (-5 *5 (-587 (-776 (-353)))) (-5 *2 (-959)) (-5 *1 (-773)))) (-2052 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-587 (-353))) (-5 *5 (-587 (-776 (-353)))) (-5 *6 (-587 (-290 (-353)))) (-5 *3 (-290 (-353))) (-5 *2 (-959)) (-5 *1 (-773)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-959)) (-5 *1 (-773)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-959)) (-5 *1 (-773)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-773)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-773)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-773)))))
-(-10 -7 (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-774))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-774) (-982))) (-15 -2052 ((-959) (-774) (-982))) (-15 -2052 ((-959) (-774))) (-15 -3508 ((-959) (-774))) (-15 -2052 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-776 (-353))) (-587 (-290 (-353))) (-587 (-776 (-353))))) (-15 -2052 ((-959) (-290 (-353)) (-587 (-353)) (-587 (-776 (-353))) (-587 (-776 (-353))))) (-15 -2052 ((-959) (-290 (-353)) (-587 (-353)))) (-15 -2052 ((-959) (-587 (-290 (-353))) (-587 (-353)))) (-15 -3508 ((-959) (-587 (-290 (-353))) (-587 (-353)))))
-((-1422 (((-108) $ $) NIL)) (-1496 (((-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) $) 15)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 14) (($ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) 8) (($ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) 12)) (-1549 (((-108) $ $) NIL)))
-(((-774) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))))) (-15 -2223 ($ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -2223 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) $))))) (T -774))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-774)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (-5 *1 (-774)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))) (-5 *1 (-774)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) (-5 *1 (-774)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202))))))) (-5 *1 (-774)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202))))))) (-15 -2223 ($ (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) (-15 -2223 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-3 (|:| |noa| (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202))) (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202)))) (|:| |ub| (-587 (-776 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))) $))))
-((-1393 (((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|) (-776 |#2|) (-776 |#2|)) 13) (((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|)) 14)))
-(((-775 |#1| |#2|) (-10 -7 (-15 -1393 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|))) (-15 -1393 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|) (-776 |#2|) (-776 |#2|)))) (-1013) (-1013)) (T -775))
-((-1393 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-776 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-775 *5 *6)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6)))))
-(-10 -7 (-15 -1393 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|))) (-15 -1393 ((-776 |#2|) (-1 |#2| |#1|) (-776 |#1|) (-776 |#2|) (-776 |#2|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL (|has| |#1| (-21)))) (-2678 (((-1031) $) 24)) (-2057 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2578 (((-521) $) NIL (|has| |#1| (-781)))) (-2231 (($) NIL (|has| |#1| (-21)) CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 16)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 9)) (-2783 (((-3 $ "failed") $) 47 (|has| |#1| (-781)))) (-3762 (((-3 (-381 (-521)) "failed") $) 54 (|has| |#1| (-506)))) (-2428 (((-108) $) 49 (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) 52 (|has| |#1| (-506)))) (-2273 (((-108) $) NIL (|has| |#1| (-781)))) (-2875 (($) 13)) (-3637 (((-108) $) NIL (|has| |#1| (-781)))) (-3305 (((-108) $) NIL (|has| |#1| (-781)))) (-2888 (($) 14)) (-2816 (($ $ $) NIL (|has| |#1| (-781)))) (-2459 (($ $ $) NIL (|has| |#1| (-781)))) (-4024 (((-1067) $) NIL)) (-3095 (((-108) $) 12)) (-4146 (((-1031) $) NIL)) (-2724 (((-108) $) 11)) (-2223 (((-791) $) 22) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 8) (($ (-521)) NIL (-3703 (|has| |#1| (-781)) (|has| |#1| (-961 (-521)))))) (-1592 (((-707)) 41 (|has| |#1| (-781)))) (-4012 (($ $) NIL (|has| |#1| (-781)))) (-3509 (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-707)) NIL (|has| |#1| (-781)))) (-3562 (($) 29 (|has| |#1| (-21)) CONST)) (-3572 (($) 38 (|has| |#1| (-781)) CONST)) (-1597 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1549 (((-108) $ $) 27)) (-1588 (((-108) $ $) NIL (|has| |#1| (-781)))) (-1569 (((-108) $ $) 48 (|has| |#1| (-781)))) (-1639 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1628 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-849)) NIL (|has| |#1| (-781))) (($ $ (-707)) NIL (|has| |#1| (-781)))) (* (($ $ $) 44 (|has| |#1| (-781))) (($ (-521) $) 32 (|has| |#1| (-21))) (($ (-707) $) NIL (|has| |#1| (-21))) (($ (-849) $) NIL (|has| |#1| (-21)))))
-(((-776 |#1|) (-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2875 ($)) (-15 -2888 ($)) (-15 -2724 ((-108) $)) (-15 -3095 ((-108) $)) (-15 -2678 ((-1031) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|))) (-1013)) (T -776))
-((-2875 (*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1013)))) (-2888 (*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1013)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1013)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1013)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-776 *3)) (-4 *3 (-1013)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-776 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))) (-3762 (*1 *2 *1) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-776 *3)) (-4 *3 (-506)) (-4 *3 (-1013)))))
-(-13 (-1013) (-385 |#1|) (-10 -8 (-15 -2875 ($)) (-15 -2888 ($)) (-15 -2724 ((-108) $)) (-15 -3095 ((-108) $)) (-15 -2678 ((-1031) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-781)) |%noBranch|) (IF (|has| |#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|)))
-((-1422 (((-108) $ $) 7)) (-1659 (((-707)) 20)) (-3254 (($) 23)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-3999 (((-849) $) 22)) (-4024 (((-1067) $) 9)) (-2723 (($ (-849)) 21)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)))
-(((-777) (-1196)) (T -777))
-NIL
-(-13 (-783) (-342))
-(((-97) . T) ((-561 (-791)) . T) ((-342) . T) ((-783) . T) ((-1013) . T))
-((-2631 (((-108) (-1165 |#2|) (-1165 |#2|)) 17)) (-3786 (((-108) (-1165 |#2|) (-1165 |#2|)) 18)) (-3701 (((-108) (-1165 |#2|) (-1165 |#2|)) 14)))
-(((-778 |#1| |#2|) (-10 -7 (-15 -3701 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -2631 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -3786 ((-108) (-1165 |#2|) (-1165 |#2|)))) (-707) (-728)) (T -778))
-((-3786 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-778 *4 *5)) (-14 *4 (-707)))) (-2631 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-778 *4 *5)) (-14 *4 (-707)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108)) (-5 *1 (-778 *4 *5)) (-14 *4 (-707)))))
-(-10 -7 (-15 -3701 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -2631 ((-108) (-1165 |#2|) (-1165 |#2|))) (-15 -3786 ((-108) (-1165 |#2|) (-1165 |#2|))))
-((-1422 (((-108) $ $) 7)) (-2231 (($) 24 T CONST)) (-2783 (((-3 $ "failed") $) 28)) (-3637 (((-108) $) 25)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3509 (($ $ (-707)) 27) (($ $ (-849)) 22)) (-3572 (($) 23 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (** (($ $ (-707)) 26) (($ $ (-849)) 21)) (* (($ $ $) 20)))
-(((-779) (-1196)) (T -779))
-NIL
-(-13 (-783) (-663))
-(((-97) . T) ((-561 (-791)) . T) ((-663) . T) ((-783) . T) ((-1025) . T) ((-1013) . T))
-((-2578 (((-521) $) 17)) (-2273 (((-108) $) 10)) (-3305 (((-108) $) 11)) (-4012 (($ $) 19)))
-(((-780 |#1|) (-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -2578 ((-521) |#1|)) (-15 -3305 ((-108) |#1|)) (-15 -2273 ((-108) |#1|))) (-781)) (T -780))
-NIL
-(-10 -8 (-15 -4012 (|#1| |#1|)) (-15 -2578 ((-521) |#1|)) (-15 -3305 ((-108) |#1|)) (-15 -2273 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 24)) (-2057 (((-3 $ "failed") $ $) 26)) (-2578 (((-521) $) 33)) (-2231 (($) 23 T CONST)) (-2783 (((-3 $ "failed") $) 39)) (-2273 (((-108) $) 35)) (-3637 (((-108) $) 42)) (-3305 (((-108) $) 34)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 45)) (-1592 (((-707)) 44)) (-4012 (($ $) 32)) (-3509 (($ $ (-707)) 40) (($ $ (-849)) 36)) (-3562 (($) 22 T CONST)) (-3572 (($) 43 T CONST)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)) (-1639 (($ $ $) 28) (($ $) 27)) (-1628 (($ $ $) 20)) (** (($ $ (-707)) 41) (($ $ (-849)) 37)) (* (($ (-707) $) 25) (($ (-849) $) 21) (($ (-521) $) 29) (($ $ $) 38)))
-(((-781) (-1196)) (T -781))
-((-2273 (*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-521)))) (-4012 (*1 *1 *1) (-4 *1 (-781))))
-(-13 (-727) (-970) (-663) (-10 -8 (-15 -2273 ((-108) $)) (-15 -3305 ((-108) $)) (-15 -2578 ((-521) $)) (-15 -4012 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-783) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2816 (($ $ $) 10)) (-2459 (($ $ $) 9)) (-1597 (((-108) $ $) 13)) (-1579 (((-108) $ $) 11)) (-1588 (((-108) $ $) 14)))
-(((-782 |#1|) (-10 -8 (-15 -2816 (|#1| |#1| |#1|)) (-15 -2459 (|#1| |#1| |#1|)) (-15 -1588 ((-108) |#1| |#1|)) (-15 -1597 ((-108) |#1| |#1|)) (-15 -1579 ((-108) |#1| |#1|))) (-783)) (T -782))
-NIL
-(-10 -8 (-15 -2816 (|#1| |#1| |#1|)) (-15 -2459 (|#1| |#1| |#1|)) (-15 -1588 ((-108) |#1| |#1|)) (-15 -1597 ((-108) |#1| |#1|)) (-15 -1579 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-2816 (($ $ $) 13)) (-2459 (($ $ $) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1597 (((-108) $ $) 16)) (-1579 (((-108) $ $) 17)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 15)) (-1569 (((-108) $ $) 18)))
-(((-783) (-1196)) (T -783))
-((-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-1579 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-1588 (*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108)))) (-2459 (*1 *1 *1 *1) (-4 *1 (-783))) (-2816 (*1 *1 *1 *1) (-4 *1 (-783))))
-(-13 (-1013) (-10 -8 (-15 -1569 ((-108) $ $)) (-15 -1579 ((-108) $ $)) (-15 -1597 ((-108) $ $)) (-15 -1588 ((-108) $ $)) (-15 -2459 ($ $ $)) (-15 -2816 ($ $ $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-2681 (($ $ $) 46)) (-3512 (($ $ $) 45)) (-2500 (($ $ $) 43)) (-2078 (($ $ $) 52)) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 47)) (-2670 (((-3 $ "failed") $ $) 50)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-1563 (($ $) 36)) (-1420 (($ $ $) 40)) (-3881 (($ $ $) 39)) (-3897 (($ $ $) 48)) (-1229 (($ $ $) 54)) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 42)) (-4115 (((-3 $ "failed") $ $) 49)) (-2261 (((-3 $ "failed") $ |#2|) 29)) (-1391 ((|#2| $) 33)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ |#2|) 12)) (-2730 (((-587 |#2|) $) 19)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
-(((-784 |#1| |#2|) (-10 -8 (-15 -3897 (|#1| |#1| |#1|)) (-15 -1867 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1384 |#1|)) |#1| |#1|)) (-15 -2078 (|#1| |#1| |#1|)) (-15 -2670 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -3850 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1384 |#1|)) |#1| |#1|)) (-15 -1229 (|#1| |#1| |#1|)) (-15 -4115 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2730 ((-587 |#2|) |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -2223 ((-791) |#1|))) (-785 |#2|) (-970)) (T -784))
-NIL
-(-10 -8 (-15 -3897 (|#1| |#1| |#1|)) (-15 -1867 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1384 |#1|)) |#1| |#1|)) (-15 -2078 (|#1| |#1| |#1|)) (-15 -2670 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -3512 (|#1| |#1| |#1|)) (-15 -2500 (|#1| |#1| |#1|)) (-15 -3850 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1384 |#1|)) |#1| |#1|)) (-15 -1229 (|#1| |#1| |#1|)) (-15 -4115 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1420 (|#1| |#1| |#1|)) (-15 -3881 (|#1| |#1| |#1|)) (-15 -1563 (|#1| |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -2261 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2730 ((-587 |#2|) |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2681 (($ $ $) 45 (|has| |#1| (-337)))) (-3512 (($ $ $) 46 (|has| |#1| (-337)))) (-2500 (($ $ $) 48 (|has| |#1| (-337)))) (-2078 (($ $ $) 43 (|has| |#1| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 42 (|has| |#1| (-337)))) (-2670 (((-3 $ "failed") $ $) 44 (|has| |#1| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 47 (|has| |#1| (-337)))) (-1296 (((-3 (-521) "failed") $) 74 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 72 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 69)) (-1496 (((-521) $) 75 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 73 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 68)) (-3157 (($ $) 64)) (-2783 (((-3 $ "failed") $) 34)) (-1563 (($ $) 55 (|has| |#1| (-425)))) (-3637 (((-108) $) 31)) (-4044 (($ |#1| (-707)) 62)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57 (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 58 (|has| |#1| (-513)))) (-2401 (((-707) $) 66)) (-1420 (($ $ $) 52 (|has| |#1| (-337)))) (-3881 (($ $ $) 53 (|has| |#1| (-337)))) (-3897 (($ $ $) 41 (|has| |#1| (-337)))) (-1229 (($ $ $) 50 (|has| |#1| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 49 (|has| |#1| (-337)))) (-4115 (((-3 $ "failed") $ $) 51 (|has| |#1| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 54 (|has| |#1| (-337)))) (-3140 ((|#1| $) 65)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-513)))) (-2098 (((-707) $) 67)) (-1391 ((|#1| $) 56 (|has| |#1| (-425)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 71 (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) 70)) (-2730 (((-587 |#1|) $) 61)) (-1499 ((|#1| $ (-707)) 63)) (-1592 (((-707)) 29)) (-1644 ((|#1| $ |#1| |#1|) 60)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-785 |#1|) (-1196) (-970)) (T -785))
-((-2098 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)))) (-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-785 *2)) (-4 *2 (-970)))) (-4044 (*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-785 *2)) (-4 *2 (-970)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-970)) (-5 *2 (-587 *3)))) (-1644 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-2984 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-425)))) (-1563 (*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-425)))) (-3728 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3)))) (-3881 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1420 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-4115 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1229 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-3850 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1384 *1))) (-4 *1 (-785 *3)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-3180 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3)))) (-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2681 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2670 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-2078 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1867 (*1 *2 *1 *1) (-12 (-4 *3 (-337)) (-4 *3 (-970)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1384 *1))) (-4 *1 (-785 *3)))) (-3897 (*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(-13 (-970) (-107 |t#1| |t#1|) (-385 |t#1|) (-10 -8 (-15 -2098 ((-707) $)) (-15 -2401 ((-707) $)) (-15 -3140 (|t#1| $)) (-15 -3157 ($ $)) (-15 -1499 (|t#1| $ (-707))) (-15 -4044 ($ |t#1| (-707))) (-15 -2730 ((-587 |t#1|) $)) (-15 -1644 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -2261 ((-3 $ "failed") $ |t#1|)) (-15 -2984 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3030 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-15 -1391 (|t#1| $)) (-15 -1563 ($ $))) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-15 -3728 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3881 ($ $ $)) (-15 -1420 ($ $ $)) (-15 -4115 ((-3 $ "failed") $ $)) (-15 -1229 ($ $ $)) (-15 -3850 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $)) (-15 -2500 ($ $ $)) (-15 -3180 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3512 ($ $ $)) (-15 -2681 ($ $ $)) (-15 -2670 ((-3 $ "failed") $ $)) (-15 -2078 ($ $ $)) (-15 -1867 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $)) (-15 -3897 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-385 |#1|) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2494 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-3180 (((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-337)))) (-3030 (((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-513)))) (-3728 (((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-337)))) (-1644 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
-(((-786 |#1| |#2|) (-10 -7 (-15 -2494 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1644 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-513)) (PROGN (-15 -2984 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3030 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -3728 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3180 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-970) (-785 |#1|)) (T -786))
-((-3180 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-3728 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-3030 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-2984 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3)) (-4 *3 (-785 *5)))) (-1644 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-970)) (-5 *1 (-786 *2 *3)) (-4 *3 (-785 *2)))) (-2494 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-970)) (-5 *1 (-786 *5 *2)) (-4 *2 (-785 *5)))))
-(-10 -7 (-15 -2494 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1644 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-513)) (PROGN (-15 -2984 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3030 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -3728 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3180 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2681 (($ $ $) NIL (|has| |#1| (-337)))) (-3512 (($ $ $) NIL (|has| |#1| (-337)))) (-2500 (($ $ $) NIL (|has| |#1| (-337)))) (-2078 (($ $ $) NIL (|has| |#1| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2670 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 25 (|has| |#1| (-337)))) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425)))) (-1526 (((-791) $ (-791)) NIL)) (-3637 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) NIL)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 21 (|has| |#1| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 19 (|has| |#1| (-513)))) (-2401 (((-707) $) NIL)) (-1420 (($ $ $) NIL (|has| |#1| (-337)))) (-3881 (($ $ $) NIL (|has| |#1| (-337)))) (-3897 (($ $ $) NIL (|has| |#1| (-337)))) (-1229 (($ $ $) NIL (|has| |#1| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-4115 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 23 (|has| |#1| (-337)))) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2098 (((-707) $) NIL)) (-1391 ((|#1| $) NIL (|has| |#1| (-425)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-961 (-381 (-521))))) (($ |#1|) NIL)) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) NIL)) (-1592 (((-707)) NIL)) (-1644 ((|#1| $ |#1| |#1|) 15)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-787 |#1| |#2| |#3|) (-13 (-785 |#1|) (-10 -8 (-15 -1526 ((-791) $ (-791))))) (-970) (-94 |#1|) (-1 |#1| |#1|)) (T -787))
-((-1526 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-787 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-785 |#1|) (-10 -8 (-15 -1526 ((-791) $ (-791)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2681 (($ $ $) NIL (|has| |#2| (-337)))) (-3512 (($ $ $) NIL (|has| |#2| (-337)))) (-2500 (($ $ $) NIL (|has| |#2| (-337)))) (-2078 (($ $ $) NIL (|has| |#2| (-337)))) (-1867 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#2| (-337)))) (-2670 (((-3 $ "failed") $ $) NIL (|has| |#2| (-337)))) (-3180 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-337)))) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#2| (-425)))) (-3637 (((-108) $) NIL)) (-4044 (($ |#2| (-707)) 16)) (-3030 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-513)))) (-2984 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-513)))) (-2401 (((-707) $) NIL)) (-1420 (($ $ $) NIL (|has| |#2| (-337)))) (-3881 (($ $ $) NIL (|has| |#2| (-337)))) (-3897 (($ $ $) NIL (|has| |#2| (-337)))) (-1229 (($ $ $) NIL (|has| |#2| (-337)))) (-3850 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#2| (-337)))) (-4115 (((-3 $ "failed") $ $) NIL (|has| |#2| (-337)))) (-3728 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-337)))) (-3140 ((|#2| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513)))) (-2098 (((-707) $) NIL)) (-1391 ((|#2| $) NIL (|has| |#2| (-425)))) (-2223 (((-791) $) 23) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) NIL) (($ (-1161 |#1|)) 18)) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-707)) NIL)) (-1592 (((-707)) NIL)) (-1644 ((|#2| $ |#2| |#2|) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) 13 T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-788 |#1| |#2| |#3| |#4|) (-13 (-785 |#2|) (-10 -8 (-15 -2223 ($ (-1161 |#1|))))) (-1084) (-970) (-94 |#2|) (-1 |#2| |#2|)) (T -788))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-788 *3 *4 *5 *6)) (-4 *4 (-970)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-785 |#2|) (-10 -8 (-15 -2223 ($ (-1161 |#1|)))))
-((-2216 ((|#1| (-707) |#1|) 35 (|has| |#1| (-37 (-381 (-521)))))) (-3541 ((|#1| (-707) (-707) |#1|) 27) ((|#1| (-707) |#1|) 20)) (-1737 ((|#1| (-707) |#1|) 31)) (-1381 ((|#1| (-707) |#1|) 29)) (-3088 ((|#1| (-707) |#1|) 28)))
-(((-789 |#1|) (-10 -7 (-15 -3088 (|#1| (-707) |#1|)) (-15 -1381 (|#1| (-707) |#1|)) (-15 -1737 (|#1| (-707) |#1|)) (-15 -3541 (|#1| (-707) |#1|)) (-15 -3541 (|#1| (-707) (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2216 (|#1| (-707) |#1|)) |%noBranch|)) (-157)) (T -789))
-((-2216 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-157)))) (-3541 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-3541 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-1381 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))) (-3088 (*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))))
-(-10 -7 (-15 -3088 (|#1| (-707) |#1|)) (-15 -1381 (|#1| (-707) |#1|)) (-15 -1737 (|#1| (-707) |#1|)) (-15 -3541 (|#1| (-707) |#1|)) (-15 -3541 (|#1| (-707) (-707) |#1|)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -2216 (|#1| (-707) |#1|)) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-3434 (((-521) $) 12)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 18) (($ (-521)) 11)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 8)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 9)))
-(((-790) (-13 (-783) (-10 -8 (-15 -2223 ($ (-521))) (-15 -3434 ((-521) $))))) (T -790))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-790)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-790)))))
-(-13 (-783) (-10 -8 (-15 -2223 ($ (-521))) (-15 -3434 ((-521) $))))
-((-1422 (((-108) $ $) NIL)) (-2479 (($ $ $) 115)) (-2650 (((-521) $) 30) (((-521)) 35)) (-3375 (($ (-521)) 44)) (-1995 (($ $ $) 45) (($ (-587 $)) 76)) (-3342 (($ $ (-587 $)) 74)) (-2176 (((-521) $) 33)) (-1774 (($ $ $) 63)) (-3517 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2285 (((-521) $) 32)) (-3406 (($ $ $) 62)) (-1523 (($ $) 105)) (-1950 (($ $ $) 119)) (-1951 (($ (-587 $)) 52)) (-2531 (($ $ (-587 $)) 69)) (-3455 (($ (-521) (-521)) 46)) (-4093 (($ $) 116) (($ $ $) 117)) (-1981 (($ $ (-521)) 40) (($ $) 43)) (-2302 (($ $ $) 89)) (-2390 (($ $ $) 122)) (-4167 (($ $) 106)) (-2282 (($ $ $) 90)) (-2992 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2093 (((-1170) $) 8)) (-1820 (($ $) 109) (($ $ (-707)) 112)) (-3738 (($ $ $) 65)) (-2749 (($ $ $) 64)) (-3374 (($ $ (-587 $)) 100)) (-2434 (($ $ $) 104)) (-3166 (($ (-587 $)) 50)) (-2707 (($ $) 60) (($ (-587 $)) 61)) (-3358 (($ $ $) 113)) (-1481 (($ $) 107)) (-2571 (($ $ $) 118)) (-1526 (($ (-521)) 20) (($ (-1084)) 22) (($ (-1067)) 29) (($ (-202)) 24)) (-3994 (($ $ $) 93)) (-2416 (($ $) 94)) (-3460 (((-1170) (-1067)) 14)) (-2839 (($ (-1067)) 13)) (-1365 (($ (-587 (-587 $))) 48)) (-1970 (($ $ (-521)) 39) (($ $) 42)) (-4024 (((-1067) $) NIL)) (-2908 (($ $ $) 121)) (-1412 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3876 (((-108) $) 98)) (-3870 (($ $ (-587 $)) 102) (($ $ $ $) 103)) (-2372 (($ (-521)) 36)) (-4151 (((-521) $) 31) (((-521)) 34)) (-1385 (($ $ $) 37) (($ (-587 $)) 75)) (-4146 (((-1031) $) NIL)) (-2261 (($ $ $) 91)) (-2280 (($) 12)) (-2550 (($ $ (-587 $)) 99)) (-4103 (($ $) 108) (($ $ (-707)) 111)) (-2271 (($ $ $) 88)) (-2193 (($ $ (-707)) 127)) (-2028 (($ (-587 $)) 51)) (-2223 (((-791) $) 18)) (-1952 (($ $ (-521)) 38) (($ $) 41)) (-2745 (($ $) 58) (($ (-587 $)) 59)) (-3391 (($ $) 56) (($ (-587 $)) 57)) (-2342 (($ $) 114)) (-3346 (($ (-587 $)) 55)) (-2475 (($ $ $) 97)) (-2275 (($ $ $) 120)) (-4009 (($ $ $) 92)) (-2441 (($ $ $) 77)) (-1713 (($ $ $) 95) (($ $) 96)) (-1597 (($ $ $) 81)) (-1579 (($ $ $) 79)) (-1549 (((-108) $ $) 15) (($ $ $) 16)) (-1588 (($ $ $) 80)) (-1569 (($ $ $) 78)) (-1648 (($ $ $) 86)) (-1639 (($ $ $) 83) (($ $) 84)) (-1628 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-791) (-13 (-1013) (-10 -8 (-15 -2093 ((-1170) $)) (-15 -2839 ($ (-1067))) (-15 -3460 ((-1170) (-1067))) (-15 -1526 ($ (-521))) (-15 -1526 ($ (-1084))) (-15 -1526 ($ (-1067))) (-15 -1526 ($ (-202))) (-15 -2280 ($)) (-15 -2650 ((-521) $)) (-15 -4151 ((-521) $)) (-15 -2650 ((-521))) (-15 -4151 ((-521))) (-15 -2285 ((-521) $)) (-15 -2176 ((-521) $)) (-15 -2372 ($ (-521))) (-15 -3375 ($ (-521))) (-15 -3455 ($ (-521) (-521))) (-15 -1970 ($ $ (-521))) (-15 -1981 ($ $ (-521))) (-15 -1952 ($ $ (-521))) (-15 -1970 ($ $)) (-15 -1981 ($ $)) (-15 -1952 ($ $)) (-15 -1385 ($ $ $)) (-15 -1995 ($ $ $)) (-15 -1385 ($ (-587 $))) (-15 -1995 ($ (-587 $))) (-15 -3374 ($ $ (-587 $))) (-15 -3870 ($ $ (-587 $))) (-15 -3870 ($ $ $ $)) (-15 -2434 ($ $ $)) (-15 -3876 ((-108) $)) (-15 -2550 ($ $ (-587 $))) (-15 -1523 ($ $)) (-15 -2908 ($ $ $)) (-15 -2342 ($ $)) (-15 -1365 ($ (-587 (-587 $)))) (-15 -2479 ($ $ $)) (-15 -4093 ($ $)) (-15 -4093 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2390 ($ $ $)) (-15 -2193 ($ $ (-707))) (-15 -2475 ($ $ $)) (-15 -3406 ($ $ $)) (-15 -1774 ($ $ $)) (-15 -2749 ($ $ $)) (-15 -3738 ($ $ $)) (-15 -2531 ($ $ (-587 $))) (-15 -3342 ($ $ (-587 $))) (-15 -4167 ($ $)) (-15 -4103 ($ $)) (-15 -4103 ($ $ (-707))) (-15 -1820 ($ $)) (-15 -1820 ($ $ (-707))) (-15 -1481 ($ $)) (-15 -3358 ($ $ $)) (-15 -3517 ($ $)) (-15 -3517 ($ $ $)) (-15 -3517 ($ $ $ $)) (-15 -2992 ($ $)) (-15 -2992 ($ $ $)) (-15 -2992 ($ $ $ $)) (-15 -1412 ($ $)) (-15 -1412 ($ $ $)) (-15 -1412 ($ $ $ $)) (-15 -3391 ($ $)) (-15 -3391 ($ (-587 $))) (-15 -2745 ($ $)) (-15 -2745 ($ (-587 $))) (-15 -2707 ($ $)) (-15 -2707 ($ (-587 $))) (-15 -3166 ($ (-587 $))) (-15 -2028 ($ (-587 $))) (-15 -1951 ($ (-587 $))) (-15 -3346 ($ (-587 $))) (-15 -1549 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -1569 ($ $ $)) (-15 -1579 ($ $ $)) (-15 -1588 ($ $ $)) (-15 -1597 ($ $ $)) (-15 -1628 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -1639 ($ $)) (-15 * ($ $ $)) (-15 -1648 ($ $ $)) (-15 ** ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2261 ($ $ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -2416 ($ $)) (-15 -1713 ($ $ $)) (-15 -1713 ($ $))))) (T -791))
-((-2093 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-791)))) (-2839 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-791)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-791)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-791)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-791)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-791)))) (-2280 (*1 *1) (-5 *1 (-791))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-2650 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-4151 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-3455 (*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-1970 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-1981 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-1952 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))) (-1970 (*1 *1 *1) (-5 *1 (-791))) (-1981 (*1 *1 *1) (-5 *1 (-791))) (-1952 (*1 *1 *1) (-5 *1 (-791))) (-1385 (*1 *1 *1 *1) (-5 *1 (-791))) (-1995 (*1 *1 *1 *1) (-5 *1 (-791))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-1995 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-3870 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-2434 (*1 *1 *1 *1) (-5 *1 (-791))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-791)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-1523 (*1 *1 *1) (-5 *1 (-791))) (-2908 (*1 *1 *1 *1) (-5 *1 (-791))) (-2342 (*1 *1 *1) (-5 *1 (-791))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-791)))) (-5 *1 (-791)))) (-2479 (*1 *1 *1 *1) (-5 *1 (-791))) (-4093 (*1 *1 *1) (-5 *1 (-791))) (-4093 (*1 *1 *1 *1) (-5 *1 (-791))) (-2571 (*1 *1 *1 *1) (-5 *1 (-791))) (-1950 (*1 *1 *1 *1) (-5 *1 (-791))) (-2275 (*1 *1 *1 *1) (-5 *1 (-791))) (-2390 (*1 *1 *1 *1) (-5 *1 (-791))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-791)))) (-2475 (*1 *1 *1 *1) (-5 *1 (-791))) (-3406 (*1 *1 *1 *1) (-5 *1 (-791))) (-1774 (*1 *1 *1 *1) (-5 *1 (-791))) (-2749 (*1 *1 *1 *1) (-5 *1 (-791))) (-3738 (*1 *1 *1 *1) (-5 *1 (-791))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-3342 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-4167 (*1 *1 *1) (-5 *1 (-791))) (-4103 (*1 *1 *1) (-5 *1 (-791))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-791)))) (-1820 (*1 *1 *1) (-5 *1 (-791))) (-1820 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-791)))) (-1481 (*1 *1 *1) (-5 *1 (-791))) (-3358 (*1 *1 *1 *1) (-5 *1 (-791))) (-3517 (*1 *1 *1) (-5 *1 (-791))) (-3517 (*1 *1 *1 *1) (-5 *1 (-791))) (-3517 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-2992 (*1 *1 *1) (-5 *1 (-791))) (-2992 (*1 *1 *1 *1) (-5 *1 (-791))) (-2992 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-1412 (*1 *1 *1) (-5 *1 (-791))) (-1412 (*1 *1 *1 *1) (-5 *1 (-791))) (-1412 (*1 *1 *1 *1 *1) (-5 *1 (-791))) (-3391 (*1 *1 *1) (-5 *1 (-791))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-2745 (*1 *1 *1) (-5 *1 (-791))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-2707 (*1 *1 *1) (-5 *1 (-791))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-3166 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))) (-1549 (*1 *1 *1 *1) (-5 *1 (-791))) (-2441 (*1 *1 *1 *1) (-5 *1 (-791))) (-1569 (*1 *1 *1 *1) (-5 *1 (-791))) (-1579 (*1 *1 *1 *1) (-5 *1 (-791))) (-1588 (*1 *1 *1 *1) (-5 *1 (-791))) (-1597 (*1 *1 *1 *1) (-5 *1 (-791))) (-1628 (*1 *1 *1 *1) (-5 *1 (-791))) (-1639 (*1 *1 *1 *1) (-5 *1 (-791))) (-1639 (*1 *1 *1) (-5 *1 (-791))) (* (*1 *1 *1 *1) (-5 *1 (-791))) (-1648 (*1 *1 *1 *1) (-5 *1 (-791))) (** (*1 *1 *1 *1) (-5 *1 (-791))) (-2271 (*1 *1 *1 *1) (-5 *1 (-791))) (-2302 (*1 *1 *1 *1) (-5 *1 (-791))) (-2282 (*1 *1 *1 *1) (-5 *1 (-791))) (-2261 (*1 *1 *1 *1) (-5 *1 (-791))) (-4009 (*1 *1 *1 *1) (-5 *1 (-791))) (-3994 (*1 *1 *1 *1) (-5 *1 (-791))) (-2416 (*1 *1 *1) (-5 *1 (-791))) (-1713 (*1 *1 *1 *1) (-5 *1 (-791))) (-1713 (*1 *1 *1) (-5 *1 (-791))))
-(-13 (-1013) (-10 -8 (-15 -2093 ((-1170) $)) (-15 -2839 ($ (-1067))) (-15 -3460 ((-1170) (-1067))) (-15 -1526 ($ (-521))) (-15 -1526 ($ (-1084))) (-15 -1526 ($ (-1067))) (-15 -1526 ($ (-202))) (-15 -2280 ($)) (-15 -2650 ((-521) $)) (-15 -4151 ((-521) $)) (-15 -2650 ((-521))) (-15 -4151 ((-521))) (-15 -2285 ((-521) $)) (-15 -2176 ((-521) $)) (-15 -2372 ($ (-521))) (-15 -3375 ($ (-521))) (-15 -3455 ($ (-521) (-521))) (-15 -1970 ($ $ (-521))) (-15 -1981 ($ $ (-521))) (-15 -1952 ($ $ (-521))) (-15 -1970 ($ $)) (-15 -1981 ($ $)) (-15 -1952 ($ $)) (-15 -1385 ($ $ $)) (-15 -1995 ($ $ $)) (-15 -1385 ($ (-587 $))) (-15 -1995 ($ (-587 $))) (-15 -3374 ($ $ (-587 $))) (-15 -3870 ($ $ (-587 $))) (-15 -3870 ($ $ $ $)) (-15 -2434 ($ $ $)) (-15 -3876 ((-108) $)) (-15 -2550 ($ $ (-587 $))) (-15 -1523 ($ $)) (-15 -2908 ($ $ $)) (-15 -2342 ($ $)) (-15 -1365 ($ (-587 (-587 $)))) (-15 -2479 ($ $ $)) (-15 -4093 ($ $)) (-15 -4093 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -2275 ($ $ $)) (-15 -2390 ($ $ $)) (-15 -2193 ($ $ (-707))) (-15 -2475 ($ $ $)) (-15 -3406 ($ $ $)) (-15 -1774 ($ $ $)) (-15 -2749 ($ $ $)) (-15 -3738 ($ $ $)) (-15 -2531 ($ $ (-587 $))) (-15 -3342 ($ $ (-587 $))) (-15 -4167 ($ $)) (-15 -4103 ($ $)) (-15 -4103 ($ $ (-707))) (-15 -1820 ($ $)) (-15 -1820 ($ $ (-707))) (-15 -1481 ($ $)) (-15 -3358 ($ $ $)) (-15 -3517 ($ $)) (-15 -3517 ($ $ $)) (-15 -3517 ($ $ $ $)) (-15 -2992 ($ $)) (-15 -2992 ($ $ $)) (-15 -2992 ($ $ $ $)) (-15 -1412 ($ $)) (-15 -1412 ($ $ $)) (-15 -1412 ($ $ $ $)) (-15 -3391 ($ $)) (-15 -3391 ($ (-587 $))) (-15 -2745 ($ $)) (-15 -2745 ($ (-587 $))) (-15 -2707 ($ $)) (-15 -2707 ($ (-587 $))) (-15 -3166 ($ (-587 $))) (-15 -2028 ($ (-587 $))) (-15 -1951 ($ (-587 $))) (-15 -3346 ($ (-587 $))) (-15 -1549 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -1569 ($ $ $)) (-15 -1579 ($ $ $)) (-15 -1588 ($ $ $)) (-15 -1597 ($ $ $)) (-15 -1628 ($ $ $)) (-15 -1639 ($ $ $)) (-15 -1639 ($ $)) (-15 * ($ $ $)) (-15 -1648 ($ $ $)) (-15 ** ($ $ $)) (-15 -2271 ($ $ $)) (-15 -2302 ($ $ $)) (-15 -2282 ($ $ $)) (-15 -2261 ($ $ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -2416 ($ $)) (-15 -1713 ($ $ $)) (-15 -1713 ($ $))))
-((-1495 (((-1170) (-587 (-51))) 24)) (-1610 (((-1170) (-1067) (-791)) 14) (((-1170) (-791)) 9) (((-1170) (-1067)) 11)))
-(((-792) (-10 -7 (-15 -1610 ((-1170) (-1067))) (-15 -1610 ((-1170) (-791))) (-15 -1610 ((-1170) (-1067) (-791))) (-15 -1495 ((-1170) (-587 (-51)))))) (T -792))
-((-1495 (*1 *2 *3) (-12 (-5 *3 (-587 (-51))) (-5 *2 (-1170)) (-5 *1 (-792)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-791)) (-5 *2 (-1170)) (-5 *1 (-792)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-792)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-792)))))
-(-10 -7 (-15 -1610 ((-1170) (-1067))) (-15 -1610 ((-1170) (-791))) (-15 -1610 ((-1170) (-1067) (-791))) (-15 -1495 ((-1170) (-587 (-51)))))
-((-1422 (((-108) $ $) NIL)) (-1638 (((-3 $ "failed") (-1084)) 32)) (-1659 (((-707)) 30)) (-3254 (($) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-3999 (((-849) $) 28)) (-4024 (((-1067) $) 38)) (-2723 (($ (-849)) 27)) (-4146 (((-1031) $) NIL)) (-1438 (((-1084) $) 13) (((-497) $) 19) (((-820 (-353)) $) 25) (((-820 (-521)) $) 22)) (-2223 (((-791) $) 16)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 35)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 34)))
-(((-793 |#1|) (-13 (-777) (-562 (-1084)) (-562 (-497)) (-562 (-820 (-353))) (-562 (-820 (-521))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1084))))) (-587 (-1084))) (T -793))
-((-1638 (*1 *1 *2) (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-793 *3)) (-14 *3 (-587 *2)))))
-(-13 (-777) (-562 (-1084)) (-562 (-497)) (-562 (-820 (-353))) (-562 (-820 (-521))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1084)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (((-880 |#1|) $) NIL) (($ (-880 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-157)))) (-1592 (((-707)) NIL)) (-3479 (((-1170) (-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1648 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-794 |#1| |#2| |#3| |#4|) (-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2223 ((-880 |#1|) $)) (-15 -2223 ($ (-880 |#1|))) (IF (|has| |#1| (-337)) (-15 -1648 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3479 ((-1170) (-707))))) (-970) (-587 (-1084)) (-587 (-707)) (-707)) (T -794))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-880 *3)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *3 (-970)) (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-970)) (-5 *1 (-794 *3 *4 *5 *6)) (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707)))) (-1648 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-794 *2 *3 *4 *5)) (-4 *2 (-337)) (-4 *2 (-970)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-707))) (-14 *5 (-707)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-794 *4 *5 *6 *7)) (-4 *4 (-970)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 *3)) (-14 *7 *3))))
-(-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2223 ((-880 |#1|) $)) (-15 -2223 ($ (-880 |#1|))) (IF (|has| |#1| (-337)) (-15 -1648 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3479 ((-1170) (-707)))))
-((-1772 (((-3 (-158 |#3|) "failed") (-707) (-707) |#2| |#2|) 31)) (-4059 (((-3 (-381 |#3|) "failed") (-707) (-707) |#2| |#2|) 24)))
-(((-795 |#1| |#2| |#3|) (-10 -7 (-15 -4059 ((-3 (-381 |#3|) "failed") (-707) (-707) |#2| |#2|)) (-15 -1772 ((-3 (-158 |#3|) "failed") (-707) (-707) |#2| |#2|))) (-337) (-1156 |#1|) (-1141 |#1|)) (T -795))
-((-1772 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-158 *6)) (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5)))) (-4059 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-381 *6)) (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5)))))
-(-10 -7 (-15 -4059 ((-3 (-381 |#3|) "failed") (-707) (-707) |#2| |#2|)) (-15 -1772 ((-3 (-158 |#3|) "failed") (-707) (-707) |#2| |#2|)))
-((-4059 (((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|)) 28) (((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) 26)))
-(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -4059 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (-15 -4059 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|)))) (-337) (-1084) |#1|) (T -796))
-((-4059 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337)) (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5))) (-5 *1 (-796 *5 *6 *7)))) (-4059 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337)) (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5))) (-5 *1 (-796 *5 *6 *7)))))
-(-10 -7 (-15 -4059 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (-15 -4059 ((-3 (-381 (-1138 |#2| |#1|)) "failed") (-707) (-707) (-1157 |#1| |#2| |#3|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-1984 (($ $ (-521)) 62)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-4093 (($ (-1080 (-521)) (-521)) 61)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-3751 (($ $) 64)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-3490 (((-707) $) 69)) (-3637 (((-108) $) 31)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-3967 (((-521)) 66)) (-2067 (((-521) $) 65)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2191 (($ $ (-521)) 68)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-3312 (((-1065 (-521)) $) 70)) (-2145 (($ $) 67)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3893 (((-521) $ (-521)) 63)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-797 |#1|) (-1196) (-521)) (T -797))
-((-3312 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-1065 (-521))))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-707)))) (-2191 (*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))) (-2145 (*1 *1 *1) (-4 *1 (-797 *2))) (-3967 (*1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))) (-3751 (*1 *1 *1) (-4 *1 (-797 *2))) (-3893 (*1 *2 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))) (-1984 (*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))) (-4093 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *3 (-521)) (-4 *1 (-797 *4)))))
-(-13 (-282) (-135) (-10 -8 (-15 -3312 ((-1065 (-521)) $)) (-15 -3490 ((-707) $)) (-15 -2191 ($ $ (-521))) (-15 -2145 ($ $)) (-15 -3967 ((-521))) (-15 -2067 ((-521) $)) (-15 -3751 ($ $)) (-15 -3893 ((-521) $ (-521))) (-15 -1984 ($ $ (-521))) (-15 -4093 ($ (-1080 (-521)) (-521)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-282) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $ (-521)) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-4093 (($ (-1080 (-521)) (-521)) NIL)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3751 (($ $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-3490 (((-707) $) NIL)) (-3637 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3967 (((-521)) NIL)) (-2067 (((-521) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2191 (($ $ (-521)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3312 (((-1065 (-521)) $) NIL)) (-2145 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL)) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL)) (-3893 (((-521) $ (-521)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
-(((-798 |#1|) (-797 |#1|) (-521)) (T -798))
-NIL
-(-797 |#1|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-798 |#1|) $) NIL (|has| (-798 |#1|) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-798 |#1|) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-798 |#1|) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-798 |#1|) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-798 |#1|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| (-798 |#1|) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-798 |#1|) (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| (-798 |#1|) (-961 (-521))))) (-1496 (((-798 |#1|) $) NIL) (((-1084) $) NIL (|has| (-798 |#1|) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-798 |#1|) (-961 (-521)))) (((-521) $) NIL (|has| (-798 |#1|) (-961 (-521))))) (-2274 (($ $) NIL) (($ (-521) $) NIL)) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-798 |#1|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-798 |#1|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-798 |#1|))) (|:| |vec| (-1165 (-798 |#1|)))) (-627 $) (-1165 $)) NIL) (((-627 (-798 |#1|)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-798 |#1|) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| (-798 |#1|) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-798 |#1|) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-798 |#1|) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-798 |#1|) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-798 |#1|) (-1060)))) (-3305 (((-108) $) NIL (|has| (-798 |#1|) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-798 |#1|) (-783)))) (-2459 (($ $ $) NIL (|has| (-798 |#1|) (-783)))) (-1393 (($ (-1 (-798 |#1|) (-798 |#1|)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-798 |#1|) (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-798 |#1|) (-282)))) (-2720 (((-798 |#1|) $) NIL (|has| (-798 |#1|) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-798 |#1|) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-798 |#1|) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-798 |#1|)) (-587 (-798 |#1|))) NIL (|has| (-798 |#1|) (-284 (-798 |#1|)))) (($ $ (-798 |#1|) (-798 |#1|)) NIL (|has| (-798 |#1|) (-284 (-798 |#1|)))) (($ $ (-269 (-798 |#1|))) NIL (|has| (-798 |#1|) (-284 (-798 |#1|)))) (($ $ (-587 (-269 (-798 |#1|)))) NIL (|has| (-798 |#1|) (-284 (-798 |#1|)))) (($ $ (-587 (-1084)) (-587 (-798 |#1|))) NIL (|has| (-798 |#1|) (-482 (-1084) (-798 |#1|)))) (($ $ (-1084) (-798 |#1|)) NIL (|has| (-798 |#1|) (-482 (-1084) (-798 |#1|))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-798 |#1|)) NIL (|has| (-798 |#1|) (-261 (-798 |#1|) (-798 |#1|))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| (-798 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-798 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-1 (-798 |#1|) (-798 |#1|)) (-707)) NIL) (($ $ (-1 (-798 |#1|) (-798 |#1|))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-798 |#1|) $) NIL)) (-1438 (((-820 (-521)) $) NIL (|has| (-798 |#1|) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-798 |#1|) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-798 |#1|) (-562 (-497)))) (((-353) $) NIL (|has| (-798 |#1|) (-946))) (((-202) $) NIL (|has| (-798 |#1|) (-946)))) (-1714 (((-158 (-381 (-521))) $) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-798 |#1|) (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL) (($ (-798 |#1|)) NIL) (($ (-1084)) NIL (|has| (-798 |#1|) (-961 (-1084))))) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-798 |#1|) (-837))) (|has| (-798 |#1|) (-133))))) (-1592 (((-707)) NIL)) (-1281 (((-798 |#1|) $) NIL (|has| (-798 |#1|) (-506)))) (-1842 (((-108) $ $) NIL)) (-3893 (((-381 (-521)) $ (-521)) NIL)) (-4012 (($ $) NIL (|has| (-798 |#1|) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $) NIL (|has| (-798 |#1|) (-210))) (($ $ (-707)) NIL (|has| (-798 |#1|) (-210))) (($ $ (-1084)) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-798 |#1|) (-828 (-1084)))) (($ $ (-1 (-798 |#1|) (-798 |#1|)) (-707)) NIL) (($ $ (-1 (-798 |#1|) (-798 |#1|))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-798 |#1|) (-783)))) (-1648 (($ $ $) NIL) (($ (-798 |#1|) (-798 |#1|)) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-798 |#1|) $) NIL) (($ $ (-798 |#1|)) NIL)))
-(((-799 |#1|) (-13 (-918 (-798 |#1|)) (-10 -8 (-15 -3893 ((-381 (-521)) $ (-521))) (-15 -1714 ((-158 (-381 (-521))) $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $)))) (-521)) (T -799))
-((-3893 (*1 *2 *1 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-799 *4)) (-14 *4 *3) (-5 *3 (-521)))) (-1714 (*1 *2 *1) (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-799 *3)) (-14 *3 (-521)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-14 *2 (-521)))) (-2274 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-799 *3)) (-14 *3 *2))))
-(-13 (-918 (-798 |#1|)) (-10 -8 (-15 -3893 ((-381 (-521)) $ (-521))) (-15 -1714 ((-158 (-381 (-521))) $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 ((|#2| $) NIL (|has| |#2| (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| |#2| (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (|has| |#2| (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521))))) (-1496 ((|#2| $) NIL) (((-1084) $) NIL (|has| |#2| (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-521)))) (((-521) $) NIL (|has| |#2| (-961 (-521))))) (-2274 (($ $) 31) (($ (-521) $) 32)) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) 53)) (-3254 (($) NIL (|has| |#2| (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) NIL (|has| |#2| (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| |#2| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| |#2| (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 ((|#2| $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#2| (-1060)))) (-3305 (((-108) $) NIL (|has| |#2| (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| |#2| (-783)))) (-2459 (($ $ $) NIL (|has| |#2| (-783)))) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 49)) (-3797 (($) NIL (|has| |#2| (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| |#2| (-282)))) (-2720 ((|#2| $) NIL (|has| |#2| (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 |#2|) (-587 |#2|)) NIL (|has| |#2| (-284 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-284 |#2|))) (($ $ (-269 |#2|)) NIL (|has| |#2| (-284 |#2|))) (($ $ (-587 (-269 |#2|))) NIL (|has| |#2| (-284 |#2|))) (($ $ (-587 (-1084)) (-587 |#2|)) NIL (|has| |#2| (-482 (-1084) |#2|))) (($ $ (-1084) |#2|) NIL (|has| |#2| (-482 (-1084) |#2|)))) (-3794 (((-707) $) NIL)) (-2550 (($ $ |#2|) NIL (|has| |#2| (-261 |#2| |#2|)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) NIL (|has| |#2| (-210))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2259 (($ $) NIL)) (-2818 ((|#2| $) NIL)) (-1438 (((-820 (-521)) $) NIL (|has| |#2| (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| |#2| (-562 (-820 (-353))))) (((-497) $) NIL (|has| |#2| (-562 (-497)))) (((-353) $) NIL (|has| |#2| (-946))) (((-202) $) NIL (|has| |#2| (-946)))) (-1714 (((-158 (-381 (-521))) $) 68)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-2223 (((-791) $) 86) (($ (-521)) 19) (($ $) NIL) (($ (-381 (-521))) 24) (($ |#2|) 18) (($ (-1084)) NIL (|has| |#2| (-961 (-1084))))) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-1592 (((-707)) NIL)) (-1281 ((|#2| $) NIL (|has| |#2| (-506)))) (-1842 (((-108) $ $) NIL)) (-3893 (((-381 (-521)) $ (-521)) 60)) (-4012 (($ $) NIL (|has| |#2| (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 14 T CONST)) (-3572 (($) 16 T CONST)) (-2244 (($ $) NIL (|has| |#2| (-210))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1549 (((-108) $ $) 35)) (-1588 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1648 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1639 (($ $) 39) (($ $ $) 41)) (-1628 (($ $ $) 37)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) 50)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 42) (($ $ $) 44) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-800 |#1| |#2|) (-13 (-918 |#2|) (-10 -8 (-15 -3893 ((-381 (-521)) $ (-521))) (-15 -1714 ((-158 (-381 (-521))) $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $)))) (-521) (-797 |#1|)) (T -800))
-((-3893 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-381 (-521))) (-5 *1 (-800 *4 *5)) (-5 *3 (-521)) (-4 *5 (-797 *4)))) (-1714 (*1 *2 *1) (-12 (-14 *3 (-521)) (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-800 *3 *4)) (-4 *4 (-797 *3)))) (-2274 (*1 *1 *1) (-12 (-14 *2 (-521)) (-5 *1 (-800 *2 *3)) (-4 *3 (-797 *2)))) (-2274 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-14 *3 *2) (-5 *1 (-800 *3 *4)) (-4 *4 (-797 *3)))))
-(-13 (-918 |#2|) (-10 -8 (-15 -3893 ((-381 (-521)) $ (-521))) (-15 -1714 ((-158 (-381 (-521))) $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $))))
-((-1422 (((-108) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) (-2124 ((|#2| $) 12)) (-2756 (($ |#1| |#2|) 9)) (-4024 (((-1067) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) (-4146 (((-1031) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#1| $) 11)) (-2234 (($ |#1| |#2|) 10)) (-2223 (((-791) $) 18 (-3703 (-12 (|has| |#1| (-561 (-791))) (|has| |#2| (-561 (-791)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))) (-1549 (((-108) $ $) 22 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))))
-(((-801 |#1| |#2|) (-13 (-1119) (-10 -8 (IF (|has| |#1| (-561 (-791))) (IF (|has| |#2| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2756 ($ |#1| |#2|)) (-15 -2234 ($ |#1| |#2|)) (-15 -2319 (|#1| $)) (-15 -2124 (|#2| $)))) (-1119) (-1119)) (T -801))
-((-2756 (*1 *1 *2 *3) (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2234 (*1 *1 *2 *3) (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2319 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1119)))) (-2124 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-801 *3 *2)) (-4 *3 (-1119)))))
-(-13 (-1119) (-10 -8 (IF (|has| |#1| (-561 (-791))) (IF (|has| |#2| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2756 ($ |#1| |#2|)) (-15 -2234 ($ |#1| |#2|)) (-15 -2319 (|#1| $)) (-15 -2124 (|#2| $))))
-((-1422 (((-108) $ $) NIL)) (-3895 (((-521) $) 15)) (-2983 (($ (-143)) 11)) (-2258 (($ (-143)) 12)) (-4024 (((-1067) $) NIL)) (-1249 (((-143) $) 13)) (-4146 (((-1031) $) NIL)) (-2623 (($ (-143)) 9)) (-2634 (($ (-143)) 8)) (-2223 (((-791) $) 23) (($ (-143)) 16)) (-2269 (($ (-143)) 10)) (-1549 (((-108) $ $) NIL)))
-(((-802) (-13 (-1013) (-10 -8 (-15 -2634 ($ (-143))) (-15 -2623 ($ (-143))) (-15 -2269 ($ (-143))) (-15 -2983 ($ (-143))) (-15 -2258 ($ (-143))) (-15 -1249 ((-143) $)) (-15 -3895 ((-521) $)) (-15 -2223 ($ (-143)))))) (T -802))
-((-2634 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-2258 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-1249 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-802)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-802)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(-13 (-1013) (-10 -8 (-15 -2634 ($ (-143))) (-15 -2623 ($ (-143))) (-15 -2269 ($ (-143))) (-15 -2983 ($ (-143))) (-15 -2258 ($ (-143))) (-15 -1249 ((-143) $)) (-15 -3895 ((-521) $)) (-15 -2223 ($ (-143)))))
-((-2223 (((-290 (-521)) (-381 (-880 (-47)))) 21) (((-290 (-521)) (-880 (-47))) 16)))
-(((-803) (-10 -7 (-15 -2223 ((-290 (-521)) (-880 (-47)))) (-15 -2223 ((-290 (-521)) (-381 (-880 (-47))))))) (T -803))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 (-47)))) (-5 *2 (-290 (-521))) (-5 *1 (-803)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-880 (-47))) (-5 *2 (-290 (-521))) (-5 *1 (-803)))))
-(-10 -7 (-15 -2223 ((-290 (-521)) (-880 (-47)))) (-15 -2223 ((-290 (-521)) (-381 (-880 (-47))))))
-((-1393 (((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)) 14)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -1393 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|)))) (-1119) (-1119)) (T -804))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6)))))
-(-10 -7 (-15 -1393 ((-805 |#2|) (-1 |#2| |#1|) (-805 |#1|))))
-((-1889 (($ |#1| |#1|) 8)) (-2692 ((|#1| $ (-707)) 10)))
-(((-805 |#1|) (-10 -8 (-15 -1889 ($ |#1| |#1|)) (-15 -2692 (|#1| $ (-707)))) (-1119)) (T -805))
-((-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-805 *2)) (-4 *2 (-1119)))) (-1889 (*1 *1 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1119)))))
-(-10 -8 (-15 -1889 ($ |#1| |#1|)) (-15 -2692 (|#1| $ (-707))))
-((-1393 (((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)) 14)))
-(((-806 |#1| |#2|) (-10 -7 (-15 -1393 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|)))) (-1119) (-1119)) (T -806))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6)))))
-(-10 -7 (-15 -1393 ((-807 |#2|) (-1 |#2| |#1|) (-807 |#1|))))
-((-1889 (($ |#1| |#1| |#1|) 8)) (-2692 ((|#1| $ (-707)) 10)))
-(((-807 |#1|) (-10 -8 (-15 -1889 ($ |#1| |#1| |#1|)) (-15 -2692 (|#1| $ (-707)))) (-1119)) (T -807))
-((-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-807 *2)) (-4 *2 (-1119)))) (-1889 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1119)))))
-(-10 -8 (-15 -1889 ($ |#1| |#1| |#1|)) (-15 -2692 (|#1| $ (-707))))
-((-2667 (((-587 (-1089)) (-1067)) 8)))
-(((-808) (-10 -7 (-15 -2667 ((-587 (-1089)) (-1067))))) (T -808))
-((-2667 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-808)))))
-(-10 -7 (-15 -2667 ((-587 (-1089)) (-1067))))
-((-1393 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 14)))
-(((-809 |#1| |#2|) (-10 -7 (-15 -1393 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1119) (-1119)) (T -809))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6)))))
-(-10 -7 (-15 -1393 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))))
-((-3707 (($ |#1| |#1| |#1|) 8)) (-2692 ((|#1| $ (-707)) 10)))
-(((-810 |#1|) (-10 -8 (-15 -3707 ($ |#1| |#1| |#1|)) (-15 -2692 (|#1| $ (-707)))) (-1119)) (T -810))
-((-2692 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-810 *2)) (-4 *2 (-1119)))) (-3707 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1119)))))
-(-10 -8 (-15 -3707 ($ |#1| |#1| |#1|)) (-15 -2692 (|#1| $ (-707))))
-((-3168 (((-1065 (-587 (-521))) (-587 (-521)) (-1065 (-587 (-521)))) 32)) (-2696 (((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521))) 28)) (-3909 (((-1065 (-587 (-521))) (-587 (-521))) 41) (((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521))) 40)) (-1747 (((-1065 (-587 (-521))) (-521)) 42)) (-1326 (((-1065 (-587 (-521))) (-521) (-521)) 22) (((-1065 (-587 (-521))) (-521)) 16) (((-1065 (-587 (-521))) (-521) (-521) (-521)) 12)) (-1998 (((-1065 (-587 (-521))) (-1065 (-587 (-521)))) 26)) (-1484 (((-587 (-521)) (-587 (-521))) 25)))
-(((-811) (-10 -7 (-15 -1326 ((-1065 (-587 (-521))) (-521) (-521) (-521))) (-15 -1326 ((-1065 (-587 (-521))) (-521))) (-15 -1326 ((-1065 (-587 (-521))) (-521) (-521))) (-15 -1484 ((-587 (-521)) (-587 (-521)))) (-15 -1998 ((-1065 (-587 (-521))) (-1065 (-587 (-521))))) (-15 -2696 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -3168 ((-1065 (-587 (-521))) (-587 (-521)) (-1065 (-587 (-521))))) (-15 -3909 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -3909 ((-1065 (-587 (-521))) (-587 (-521)))) (-15 -1747 ((-1065 (-587 (-521))) (-521))))) (T -811))
-((-1747 (*1 *2 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521)))) (-3909 (*1 *2 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-587 (-521))))) (-3909 (*1 *2 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-587 (-521))))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *3 (-587 (-521))) (-5 *1 (-811)))) (-2696 (*1 *2 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-587 (-521))))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-811)))) (-1326 (*1 *2 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521)))) (-1326 (*1 *2 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521)))) (-1326 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521)))))
-(-10 -7 (-15 -1326 ((-1065 (-587 (-521))) (-521) (-521) (-521))) (-15 -1326 ((-1065 (-587 (-521))) (-521))) (-15 -1326 ((-1065 (-587 (-521))) (-521) (-521))) (-15 -1484 ((-587 (-521)) (-587 (-521)))) (-15 -1998 ((-1065 (-587 (-521))) (-1065 (-587 (-521))))) (-15 -2696 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -3168 ((-1065 (-587 (-521))) (-587 (-521)) (-1065 (-587 (-521))))) (-15 -3909 ((-1065 (-587 (-521))) (-587 (-521)) (-587 (-521)))) (-15 -3909 ((-1065 (-587 (-521))) (-587 (-521)))) (-15 -1747 ((-1065 (-587 (-521))) (-521))))
-((-1438 (((-820 (-353)) $) 9 (|has| |#1| (-562 (-820 (-353))))) (((-820 (-521)) $) 8 (|has| |#1| (-562 (-820 (-521)))))))
-(((-812 |#1|) (-1196) (-1119)) (T -812))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-562 (-820 (-521)))) (-6 (-562 (-820 (-521)))) |%noBranch|) (IF (|has| |t#1| (-562 (-820 (-353)))) (-6 (-562 (-820 (-353)))) |%noBranch|)))
-(((-562 (-820 (-353))) |has| |#1| (-562 (-820 (-353)))) ((-562 (-820 (-521))) |has| |#1| (-562 (-820 (-521)))))
-((-1422 (((-108) $ $) NIL)) (-1869 (($) 14)) (-1473 (($ (-817 |#1| |#2|) (-817 |#1| |#3|)) 27)) (-3826 (((-817 |#1| |#3|) $) 16)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1929 (((-108) $) 22)) (-3084 (($) 19)) (-2223 (((-791) $) 30)) (-1595 (((-817 |#1| |#2|) $) 15)) (-1549 (((-108) $ $) 25)))
-(((-813 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -1929 ((-108) $)) (-15 -3084 ($)) (-15 -1869 ($)) (-15 -1473 ($ (-817 |#1| |#2|) (-817 |#1| |#3|))) (-15 -1595 ((-817 |#1| |#2|) $)) (-15 -3826 ((-817 |#1| |#3|) $)))) (-1013) (-1013) (-607 |#2|)) (T -813))
-((-1929 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-813 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-607 *4)))) (-3084 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-607 *3)))) (-1869 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-607 *3)))) (-1473 (*1 *1 *2 *3) (-12 (-5 *2 (-817 *4 *5)) (-5 *3 (-817 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-607 *5)) (-5 *1 (-813 *4 *5 *6)))) (-1595 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-817 *3 *4)) (-5 *1 (-813 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-607 *4)))) (-3826 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-817 *3 *5)) (-5 *1 (-813 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-607 *4)))))
-(-13 (-1013) (-10 -8 (-15 -1929 ((-108) $)) (-15 -3084 ($)) (-15 -1869 ($)) (-15 -1473 ($ (-817 |#1| |#2|) (-817 |#1| |#3|))) (-15 -1595 ((-817 |#1| |#2|) $)) (-15 -3826 ((-817 |#1| |#3|) $))))
-((-1422 (((-108) $ $) 7)) (-2293 (((-817 |#1| $) $ (-820 |#1|) (-817 |#1| $)) 13)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-814 |#1|) (-1196) (-1013)) (T -814))
-((-2293 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-817 *4 *1)) (-5 *3 (-820 *4)) (-4 *1 (-814 *4)) (-4 *4 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -2293 ((-817 |t#1| $) $ (-820 |t#1|) (-817 |t#1| $)))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-4013 (((-108) (-587 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-1341 (((-817 |#1| |#2|) |#2| |#3|) 43 (-12 (-2416 (|has| |#2| (-961 (-1084)))) (-2416 (|has| |#2| (-970))))) (((-587 (-269 (-880 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-970)) (-2416 (|has| |#2| (-961 (-1084)))))) (((-587 (-269 |#2|)) |#2| |#3|) 35 (|has| |#2| (-961 (-1084)))) (((-813 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|) 21)))
-(((-815 |#1| |#2| |#3|) (-10 -7 (-15 -4013 ((-108) |#2| |#3|)) (-15 -4013 ((-108) (-587 |#2|) |#3|)) (-15 -1341 ((-813 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|)) (IF (|has| |#2| (-961 (-1084))) (-15 -1341 ((-587 (-269 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-970)) (-15 -1341 ((-587 (-269 (-880 |#2|))) |#2| |#3|)) (-15 -1341 ((-817 |#1| |#2|) |#2| |#3|))))) (-1013) (-814 |#1|) (-562 (-820 |#1|))) (T -815))
-((-1341 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-817 *5 *3)) (-5 *1 (-815 *5 *3 *4)) (-2416 (-4 *3 (-961 (-1084)))) (-2416 (-4 *3 (-970))) (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5))))) (-1341 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 (-880 *3)))) (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-970)) (-2416 (-4 *3 (-961 (-1084)))) (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5))))) (-1341 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 *3))) (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-961 (-1084))) (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5))))) (-1341 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-814 *5)) (-5 *2 (-813 *5 *6 (-587 *6))) (-5 *1 (-815 *5 *6 *4)) (-5 *3 (-587 *6)) (-4 *4 (-562 (-820 *5))))) (-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-4 *6 (-814 *5)) (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-815 *5 *6 *4)) (-4 *4 (-562 (-820 *5))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5))))))
-(-10 -7 (-15 -4013 ((-108) |#2| |#3|)) (-15 -4013 ((-108) (-587 |#2|) |#3|)) (-15 -1341 ((-813 |#1| |#2| (-587 |#2|)) (-587 |#2|) |#3|)) (IF (|has| |#2| (-961 (-1084))) (-15 -1341 ((-587 (-269 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-970)) (-15 -1341 ((-587 (-269 (-880 |#2|))) |#2| |#3|)) (-15 -1341 ((-817 |#1| |#2|) |#2| |#3|)))))
-((-1393 (((-817 |#1| |#3|) (-1 |#3| |#2|) (-817 |#1| |#2|)) 21)))
-(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-817 |#1| |#3|) (-1 |#3| |#2|) (-817 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -816))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-817 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-817 *5 *7)) (-5 *1 (-816 *5 *6 *7)))))
-(-10 -7 (-15 -1393 ((-817 |#1| |#3|) (-1 |#3| |#2|) (-817 |#1| |#2|))))
-((-1422 (((-108) $ $) NIL)) (-2296 (($ $ $) 37)) (-3139 (((-3 (-108) "failed") $ (-820 |#1|)) 34)) (-1869 (($) 11)) (-4024 (((-1067) $) NIL)) (-2055 (($ (-820 |#1|) |#2| $) 20)) (-4146 (((-1031) $) NIL)) (-3219 (((-3 |#2| "failed") (-820 |#1|) $) 48)) (-1929 (((-108) $) 14)) (-3084 (($) 12)) (-2042 (((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 |#2|))) $) 25)) (-2234 (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 |#2|)))) 23)) (-2223 (((-791) $) 42)) (-4080 (($ (-820 |#1|) |#2| $ |#2|) 46)) (-2050 (($ (-820 |#1|) |#2| $) 45)) (-1549 (((-108) $ $) 39)))
-(((-817 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -1929 ((-108) $)) (-15 -3084 ($)) (-15 -1869 ($)) (-15 -2296 ($ $ $)) (-15 -3219 ((-3 |#2| "failed") (-820 |#1|) $)) (-15 -2050 ($ (-820 |#1|) |#2| $)) (-15 -2055 ($ (-820 |#1|) |#2| $)) (-15 -4080 ($ (-820 |#1|) |#2| $ |#2|)) (-15 -2042 ((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 |#2|))) $)) (-15 -2234 ($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 |#2|))))) (-15 -3139 ((-3 (-108) "failed") $ (-820 |#1|))))) (-1013) (-1013)) (T -817))
-((-1929 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3084 (*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1869 (*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2296 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3219 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-817 *4 *2)))) (-2050 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1013)))) (-2055 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1013)))) (-4080 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1013)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 *4)))) (-5 *1 (-817 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 *4)))) (-4 *4 (-1013)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1013)))) (-3139 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -1929 ((-108) $)) (-15 -3084 ($)) (-15 -1869 ($)) (-15 -2296 ($ $ $)) (-15 -3219 ((-3 |#2| "failed") (-820 |#1|) $)) (-15 -2050 ($ (-820 |#1|) |#2| $)) (-15 -2055 ($ (-820 |#1|) |#2| $)) (-15 -4080 ($ (-820 |#1|) |#2| $ |#2|)) (-15 -2042 ((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 |#2|))) $)) (-15 -2234 ($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 |#2|))))) (-15 -3139 ((-3 (-108) "failed") $ (-820 |#1|)))))
-((-1932 (((-820 |#1|) (-820 |#1|) (-587 (-1084)) (-1 (-108) (-587 |#2|))) 30) (((-820 |#1|) (-820 |#1|) (-587 (-1 (-108) |#2|))) 42) (((-820 |#1|) (-820 |#1|) (-1 (-108) |#2|)) 33)) (-3139 (((-108) (-587 |#2|) (-820 |#1|)) 39) (((-108) |#2| (-820 |#1|)) 35)) (-4000 (((-1 (-108) |#2|) (-820 |#1|)) 14)) (-3991 (((-587 |#2|) (-820 |#1|)) 23)) (-2657 (((-820 |#1|) (-820 |#1|) |#2|) 19)))
-(((-818 |#1| |#2|) (-10 -7 (-15 -1932 ((-820 |#1|) (-820 |#1|) (-1 (-108) |#2|))) (-15 -1932 ((-820 |#1|) (-820 |#1|) (-587 (-1 (-108) |#2|)))) (-15 -1932 ((-820 |#1|) (-820 |#1|) (-587 (-1084)) (-1 (-108) (-587 |#2|)))) (-15 -4000 ((-1 (-108) |#2|) (-820 |#1|))) (-15 -3139 ((-108) |#2| (-820 |#1|))) (-15 -3139 ((-108) (-587 |#2|) (-820 |#1|))) (-15 -2657 ((-820 |#1|) (-820 |#1|) |#2|)) (-15 -3991 ((-587 |#2|) (-820 |#1|)))) (-1013) (-1119)) (T -818))
-((-3991 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-5 *2 (-587 *5)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1119)))) (-2657 (*1 *2 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1119)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-818 *5 *3)) (-4 *3 (-1119)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1119)))) (-1932 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-820 *5)) (-5 *3 (-587 (-1084))) (-5 *4 (-1 (-108) (-587 *6))) (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *1 (-818 *5 *6)))) (-1932 (*1 *2 *2 *3) (-12 (-5 *2 (-820 *4)) (-5 *3 (-587 (-1 (-108) *5))) (-4 *4 (-1013)) (-4 *5 (-1119)) (-5 *1 (-818 *4 *5)))) (-1932 (*1 *2 *2 *3) (-12 (-5 *2 (-820 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1013)) (-4 *5 (-1119)) (-5 *1 (-818 *4 *5)))))
-(-10 -7 (-15 -1932 ((-820 |#1|) (-820 |#1|) (-1 (-108) |#2|))) (-15 -1932 ((-820 |#1|) (-820 |#1|) (-587 (-1 (-108) |#2|)))) (-15 -1932 ((-820 |#1|) (-820 |#1|) (-587 (-1084)) (-1 (-108) (-587 |#2|)))) (-15 -4000 ((-1 (-108) |#2|) (-820 |#1|))) (-15 -3139 ((-108) |#2| (-820 |#1|))) (-15 -3139 ((-108) (-587 |#2|) (-820 |#1|))) (-15 -2657 ((-820 |#1|) (-820 |#1|) |#2|)) (-15 -3991 ((-587 |#2|) (-820 |#1|))))
-((-1393 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 17)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -1393 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1013) (-1013)) (T -819))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
-(-10 -7 (-15 -1393 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
-((-1422 (((-108) $ $) NIL)) (-2032 (($ $ (-587 (-51))) 63)) (-4085 (((-587 $) $) 117)) (-3197 (((-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))) $) 23)) (-2615 (((-108) $) 30)) (-3651 (($ $ (-587 (-1084)) (-51)) 25)) (-1837 (($ $ (-587 (-51))) 62)) (-1296 (((-3 |#1| "failed") $) 60) (((-3 (-1084) "failed") $) 139)) (-1496 ((|#1| $) 56) (((-1084) $) NIL)) (-3277 (($ $) 107)) (-4123 (((-108) $) 46)) (-2572 (((-587 (-51)) $) 44)) (-3480 (($ (-1084) (-108) (-108) (-108)) 64)) (-3879 (((-3 (-587 $) "failed") (-587 $)) 71)) (-3267 (((-108) $) 49)) (-1703 (((-108) $) 48)) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) 35)) (-4070 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-3390 (((-3 (-2 (|:| |val| $) (|:| -2246 $)) "failed") $) 82)) (-4141 (((-3 (-587 $) "failed") $) 32)) (-3810 (((-3 (-587 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -1426 (-110)) (|:| |arg| (-587 $))) "failed") $) 94)) (-2369 (((-3 (-587 $) "failed") $) 36)) (-3262 (((-3 (-2 (|:| |val| $) (|:| -2246 (-707))) "failed") $) 39)) (-3416 (((-108) $) 29)) (-4146 (((-1031) $) NIL)) (-1669 (((-108) $) 21)) (-1304 (((-108) $) 45)) (-3423 (((-587 (-51)) $) 110)) (-3257 (((-108) $) 47)) (-2550 (($ (-110) (-587 $)) 91)) (-1252 (((-707) $) 28)) (-2420 (($ $) 61)) (-1438 (($ (-587 $)) 58)) (-2829 (((-108) $) 26)) (-2223 (((-791) $) 51) (($ |#1|) 18) (($ (-1084)) 65)) (-2657 (($ $ (-51)) 109)) (-3562 (($) 90 T CONST)) (-3572 (($) 72 T CONST)) (-1549 (((-108) $ $) 78)) (-1648 (($ $ $) 99)) (-1628 (($ $ $) 103)) (** (($ $ (-707)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
-(((-820 |#1|) (-13 (-1013) (-961 |#1|) (-961 (-1084)) (-10 -8 (-15 0 ($) -2682) (-15 1 ($) -2682) (-15 -4141 ((-3 (-587 $) "failed") $)) (-15 -3722 ((-3 (-587 $) "failed") $)) (-15 -3810 ((-3 (-587 $) "failed") $ (-110))) (-15 -3810 ((-3 (-2 (|:| -1426 (-110)) (|:| |arg| (-587 $))) "failed") $)) (-15 -3262 ((-3 (-2 (|:| |val| $) (|:| -2246 (-707))) "failed") $)) (-15 -4070 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2369 ((-3 (-587 $) "failed") $)) (-15 -3390 ((-3 (-2 (|:| |val| $) (|:| -2246 $)) "failed") $)) (-15 -2550 ($ (-110) (-587 $))) (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ $)) (-15 -1648 ($ $ $)) (-15 -1252 ((-707) $)) (-15 -1438 ($ (-587 $))) (-15 -2420 ($ $)) (-15 -3416 ((-108) $)) (-15 -4123 ((-108) $)) (-15 -2615 ((-108) $)) (-15 -2829 ((-108) $)) (-15 -3257 ((-108) $)) (-15 -1703 ((-108) $)) (-15 -3267 ((-108) $)) (-15 -1304 ((-108) $)) (-15 -2572 ((-587 (-51)) $)) (-15 -1837 ($ $ (-587 (-51)))) (-15 -2032 ($ $ (-587 (-51)))) (-15 -3480 ($ (-1084) (-108) (-108) (-108))) (-15 -3651 ($ $ (-587 (-1084)) (-51))) (-15 -3197 ((-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))) $)) (-15 -1669 ((-108) $)) (-15 -3277 ($ $)) (-15 -2657 ($ $ (-51))) (-15 -3423 ((-587 (-51)) $)) (-15 -4085 ((-587 $) $)) (-15 -3879 ((-3 (-587 $) "failed") (-587 $))))) (-1013)) (T -820))
-((-3562 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (-3572 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (-4141 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3722 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3810 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-820 *4))) (-5 *1 (-820 *4)) (-4 *4 (-1013)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1426 (-110)) (|:| |arg| (-587 (-820 *3))))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3262 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2246 (-707)))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-4070 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-820 *3)) (|:| |den| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2369 (*1 *2 *1) (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3390 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2246 (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2550 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 (-820 *4))) (-5 *1 (-820 *4)) (-4 *4 (-1013)))) (-1628 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (-1648 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-1837 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3480 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-108)) (-5 *1 (-820 *4)) (-4 *4 (-1013)))) (-3651 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-51)) (-5 *1 (-820 *4)) (-4 *4 (-1013)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51)))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3277 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))) (-3879 (*1 *2 *2) (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(-13 (-1013) (-961 |#1|) (-961 (-1084)) (-10 -8 (-15 (-3562) ($) -2682) (-15 (-3572) ($) -2682) (-15 -4141 ((-3 (-587 $) "failed") $)) (-15 -3722 ((-3 (-587 $) "failed") $)) (-15 -3810 ((-3 (-587 $) "failed") $ (-110))) (-15 -3810 ((-3 (-2 (|:| -1426 (-110)) (|:| |arg| (-587 $))) "failed") $)) (-15 -3262 ((-3 (-2 (|:| |val| $) (|:| -2246 (-707))) "failed") $)) (-15 -4070 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2369 ((-3 (-587 $) "failed") $)) (-15 -3390 ((-3 (-2 (|:| |val| $) (|:| -2246 $)) "failed") $)) (-15 -2550 ($ (-110) (-587 $))) (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707))) (-15 ** ($ $ $)) (-15 -1648 ($ $ $)) (-15 -1252 ((-707) $)) (-15 -1438 ($ (-587 $))) (-15 -2420 ($ $)) (-15 -3416 ((-108) $)) (-15 -4123 ((-108) $)) (-15 -2615 ((-108) $)) (-15 -2829 ((-108) $)) (-15 -3257 ((-108) $)) (-15 -1703 ((-108) $)) (-15 -3267 ((-108) $)) (-15 -1304 ((-108) $)) (-15 -2572 ((-587 (-51)) $)) (-15 -1837 ($ $ (-587 (-51)))) (-15 -2032 ($ $ (-587 (-51)))) (-15 -3480 ($ (-1084) (-108) (-108) (-108))) (-15 -3651 ($ $ (-587 (-1084)) (-51))) (-15 -3197 ((-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))) $)) (-15 -1669 ((-108) $)) (-15 -3277 ($ $)) (-15 -2657 ($ $ (-51))) (-15 -3423 ((-587 (-51)) $)) (-15 -4085 ((-587 $) $)) (-15 -3879 ((-3 (-587 $) "failed") (-587 $)))))
-((-1422 (((-108) $ $) NIL)) (-4101 (((-587 |#1|) $) 16)) (-3539 (((-108) $) 38)) (-1296 (((-3 (-612 |#1|) "failed") $) 41)) (-1496 (((-612 |#1|) $) 39)) (-2329 (($ $) 18)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-2522 (((-707) $) 45)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-612 |#1|) $) 17)) (-2223 (((-791) $) 37) (($ (-612 |#1|)) 21) (((-755 |#1|) $) 27) (($ |#1|) 20)) (-3572 (($) 8 T CONST)) (-1583 (((-587 (-612 |#1|)) $) 23)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 11)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 48)))
-(((-821 |#1|) (-13 (-783) (-961 (-612 |#1|)) (-10 -8 (-15 1 ($) -2682) (-15 -2223 ((-755 |#1|) $)) (-15 -2223 ($ |#1|)) (-15 -2319 ((-612 |#1|) $)) (-15 -2522 ((-707) $)) (-15 -1583 ((-587 (-612 |#1|)) $)) (-15 -2329 ($ $)) (-15 -3539 ((-108) $)) (-15 -4101 ((-587 |#1|) $)))) (-783)) (T -821))
-((-3572 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-2223 (*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-587 (-612 *3))) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-2329 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-783)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783)))))
-(-13 (-783) (-961 (-612 |#1|)) (-10 -8 (-15 (-3572) ($) -2682) (-15 -2223 ((-755 |#1|) $)) (-15 -2223 ($ |#1|)) (-15 -2319 ((-612 |#1|) $)) (-15 -2522 ((-707) $)) (-15 -1583 ((-587 (-612 |#1|)) $)) (-15 -2329 ($ $)) (-15 -3539 ((-108) $)) (-15 -4101 ((-587 |#1|) $))))
-((-4097 ((|#1| |#1| |#1|) 20)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -4097 (|#1| |#1| |#1|))) (-1141 |#2|) (-970)) (T -822))
-((-4097 (*1 *2 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-822 *2 *3)) (-4 *2 (-1141 *3)))))
-(-10 -7 (-15 -4097 (|#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-1853 (((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 14)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1323 (((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 13)) (-1549 (((-108) $ $) 6)))
-(((-823) (-1196)) (T -823))
-((-1853 (*1 *2 *3 *4) (-12 (-4 *1 (-823)) (-5 *3 (-982)) (-5 *4 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067)))))) (-1323 (*1 *2 *3) (-12 (-4 *1 (-823)) (-5 *3 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *2 (-959)))))
-(-13 (-1013) (-10 -7 (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))) (-982) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))) (-15 -1323 ((-959) (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1538 ((|#1| |#1| (-707)) 24)) (-3188 (((-3 |#1| "failed") |#1| |#1|) 23)) (-3593 (((-3 (-2 (|:| -1970 |#1|) (|:| -1981 |#1|)) "failed") |#1| (-707) (-707)) 27) (((-587 |#1|) |#1|) 29)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -3593 ((-587 |#1|) |#1|)) (-15 -3593 ((-3 (-2 (|:| -1970 |#1|) (|:| -1981 |#1|)) "failed") |#1| (-707) (-707))) (-15 -3188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1538 (|#1| |#1| (-707)))) (-1141 |#2|) (-337)) (T -824))
-((-1538 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-5 *1 (-824 *2 *4)) (-4 *2 (-1141 *4)))) (-3188 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-337)) (-5 *1 (-824 *2 *3)) (-4 *2 (-1141 *3)))) (-3593 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-707)) (-4 *5 (-337)) (-5 *2 (-2 (|:| -1970 *3) (|:| -1981 *3))) (-5 *1 (-824 *3 *5)) (-4 *3 (-1141 *5)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -3593 ((-587 |#1|) |#1|)) (-15 -3593 ((-3 (-2 (|:| -1970 |#1|) (|:| -1981 |#1|)) "failed") |#1| (-707) (-707))) (-15 -3188 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1538 (|#1| |#1| (-707))))
-((-3278 (((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067)) 92) (((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067) (-202)) 87) (((-959) (-826) (-982)) 76) (((-959) (-826)) 77)) (-1853 (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-826) (-982)) 50) (((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-826)) 52)))
-(((-825) (-10 -7 (-15 -3278 ((-959) (-826))) (-15 -3278 ((-959) (-826) (-982))) (-15 -3278 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067) (-202))) (-15 -3278 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-826))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-826) (-982))))) (T -825))
-((-1853 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-982)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-825)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067))))) (-5 *1 (-825)))) (-3278 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067)) (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353)) (-5 *2 (-959)) (-5 *1 (-825)))) (-3278 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067)) (-5 *8 (-202)) (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353)) (-5 *2 (-959)) (-5 *1 (-825)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-825)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-959)) (-5 *1 (-825)))))
-(-10 -7 (-15 -3278 ((-959) (-826))) (-15 -3278 ((-959) (-826) (-982))) (-15 -3278 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067) (-202))) (-15 -3278 ((-959) (-353) (-353) (-353) (-353) (-707) (-707) (-587 (-290 (-353))) (-587 (-587 (-290 (-353)))) (-1067))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-826))) (-15 -1853 ((-2 (|:| -1853 (-353)) (|:| -2890 (-1067)) (|:| |explanations| (-587 (-1067)))) (-826) (-982))))
-((-1422 (((-108) $ $) NIL)) (-1496 (((-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))) $) 10)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 12) (($ (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) 9)) (-1549 (((-108) $ $) NIL)))
-(((-826) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))) $))))) (T -826))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-826)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *1 (-826)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202)))) (-5 *1 (-826)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))))) (-15 -2223 ((-791) $)) (-15 -1496 ((-2 (|:| |pde| (-587 (-290 (-202)))) (|:| |constraints| (-587 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-707)) (|:| |boundaryType| (-521)) (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202)))))) (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067)) (|:| |tol| (-202))) $))))
-((-2193 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) 10) (($ $ |#2| (-707)) 12) (($ $ (-587 |#2|) (-587 (-707))) 15)) (-2244 (($ $ |#2|) 16) (($ $ (-587 |#2|)) 18) (($ $ |#2| (-707)) 19) (($ $ (-587 |#2|) (-587 (-707))) 21)))
-(((-827 |#1| |#2|) (-10 -8 (-15 -2244 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2244 (|#1| |#1| |#2| (-707))) (-15 -2244 (|#1| |#1| (-587 |#2|))) (-15 -2244 (|#1| |#1| |#2|)) (-15 -2193 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2193 (|#1| |#1| |#2| (-707))) (-15 -2193 (|#1| |#1| (-587 |#2|))) (-15 -2193 (|#1| |#1| |#2|))) (-828 |#2|) (-1013)) (T -827))
-NIL
-(-10 -8 (-15 -2244 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2244 (|#1| |#1| |#2| (-707))) (-15 -2244 (|#1| |#1| (-587 |#2|))) (-15 -2244 (|#1| |#1| |#2|)) (-15 -2193 (|#1| |#1| (-587 |#2|) (-587 (-707)))) (-15 -2193 (|#1| |#1| |#2| (-707))) (-15 -2193 (|#1| |#1| (-587 |#2|))) (-15 -2193 (|#1| |#1| |#2|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2193 (($ $ |#1|) 42) (($ $ (-587 |#1|)) 41) (($ $ |#1| (-707)) 40) (($ $ (-587 |#1|) (-587 (-707))) 39)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ |#1|) 38) (($ $ (-587 |#1|)) 37) (($ $ |#1| (-707)) 36) (($ $ (-587 |#1|) (-587 (-707))) 35)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-828 |#1|) (-1196) (-1013)) (T -828))
-((-2193 (*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1013)))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1013)))) (-2193 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-828 *2)) (-4 *2 (-1013)))) (-2193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-828 *4)) (-4 *4 (-1013)))) (-2244 (*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1013)))) (-2244 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1013)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-828 *2)) (-4 *2 (-1013)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-828 *4)) (-4 *4 (-1013)))))
-(-13 (-970) (-10 -8 (-15 -2193 ($ $ |t#1|)) (-15 -2193 ($ $ (-587 |t#1|))) (-15 -2193 ($ $ |t#1| (-707))) (-15 -2193 ($ $ (-587 |t#1|) (-587 (-707)))) (-15 -2244 ($ $ |t#1|)) (-15 -2244 ($ $ (-587 |t#1|))) (-15 -2244 ($ $ |t#1| (-707))) (-15 -2244 ($ $ (-587 |t#1|) (-587 (-707))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) 26)) (-1269 (((-108) $ (-707)) NIL)) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1939 (($ $ $) NIL (|has| $ (-6 -4234)))) (-1382 (($ $ $) NIL (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) (($ $ "left" $) NIL (|has| $ (-6 -4234))) (($ $ "right" $) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1981 (($ $) 25)) (-1852 (($ |#1|) 12) (($ $ $) 17)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-1970 (($ $) 23)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) 20)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1557 (((-521) $ $) NIL)) (-1475 (((-108) $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1106 |#1|) $) 9) (((-791) $) 29 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 21 (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-829 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1852 ($ |#1|)) (-15 -1852 ($ $ $)) (-15 -2223 ((-1106 |#1|) $)))) (-1013)) (T -829))
-((-1852 (*1 *1 *2) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1013)))) (-1852 (*1 *1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1013)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1106 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1013)))))
-(-13 (-115 |#1|) (-10 -8 (-15 -1852 ($ |#1|)) (-15 -1852 ($ $ $)) (-15 -2223 ((-1106 |#1|) $))))
-((-3812 ((|#2| (-1051 |#1| |#2|)) 41)))
-(((-830 |#1| |#2|) (-10 -7 (-15 -3812 (|#2| (-1051 |#1| |#2|)))) (-849) (-13 (-970) (-10 -7 (-6 (-4235 "*"))))) (T -830))
-((-3812 (*1 *2 *3) (-12 (-5 *3 (-1051 *4 *2)) (-14 *4 (-849)) (-4 *2 (-13 (-970) (-10 -7 (-6 (-4235 "*"))))) (-5 *1 (-830 *4 *2)))))
-(-10 -7 (-15 -3812 (|#2| (-1051 |#1| |#2|))))
-((-1422 (((-108) $ $) 7)) (-2231 (($) 20 T CONST)) (-2783 (((-3 $ "failed") $) 16)) (-4201 (((-1015 |#1|) $ |#1|) 35)) (-3637 (((-108) $) 19)) (-2816 (($ $ $) 33 (-3703 (|has| |#1| (-783)) (|has| |#1| (-342))))) (-2459 (($ $ $) 32 (-3703 (|has| |#1| (-783)) (|has| |#1| (-342))))) (-4024 (((-1067) $) 9)) (-3100 (($ $) 27)) (-4146 (((-1031) $) 10)) (-2313 ((|#1| $ |#1|) 37)) (-2550 ((|#1| $ |#1|) 36)) (-1693 (($ (-587 (-587 |#1|))) 38)) (-3954 (($ (-587 |#1|)) 39)) (-1484 (($ $ $) 23)) (-2062 (($ $ $) 22)) (-2223 (((-791) $) 11)) (-3509 (($ $ (-849)) 13) (($ $ (-707)) 17) (($ $ (-521)) 24)) (-3572 (($) 21 T CONST)) (-1597 (((-108) $ $) 30 (-3703 (|has| |#1| (-783)) (|has| |#1| (-342))))) (-1579 (((-108) $ $) 29 (-3703 (|has| |#1| (-783)) (|has| |#1| (-342))))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 31 (-3703 (|has| |#1| (-783)) (|has| |#1| (-342))))) (-1569 (((-108) $ $) 34)) (-1648 (($ $ $) 26)) (** (($ $ (-849)) 14) (($ $ (-707)) 18) (($ $ (-521)) 25)) (* (($ $ $) 15)))
-(((-831 |#1|) (-1196) (-1013)) (T -831))
-((-3954 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-831 *3)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-4 *1 (-831 *3)))) (-2313 (*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1013)))) (-2550 (*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1013)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1013)) (-5 *2 (-1015 *3)))) (-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))))
-(-13 (-446) (-10 -8 (-15 -3954 ($ (-587 |t#1|))) (-15 -1693 ($ (-587 (-587 |t#1|)))) (-15 -2313 (|t#1| $ |t#1|)) (-15 -2550 (|t#1| $ |t#1|)) (-15 -4201 ((-1015 |t#1|) $ |t#1|)) (-15 -1569 ((-108) $ $)) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-342)) (-6 (-783)) |%noBranch|)))
-(((-97) . T) ((-561 (-791)) . T) ((-446) . T) ((-663) . T) ((-783) -3703 (|has| |#1| (-783)) (|has| |#1| (-342))) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-2419 (((-587 (-587 (-707))) $) 108)) (-3224 (((-587 (-707)) (-833 |#1|) $) 130)) (-1917 (((-587 (-707)) (-833 |#1|) $) 131)) (-1751 (((-587 (-833 |#1|)) $) 98)) (-3254 (((-833 |#1|) $ (-521)) 103) (((-833 |#1|) $) 104)) (-3820 (($ (-587 (-833 |#1|))) 110)) (-3490 (((-707) $) 105)) (-2596 (((-1015 (-1015 |#1|)) $) 128)) (-4201 (((-1015 |#1|) $ |#1|) 121) (((-1015 (-1015 |#1|)) $ (-1015 |#1|)) 139) (((-1015 (-587 |#1|)) $ (-587 |#1|)) 142)) (-3872 (((-1015 |#1|) $) 101)) (-1785 (((-108) (-833 |#1|) $) 92)) (-4024 (((-1067) $) NIL)) (-4030 (((-1170) $) 95) (((-1170) $ (-521) (-521)) 143)) (-4146 (((-1031) $) NIL)) (-2889 (((-587 (-833 |#1|)) $) 96)) (-2550 (((-833 |#1|) $ (-707)) 99)) (-2098 (((-707) $) 106)) (-2223 (((-791) $) 119) (((-587 (-833 |#1|)) $) 22) (($ (-587 (-833 |#1|))) 109)) (-3354 (((-587 |#1|) $) 107)) (-1549 (((-108) $ $) 136)) (-1588 (((-108) $ $) 134)) (-1569 (((-108) $ $) 133)))
-(((-832 |#1|) (-13 (-1013) (-10 -8 (-15 -2223 ((-587 (-833 |#1|)) $)) (-15 -2889 ((-587 (-833 |#1|)) $)) (-15 -2550 ((-833 |#1|) $ (-707))) (-15 -3254 ((-833 |#1|) $ (-521))) (-15 -3254 ((-833 |#1|) $)) (-15 -3490 ((-707) $)) (-15 -2098 ((-707) $)) (-15 -3354 ((-587 |#1|) $)) (-15 -1751 ((-587 (-833 |#1|)) $)) (-15 -2419 ((-587 (-587 (-707))) $)) (-15 -2223 ($ (-587 (-833 |#1|)))) (-15 -3820 ($ (-587 (-833 |#1|)))) (-15 -4201 ((-1015 |#1|) $ |#1|)) (-15 -2596 ((-1015 (-1015 |#1|)) $)) (-15 -4201 ((-1015 (-1015 |#1|)) $ (-1015 |#1|))) (-15 -4201 ((-1015 (-587 |#1|)) $ (-587 |#1|))) (-15 -1785 ((-108) (-833 |#1|) $)) (-15 -3224 ((-587 (-707)) (-833 |#1|) $)) (-15 -1917 ((-587 (-707)) (-833 |#1|) $)) (-15 -3872 ((-1015 |#1|) $)) (-15 -1569 ((-108) $ $)) (-15 -1588 ((-108) $ $)) (-15 -4030 ((-1170) $)) (-15 -4030 ((-1170) $ (-521) (-521))))) (-1013)) (T -832))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4)) (-4 *4 (-1013)))) (-3254 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4)) (-4 *4 (-1013)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-833 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-707)))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-833 *3))) (-4 *3 (-1013)) (-5 *1 (-832 *3)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-587 (-833 *3))) (-4 *3 (-1013)) (-5 *1 (-832 *3)))) (-4201 (*1 *2 *1 *3) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-1015 (-1015 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-1015 *4))) (-5 *1 (-832 *4)) (-5 *3 (-1015 *4)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-587 *4))) (-5 *1 (-832 *4)) (-5 *3 (-587 *4)))) (-1785 (*1 *2 *3 *1) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-832 *4)))) (-3224 (*1 *2 *3 *1) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707))) (-5 *1 (-832 *4)))) (-1917 (*1 *2 *3 *1) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707))) (-5 *1 (-832 *4)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-1569 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-1588 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))) (-4030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-832 *4)) (-4 *4 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ((-587 (-833 |#1|)) $)) (-15 -2889 ((-587 (-833 |#1|)) $)) (-15 -2550 ((-833 |#1|) $ (-707))) (-15 -3254 ((-833 |#1|) $ (-521))) (-15 -3254 ((-833 |#1|) $)) (-15 -3490 ((-707) $)) (-15 -2098 ((-707) $)) (-15 -3354 ((-587 |#1|) $)) (-15 -1751 ((-587 (-833 |#1|)) $)) (-15 -2419 ((-587 (-587 (-707))) $)) (-15 -2223 ($ (-587 (-833 |#1|)))) (-15 -3820 ($ (-587 (-833 |#1|)))) (-15 -4201 ((-1015 |#1|) $ |#1|)) (-15 -2596 ((-1015 (-1015 |#1|)) $)) (-15 -4201 ((-1015 (-1015 |#1|)) $ (-1015 |#1|))) (-15 -4201 ((-1015 (-587 |#1|)) $ (-587 |#1|))) (-15 -1785 ((-108) (-833 |#1|) $)) (-15 -3224 ((-587 (-707)) (-833 |#1|) $)) (-15 -1917 ((-587 (-707)) (-833 |#1|) $)) (-15 -3872 ((-1015 |#1|) $)) (-15 -1569 ((-108) $ $)) (-15 -1588 ((-108) $ $)) (-15 -4030 ((-1170) $)) (-15 -4030 ((-1170) $ (-521) (-521)))))
-((-1422 (((-108) $ $) NIL)) (-3215 (((-587 $) (-587 $)) 77)) (-2578 (((-521) $) 60)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3490 (((-707) $) 58)) (-4201 (((-1015 |#1|) $ |#1|) 49)) (-3637 (((-108) $) NIL)) (-3924 (((-108) $) 63)) (-1258 (((-707) $) 61)) (-3872 (((-1015 |#1|) $) 42)) (-2816 (($ $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-783))))) (-2459 (($ $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-783))))) (-3469 (((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $) 36)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 93)) (-4146 (((-1031) $) NIL)) (-3062 (((-1015 |#1|) $) 99 (|has| |#1| (-342)))) (-2060 (((-108) $) 59)) (-2313 ((|#1| $ |#1|) 47)) (-2550 ((|#1| $ |#1|) 94)) (-2098 (((-707) $) 44)) (-1693 (($ (-587 (-587 |#1|))) 85)) (-2736 (((-897) $) 53)) (-3954 (($ (-587 |#1|)) 21)) (-1484 (($ $ $) NIL)) (-2062 (($ $ $) NIL)) (-3950 (($ (-587 (-587 |#1|))) 39)) (-2181 (($ (-587 (-587 |#1|))) 88)) (-4035 (($ (-587 |#1|)) 96)) (-2223 (((-791) $) 84) (($ (-587 (-587 |#1|))) 66) (($ (-587 |#1|)) 67)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3572 (($) 16 T CONST)) (-1597 (((-108) $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-783))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-783))))) (-1549 (((-108) $ $) 45)) (-1588 (((-108) $ $) NIL (-3703 (|has| |#1| (-342)) (|has| |#1| (-783))))) (-1569 (((-108) $ $) 65)) (-1648 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ $ $) 22)))
-(((-833 |#1|) (-13 (-831 |#1|) (-10 -8 (-15 -3469 ((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $)) (-15 -3950 ($ (-587 (-587 |#1|)))) (-15 -2223 ($ (-587 (-587 |#1|)))) (-15 -2223 ($ (-587 |#1|))) (-15 -2181 ($ (-587 (-587 |#1|)))) (-15 -2098 ((-707) $)) (-15 -3872 ((-1015 |#1|) $)) (-15 -2736 ((-897) $)) (-15 -3490 ((-707) $)) (-15 -1258 ((-707) $)) (-15 -2578 ((-521) $)) (-15 -2060 ((-108) $)) (-15 -3924 ((-108) $)) (-15 -3215 ((-587 $) (-587 $))) (IF (|has| |#1| (-342)) (-15 -3062 ((-1015 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-506)) (-15 -4035 ($ (-587 |#1|))) (IF (|has| |#1| (-342)) (-15 -4035 ($ (-587 |#1|))) |%noBranch|)))) (-1013)) (T -833))
-((-3469 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-587 *3)) (|:| |image| (-587 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-833 *3)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-1258 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3215 (*1 *2 *2) (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-342)) (-4 *3 (-1013)))) (-4035 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-833 *3)))))
-(-13 (-831 |#1|) (-10 -8 (-15 -3469 ((-2 (|:| |preimage| (-587 |#1|)) (|:| |image| (-587 |#1|))) $)) (-15 -3950 ($ (-587 (-587 |#1|)))) (-15 -2223 ($ (-587 (-587 |#1|)))) (-15 -2223 ($ (-587 |#1|))) (-15 -2181 ($ (-587 (-587 |#1|)))) (-15 -2098 ((-707) $)) (-15 -3872 ((-1015 |#1|) $)) (-15 -2736 ((-897) $)) (-15 -3490 ((-707) $)) (-15 -1258 ((-707) $)) (-15 -2578 ((-521) $)) (-15 -2060 ((-108) $)) (-15 -3924 ((-108) $)) (-15 -3215 ((-587 $) (-587 $))) (IF (|has| |#1| (-342)) (-15 -3062 ((-1015 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-506)) (-15 -4035 ($ (-587 |#1|))) (IF (|has| |#1| (-342)) (-15 -4035 ($ (-587 |#1|))) |%noBranch|))))
-((-3319 (((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|)) 128)) (-3656 ((|#1|) 76)) (-4213 (((-392 (-1080 |#4|)) (-1080 |#4|)) 137)) (-3412 (((-392 (-1080 |#4|)) (-587 |#3|) (-1080 |#4|)) 68)) (-2841 (((-392 (-1080 |#4|)) (-1080 |#4|)) 147)) (-1399 (((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|) |#3|) 92)))
-(((-834 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3319 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|))) (-15 -2841 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -4213 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3656 (|#1|)) (-15 -1399 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|) |#3|)) (-15 -3412 ((-392 (-1080 |#4|)) (-587 |#3|) (-1080 |#4|)))) (-837) (-729) (-783) (-877 |#1| |#2| |#3|)) (T -834))
-((-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *7)) (-4 *7 (-783)) (-4 *5 (-837)) (-4 *6 (-729)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-392 (-1080 *8))) (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-1080 *8)))) (-1399 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7)) (-4 *7 (-877 *5 *6 *4)) (-4 *5 (-837)) (-4 *6 (-729)) (-4 *4 (-783)) (-5 *1 (-834 *5 *6 *4 *7)))) (-3656 (*1 *2) (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-837)) (-5 *1 (-834 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))) (-4213 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-2841 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-392 (-1080 *7))) (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1080 *7)))) (-3319 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-837)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-834 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3319 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|))) (-15 -2841 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -4213 ((-392 (-1080 |#4|)) (-1080 |#4|))) (-15 -3656 (|#1|)) (-15 -1399 ((-3 (-587 (-1080 |#4|)) "failed") (-587 (-1080 |#4|)) (-1080 |#4|) |#3|)) (-15 -3412 ((-392 (-1080 |#4|)) (-587 |#3|) (-1080 |#4|))))
-((-3319 (((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|)) 36)) (-3656 ((|#1|) 54)) (-4213 (((-392 (-1080 |#2|)) (-1080 |#2|)) 102)) (-3412 (((-392 (-1080 |#2|)) (-1080 |#2|)) 89)) (-2841 (((-392 (-1080 |#2|)) (-1080 |#2|)) 113)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -3319 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|))) (-15 -2841 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -4213 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -3656 (|#1|)) (-15 -3412 ((-392 (-1080 |#2|)) (-1080 |#2|)))) (-837) (-1141 |#1|)) (T -835))
-((-3412 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5))) (-5 *1 (-835 *4 *5)) (-5 *3 (-1080 *5)))) (-3656 (*1 *2) (-12 (-4 *2 (-837)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1141 *2)))) (-4213 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5))) (-5 *1 (-835 *4 *5)) (-5 *3 (-1080 *5)))) (-2841 (*1 *2 *3) (-12 (-4 *4 (-837)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5))) (-5 *1 (-835 *4 *5)) (-5 *3 (-1080 *5)))) (-3319 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-837)) (-5 *1 (-835 *4 *5)))))
-(-10 -7 (-15 -3319 ((-3 (-587 (-1080 |#2|)) "failed") (-587 (-1080 |#2|)) (-1080 |#2|))) (-15 -2841 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -4213 ((-392 (-1080 |#2|)) (-1080 |#2|))) (-15 -3656 (|#1|)) (-15 -3412 ((-392 (-1080 |#2|)) (-1080 |#2|))))
-((-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 39)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 18)) (-2446 (((-3 $ "failed") $) 33)))
-(((-836 |#1|) (-10 -8 (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)))) (-837)) (T -836))
-NIL
-(-10 -8 (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2150 (((-392 (-1080 $)) (-1080 $)) 60)) (-2694 (($ $) 51)) (-2337 (((-392 $) $) 52)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 57)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-2100 (((-108) $) 53)) (-3637 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1822 (((-392 (-1080 $)) (-1080 $)) 58)) (-1336 (((-392 (-1080 $)) (-1080 $)) 59)) (-1974 (((-392 $) $) 50)) (-2261 (((-3 $ "failed") $ $) 42)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 56 (|has| $ (-133)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-2446 (((-3 $ "failed") $) 55 (|has| $ (-133)))) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-837) (-1196)) (T -837))
-((-2826 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-837)))) (-2150 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))) (-1336 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))) (-1822 (*1 *2 *3) (-12 (-4 *1 (-837)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))) (-4050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-587 (-1080 *1))) (-5 *3 (-1080 *1)) (-4 *1 (-837)))) (-2956 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-133)) (-4 *1 (-837)) (-5 *2 (-1165 *1)))) (-2446 (*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-837)))))
-(-13 (-1123) (-10 -8 (-15 -2150 ((-392 (-1080 $)) (-1080 $))) (-15 -1336 ((-392 (-1080 $)) (-1080 $))) (-15 -1822 ((-392 (-1080 $)) (-1080 $))) (-15 -2826 ((-1080 $) (-1080 $) (-1080 $))) (-15 -4050 ((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $))) (IF (|has| $ (-133)) (PROGN (-15 -2956 ((-3 (-1165 $) "failed") (-627 $))) (-15 -2446 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2663 (((-108) $) NIL)) (-4010 (((-707)) NIL)) (-1927 (($ $ (-849)) NIL (|has| $ (-342))) (($ $) NIL)) (-2130 (((-1093 (-849) (-707)) (-521)) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-1659 (((-707)) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 $ "failed") $) NIL)) (-1496 (($ $) NIL)) (-3190 (($ (-1165 $)) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2464 (($) NIL)) (-3299 (((-108) $) NIL)) (-1375 (($ $) NIL) (($ $ (-707)) NIL)) (-2100 (((-108) $) NIL)) (-3490 (((-769 (-849)) $) NIL) (((-849) $) NIL)) (-3637 (((-108) $) NIL)) (-3579 (($) NIL (|has| $ (-342)))) (-2377 (((-108) $) NIL (|has| $ (-342)))) (-2549 (($ $ (-849)) NIL (|has| $ (-342))) (($ $) NIL)) (-3035 (((-3 $ "failed") $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3769 (((-1080 $) $ (-849)) NIL (|has| $ (-342))) (((-1080 $) $) NIL)) (-3999 (((-849) $) NIL)) (-3361 (((-1080 $) $) NIL (|has| $ (-342)))) (-3959 (((-3 (-1080 $) "failed") $ $) NIL (|has| $ (-342))) (((-1080 $) $) NIL (|has| $ (-342)))) (-3734 (($ $ (-1080 $)) NIL (|has| $ (-342)))) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL T CONST)) (-2723 (($ (-849)) NIL)) (-3017 (((-108) $) NIL)) (-4146 (((-1031) $) NIL)) (-1384 (($) NIL (|has| $ (-342)))) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL)) (-1974 (((-392 $) $) NIL)) (-2239 (((-849)) NIL) (((-769 (-849))) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-3660 (((-3 (-707) "failed") $ $) NIL) (((-707) $) NIL)) (-2043 (((-126)) NIL)) (-2193 (($ $ (-707)) NIL) (($ $) NIL)) (-2098 (((-849) $) NIL) (((-769 (-849)) $) NIL)) (-3436 (((-1080 $)) NIL)) (-3923 (($) NIL)) (-3540 (($) NIL (|has| $ (-342)))) (-1816 (((-627 $) (-1165 $)) NIL) (((-1165 $) $) NIL)) (-1438 (((-521) $) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL)) (-2446 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1592 (((-707)) NIL)) (-1245 (((-1165 $) (-849)) NIL) (((-1165 $)) NIL)) (-1842 (((-108) $ $) NIL)) (-2567 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2687 (($ $ (-707)) NIL (|has| $ (-342))) (($ $) NIL (|has| $ (-342)))) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-838 |#1|) (-13 (-323) (-303 $) (-562 (-521))) (-849)) (T -838))
-NIL
-(-13 (-323) (-303 $) (-562 (-521)))
-((-2524 (((-3 (-2 (|:| -3490 (-707)) (|:| -2136 |#5|)) "failed") (-310 |#2| |#3| |#4| |#5|)) 76)) (-2322 (((-108) (-310 |#2| |#3| |#4| |#5|)) 16)) (-3490 (((-3 (-707) "failed") (-310 |#2| |#3| |#4| |#5|)) 14)))
-(((-839 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3490 ((-3 (-707) "failed") (-310 |#2| |#3| |#4| |#5|))) (-15 -2322 ((-108) (-310 |#2| |#3| |#4| |#5|))) (-15 -2524 ((-3 (-2 (|:| -3490 (-707)) (|:| -2136 |#5|)) "failed") (-310 |#2| |#3| |#4| |#5|)))) (-13 (-783) (-513) (-961 (-521))) (-404 |#1|) (-1141 |#2|) (-1141 (-381 |#3|)) (-316 |#2| |#3| |#4|)) (T -839))
-((-2524 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-2 (|:| -3490 (-707)) (|:| -2136 *8))) (-5 *1 (-839 *4 *5 *6 *7 *8)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-108)) (-5 *1 (-839 *4 *5 *6 *7 *8)))) (-3490 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-707)) (-5 *1 (-839 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3490 ((-3 (-707) "failed") (-310 |#2| |#3| |#4| |#5|))) (-15 -2322 ((-108) (-310 |#2| |#3| |#4| |#5|))) (-15 -2524 ((-3 (-2 (|:| -3490 (-707)) (|:| -2136 |#5|)) "failed") (-310 |#2| |#3| |#4| |#5|))))
-((-2524 (((-3 (-2 (|:| -3490 (-707)) (|:| -2136 |#3|)) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|)) 56)) (-2322 (((-108) (-310 (-381 (-521)) |#1| |#2| |#3|)) 13)) (-3490 (((-3 (-707) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|)) 11)))
-(((-840 |#1| |#2| |#3|) (-10 -7 (-15 -3490 ((-3 (-707) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -2322 ((-108) (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -2524 ((-3 (-2 (|:| -3490 (-707)) (|:| -2136 |#3|)) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|)))) (-1141 (-381 (-521))) (-1141 (-381 |#1|)) (-316 (-381 (-521)) |#1| |#2|)) (T -840))
-((-2524 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6)) (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-2 (|:| -3490 (-707)) (|:| -2136 *6))) (-5 *1 (-840 *4 *5 *6)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6)) (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-840 *4 *5 *6)))) (-3490 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6)) (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-707)) (-5 *1 (-840 *4 *5 *6)))))
-(-10 -7 (-15 -3490 ((-3 (-707) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -2322 ((-108) (-310 (-381 (-521)) |#1| |#2| |#3|))) (-15 -2524 ((-3 (-2 (|:| -3490 (-707)) (|:| -2136 |#3|)) "failed") (-310 (-381 (-521)) |#1| |#2| |#3|))))
-((-2291 ((|#2| |#2|) 25)) (-3249 (((-521) (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))))) 15)) (-2897 (((-849) (-521)) 35)) (-1239 (((-521) |#2|) 42)) (-3150 (((-521) |#2|) 21) (((-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))) |#1|) 20)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -2897 ((-849) (-521))) (-15 -3150 ((-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))) |#1|)) (-15 -3150 ((-521) |#2|)) (-15 -3249 ((-521) (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))))) (-15 -1239 ((-521) |#2|)) (-15 -2291 (|#2| |#2|))) (-1141 (-381 (-521))) (-1141 (-381 |#1|))) (T -841))
-((-2291 (*1 *2 *2) (-12 (-4 *3 (-1141 (-381 (-521)))) (-5 *1 (-841 *3 *2)) (-4 *2 (-1141 (-381 *3))))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-841 *4 *3)) (-4 *3 (-1141 (-381 *4))))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))))) (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-841 *4 *5)) (-4 *5 (-1141 (-381 *4))))) (-3150 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-841 *4 *3)) (-4 *3 (-1141 (-381 *4))))) (-3150 (*1 *2 *3) (-12 (-4 *3 (-1141 (-381 (-521)))) (-5 *2 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))) (-5 *1 (-841 *3 *4)) (-4 *4 (-1141 (-381 *3))))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-521)) (-4 *4 (-1141 (-381 *3))) (-5 *2 (-849)) (-5 *1 (-841 *4 *5)) (-4 *5 (-1141 (-381 *4))))))
-(-10 -7 (-15 -2897 ((-849) (-521))) (-15 -3150 ((-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))) |#1|)) (-15 -3150 ((-521) |#2|)) (-15 -3249 ((-521) (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))))) (-15 -1239 ((-521) |#2|)) (-15 -2291 (|#2| |#2|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 ((|#1| $) 81)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2302 (($ $ $) NIL)) (-2783 (((-3 $ "failed") $) 75)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-1283 (($ |#1| (-392 |#1|)) 73)) (-3587 (((-1080 |#1|) |#1| |#1|) 40)) (-1390 (($ $) 49)) (-3637 (((-108) $) NIL)) (-2485 (((-521) $) 78)) (-2156 (($ $ (-521)) 80)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3647 ((|#1| $) 77)) (-4106 (((-392 |#1|) $) 76)) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) 74)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2272 (($ $) 38)) (-2223 (((-791) $) 99) (($ (-521)) 54) (($ $) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 30) (((-381 |#1|) $) 59) (($ (-381 (-392 |#1|))) 67)) (-1592 (((-707)) 52)) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 23 T CONST)) (-3572 (($) 11 T CONST)) (-1549 (((-108) $ $) 68)) (-1648 (($ $ $) NIL)) (-1639 (($ $) 88) (($ $ $) NIL)) (-1628 (($ $ $) 37)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 90) (($ $ $) 36) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-842 |#1|) (-13 (-337) (-37 |#1|) (-10 -8 (-15 -2223 ((-381 |#1|) $)) (-15 -2223 ($ (-381 (-392 |#1|)))) (-15 -2272 ($ $)) (-15 -4106 ((-392 |#1|) $)) (-15 -3647 (|#1| $)) (-15 -2156 ($ $ (-521))) (-15 -2485 ((-521) $)) (-15 -3587 ((-1080 |#1|) |#1| |#1|)) (-15 -1390 ($ $)) (-15 -1283 ($ |#1| (-392 |#1|))) (-15 -2556 (|#1| $)))) (-282)) (T -842))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-381 *3)) (-5 *1 (-842 *3)) (-4 *3 (-282)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-381 (-392 *3))) (-4 *3 (-282)) (-5 *1 (-842 *3)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-842 *3)) (-4 *3 (-282)))) (-3647 (*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))) (-2156 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-842 *3)) (-4 *3 (-282)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-842 *3)) (-4 *3 (-282)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-842 *3)) (-4 *3 (-282)))) (-1390 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))) (-1283 (*1 *1 *2 *3) (-12 (-5 *3 (-392 *2)) (-4 *2 (-282)) (-5 *1 (-842 *2)))) (-2556 (*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))))
-(-13 (-337) (-37 |#1|) (-10 -8 (-15 -2223 ((-381 |#1|) $)) (-15 -2223 ($ (-381 (-392 |#1|)))) (-15 -2272 ($ $)) (-15 -4106 ((-392 |#1|) $)) (-15 -3647 (|#1| $)) (-15 -2156 ($ $ (-521))) (-15 -2485 ((-521) $)) (-15 -3587 ((-1080 |#1|) |#1| |#1|)) (-15 -1390 ($ $)) (-15 -1283 ($ |#1| (-392 |#1|))) (-15 -2556 (|#1| $))))
-((-1283 (((-51) (-880 |#1|) (-392 (-880 |#1|)) (-1084)) 16) (((-51) (-381 (-880 |#1|)) (-1084)) 17)))
-(((-843 |#1|) (-10 -7 (-15 -1283 ((-51) (-381 (-880 |#1|)) (-1084))) (-15 -1283 ((-51) (-880 |#1|) (-392 (-880 |#1|)) (-1084)))) (-13 (-282) (-135))) (T -843))
-((-1283 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-392 (-880 *6))) (-5 *5 (-1084)) (-5 *3 (-880 *6)) (-4 *6 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *6)))) (-1283 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *5)))))
-(-10 -7 (-15 -1283 ((-51) (-381 (-880 |#1|)) (-1084))) (-15 -1283 ((-51) (-880 |#1|) (-392 (-880 |#1|)) (-1084))))
-((-1244 ((|#4| (-587 |#4|)) 119) (((-1080 |#4|) (-1080 |#4|) (-1080 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2286 (((-1080 |#4|) (-587 (-1080 |#4|))) 112) (((-1080 |#4|) (-1080 |#4|) (-1080 |#4|)) 49) ((|#4| (-587 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
-(((-844 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2286 (|#4| |#4| |#4|)) (-15 -2286 (|#4| (-587 |#4|))) (-15 -2286 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -2286 ((-1080 |#4|) (-587 (-1080 |#4|)))) (-15 -1244 (|#4| |#4| |#4|)) (-15 -1244 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -1244 (|#4| (-587 |#4|)))) (-729) (-783) (-282) (-877 |#3| |#1| |#2|)) (T -844))
-((-1244 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *6 *4 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)))) (-1244 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-282)) (-5 *1 (-844 *3 *4 *5 *6)))) (-1244 (*1 *2 *2 *2) (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-282)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-587 (-1080 *7))) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-5 *2 (-1080 *7)) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))) (-2286 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-282)) (-5 *1 (-844 *3 *4 *5 *6)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *6 *4 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)))) (-2286 (*1 *2 *2 *2) (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-282)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4)))))
-(-10 -7 (-15 -2286 (|#4| |#4| |#4|)) (-15 -2286 (|#4| (-587 |#4|))) (-15 -2286 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -2286 ((-1080 |#4|) (-587 (-1080 |#4|)))) (-15 -1244 (|#4| |#4| |#4|)) (-15 -1244 ((-1080 |#4|) (-1080 |#4|) (-1080 |#4|))) (-15 -1244 (|#4| (-587 |#4|))))
-((-1899 (((-832 (-521)) (-897)) 22) (((-832 (-521)) (-587 (-521))) 19)) (-2417 (((-832 (-521)) (-587 (-521))) 46) (((-832 (-521)) (-849)) 47)) (-4034 (((-832 (-521))) 23)) (-3025 (((-832 (-521))) 36) (((-832 (-521)) (-587 (-521))) 35)) (-1511 (((-832 (-521))) 34) (((-832 (-521)) (-587 (-521))) 33)) (-2011 (((-832 (-521))) 32) (((-832 (-521)) (-587 (-521))) 31)) (-1720 (((-832 (-521))) 30) (((-832 (-521)) (-587 (-521))) 29)) (-2003 (((-832 (-521))) 28) (((-832 (-521)) (-587 (-521))) 27)) (-3340 (((-832 (-521))) 38) (((-832 (-521)) (-587 (-521))) 37)) (-1424 (((-832 (-521)) (-587 (-521))) 50) (((-832 (-521)) (-849)) 51)) (-1236 (((-832 (-521)) (-587 (-521))) 48) (((-832 (-521)) (-849)) 49)) (-2938 (((-832 (-521)) (-587 (-521))) 43) (((-832 (-521)) (-849)) 45)) (-3753 (((-832 (-521)) (-587 (-849))) 40)))
-(((-845) (-10 -7 (-15 -2417 ((-832 (-521)) (-849))) (-15 -2417 ((-832 (-521)) (-587 (-521)))) (-15 -2938 ((-832 (-521)) (-849))) (-15 -2938 ((-832 (-521)) (-587 (-521)))) (-15 -3753 ((-832 (-521)) (-587 (-849)))) (-15 -1236 ((-832 (-521)) (-849))) (-15 -1236 ((-832 (-521)) (-587 (-521)))) (-15 -1424 ((-832 (-521)) (-849))) (-15 -1424 ((-832 (-521)) (-587 (-521)))) (-15 -2003 ((-832 (-521)) (-587 (-521)))) (-15 -2003 ((-832 (-521)))) (-15 -1720 ((-832 (-521)) (-587 (-521)))) (-15 -1720 ((-832 (-521)))) (-15 -2011 ((-832 (-521)) (-587 (-521)))) (-15 -2011 ((-832 (-521)))) (-15 -1511 ((-832 (-521)) (-587 (-521)))) (-15 -1511 ((-832 (-521)))) (-15 -3025 ((-832 (-521)) (-587 (-521)))) (-15 -3025 ((-832 (-521)))) (-15 -3340 ((-832 (-521)) (-587 (-521)))) (-15 -3340 ((-832 (-521)))) (-15 -4034 ((-832 (-521)))) (-15 -1899 ((-832 (-521)) (-587 (-521)))) (-15 -1899 ((-832 (-521)) (-897))))) (T -845))
-((-1899 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1899 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-4034 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-3340 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-3340 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-3025 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1511 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2011 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1720 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2003 (*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-587 (-849))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(-10 -7 (-15 -2417 ((-832 (-521)) (-849))) (-15 -2417 ((-832 (-521)) (-587 (-521)))) (-15 -2938 ((-832 (-521)) (-849))) (-15 -2938 ((-832 (-521)) (-587 (-521)))) (-15 -3753 ((-832 (-521)) (-587 (-849)))) (-15 -1236 ((-832 (-521)) (-849))) (-15 -1236 ((-832 (-521)) (-587 (-521)))) (-15 -1424 ((-832 (-521)) (-849))) (-15 -1424 ((-832 (-521)) (-587 (-521)))) (-15 -2003 ((-832 (-521)) (-587 (-521)))) (-15 -2003 ((-832 (-521)))) (-15 -1720 ((-832 (-521)) (-587 (-521)))) (-15 -1720 ((-832 (-521)))) (-15 -2011 ((-832 (-521)) (-587 (-521)))) (-15 -2011 ((-832 (-521)))) (-15 -1511 ((-832 (-521)) (-587 (-521)))) (-15 -1511 ((-832 (-521)))) (-15 -3025 ((-832 (-521)) (-587 (-521)))) (-15 -3025 ((-832 (-521)))) (-15 -3340 ((-832 (-521)) (-587 (-521)))) (-15 -3340 ((-832 (-521)))) (-15 -4034 ((-832 (-521)))) (-15 -1899 ((-832 (-521)) (-587 (-521)))) (-15 -1899 ((-832 (-521)) (-897))))
-((-2173 (((-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084))) 10)) (-2608 (((-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084))) 9)))
-(((-846 |#1|) (-10 -7 (-15 -2608 ((-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -2173 ((-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084))))) (-425)) (T -846))
-((-2173 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-880 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425)) (-5 *1 (-846 *4)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-880 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425)) (-5 *1 (-846 *4)))))
-(-10 -7 (-15 -2608 ((-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -2173 ((-587 (-880 |#1|)) (-587 (-880 |#1|)) (-587 (-1084)))))
-((-2223 (((-290 |#1|) (-450)) 15)))
-(((-847 |#1|) (-10 -7 (-15 -2223 ((-290 |#1|) (-450)))) (-13 (-783) (-513))) (T -847))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-450)) (-5 *2 (-290 *4)) (-5 *1 (-847 *4)) (-4 *4 (-13 (-783) (-513))))))
-(-10 -7 (-15 -2223 ((-290 |#1|) (-450))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-3637 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-848) (-1196)) (T -848))
-((-1313 (*1 *2 *3) (-12 (-4 *1 (-848)) (-5 *2 (-2 (|:| -2979 (-587 *1)) (|:| -1384 *1))) (-5 *3 (-587 *1)))) (-3611 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-848)))))
-(-13 (-425) (-10 -8 (-15 -1313 ((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $))) (-15 -3611 ((-3 (-587 $) "failed") (-587 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2286 (($ $ $) NIL)) (-2223 (((-791) $) NIL)) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3572 (($) NIL T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ $ $) NIL)))
-(((-849) (-13 (-25) (-783) (-663) (-10 -8 (-15 -2286 ($ $ $)) (-6 (-4235 "*"))))) (T -849))
-((-2286 (*1 *1 *1 *1) (-5 *1 (-849))))
-(-13 (-25) (-783) (-663) (-10 -8 (-15 -2286 ($ $ $)) (-6 (-4235 "*"))))
-((-3444 ((|#2| (-587 |#1|) (-587 |#1|)) 24)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -3444 (|#2| (-587 |#1|) (-587 |#1|)))) (-337) (-1141 |#1|)) (T -850))
-((-3444 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-4 *2 (-1141 *4)) (-5 *1 (-850 *4 *2)))))
-(-10 -7 (-15 -3444 (|#2| (-587 |#1|) (-587 |#1|))))
-((-2018 (((-1080 |#2|) (-587 |#2|) (-587 |#2|)) 17) (((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-587 |#2|) (-587 |#2|)) 13)))
-(((-851 |#1| |#2|) (-10 -7 (-15 -2018 ((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-587 |#2|) (-587 |#2|))) (-15 -2018 ((-1080 |#2|) (-587 |#2|) (-587 |#2|)))) (-1084) (-337)) (T -851))
-((-2018 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-337)) (-5 *2 (-1080 *5)) (-5 *1 (-851 *4 *5)) (-14 *4 (-1084)))) (-2018 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4 *5)) (-5 *3 (-587 *5)) (-14 *4 (-1084)) (-4 *5 (-337)) (-5 *1 (-851 *4 *5)))))
-(-10 -7 (-15 -2018 ((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-587 |#2|) (-587 |#2|))) (-15 -2018 ((-1080 |#2|) (-587 |#2|) (-587 |#2|))))
-((-2962 (((-521) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-1067)) 138)) (-3553 ((|#4| |#4|) 154)) (-3203 (((-587 (-381 (-880 |#1|))) (-587 (-1084))) 117)) (-2044 (((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))) (-627 |#4|) (-587 (-381 (-880 |#1|))) (-587 (-587 |#4|)) (-707) (-707) (-521)) 73)) (-2842 (((-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-587 |#4|)) 57)) (-2162 (((-627 |#4|) (-627 |#4|) (-587 |#4|)) 53)) (-1546 (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-1067)) 150)) (-2379 (((-521) (-627 |#4|) (-849) (-1067)) 131) (((-521) (-627 |#4|) (-587 (-1084)) (-849) (-1067)) 130) (((-521) (-627 |#4|) (-587 |#4|) (-849) (-1067)) 129) (((-521) (-627 |#4|) (-1067)) 126) (((-521) (-627 |#4|) (-587 (-1084)) (-1067)) 125) (((-521) (-627 |#4|) (-587 |#4|) (-1067)) 124) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-849)) 123) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 (-1084)) (-849)) 122) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 |#4|) (-849)) 121) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|)) 119) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 (-1084))) 118) (((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 |#4|)) 115)) (-2565 ((|#4| (-880 |#1|)) 66)) (-1234 (((-108) (-587 |#4|) (-587 (-587 |#4|))) 151)) (-2733 (((-587 (-587 (-521))) (-521) (-521)) 128)) (-3882 (((-587 (-587 |#4|)) (-587 (-587 |#4|))) 85)) (-1854 (((-707) (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|))))) 83)) (-3153 (((-707) (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|))))) 82)) (-3426 (((-108) (-587 (-880 |#1|))) 17) (((-108) (-587 |#4|)) 13)) (-2461 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|)) 69)) (-3681 (((-587 |#4|) |#4|) 47)) (-3782 (((-587 (-381 (-880 |#1|))) (-587 |#4|)) 113) (((-627 (-381 (-880 |#1|))) (-627 |#4|)) 54) (((-381 (-880 |#1|)) |#4|) 110)) (-3929 (((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))))))) (|:| |rgsz| (-521))) (-627 |#4|) (-587 (-381 (-880 |#1|))) (-707) (-1067) (-521)) 89)) (-3781 (((-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))) (-627 |#4|) (-707)) 81)) (-3528 (((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-627 |#4|) (-707)) 98)) (-1358 (((-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-2 (|:| -3534 (-627 (-381 (-880 |#1|)))) (|:| |vec| (-587 (-381 (-880 |#1|)))) (|:| -3167 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) 46)))
-(((-852 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 |#4|))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 (-1084)))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 |#4|) (-849))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 (-1084)) (-849))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-849))) (-15 -2379 ((-521) (-627 |#4|) (-587 |#4|) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-587 (-1084)) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-587 |#4|) (-849) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-587 (-1084)) (-849) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-849) (-1067))) (-15 -2962 ((-521) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-1067))) (-15 -1546 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-1067))) (-15 -3929 ((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))))))) (|:| |rgsz| (-521))) (-627 |#4|) (-587 (-381 (-880 |#1|))) (-707) (-1067) (-521))) (-15 -3782 ((-381 (-880 |#1|)) |#4|)) (-15 -3782 ((-627 (-381 (-880 |#1|))) (-627 |#4|))) (-15 -3782 ((-587 (-381 (-880 |#1|))) (-587 |#4|))) (-15 -3203 ((-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -2565 (|#4| (-880 |#1|))) (-15 -2461 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|))) (-15 -3781 ((-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))) (-627 |#4|) (-707))) (-15 -2842 ((-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-587 |#4|))) (-15 -1358 ((-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-2 (|:| -3534 (-627 (-381 (-880 |#1|)))) (|:| |vec| (-587 (-381 (-880 |#1|)))) (|:| -3167 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (-15 -3681 ((-587 |#4|) |#4|)) (-15 -3153 ((-707) (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -1854 ((-707) (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -3882 ((-587 (-587 |#4|)) (-587 (-587 |#4|)))) (-15 -2733 ((-587 (-587 (-521))) (-521) (-521))) (-15 -1234 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -3528 ((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-627 |#4|) (-707))) (-15 -2162 ((-627 |#4|) (-627 |#4|) (-587 |#4|))) (-15 -2044 ((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))) (-627 |#4|) (-587 (-381 (-880 |#1|))) (-587 (-587 |#4|)) (-707) (-707) (-521))) (-15 -3553 (|#4| |#4|)) (-15 -3426 ((-108) (-587 |#4|))) (-15 -3426 ((-108) (-587 (-880 |#1|))))) (-13 (-282) (-135)) (-13 (-783) (-562 (-1084))) (-729) (-877 |#1| |#3| |#2|)) (T -852))
-((-3426 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-108)) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-108)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-783) (-562 (-1084)))) (-4 *5 (-729)) (-5 *1 (-852 *3 *4 *5 *2)) (-4 *2 (-877 *3 *5 *4)))) (-2044 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-5 *4 (-627 *12)) (-5 *5 (-587 (-381 (-880 *9)))) (-5 *6 (-587 (-587 *12))) (-5 *7 (-707)) (-5 *8 (-521)) (-4 *9 (-13 (-282) (-135))) (-4 *12 (-877 *9 *11 *10)) (-4 *10 (-13 (-783) (-562 (-1084)))) (-4 *11 (-729)) (-5 *2 (-2 (|:| |eqzro| (-587 *12)) (|:| |neqzro| (-587 *12)) (|:| |wcond| (-587 (-880 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *9)))) (|:| -1245 (-587 (-1165 (-381 (-880 *9))))))))) (-5 *1 (-852 *9 *10 *11 *12)))) (-2162 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3528 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-707)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |det| *8) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (-5 *1 (-852 *5 *6 *7 *8)))) (-1234 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-108)) (-5 *1 (-852 *5 *6 *7 *8)))) (-2733 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-587 (-521)))) (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-521)) (-4 *7 (-877 *4 *6 *5)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-587 (-587 *6))) (-4 *6 (-877 *3 *5 *4)) (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-783) (-562 (-1084)))) (-4 *5 (-729)) (-5 *1 (-852 *3 *4 *5 *6)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| *7) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 *7))))) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| *7) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 *7))))) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 *3)) (-5 *1 (-852 *4 *5 *6 *3)) (-4 *3 (-877 *4 *6 *5)))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3534 (-627 (-381 (-880 *4)))) (|:| |vec| (-587 (-381 (-880 *4)))) (|:| -3167 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-2 (|:| |partsol| (-1165 (-381 (-880 *4)))) (|:| -1245 (-587 (-1165 (-381 (-880 *4))))))) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-2842 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1165 (-381 (-880 *4)))) (|:| -1245 (-587 (-1165 (-381 (-880 *4))))))) (-5 *3 (-587 *7)) (-4 *4 (-13 (-282) (-135))) (-4 *7 (-877 *4 *6 *5)) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *1 (-852 *4 *5 *6 *7)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| *8) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 *8))))) (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-707)))) (-2461 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-4 *7 (-877 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-587 *7)) (|:| |n0| (-587 *7)))) (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-282) (-135))) (-4 *2 (-877 *4 *6 *5)) (-5 *1 (-852 *4 *5 *6 *2)) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-381 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-381 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-627 (-381 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7)))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-381 (-880 *4))) (-5 *1 (-852 *4 *5 *6 *3)) (-4 *3 (-877 *4 *6 *5)))) (-3929 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-627 *11)) (-5 *4 (-587 (-381 (-880 *8)))) (-5 *5 (-707)) (-5 *6 (-1067)) (-4 *8 (-13 (-282) (-135))) (-4 *11 (-877 *8 *10 *9)) (-4 *9 (-13 (-783) (-562 (-1084)))) (-4 *10 (-729)) (-5 *2 (-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 *11)) (|:| |neqzro| (-587 *11)) (|:| |wcond| (-587 (-880 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *8)))) (|:| -1245 (-587 (-1165 (-381 (-880 *8)))))))))) (|:| |rgsz| (-521)))) (-5 *1 (-852 *8 *9 *10 *11)) (-5 *7 (-521)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) (|:| |wcond| (-587 (-880 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *4)))) (|:| -1245 (-587 (-1165 (-381 (-880 *4)))))))))) (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *5)))) (|:| -1245 (-587 (-1165 (-381 (-880 *5)))))))))) (-5 *4 (-1067)) (-4 *5 (-13 (-282) (-135))) (-4 *8 (-877 *5 *7 *6)) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *5 *6 *7 *8)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-849)) (-5 *5 (-1067)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *6 *7 *8 *9)))) (-2379 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 (-1084))) (-5 *5 (-849)) (-5 *6 (-1067)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-282) (-135))) (-4 *8 (-13 (-783) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *7 *8 *9 *10)))) (-2379 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 *10)) (-5 *5 (-849)) (-5 *6 (-1067)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-282) (-135))) (-4 *8 (-13 (-783) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *7 *8 *9 *10)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-1067)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *5 *6 *7 *8)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-1067)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *6 *7 *8 *9)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 *9)) (-5 *5 (-1067)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *6 *7 *8 *9)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-849)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *5)))) (|:| -1245 (-587 (-1165 (-381 (-880 *5)))))))))) (-5 *1 (-852 *5 *6 *7 *8)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-849)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) (|:| |wcond| (-587 (-880 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *6)))) (|:| -1245 (-587 (-1165 (-381 (-880 *6)))))))))) (-5 *1 (-852 *6 *7 *8 *9)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *5 (-849)) (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9)) (|:| |wcond| (-587 (-880 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *6)))) (|:| -1245 (-587 (-1165 (-381 (-880 *6)))))))))) (-5 *1 (-852 *6 *7 *8 *9)) (-5 *4 (-587 *9)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7)) (|:| |wcond| (-587 (-880 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *4)))) (|:| -1245 (-587 (-1165 (-381 (-880 *4)))))))))) (-5 *1 (-852 *4 *5 *6 *7)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-587 (-1084))) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *5)))) (|:| -1245 (-587 (-1165 (-381 (-880 *5)))))))))) (-5 *1 (-852 *5 *6 *7 *8)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-587 (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8)) (|:| |wcond| (-587 (-880 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 *5)))) (|:| -1245 (-587 (-1165 (-381 (-880 *5)))))))))) (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
-(-10 -7 (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 |#4|))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 (-1084)))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 |#4|) (-849))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-587 (-1084)) (-849))) (-15 -2379 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-627 |#4|) (-849))) (-15 -2379 ((-521) (-627 |#4|) (-587 |#4|) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-587 (-1084)) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-587 |#4|) (-849) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-587 (-1084)) (-849) (-1067))) (-15 -2379 ((-521) (-627 |#4|) (-849) (-1067))) (-15 -2962 ((-521) (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-1067))) (-15 -1546 ((-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|))))))))) (-1067))) (-15 -3929 ((-2 (|:| |rgl| (-587 (-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))))))) (|:| |rgsz| (-521))) (-627 |#4|) (-587 (-381 (-880 |#1|))) (-707) (-1067) (-521))) (-15 -3782 ((-381 (-880 |#1|)) |#4|)) (-15 -3782 ((-627 (-381 (-880 |#1|))) (-627 |#4|))) (-15 -3782 ((-587 (-381 (-880 |#1|))) (-587 |#4|))) (-15 -3203 ((-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -2565 (|#4| (-880 |#1|))) (-15 -2461 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-587 |#4|)) (|:| |n0| (-587 |#4|))) (-587 |#4|) (-587 |#4|))) (-15 -3781 ((-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))) (-627 |#4|) (-707))) (-15 -2842 ((-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-587 |#4|))) (-15 -1358 ((-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))) (-2 (|:| -3534 (-627 (-381 (-880 |#1|)))) (|:| |vec| (-587 (-381 (-880 |#1|)))) (|:| -3167 (-707)) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (-15 -3681 ((-587 |#4|) |#4|)) (-15 -3153 ((-707) (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -1854 ((-707) (-587 (-2 (|:| -3167 (-707)) (|:| |eqns| (-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))) (|:| |fgb| (-587 |#4|)))))) (-15 -3882 ((-587 (-587 |#4|)) (-587 (-587 |#4|)))) (-15 -2733 ((-587 (-587 (-521))) (-521) (-521))) (-15 -1234 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -3528 ((-587 (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521))))) (-627 |#4|) (-707))) (-15 -2162 ((-627 |#4|) (-627 |#4|) (-587 |#4|))) (-15 -2044 ((-2 (|:| |eqzro| (-587 |#4|)) (|:| |neqzro| (-587 |#4|)) (|:| |wcond| (-587 (-880 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1165 (-381 (-880 |#1|)))) (|:| -1245 (-587 (-1165 (-381 (-880 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))) (-627 |#4|) (-587 (-381 (-880 |#1|))) (-587 (-587 |#4|)) (-707) (-707) (-521))) (-15 -3553 (|#4| |#4|)) (-15 -3426 ((-108) (-587 |#4|))) (-15 -3426 ((-108) (-587 (-880 |#1|)))))
-((-2891 (((-855) |#1| (-1084)) 16) (((-855) |#1| (-1084) (-1008 (-202))) 20)) (-4157 (((-855) |#1| |#1| (-1084) (-1008 (-202))) 18) (((-855) |#1| (-1084) (-1008 (-202))) 14)))
-(((-853 |#1|) (-10 -7 (-15 -4157 ((-855) |#1| (-1084) (-1008 (-202)))) (-15 -4157 ((-855) |#1| |#1| (-1084) (-1008 (-202)))) (-15 -2891 ((-855) |#1| (-1084) (-1008 (-202)))) (-15 -2891 ((-855) |#1| (-1084)))) (-562 (-497))) (T -853))
-((-2891 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-562 (-497))))) (-2891 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-562 (-497))))) (-4157 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-562 (-497))))) (-4157 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-855)) (-5 *1 (-853 *3)) (-4 *3 (-562 (-497))))))
-(-10 -7 (-15 -4157 ((-855) |#1| (-1084) (-1008 (-202)))) (-15 -4157 ((-855) |#1| |#1| (-1084) (-1008 (-202)))) (-15 -2891 ((-855) |#1| (-1084) (-1008 (-202)))) (-15 -2891 ((-855) |#1| (-1084))))
-((-2187 (($ $ (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 69)) (-3816 (((-1008 (-202)) $) 40)) (-3803 (((-1008 (-202)) $) 39)) (-3789 (((-1008 (-202)) $) 38)) (-4053 (((-587 (-587 (-202))) $) 43)) (-1458 (((-1008 (-202)) $) 41)) (-3424 (((-521) (-521)) 32)) (-3549 (((-521) (-521)) 28)) (-2012 (((-521) (-521)) 30)) (-2217 (((-108) (-108)) 35)) (-2384 (((-521)) 31)) (-2760 (($ $ (-1008 (-202))) 72) (($ $) 73)) (-1963 (($ (-1 (-871 (-202)) (-202)) (-1008 (-202))) 77) (($ (-1 (-871 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 78)) (-4157 (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202))) 80) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 81) (($ $ (-1008 (-202))) 75)) (-4185 (((-521)) 36)) (-2602 (((-521)) 27)) (-3657 (((-521)) 29)) (-3633 (((-587 (-587 (-871 (-202)))) $) 93)) (-1574 (((-108) (-108)) 37)) (-2223 (((-791) $) 92)) (-2501 (((-108)) 34)))
-(((-854) (-13 (-900) (-10 -8 (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)))) (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ $ (-1008 (-202)))) (-15 -2187 ($ $ (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2760 ($ $ (-1008 (-202)))) (-15 -2760 ($ $)) (-15 -1458 ((-1008 (-202)) $)) (-15 -4053 ((-587 (-587 (-202))) $)) (-15 -2602 ((-521))) (-15 -3549 ((-521) (-521))) (-15 -3657 ((-521))) (-15 -2012 ((-521) (-521))) (-15 -2384 ((-521))) (-15 -3424 ((-521) (-521))) (-15 -2501 ((-108))) (-15 -2217 ((-108) (-108))) (-15 -4185 ((-521))) (-15 -1574 ((-108) (-108)))))) (T -854))
-((-1963 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-854)))) (-1963 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-854)))) (-4157 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-854)))) (-4157 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-854)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854)))) (-2187 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854)))) (-2760 (*1 *1 *1) (-5 *1 (-854))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-854)))) (-2602 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-3657 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-2384 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-2501 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))) (-4185 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
-(-13 (-900) (-10 -8 (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)))) (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ $ (-1008 (-202)))) (-15 -2187 ($ $ (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2760 ($ $ (-1008 (-202)))) (-15 -2760 ($ $)) (-15 -1458 ((-1008 (-202)) $)) (-15 -4053 ((-587 (-587 (-202))) $)) (-15 -2602 ((-521))) (-15 -3549 ((-521) (-521))) (-15 -3657 ((-521))) (-15 -2012 ((-521) (-521))) (-15 -2384 ((-521))) (-15 -3424 ((-521) (-521))) (-15 -2501 ((-108))) (-15 -2217 ((-108) (-108))) (-15 -4185 ((-521))) (-15 -1574 ((-108) (-108)))))
-((-2187 (($ $ (-1008 (-202))) 70) (($ $ (-1008 (-202)) (-1008 (-202))) 71)) (-3803 (((-1008 (-202)) $) 43)) (-3789 (((-1008 (-202)) $) 42)) (-1458 (((-1008 (-202)) $) 44)) (-1527 (((-521) (-521)) 36)) (-2976 (((-521) (-521)) 32)) (-1608 (((-521) (-521)) 34)) (-2218 (((-108) (-108)) 38)) (-3212 (((-521)) 35)) (-2760 (($ $ (-1008 (-202))) 74) (($ $) 75)) (-1963 (($ (-1 (-871 (-202)) (-202)) (-1008 (-202))) 84) (($ (-1 (-871 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 85)) (-2891 (($ (-1 (-202) (-202)) (-1008 (-202))) 92) (($ (-1 (-202) (-202))) 95)) (-4157 (($ (-1 (-202) (-202)) (-1008 (-202))) 79) (($ (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202))) 80) (($ (-587 (-1 (-202) (-202))) (-1008 (-202))) 87) (($ (-587 (-1 (-202) (-202))) (-1008 (-202)) (-1008 (-202))) 88) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202))) 81) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202))) 82) (($ $ (-1008 (-202))) 76)) (-2442 (((-108) $) 39)) (-3044 (((-521)) 40)) (-3902 (((-521)) 31)) (-1456 (((-521)) 33)) (-3633 (((-587 (-587 (-871 (-202)))) $) 22)) (-3012 (((-108) (-108)) 41)) (-2223 (((-791) $) 106)) (-2509 (((-108)) 37)))
-(((-855) (-13 (-882) (-10 -8 (-15 -4157 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)))) (-15 -4157 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)))) (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2891 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2891 ($ (-1 (-202) (-202)))) (-15 -4157 ($ $ (-1008 (-202)))) (-15 -2442 ((-108) $)) (-15 -2187 ($ $ (-1008 (-202)))) (-15 -2187 ($ $ (-1008 (-202)) (-1008 (-202)))) (-15 -2760 ($ $ (-1008 (-202)))) (-15 -2760 ($ $)) (-15 -1458 ((-1008 (-202)) $)) (-15 -3902 ((-521))) (-15 -2976 ((-521) (-521))) (-15 -1456 ((-521))) (-15 -1608 ((-521) (-521))) (-15 -3212 ((-521))) (-15 -1527 ((-521) (-521))) (-15 -2509 ((-108))) (-15 -2218 ((-108) (-108))) (-15 -3044 ((-521))) (-15 -3012 ((-108) (-108)))))) (T -855))
-((-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-4157 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-4157 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-4157 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-4157 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-1963 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-1963 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202))) (-5 *1 (-855)))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-855)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-2187 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-2760 (*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-2760 (*1 *1 *1) (-5 *1 (-855))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))) (-3902 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-1456 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-3212 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-1527 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-2509 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-3044 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))) (-3012 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(-13 (-882) (-10 -8 (-15 -4157 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)))) (-15 -4157 ($ (-587 (-1 (-202) (-202))) (-1008 (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)))) (-15 -4157 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)))) (-15 -1963 ($ (-1 (-871 (-202)) (-202)) (-1008 (-202)) (-1008 (-202)) (-1008 (-202)))) (-15 -2891 ($ (-1 (-202) (-202)) (-1008 (-202)))) (-15 -2891 ($ (-1 (-202) (-202)))) (-15 -4157 ($ $ (-1008 (-202)))) (-15 -2442 ((-108) $)) (-15 -2187 ($ $ (-1008 (-202)))) (-15 -2187 ($ $ (-1008 (-202)) (-1008 (-202)))) (-15 -2760 ($ $ (-1008 (-202)))) (-15 -2760 ($ $)) (-15 -1458 ((-1008 (-202)) $)) (-15 -3902 ((-521))) (-15 -2976 ((-521) (-521))) (-15 -1456 ((-521))) (-15 -1608 ((-521) (-521))) (-15 -3212 ((-521))) (-15 -1527 ((-521) (-521))) (-15 -2509 ((-108))) (-15 -2218 ((-108) (-108))) (-15 -3044 ((-521))) (-15 -3012 ((-108) (-108)))))
-((-3441 (((-587 (-1008 (-202))) (-587 (-587 (-871 (-202))))) 23)))
-(((-856) (-10 -7 (-15 -3441 ((-587 (-1008 (-202))) (-587 (-587 (-871 (-202)))))))) (T -856))
-((-3441 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *2 (-587 (-1008 (-202)))) (-5 *1 (-856)))))
-(-10 -7 (-15 -3441 ((-587 (-1008 (-202))) (-587 (-587 (-871 (-202)))))))
-((-2704 ((|#2| |#2|) 25)) (-1849 ((|#2| |#2|) 26)) (-2682 ((|#2| |#2|) 24)) (-2985 ((|#2| |#2| (-1067)) 23)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -2985 (|#2| |#2| (-1067))) (-15 -2682 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -1849 (|#2| |#2|))) (-783) (-404 |#1|)) (T -857))
-((-1849 (*1 *2 *2) (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-404 *3)))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-404 *3)))) (-2682 (*1 *2 *2) (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-404 *3)))) (-2985 (*1 *2 *2 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-783)) (-5 *1 (-857 *4 *2)) (-4 *2 (-404 *4)))))
-(-10 -7 (-15 -2985 (|#2| |#2| (-1067))) (-15 -2682 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)))
-((-2704 (((-290 (-521)) (-1084)) 15)) (-1849 (((-290 (-521)) (-1084)) 13)) (-2682 (((-290 (-521)) (-1084)) 11)) (-2985 (((-290 (-521)) (-1084) (-1067)) 18)))
-(((-858) (-10 -7 (-15 -2985 ((-290 (-521)) (-1084) (-1067))) (-15 -2682 ((-290 (-521)) (-1084))) (-15 -2704 ((-290 (-521)) (-1084))) (-15 -1849 ((-290 (-521)) (-1084))))) (T -858))
-((-1849 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-858)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-858)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-858)))) (-2985 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-1067)) (-5 *2 (-290 (-521))) (-5 *1 (-858)))))
-(-10 -7 (-15 -2985 ((-290 (-521)) (-1084) (-1067))) (-15 -2682 ((-290 (-521)) (-1084))) (-15 -2704 ((-290 (-521)) (-1084))) (-15 -1849 ((-290 (-521)) (-1084))))
-((-2293 (((-817 |#1| |#3|) |#2| (-820 |#1|) (-817 |#1| |#3|)) 24)) (-3121 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12)))
-(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3121 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2293 ((-817 |#1| |#3|) |#2| (-820 |#1|) (-817 |#1| |#3|)))) (-1013) (-814 |#1|) (-13 (-1013) (-961 |#2|))) (T -859))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-961 *3))) (-4 *3 (-814 *5)) (-5 *1 (-859 *5 *3 *6)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1013) (-961 *5))) (-4 *5 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-859 *4 *5 *6)))))
-(-10 -7 (-15 -3121 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2293 ((-817 |#1| |#3|) |#2| (-820 |#1|) (-817 |#1| |#3|))))
-((-2293 (((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)) 29)))
-(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -2293 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-1013) (-13 (-513) (-783) (-814 |#1|)) (-13 (-404 |#2|) (-562 (-820 |#1|)) (-814 |#1|) (-961 (-560 $)))) (T -860))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-404 *6) (-562 *4) (-814 *5) (-961 (-560 $)))) (-5 *4 (-820 *5)) (-4 *6 (-13 (-513) (-783) (-814 *5))) (-5 *1 (-860 *5 *6 *3)))))
-(-10 -7 (-15 -2293 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))))
-((-2293 (((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|)) 12)))
-(((-861 |#1|) (-10 -7 (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|)))) (-506)) (T -861))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 (-521) *3)) (-5 *4 (-820 (-521))) (-4 *3 (-506)) (-5 *1 (-861 *3)))))
-(-10 -7 (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))))
-((-2293 (((-817 |#1| |#2|) (-560 |#2|) (-820 |#1|) (-817 |#1| |#2|)) 52)))
-(((-862 |#1| |#2|) (-10 -7 (-15 -2293 ((-817 |#1| |#2|) (-560 |#2|) (-820 |#1|) (-817 |#1| |#2|)))) (-1013) (-13 (-783) (-961 (-560 $)) (-562 (-820 |#1|)) (-814 |#1|))) (T -862))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *6)) (-5 *3 (-560 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-783) (-961 (-560 $)) (-562 *4) (-814 *5))) (-5 *4 (-820 *5)) (-5 *1 (-862 *5 *6)))))
-(-10 -7 (-15 -2293 ((-817 |#1| |#2|) (-560 |#2|) (-820 |#1|) (-817 |#1| |#2|))))
-((-2293 (((-813 |#1| |#2| |#3|) |#3| (-820 |#1|) (-813 |#1| |#2| |#3|)) 14)))
-(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2293 ((-813 |#1| |#2| |#3|) |#3| (-820 |#1|) (-813 |#1| |#2| |#3|)))) (-1013) (-814 |#1|) (-607 |#2|)) (T -863))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *5 *6 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-4 *6 (-814 *5)) (-4 *3 (-607 *6)) (-5 *1 (-863 *5 *6 *3)))))
-(-10 -7 (-15 -2293 ((-813 |#1| |#2| |#3|) |#3| (-820 |#1|) (-813 |#1| |#2| |#3|))))
-((-2293 (((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|)) 17 (|has| |#3| (-814 |#1|))) (((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|) (-1 (-817 |#1| |#5|) |#3| (-820 |#1|) (-817 |#1| |#5|))) 16)))
-(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2293 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|) (-1 (-817 |#1| |#5|) |#3| (-820 |#1|) (-817 |#1| |#5|)))) (IF (|has| |#3| (-814 |#1|)) (-15 -2293 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|))) |%noBranch|)) (-1013) (-729) (-783) (-13 (-970) (-783) (-814 |#1|)) (-13 (-877 |#4| |#2| |#3|) (-562 (-820 |#1|)))) (T -864))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-877 *8 *6 *7) (-562 *4))) (-5 *4 (-820 *5)) (-4 *7 (-814 *5)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-13 (-970) (-783) (-814 *5))) (-5 *1 (-864 *5 *6 *7 *8 *3)))) (-2293 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-817 *6 *3) *8 (-820 *6) (-817 *6 *3))) (-4 *8 (-783)) (-5 *2 (-817 *6 *3)) (-5 *4 (-820 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-877 *9 *7 *8) (-562 *4))) (-4 *7 (-729)) (-4 *9 (-13 (-970) (-783) (-814 *6))) (-5 *1 (-864 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2293 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|) (-1 (-817 |#1| |#5|) |#3| (-820 |#1|) (-817 |#1| |#5|)))) (IF (|has| |#3| (-814 |#1|)) (-15 -2293 ((-817 |#1| |#5|) |#5| (-820 |#1|) (-817 |#1| |#5|))) |%noBranch|))
-((-1932 ((|#2| |#2| (-587 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12)))
-(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -1932 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1932 (|#2| |#2| (-587 (-1 (-108) |#3|))))) (-783) (-404 |#1|) (-1119)) (T -865))
-((-1932 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-1 (-108) *5))) (-4 *5 (-1119)) (-4 *4 (-783)) (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-404 *4)))) (-1932 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1119)) (-4 *4 (-783)) (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-404 *4)))))
-(-10 -7 (-15 -1932 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1932 (|#2| |#2| (-587 (-1 (-108) |#3|)))))
-((-1932 (((-290 (-521)) (-1084) (-587 (-1 (-108) |#1|))) 16) (((-290 (-521)) (-1084) (-1 (-108) |#1|)) 13)))
-(((-866 |#1|) (-10 -7 (-15 -1932 ((-290 (-521)) (-1084) (-1 (-108) |#1|))) (-15 -1932 ((-290 (-521)) (-1084) (-587 (-1 (-108) |#1|))))) (-1119)) (T -866))
-((-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-587 (-1 (-108) *5))) (-4 *5 (-1119)) (-5 *2 (-290 (-521))) (-5 *1 (-866 *5)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1119)) (-5 *2 (-290 (-521))) (-5 *1 (-866 *5)))))
-(-10 -7 (-15 -1932 ((-290 (-521)) (-1084) (-1 (-108) |#1|))) (-15 -1932 ((-290 (-521)) (-1084) (-587 (-1 (-108) |#1|)))))
-((-2293 (((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)) 25)))
-(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -2293 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-1013) (-13 (-513) (-814 |#1|) (-562 (-820 |#1|))) (-918 |#2|)) (T -867))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-918 *6)) (-4 *6 (-13 (-513) (-814 *5) (-562 *4))) (-5 *4 (-820 *5)) (-5 *1 (-867 *5 *6 *3)))))
-(-10 -7 (-15 -2293 ((-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))))
-((-2293 (((-817 |#1| (-1084)) (-1084) (-820 |#1|) (-817 |#1| (-1084))) 17)))
-(((-868 |#1|) (-10 -7 (-15 -2293 ((-817 |#1| (-1084)) (-1084) (-820 |#1|) (-817 |#1| (-1084))))) (-1013)) (T -868))
-((-2293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-817 *5 (-1084))) (-5 *3 (-1084)) (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-5 *1 (-868 *5)))))
-(-10 -7 (-15 -2293 ((-817 |#1| (-1084)) (-1084) (-820 |#1|) (-817 |#1| (-1084)))))
-((-3678 (((-817 |#1| |#3|) (-587 |#3|) (-587 (-820 |#1|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) 33)) (-2293 (((-817 |#1| |#3|) (-587 |#3|) (-587 (-820 |#1|)) (-1 |#3| (-587 |#3|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))) 32)))
-(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -2293 ((-817 |#1| |#3|) (-587 |#3|) (-587 (-820 |#1|)) (-1 |#3| (-587 |#3|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-15 -3678 ((-817 |#1| |#3|) (-587 |#3|) (-587 (-820 |#1|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|))))) (-1013) (-13 (-970) (-783)) (-13 (-970) (-562 (-820 |#1|)) (-961 |#2|))) (T -869))
-((-3678 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-820 *6))) (-5 *5 (-1 (-817 *6 *8) *8 (-820 *6) (-817 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-970) (-562 (-820 *6)) (-961 *7))) (-5 *2 (-817 *6 *8)) (-4 *7 (-13 (-970) (-783))) (-5 *1 (-869 *6 *7 *8)))) (-2293 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-587 (-820 *7))) (-5 *5 (-1 *9 (-587 *9))) (-5 *6 (-1 (-817 *7 *9) *9 (-820 *7) (-817 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-970) (-562 (-820 *7)) (-961 *8))) (-5 *2 (-817 *7 *9)) (-5 *3 (-587 *9)) (-4 *8 (-13 (-970) (-783))) (-5 *1 (-869 *7 *8 *9)))))
-(-10 -7 (-15 -2293 ((-817 |#1| |#3|) (-587 |#3|) (-587 (-820 |#1|)) (-1 |#3| (-587 |#3|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))) (-15 -3678 ((-817 |#1| |#3|) (-587 |#3|) (-587 (-820 |#1|)) (-817 |#1| |#3|) (-1 (-817 |#1| |#3|) |#3| (-820 |#1|) (-817 |#1| |#3|)))))
-((-1627 (((-1080 (-381 (-521))) (-521)) 62)) (-3867 (((-1080 (-521)) (-521)) 65)) (-1207 (((-1080 (-521)) (-521)) 59)) (-3075 (((-521) (-1080 (-521))) 54)) (-1530 (((-1080 (-381 (-521))) (-521)) 48)) (-2326 (((-1080 (-521)) (-521)) 37)) (-1381 (((-1080 (-521)) (-521)) 67)) (-3088 (((-1080 (-521)) (-521)) 66)) (-1337 (((-1080 (-381 (-521))) (-521)) 50)))
-(((-870) (-10 -7 (-15 -1337 ((-1080 (-381 (-521))) (-521))) (-15 -3088 ((-1080 (-521)) (-521))) (-15 -1381 ((-1080 (-521)) (-521))) (-15 -2326 ((-1080 (-521)) (-521))) (-15 -1530 ((-1080 (-381 (-521))) (-521))) (-15 -3075 ((-521) (-1080 (-521)))) (-15 -1207 ((-1080 (-521)) (-521))) (-15 -3867 ((-1080 (-521)) (-521))) (-15 -1627 ((-1080 (-381 (-521))) (-521))))) (T -870))
-((-1627 (*1 *2 *3) (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-870)) (-5 *3 (-521)))) (-3867 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))) (-1207 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-521)) (-5 *1 (-870)))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-870)) (-5 *3 (-521)))) (-2326 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))) (-1381 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))) (-3088 (*1 *2 *3) (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))) (-1337 (*1 *2 *3) (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(-10 -7 (-15 -1337 ((-1080 (-381 (-521))) (-521))) (-15 -3088 ((-1080 (-521)) (-521))) (-15 -1381 ((-1080 (-521)) (-521))) (-15 -2326 ((-1080 (-521)) (-521))) (-15 -1530 ((-1080 (-381 (-521))) (-521))) (-15 -3075 ((-521) (-1080 (-521)))) (-15 -1207 ((-1080 (-521)) (-521))) (-15 -3867 ((-1080 (-521)) (-521))) (-15 -1627 ((-1080 (-381 (-521))) (-521))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3482 (($ (-707)) NIL (|has| |#1| (-23)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) |#1|) 11 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-2741 (($ (-587 |#1|)) 13)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-3951 (((-627 |#1|) $ $) NIL (|has| |#1| (-970)))) (-1869 (($ (-707) |#1|) 8)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 10 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3020 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-2859 (((-108) $ (-707)) NIL)) (-2522 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2191 (($ $ (-587 |#1|)) 24)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 18) (($ $ (-1132 (-521))) NIL)) (-4103 ((|#1| $ $) NIL (|has| |#1| (-970)))) (-2043 (((-849) $) 16)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3255 (($ $ $) 22)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497)))) (($ (-587 |#1|)) 17)) (-2234 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1639 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1628 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-521) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-663))) (($ $ |#1|) NIL (|has| |#1| (-663)))) (-3478 (((-707) $) 14 (|has| $ (-6 -4233)))))
-(((-871 |#1|) (-906 |#1|) (-970)) (T -871))
-NIL
-(-906 |#1|)
-((-3467 (((-453 |#1| |#2|) (-880 |#2|)) 17)) (-3638 (((-224 |#1| |#2|) (-880 |#2|)) 29)) (-2129 (((-880 |#2|) (-453 |#1| |#2|)) 22)) (-1518 (((-224 |#1| |#2|) (-453 |#1| |#2|)) 53)) (-1231 (((-880 |#2|) (-224 |#1| |#2|)) 26)) (-3537 (((-453 |#1| |#2|) (-224 |#1| |#2|)) 44)))
-(((-872 |#1| |#2|) (-10 -7 (-15 -3537 ((-453 |#1| |#2|) (-224 |#1| |#2|))) (-15 -1518 ((-224 |#1| |#2|) (-453 |#1| |#2|))) (-15 -3467 ((-453 |#1| |#2|) (-880 |#2|))) (-15 -2129 ((-880 |#2|) (-453 |#1| |#2|))) (-15 -1231 ((-880 |#2|) (-224 |#1| |#2|))) (-15 -3638 ((-224 |#1| |#2|) (-880 |#2|)))) (-587 (-1084)) (-970)) (T -872))
-((-3638 (*1 *2 *3) (-12 (-5 *3 (-880 *5)) (-4 *5 (-970)) (-5 *2 (-224 *4 *5)) (-5 *1 (-872 *4 *5)) (-14 *4 (-587 (-1084))))) (-1231 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-880 *5)) (-4 *5 (-970)) (-5 *2 (-453 *4 *5)) (-5 *1 (-872 *4 *5)) (-14 *4 (-587 (-1084))))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-224 *4 *5)) (-5 *1 (-872 *4 *5)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970)) (-5 *2 (-453 *4 *5)) (-5 *1 (-872 *4 *5)))))
-(-10 -7 (-15 -3537 ((-453 |#1| |#2|) (-224 |#1| |#2|))) (-15 -1518 ((-224 |#1| |#2|) (-453 |#1| |#2|))) (-15 -3467 ((-453 |#1| |#2|) (-880 |#2|))) (-15 -2129 ((-880 |#2|) (-453 |#1| |#2|))) (-15 -1231 ((-880 |#2|) (-224 |#1| |#2|))) (-15 -3638 ((-224 |#1| |#2|) (-880 |#2|))))
-((-3687 (((-587 |#2|) |#2| |#2|) 10)) (-2993 (((-707) (-587 |#1|)) 38 (|has| |#1| (-781)))) (-3270 (((-587 |#2|) |#2|) 11)) (-2400 (((-707) (-587 |#1|) (-521) (-521)) 37 (|has| |#1| (-781)))) (-1431 ((|#1| |#2|) 33 (|has| |#1| (-781)))))
-(((-873 |#1| |#2|) (-10 -7 (-15 -3687 ((-587 |#2|) |#2| |#2|)) (-15 -3270 ((-587 |#2|) |#2|)) (IF (|has| |#1| (-781)) (PROGN (-15 -1431 (|#1| |#2|)) (-15 -2993 ((-707) (-587 |#1|))) (-15 -2400 ((-707) (-587 |#1|) (-521) (-521)))) |%noBranch|)) (-337) (-1141 |#1|)) (T -873))
-((-2400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-521)) (-4 *5 (-781)) (-4 *5 (-337)) (-5 *2 (-707)) (-5 *1 (-873 *5 *6)) (-4 *6 (-1141 *5)))) (-2993 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-781)) (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-873 *4 *5)) (-4 *5 (-1141 *4)))) (-1431 (*1 *2 *3) (-12 (-4 *2 (-337)) (-4 *2 (-781)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1141 *2)))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-873 *4 *3)) (-4 *3 (-1141 *4)))) (-3687 (*1 *2 *3 *3) (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-873 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -3687 ((-587 |#2|) |#2| |#2|)) (-15 -3270 ((-587 |#2|) |#2|)) (IF (|has| |#1| (-781)) (PROGN (-15 -1431 (|#1| |#2|)) (-15 -2993 ((-707) (-587 |#1|))) (-15 -2400 ((-707) (-587 |#1|) (-521) (-521)))) |%noBranch|))
-((-1393 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 18)))
-(((-874 |#1| |#2|) (-10 -7 (-15 -1393 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-970) (-970)) (T -874))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-880 *6)) (-5 *1 (-874 *5 *6)))))
-(-10 -7 (-15 -1393 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|))))
-((-1280 (((-1138 |#1| (-880 |#2|)) (-880 |#2|) (-1161 |#1|)) 18)))
-(((-875 |#1| |#2|) (-10 -7 (-15 -1280 ((-1138 |#1| (-880 |#2|)) (-880 |#2|) (-1161 |#1|)))) (-1084) (-970)) (T -875))
-((-1280 (*1 *2 *3 *4) (-12 (-5 *4 (-1161 *5)) (-14 *5 (-1084)) (-4 *6 (-970)) (-5 *2 (-1138 *5 (-880 *6))) (-5 *1 (-875 *5 *6)) (-5 *3 (-880 *6)))))
-(-10 -7 (-15 -1280 ((-1138 |#1| (-880 |#2|)) (-880 |#2|) (-1161 |#1|))))
-((-2197 (((-707) $) 70) (((-707) $ (-587 |#4|)) 73)) (-2694 (($ $) 170)) (-2337 (((-392 $) $) 162)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 113)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) NIL) (((-521) $) NIL) ((|#4| $) 58)) (-3052 (($ $ $ |#4|) 75)) (-1961 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 103) (((-627 |#2|) (-627 $)) 96)) (-1563 (($ $) 177) (($ $ |#4|) 180)) (-3149 (((-587 $) $) 62)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 195) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 189)) (-2411 (((-587 $) $) 28)) (-4044 (($ |#2| |#3|) NIL) (($ $ |#4| (-707)) NIL) (($ $ (-587 |#4|) (-587 (-707))) 56)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#4|) 159)) (-3722 (((-3 (-587 $) "failed") $) 42)) (-4141 (((-3 (-587 $) "failed") $) 31)) (-3262 (((-3 (-2 (|:| |var| |#4|) (|:| -2246 (-707))) "failed") $) 46)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 106)) (-1822 (((-392 (-1080 $)) (-1080 $)) 119)) (-1336 (((-392 (-1080 $)) (-1080 $)) 117)) (-1974 (((-392 $) $) 137)) (-2313 (($ $ (-587 (-269 $))) 20) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-587 |#4|) (-587 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-587 |#4|) (-587 $)) NIL)) (-3011 (($ $ |#4|) 77)) (-1438 (((-820 (-353)) $) 209) (((-820 (-521)) $) 202) (((-497) $) 217)) (-1391 ((|#2| $) NIL) (($ $ |#4|) 172)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 151)) (-1499 ((|#2| $ |#3|) NIL) (($ $ |#4| (-707)) 51) (($ $ (-587 |#4|) (-587 (-707))) 54)) (-2446 (((-3 $ "failed") $) 153)) (-1569 (((-108) $ $) 183)))
-(((-876 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -1336 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1822 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2956 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -1563 (|#1| |#1| |#4|)) (-15 -1391 (|#1| |#1| |#4|)) (-15 -3011 (|#1| |#1| |#4|)) (-15 -3052 (|#1| |#1| |#1| |#4|)) (-15 -3149 ((-587 |#1|) |#1|)) (-15 -2197 ((-707) |#1| (-587 |#4|))) (-15 -2197 ((-707) |#1|)) (-15 -3262 ((-3 (-2 (|:| |var| |#4|) (|:| -2246 (-707))) "failed") |#1|)) (-15 -3722 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -4141 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -4044 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -4044 (|#1| |#1| |#4| (-707))) (-15 -2966 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1| |#4|)) (-15 -2411 ((-587 |#1|) |#1|)) (-15 -1499 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -1499 (|#1| |#1| |#4| (-707))) (-15 -1961 ((-627 |#2|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1496 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#4| |#1|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#4| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -4044 (|#1| |#2| |#3|)) (-15 -1499 (|#2| |#1| |#3|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -1563 (|#1| |#1|))) (-877 |#2| |#3| |#4|) (-970) (-729) (-783)) (T -876))
-NIL
-(-10 -8 (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2446 ((-3 |#1| "failed") |#1|)) (-15 -1569 ((-108) |#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -1336 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1822 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -2956 ((-3 (-1165 |#1|) "failed") (-627 |#1|))) (-15 -1563 (|#1| |#1| |#4|)) (-15 -1391 (|#1| |#1| |#4|)) (-15 -3011 (|#1| |#1| |#4|)) (-15 -3052 (|#1| |#1| |#1| |#4|)) (-15 -3149 ((-587 |#1|) |#1|)) (-15 -2197 ((-707) |#1| (-587 |#4|))) (-15 -2197 ((-707) |#1|)) (-15 -3262 ((-3 (-2 (|:| |var| |#4|) (|:| -2246 (-707))) "failed") |#1|)) (-15 -3722 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -4141 ((-3 (-587 |#1|) "failed") |#1|)) (-15 -4044 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -4044 (|#1| |#1| |#4| (-707))) (-15 -2966 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1| |#4|)) (-15 -2411 ((-587 |#1|) |#1|)) (-15 -1499 (|#1| |#1| (-587 |#4|) (-587 (-707)))) (-15 -1499 (|#1| |#1| |#4| (-707))) (-15 -1961 ((-627 |#2|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1496 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#4| |#1|)) (-15 -2313 (|#1| |#1| (-587 |#4|) (-587 |#2|))) (-15 -2313 (|#1| |#1| |#4| |#2|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -4044 (|#1| |#2| |#3|)) (-15 -1499 (|#2| |#1| |#3|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -1563 (|#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 |#3|) $) 110)) (-1280 (((-1080 $) $ |#3|) 125) (((-1080 |#1|) $) 124)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-1954 (($ $) 88 (|has| |#1| (-513)))) (-3795 (((-108) $) 90 (|has| |#1| (-513)))) (-2197 (((-707) $) 112) (((-707) $ (-587 |#3|)) 111)) (-2057 (((-3 $ "failed") $ $) 19)) (-2150 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-837)))) (-2694 (($ $) 98 (|has| |#1| (-425)))) (-2337 (((-392 $) $) 97 (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-837)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) 136)) (-1496 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) ((|#3| $) 135)) (-3052 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3157 (($ $) 154)) (-1961 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-2783 (((-3 $ "failed") $) 34)) (-1563 (($ $) 176 (|has| |#1| (-425))) (($ $ |#3|) 105 (|has| |#1| (-425)))) (-3149 (((-587 $) $) 109)) (-2100 (((-108) $) 96 (|has| |#1| (-837)))) (-1709 (($ $ |#1| |#2| $) 172)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 84 (-12 (|has| |#3| (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 83 (-12 (|has| |#3| (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3637 (((-108) $) 31)) (-2443 (((-707) $) 169)) (-4068 (($ (-1080 |#1|) |#3|) 117) (($ (-1080 $) |#3|) 116)) (-2411 (((-587 $) $) 126)) (-3573 (((-108) $) 152)) (-4044 (($ |#1| |#2|) 153) (($ $ |#3| (-707)) 119) (($ $ (-587 |#3|) (-587 (-707))) 118)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#3|) 120)) (-2401 ((|#2| $) 170) (((-707) $ |#3|) 122) (((-587 (-707)) $ (-587 |#3|)) 121)) (-2816 (($ $ $) 79 (|has| |#1| (-783)))) (-2459 (($ $ $) 78 (|has| |#1| (-783)))) (-2310 (($ (-1 |#2| |#2|) $) 171)) (-1393 (($ (-1 |#1| |#1|) $) 151)) (-2913 (((-3 |#3| "failed") $) 123)) (-3130 (($ $) 149)) (-3140 ((|#1| $) 148)) (-2254 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-4024 (((-1067) $) 9)) (-3722 (((-3 (-587 $) "failed") $) 114)) (-4141 (((-3 (-587 $) "failed") $) 115)) (-3262 (((-3 (-2 (|:| |var| |#3|) (|:| -2246 (-707))) "failed") $) 113)) (-4146 (((-1031) $) 10)) (-3110 (((-108) $) 166)) (-3120 ((|#1| $) 167)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2286 (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-837)))) (-1974 (((-392 $) $) 99 (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-587 |#3|) (-587 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-587 |#3|) (-587 $)) 138)) (-3011 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2193 (($ $ |#3|) 42) (($ $ (-587 |#3|)) 41) (($ $ |#3| (-707)) 40) (($ $ (-587 |#3|) (-587 (-707))) 39)) (-2098 ((|#2| $) 150) (((-707) $ |#3|) 130) (((-587 (-707)) $ (-587 |#3|)) 129)) (-1438 (((-820 (-353)) $) 82 (-12 (|has| |#3| (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) 81 (-12 (|has| |#3| (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) 80 (-12 (|has| |#3| (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ |#3|) 106 (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-513))) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521))))))) (-2730 (((-587 |#1|) $) 168)) (-1499 ((|#1| $ |#2|) 155) (($ $ |#3| (-707)) 128) (($ $ (-587 |#3|) (-587 (-707))) 127)) (-2446 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) 29)) (-1413 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-1842 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ |#3|) 38) (($ $ (-587 |#3|)) 37) (($ $ |#3| (-707)) 36) (($ $ (-587 |#3|) (-587 (-707))) 35)) (-1597 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1648 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-877 |#1| |#2| |#3|) (-1196) (-970) (-729) (-783)) (T -877))
-((-1563 (*1 *1 *1) (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))) (-2098 (*1 *2 *1 *3) (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-707)))) (-2098 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 (-707))))) (-1499 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *2 (-783)))) (-1499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-877 *3 *4 *5)))) (-1280 (*1 *2 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-1080 *1)) (-4 *1 (-877 *4 *5 *3)))) (-1280 (*1 *2 *1) (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-1080 *3)))) (-2913 (*1 *2 *1) (|partial| -12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-2401 (*1 *2 *1 *3) (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-707)))) (-2401 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 (-707))))) (-2966 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-877 *4 *5 *3)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *2 (-783)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)))) (-4068 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *4)) (-4 *4 (-970)) (-4 *1 (-877 *4 *5 *3)) (-4 *5 (-729)) (-4 *3 (-783)))) (-4068 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)))) (-4141 (*1 *2 *1) (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-877 *3 *4 *5)))) (-3722 (*1 *2 *1) (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-877 *3 *4 *5)))) (-3262 (*1 *2 *1) (|partial| -12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| |var| *5) (|:| -2246 (-707)))))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-707)))) (-2197 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-707)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *5)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-877 *3 *4 *5)))) (-3052 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *3 (-157)))) (-3011 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *3 (-157)))) (-1391 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *3 (-425)))) (-1563 (*1 *1 *1 *2) (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *3 (-425)))) (-2694 (*1 *1 *1) (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))) (-2337 (*1 *2 *1) (-12 (-4 *3 (-425)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-392 *1)) (-4 *1 (-877 *3 *4 *5)))))
-(-13 (-828 |t#3|) (-300 |t#1| |t#2|) (-284 $) (-482 |t#3| |t#1|) (-482 |t#3| $) (-961 |t#3|) (-351 |t#1|) (-10 -8 (-15 -2098 ((-707) $ |t#3|)) (-15 -2098 ((-587 (-707)) $ (-587 |t#3|))) (-15 -1499 ($ $ |t#3| (-707))) (-15 -1499 ($ $ (-587 |t#3|) (-587 (-707)))) (-15 -2411 ((-587 $) $)) (-15 -1280 ((-1080 $) $ |t#3|)) (-15 -1280 ((-1080 |t#1|) $)) (-15 -2913 ((-3 |t#3| "failed") $)) (-15 -2401 ((-707) $ |t#3|)) (-15 -2401 ((-587 (-707)) $ (-587 |t#3|))) (-15 -2966 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |t#3|)) (-15 -4044 ($ $ |t#3| (-707))) (-15 -4044 ($ $ (-587 |t#3|) (-587 (-707)))) (-15 -4068 ($ (-1080 |t#1|) |t#3|)) (-15 -4068 ($ (-1080 $) |t#3|)) (-15 -4141 ((-3 (-587 $) "failed") $)) (-15 -3722 ((-3 (-587 $) "failed") $)) (-15 -3262 ((-3 (-2 (|:| |var| |t#3|) (|:| -2246 (-707))) "failed") $)) (-15 -2197 ((-707) $)) (-15 -2197 ((-707) $ (-587 |t#3|))) (-15 -4085 ((-587 |t#3|) $)) (-15 -3149 ((-587 $) $)) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (IF (|has| |t#3| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-562 (-820 (-521)))) (IF (|has| |t#3| (-562 (-820 (-521)))) (-6 (-562 (-820 (-521)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-562 (-820 (-353)))) (IF (|has| |t#3| (-562 (-820 (-353)))) (-6 (-562 (-820 (-353)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-814 (-521))) (IF (|has| |t#3| (-814 (-521))) (-6 (-814 (-521))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-814 (-353))) (IF (|has| |t#3| (-814 (-353))) (-6 (-814 (-353))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -3052 ($ $ $ |t#3|)) (-15 -3011 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-6 (-425)) (-15 -1391 ($ $ |t#3|)) (-15 -1563 ($ $)) (-15 -1563 ($ $ |t#3|)) (-15 -2337 ((-392 $) $)) (-15 -2694 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4231)) (-6 -4231) |%noBranch|) (IF (|has| |t#1| (-837)) (-6 (-837)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))) ((-562 (-820 (-353))) -12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#3| (-562 (-820 (-353))))) ((-562 (-820 (-521))) -12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#3| (-562 (-820 (-521))))) ((-265) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-284 $) . T) ((-300 |#1| |#2|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-837)) (|has| |#1| (-425))) ((-482 |#3| |#1|) . T) ((-482 |#3| $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-663) . T) ((-783) |has| |#1| (-783)) ((-828 |#3|) . T) ((-814 (-353)) -12 (|has| |#1| (-814 (-353))) (|has| |#3| (-814 (-353)))) ((-814 (-521)) -12 (|has| |#1| (-814 (-521))) (|has| |#3| (-814 (-521)))) ((-837) |has| |#1| (-837)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-961 |#3|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) |has| |#1| (-837)))
-((-4085 (((-587 |#2|) |#5|) 36)) (-1280 (((-1080 |#5|) |#5| |#2| (-1080 |#5|)) 23) (((-381 (-1080 |#5|)) |#5| |#2|) 16)) (-4068 ((|#5| (-381 (-1080 |#5|)) |#2|) 30)) (-2913 (((-3 |#2| "failed") |#5|) 61)) (-3722 (((-3 (-587 |#5|) "failed") |#5|) 55)) (-3390 (((-3 (-2 (|:| |val| |#5|) (|:| -2246 (-521))) "failed") |#5|) 45)) (-4141 (((-3 (-587 |#5|) "failed") |#5|) 57)) (-3262 (((-3 (-2 (|:| |var| |#2|) (|:| -2246 (-521))) "failed") |#5|) 48)))
-(((-878 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4085 ((-587 |#2|) |#5|)) (-15 -2913 ((-3 |#2| "failed") |#5|)) (-15 -1280 ((-381 (-1080 |#5|)) |#5| |#2|)) (-15 -4068 (|#5| (-381 (-1080 |#5|)) |#2|)) (-15 -1280 ((-1080 |#5|) |#5| |#2| (-1080 |#5|))) (-15 -4141 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -3722 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -3262 ((-3 (-2 (|:| |var| |#2|) (|:| -2246 (-521))) "failed") |#5|)) (-15 -3390 ((-3 (-2 (|:| |val| |#5|) (|:| -2246 (-521))) "failed") |#5|))) (-729) (-783) (-970) (-877 |#3| |#1| |#2|) (-13 (-337) (-10 -8 (-15 -2223 ($ |#4|)) (-15 -2807 (|#4| $)) (-15 -2818 (|#4| $))))) (T -878))
-((-3390 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2246 (-521)))) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))) (-3262 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2246 (-521)))) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))) (-3722 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))) (-4141 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-587 *3)) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))) (-1280 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))) (-4 *7 (-877 *6 *5 *4)) (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-970)) (-5 *1 (-878 *5 *4 *6 *7 *3)))) (-4068 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-1080 *2))) (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-970)) (-4 *2 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))) (-5 *1 (-878 *5 *4 *6 *7 *2)) (-4 *7 (-877 *6 *5 *4)))) (-1280 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-970)) (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-381 (-1080 *3))) (-5 *1 (-878 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))) (-2913 (*1 *2 *3) (|partial| -12 (-4 *4 (-729)) (-4 *5 (-970)) (-4 *6 (-877 *5 *4 *2)) (-4 *2 (-783)) (-5 *1 (-878 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *6)) (-15 -2807 (*6 $)) (-15 -2818 (*6 $))))))) (-4085 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-587 *5)) (-5 *1 (-878 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $))))))))
-(-10 -7 (-15 -4085 ((-587 |#2|) |#5|)) (-15 -2913 ((-3 |#2| "failed") |#5|)) (-15 -1280 ((-381 (-1080 |#5|)) |#5| |#2|)) (-15 -4068 (|#5| (-381 (-1080 |#5|)) |#2|)) (-15 -1280 ((-1080 |#5|) |#5| |#2| (-1080 |#5|))) (-15 -4141 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -3722 ((-3 (-587 |#5|) "failed") |#5|)) (-15 -3262 ((-3 (-2 (|:| |var| |#2|) (|:| -2246 (-521))) "failed") |#5|)) (-15 -3390 ((-3 (-2 (|:| |val| |#5|) (|:| -2246 (-521))) "failed") |#5|)))
-((-1393 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1393 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-729) (-783) (-970) (-877 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707)))))) (T -879))
-((-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-783)) (-4 *8 (-970)) (-4 *6 (-729)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707)))))) (-5 *1 (-879 *6 *7 *8 *5 *2)) (-4 *5 (-877 *8 *6 *7)))))
-(-10 -7 (-15 -1393 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-1084)) $) 15)) (-1280 (((-1080 $) $ (-1084)) 21) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-1084))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 8) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-1084) "failed") $) NIL)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-1084) $) NIL)) (-3052 (($ $ $ (-1084)) NIL (|has| |#1| (-157)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ (-1084)) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-493 (-1084)) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-1084) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-1084) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#1|) (-1084)) NIL) (($ (-1080 $) (-1084)) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-1084)) NIL)) (-2401 (((-493 (-1084)) $) NIL) (((-707) $ (-1084)) NIL) (((-587 (-707)) $ (-587 (-1084))) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-493 (-1084)) (-493 (-1084))) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2913 (((-3 (-1084) "failed") $) 19)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-1084)) (|:| -2246 (-707))) "failed") $) NIL)) (-1749 (($ $ (-1084)) 29 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-587 (-1084)) (-587 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-587 (-1084)) (-587 $)) NIL)) (-3011 (($ $ (-1084)) NIL (|has| |#1| (-157)))) (-2193 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-2098 (((-493 (-1084)) $) NIL) (((-707) $ (-1084)) NIL) (((-587 (-707)) $ (-587 (-1084))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-1084) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-1084) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-1084) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-1084)) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) 25) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-1084)) 27) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-880 |#1|) (-13 (-877 |#1| (-493 (-1084)) (-1084)) (-10 -8 (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1084))) |%noBranch|))) (-970)) (T -880))
-((-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-880 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))))
-(-13 (-877 |#1| (-493 (-1084)) (-1084)) (-10 -8 (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1084))) |%noBranch|)))
-((-3711 (((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) |#3| (-707)) 37)) (-3768 (((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) (-381 (-521)) (-707)) 33)) (-2350 (((-2 (|:| -2246 (-707)) (|:| -2979 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-707)) 52)) (-3961 (((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) |#5| (-707)) 62 (|has| |#3| (-425)))))
-(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3711 ((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) |#3| (-707))) (-15 -3768 ((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) (-381 (-521)) (-707))) (IF (|has| |#3| (-425)) (-15 -3961 ((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) |#5| (-707))) |%noBranch|) (-15 -2350 ((-2 (|:| -2246 (-707)) (|:| -2979 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-707)))) (-729) (-783) (-513) (-877 |#3| |#1| |#2|) (-13 (-337) (-10 -8 (-15 -2807 (|#4| $)) (-15 -2818 (|#4| $)) (-15 -2223 ($ |#4|))))) (T -881))
-((-2350 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-513)) (-4 *3 (-877 *7 *5 *6)) (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *3) (|:| |radicand| (-587 *3)))) (-5 *1 (-881 *5 *6 *7 *3 *8)) (-5 *4 (-707)) (-4 *8 (-13 (-337) (-10 -8 (-15 -2807 (*3 $)) (-15 -2818 (*3 $)) (-15 -2223 ($ *3))))))) (-3961 (*1 *2 *3 *4) (-12 (-4 *7 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-513)) (-4 *8 (-877 *7 *5 *6)) (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *3) (|:| |radicand| *3))) (-5 *1 (-881 *5 *6 *7 *8 *3)) (-5 *4 (-707)) (-4 *3 (-13 (-337) (-10 -8 (-15 -2807 (*8 $)) (-15 -2818 (*8 $)) (-15 -2223 ($ *8))))))) (-3768 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-521))) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-513)) (-4 *8 (-877 *7 *5 *6)) (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *9) (|:| |radicand| *9))) (-5 *1 (-881 *5 *6 *7 *8 *9)) (-5 *4 (-707)) (-4 *9 (-13 (-337) (-10 -8 (-15 -2807 (*8 $)) (-15 -2818 (*8 $)) (-15 -2223 ($ *8))))))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-513)) (-4 *7 (-877 *3 *5 *6)) (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *8) (|:| |radicand| *8))) (-5 *1 (-881 *5 *6 *3 *7 *8)) (-5 *4 (-707)) (-4 *8 (-13 (-337) (-10 -8 (-15 -2807 (*7 $)) (-15 -2818 (*7 $)) (-15 -2223 ($ *7))))))))
-(-10 -7 (-15 -3711 ((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) |#3| (-707))) (-15 -3768 ((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) (-381 (-521)) (-707))) (IF (|has| |#3| (-425)) (-15 -3961 ((-2 (|:| -2246 (-707)) (|:| -2979 |#5|) (|:| |radicand| |#5|)) |#5| (-707))) |%noBranch|) (-15 -2350 ((-2 (|:| -2246 (-707)) (|:| -2979 |#4|) (|:| |radicand| (-587 |#4|))) |#4| (-707))))
-((-3803 (((-1008 (-202)) $) 8)) (-3789 (((-1008 (-202)) $) 9)) (-3633 (((-587 (-587 (-871 (-202)))) $) 10)) (-2223 (((-791) $) 6)))
-(((-882) (-1196)) (T -882))
-((-3633 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-587 (-587 (-871 (-202))))))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1008 (-202))))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1008 (-202))))))
-(-13 (-561 (-791)) (-10 -8 (-15 -3633 ((-587 (-587 (-871 (-202)))) $)) (-15 -3789 ((-1008 (-202)) $)) (-15 -3803 ((-1008 (-202)) $))))
-(((-561 (-791)) . T))
-((-4064 (((-3 (-627 |#1|) "failed") |#2| (-849)) 14)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -4064 ((-3 (-627 |#1|) "failed") |#2| (-849)))) (-513) (-597 |#1|)) (T -883))
-((-4064 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-849)) (-4 *5 (-513)) (-5 *2 (-627 *5)) (-5 *1 (-883 *5 *3)) (-4 *3 (-597 *5)))))
-(-10 -7 (-15 -4064 ((-3 (-627 |#1|) "failed") |#2| (-849))))
-((-3184 (((-885 |#2|) (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|) 16)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|) 18)) (-1393 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 13)))
-(((-884 |#1| |#2|) (-10 -7 (-15 -3184 ((-885 |#2|) (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -1393 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1119) (-1119)) (T -884))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-885 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-884 *5 *2)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-885 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-885 *5)) (-5 *1 (-884 *6 *5)))))
-(-10 -7 (-15 -3184 ((-885 |#2|) (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-885 |#1|) |#2|)) (-15 -1393 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) |#1|) 17 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 16 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 14)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1869 (($ (-707) |#1|) 13)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) 10 (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) 12 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) 11)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) 15) (($ $ (-1132 (-521))) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) NIL)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-3478 (((-707) $) 8 (|has| $ (-6 -4233)))))
-(((-885 |#1|) (-19 |#1|) (-1119)) (T -885))
+((-1416 (((-108) $ $) NIL)) (-4106 (((-588 |#1|) $) 29)) (-1629 (((-708) $) NIL)) (-3175 (($) NIL T CONST)) (-1200 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-2306 (($ $) 31)) (-2682 (((-3 $ "failed") $) NIL)) (-4124 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2782 (((-108) $) NIL)) (-3750 ((|#1| $ (-522)) NIL)) (-1905 (((-708) $ (-522)) NIL)) (-1225 (($ $) 36)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2987 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3523 (((-108) $ $) 34)) (-2517 (((-708) $) 25)) (-2385 (((-1068) $) NIL)) (-3599 (($ $ $) NIL)) (-1671 (($ $ $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 ((|#1| $) 30)) (-2976 (((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $) NIL)) (-2243 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2190 (((-792) $) NIL) (($ |#1|) NIL)) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3577 (($) 14 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 35)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL) (($ |#1| (-708)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-756 |#1|) (-13 (-780) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -2294 (|#1| $)) (-15 -2306 ($ $)) (-15 -1225 ($ $)) (-15 -3523 ((-108) $ $)) (-15 -1671 ($ $ $)) (-15 -3599 ($ $ $)) (-15 -2987 ((-3 $ "failed") $ $)) (-15 -1200 ((-3 $ "failed") $ $)) (-15 -2987 ((-3 $ "failed") $ |#1|)) (-15 -1200 ((-3 $ "failed") $ |#1|)) (-15 -2243 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4124 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1629 ((-708) $)) (-15 -1905 ((-708) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -2976 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $)) (-15 -2517 ((-708) $)) (-15 -4106 ((-588 |#1|) $)))) (-784)) (T -756))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2294 (*1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3523 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-1671 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-3599 (*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2987 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-1200 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2987 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-1200 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2243 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |rm| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-4124 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |mm| (-756 *3)) (|:| |rm| (-756 *3)))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-756 *4)) (-4 *4 (-784)))) (-3750 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-756 *2)) (-4 *2 (-784)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 (-708))))) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(-13 (-780) (-962 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-708))) (-15 -2294 (|#1| $)) (-15 -2306 ($ $)) (-15 -1225 ($ $)) (-15 -3523 ((-108) $ $)) (-15 -1671 ($ $ $)) (-15 -3599 ($ $ $)) (-15 -2987 ((-3 $ "failed") $ $)) (-15 -1200 ((-3 $ "failed") $ $)) (-15 -2987 ((-3 $ "failed") $ |#1|)) (-15 -1200 ((-3 $ "failed") $ |#1|)) (-15 -2243 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4124 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1629 ((-708) $)) (-15 -1905 ((-708) $ (-522))) (-15 -3750 (|#1| $ (-522))) (-15 -2976 ((-588 (-2 (|:| |gen| |#1|) (|:| -3266 (-708)))) $)) (-15 -2517 ((-708) $)) (-15 -4106 ((-588 |#1|) $))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-1341 (((-522) $) 53)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-3687 (((-108) $) 51)) (-2782 (((-108) $) 31)) (-2556 (((-108) $) 52)) (-2814 (($ $ $) 50)) (-2446 (($ $ $) 49)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ $) 42)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-2241 (($ $) 54)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 47)) (-1558 (((-108) $ $) 46)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 48)) (-1549 (((-108) $ $) 45)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-757) (-1197)) (T -757))
+NIL
+(-13 (-514) (-782))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-3520 (($ (-1032)) 7)) (-2819 (((-108) $ (-1068) (-1032)) 15)) (-1381 (((-759) $) 12)) (-3278 (((-759) $) 11)) (-3165 (((-1171) $) 9)) (-3054 (((-108) $ (-1032)) 16)))
+(((-758) (-10 -8 (-15 -3520 ($ (-1032))) (-15 -3165 ((-1171) $)) (-15 -3278 ((-759) $)) (-15 -1381 ((-759) $)) (-15 -2819 ((-108) $ (-1068) (-1032))) (-15 -3054 ((-108) $ (-1032))))) (T -758))
+((-3054 (*1 *2 *1 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-108)) (-5 *1 (-758)))) (-2819 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-1032)) (-5 *2 (-108)) (-5 *1 (-758)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-758)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-758)))))
+(-10 -8 (-15 -3520 ($ (-1032))) (-15 -3165 ((-1171) $)) (-15 -3278 ((-759) $)) (-15 -1381 ((-759) $)) (-15 -2819 ((-108) $ (-1068) (-1032))) (-15 -3054 ((-108) $ (-1032))))
+((-2686 (((-1171) $ (-760)) 12)) (-3876 (((-1171) $ (-1085)) 32)) (-1726 (((-1171) $ (-1068) (-1068)) 34)) (-4009 (((-1171) $ (-1068)) 33)) (-3761 (((-1171) $) 19)) (-2354 (((-1171) $ (-522)) 28)) (-1199 (((-1171) $ (-202)) 30)) (-2946 (((-1171) $) 18)) (-4046 (((-1171) $) 26)) (-2529 (((-1171) $) 25)) (-2262 (((-1171) $) 23)) (-2484 (((-1171) $) 24)) (-2000 (((-1171) $) 22)) (-3272 (((-1171) $) 21)) (-3522 (((-1171) $) 20)) (-2004 (((-1171) $) 16)) (-3271 (((-1171) $) 17)) (-2519 (((-1171) $) 15)) (-1690 (((-1171) $) 14)) (-2534 (((-1171) $) 13)) (-2218 (($ (-1068) (-760)) 9)) (-1772 (($ (-1068) (-1068) (-760)) 8)) (-2929 (((-1085) $) 51)) (-3966 (((-1085) $) 55)) (-2687 (((-2 (|:| |cd| (-1068)) (|:| -2888 (-1068))) $) 54)) (-2448 (((-1068) $) 52)) (-2605 (((-1171) $) 41)) (-2384 (((-522) $) 49)) (-2209 (((-202) $) 50)) (-2273 (((-1171) $) 40)) (-2089 (((-1171) $) 48)) (-3067 (((-1171) $) 47)) (-1739 (((-1171) $) 45)) (-2350 (((-1171) $) 46)) (-1721 (((-1171) $) 44)) (-2541 (((-1171) $) 43)) (-1515 (((-1171) $) 42)) (-1880 (((-1171) $) 38)) (-3296 (((-1171) $) 39)) (-3427 (((-1171) $) 37)) (-3847 (((-1171) $) 36)) (-4001 (((-1171) $) 35)) (-3360 (((-1171) $) 11)))
+(((-759) (-10 -8 (-15 -1772 ($ (-1068) (-1068) (-760))) (-15 -2218 ($ (-1068) (-760))) (-15 -3360 ((-1171) $)) (-15 -2686 ((-1171) $ (-760))) (-15 -2534 ((-1171) $)) (-15 -1690 ((-1171) $)) (-15 -2519 ((-1171) $)) (-15 -2004 ((-1171) $)) (-15 -3271 ((-1171) $)) (-15 -2946 ((-1171) $)) (-15 -3761 ((-1171) $)) (-15 -3522 ((-1171) $)) (-15 -3272 ((-1171) $)) (-15 -2000 ((-1171) $)) (-15 -2262 ((-1171) $)) (-15 -2484 ((-1171) $)) (-15 -2529 ((-1171) $)) (-15 -4046 ((-1171) $)) (-15 -2354 ((-1171) $ (-522))) (-15 -1199 ((-1171) $ (-202))) (-15 -3876 ((-1171) $ (-1085))) (-15 -4009 ((-1171) $ (-1068))) (-15 -1726 ((-1171) $ (-1068) (-1068))) (-15 -4001 ((-1171) $)) (-15 -3847 ((-1171) $)) (-15 -3427 ((-1171) $)) (-15 -1880 ((-1171) $)) (-15 -3296 ((-1171) $)) (-15 -2273 ((-1171) $)) (-15 -2605 ((-1171) $)) (-15 -1515 ((-1171) $)) (-15 -2541 ((-1171) $)) (-15 -1721 ((-1171) $)) (-15 -1739 ((-1171) $)) (-15 -2350 ((-1171) $)) (-15 -3067 ((-1171) $)) (-15 -2089 ((-1171) $)) (-15 -2384 ((-522) $)) (-15 -2209 ((-202) $)) (-15 -2929 ((-1085) $)) (-15 -2448 ((-1068) $)) (-15 -2687 ((-2 (|:| |cd| (-1068)) (|:| -2888 (-1068))) $)) (-15 -3966 ((-1085) $)))) (T -759))
+((-3966 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1068)) (|:| -2888 (-1068)))) (-5 *1 (-759)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-759)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-759)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-759)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1726 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-4009 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-1199 (*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-2354 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2000 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-3271 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2534 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2686 (*1 *2 *1 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1171)) (-5 *1 (-759)))) (-3360 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))) (-2218 (*1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759)))) (-1772 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759)))))
+(-10 -8 (-15 -1772 ($ (-1068) (-1068) (-760))) (-15 -2218 ($ (-1068) (-760))) (-15 -3360 ((-1171) $)) (-15 -2686 ((-1171) $ (-760))) (-15 -2534 ((-1171) $)) (-15 -1690 ((-1171) $)) (-15 -2519 ((-1171) $)) (-15 -2004 ((-1171) $)) (-15 -3271 ((-1171) $)) (-15 -2946 ((-1171) $)) (-15 -3761 ((-1171) $)) (-15 -3522 ((-1171) $)) (-15 -3272 ((-1171) $)) (-15 -2000 ((-1171) $)) (-15 -2262 ((-1171) $)) (-15 -2484 ((-1171) $)) (-15 -2529 ((-1171) $)) (-15 -4046 ((-1171) $)) (-15 -2354 ((-1171) $ (-522))) (-15 -1199 ((-1171) $ (-202))) (-15 -3876 ((-1171) $ (-1085))) (-15 -4009 ((-1171) $ (-1068))) (-15 -1726 ((-1171) $ (-1068) (-1068))) (-15 -4001 ((-1171) $)) (-15 -3847 ((-1171) $)) (-15 -3427 ((-1171) $)) (-15 -1880 ((-1171) $)) (-15 -3296 ((-1171) $)) (-15 -2273 ((-1171) $)) (-15 -2605 ((-1171) $)) (-15 -1515 ((-1171) $)) (-15 -2541 ((-1171) $)) (-15 -1721 ((-1171) $)) (-15 -1739 ((-1171) $)) (-15 -2350 ((-1171) $)) (-15 -3067 ((-1171) $)) (-15 -2089 ((-1171) $)) (-15 -2384 ((-522) $)) (-15 -2209 ((-202) $)) (-15 -2929 ((-1085) $)) (-15 -2448 ((-1068) $)) (-15 -2687 ((-2 (|:| |cd| (-1068)) (|:| -2888 (-1068))) $)) (-15 -3966 ((-1085) $)))
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 12)) (-2026 (($) 15)) (-1927 (($) 13)) (-3767 (($) 16)) (-4128 (($) 14)) (-1531 (((-108) $ $) 8)))
+(((-760) (-13 (-1014) (-10 -8 (-15 -1927 ($)) (-15 -2026 ($)) (-15 -3767 ($)) (-15 -4128 ($))))) (T -760))
+((-1927 (*1 *1) (-5 *1 (-760))) (-2026 (*1 *1) (-5 *1 (-760))) (-3767 (*1 *1) (-5 *1 (-760))) (-4128 (*1 *1) (-5 *1 (-760))))
+(-13 (-1014) (-10 -8 (-15 -1927 ($)) (-15 -2026 ($)) (-15 -3767 ($)) (-15 -4128 ($))))
+((-1416 (((-108) $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 21) (($ (-1085)) 17)) (-3234 (((-108) $) 10)) (-3034 (((-108) $) 9)) (-3858 (((-108) $) 11)) (-1680 (((-108) $) 8)) (-1531 (((-108) $ $) 19)))
+(((-761) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-1085))) (-15 -1680 ((-108) $)) (-15 -3034 ((-108) $)) (-15 -3234 ((-108) $)) (-15 -3858 ((-108) $))))) (T -761))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-761)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-1085))) (-15 -1680 ((-108) $)) (-15 -3034 ((-108) $)) (-15 -3234 ((-108) $)) (-15 -3858 ((-108) $))))
+((-1416 (((-108) $ $) NIL)) (-2470 (($ (-761) (-588 (-1085))) 24)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-4022 (((-761) $) 25)) (-3397 (((-588 (-1085)) $) 26)) (-2190 (((-792) $) 23)) (-1531 (((-108) $ $) NIL)))
+(((-762) (-13 (-1014) (-10 -8 (-15 -4022 ((-761) $)) (-15 -3397 ((-588 (-1085)) $)) (-15 -2470 ($ (-761) (-588 (-1085))))))) (T -762))
+((-4022 (*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-762)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-762)))) (-2470 (*1 *1 *2 *3) (-12 (-5 *2 (-761)) (-5 *3 (-588 (-1085))) (-5 *1 (-762)))))
+(-13 (-1014) (-10 -8 (-15 -4022 ((-761) $)) (-15 -3397 ((-588 (-1085)) $)) (-15 -2470 ($ (-761) (-588 (-1085))))))
+((-4149 (((-1171) (-759) (-291 |#1|) (-108)) 22) (((-1171) (-759) (-291 |#1|)) 76) (((-1068) (-291 |#1|) (-108)) 75) (((-1068) (-291 |#1|)) 74)))
+(((-763 |#1|) (-10 -7 (-15 -4149 ((-1068) (-291 |#1|))) (-15 -4149 ((-1068) (-291 |#1|) (-108))) (-15 -4149 ((-1171) (-759) (-291 |#1|))) (-15 -4149 ((-1171) (-759) (-291 |#1|) (-108)))) (-13 (-765) (-784) (-971))) (T -763))
+((-4149 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-759)) (-5 *4 (-291 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-765) (-784) (-971))) (-5 *2 (-1171)) (-5 *1 (-763 *6)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-759)) (-5 *4 (-291 *5)) (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1171)) (-5 *1 (-763 *5)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-291 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1068)) (-5 *1 (-763 *5)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-291 *4)) (-4 *4 (-13 (-765) (-784) (-971))) (-5 *2 (-1068)) (-5 *1 (-763 *4)))))
+(-10 -7 (-15 -4149 ((-1068) (-291 |#1|))) (-15 -4149 ((-1068) (-291 |#1|) (-108))) (-15 -4149 ((-1171) (-759) (-291 |#1|))) (-15 -4149 ((-1171) (-759) (-291 |#1|) (-108))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2237 ((|#1| $) 10)) (-1420 (($ |#1|) 9)) (-2782 (((-108) $) NIL)) (-4049 (($ |#2| (-708)) NIL)) (-2925 (((-708) $) NIL)) (-3138 ((|#2| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2157 (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-2793 (((-708) $) NIL)) (-2190 (((-792) $) 17) (($ (-522)) NIL) (($ |#2|) NIL (|has| |#2| (-157)))) (-3243 ((|#2| $ (-708)) NIL)) (-2323 (((-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $) NIL (|has| |#1| (-210)))) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-764 |#1| |#2|) (-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1420 ($ |#1|)) (-15 -2237 (|#1| $)))) (-647 |#2|) (-971)) (T -764))
+((-1420 (*1 *1 *2) (-12 (-4 *3 (-971)) (-5 *1 (-764 *2 *3)) (-4 *2 (-647 *3)))) (-2237 (*1 *2 *1) (-12 (-4 *2 (-647 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-971)))))
+(-13 (-647 |#2|) (-10 -8 (IF (|has| |#1| (-210)) (-6 (-210)) |%noBranch|) (-15 -1420 ($ |#1|)) (-15 -2237 (|#1| $))))
+((-4149 (((-1171) (-759) $ (-108)) 9) (((-1171) (-759) $) 8) (((-1068) $ (-108)) 7) (((-1068) $) 6)))
+(((-765) (-1197)) (T -765))
+((-4149 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *4 (-108)) (-5 *2 (-1171)))) (-4149 (*1 *2 *3 *1) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *2 (-1171)))) (-4149 (*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-108)) (-5 *2 (-1068)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-765)) (-5 *2 (-1068)))))
+(-13 (-10 -8 (-15 -4149 ((-1068) $)) (-15 -4149 ((-1068) $ (-108))) (-15 -4149 ((-1171) (-759) $)) (-15 -4149 ((-1171) (-759) $ (-108)))))
+((-3798 (((-287) (-1068) (-1068)) 12)) (-1229 (((-108) (-1068) (-1068)) 34)) (-2999 (((-108) (-1068)) 33)) (-2450 (((-51) (-1068)) 25)) (-3925 (((-51) (-1068)) 23)) (-3724 (((-51) (-759)) 17)) (-3531 (((-588 (-1068)) (-1068)) 28)) (-1557 (((-588 (-1068))) 27)))
+(((-766) (-10 -7 (-15 -3724 ((-51) (-759))) (-15 -3925 ((-51) (-1068))) (-15 -2450 ((-51) (-1068))) (-15 -1557 ((-588 (-1068)))) (-15 -3531 ((-588 (-1068)) (-1068))) (-15 -2999 ((-108) (-1068))) (-15 -1229 ((-108) (-1068) (-1068))) (-15 -3798 ((-287) (-1068) (-1068))))) (T -766))
+((-3798 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-766)))) (-1229 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766)))) (-3531 (*1 *2 *3) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)) (-5 *3 (-1068)))) (-1557 (*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-759)) (-5 *2 (-51)) (-5 *1 (-766)))))
+(-10 -7 (-15 -3724 ((-51) (-759))) (-15 -3925 ((-51) (-1068))) (-15 -2450 ((-51) (-1068))) (-15 -1557 ((-588 (-1068)))) (-15 -3531 ((-588 (-1068)) (-1068))) (-15 -2999 ((-108) (-1068))) (-15 -1229 ((-108) (-1068) (-1068))) (-15 -3798 ((-287) (-1068) (-1068))))
+((-1416 (((-108) $ $) 19)) (-2270 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2079 (($ $ $) 72)) (-3557 (((-108) $ $) 73)) (-4141 (((-108) $ (-708)) 8)) (-1764 (($ (-588 |#1|)) 68) (($) 67)) (-2790 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3362 (($ $) 62)) (-2333 (($ $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ |#1| $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-2814 ((|#1| $) 78)) (-1369 (($ $ $) 81)) (-2160 (($ $ $) 80)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2446 ((|#1| $) 79)) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22)) (-2416 (($ $ $) 69)) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40) (($ |#1| $ (-708)) 63)) (-4151 (((-1032) $) 21)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3698 (((-588 (-2 (|:| -3048 |#1|) (|:| -4168 (-708)))) $) 61)) (-3417 (($ $ |#1|) 71) (($ $ $) 70)) (-3990 (($) 49) (($ (-588 |#1|)) 48)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 50)) (-2190 (((-792) $) 18)) (-3392 (($ (-588 |#1|)) 66) (($) 65)) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20)) (-1549 (((-108) $ $) 64)) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-767 |#1|) (-1197) (-784)) (T -767))
+((-2814 (*1 *2 *1) (-12 (-4 *1 (-767 *2)) (-4 *2 (-784)))))
+(-13 (-674 |t#1|) (-896 |t#1|) (-10 -8 (-15 -2814 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-212 |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-633 |#1|) . T) ((-674 |#1|) . T) ((-896 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1120) . T))
+((-3181 (((-1171) (-1032) (-1032)) 47)) (-3899 (((-1171) (-758) (-51)) 44)) (-3556 (((-51) (-758)) 16)))
+(((-768) (-10 -7 (-15 -3556 ((-51) (-758))) (-15 -3899 ((-1171) (-758) (-51))) (-15 -3181 ((-1171) (-1032) (-1032))))) (T -768))
+((-3181 (*1 *2 *3 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-1171)) (-5 *1 (-768)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-51)) (-5 *2 (-1171)) (-5 *1 (-768)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-768)))))
+(-10 -7 (-15 -3556 ((-51) (-758))) (-15 -3899 ((-1171) (-758) (-51))) (-15 -3181 ((-1171) (-1032) (-1032))))
+((-1391 (((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)) 12) (((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|)) 13)))
+(((-769 |#1| |#2|) (-10 -7 (-15 -1391 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|))) (-15 -1391 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|)))) (-1014) (-1014)) (T -769))
+((-1391 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-770 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-769 *5 *6)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-770 *6)) (-5 *1 (-769 *5 *6)))))
+(-10 -7 (-15 -1391 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|))) (-15 -1391 ((-770 |#2|) (-1 |#2| |#1|) (-770 |#1|) (-770 |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-21)))) (-1233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1341 (((-522) $) NIL (|has| |#1| (-782)))) (-3175 (($) NIL (|has| |#1| (-21)) CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 15)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 9)) (-2682 (((-3 $ "failed") $) 40 (|has| |#1| (-782)))) (-1664 (((-3 (-382 (-522)) "failed") $) 48 (|has| |#1| (-507)))) (-1770 (((-108) $) 43 (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) 45 (|has| |#1| (-507)))) (-3687 (((-108) $) NIL (|has| |#1| (-782)))) (-2782 (((-108) $) NIL (|has| |#1| (-782)))) (-2556 (((-108) $) NIL (|has| |#1| (-782)))) (-2814 (($ $ $) NIL (|has| |#1| (-782)))) (-2446 (($ $ $) NIL (|has| |#1| (-782)))) (-2385 (((-1068) $) NIL)) (-2849 (($) 13)) (-2365 (((-108) $) 12)) (-4151 (((-1032) $) NIL)) (-3827 (((-108) $) 11)) (-2190 (((-792) $) 18) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 8) (($ (-522)) NIL (-3708 (|has| |#1| (-782)) (|has| |#1| (-962 (-522)))))) (-2323 (((-708)) 34 (|has| |#1| (-782)))) (-2241 (($ $) NIL (|has| |#1| (-782)))) (-3510 (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (-3566 (($) 22 (|has| |#1| (-21)) CONST)) (-3577 (($) 31 (|has| |#1| (-782)) CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1549 (((-108) $ $) 42 (|has| |#1| (-782)))) (-1612 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1602 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (* (($ $ $) 37 (|has| |#1| (-782))) (($ (-522) $) 25 (|has| |#1| (-21))) (($ (-708) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-21)))))
+(((-770 |#1|) (-13 (-1014) (-386 |#1|) (-10 -8 (-15 -2849 ($)) (-15 -3827 ((-108) $)) (-15 -2365 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) (-1014)) (T -770))
+((-2849 (*1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-1014)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))))
+(-13 (-1014) (-386 |#1|) (-10 -8 (-15 -2849 ($)) (-15 -3827 ((-108) $)) (-15 -2365 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-1484 ((|#1| $) NIL) (((-110) $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2995 ((|#1| (-110) |#1|) NIL)) (-2782 (((-108) $) NIL)) (-1491 (($ |#1| (-336 (-110))) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2657 (($ $ (-1 |#1| |#1|)) NIL)) (-3250 (($ $ (-1 |#1| |#1|)) NIL)) (-2545 ((|#1| $ |#1|) NIL)) (-1786 ((|#1| |#1|) NIL (|has| |#1| (-157)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-3785 (($ $) NIL (|has| |#1| (-157))) (($ $ $) NIL (|has| |#1| (-157)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ (-110) (-522)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-771 |#1|) (-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3785 ($ $)) (-15 -3785 ($ $ $)) (-15 -1786 (|#1| |#1|))) |%noBranch|) (-15 -3250 ($ $ (-1 |#1| |#1|))) (-15 -2657 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -2995 (|#1| (-110) |#1|)) (-15 -1491 ($ |#1| (-336 (-110)))))) (-971)) (T -771))
+((-3785 (*1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) (-3785 (*1 *1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) (-1786 (*1 *2 *2) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))) (-3250 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-5 *1 (-771 *4)) (-4 *4 (-971)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-771 *3)) (-4 *3 (-971)))) (-2995 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-771 *2)) (-4 *2 (-971)))) (-1491 (*1 *1 *2 *3) (-12 (-5 *3 (-336 (-110))) (-5 *1 (-771 *2)) (-4 *2 (-971)))))
+(-13 (-971) (-962 |#1|) (-962 (-110)) (-262 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |#1| (-157)) (PROGN (-6 (-37 |#1|)) (-15 -3785 ($ $)) (-15 -3785 ($ $ $)) (-15 -1786 (|#1| |#1|))) |%noBranch|) (-15 -3250 ($ $ (-1 |#1| |#1|))) (-15 -2657 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-522))) (-15 ** ($ $ (-522))) (-15 -2995 (|#1| (-110) |#1|)) (-15 -1491 ($ |#1| (-336 (-110))))))
+((-2136 (((-192 (-472)) (-1068)) 8)))
+(((-772) (-10 -7 (-15 -2136 ((-192 (-472)) (-1068))))) (T -772))
+((-2136 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-192 (-472))) (-5 *1 (-772)))))
+(-10 -7 (-15 -2136 ((-192 (-472)) (-1068))))
+((-1416 (((-108) $ $) 7)) (-3619 (((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 14) (((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 13)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 16) (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 15)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-773) (-1197)) (T -773))
+((-1798 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)))))) (-1798 (*1 *2 *3 *4) (-12 (-4 *1 (-773)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)))))) (-3619 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) (-5 *2 (-960)))) (-3619 (*1 *2 *3) (-12 (-4 *1 (-773)) (-5 *3 (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *2 (-960)))))
+(-13 (-1014) (-10 -7 (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -3619 ((-960) (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -3619 ((-960) (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-2003 (((-960) (-588 (-291 (-354))) (-588 (-354))) 143) (((-960) (-291 (-354)) (-588 (-354))) 141) (((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-777 (-354)))) 140) (((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-291 (-354))) (-588 (-777 (-354)))) 139) (((-960) (-775)) 112) (((-960) (-775) (-983)) 111)) (-1798 (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775) (-983)) 76) (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775)) 78)) (-3914 (((-960) (-588 (-291 (-354))) (-588 (-354))) 144) (((-960) (-775)) 128)))
+(((-774) (-10 -7 (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775) (-983))) (-15 -2003 ((-960) (-775) (-983))) (-15 -2003 ((-960) (-775))) (-15 -3914 ((-960) (-775))) (-15 -2003 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-291 (-354))) (-588 (-777 (-354))))) (-15 -2003 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-777 (-354))))) (-15 -2003 ((-960) (-291 (-354)) (-588 (-354)))) (-15 -2003 ((-960) (-588 (-291 (-354))) (-588 (-354)))) (-15 -3914 ((-960) (-588 (-291 (-354))) (-588 (-354)))))) (T -774))
+((-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) (-5 *5 (-588 (-777 (-354)))) (-5 *2 (-960)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-588 (-354))) (-5 *5 (-588 (-777 (-354)))) (-5 *6 (-588 (-291 (-354)))) (-5 *3 (-291 (-354))) (-5 *2 (-960)) (-5 *1 (-774)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-774)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-774)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-774)))))
+(-10 -7 (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-775) (-983))) (-15 -2003 ((-960) (-775) (-983))) (-15 -2003 ((-960) (-775))) (-15 -3914 ((-960) (-775))) (-15 -2003 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-291 (-354))) (-588 (-777 (-354))))) (-15 -2003 ((-960) (-291 (-354)) (-588 (-354)) (-588 (-777 (-354))) (-588 (-777 (-354))))) (-15 -2003 ((-960) (-291 (-354)) (-588 (-354)))) (-15 -2003 ((-960) (-588 (-291 (-354))) (-588 (-354)))) (-15 -3914 ((-960) (-588 (-291 (-354))) (-588 (-354)))))
+((-1416 (((-108) $ $) NIL)) (-1484 (((-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) $) 15)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 14) (($ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) 8) (($ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))))) 12)) (-1531 (((-108) $ $) NIL)))
+(((-775) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -2190 ($ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -2190 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) $))))) (T -775))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-775)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (-5 *1 (-775)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))) (-5 *1 (-775)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))))) (-5 *1 (-775)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202))))))) (-5 *1 (-775)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202))))))) (-15 -2190 ($ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) (-15 -2190 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-3 (|:| |noa| (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202))) (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202)))) (|:| |ub| (-588 (-777 (-202)))))) (|:| |lsa| (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))) $))))
+((-1391 (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)) 13) (((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|)) 14)))
+(((-776 |#1| |#2|) (-10 -7 (-15 -1391 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))) (-15 -1391 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|)))) (-1014) (-1014)) (T -776))
+((-1391 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-777 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-776 *5 *6)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6)))))
+(-10 -7 (-15 -1391 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|))) (-15 -1391 ((-777 |#2|) (-1 |#2| |#1|) (-777 |#1|) (-777 |#2|) (-777 |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-21)))) (-3346 (((-1032) $) 24)) (-1233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1341 (((-522) $) NIL (|has| |#1| (-782)))) (-3175 (($) NIL (|has| |#1| (-21)) CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 16)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 9)) (-2682 (((-3 $ "failed") $) 47 (|has| |#1| (-782)))) (-1664 (((-3 (-382 (-522)) "failed") $) 54 (|has| |#1| (-507)))) (-1770 (((-108) $) 49 (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) 52 (|has| |#1| (-507)))) (-3687 (((-108) $) NIL (|has| |#1| (-782)))) (-2873 (($) 13)) (-2782 (((-108) $) NIL (|has| |#1| (-782)))) (-2556 (((-108) $) NIL (|has| |#1| (-782)))) (-2886 (($) 14)) (-2814 (($ $ $) NIL (|has| |#1| (-782)))) (-2446 (($ $ $) NIL (|has| |#1| (-782)))) (-2385 (((-1068) $) NIL)) (-2365 (((-108) $) 12)) (-4151 (((-1032) $) NIL)) (-3827 (((-108) $) 11)) (-2190 (((-792) $) 22) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 8) (($ (-522)) NIL (-3708 (|has| |#1| (-782)) (|has| |#1| (-962 (-522)))))) (-2323 (((-708)) 41 (|has| |#1| (-782)))) (-2241 (($ $) NIL (|has| |#1| (-782)))) (-3510 (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (-3566 (($) 29 (|has| |#1| (-21)) CONST)) (-3577 (($) 38 (|has| |#1| (-782)) CONST)) (-1574 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1531 (((-108) $ $) 27)) (-1566 (((-108) $ $) NIL (|has| |#1| (-782)))) (-1549 (((-108) $ $) 48 (|has| |#1| (-782)))) (-1612 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-1602 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-850)) NIL (|has| |#1| (-782))) (($ $ (-708)) NIL (|has| |#1| (-782)))) (* (($ $ $) 44 (|has| |#1| (-782))) (($ (-522) $) 32 (|has| |#1| (-21))) (($ (-708) $) NIL (|has| |#1| (-21))) (($ (-850) $) NIL (|has| |#1| (-21)))))
+(((-777 |#1|) (-13 (-1014) (-386 |#1|) (-10 -8 (-15 -2873 ($)) (-15 -2886 ($)) (-15 -3827 ((-108) $)) (-15 -2365 ((-108) $)) (-15 -3346 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|))) (-1014)) (T -777))
+((-2873 (*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014)))) (-2886 (*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))) (-1664 (*1 *2 *1) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014)))))
+(-13 (-1014) (-386 |#1|) (-10 -8 (-15 -2873 ($)) (-15 -2886 ($)) (-15 -3827 ((-108) $)) (-15 -2365 ((-108) $)) (-15 -3346 ((-1032) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-782)) |%noBranch|) (IF (|has| |#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|)))
+((-1416 (((-108) $ $) 7)) (-1629 (((-708)) 20)) (-3255 (($) 23)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2120 (((-850) $) 22)) (-2385 (((-1068) $) 9)) (-2717 (($ (-850)) 21)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-778) (-1197)) (T -778))
+NIL
+(-13 (-784) (-343))
+(((-97) . T) ((-562 (-792)) . T) ((-343) . T) ((-784) . T) ((-1014) . T))
+((-4075 (((-108) (-1166 |#2|) (-1166 |#2|)) 17)) (-1869 (((-108) (-1166 |#2|) (-1166 |#2|)) 18)) (-2235 (((-108) (-1166 |#2|) (-1166 |#2|)) 14)))
+(((-779 |#1| |#2|) (-10 -7 (-15 -2235 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -4075 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -1869 ((-108) (-1166 |#2|) (-1166 |#2|)))) (-708) (-729)) (T -779))
+((-1869 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))) (-4075 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))) (-2235 (*1 *2 *3 *3) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))))
+(-10 -7 (-15 -2235 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -4075 ((-108) (-1166 |#2|) (-1166 |#2|))) (-15 -1869 ((-108) (-1166 |#2|) (-1166 |#2|))))
+((-1416 (((-108) $ $) 7)) (-3175 (($) 24 T CONST)) (-2682 (((-3 $ "failed") $) 28)) (-2782 (((-108) $) 25)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3510 (($ $ (-708)) 27) (($ $ (-850)) 22)) (-3577 (($) 23 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (** (($ $ (-708)) 26) (($ $ (-850)) 21)) (* (($ $ $) 20)))
+(((-780) (-1197)) (T -780))
+NIL
+(-13 (-784) (-664))
+(((-97) . T) ((-562 (-792)) . T) ((-664) . T) ((-784) . T) ((-1026) . T) ((-1014) . T))
+((-1341 (((-522) $) 17)) (-3687 (((-108) $) 10)) (-2556 (((-108) $) 11)) (-2241 (($ $) 19)))
+(((-781 |#1|) (-10 -8 (-15 -2241 (|#1| |#1|)) (-15 -1341 ((-522) |#1|)) (-15 -2556 ((-108) |#1|)) (-15 -3687 ((-108) |#1|))) (-782)) (T -781))
+NIL
+(-10 -8 (-15 -2241 (|#1| |#1|)) (-15 -1341 ((-522) |#1|)) (-15 -2556 ((-108) |#1|)) (-15 -3687 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 24)) (-1233 (((-3 $ "failed") $ $) 26)) (-1341 (((-522) $) 33)) (-3175 (($) 23 T CONST)) (-2682 (((-3 $ "failed") $) 39)) (-3687 (((-108) $) 35)) (-2782 (((-108) $) 42)) (-2556 (((-108) $) 34)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 45)) (-2323 (((-708)) 44)) (-2241 (($ $) 32)) (-3510 (($ $ (-708)) 40) (($ $ (-850)) 36)) (-3566 (($) 22 T CONST)) (-3577 (($) 43 T CONST)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)) (-1612 (($ $ $) 28) (($ $) 27)) (-1602 (($ $ $) 20)) (** (($ $ (-708)) 41) (($ $ (-850)) 37)) (* (($ (-708) $) 25) (($ (-850) $) 21) (($ (-522) $) 29) (($ $ $) 38)))
+(((-782) (-1197)) (T -782))
+((-3687 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108)))) (-1341 (*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-522)))) (-2241 (*1 *1 *1) (-4 *1 (-782))))
+(-13 (-728) (-971) (-664) (-10 -8 (-15 -3687 ((-108) $)) (-15 -2556 ((-108) $)) (-15 -1341 ((-522) $)) (-15 -2241 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-784) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2814 (($ $ $) 10)) (-2446 (($ $ $) 9)) (-1574 (((-108) $ $) 13)) (-1558 (((-108) $ $) 11)) (-1566 (((-108) $ $) 14)))
+(((-783 |#1|) (-10 -8 (-15 -2814 (|#1| |#1| |#1|)) (-15 -2446 (|#1| |#1| |#1|)) (-15 -1566 ((-108) |#1| |#1|)) (-15 -1574 ((-108) |#1| |#1|)) (-15 -1558 ((-108) |#1| |#1|))) (-784)) (T -783))
+NIL
+(-10 -8 (-15 -2814 (|#1| |#1| |#1|)) (-15 -2446 (|#1| |#1| |#1|)) (-15 -1566 ((-108) |#1| |#1|)) (-15 -1574 ((-108) |#1| |#1|)) (-15 -1558 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2814 (($ $ $) 13)) (-2446 (($ $ $) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1574 (((-108) $ $) 16)) (-1558 (((-108) $ $) 17)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 15)) (-1549 (((-108) $ $) 18)))
+(((-784) (-1197)) (T -784))
+((-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1558 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1574 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-1566 (*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108)))) (-2446 (*1 *1 *1 *1) (-4 *1 (-784))) (-2814 (*1 *1 *1 *1) (-4 *1 (-784))))
+(-13 (-1014) (-10 -8 (-15 -1549 ((-108) $ $)) (-15 -1558 ((-108) $ $)) (-15 -1574 ((-108) $ $)) (-15 -1566 ((-108) $ $)) (-15 -2446 ($ $ $)) (-15 -2814 ($ $ $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-3376 (($ $ $) 46)) (-3951 (($ $ $) 45)) (-2652 (($ $ $) 43)) (-2612 (($ $ $) 52)) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 47)) (-3280 (((-3 $ "failed") $ $) 50)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2071 (($ $) 36)) (-3703 (($ $ $) 40)) (-3344 (($ $ $) 39)) (-3470 (($ $ $) 48)) (-3671 (($ $ $) 54)) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 42)) (-3829 (((-3 $ "failed") $ $) 49)) (-2232 (((-3 $ "failed") $ |#2|) 29)) (-2255 ((|#2| $) 33)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ |#2|) 12)) (-3916 (((-588 |#2|) $) 19)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 23)))
+(((-785 |#1| |#2|) (-10 -8 (-15 -3470 (|#1| |#1| |#1|)) (-15 -1230 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3376 (|#1| |#1| |#1|)) (-15 -3951 (|#1| |#1| |#1|)) (-15 -2652 (|#1| |#1| |#1|)) (-15 -1336 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -2071 (|#1| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3916 ((-588 |#2|) |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -2190 ((-792) |#1|))) (-786 |#2|) (-971)) (T -785))
+NIL
+(-10 -8 (-15 -3470 (|#1| |#1| |#1|)) (-15 -1230 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3376 (|#1| |#1| |#1|)) (-15 -3951 (|#1| |#1| |#1|)) (-15 -2652 (|#1| |#1| |#1|)) (-15 -1336 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1383 |#1|)) |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3829 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3703 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)) (-15 -2071 (|#1| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2232 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3916 ((-588 |#2|) |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3376 (($ $ $) 45 (|has| |#1| (-338)))) (-3951 (($ $ $) 46 (|has| |#1| (-338)))) (-2652 (($ $ $) 48 (|has| |#1| (-338)))) (-2612 (($ $ $) 43 (|has| |#1| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 42 (|has| |#1| (-338)))) (-3280 (((-3 $ "failed") $ $) 44 (|has| |#1| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 47 (|has| |#1| (-338)))) (-1297 (((-3 (-522) "failed") $) 74 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 72 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 69)) (-1484 (((-522) $) 75 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 73 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 68)) (-3156 (($ $) 64)) (-2682 (((-3 $ "failed") $) 34)) (-2071 (($ $) 55 (|has| |#1| (-426)))) (-2782 (((-108) $) 31)) (-4049 (($ |#1| (-708)) 62)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57 (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 58 (|has| |#1| (-514)))) (-2925 (((-708) $) 66)) (-3703 (($ $ $) 52 (|has| |#1| (-338)))) (-3344 (($ $ $) 53 (|has| |#1| (-338)))) (-3470 (($ $ $) 41 (|has| |#1| (-338)))) (-3671 (($ $ $) 50 (|has| |#1| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 49 (|has| |#1| (-338)))) (-3829 (((-3 $ "failed") $ $) 51 (|has| |#1| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 54 (|has| |#1| (-338)))) (-3138 ((|#1| $) 65)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-514)))) (-2793 (((-708) $) 67)) (-2255 ((|#1| $) 56 (|has| |#1| (-426)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 71 (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) 70)) (-3916 (((-588 |#1|) $) 61)) (-3243 ((|#1| $ (-708)) 63)) (-2323 (((-708)) 29)) (-1616 ((|#1| $ |#1| |#1|) 60)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-786 |#1|) (-1197) (-971)) (T -786))
+((-2793 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-4049 (*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-588 *3)))) (-1616 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)))) (-2232 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-2514 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3)))) (-2953 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426)))) (-2071 (*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426)))) (-2509 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3)))) (-3344 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3703 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3829 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3671 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1336 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1))) (-4 *1 (-786 *3)))) (-2652 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3)))) (-3951 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3376 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-3280 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-2612 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1230 (*1 *2 *1 *1) (-12 (-4 *3 (-338)) (-4 *3 (-971)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1))) (-4 *1 (-786 *3)))) (-3470 (*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(-13 (-971) (-107 |t#1| |t#1|) (-386 |t#1|) (-10 -8 (-15 -2793 ((-708) $)) (-15 -2925 ((-708) $)) (-15 -3138 (|t#1| $)) (-15 -3156 ($ $)) (-15 -3243 (|t#1| $ (-708))) (-15 -4049 ($ |t#1| (-708))) (-15 -3916 ((-588 |t#1|) $)) (-15 -1616 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-15 -2232 ((-3 $ "failed") $ |t#1|)) (-15 -2514 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -2953 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-15 -2255 (|t#1| $)) (-15 -2071 ($ $))) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-15 -2509 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -3344 ($ $ $)) (-15 -3703 ($ $ $)) (-15 -3829 ((-3 $ "failed") $ $)) (-15 -3671 ($ $ $)) (-15 -1336 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $)) (-15 -2652 ($ $ $)) (-15 -3653 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -3951 ($ $ $)) (-15 -3376 ($ $ $)) (-15 -3280 ((-3 $ "failed") $ $)) (-15 -2612 ($ $ $)) (-15 -1230 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $)) (-15 -3470 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-386 |#1|) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-2487 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 21)) (-3653 (((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)) 44 (|has| |#1| (-338)))) (-2953 (((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)) 41 (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-514)))) (-2509 (((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-338)))) (-1616 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 32)))
+(((-787 |#1| |#2|) (-10 -7 (-15 -2487 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1616 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-514)) (PROGN (-15 -2514 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2953 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2509 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3653 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-971) (-786 |#1|)) (T -787))
+((-3653 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2509 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2953 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-2514 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3)) (-4 *3 (-786 *5)))) (-1616 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-971)) (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))) (-2487 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-971)) (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5)))))
+(-10 -7 (-15 -2487 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1616 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-514)) (PROGN (-15 -2514 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2953 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2509 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3653 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3376 (($ $ $) NIL (|has| |#1| (-338)))) (-3951 (($ $ $) NIL (|has| |#1| (-338)))) (-2652 (($ $ $) NIL (|has| |#1| (-338)))) (-2612 (($ $ $) NIL (|has| |#1| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 25 (|has| |#1| (-338)))) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426)))) (-3445 (((-792) $ (-792)) NIL)) (-2782 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) NIL)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 21 (|has| |#1| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 19 (|has| |#1| (-514)))) (-2925 (((-708) $) NIL)) (-3703 (($ $ $) NIL (|has| |#1| (-338)))) (-3344 (($ $ $) NIL (|has| |#1| (-338)))) (-3470 (($ $ $) NIL (|has| |#1| (-338)))) (-3671 (($ $ $) NIL (|has| |#1| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3829 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 23 (|has| |#1| (-338)))) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2793 (((-708) $) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-426)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-962 (-382 (-522))))) (($ |#1|) NIL)) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) NIL)) (-2323 (((-708)) NIL)) (-1616 ((|#1| $ |#1| |#1|) 15)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-788 |#1| |#2| |#3|) (-13 (-786 |#1|) (-10 -8 (-15 -3445 ((-792) $ (-792))))) (-971) (-94 |#1|) (-1 |#1| |#1|)) (T -788))
+((-3445 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-786 |#1|) (-10 -8 (-15 -3445 ((-792) $ (-792)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3376 (($ $ $) NIL (|has| |#2| (-338)))) (-3951 (($ $ $) NIL (|has| |#2| (-338)))) (-2652 (($ $ $) NIL (|has| |#2| (-338)))) (-2612 (($ $ $) NIL (|has| |#2| (-338)))) (-1230 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-338)))) (-3280 (((-3 $ "failed") $ $) NIL (|has| |#2| (-338)))) (-3653 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-338)))) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#2| (-426)))) (-2782 (((-108) $) NIL)) (-4049 (($ |#2| (-708)) 16)) (-2953 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-514)))) (-2514 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-514)))) (-2925 (((-708) $) NIL)) (-3703 (($ $ $) NIL (|has| |#2| (-338)))) (-3344 (($ $ $) NIL (|has| |#2| (-338)))) (-3470 (($ $ $) NIL (|has| |#2| (-338)))) (-3671 (($ $ $) NIL (|has| |#2| (-338)))) (-1336 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-338)))) (-3829 (((-3 $ "failed") $ $) NIL (|has| |#2| (-338)))) (-2509 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-338)))) (-3138 ((|#2| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514)))) (-2793 (((-708) $) NIL)) (-2255 ((|#2| $) NIL (|has| |#2| (-426)))) (-2190 (((-792) $) 23) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) NIL) (($ (-1162 |#1|)) 18)) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-708)) NIL)) (-2323 (((-708)) NIL)) (-1616 ((|#2| $ |#2| |#2|) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) 13 T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-789 |#1| |#2| |#3| |#4|) (-13 (-786 |#2|) (-10 -8 (-15 -2190 ($ (-1162 |#1|))))) (-1085) (-971) (-94 |#2|) (-1 |#2| |#2|)) (T -789))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-789 *3 *4 *5 *6)) (-4 *4 (-971)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-786 |#2|) (-10 -8 (-15 -2190 ($ (-1162 |#1|)))))
+((-3084 ((|#1| (-708) |#1|) 35 (|has| |#1| (-37 (-382 (-522)))))) (-1309 ((|#1| (-708) (-708) |#1|) 27) ((|#1| (-708) |#1|) 20)) (-2944 ((|#1| (-708) |#1|) 31)) (-2163 ((|#1| (-708) |#1|) 29)) (-2279 ((|#1| (-708) |#1|) 28)))
+(((-790 |#1|) (-10 -7 (-15 -2279 (|#1| (-708) |#1|)) (-15 -2163 (|#1| (-708) |#1|)) (-15 -2944 (|#1| (-708) |#1|)) (-15 -1309 (|#1| (-708) |#1|)) (-15 -1309 (|#1| (-708) (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -3084 (|#1| (-708) |#1|)) |%noBranch|)) (-157)) (T -790))
+((-3084 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-157)))) (-1309 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-1309 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-2944 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-2163 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))) (-2279 (*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))))
+(-10 -7 (-15 -2279 (|#1| (-708) |#1|)) (-15 -2163 (|#1| (-708) |#1|)) (-15 -2944 (|#1| (-708) |#1|)) (-15 -1309 (|#1| (-708) |#1|)) (-15 -1309 (|#1| (-708) (-708) |#1|)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -3084 (|#1| (-708) |#1|)) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-3435 (((-522) $) 12)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 18) (($ (-522)) 11)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 8)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 9)))
+(((-791) (-13 (-784) (-10 -8 (-15 -2190 ($ (-522))) (-15 -3435 ((-522) $))))) (T -791))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-791)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-791)))))
+(-13 (-784) (-10 -8 (-15 -2190 ($ (-522))) (-15 -3435 ((-522) $))))
+((-1416 (((-108) $ $) NIL)) (-1508 (($ $ $) 115)) (-2645 (((-522) $) 30) (((-522)) 35)) (-1999 (($ (-522)) 44)) (-2410 (($ $ $) 45) (($ (-588 $)) 76)) (-2922 (($ $ (-588 $)) 74)) (-1774 (((-522) $) 33)) (-2133 (($ $ $) 63)) (-3518 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3915 (((-522) $) 32)) (-2337 (($ $ $) 62)) (-1507 (($ $) 105)) (-1984 (($ $ $) 119)) (-1998 (($ (-588 $)) 52)) (-2526 (($ $ (-588 $)) 69)) (-1636 (($ (-522) (-522)) 46)) (-1799 (($ $) 116) (($ $ $) 117)) (-1924 (($ $ (-522)) 40) (($ $) 43)) (-2277 (($ $ $) 89)) (-3825 (($ $ $) 122)) (-1396 (($ $) 106)) (-2254 (($ $ $) 90)) (-2574 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2050 (((-1171) $) 8)) (-3717 (($ $) 109) (($ $ (-708)) 112)) (-1467 (($ $ $) 65)) (-4123 (($ $ $) 64)) (-3375 (($ $ (-588 $)) 100)) (-1828 (($ $ $) 104)) (-1756 (($ (-588 $)) 50)) (-1953 (($ $) 60) (($ (-588 $)) 61)) (-3044 (($ $ $) 113)) (-3102 (($ $) 107)) (-2396 (($ $ $) 118)) (-3445 (($ (-522)) 20) (($ (-1085)) 22) (($ (-1068)) 29) (($ (-202)) 24)) (-3999 (($ $ $) 93)) (-2401 (($ $) 94)) (-1675 (((-1171) (-1068)) 14)) (-2840 (($ (-1068)) 13)) (-1366 (($ (-588 (-588 $))) 48)) (-1913 (($ $ (-522)) 39) (($ $) 42)) (-2385 (((-1068) $) NIL)) (-2907 (($ $ $) 121)) (-3622 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3881 (((-108) $) 98)) (-3262 (($ $ (-588 $)) 102) (($ $ $ $) 103)) (-2482 (($ (-522)) 36)) (-4155 (((-522) $) 31) (((-522)) 34)) (-2186 (($ $ $) 37) (($ (-588 $)) 75)) (-4151 (((-1032) $) NIL)) (-2232 (($ $ $) 91)) (-3775 (($) 12)) (-2545 (($ $ (-588 $)) 99)) (-1883 (($ $) 108) (($ $ (-708)) 111)) (-2243 (($ $ $) 88)) (-2157 (($ $ (-708)) 127)) (-3901 (($ (-588 $)) 51)) (-2190 (((-792) $) 18)) (-1893 (($ $ (-522)) 38) (($ $) 41)) (-1841 (($ $) 58) (($ (-588 $)) 59)) (-3392 (($ $) 56) (($ (-588 $)) 57)) (-2308 (($ $) 114)) (-2948 (($ (-588 $)) 55)) (-1480 (($ $ $) 97)) (-3712 (($ $ $) 120)) (-4015 (($ $ $) 92)) (-2430 (($ $ $) 77)) (-1673 (($ $ $) 95) (($ $) 96)) (-1574 (($ $ $) 81)) (-1558 (($ $ $) 79)) (-1531 (((-108) $ $) 15) (($ $ $) 16)) (-1566 (($ $ $) 80)) (-1549 (($ $ $) 78)) (-1620 (($ $ $) 86)) (-1612 (($ $ $) 83) (($ $) 84)) (-1602 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-792) (-13 (-1014) (-10 -8 (-15 -2050 ((-1171) $)) (-15 -2840 ($ (-1068))) (-15 -1675 ((-1171) (-1068))) (-15 -3445 ($ (-522))) (-15 -3445 ($ (-1085))) (-15 -3445 ($ (-1068))) (-15 -3445 ($ (-202))) (-15 -3775 ($)) (-15 -2645 ((-522) $)) (-15 -4155 ((-522) $)) (-15 -2645 ((-522))) (-15 -4155 ((-522))) (-15 -3915 ((-522) $)) (-15 -1774 ((-522) $)) (-15 -2482 ($ (-522))) (-15 -1999 ($ (-522))) (-15 -1636 ($ (-522) (-522))) (-15 -1913 ($ $ (-522))) (-15 -1924 ($ $ (-522))) (-15 -1893 ($ $ (-522))) (-15 -1913 ($ $)) (-15 -1924 ($ $)) (-15 -1893 ($ $)) (-15 -2186 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -2186 ($ (-588 $))) (-15 -2410 ($ (-588 $))) (-15 -3375 ($ $ (-588 $))) (-15 -3262 ($ $ (-588 $))) (-15 -3262 ($ $ $ $)) (-15 -1828 ($ $ $)) (-15 -3881 ((-108) $)) (-15 -2545 ($ $ (-588 $))) (-15 -1507 ($ $)) (-15 -2907 ($ $ $)) (-15 -2308 ($ $)) (-15 -1366 ($ (-588 (-588 $)))) (-15 -1508 ($ $ $)) (-15 -1799 ($ $)) (-15 -1799 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -1984 ($ $ $)) (-15 -3712 ($ $ $)) (-15 -3825 ($ $ $)) (-15 -2157 ($ $ (-708))) (-15 -1480 ($ $ $)) (-15 -2337 ($ $ $)) (-15 -2133 ($ $ $)) (-15 -4123 ($ $ $)) (-15 -1467 ($ $ $)) (-15 -2526 ($ $ (-588 $))) (-15 -2922 ($ $ (-588 $))) (-15 -1396 ($ $)) (-15 -1883 ($ $)) (-15 -1883 ($ $ (-708))) (-15 -3717 ($ $)) (-15 -3717 ($ $ (-708))) (-15 -3102 ($ $)) (-15 -3044 ($ $ $)) (-15 -3518 ($ $)) (-15 -3518 ($ $ $)) (-15 -3518 ($ $ $ $)) (-15 -2574 ($ $)) (-15 -2574 ($ $ $)) (-15 -2574 ($ $ $ $)) (-15 -3622 ($ $)) (-15 -3622 ($ $ $)) (-15 -3622 ($ $ $ $)) (-15 -3392 ($ $)) (-15 -3392 ($ (-588 $))) (-15 -1841 ($ $)) (-15 -1841 ($ (-588 $))) (-15 -1953 ($ $)) (-15 -1953 ($ (-588 $))) (-15 -1756 ($ (-588 $))) (-15 -3901 ($ (-588 $))) (-15 -1998 ($ (-588 $))) (-15 -2948 ($ (-588 $))) (-15 -1531 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -1549 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1566 ($ $ $)) (-15 -1574 ($ $ $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -1612 ($ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2254 ($ $ $)) (-15 -2232 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -2401 ($ $)) (-15 -1673 ($ $ $)) (-15 -1673 ($ $))))) (T -792))
+((-2050 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-792)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-792)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-792)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-792)))) (-3775 (*1 *1) (-5 *1 (-792))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-2645 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-4155 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-2482 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1636 (*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1913 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1924 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1893 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))) (-1913 (*1 *1 *1) (-5 *1 (-792))) (-1924 (*1 *1 *1) (-5 *1 (-792))) (-1893 (*1 *1 *1) (-5 *1 (-792))) (-2186 (*1 *1 *1 *1) (-5 *1 (-792))) (-2410 (*1 *1 *1 *1) (-5 *1 (-792))) (-2186 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3375 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3262 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-1828 (*1 *1 *1 *1) (-5 *1 (-792))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-792)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1507 (*1 *1 *1) (-5 *1 (-792))) (-2907 (*1 *1 *1 *1) (-5 *1 (-792))) (-2308 (*1 *1 *1) (-5 *1 (-792))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-792)))) (-1508 (*1 *1 *1 *1) (-5 *1 (-792))) (-1799 (*1 *1 *1) (-5 *1 (-792))) (-1799 (*1 *1 *1 *1) (-5 *1 (-792))) (-2396 (*1 *1 *1 *1) (-5 *1 (-792))) (-1984 (*1 *1 *1 *1) (-5 *1 (-792))) (-3712 (*1 *1 *1 *1) (-5 *1 (-792))) (-3825 (*1 *1 *1 *1) (-5 *1 (-792))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) (-1480 (*1 *1 *1 *1) (-5 *1 (-792))) (-2337 (*1 *1 *1 *1) (-5 *1 (-792))) (-2133 (*1 *1 *1 *1) (-5 *1 (-792))) (-4123 (*1 *1 *1 *1) (-5 *1 (-792))) (-1467 (*1 *1 *1 *1) (-5 *1 (-792))) (-2526 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2922 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1396 (*1 *1 *1) (-5 *1 (-792))) (-1883 (*1 *1 *1) (-5 *1 (-792))) (-1883 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) (-3717 (*1 *1 *1) (-5 *1 (-792))) (-3717 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792)))) (-3102 (*1 *1 *1) (-5 *1 (-792))) (-3044 (*1 *1 *1 *1) (-5 *1 (-792))) (-3518 (*1 *1 *1) (-5 *1 (-792))) (-3518 (*1 *1 *1 *1) (-5 *1 (-792))) (-3518 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-2574 (*1 *1 *1) (-5 *1 (-792))) (-2574 (*1 *1 *1 *1) (-5 *1 (-792))) (-2574 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-3622 (*1 *1 *1) (-5 *1 (-792))) (-3622 (*1 *1 *1 *1) (-5 *1 (-792))) (-3622 (*1 *1 *1 *1 *1) (-5 *1 (-792))) (-3392 (*1 *1 *1) (-5 *1 (-792))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1841 (*1 *1 *1) (-5 *1 (-792))) (-1841 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1953 (*1 *1 *1) (-5 *1 (-792))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1756 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1998 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))) (-1531 (*1 *1 *1 *1) (-5 *1 (-792))) (-2430 (*1 *1 *1 *1) (-5 *1 (-792))) (-1549 (*1 *1 *1 *1) (-5 *1 (-792))) (-1558 (*1 *1 *1 *1) (-5 *1 (-792))) (-1566 (*1 *1 *1 *1) (-5 *1 (-792))) (-1574 (*1 *1 *1 *1) (-5 *1 (-792))) (-1602 (*1 *1 *1 *1) (-5 *1 (-792))) (-1612 (*1 *1 *1 *1) (-5 *1 (-792))) (-1612 (*1 *1 *1) (-5 *1 (-792))) (* (*1 *1 *1 *1) (-5 *1 (-792))) (-1620 (*1 *1 *1 *1) (-5 *1 (-792))) (** (*1 *1 *1 *1) (-5 *1 (-792))) (-2243 (*1 *1 *1 *1) (-5 *1 (-792))) (-2277 (*1 *1 *1 *1) (-5 *1 (-792))) (-2254 (*1 *1 *1 *1) (-5 *1 (-792))) (-2232 (*1 *1 *1 *1) (-5 *1 (-792))) (-4015 (*1 *1 *1 *1) (-5 *1 (-792))) (-3999 (*1 *1 *1 *1) (-5 *1 (-792))) (-2401 (*1 *1 *1) (-5 *1 (-792))) (-1673 (*1 *1 *1 *1) (-5 *1 (-792))) (-1673 (*1 *1 *1) (-5 *1 (-792))))
+(-13 (-1014) (-10 -8 (-15 -2050 ((-1171) $)) (-15 -2840 ($ (-1068))) (-15 -1675 ((-1171) (-1068))) (-15 -3445 ($ (-522))) (-15 -3445 ($ (-1085))) (-15 -3445 ($ (-1068))) (-15 -3445 ($ (-202))) (-15 -3775 ($)) (-15 -2645 ((-522) $)) (-15 -4155 ((-522) $)) (-15 -2645 ((-522))) (-15 -4155 ((-522))) (-15 -3915 ((-522) $)) (-15 -1774 ((-522) $)) (-15 -2482 ($ (-522))) (-15 -1999 ($ (-522))) (-15 -1636 ($ (-522) (-522))) (-15 -1913 ($ $ (-522))) (-15 -1924 ($ $ (-522))) (-15 -1893 ($ $ (-522))) (-15 -1913 ($ $)) (-15 -1924 ($ $)) (-15 -1893 ($ $)) (-15 -2186 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -2186 ($ (-588 $))) (-15 -2410 ($ (-588 $))) (-15 -3375 ($ $ (-588 $))) (-15 -3262 ($ $ (-588 $))) (-15 -3262 ($ $ $ $)) (-15 -1828 ($ $ $)) (-15 -3881 ((-108) $)) (-15 -2545 ($ $ (-588 $))) (-15 -1507 ($ $)) (-15 -2907 ($ $ $)) (-15 -2308 ($ $)) (-15 -1366 ($ (-588 (-588 $)))) (-15 -1508 ($ $ $)) (-15 -1799 ($ $)) (-15 -1799 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -1984 ($ $ $)) (-15 -3712 ($ $ $)) (-15 -3825 ($ $ $)) (-15 -2157 ($ $ (-708))) (-15 -1480 ($ $ $)) (-15 -2337 ($ $ $)) (-15 -2133 ($ $ $)) (-15 -4123 ($ $ $)) (-15 -1467 ($ $ $)) (-15 -2526 ($ $ (-588 $))) (-15 -2922 ($ $ (-588 $))) (-15 -1396 ($ $)) (-15 -1883 ($ $)) (-15 -1883 ($ $ (-708))) (-15 -3717 ($ $)) (-15 -3717 ($ $ (-708))) (-15 -3102 ($ $)) (-15 -3044 ($ $ $)) (-15 -3518 ($ $)) (-15 -3518 ($ $ $)) (-15 -3518 ($ $ $ $)) (-15 -2574 ($ $)) (-15 -2574 ($ $ $)) (-15 -2574 ($ $ $ $)) (-15 -3622 ($ $)) (-15 -3622 ($ $ $)) (-15 -3622 ($ $ $ $)) (-15 -3392 ($ $)) (-15 -3392 ($ (-588 $))) (-15 -1841 ($ $)) (-15 -1841 ($ (-588 $))) (-15 -1953 ($ $)) (-15 -1953 ($ (-588 $))) (-15 -1756 ($ (-588 $))) (-15 -3901 ($ (-588 $))) (-15 -1998 ($ (-588 $))) (-15 -2948 ($ (-588 $))) (-15 -1531 ($ $ $)) (-15 -2430 ($ $ $)) (-15 -1549 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -1566 ($ $ $)) (-15 -1574 ($ $ $)) (-15 -1602 ($ $ $)) (-15 -1612 ($ $ $)) (-15 -1612 ($ $)) (-15 * ($ $ $)) (-15 -1620 ($ $ $)) (-15 ** ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2277 ($ $ $)) (-15 -2254 ($ $ $)) (-15 -2232 ($ $ $)) (-15 -4015 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -2401 ($ $)) (-15 -1673 ($ $ $)) (-15 -1673 ($ $))))
+((-1483 (((-1171) (-588 (-51))) 24)) (-1585 (((-1171) (-1068) (-792)) 14) (((-1171) (-792)) 9) (((-1171) (-1068)) 11)))
+(((-793) (-10 -7 (-15 -1585 ((-1171) (-1068))) (-15 -1585 ((-1171) (-792))) (-15 -1585 ((-1171) (-1068) (-792))) (-15 -1483 ((-1171) (-588 (-51)))))) (T -793))
+((-1483 (*1 *2 *3) (-12 (-5 *3 (-588 (-51))) (-5 *2 (-1171)) (-5 *1 (-793)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-793)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-793)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-793)))))
+(-10 -7 (-15 -1585 ((-1171) (-1068))) (-15 -1585 ((-1171) (-792))) (-15 -1585 ((-1171) (-1068) (-792))) (-15 -1483 ((-1171) (-588 (-51)))))
+((-1416 (((-108) $ $) NIL)) (-1611 (((-3 $ "failed") (-1085)) 32)) (-1629 (((-708)) 30)) (-3255 (($) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2120 (((-850) $) 28)) (-2385 (((-1068) $) 38)) (-2717 (($ (-850)) 27)) (-4151 (((-1032) $) NIL)) (-1431 (((-1085) $) 13) (((-498) $) 19) (((-821 (-354)) $) 25) (((-821 (-522)) $) 22)) (-2190 (((-792) $) 16)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 35)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 34)))
+(((-794 |#1|) (-13 (-778) (-563 (-1085)) (-563 (-498)) (-563 (-821 (-354))) (-563 (-821 (-522))) (-10 -8 (-15 -1611 ((-3 $ "failed") (-1085))))) (-588 (-1085))) (T -794))
+((-1611 (*1 *1 *2) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-794 *3)) (-14 *3 (-588 *2)))))
+(-13 (-778) (-563 (-1085)) (-563 (-498)) (-563 (-821 (-354))) (-563 (-821 (-522))) (-10 -8 (-15 -1611 ((-3 $ "failed") (-1085)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (((-881 |#1|) $) NIL) (($ (-881 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-157)))) (-2323 (((-708)) NIL)) (-1809 (((-1171) (-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-795 |#1| |#2| |#3| |#4|) (-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2190 ((-881 |#1|) $)) (-15 -2190 ($ (-881 |#1|))) (IF (|has| |#1| (-338)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1809 ((-1171) (-708))))) (-971) (-588 (-1085)) (-588 (-708)) (-708)) (T -795))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-795 *3 *4 *5 *6)) (-4 *3 (-971)) (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-795 *3 *4 *5 *6)) (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708)))) (-1620 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-795 *2 *3 *4 *5)) (-4 *2 (-338)) (-4 *2 (-971)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-708))) (-14 *5 (-708)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-795 *4 *5 *6 *7)) (-4 *4 (-971)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 *3)) (-14 *7 *3))))
+(-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2190 ((-881 |#1|) $)) (-15 -2190 ($ (-881 |#1|))) (IF (|has| |#1| (-338)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1809 ((-1171) (-708)))))
+((-2113 (((-3 (-158 |#3|) "failed") (-708) (-708) |#2| |#2|) 31)) (-1553 (((-3 (-382 |#3|) "failed") (-708) (-708) |#2| |#2|) 24)))
+(((-796 |#1| |#2| |#3|) (-10 -7 (-15 -1553 ((-3 (-382 |#3|) "failed") (-708) (-708) |#2| |#2|)) (-15 -2113 ((-3 (-158 |#3|) "failed") (-708) (-708) |#2| |#2|))) (-338) (-1157 |#1|) (-1142 |#1|)) (T -796))
+((-2113 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-158 *6)) (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5)))) (-1553 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-382 *6)) (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5)))))
+(-10 -7 (-15 -1553 ((-3 (-382 |#3|) "failed") (-708) (-708) |#2| |#2|)) (-15 -2113 ((-3 (-158 |#3|) "failed") (-708) (-708) |#2| |#2|)))
+((-1553 (((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|)) 28) (((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) 26)))
+(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -1553 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (-15 -1553 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|)))) (-338) (-1085) |#1|) (T -797))
+((-1553 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338)) (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5))) (-5 *1 (-797 *5 *6 *7)))) (-1553 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338)) (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5))) (-5 *1 (-797 *5 *6 *7)))))
+(-10 -7 (-15 -1553 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (-15 -1553 ((-3 (-382 (-1139 |#2| |#1|)) "failed") (-708) (-708) (-1158 |#1| |#2| |#3|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-1929 (($ $ (-522)) 62)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-1799 (($ (-1081 (-522)) (-522)) 61)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-1573 (($ $) 64)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-3714 (((-708) $) 69)) (-2782 (((-108) $) 31)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-3010 (((-522)) 66)) (-1337 (((-522) $) 65)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3719 (($ $ (-522)) 68)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-2615 (((-1066 (-522)) $) 70)) (-1522 (($ $) 67)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3898 (((-522) $ (-522)) 63)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-798 |#1|) (-1197) (-522)) (T -798))
+((-2615 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-1066 (-522))))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-708)))) (-3719 (*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-1522 (*1 *1 *1) (-4 *1 (-798 *2))) (-3010 (*1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-1573 (*1 *1 *1) (-4 *1 (-798 *2))) (-3898 (*1 *2 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-1929 (*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))) (-1799 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *3 (-522)) (-4 *1 (-798 *4)))))
+(-13 (-283) (-135) (-10 -8 (-15 -2615 ((-1066 (-522)) $)) (-15 -3714 ((-708) $)) (-15 -3719 ($ $ (-522))) (-15 -1522 ($ $)) (-15 -3010 ((-522))) (-15 -1337 ((-522) $)) (-15 -1573 ($ $)) (-15 -3898 ((-522) $ (-522))) (-15 -1929 ($ $ (-522))) (-15 -1799 ($ (-1081 (-522)) (-522)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-283) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $ (-522)) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-1799 (($ (-1081 (-522)) (-522)) NIL)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1573 (($ $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-3714 (((-708) $) NIL)) (-2782 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3010 (((-522)) NIL)) (-1337 (((-522) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3719 (($ $ (-522)) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2615 (((-1066 (-522)) $) NIL)) (-1522 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL)) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL)) (-3898 (((-522) $ (-522)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL)))
+(((-799 |#1|) (-798 |#1|) (-522)) (T -799))
+NIL
+(-798 |#1|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-799 |#1|) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-799 |#1|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| (-799 |#1|) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-799 |#1|) (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| (-799 |#1|) (-962 (-522))))) (-1484 (((-799 |#1|) $) NIL) (((-1085) $) NIL (|has| (-799 |#1|) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-799 |#1|) (-962 (-522)))) (((-522) $) NIL (|has| (-799 |#1|) (-962 (-522))))) (-3701 (($ $) NIL) (($ (-522) $) NIL)) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-799 |#1|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-799 |#1|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-799 |#1|))) (|:| |vec| (-1166 (-799 |#1|)))) (-628 $) (-1166 $)) NIL) (((-628 (-799 |#1|)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-799 |#1|) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| (-799 |#1|) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-799 |#1|) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-799 |#1|) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-799 |#1|) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| (-799 |#1|) (-1061)))) (-2556 (((-108) $) NIL (|has| (-799 |#1|) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-799 |#1|) (-784)))) (-2446 (($ $ $) NIL (|has| (-799 |#1|) (-784)))) (-1391 (($ (-1 (-799 |#1|) (-799 |#1|)) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-799 |#1|) (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-799 |#1|) (-283)))) (-3686 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-799 |#1|) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-799 |#1|)) (-588 (-799 |#1|))) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-799 |#1|) (-799 |#1|)) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-270 (-799 |#1|))) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-588 (-270 (-799 |#1|)))) NIL (|has| (-799 |#1|) (-285 (-799 |#1|)))) (($ $ (-588 (-1085)) (-588 (-799 |#1|))) NIL (|has| (-799 |#1|) (-483 (-1085) (-799 |#1|)))) (($ $ (-1085) (-799 |#1|)) NIL (|has| (-799 |#1|) (-483 (-1085) (-799 |#1|))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-799 |#1|)) NIL (|has| (-799 |#1|) (-262 (-799 |#1|) (-799 |#1|))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| (-799 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-799 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1 (-799 |#1|) (-799 |#1|)) (-708)) NIL) (($ $ (-1 (-799 |#1|) (-799 |#1|))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-799 |#1|) $) NIL)) (-1431 (((-821 (-522)) $) NIL (|has| (-799 |#1|) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-799 |#1|) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-799 |#1|) (-563 (-498)))) (((-354) $) NIL (|has| (-799 |#1|) (-947))) (((-202) $) NIL (|has| (-799 |#1|) (-947)))) (-2702 (((-158 (-382 (-522))) $) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-799 |#1|) (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL) (($ (-799 |#1|)) NIL) (($ (-1085)) NIL (|has| (-799 |#1|) (-962 (-1085))))) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-799 |#1|) (-838))) (|has| (-799 |#1|) (-133))))) (-2323 (((-708)) NIL)) (-3025 (((-799 |#1|) $) NIL (|has| (-799 |#1|) (-507)))) (-3958 (((-108) $ $) NIL)) (-3898 (((-382 (-522)) $ (-522)) NIL)) (-2241 (($ $) NIL (|has| (-799 |#1|) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $) NIL (|has| (-799 |#1|) (-210))) (($ $ (-708)) NIL (|has| (-799 |#1|) (-210))) (($ $ (-1085)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-799 |#1|) (-829 (-1085)))) (($ $ (-1 (-799 |#1|) (-799 |#1|)) (-708)) NIL) (($ $ (-1 (-799 |#1|) (-799 |#1|))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-799 |#1|) (-784)))) (-1620 (($ $ $) NIL) (($ (-799 |#1|) (-799 |#1|)) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-799 |#1|) $) NIL) (($ $ (-799 |#1|)) NIL)))
+(((-800 |#1|) (-13 (-919 (-799 |#1|)) (-10 -8 (-15 -3898 ((-382 (-522)) $ (-522))) (-15 -2702 ((-158 (-382 (-522))) $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $)))) (-522)) (T -800))
+((-3898 (*1 *2 *1 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-800 *4)) (-14 *4 *3) (-5 *3 (-522)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-800 *3)) (-14 *3 (-522)))) (-3701 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-14 *2 (-522)))) (-3701 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-800 *3)) (-14 *3 *2))))
+(-13 (-919 (-799 |#1|)) (-10 -8 (-15 -3898 ((-382 (-522)) $ (-522))) (-15 -2702 ((-158 (-382 (-522))) $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 ((|#2| $) NIL (|has| |#2| (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| |#2| (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (|has| |#2| (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522))))) (-1484 ((|#2| $) NIL) (((-1085) $) NIL (|has| |#2| (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-522)))) (((-522) $) NIL (|has| |#2| (-962 (-522))))) (-3701 (($ $) 31) (($ (-522) $) 32)) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) 53)) (-3255 (($) NIL (|has| |#2| (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) NIL (|has| |#2| (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| |#2| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| |#2| (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 ((|#2| $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| |#2| (-1061)))) (-2556 (((-108) $) NIL (|has| |#2| (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 49)) (-3802 (($) NIL (|has| |#2| (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| |#2| (-283)))) (-3686 ((|#2| $) NIL (|has| |#2| (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 |#2|) (-588 |#2|)) NIL (|has| |#2| (-285 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-285 |#2|))) (($ $ (-270 |#2|)) NIL (|has| |#2| (-285 |#2|))) (($ $ (-588 (-270 |#2|))) NIL (|has| |#2| (-285 |#2|))) (($ $ (-588 (-1085)) (-588 |#2|)) NIL (|has| |#2| (-483 (-1085) |#2|))) (($ $ (-1085) |#2|) NIL (|has| |#2| (-483 (-1085) |#2|)))) (-3730 (((-708) $) NIL)) (-2545 (($ $ |#2|) NIL (|has| |#2| (-262 |#2| |#2|)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) NIL (|has| |#2| (-210))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3533 (($ $) NIL)) (-2816 ((|#2| $) NIL)) (-1431 (((-821 (-522)) $) NIL (|has| |#2| (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| |#2| (-563 (-821 (-354))))) (((-498) $) NIL (|has| |#2| (-563 (-498)))) (((-354) $) NIL (|has| |#2| (-947))) (((-202) $) NIL (|has| |#2| (-947)))) (-2702 (((-158 (-382 (-522))) $) 68)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-2190 (((-792) $) 86) (($ (-522)) 19) (($ $) NIL) (($ (-382 (-522))) 24) (($ |#2|) 18) (($ (-1085)) NIL (|has| |#2| (-962 (-1085))))) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2323 (((-708)) NIL)) (-3025 ((|#2| $) NIL (|has| |#2| (-507)))) (-3958 (((-108) $ $) NIL)) (-3898 (((-382 (-522)) $ (-522)) 60)) (-2241 (($ $) NIL (|has| |#2| (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 14 T CONST)) (-3577 (($) 16 T CONST)) (-2213 (($ $) NIL (|has| |#2| (-210))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) 35)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1612 (($ $) 39) (($ $ $) 41)) (-1602 (($ $ $) 37)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) 50)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 42) (($ $ $) 44) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-801 |#1| |#2|) (-13 (-919 |#2|) (-10 -8 (-15 -3898 ((-382 (-522)) $ (-522))) (-15 -2702 ((-158 (-382 (-522))) $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $)))) (-522) (-798 |#1|)) (T -801))
+((-3898 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-382 (-522))) (-5 *1 (-801 *4 *5)) (-5 *3 (-522)) (-4 *5 (-798 *4)))) (-2702 (*1 *2 *1) (-12 (-14 *3 (-522)) (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))) (-3701 (*1 *1 *1) (-12 (-14 *2 (-522)) (-5 *1 (-801 *2 *3)) (-4 *3 (-798 *2)))) (-3701 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-14 *3 *2) (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))))
+(-13 (-919 |#2|) (-10 -8 (-15 -3898 ((-382 (-522)) $ (-522))) (-15 -2702 ((-158 (-382 (-522))) $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $))))
+((-1416 (((-108) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) (-2081 ((|#2| $) 12)) (-2751 (($ |#1| |#2|) 9)) (-2385 (((-1068) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) (-4151 (((-1032) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#1| $) 11)) (-2201 (($ |#1| |#2|) 10)) (-2190 (((-792) $) 18 (-3708 (-12 (|has| |#1| (-562 (-792))) (|has| |#2| (-562 (-792)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))) (-1531 (((-108) $ $) 22 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))))
+(((-802 |#1| |#2|) (-13 (-1120) (-10 -8 (IF (|has| |#1| (-562 (-792))) (IF (|has| |#2| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2751 ($ |#1| |#2|)) (-15 -2201 ($ |#1| |#2|)) (-15 -2294 (|#1| $)) (-15 -2081 (|#2| $)))) (-1120) (-1120)) (T -802))
+((-2751 (*1 *1 *2 *3) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))) (-2294 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-802 *2 *3)) (-4 *3 (-1120)))) (-2081 (*1 *2 *1) (-12 (-4 *2 (-1120)) (-5 *1 (-802 *3 *2)) (-4 *3 (-1120)))))
+(-13 (-1120) (-10 -8 (IF (|has| |#1| (-562 (-792))) (IF (|has| |#2| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2751 ($ |#1| |#2|)) (-15 -2201 ($ |#1| |#2|)) (-15 -2294 (|#1| $)) (-15 -2081 (|#2| $))))
+((-1416 (((-108) $ $) NIL)) (-3455 (((-522) $) 15)) (-2508 (($ (-143)) 11)) (-3526 (($ (-143)) 12)) (-2385 (((-1068) $) NIL)) (-3912 (((-143) $) 13)) (-4151 (((-1032) $) NIL)) (-2617 (($ (-143)) 9)) (-4121 (($ (-143)) 8)) (-2190 (((-792) $) 23) (($ (-143)) 16)) (-2239 (($ (-143)) 10)) (-1531 (((-108) $ $) NIL)))
+(((-803) (-13 (-1014) (-10 -8 (-15 -4121 ($ (-143))) (-15 -2617 ($ (-143))) (-15 -2239 ($ (-143))) (-15 -2508 ($ (-143))) (-15 -3526 ($ (-143))) (-15 -3912 ((-143) $)) (-15 -3455 ((-522) $)) (-15 -2190 ($ (-143)))))) (T -803))
+((-4121 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2617 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-2508 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-803)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-803)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(-13 (-1014) (-10 -8 (-15 -4121 ($ (-143))) (-15 -2617 ($ (-143))) (-15 -2239 ($ (-143))) (-15 -2508 ($ (-143))) (-15 -3526 ($ (-143))) (-15 -3912 ((-143) $)) (-15 -3455 ((-522) $)) (-15 -2190 ($ (-143)))))
+((-2190 (((-291 (-522)) (-382 (-881 (-47)))) 21) (((-291 (-522)) (-881 (-47))) 16)))
+(((-804) (-10 -7 (-15 -2190 ((-291 (-522)) (-881 (-47)))) (-15 -2190 ((-291 (-522)) (-382 (-881 (-47))))))) (T -804))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 (-47)))) (-5 *2 (-291 (-522))) (-5 *1 (-804)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-881 (-47))) (-5 *2 (-291 (-522))) (-5 *1 (-804)))))
+(-10 -7 (-15 -2190 ((-291 (-522)) (-881 (-47)))) (-15 -2190 ((-291 (-522)) (-382 (-881 (-47))))))
+((-1391 (((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)) 14)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -1391 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|)))) (-1120) (-1120)) (T -805))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6)))))
+(-10 -7 (-15 -1391 ((-806 |#2|) (-1 |#2| |#1|) (-806 |#1|))))
+((-2616 (($ |#1| |#1|) 8)) (-1714 ((|#1| $ (-708)) 10)))
+(((-806 |#1|) (-10 -8 (-15 -2616 ($ |#1| |#1|)) (-15 -1714 (|#1| $ (-708)))) (-1120)) (T -806))
+((-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-806 *2)) (-4 *2 (-1120)))) (-2616 (*1 *1 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1120)))))
+(-10 -8 (-15 -2616 ($ |#1| |#1|)) (-15 -1714 (|#1| $ (-708))))
+((-1391 (((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)) 14)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -1391 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|)))) (-1120) (-1120)) (T -807))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6)))))
+(-10 -7 (-15 -1391 ((-808 |#2|) (-1 |#2| |#1|) (-808 |#1|))))
+((-2616 (($ |#1| |#1| |#1|) 8)) (-1714 ((|#1| $ (-708)) 10)))
+(((-808 |#1|) (-10 -8 (-15 -2616 ($ |#1| |#1| |#1|)) (-15 -1714 (|#1| $ (-708)))) (-1120)) (T -808))
+((-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-808 *2)) (-4 *2 (-1120)))) (-2616 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1120)))))
+(-10 -8 (-15 -2616 ($ |#1| |#1| |#1|)) (-15 -1714 (|#1| $ (-708))))
+((-1685 (((-588 (-1090)) (-1068)) 8)))
+(((-809) (-10 -7 (-15 -1685 ((-588 (-1090)) (-1068))))) (T -809))
+((-1685 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-809)))))
+(-10 -7 (-15 -1685 ((-588 (-1090)) (-1068))))
+((-1391 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 14)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -1391 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) (-1120) (-1120)) (T -810))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))))
+(-10 -7 (-15 -1391 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))))
+((-2295 (($ |#1| |#1| |#1|) 8)) (-1714 ((|#1| $ (-708)) 10)))
+(((-811 |#1|) (-10 -8 (-15 -2295 ($ |#1| |#1| |#1|)) (-15 -1714 (|#1| $ (-708)))) (-1120)) (T -811))
+((-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-811 *2)) (-4 *2 (-1120)))) (-2295 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1120)))))
+(-10 -8 (-15 -2295 ($ |#1| |#1| |#1|)) (-15 -1714 (|#1| $ (-708))))
+((-1765 (((-1066 (-588 (-522))) (-588 (-522)) (-1066 (-588 (-522)))) 32)) (-3140 (((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522))) 28)) (-3563 (((-1066 (-588 (-522))) (-588 (-522))) 41) (((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522))) 40)) (-1833 (((-1066 (-588 (-522))) (-522)) 42)) (-3408 (((-1066 (-588 (-522))) (-522) (-522)) 22) (((-1066 (-588 (-522))) (-522)) 16) (((-1066 (-588 (-522))) (-522) (-522) (-522)) 12)) (-2447 (((-1066 (-588 (-522))) (-1066 (-588 (-522)))) 26)) (-3122 (((-588 (-522)) (-588 (-522))) 25)))
+(((-812) (-10 -7 (-15 -3408 ((-1066 (-588 (-522))) (-522) (-522) (-522))) (-15 -3408 ((-1066 (-588 (-522))) (-522))) (-15 -3408 ((-1066 (-588 (-522))) (-522) (-522))) (-15 -3122 ((-588 (-522)) (-588 (-522)))) (-15 -2447 ((-1066 (-588 (-522))) (-1066 (-588 (-522))))) (-15 -3140 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -1765 ((-1066 (-588 (-522))) (-588 (-522)) (-1066 (-588 (-522))))) (-15 -3563 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -3563 ((-1066 (-588 (-522))) (-588 (-522)))) (-15 -1833 ((-1066 (-588 (-522))) (-522))))) (T -812))
+((-1833 (*1 *2 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-588 (-522))))) (-3563 (*1 *2 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-588 (-522))))) (-1765 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *3 (-588 (-522))) (-5 *1 (-812)))) (-3140 (*1 *2 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-588 (-522))))) (-2447 (*1 *2 *2) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)))) (-3122 (*1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-812)))) (-3408 (*1 *2 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) (-3408 (*1 *2 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))) (-3408 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))))
+(-10 -7 (-15 -3408 ((-1066 (-588 (-522))) (-522) (-522) (-522))) (-15 -3408 ((-1066 (-588 (-522))) (-522))) (-15 -3408 ((-1066 (-588 (-522))) (-522) (-522))) (-15 -3122 ((-588 (-522)) (-588 (-522)))) (-15 -2447 ((-1066 (-588 (-522))) (-1066 (-588 (-522))))) (-15 -3140 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -1765 ((-1066 (-588 (-522))) (-588 (-522)) (-1066 (-588 (-522))))) (-15 -3563 ((-1066 (-588 (-522))) (-588 (-522)) (-588 (-522)))) (-15 -3563 ((-1066 (-588 (-522))) (-588 (-522)))) (-15 -1833 ((-1066 (-588 (-522))) (-522))))
+((-1431 (((-821 (-354)) $) 9 (|has| |#1| (-563 (-821 (-354))))) (((-821 (-522)) $) 8 (|has| |#1| (-563 (-821 (-522)))))))
+(((-813 |#1|) (-1197) (-1120)) (T -813))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-563 (-821 (-522)))) (-6 (-563 (-821 (-522)))) |%noBranch|) (IF (|has| |t#1| (-563 (-821 (-354)))) (-6 (-563 (-821 (-354)))) |%noBranch|)))
+(((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))))
+((-1416 (((-108) $ $) NIL)) (-1811 (($) 14)) (-3030 (($ (-818 |#1| |#2|) (-818 |#1| |#3|)) 27)) (-3831 (((-818 |#1| |#3|) $) 16)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2989 (((-108) $) 22)) (-3083 (($) 19)) (-2190 (((-792) $) 30)) (-2347 (((-818 |#1| |#2|) $) 15)) (-1531 (((-108) $ $) 25)))
+(((-814 |#1| |#2| |#3|) (-13 (-1014) (-10 -8 (-15 -2989 ((-108) $)) (-15 -3083 ($)) (-15 -1811 ($)) (-15 -3030 ($ (-818 |#1| |#2|) (-818 |#1| |#3|))) (-15 -2347 ((-818 |#1| |#2|) $)) (-15 -3831 ((-818 |#1| |#3|) $)))) (-1014) (-1014) (-608 |#2|)) (T -814))
+((-2989 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-608 *4)))) (-3083 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-608 *3)))) (-1811 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-608 *3)))) (-3030 (*1 *1 *2 *3) (-12 (-5 *2 (-818 *4 *5)) (-5 *3 (-818 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-608 *5)) (-5 *1 (-814 *4 *5 *6)))) (-2347 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *4)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-608 *4)))) (-3831 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *5)) (-5 *1 (-814 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-608 *4)))))
+(-13 (-1014) (-10 -8 (-15 -2989 ((-108) $)) (-15 -3083 ($)) (-15 -1811 ($)) (-15 -3030 ($ (-818 |#1| |#2|) (-818 |#1| |#3|))) (-15 -2347 ((-818 |#1| |#2|) $)) (-15 -3831 ((-818 |#1| |#3|) $))))
+((-1416 (((-108) $ $) 7)) (-4011 (((-818 |#1| $) $ (-821 |#1|) (-818 |#1| $)) 13)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-815 |#1|) (-1197) (-1014)) (T -815))
+((-4011 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-818 *4 *1)) (-5 *3 (-821 *4)) (-4 *1 (-815 *4)) (-4 *4 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -4011 ((-818 |t#1| $) $ (-821 |t#1|) (-818 |t#1| $)))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-2249 (((-108) (-588 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-1801 (((-818 |#1| |#2|) |#2| |#3|) 43 (-12 (-2401 (|has| |#2| (-962 (-1085)))) (-2401 (|has| |#2| (-971))))) (((-588 (-270 (-881 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-971)) (-2401 (|has| |#2| (-962 (-1085)))))) (((-588 (-270 |#2|)) |#2| |#3|) 35 (|has| |#2| (-962 (-1085)))) (((-814 |#1| |#2| (-588 |#2|)) (-588 |#2|) |#3|) 21)))
+(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -2249 ((-108) |#2| |#3|)) (-15 -2249 ((-108) (-588 |#2|) |#3|)) (-15 -1801 ((-814 |#1| |#2| (-588 |#2|)) (-588 |#2|) |#3|)) (IF (|has| |#2| (-962 (-1085))) (-15 -1801 ((-588 (-270 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-971)) (-15 -1801 ((-588 (-270 (-881 |#2|))) |#2| |#3|)) (-15 -1801 ((-818 |#1| |#2|) |#2| |#3|))))) (-1014) (-815 |#1|) (-563 (-821 |#1|))) (T -816))
+((-1801 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-818 *5 *3)) (-5 *1 (-816 *5 *3 *4)) (-2401 (-4 *3 (-962 (-1085)))) (-2401 (-4 *3 (-971))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) (-1801 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 (-881 *3)))) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-971)) (-2401 (-4 *3 (-962 (-1085)))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) (-1801 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 *3))) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-962 (-1085))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))) (-1801 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-815 *5)) (-5 *2 (-814 *5 *6 (-588 *6))) (-5 *1 (-816 *5 *6 *4)) (-5 *3 (-588 *6)) (-4 *4 (-563 (-821 *5))))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-4 *6 (-815 *5)) (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-816 *5 *6 *4)) (-4 *4 (-563 (-821 *5))))) (-2249 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))))
+(-10 -7 (-15 -2249 ((-108) |#2| |#3|)) (-15 -2249 ((-108) (-588 |#2|) |#3|)) (-15 -1801 ((-814 |#1| |#2| (-588 |#2|)) (-588 |#2|) |#3|)) (IF (|has| |#2| (-962 (-1085))) (-15 -1801 ((-588 (-270 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-971)) (-15 -1801 ((-588 (-270 (-881 |#2|))) |#2| |#3|)) (-15 -1801 ((-818 |#1| |#2|) |#2| |#3|)))))
+((-1391 (((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)) 21)))
+(((-817 |#1| |#2| |#3|) (-10 -7 (-15 -1391 ((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -817))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-818 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-818 *5 *7)) (-5 *1 (-817 *5 *6 *7)))))
+(-10 -7 (-15 -1391 ((-818 |#1| |#3|) (-1 |#3| |#2|) (-818 |#1| |#2|))))
+((-1416 (((-108) $ $) NIL)) (-2270 (($ $ $) 37)) (-1582 (((-3 (-108) "failed") $ (-821 |#1|)) 34)) (-1811 (($) 11)) (-2385 (((-1068) $) NIL)) (-1212 (($ (-821 |#1|) |#2| $) 20)) (-4151 (((-1032) $) NIL)) (-4099 (((-3 |#2| "failed") (-821 |#1|) $) 48)) (-2989 (((-108) $) 14)) (-3083 (($) 12)) (-1991 (((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 |#2|))) $) 25)) (-2201 (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 |#2|)))) 23)) (-2190 (((-792) $) 42)) (-1701 (($ (-821 |#1|) |#2| $ |#2|) 46)) (-4175 (($ (-821 |#1|) |#2| $) 45)) (-1531 (((-108) $ $) 39)))
+(((-818 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2989 ((-108) $)) (-15 -3083 ($)) (-15 -1811 ($)) (-15 -2270 ($ $ $)) (-15 -4099 ((-3 |#2| "failed") (-821 |#1|) $)) (-15 -4175 ($ (-821 |#1|) |#2| $)) (-15 -1212 ($ (-821 |#1|) |#2| $)) (-15 -1701 ($ (-821 |#1|) |#2| $ |#2|)) (-15 -1991 ((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 |#2|))) $)) (-15 -2201 ($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 |#2|))))) (-15 -1582 ((-3 (-108) "failed") $ (-821 |#1|))))) (-1014) (-1014)) (T -818))
+((-2989 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3083 (*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1811 (*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2270 (*1 *1 *1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-4099 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-818 *4 *2)))) (-4175 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1014)))) (-1212 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1014)))) (-1701 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1014)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 *4)))) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 *4)))) (-4 *4 (-1014)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)))) (-1582 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -2989 ((-108) $)) (-15 -3083 ($)) (-15 -1811 ($)) (-15 -2270 ($ $ $)) (-15 -4099 ((-3 |#2| "failed") (-821 |#1|) $)) (-15 -4175 ($ (-821 |#1|) |#2| $)) (-15 -1212 ($ (-821 |#1|) |#2| $)) (-15 -1701 ($ (-821 |#1|) |#2| $ |#2|)) (-15 -1991 ((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 |#2|))) $)) (-15 -2201 ($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 |#2|))))) (-15 -1582 ((-3 (-108) "failed") $ (-821 |#1|)))))
+((-1870 (((-821 |#1|) (-821 |#1|) (-588 (-1085)) (-1 (-108) (-588 |#2|))) 30) (((-821 |#1|) (-821 |#1|) (-588 (-1 (-108) |#2|))) 42) (((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|)) 33)) (-1582 (((-108) (-588 |#2|) (-821 |#1|)) 39) (((-108) |#2| (-821 |#1|)) 35)) (-4005 (((-1 (-108) |#2|) (-821 |#1|)) 14)) (-2038 (((-588 |#2|) (-821 |#1|)) 23)) (-1348 (((-821 |#1|) (-821 |#1|) |#2|) 19)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -1870 ((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-588 (-1 (-108) |#2|)))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-588 (-1085)) (-1 (-108) (-588 |#2|)))) (-15 -4005 ((-1 (-108) |#2|) (-821 |#1|))) (-15 -1582 ((-108) |#2| (-821 |#1|))) (-15 -1582 ((-108) (-588 |#2|) (-821 |#1|))) (-15 -1348 ((-821 |#1|) (-821 |#1|) |#2|)) (-15 -2038 ((-588 |#2|) (-821 |#1|)))) (-1014) (-1120)) (T -819))
+((-2038 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-588 *5)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1120)))) (-1348 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-819 *4 *3)) (-4 *3 (-1120)))) (-1582 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *2 (-108)) (-5 *1 (-819 *5 *6)))) (-1582 (*1 *2 *3 *4) (-12 (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-819 *5 *3)) (-4 *3 (-1120)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-819 *4 *5)) (-4 *5 (-1120)))) (-1870 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-821 *5)) (-5 *3 (-588 (-1085))) (-5 *4 (-1 (-108) (-588 *6))) (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *1 (-819 *5 *6)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-5 *3 (-588 (-1 (-108) *5))) (-4 *4 (-1014)) (-4 *5 (-1120)) (-5 *1 (-819 *4 *5)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *2 (-821 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1014)) (-4 *5 (-1120)) (-5 *1 (-819 *4 *5)))))
+(-10 -7 (-15 -1870 ((-821 |#1|) (-821 |#1|) (-1 (-108) |#2|))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-588 (-1 (-108) |#2|)))) (-15 -1870 ((-821 |#1|) (-821 |#1|) (-588 (-1085)) (-1 (-108) (-588 |#2|)))) (-15 -4005 ((-1 (-108) |#2|) (-821 |#1|))) (-15 -1582 ((-108) |#2| (-821 |#1|))) (-15 -1582 ((-108) (-588 |#2|) (-821 |#1|))) (-15 -1348 ((-821 |#1|) (-821 |#1|) |#2|)) (-15 -2038 ((-588 |#2|) (-821 |#1|))))
+((-1391 (((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)) 17)))
+(((-820 |#1| |#2|) (-10 -7 (-15 -1391 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|)))) (-1014) (-1014)) (T -820))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6)))))
+(-10 -7 (-15 -1391 ((-821 |#2|) (-1 |#2| |#1|) (-821 |#1|))))
+((-1416 (((-108) $ $) NIL)) (-3952 (($ $ (-588 (-51))) 63)) (-4090 (((-588 $) $) 117)) (-3850 (((-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))) $) 23)) (-2031 (((-108) $) 30)) (-2938 (($ $ (-588 (-1085)) (-51)) 25)) (-3894 (($ $ (-588 (-51))) 62)) (-1297 (((-3 |#1| "failed") $) 60) (((-3 (-1085) "failed") $) 139)) (-1484 ((|#1| $) 56) (((-1085) $) NIL)) (-3415 (($ $) 107)) (-3942 (((-108) $) 46)) (-2409 (((-588 (-51)) $) 44)) (-1818 (($ (-1085) (-108) (-108) (-108)) 64)) (-3328 (((-3 (-588 $) "failed") (-588 $)) 71)) (-3318 (((-108) $) 49)) (-2620 (((-108) $) 48)) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) 35)) (-4076 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 42)) (-2170 (((-3 (-2 (|:| |val| $) (|:| -1400 $)) "failed") $) 82)) (-4193 (((-3 (-588 $) "failed") $) 32)) (-3922 (((-3 (-588 $) "failed") $ (-110)) 106) (((-3 (-2 (|:| -1420 (-110)) (|:| |arg| (-588 $))) "failed") $) 94)) (-2454 (((-3 (-588 $) "failed") $) 36)) (-3285 (((-3 (-2 (|:| |val| $) (|:| -1400 (-708))) "failed") $) 39)) (-2456 (((-108) $) 29)) (-4151 (((-1032) $) NIL)) (-4122 (((-108) $) 21)) (-3225 (((-108) $) 45)) (-1384 (((-588 (-51)) $) 110)) (-3244 (((-108) $) 47)) (-2545 (($ (-110) (-588 $)) 91)) (-1253 (((-708) $) 28)) (-2404 (($ $) 61)) (-1431 (($ (-588 $)) 58)) (-1328 (((-108) $) 26)) (-2190 (((-792) $) 51) (($ |#1|) 18) (($ (-1085)) 65)) (-1348 (($ $ (-51)) 109)) (-3566 (($) 90 T CONST)) (-3577 (($) 72 T CONST)) (-1531 (((-108) $ $) 78)) (-1620 (($ $ $) 99)) (-1602 (($ $ $) 103)) (** (($ $ (-708)) 98) (($ $ $) 52)) (* (($ $ $) 104)))
+(((-821 |#1|) (-13 (-1014) (-962 |#1|) (-962 (-1085)) (-10 -8 (-15 0 ($) -2677) (-15 1 ($) -2677) (-15 -4193 ((-3 (-588 $) "failed") $)) (-15 -2462 ((-3 (-588 $) "failed") $)) (-15 -3922 ((-3 (-588 $) "failed") $ (-110))) (-15 -3922 ((-3 (-2 (|:| -1420 (-110)) (|:| |arg| (-588 $))) "failed") $)) (-15 -3285 ((-3 (-2 (|:| |val| $) (|:| -1400 (-708))) "failed") $)) (-15 -4076 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2454 ((-3 (-588 $) "failed") $)) (-15 -2170 ((-3 (-2 (|:| |val| $) (|:| -1400 $)) "failed") $)) (-15 -2545 ($ (-110) (-588 $))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ $)) (-15 -1620 ($ $ $)) (-15 -1253 ((-708) $)) (-15 -1431 ($ (-588 $))) (-15 -2404 ($ $)) (-15 -2456 ((-108) $)) (-15 -3942 ((-108) $)) (-15 -2031 ((-108) $)) (-15 -1328 ((-108) $)) (-15 -3244 ((-108) $)) (-15 -2620 ((-108) $)) (-15 -3318 ((-108) $)) (-15 -3225 ((-108) $)) (-15 -2409 ((-588 (-51)) $)) (-15 -3894 ($ $ (-588 (-51)))) (-15 -3952 ($ $ (-588 (-51)))) (-15 -1818 ($ (-1085) (-108) (-108) (-108))) (-15 -2938 ($ $ (-588 (-1085)) (-51))) (-15 -3850 ((-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))) $)) (-15 -4122 ((-108) $)) (-15 -3415 ($ $)) (-15 -1348 ($ $ (-51))) (-15 -1384 ((-588 (-51)) $)) (-15 -4090 ((-588 $) $)) (-15 -3328 ((-3 (-588 $) "failed") (-588 $))))) (-1014)) (T -821))
+((-3566 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-3577 (*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-4193 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2462 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3922 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-821 *4))) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-3922 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1420 (-110)) (|:| |arg| (-588 (-821 *3))))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3285 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -1400 (-708)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-4076 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-821 *3)) (|:| |den| (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2454 (*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2170 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -1400 (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2545 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 (-821 *4))) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-1602 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-1620 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-1253 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-2456 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2620 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3952 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1818 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-108)) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-2938 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-51)) (-5 *1 (-821 *4)) (-4 *4 (-1014)))) (-3850 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51)))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))) (-3328 (*1 *2 *2) (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(-13 (-1014) (-962 |#1|) (-962 (-1085)) (-10 -8 (-15 (-3566) ($) -2677) (-15 (-3577) ($) -2677) (-15 -4193 ((-3 (-588 $) "failed") $)) (-15 -2462 ((-3 (-588 $) "failed") $)) (-15 -3922 ((-3 (-588 $) "failed") $ (-110))) (-15 -3922 ((-3 (-2 (|:| -1420 (-110)) (|:| |arg| (-588 $))) "failed") $)) (-15 -3285 ((-3 (-2 (|:| |val| $) (|:| -1400 (-708))) "failed") $)) (-15 -4076 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2454 ((-3 (-588 $) "failed") $)) (-15 -2170 ((-3 (-2 (|:| |val| $) (|:| -1400 $)) "failed") $)) (-15 -2545 ($ (-110) (-588 $))) (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708))) (-15 ** ($ $ $)) (-15 -1620 ($ $ $)) (-15 -1253 ((-708) $)) (-15 -1431 ($ (-588 $))) (-15 -2404 ($ $)) (-15 -2456 ((-108) $)) (-15 -3942 ((-108) $)) (-15 -2031 ((-108) $)) (-15 -1328 ((-108) $)) (-15 -3244 ((-108) $)) (-15 -2620 ((-108) $)) (-15 -3318 ((-108) $)) (-15 -3225 ((-108) $)) (-15 -2409 ((-588 (-51)) $)) (-15 -3894 ($ $ (-588 (-51)))) (-15 -3952 ($ $ (-588 (-51)))) (-15 -1818 ($ (-1085) (-108) (-108) (-108))) (-15 -2938 ($ $ (-588 (-1085)) (-51))) (-15 -3850 ((-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))) $)) (-15 -4122 ((-108) $)) (-15 -3415 ($ $)) (-15 -1348 ($ $ (-51))) (-15 -1384 ((-588 (-51)) $)) (-15 -4090 ((-588 $) $)) (-15 -3328 ((-3 (-588 $) "failed") (-588 $)))))
+((-1416 (((-108) $ $) NIL)) (-4106 (((-588 |#1|) $) 16)) (-1289 (((-108) $) 38)) (-1297 (((-3 (-613 |#1|) "failed") $) 41)) (-1484 (((-613 |#1|) $) 39)) (-2306 (($ $) 18)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2517 (((-708) $) 45)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-613 |#1|) $) 17)) (-2190 (((-792) $) 37) (($ (-613 |#1|)) 21) (((-756 |#1|) $) 27) (($ |#1|) 20)) (-3577 (($) 8 T CONST)) (-2238 (((-588 (-613 |#1|)) $) 23)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 11)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 48)))
+(((-822 |#1|) (-13 (-784) (-962 (-613 |#1|)) (-10 -8 (-15 1 ($) -2677) (-15 -2190 ((-756 |#1|) $)) (-15 -2190 ($ |#1|)) (-15 -2294 ((-613 |#1|) $)) (-15 -2517 ((-708) $)) (-15 -2238 ((-588 (-613 |#1|)) $)) (-15 -2306 ($ $)) (-15 -1289 ((-108) $)) (-15 -4106 ((-588 |#1|) $)))) (-784)) (T -822))
+((-3577 (*1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2190 (*1 *1 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-588 (-613 *3))) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3)) (-4 *3 (-784)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784)))))
+(-13 (-784) (-962 (-613 |#1|)) (-10 -8 (-15 (-3577) ($) -2677) (-15 -2190 ((-756 |#1|) $)) (-15 -2190 ($ |#1|)) (-15 -2294 ((-613 |#1|) $)) (-15 -2517 ((-708) $)) (-15 -2238 ((-588 (-613 |#1|)) $)) (-15 -2306 ($ $)) (-15 -1289 ((-108) $)) (-15 -4106 ((-588 |#1|) $))))
+((-1830 ((|#1| |#1| |#1|) 20)))
+(((-823 |#1| |#2|) (-10 -7 (-15 -1830 (|#1| |#1| |#1|))) (-1142 |#2|) (-971)) (T -823))
+((-1830 (*1 *2 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1142 *3)))))
+(-10 -7 (-15 -1830 (|#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-1798 (((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 14)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3377 (((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 13)) (-1531 (((-108) $ $) 6)))
+(((-824) (-1197)) (T -824))
+((-1798 (*1 *2 *3 *4) (-12 (-4 *1 (-824)) (-5 *3 (-983)) (-5 *4 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068)))))) (-3377 (*1 *2 *3) (-12 (-4 *1 (-824)) (-5 *3 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *2 (-960)))))
+(-13 (-1014) (-10 -7 (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))) (-983) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))) (-15 -3377 ((-960) (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1806 ((|#1| |#1| (-708)) 24)) (-3741 (((-3 |#1| "failed") |#1| |#1|) 23)) (-3496 (((-3 (-2 (|:| -1913 |#1|) (|:| -1924 |#1|)) "failed") |#1| (-708) (-708)) 27) (((-588 |#1|) |#1|) 29)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -3496 ((-588 |#1|) |#1|)) (-15 -3496 ((-3 (-2 (|:| -1913 |#1|) (|:| -1924 |#1|)) "failed") |#1| (-708) (-708))) (-15 -3741 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1806 (|#1| |#1| (-708)))) (-1142 |#2|) (-338)) (T -825))
+((-1806 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-5 *1 (-825 *2 *4)) (-4 *2 (-1142 *4)))) (-3741 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-338)) (-5 *1 (-825 *2 *3)) (-4 *2 (-1142 *3)))) (-3496 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-708)) (-4 *5 (-338)) (-5 *2 (-2 (|:| -1913 *3) (|:| -1924 *3))) (-5 *1 (-825 *3 *5)) (-4 *3 (-1142 *5)))) (-3496 (*1 *2 *3) (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-825 *3 *4)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -3496 ((-588 |#1|) |#1|)) (-15 -3496 ((-3 (-2 (|:| -1913 |#1|) (|:| -1924 |#1|)) "failed") |#1| (-708) (-708))) (-15 -3741 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1806 (|#1| |#1| (-708))))
+((-3426 (((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068)) 92) (((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068) (-202)) 87) (((-960) (-827) (-983)) 76) (((-960) (-827)) 77)) (-1798 (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827) (-983)) 50) (((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827)) 52)))
+(((-826) (-10 -7 (-15 -3426 ((-960) (-827))) (-15 -3426 ((-960) (-827) (-983))) (-15 -3426 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068) (-202))) (-15 -3426 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827) (-983))))) (T -826))
+((-1798 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-983)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-826)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068))))) (-5 *1 (-826)))) (-3426 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068)) (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) (-5 *2 (-960)) (-5 *1 (-826)))) (-3426 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068)) (-5 *8 (-202)) (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) (-5 *2 (-960)) (-5 *1 (-826)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-826)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-960)) (-5 *1 (-826)))))
+(-10 -7 (-15 -3426 ((-960) (-827))) (-15 -3426 ((-960) (-827) (-983))) (-15 -3426 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068) (-202))) (-15 -3426 ((-960) (-354) (-354) (-354) (-354) (-708) (-708) (-588 (-291 (-354))) (-588 (-588 (-291 (-354)))) (-1068))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827))) (-15 -1798 ((-2 (|:| -1798 (-354)) (|:| -2888 (-1068)) (|:| |explanations| (-588 (-1068)))) (-827) (-983))))
+((-1416 (((-108) $ $) NIL)) (-1484 (((-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))) $) 10)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 12) (($ (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) 9)) (-1531 (((-108) $ $) NIL)))
+(((-827) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))) $))))) (T -827))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-827)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *1 (-827)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202)))) (-5 *1 (-827)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))))) (-15 -2190 ((-792) $)) (-15 -1484 ((-2 (|:| |pde| (-588 (-291 (-202)))) (|:| |constraints| (-588 (-2 (|:| |start| (-202)) (|:| |finish| (-202)) (|:| |grid| (-708)) (|:| |boundaryType| (-522)) (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202)))))) (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068)) (|:| |tol| (-202))) $))))
+((-2157 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) 10) (($ $ |#2| (-708)) 12) (($ $ (-588 |#2|) (-588 (-708))) 15)) (-2213 (($ $ |#2|) 16) (($ $ (-588 |#2|)) 18) (($ $ |#2| (-708)) 19) (($ $ (-588 |#2|) (-588 (-708))) 21)))
+(((-828 |#1| |#2|) (-10 -8 (-15 -2213 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2213 (|#1| |#1| |#2| (-708))) (-15 -2213 (|#1| |#1| (-588 |#2|))) (-15 -2213 (|#1| |#1| |#2|)) (-15 -2157 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2157 (|#1| |#1| |#2| (-708))) (-15 -2157 (|#1| |#1| (-588 |#2|))) (-15 -2157 (|#1| |#1| |#2|))) (-829 |#2|) (-1014)) (T -828))
+NIL
+(-10 -8 (-15 -2213 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2213 (|#1| |#1| |#2| (-708))) (-15 -2213 (|#1| |#1| (-588 |#2|))) (-15 -2213 (|#1| |#1| |#2|)) (-15 -2157 (|#1| |#1| (-588 |#2|) (-588 (-708)))) (-15 -2157 (|#1| |#1| |#2| (-708))) (-15 -2157 (|#1| |#1| (-588 |#2|))) (-15 -2157 (|#1| |#1| |#2|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2157 (($ $ |#1|) 42) (($ $ (-588 |#1|)) 41) (($ $ |#1| (-708)) 40) (($ $ (-588 |#1|) (-588 (-708))) 39)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ |#1|) 38) (($ $ (-588 |#1|)) 37) (($ $ |#1| (-708)) 36) (($ $ (-588 |#1|) (-588 (-708))) 35)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-829 |#1|) (-1197) (-1014)) (T -829))
+((-2157 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014)))) (-2157 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4)) (-4 *4 (-1014)))) (-2213 (*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2213 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014)))) (-2213 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014)))) (-2213 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4)) (-4 *4 (-1014)))))
+(-13 (-971) (-10 -8 (-15 -2157 ($ $ |t#1|)) (-15 -2157 ($ $ (-588 |t#1|))) (-15 -2157 ($ $ |t#1| (-708))) (-15 -2157 ($ $ (-588 |t#1|) (-588 (-708)))) (-15 -2213 ($ $ |t#1|)) (-15 -2213 ($ $ (-588 |t#1|))) (-15 -2213 ($ $ |t#1| (-708))) (-15 -2213 ($ $ (-588 |t#1|) (-588 (-708))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) 26)) (-4141 (((-108) $ (-708)) NIL)) (-3628 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1872 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2173 (($ $ $) NIL (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) (($ $ "left" $) NIL (|has| $ (-6 -4239))) (($ $ "right" $) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1924 (($ $) 25)) (-1797 (($ |#1|) 12) (($ $ $) 17)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-1913 (($ $) 23)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) 20)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2011 (((-522) $ $) NIL)) (-3042 (((-108) $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1107 |#1|) $) 9) (((-792) $) 29 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 21 (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-830 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1797 ($ |#1|)) (-15 -1797 ($ $ $)) (-15 -2190 ((-1107 |#1|) $)))) (-1014)) (T -830))
+((-1797 (*1 *1 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014)))) (-1797 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1107 *3)) (-5 *1 (-830 *3)) (-4 *3 (-1014)))))
+(-13 (-115 |#1|) (-10 -8 (-15 -1797 ($ |#1|)) (-15 -1797 ($ $ $)) (-15 -2190 ((-1107 |#1|) $))))
+((-3947 ((|#2| (-1052 |#1| |#2|)) 41)))
+(((-831 |#1| |#2|) (-10 -7 (-15 -3947 (|#2| (-1052 |#1| |#2|)))) (-850) (-13 (-971) (-10 -7 (-6 (-4240 "*"))))) (T -831))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-1052 *4 *2)) (-14 *4 (-850)) (-4 *2 (-13 (-971) (-10 -7 (-6 (-4240 "*"))))) (-5 *1 (-831 *4 *2)))))
+(-10 -7 (-15 -3947 (|#2| (-1052 |#1| |#2|))))
+((-1416 (((-108) $ $) 7)) (-3175 (($) 20 T CONST)) (-2682 (((-3 $ "failed") $) 16)) (-3466 (((-1016 |#1|) $ |#1|) 35)) (-2782 (((-108) $) 19)) (-2814 (($ $ $) 33 (-3708 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-2446 (($ $ $) 32 (-3708 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-2385 (((-1068) $) 9)) (-3098 (($ $) 27)) (-4151 (((-1032) $) 10)) (-2289 ((|#1| $ |#1|) 37)) (-2545 ((|#1| $ |#1|) 36)) (-2550 (($ (-588 (-588 |#1|))) 38)) (-2890 (($ (-588 |#1|)) 39)) (-3122 (($ $ $) 23)) (-1288 (($ $ $) 22)) (-2190 (((-792) $) 11)) (-3510 (($ $ (-850)) 13) (($ $ (-708)) 17) (($ $ (-522)) 24)) (-3577 (($) 21 T CONST)) (-1574 (((-108) $ $) 30 (-3708 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-1558 (((-108) $ $) 29 (-3708 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 31 (-3708 (|has| |#1| (-784)) (|has| |#1| (-343))))) (-1549 (((-108) $ $) 34)) (-1620 (($ $ $) 26)) (** (($ $ (-850)) 14) (($ $ (-708)) 18) (($ $ (-522)) 25)) (* (($ $ $) 15)))
+(((-832 |#1|) (-1197) (-1014)) (T -832))
+((-2890 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-832 *3)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-4 *1 (-832 *3)))) (-2289 (*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014)))) (-2545 (*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014)))) (-3466 (*1 *2 *1 *3) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-1016 *3)))) (-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))))
+(-13 (-447) (-10 -8 (-15 -2890 ($ (-588 |t#1|))) (-15 -2550 ($ (-588 (-588 |t#1|)))) (-15 -2289 (|t#1| $ |t#1|)) (-15 -2545 (|t#1| $ |t#1|)) (-15 -3466 ((-1016 |t#1|) $ |t#1|)) (-15 -1549 ((-108) $ $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-784)) |%noBranch|)))
+(((-97) . T) ((-562 (-792)) . T) ((-447) . T) ((-664) . T) ((-784) -3708 (|has| |#1| (-784)) (|has| |#1| (-343))) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-1707 (((-588 (-588 (-708))) $) 108)) (-4180 (((-588 (-708)) (-834 |#1|) $) 130)) (-2887 (((-588 (-708)) (-834 |#1|) $) 131)) (-1876 (((-588 (-834 |#1|)) $) 98)) (-3255 (((-834 |#1|) $ (-522)) 103) (((-834 |#1|) $) 104)) (-4043 (($ (-588 (-834 |#1|))) 110)) (-3714 (((-708) $) 105)) (-3565 (((-1016 (-1016 |#1|)) $) 128)) (-3466 (((-1016 |#1|) $ |#1|) 121) (((-1016 (-1016 |#1|)) $ (-1016 |#1|)) 139) (((-1016 (-588 |#1|)) $ (-588 |#1|)) 142)) (-3279 (((-1016 |#1|) $) 101)) (-2246 (((-108) (-834 |#1|) $) 92)) (-2385 (((-1068) $) NIL)) (-2457 (((-1171) $) 95) (((-1171) $ (-522) (-522)) 143)) (-4151 (((-1032) $) NIL)) (-2960 (((-588 (-834 |#1|)) $) 96)) (-2545 (((-834 |#1|) $ (-708)) 99)) (-2793 (((-708) $) 106)) (-2190 (((-792) $) 119) (((-588 (-834 |#1|)) $) 22) (($ (-588 (-834 |#1|))) 109)) (-3355 (((-588 |#1|) $) 107)) (-1531 (((-108) $ $) 136)) (-1566 (((-108) $ $) 134)) (-1549 (((-108) $ $) 133)))
+(((-833 |#1|) (-13 (-1014) (-10 -8 (-15 -2190 ((-588 (-834 |#1|)) $)) (-15 -2960 ((-588 (-834 |#1|)) $)) (-15 -2545 ((-834 |#1|) $ (-708))) (-15 -3255 ((-834 |#1|) $ (-522))) (-15 -3255 ((-834 |#1|) $)) (-15 -3714 ((-708) $)) (-15 -2793 ((-708) $)) (-15 -3355 ((-588 |#1|) $)) (-15 -1876 ((-588 (-834 |#1|)) $)) (-15 -1707 ((-588 (-588 (-708))) $)) (-15 -2190 ($ (-588 (-834 |#1|)))) (-15 -4043 ($ (-588 (-834 |#1|)))) (-15 -3466 ((-1016 |#1|) $ |#1|)) (-15 -3565 ((-1016 (-1016 |#1|)) $)) (-15 -3466 ((-1016 (-1016 |#1|)) $ (-1016 |#1|))) (-15 -3466 ((-1016 (-588 |#1|)) $ (-588 |#1|))) (-15 -2246 ((-108) (-834 |#1|) $)) (-15 -4180 ((-588 (-708)) (-834 |#1|) $)) (-15 -2887 ((-588 (-708)) (-834 |#1|) $)) (-15 -3279 ((-1016 |#1|) $)) (-15 -1549 ((-108) $ $)) (-15 -1566 ((-108) $ $)) (-15 -2457 ((-1171) $)) (-15 -2457 ((-1171) $ (-522) (-522))))) (-1014)) (T -833))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) (-4 *4 (-1014)))) (-3255 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4)) (-4 *4 (-1014)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-834 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1876 (*1 *2 *1) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-708)))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3)))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-1016 (-1016 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-3466 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-1016 *4))) (-5 *1 (-833 *4)) (-5 *3 (-1016 *4)))) (-3466 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-588 *4))) (-5 *1 (-833 *4)) (-5 *3 (-588 *4)))) (-2246 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-833 *4)))) (-4180 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708))) (-5 *1 (-833 *4)))) (-2887 (*1 *2 *3 *1) (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708))) (-5 *1 (-833 *4)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1549 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-1566 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2457 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))) (-2457 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-833 *4)) (-4 *4 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ((-588 (-834 |#1|)) $)) (-15 -2960 ((-588 (-834 |#1|)) $)) (-15 -2545 ((-834 |#1|) $ (-708))) (-15 -3255 ((-834 |#1|) $ (-522))) (-15 -3255 ((-834 |#1|) $)) (-15 -3714 ((-708) $)) (-15 -2793 ((-708) $)) (-15 -3355 ((-588 |#1|) $)) (-15 -1876 ((-588 (-834 |#1|)) $)) (-15 -1707 ((-588 (-588 (-708))) $)) (-15 -2190 ($ (-588 (-834 |#1|)))) (-15 -4043 ($ (-588 (-834 |#1|)))) (-15 -3466 ((-1016 |#1|) $ |#1|)) (-15 -3565 ((-1016 (-1016 |#1|)) $)) (-15 -3466 ((-1016 (-1016 |#1|)) $ (-1016 |#1|))) (-15 -3466 ((-1016 (-588 |#1|)) $ (-588 |#1|))) (-15 -2246 ((-108) (-834 |#1|) $)) (-15 -4180 ((-588 (-708)) (-834 |#1|) $)) (-15 -2887 ((-588 (-708)) (-834 |#1|) $)) (-15 -3279 ((-1016 |#1|) $)) (-15 -1549 ((-108) $ $)) (-15 -1566 ((-108) $ $)) (-15 -2457 ((-1171) $)) (-15 -2457 ((-1171) $ (-522) (-522)))))
+((-1416 (((-108) $ $) NIL)) (-3216 (((-588 $) (-588 $)) 77)) (-1341 (((-522) $) 60)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-3714 (((-708) $) 58)) (-3466 (((-1016 |#1|) $ |#1|) 49)) (-2782 (((-108) $) NIL)) (-2591 (((-108) $) 63)) (-4007 (((-708) $) 61)) (-3279 (((-1016 |#1|) $) 42)) (-2814 (($ $ $) NIL (-3708 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-2446 (($ $ $) NIL (-3708 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1740 (((-2 (|:| |preimage| (-588 |#1|)) (|:| |image| (-588 |#1|))) $) 36)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 93)) (-4151 (((-1032) $) NIL)) (-2057 (((-1016 |#1|) $) 99 (|has| |#1| (-343)))) (-1263 (((-108) $) 59)) (-2289 ((|#1| $ |#1|) 47)) (-2545 ((|#1| $ |#1|) 94)) (-2793 (((-708) $) 44)) (-2550 (($ (-588 (-588 |#1|))) 85)) (-1449 (((-898) $) 53)) (-2890 (($ (-588 |#1|)) 21)) (-3122 (($ $ $) NIL)) (-1288 (($ $ $) NIL)) (-2854 (($ (-588 (-588 |#1|))) 39)) (-1823 (($ (-588 (-588 |#1|))) 88)) (-2501 (($ (-588 |#1|)) 96)) (-2190 (((-792) $) 84) (($ (-588 (-588 |#1|))) 66) (($ (-588 |#1|)) 67)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3577 (($) 16 T CONST)) (-1574 (((-108) $ $) NIL (-3708 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1531 (((-108) $ $) 45)) (-1566 (((-108) $ $) NIL (-3708 (|has| |#1| (-343)) (|has| |#1| (-784))))) (-1549 (((-108) $ $) 65)) (-1620 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ $ $) 22)))
+(((-834 |#1|) (-13 (-832 |#1|) (-10 -8 (-15 -1740 ((-2 (|:| |preimage| (-588 |#1|)) (|:| |image| (-588 |#1|))) $)) (-15 -2854 ($ (-588 (-588 |#1|)))) (-15 -2190 ($ (-588 (-588 |#1|)))) (-15 -2190 ($ (-588 |#1|))) (-15 -1823 ($ (-588 (-588 |#1|)))) (-15 -2793 ((-708) $)) (-15 -3279 ((-1016 |#1|) $)) (-15 -1449 ((-898) $)) (-15 -3714 ((-708) $)) (-15 -4007 ((-708) $)) (-15 -1341 ((-522) $)) (-15 -1263 ((-108) $)) (-15 -2591 ((-108) $)) (-15 -3216 ((-588 $) (-588 $))) (IF (|has| |#1| (-343)) (-15 -2057 ((-1016 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-507)) (-15 -2501 ($ (-588 |#1|))) (IF (|has| |#1| (-343)) (-15 -2501 ($ (-588 |#1|))) |%noBranch|)))) (-1014)) (T -834))
+((-1740 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-588 *3)) (|:| |image| (-588 *3)))) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-1823 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-898)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-1263 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-3216 (*1 *2 *2) (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-834 *3)) (-4 *3 (-1014)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-343)) (-4 *3 (-1014)))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3)))))
+(-13 (-832 |#1|) (-10 -8 (-15 -1740 ((-2 (|:| |preimage| (-588 |#1|)) (|:| |image| (-588 |#1|))) $)) (-15 -2854 ($ (-588 (-588 |#1|)))) (-15 -2190 ($ (-588 (-588 |#1|)))) (-15 -2190 ($ (-588 |#1|))) (-15 -1823 ($ (-588 (-588 |#1|)))) (-15 -2793 ((-708) $)) (-15 -3279 ((-1016 |#1|) $)) (-15 -1449 ((-898) $)) (-15 -3714 ((-708) $)) (-15 -4007 ((-708) $)) (-15 -1341 ((-522) $)) (-15 -1263 ((-108) $)) (-15 -2591 ((-108) $)) (-15 -3216 ((-588 $) (-588 $))) (IF (|has| |#1| (-343)) (-15 -2057 ((-1016 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-507)) (-15 -2501 ($ (-588 |#1|))) (IF (|has| |#1| (-343)) (-15 -2501 ($ (-588 |#1|))) |%noBranch|))))
+((-2689 (((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|)) 128)) (-2986 ((|#1|) 76)) (-3569 (((-393 (-1081 |#4|)) (-1081 |#4|)) 137)) (-2411 (((-393 (-1081 |#4|)) (-588 |#3|) (-1081 |#4|)) 68)) (-2572 (((-393 (-1081 |#4|)) (-1081 |#4|)) 147)) (-2342 (((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|) |#3|) 92)))
+(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2689 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|))) (-15 -2572 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -3569 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -2986 (|#1|)) (-15 -2342 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|) |#3|)) (-15 -2411 ((-393 (-1081 |#4|)) (-588 |#3|) (-1081 |#4|)))) (-838) (-730) (-784) (-878 |#1| |#2| |#3|)) (T -835))
+((-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *7)) (-4 *7 (-784)) (-4 *5 (-838)) (-4 *6 (-730)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-393 (-1081 *8))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-1081 *8)))) (-2342 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7)) (-4 *7 (-878 *5 *6 *4)) (-4 *5 (-838)) (-4 *6 (-730)) (-4 *4 (-784)) (-5 *1 (-835 *5 *6 *4 *7)))) (-2986 (*1 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838)) (-5 *1 (-835 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7)))) (-2689 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-835 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2689 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|))) (-15 -2572 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -3569 ((-393 (-1081 |#4|)) (-1081 |#4|))) (-15 -2986 (|#1|)) (-15 -2342 ((-3 (-588 (-1081 |#4|)) "failed") (-588 (-1081 |#4|)) (-1081 |#4|) |#3|)) (-15 -2411 ((-393 (-1081 |#4|)) (-588 |#3|) (-1081 |#4|))))
+((-2689 (((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|)) 36)) (-2986 ((|#1|) 54)) (-3569 (((-393 (-1081 |#2|)) (-1081 |#2|)) 102)) (-2411 (((-393 (-1081 |#2|)) (-1081 |#2|)) 89)) (-2572 (((-393 (-1081 |#2|)) (-1081 |#2|)) 113)))
+(((-836 |#1| |#2|) (-10 -7 (-15 -2689 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|))) (-15 -2572 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -3569 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -2986 (|#1|)) (-15 -2411 ((-393 (-1081 |#2|)) (-1081 |#2|)))) (-838) (-1142 |#1|)) (T -836))
+((-2411 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))) (-2986 (*1 *2) (-12 (-4 *2 (-838)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1142 *2)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5))) (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))) (-2689 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-838)) (-5 *1 (-836 *4 *5)))))
+(-10 -7 (-15 -2689 ((-3 (-588 (-1081 |#2|)) "failed") (-588 (-1081 |#2|)) (-1081 |#2|))) (-15 -2572 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -3569 ((-393 (-1081 |#2|)) (-1081 |#2|))) (-15 -2986 (|#1|)) (-15 -2411 ((-393 (-1081 |#2|)) (-1081 |#2|))))
+((-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 39)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 18)) (-2143 (((-3 $ "failed") $) 33)))
+(((-837 |#1|) (-10 -8 (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|)))) (-838)) (T -837))
+NIL
+(-10 -8 (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-1565 (((-393 (-1081 $)) (-1081 $)) 60)) (-3119 (($ $) 51)) (-3450 (((-393 $) $) 52)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 57)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2813 (((-108) $) 53)) (-2782 (((-108) $) 31)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-3729 (((-393 (-1081 $)) (-1081 $)) 58)) (-3495 (((-393 (-1081 $)) (-1081 $)) 59)) (-1916 (((-393 $) $) 50)) (-2232 (((-3 $ "failed") $ $) 42)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 56 (|has| $ (-133)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2143 (((-3 $ "failed") $) 55 (|has| $ (-133)))) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-838) (-1197)) (T -838))
+((-1307 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-838)))) (-1565 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))) (-3495 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))) (-3729 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))) (-1473 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-588 (-1081 *1))) (-5 *3 (-1081 *1)) (-4 *1 (-838)))) (-2412 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-133)) (-4 *1 (-838)) (-5 *2 (-1166 *1)))) (-2143 (*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-838)))))
+(-13 (-1124) (-10 -8 (-15 -1565 ((-393 (-1081 $)) (-1081 $))) (-15 -3495 ((-393 (-1081 $)) (-1081 $))) (-15 -3729 ((-393 (-1081 $)) (-1081 $))) (-15 -1307 ((-1081 $) (-1081 $) (-1081 $))) (-15 -1473 ((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $))) (IF (|has| $ (-133)) (PROGN (-15 -2412 ((-3 (-1166 $) "failed") (-628 $))) (-15 -2143 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1651 (((-108) $) NIL)) (-2219 (((-708)) NIL)) (-1865 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-1398 (((-1094 (-850) (-708)) (-522)) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1629 (((-708)) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 $ "failed") $) NIL)) (-1484 (($ $) NIL)) (-3766 (($ (-1166 $)) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-1223 (($) NIL)) (-2511 (((-108) $) NIL)) (-2111 (($ $) NIL) (($ $ (-708)) NIL)) (-2813 (((-108) $) NIL)) (-3714 (((-770 (-850)) $) NIL) (((-850) $) NIL)) (-2782 (((-108) $) NIL)) (-3400 (($) NIL (|has| $ (-343)))) (-2741 (((-108) $) NIL (|has| $ (-343)))) (-2100 (($ $ (-850)) NIL (|has| $ (-343))) (($ $) NIL)) (-3004 (((-3 $ "failed") $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1712 (((-1081 $) $ (-850)) NIL (|has| $ (-343))) (((-1081 $) $) NIL)) (-2120 (((-850) $) NIL)) (-3074 (((-1081 $) $) NIL (|has| $ (-343)))) (-2941 (((-3 (-1081 $) "failed") $ $) NIL (|has| $ (-343))) (((-1081 $) $) NIL (|has| $ (-343)))) (-1425 (($ $ (-1081 $)) NIL (|has| $ (-343)))) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL T CONST)) (-2717 (($ (-850)) NIL)) (-2822 (((-108) $) NIL)) (-4151 (((-1032) $) NIL)) (-1383 (($) NIL (|has| $ (-343)))) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL)) (-1916 (((-393 $) $) NIL)) (-2621 (((-850)) NIL) (((-770 (-850))) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3018 (((-3 (-708) "failed") $ $) NIL) (((-708) $) NIL)) (-4078 (((-126)) NIL)) (-2157 (($ $ (-708)) NIL) (($ $) NIL)) (-2793 (((-850) $) NIL) (((-770 (-850)) $) NIL)) (-1479 (((-1081 $)) NIL)) (-2581 (($) NIL)) (-1299 (($) NIL (|has| $ (-343)))) (-3677 (((-628 $) (-1166 $)) NIL) (((-1166 $) $) NIL)) (-1431 (((-522) $) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL)) (-2143 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2323 (((-708)) NIL)) (-3855 (((-1166 $) (-850)) NIL) (((-1166 $)) NIL)) (-3958 (((-108) $ $) NIL)) (-2351 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-3428 (($ $ (-708)) NIL (|has| $ (-343))) (($ $) NIL (|has| $ (-343)))) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-839 |#1|) (-13 (-324) (-304 $) (-563 (-522))) (-850)) (T -839))
+NIL
+(-13 (-324) (-304 $) (-563 (-522)))
+((-3627 (((-3 (-2 (|:| -3714 (-708)) (|:| -2094 |#5|)) "failed") (-311 |#2| |#3| |#4| |#5|)) 76)) (-4216 (((-108) (-311 |#2| |#3| |#4| |#5|)) 16)) (-3714 (((-3 (-708) "failed") (-311 |#2| |#3| |#4| |#5|)) 14)))
+(((-840 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3714 ((-3 (-708) "failed") (-311 |#2| |#3| |#4| |#5|))) (-15 -4216 ((-108) (-311 |#2| |#3| |#4| |#5|))) (-15 -3627 ((-3 (-2 (|:| -3714 (-708)) (|:| -2094 |#5|)) "failed") (-311 |#2| |#3| |#4| |#5|)))) (-13 (-784) (-514) (-962 (-522))) (-405 |#1|) (-1142 |#2|) (-1142 (-382 |#3|)) (-317 |#2| |#3| |#4|)) (T -840))
+((-3627 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-2 (|:| -3714 (-708)) (|:| -2094 *8))) (-5 *1 (-840 *4 *5 *6 *7 *8)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-108)) (-5 *1 (-840 *4 *5 *6 *7 *8)))) (-3714 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-708)) (-5 *1 (-840 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3714 ((-3 (-708) "failed") (-311 |#2| |#3| |#4| |#5|))) (-15 -4216 ((-108) (-311 |#2| |#3| |#4| |#5|))) (-15 -3627 ((-3 (-2 (|:| -3714 (-708)) (|:| -2094 |#5|)) "failed") (-311 |#2| |#3| |#4| |#5|))))
+((-3627 (((-3 (-2 (|:| -3714 (-708)) (|:| -2094 |#3|)) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)) 56)) (-4216 (((-108) (-311 (-382 (-522)) |#1| |#2| |#3|)) 13)) (-3714 (((-3 (-708) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)) 11)))
+(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -3714 ((-3 (-708) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -4216 ((-108) (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -3627 ((-3 (-2 (|:| -3714 (-708)) (|:| -2094 |#3|)) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|)))) (-1142 (-382 (-522))) (-1142 (-382 |#1|)) (-317 (-382 (-522)) |#1| |#2|)) (T -841))
+((-3627 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-2 (|:| -3714 (-708)) (|:| -2094 *6))) (-5 *1 (-841 *4 *5 *6)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-841 *4 *5 *6)))) (-3714 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6)) (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-708)) (-5 *1 (-841 *4 *5 *6)))))
+(-10 -7 (-15 -3714 ((-3 (-708) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -4216 ((-108) (-311 (-382 (-522)) |#1| |#2| |#3|))) (-15 -3627 ((-3 (-2 (|:| -3714 (-708)) (|:| -2094 |#3|)) "failed") (-311 (-382 (-522)) |#1| |#2| |#3|))))
+((-3981 ((|#2| |#2|) 25)) (-3182 (((-522) (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))))) 15)) (-3035 (((-850) (-522)) 35)) (-3782 (((-522) |#2|) 42)) (-1653 (((-522) |#2|) 21) (((-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))) |#1|) 20)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -3035 ((-850) (-522))) (-15 -1653 ((-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))) |#1|)) (-15 -1653 ((-522) |#2|)) (-15 -3182 ((-522) (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))))) (-15 -3782 ((-522) |#2|)) (-15 -3981 (|#2| |#2|))) (-1142 (-382 (-522))) (-1142 (-382 |#1|))) (T -842))
+((-3981 (*1 *2 *2) (-12 (-4 *3 (-1142 (-382 (-522)))) (-5 *1 (-842 *3 *2)) (-4 *2 (-1142 (-382 *3))))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1142 (-382 *4))))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))))) (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1142 (-382 *4))))) (-1653 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3)) (-4 *3 (-1142 (-382 *4))))) (-1653 (*1 *2 *3) (-12 (-4 *3 (-1142 (-382 (-522)))) (-5 *2 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))) (-5 *1 (-842 *3 *4)) (-4 *4 (-1142 (-382 *3))))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-522)) (-4 *4 (-1142 (-382 *3))) (-5 *2 (-850)) (-5 *1 (-842 *4 *5)) (-4 *5 (-1142 (-382 *4))))))
+(-10 -7 (-15 -3035 ((-850) (-522))) (-15 -1653 ((-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))) |#1|)) (-15 -1653 ((-522) |#2|)) (-15 -3182 ((-522) (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))))) (-15 -3782 ((-522) |#2|)) (-15 -3981 (|#2| |#2|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 ((|#1| $) 81)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2277 (($ $ $) NIL)) (-2682 (((-3 $ "failed") $) 75)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3047 (($ |#1| (-393 |#1|)) 73)) (-3465 (((-1081 |#1|) |#1| |#1|) 40)) (-2244 (($ $) 49)) (-2782 (((-108) $) NIL)) (-2290 (((-522) $) 78)) (-1619 (($ $ (-522)) 80)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2895 ((|#1| $) 77)) (-1912 (((-393 |#1|) $) 76)) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) 74)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-3674 (($ $) 38)) (-2190 (((-792) $) 99) (($ (-522)) 54) (($ $) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 30) (((-382 |#1|) $) 59) (($ (-382 (-393 |#1|))) 67)) (-2323 (((-708)) 52)) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 23 T CONST)) (-3577 (($) 11 T CONST)) (-1531 (((-108) $ $) 68)) (-1620 (($ $ $) NIL)) (-1612 (($ $) 88) (($ $ $) NIL)) (-1602 (($ $ $) 37)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 90) (($ $ $) 36) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-843 |#1|) (-13 (-338) (-37 |#1|) (-10 -8 (-15 -2190 ((-382 |#1|) $)) (-15 -2190 ($ (-382 (-393 |#1|)))) (-15 -3674 ($ $)) (-15 -1912 ((-393 |#1|) $)) (-15 -2895 (|#1| $)) (-15 -1619 ($ $ (-522))) (-15 -2290 ((-522) $)) (-15 -3465 ((-1081 |#1|) |#1| |#1|)) (-15 -2244 ($ $)) (-15 -3047 ($ |#1| (-393 |#1|))) (-15 -2229 (|#1| $)))) (-283)) (T -843))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-382 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-382 (-393 *3))) (-4 *3 (-283)) (-5 *1 (-843 *3)))) (-3674 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-393 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-2895 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) (-1619 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-3465 (*1 *2 *3 *3) (-12 (-5 *2 (-1081 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))) (-2244 (*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))) (-3047 (*1 *1 *2 *3) (-12 (-5 *3 (-393 *2)) (-4 *2 (-283)) (-5 *1 (-843 *2)))) (-2229 (*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))))
+(-13 (-338) (-37 |#1|) (-10 -8 (-15 -2190 ((-382 |#1|) $)) (-15 -2190 ($ (-382 (-393 |#1|)))) (-15 -3674 ($ $)) (-15 -1912 ((-393 |#1|) $)) (-15 -2895 (|#1| $)) (-15 -1619 ($ $ (-522))) (-15 -2290 ((-522) $)) (-15 -3465 ((-1081 |#1|) |#1| |#1|)) (-15 -2244 ($ $)) (-15 -3047 ($ |#1| (-393 |#1|))) (-15 -2229 (|#1| $))))
+((-3047 (((-51) (-881 |#1|) (-393 (-881 |#1|)) (-1085)) 16) (((-51) (-382 (-881 |#1|)) (-1085)) 17)))
+(((-844 |#1|) (-10 -7 (-15 -3047 ((-51) (-382 (-881 |#1|)) (-1085))) (-15 -3047 ((-51) (-881 |#1|) (-393 (-881 |#1|)) (-1085)))) (-13 (-283) (-135))) (T -844))
+((-3047 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-393 (-881 *6))) (-5 *5 (-1085)) (-5 *3 (-881 *6)) (-4 *6 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *6)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *5)))))
+(-10 -7 (-15 -3047 ((-51) (-382 (-881 |#1|)) (-1085))) (-15 -3047 ((-51) (-881 |#1|) (-393 (-881 |#1|)) (-1085))))
+((-3841 ((|#4| (-588 |#4|)) 119) (((-1081 |#4|) (-1081 |#4|) (-1081 |#4|)) 66) ((|#4| |#4| |#4|) 118)) (-2259 (((-1081 |#4|) (-588 (-1081 |#4|))) 112) (((-1081 |#4|) (-1081 |#4|) (-1081 |#4|)) 49) ((|#4| (-588 |#4|)) 54) ((|#4| |#4| |#4|) 83)))
+(((-845 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2259 (|#4| |#4| |#4|)) (-15 -2259 (|#4| (-588 |#4|))) (-15 -2259 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2259 ((-1081 |#4|) (-588 (-1081 |#4|)))) (-15 -3841 (|#4| |#4| |#4|)) (-15 -3841 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -3841 (|#4| (-588 |#4|)))) (-730) (-784) (-283) (-878 |#3| |#1| |#2|)) (T -845))
+((-3841 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5)) (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)))) (-3841 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6)))) (-3841 (*1 *2 *2 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-588 (-1081 *7))) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-1081 *7)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))) (-2259 (*1 *2 *2 *2) (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5)) (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)))) (-2259 (*1 *2 *2 *2) (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4)))))
+(-10 -7 (-15 -2259 (|#4| |#4| |#4|)) (-15 -2259 (|#4| (-588 |#4|))) (-15 -2259 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -2259 ((-1081 |#4|) (-588 (-1081 |#4|)))) (-15 -3841 (|#4| |#4| |#4|)) (-15 -3841 ((-1081 |#4|) (-1081 |#4|) (-1081 |#4|))) (-15 -3841 (|#4| (-588 |#4|))))
+((-2697 (((-833 (-522)) (-898)) 22) (((-833 (-522)) (-588 (-522))) 19)) (-1691 (((-833 (-522)) (-588 (-522))) 46) (((-833 (-522)) (-850)) 47)) (-2493 (((-833 (-522))) 23)) (-2905 (((-833 (-522))) 36) (((-833 (-522)) (-588 (-522))) 35)) (-3333 (((-833 (-522))) 34) (((-833 (-522)) (-588 (-522))) 33)) (-3700 (((-833 (-522))) 32) (((-833 (-522)) (-588 (-522))) 31)) (-2758 (((-833 (-522))) 30) (((-833 (-522)) (-588 (-522))) 29)) (-2491 (((-833 (-522))) 28) (((-833 (-522)) (-588 (-522))) 27)) (-2899 (((-833 (-522))) 38) (((-833 (-522)) (-588 (-522))) 37)) (-3740 (((-833 (-522)) (-588 (-522))) 50) (((-833 (-522)) (-850)) 51)) (-3746 (((-833 (-522)) (-588 (-522))) 48) (((-833 (-522)) (-850)) 49)) (-2196 (((-833 (-522)) (-588 (-522))) 43) (((-833 (-522)) (-850)) 45)) (-1591 (((-833 (-522)) (-588 (-850))) 40)))
+(((-846) (-10 -7 (-15 -1691 ((-833 (-522)) (-850))) (-15 -1691 ((-833 (-522)) (-588 (-522)))) (-15 -2196 ((-833 (-522)) (-850))) (-15 -2196 ((-833 (-522)) (-588 (-522)))) (-15 -1591 ((-833 (-522)) (-588 (-850)))) (-15 -3746 ((-833 (-522)) (-850))) (-15 -3746 ((-833 (-522)) (-588 (-522)))) (-15 -3740 ((-833 (-522)) (-850))) (-15 -3740 ((-833 (-522)) (-588 (-522)))) (-15 -2491 ((-833 (-522)) (-588 (-522)))) (-15 -2491 ((-833 (-522)))) (-15 -2758 ((-833 (-522)) (-588 (-522)))) (-15 -2758 ((-833 (-522)))) (-15 -3700 ((-833 (-522)) (-588 (-522)))) (-15 -3700 ((-833 (-522)))) (-15 -3333 ((-833 (-522)) (-588 (-522)))) (-15 -3333 ((-833 (-522)))) (-15 -2905 ((-833 (-522)) (-588 (-522)))) (-15 -2905 ((-833 (-522)))) (-15 -2899 ((-833 (-522)) (-588 (-522)))) (-15 -2899 ((-833 (-522)))) (-15 -2493 ((-833 (-522)))) (-15 -2697 ((-833 (-522)) (-588 (-522)))) (-15 -2697 ((-833 (-522)) (-898))))) (T -846))
+((-2697 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2493 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2899 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2905 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3333 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3700 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2758 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2491 (*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1591 (*1 *2 *3) (-12 (-5 *3 (-588 (-850))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(-10 -7 (-15 -1691 ((-833 (-522)) (-850))) (-15 -1691 ((-833 (-522)) (-588 (-522)))) (-15 -2196 ((-833 (-522)) (-850))) (-15 -2196 ((-833 (-522)) (-588 (-522)))) (-15 -1591 ((-833 (-522)) (-588 (-850)))) (-15 -3746 ((-833 (-522)) (-850))) (-15 -3746 ((-833 (-522)) (-588 (-522)))) (-15 -3740 ((-833 (-522)) (-850))) (-15 -3740 ((-833 (-522)) (-588 (-522)))) (-15 -2491 ((-833 (-522)) (-588 (-522)))) (-15 -2491 ((-833 (-522)))) (-15 -2758 ((-833 (-522)) (-588 (-522)))) (-15 -2758 ((-833 (-522)))) (-15 -3700 ((-833 (-522)) (-588 (-522)))) (-15 -3700 ((-833 (-522)))) (-15 -3333 ((-833 (-522)) (-588 (-522)))) (-15 -3333 ((-833 (-522)))) (-15 -2905 ((-833 (-522)) (-588 (-522)))) (-15 -2905 ((-833 (-522)))) (-15 -2899 ((-833 (-522)) (-588 (-522)))) (-15 -2899 ((-833 (-522)))) (-15 -2493 ((-833 (-522)))) (-15 -2697 ((-833 (-522)) (-588 (-522)))) (-15 -2697 ((-833 (-522)) (-898))))
+((-1750 (((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))) 10)) (-3683 (((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))) 9)))
+(((-847 |#1|) (-10 -7 (-15 -3683 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -1750 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085))))) (-426)) (T -847))
+((-1750 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426)) (-5 *1 (-847 *4)))) (-3683 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426)) (-5 *1 (-847 *4)))))
+(-10 -7 (-15 -3683 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -1750 ((-588 (-881 |#1|)) (-588 (-881 |#1|)) (-588 (-1085)))))
+((-2190 (((-291 |#1|) (-451)) 15)))
+(((-848 |#1|) (-10 -7 (-15 -2190 ((-291 |#1|) (-451)))) (-13 (-784) (-514))) (T -848))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-451)) (-5 *2 (-291 *4)) (-5 *1 (-848 *4)) (-4 *4 (-13 (-784) (-514))))))
+(-10 -7 (-15 -2190 ((-291 |#1|) (-451))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2782 (((-108) $) 31)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-849) (-1197)) (T -849))
+((-3297 (*1 *2 *3) (-12 (-4 *1 (-849)) (-5 *2 (-2 (|:| -2977 (-588 *1)) (|:| -1383 *1))) (-5 *3 (-588 *1)))) (-2553 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-849)))))
+(-13 (-426) (-10 -8 (-15 -3297 ((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $))) (-15 -2553 ((-3 (-588 $) "failed") (-588 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2259 (($ $ $) NIL)) (-2190 (((-792) $) NIL)) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3577 (($) NIL T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ $ $) NIL)))
+(((-850) (-13 (-25) (-784) (-664) (-10 -8 (-15 -2259 ($ $ $)) (-6 (-4240 "*"))))) (T -850))
+((-2259 (*1 *1 *1 *1) (-5 *1 (-850))))
+(-13 (-25) (-784) (-664) (-10 -8 (-15 -2259 ($ $ $)) (-6 (-4240 "*"))))
+((-1540 ((|#2| (-588 |#1|) (-588 |#1|)) 24)))
+(((-851 |#1| |#2|) (-10 -7 (-15 -1540 (|#2| (-588 |#1|) (-588 |#1|)))) (-338) (-1142 |#1|)) (T -851))
+((-1540 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-4 *2 (-1142 *4)) (-5 *1 (-851 *4 *2)))))
+(-10 -7 (-15 -1540 (|#2| (-588 |#1|) (-588 |#1|))))
+((-3774 (((-1081 |#2|) (-588 |#2|) (-588 |#2|)) 17) (((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-588 |#2|) (-588 |#2|)) 13)))
+(((-852 |#1| |#2|) (-10 -7 (-15 -3774 ((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-588 |#2|) (-588 |#2|))) (-15 -3774 ((-1081 |#2|) (-588 |#2|) (-588 |#2|)))) (-1085) (-338)) (T -852))
+((-3774 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-338)) (-5 *2 (-1081 *5)) (-5 *1 (-852 *4 *5)) (-14 *4 (-1085)))) (-3774 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1139 *4 *5)) (-5 *3 (-588 *5)) (-14 *4 (-1085)) (-4 *5 (-338)) (-5 *1 (-852 *4 *5)))))
+(-10 -7 (-15 -3774 ((-1139 |#1| |#2|) (-1139 |#1| |#2|) (-588 |#2|) (-588 |#2|))) (-15 -3774 ((-1081 |#2|) (-588 |#2|) (-588 |#2|))))
+((-2449 (((-522) (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068)) 138)) (-3187 ((|#4| |#4|) 154)) (-3921 (((-588 (-382 (-881 |#1|))) (-588 (-1085))) 117)) (-4094 (((-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-588 (-588 |#4|)) (-708) (-708) (-522)) 73)) (-2582 (((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-588 |#4|)) 57)) (-1663 (((-628 |#4|) (-628 |#4|) (-588 |#4|)) 53)) (-1891 (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068)) 150)) (-2766 (((-522) (-628 |#4|) (-850) (-1068)) 131) (((-522) (-628 |#4|) (-588 (-1085)) (-850) (-1068)) 130) (((-522) (-628 |#4|) (-588 |#4|) (-850) (-1068)) 129) (((-522) (-628 |#4|) (-1068)) 126) (((-522) (-628 |#4|) (-588 (-1085)) (-1068)) 125) (((-522) (-628 |#4|) (-588 |#4|) (-1068)) 124) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-850)) 123) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)) (-850)) 122) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|) (-850)) 121) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|)) 119) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085))) 118) (((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|)) 115)) (-2326 ((|#4| (-881 |#1|)) 66)) (-3722 (((-108) (-588 |#4|) (-588 (-588 |#4|))) 151)) (-1421 (((-588 (-588 (-522))) (-522) (-522)) 128)) (-3354 (((-588 (-588 |#4|)) (-588 (-588 |#4|))) 85)) (-4084 (((-708) (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|))))) 83)) (-1670 (((-708) (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|))))) 82)) (-1395 (((-108) (-588 (-881 |#1|))) 17) (((-108) (-588 |#4|)) 13)) (-4203 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-588 |#4|)) (|:| |n0| (-588 |#4|))) (-588 |#4|) (-588 |#4|)) 69)) (-2034 (((-588 |#4|) |#4|) 47)) (-1824 (((-588 (-382 (-881 |#1|))) (-588 |#4|)) 113) (((-628 (-382 (-881 |#1|))) (-628 |#4|)) 54) (((-382 (-881 |#1|)) |#4|) 110)) (-2636 (((-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))))))) (|:| |rgsz| (-522))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-708) (-1068) (-522)) 89)) (-1815 (((-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))) (-628 |#4|) (-708)) 81)) (-4157 (((-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-628 |#4|) (-708)) 98)) (-1949 (((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| -1222 (-628 (-382 (-881 |#1|)))) (|:| |vec| (-588 (-382 (-881 |#1|)))) (|:| -3166 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) 46)))
+(((-853 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|) (-850))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)) (-850))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-850))) (-15 -2766 ((-522) (-628 |#4|) (-588 |#4|) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-588 (-1085)) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-588 |#4|) (-850) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-588 (-1085)) (-850) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-850) (-1068))) (-15 -2449 ((-522) (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -1891 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -2636 ((-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))))))) (|:| |rgsz| (-522))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-708) (-1068) (-522))) (-15 -1824 ((-382 (-881 |#1|)) |#4|)) (-15 -1824 ((-628 (-382 (-881 |#1|))) (-628 |#4|))) (-15 -1824 ((-588 (-382 (-881 |#1|))) (-588 |#4|))) (-15 -3921 ((-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2326 (|#4| (-881 |#1|))) (-15 -4203 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-588 |#4|)) (|:| |n0| (-588 |#4|))) (-588 |#4|) (-588 |#4|))) (-15 -1815 ((-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))) (-628 |#4|) (-708))) (-15 -2582 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-588 |#4|))) (-15 -1949 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| -1222 (-628 (-382 (-881 |#1|)))) (|:| |vec| (-588 (-382 (-881 |#1|)))) (|:| -3166 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (-15 -2034 ((-588 |#4|) |#4|)) (-15 -1670 ((-708) (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -4084 ((-708) (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -3354 ((-588 (-588 |#4|)) (-588 (-588 |#4|)))) (-15 -1421 ((-588 (-588 (-522))) (-522) (-522))) (-15 -3722 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -4157 ((-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-628 |#4|) (-708))) (-15 -1663 ((-628 |#4|) (-628 |#4|) (-588 |#4|))) (-15 -4094 ((-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-588 (-588 |#4|)) (-708) (-708) (-522))) (-15 -3187 (|#4| |#4|)) (-15 -1395 ((-108) (-588 |#4|))) (-15 -1395 ((-108) (-588 (-881 |#1|))))) (-13 (-283) (-135)) (-13 (-784) (-563 (-1085))) (-730) (-878 |#1| |#3| |#2|)) (T -853))
+((-1395 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085)))) (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *2)) (-4 *2 (-878 *3 *5 *4)))) (-4094 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-5 *4 (-628 *12)) (-5 *5 (-588 (-382 (-881 *9)))) (-5 *6 (-588 (-588 *12))) (-5 *7 (-708)) (-5 *8 (-522)) (-4 *9 (-13 (-283) (-135))) (-4 *12 (-878 *9 *11 *10)) (-4 *10 (-13 (-784) (-563 (-1085)))) (-4 *11 (-730)) (-5 *2 (-2 (|:| |eqzro| (-588 *12)) (|:| |neqzro| (-588 *12)) (|:| |wcond| (-588 (-881 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *9)))) (|:| -3855 (-588 (-1166 (-382 (-881 *9))))))))) (-5 *1 (-853 *9 *10 *11 *12)))) (-1663 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *7)) (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-708)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |det| *8) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *5 *6 *7 *8)))) (-1421 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-588 (-522)))) (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *6 *5)))) (-3354 (*1 *2 *2) (-12 (-5 *2 (-588 (-588 *6))) (-4 *6 (-878 *3 *5 *4)) (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085)))) (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *6)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| *7) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 *7))))) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708)) (-5 *1 (-853 *4 *5 *6 *7)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| *7) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 *7))))) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708)) (-5 *1 (-853 *4 *5 *6 *7)))) (-2034 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 *3)) (-5 *1 (-853 *4 *5 *6 *3)) (-4 *3 (-878 *4 *6 *5)))) (-1949 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1222 (-628 (-382 (-881 *4)))) (|:| |vec| (-588 (-382 (-881 *4)))) (|:| -3166 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -3855 (-588 (-1166 (-382 (-881 *4))))))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-2582 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -3855 (-588 (-1166 (-382 (-881 *4))))))) (-5 *3 (-588 *7)) (-4 *4 (-13 (-283) (-135))) (-4 *7 (-878 *4 *6 *5)) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7)))) (-1815 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| *8) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 *8))))) (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-708)))) (-4203 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-4 *7 (-878 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-588 *7)) (|:| |n0| (-588 *7)))) (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-283) (-135))) (-4 *2 (-878 *4 *6 *5)) (-5 *1 (-853 *4 *5 *6 *2)) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-628 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7)))) (-1824 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-382 (-881 *4))) (-5 *1 (-853 *4 *5 *6 *3)) (-4 *3 (-878 *4 *6 *5)))) (-2636 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-628 *11)) (-5 *4 (-588 (-382 (-881 *8)))) (-5 *5 (-708)) (-5 *6 (-1068)) (-4 *8 (-13 (-283) (-135))) (-4 *11 (-878 *8 *10 *9)) (-4 *9 (-13 (-784) (-563 (-1085)))) (-4 *10 (-730)) (-5 *2 (-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 *11)) (|:| |neqzro| (-588 *11)) (|:| |wcond| (-588 (-881 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *8)))) (|:| -3855 (-588 (-1166 (-382 (-881 *8)))))))))) (|:| |rgsz| (-522)))) (-5 *1 (-853 *8 *9 *10 *11)) (-5 *7 (-522)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7)) (|:| |wcond| (-588 (-881 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -3855 (-588 (-1166 (-382 (-881 *4)))))))))) (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))) (-2449 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -3855 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *4 (-1068)) (-4 *5 (-13 (-283) (-135))) (-4 *8 (-878 *5 *7 *6)) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *5 *6 *7 *8)))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-850)) (-5 *5 (-1068)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *6 *7 *8 *9)))) (-2766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 (-1085))) (-5 *5 (-850)) (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135))) (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *7 *8 *9 *10)))) (-2766 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 *10)) (-5 *5 (-850)) (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135))) (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *7 *8 *9 *10)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-1068)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *5 *6 *7 *8)))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-1068)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *6 *7 *8 *9)))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 *9)) (-5 *5 (-1068)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *6 *7 *8 *9)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-850)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -3855 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9)) (|:| |wcond| (-588 (-881 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *6)))) (|:| -3855 (-588 (-1166 (-382 (-881 *6)))))))))) (-5 *1 (-853 *6 *7 *8 *9)))) (-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-628 *9)) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9)) (|:| |wcond| (-588 (-881 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *6)))) (|:| -3855 (-588 (-1166 (-382 (-881 *6)))))))))) (-5 *1 (-853 *6 *7 *8 *9)) (-5 *4 (-588 *9)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7)) (|:| |wcond| (-588 (-881 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *4)))) (|:| -3855 (-588 (-1166 (-382 (-881 *4)))))))))) (-5 *1 (-853 *4 *5 *6 *7)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-5 *4 (-588 (-1085))) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -3855 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-588 (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8)) (|:| |wcond| (-588 (-881 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 *5)))) (|:| -3855 (-588 (-1166 (-382 (-881 *5)))))))))) (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-588 *8)))))
+(-10 -7 (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 |#4|) (-850))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-588 (-1085)) (-850))) (-15 -2766 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-628 |#4|) (-850))) (-15 -2766 ((-522) (-628 |#4|) (-588 |#4|) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-588 (-1085)) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-588 |#4|) (-850) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-588 (-1085)) (-850) (-1068))) (-15 -2766 ((-522) (-628 |#4|) (-850) (-1068))) (-15 -2449 ((-522) (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -1891 ((-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|))))))))) (-1068))) (-15 -2636 ((-2 (|:| |rgl| (-588 (-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))))))) (|:| |rgsz| (-522))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-708) (-1068) (-522))) (-15 -1824 ((-382 (-881 |#1|)) |#4|)) (-15 -1824 ((-628 (-382 (-881 |#1|))) (-628 |#4|))) (-15 -1824 ((-588 (-382 (-881 |#1|))) (-588 |#4|))) (-15 -3921 ((-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2326 (|#4| (-881 |#1|))) (-15 -4203 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-588 |#4|)) (|:| |n0| (-588 |#4|))) (-588 |#4|) (-588 |#4|))) (-15 -1815 ((-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))) (-628 |#4|) (-708))) (-15 -2582 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-588 |#4|))) (-15 -1949 ((-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))) (-2 (|:| -1222 (-628 (-382 (-881 |#1|)))) (|:| |vec| (-588 (-382 (-881 |#1|)))) (|:| -3166 (-708)) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (-15 -2034 ((-588 |#4|) |#4|)) (-15 -1670 ((-708) (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -4084 ((-708) (-588 (-2 (|:| -3166 (-708)) (|:| |eqns| (-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))) (|:| |fgb| (-588 |#4|)))))) (-15 -3354 ((-588 (-588 |#4|)) (-588 (-588 |#4|)))) (-15 -1421 ((-588 (-588 (-522))) (-522) (-522))) (-15 -3722 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -4157 ((-588 (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522))))) (-628 |#4|) (-708))) (-15 -1663 ((-628 |#4|) (-628 |#4|) (-588 |#4|))) (-15 -4094 ((-2 (|:| |eqzro| (-588 |#4|)) (|:| |neqzro| (-588 |#4|)) (|:| |wcond| (-588 (-881 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1166 (-382 (-881 |#1|)))) (|:| -3855 (-588 (-1166 (-382 (-881 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))) (-628 |#4|) (-588 (-382 (-881 |#1|))) (-588 (-588 |#4|)) (-708) (-708) (-522))) (-15 -3187 (|#4| |#4|)) (-15 -1395 ((-108) (-588 |#4|))) (-15 -1395 ((-108) (-588 (-881 |#1|)))))
+((-2970 (((-856) |#1| (-1085)) 16) (((-856) |#1| (-1085) (-1009 (-202))) 20)) (-1333 (((-856) |#1| |#1| (-1085) (-1009 (-202))) 18) (((-856) |#1| (-1085) (-1009 (-202))) 14)))
+(((-854 |#1|) (-10 -7 (-15 -1333 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -1333 ((-856) |#1| |#1| (-1085) (-1009 (-202)))) (-15 -2970 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -2970 ((-856) |#1| (-1085)))) (-563 (-498))) (T -854))
+((-2970 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) (-1333 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))) (-1333 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856)) (-5 *1 (-854 *3)) (-4 *3 (-563 (-498))))))
+(-10 -7 (-15 -1333 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -1333 ((-856) |#1| |#1| (-1085) (-1009 (-202)))) (-15 -2970 ((-856) |#1| (-1085) (-1009 (-202)))) (-15 -2970 ((-856) |#1| (-1085))))
+((-1879 (($ $ (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 69)) (-3821 (((-1009 (-202)) $) 40)) (-3808 (((-1009 (-202)) $) 39)) (-3794 (((-1009 (-202)) $) 38)) (-1498 (((-588 (-588 (-202))) $) 43)) (-4112 (((-1009 (-202)) $) 41)) (-1390 (((-522) (-522)) 32)) (-3148 (((-522) (-522)) 28)) (-3713 (((-522) (-522)) 30)) (-2407 (((-108) (-108)) 35)) (-3748 (((-522)) 31)) (-1499 (($ $ (-1009 (-202))) 72) (($ $) 73)) (-2118 (($ (-1 (-872 (-202)) (-202)) (-1009 (-202))) 77) (($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 78)) (-1333 (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202))) 80) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 81) (($ $ (-1009 (-202))) 75)) (-3316 (((-522)) 36)) (-3617 (((-522)) 27)) (-2996 (((-522)) 29)) (-2745 (((-588 (-588 (-872 (-202)))) $) 93)) (-2158 (((-108) (-108)) 37)) (-2190 (((-792) $) 92)) (-2663 (((-108)) 34)))
+(((-855) (-13 (-901) (-10 -8 (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ $ (-1009 (-202)))) (-15 -1879 ($ $ (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1499 ($ $ (-1009 (-202)))) (-15 -1499 ($ $)) (-15 -4112 ((-1009 (-202)) $)) (-15 -1498 ((-588 (-588 (-202))) $)) (-15 -3617 ((-522))) (-15 -3148 ((-522) (-522))) (-15 -2996 ((-522))) (-15 -3713 ((-522) (-522))) (-15 -3748 ((-522))) (-15 -1390 ((-522) (-522))) (-15 -2663 ((-108))) (-15 -2407 ((-108) (-108))) (-15 -3316 ((-522))) (-15 -2158 ((-108) (-108)))))) (T -855))
+((-2118 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-2118 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-1333 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-1333 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-855)))) (-1333 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1879 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1499 (*1 *1 *1) (-5 *1 (-855))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-855)))) (-3617 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3148 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-2996 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3713 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-3748 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-1390 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-2663 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))) (-3316 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+(-13 (-901) (-10 -8 (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ $ (-1009 (-202)))) (-15 -1879 ($ $ (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1499 ($ $ (-1009 (-202)))) (-15 -1499 ($ $)) (-15 -4112 ((-1009 (-202)) $)) (-15 -1498 ((-588 (-588 (-202))) $)) (-15 -3617 ((-522))) (-15 -3148 ((-522) (-522))) (-15 -2996 ((-522))) (-15 -3713 ((-522) (-522))) (-15 -3748 ((-522))) (-15 -1390 ((-522) (-522))) (-15 -2663 ((-108))) (-15 -2407 ((-108) (-108))) (-15 -3316 ((-522))) (-15 -2158 ((-108) (-108)))))
+((-1879 (($ $ (-1009 (-202))) 70) (($ $ (-1009 (-202)) (-1009 (-202))) 71)) (-3808 (((-1009 (-202)) $) 43)) (-3794 (((-1009 (-202)) $) 42)) (-4112 (((-1009 (-202)) $) 44)) (-3453 (((-522) (-522)) 36)) (-2539 (((-522) (-522)) 32)) (-3576 (((-522) (-522)) 34)) (-2419 (((-108) (-108)) 38)) (-4017 (((-522)) 35)) (-1499 (($ $ (-1009 (-202))) 74) (($ $) 75)) (-2118 (($ (-1 (-872 (-202)) (-202)) (-1009 (-202))) 84) (($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 85)) (-2970 (($ (-1 (-202) (-202)) (-1009 (-202))) 92) (($ (-1 (-202) (-202))) 95)) (-1333 (($ (-1 (-202) (-202)) (-1009 (-202))) 79) (($ (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202))) 80) (($ (-588 (-1 (-202) (-202))) (-1009 (-202))) 87) (($ (-588 (-1 (-202) (-202))) (-1009 (-202)) (-1009 (-202))) 88) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202))) 81) (($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202))) 82) (($ $ (-1009 (-202))) 76)) (-2104 (((-108) $) 39)) (-1877 (((-522)) 40)) (-3511 (((-522)) 31)) (-4082 (((-522)) 33)) (-2745 (((-588 (-588 (-872 (-202)))) $) 22)) (-3011 (((-108) (-108)) 41)) (-2190 (((-792) $) 106)) (-3512 (((-108)) 37)))
+(((-856) (-13 (-883) (-10 -8 (-15 -1333 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)))) (-15 -1333 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2970 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2970 ($ (-1 (-202) (-202)))) (-15 -1333 ($ $ (-1009 (-202)))) (-15 -2104 ((-108) $)) (-15 -1879 ($ $ (-1009 (-202)))) (-15 -1879 ($ $ (-1009 (-202)) (-1009 (-202)))) (-15 -1499 ($ $ (-1009 (-202)))) (-15 -1499 ($ $)) (-15 -4112 ((-1009 (-202)) $)) (-15 -3511 ((-522))) (-15 -2539 ((-522) (-522))) (-15 -4082 ((-522))) (-15 -3576 ((-522) (-522))) (-15 -4017 ((-522))) (-15 -3453 ((-522) (-522))) (-15 -3512 ((-108))) (-15 -2419 ((-108) (-108))) (-15 -1877 ((-522))) (-15 -3011 ((-108) (-108)))))) (T -856))
+((-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1333 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1333 (*1 *1 *2 *3) (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1333 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1333 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-1333 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2118 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2118 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2970 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202))) (-5 *1 (-856)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-856)))) (-1333 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-1879 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-1499 (*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-1499 (*1 *1 *1) (-5 *1 (-856))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))) (-3511 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-4082 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3576 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-4017 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3512 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))) (-1877 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(-13 (-883) (-10 -8 (-15 -1333 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)))) (-15 -1333 ($ (-588 (-1 (-202) (-202))) (-1009 (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)))) (-15 -1333 ($ (-1 (-202) (-202)) (-1 (-202) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)))) (-15 -2118 ($ (-1 (-872 (-202)) (-202)) (-1009 (-202)) (-1009 (-202)) (-1009 (-202)))) (-15 -2970 ($ (-1 (-202) (-202)) (-1009 (-202)))) (-15 -2970 ($ (-1 (-202) (-202)))) (-15 -1333 ($ $ (-1009 (-202)))) (-15 -2104 ((-108) $)) (-15 -1879 ($ $ (-1009 (-202)))) (-15 -1879 ($ $ (-1009 (-202)) (-1009 (-202)))) (-15 -1499 ($ $ (-1009 (-202)))) (-15 -1499 ($ $)) (-15 -4112 ((-1009 (-202)) $)) (-15 -3511 ((-522))) (-15 -2539 ((-522) (-522))) (-15 -4082 ((-522))) (-15 -3576 ((-522) (-522))) (-15 -4017 ((-522))) (-15 -3453 ((-522) (-522))) (-15 -3512 ((-108))) (-15 -2419 ((-108) (-108))) (-15 -1877 ((-522))) (-15 -3011 ((-108) (-108)))))
+((-1517 (((-588 (-1009 (-202))) (-588 (-588 (-872 (-202))))) 23)))
+(((-857) (-10 -7 (-15 -1517 ((-588 (-1009 (-202))) (-588 (-588 (-872 (-202)))))))) (T -857))
+((-1517 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-588 (-1009 (-202)))) (-5 *1 (-857)))))
+(-10 -7 (-15 -1517 ((-588 (-1009 (-202))) (-588 (-588 (-872 (-202)))))))
+((-2699 ((|#2| |#2|) 25)) (-1793 ((|#2| |#2|) 26)) (-2677 ((|#2| |#2|) 24)) (-2983 ((|#2| |#2| (-1068)) 23)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -2983 (|#2| |#2| (-1068))) (-15 -2677 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -1793 (|#2| |#2|))) (-784) (-405 |#1|)) (T -858))
+((-1793 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) (-2699 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3)))) (-2983 (*1 *2 *2 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-784)) (-5 *1 (-858 *4 *2)) (-4 *2 (-405 *4)))))
+(-10 -7 (-15 -2983 (|#2| |#2| (-1068))) (-15 -2677 (|#2| |#2|)) (-15 -2699 (|#2| |#2|)) (-15 -1793 (|#2| |#2|)))
+((-2699 (((-291 (-522)) (-1085)) 15)) (-1793 (((-291 (-522)) (-1085)) 13)) (-2677 (((-291 (-522)) (-1085)) 11)) (-2983 (((-291 (-522)) (-1085) (-1068)) 18)))
+(((-859) (-10 -7 (-15 -2983 ((-291 (-522)) (-1085) (-1068))) (-15 -2677 ((-291 (-522)) (-1085))) (-15 -2699 ((-291 (-522)) (-1085))) (-15 -1793 ((-291 (-522)) (-1085))))) (T -859))
+((-1793 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))) (-2983 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1068)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))))
+(-10 -7 (-15 -2983 ((-291 (-522)) (-1085) (-1068))) (-15 -2677 ((-291 (-522)) (-1085))) (-15 -2699 ((-291 (-522)) (-1085))) (-15 -1793 ((-291 (-522)) (-1085))))
+((-4011 (((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)) 24)) (-1454 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 12)))
+(((-860 |#1| |#2| |#3|) (-10 -7 (-15 -1454 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -4011 ((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|)))) (-1014) (-815 |#1|) (-13 (-1014) (-962 |#2|))) (T -860))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-962 *3))) (-4 *3 (-815 *5)) (-5 *1 (-860 *5 *3 *6)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1014) (-962 *5))) (-4 *5 (-815 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-860 *4 *5 *6)))))
+(-10 -7 (-15 -1454 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -4011 ((-818 |#1| |#3|) |#2| (-821 |#1|) (-818 |#1| |#3|))))
+((-4011 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 29)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-1014) (-13 (-514) (-784) (-815 |#1|)) (-13 (-405 |#2|) (-563 (-821 |#1|)) (-815 |#1|) (-962 (-561 $)))) (T -861))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-405 *6) (-563 *4) (-815 *5) (-962 (-561 $)))) (-5 *4 (-821 *5)) (-4 *6 (-13 (-514) (-784) (-815 *5))) (-5 *1 (-861 *5 *6 *3)))))
+(-10 -7 (-15 -4011 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))
+((-4011 (((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|)) 12)))
+(((-862 |#1|) (-10 -7 (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|)))) (-507)) (T -862))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 (-522) *3)) (-5 *4 (-821 (-522))) (-4 *3 (-507)) (-5 *1 (-862 *3)))))
+(-10 -7 (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))))
+((-4011 (((-818 |#1| |#2|) (-561 |#2|) (-821 |#1|) (-818 |#1| |#2|)) 52)))
+(((-863 |#1| |#2|) (-10 -7 (-15 -4011 ((-818 |#1| |#2|) (-561 |#2|) (-821 |#1|) (-818 |#1| |#2|)))) (-1014) (-13 (-784) (-962 (-561 $)) (-563 (-821 |#1|)) (-815 |#1|))) (T -863))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *6)) (-5 *3 (-561 *6)) (-4 *5 (-1014)) (-4 *6 (-13 (-784) (-962 (-561 $)) (-563 *4) (-815 *5))) (-5 *4 (-821 *5)) (-5 *1 (-863 *5 *6)))))
+(-10 -7 (-15 -4011 ((-818 |#1| |#2|) (-561 |#2|) (-821 |#1|) (-818 |#1| |#2|))))
+((-4011 (((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)) 14)))
+(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|)))) (-1014) (-815 |#1|) (-608 |#2|)) (T -864))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-814 *5 *6 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-4 *6 (-815 *5)) (-4 *3 (-608 *6)) (-5 *1 (-864 *5 *6 *3)))))
+(-10 -7 (-15 -4011 ((-814 |#1| |#2| |#3|) |#3| (-821 |#1|) (-814 |#1| |#2| |#3|))))
+((-4011 (((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|)) 17 (|has| |#3| (-815 |#1|))) (((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|))) 16)))
+(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4011 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|)))) (IF (|has| |#3| (-815 |#1|)) (-15 -4011 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|))) |%noBranch|)) (-1014) (-730) (-784) (-13 (-971) (-784) (-815 |#1|)) (-13 (-878 |#4| |#2| |#3|) (-563 (-821 |#1|)))) (T -865))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-878 *8 *6 *7) (-563 *4))) (-5 *4 (-821 *5)) (-4 *7 (-815 *5)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-13 (-971) (-784) (-815 *5))) (-5 *1 (-865 *5 *6 *7 *8 *3)))) (-4011 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-818 *6 *3) *8 (-821 *6) (-818 *6 *3))) (-4 *8 (-784)) (-5 *2 (-818 *6 *3)) (-5 *4 (-821 *6)) (-4 *6 (-1014)) (-4 *3 (-13 (-878 *9 *7 *8) (-563 *4))) (-4 *7 (-730)) (-4 *9 (-13 (-971) (-784) (-815 *6))) (-5 *1 (-865 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -4011 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|) (-1 (-818 |#1| |#5|) |#3| (-821 |#1|) (-818 |#1| |#5|)))) (IF (|has| |#3| (-815 |#1|)) (-15 -4011 ((-818 |#1| |#5|) |#5| (-821 |#1|) (-818 |#1| |#5|))) |%noBranch|))
+((-1870 ((|#2| |#2| (-588 (-1 (-108) |#3|))) 11) ((|#2| |#2| (-1 (-108) |#3|)) 12)))
+(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -1870 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1870 (|#2| |#2| (-588 (-1 (-108) |#3|))))) (-784) (-405 |#1|) (-1120)) (T -866))
+((-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) (-4 *4 (-784)) (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1120)) (-4 *4 (-784)) (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4)))))
+(-10 -7 (-15 -1870 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1870 (|#2| |#2| (-588 (-1 (-108) |#3|)))))
+((-1870 (((-291 (-522)) (-1085) (-588 (-1 (-108) |#1|))) 16) (((-291 (-522)) (-1085) (-1 (-108) |#1|)) 13)))
+(((-867 |#1|) (-10 -7 (-15 -1870 ((-291 (-522)) (-1085) (-1 (-108) |#1|))) (-15 -1870 ((-291 (-522)) (-1085) (-588 (-1 (-108) |#1|))))) (-1120)) (T -867))
+((-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) (-5 *2 (-291 (-522))) (-5 *1 (-867 *5)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1120)) (-5 *2 (-291 (-522))) (-5 *1 (-867 *5)))))
+(-10 -7 (-15 -1870 ((-291 (-522)) (-1085) (-1 (-108) |#1|))) (-15 -1870 ((-291 (-522)) (-1085) (-588 (-1 (-108) |#1|)))))
+((-4011 (((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)) 25)))
+(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-1014) (-13 (-514) (-815 |#1|) (-563 (-821 |#1|))) (-919 |#2|)) (T -868))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-919 *6)) (-4 *6 (-13 (-514) (-815 *5) (-563 *4))) (-5 *4 (-821 *5)) (-5 *1 (-868 *5 *6 *3)))))
+(-10 -7 (-15 -4011 ((-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))
+((-4011 (((-818 |#1| (-1085)) (-1085) (-821 |#1|) (-818 |#1| (-1085))) 17)))
+(((-869 |#1|) (-10 -7 (-15 -4011 ((-818 |#1| (-1085)) (-1085) (-821 |#1|) (-818 |#1| (-1085))))) (-1014)) (T -869))
+((-4011 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-818 *5 (-1085))) (-5 *3 (-1085)) (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-5 *1 (-869 *5)))))
+(-10 -7 (-15 -4011 ((-818 |#1| (-1085)) (-1085) (-821 |#1|) (-818 |#1| (-1085)))))
+((-1993 (((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) 33)) (-4011 (((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-1 |#3| (-588 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))) 32)))
+(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -4011 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-1 |#3| (-588 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-15 -1993 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|))))) (-1014) (-13 (-971) (-784)) (-13 (-971) (-563 (-821 |#1|)) (-962 |#2|))) (T -870))
+((-1993 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-821 *6))) (-5 *5 (-1 (-818 *6 *8) *8 (-821 *6) (-818 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-13 (-971) (-563 (-821 *6)) (-962 *7))) (-5 *2 (-818 *6 *8)) (-4 *7 (-13 (-971) (-784))) (-5 *1 (-870 *6 *7 *8)))) (-4011 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-588 (-821 *7))) (-5 *5 (-1 *9 (-588 *9))) (-5 *6 (-1 (-818 *7 *9) *9 (-821 *7) (-818 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-13 (-971) (-563 (-821 *7)) (-962 *8))) (-5 *2 (-818 *7 *9)) (-5 *3 (-588 *9)) (-4 *8 (-13 (-971) (-784))) (-5 *1 (-870 *7 *8 *9)))))
+(-10 -7 (-15 -4011 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-1 |#3| (-588 |#3|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))) (-15 -1993 ((-818 |#1| |#3|) (-588 |#3|) (-588 (-821 |#1|)) (-818 |#1| |#3|) (-1 (-818 |#1| |#3|) |#3| (-821 |#1|) (-818 |#1| |#3|)))))
+((-3735 (((-1081 (-382 (-522))) (-522)) 62)) (-3239 (((-1081 (-522)) (-522)) 65)) (-3261 (((-1081 (-522)) (-522)) 59)) (-2165 (((-522) (-1081 (-522))) 54)) (-3475 (((-1081 (-382 (-522))) (-522)) 48)) (-1437 (((-1081 (-522)) (-522)) 37)) (-2163 (((-1081 (-522)) (-522)) 67)) (-2279 (((-1081 (-522)) (-522)) 66)) (-1763 (((-1081 (-382 (-522))) (-522)) 50)))
+(((-871) (-10 -7 (-15 -1763 ((-1081 (-382 (-522))) (-522))) (-15 -2279 ((-1081 (-522)) (-522))) (-15 -2163 ((-1081 (-522)) (-522))) (-15 -1437 ((-1081 (-522)) (-522))) (-15 -3475 ((-1081 (-382 (-522))) (-522))) (-15 -2165 ((-522) (-1081 (-522)))) (-15 -3261 ((-1081 (-522)) (-522))) (-15 -3239 ((-1081 (-522)) (-522))) (-15 -3735 ((-1081 (-382 (-522))) (-522))))) (T -871))
+((-3735 (*1 *2 *3) (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))) (-3239 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-522)) (-5 *1 (-871)))) (-3475 (*1 *2 *3) (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))) (-1437 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-2163 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-2279 (*1 *2 *3) (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))) (-1763 (*1 *2 *3) (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(-10 -7 (-15 -1763 ((-1081 (-382 (-522))) (-522))) (-15 -2279 ((-1081 (-522)) (-522))) (-15 -2163 ((-1081 (-522)) (-522))) (-15 -1437 ((-1081 (-522)) (-522))) (-15 -3475 ((-1081 (-382 (-522))) (-522))) (-15 -2165 ((-522) (-1081 (-522)))) (-15 -3261 ((-1081 (-522)) (-522))) (-15 -3239 ((-1081 (-522)) (-522))) (-15 -3735 ((-1081 (-382 (-522))) (-522))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3483 (($ (-708)) NIL (|has| |#1| (-23)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) |#1|) 11 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-2736 (($ (-588 |#1|)) 13)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3957 (((-628 |#1|) $ $) NIL (|has| |#1| (-971)))) (-1811 (($ (-708) |#1|) 8)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 10 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2845 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2720 (((-108) $ (-708)) NIL)) (-2517 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3719 (($ $ (-588 |#1|)) 24)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 18) (($ $ (-1133 (-522))) NIL)) (-1883 ((|#1| $ $) NIL (|has| |#1| (-971)))) (-4078 (((-850) $) 16)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3230 (($ $ $) 22)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498)))) (($ (-588 |#1|)) 17)) (-2201 (($ (-588 |#1|)) NIL)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1602 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-522) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-664))) (($ $ |#1|) NIL (|has| |#1| (-664)))) (-3480 (((-708) $) 14 (|has| $ (-6 -4238)))))
+(((-872 |#1|) (-907 |#1|) (-971)) (T -872))
+NIL
+(-907 |#1|)
+((-1725 (((-454 |#1| |#2|) (-881 |#2|)) 17)) (-2792 (((-224 |#1| |#2|) (-881 |#2|)) 29)) (-3109 (((-881 |#2|) (-454 |#1| |#2|)) 22)) (-3391 (((-224 |#1| |#2|) (-454 |#1| |#2|)) 53)) (-3697 (((-881 |#2|) (-224 |#1| |#2|)) 26)) (-1264 (((-454 |#1| |#2|) (-224 |#1| |#2|)) 44)))
+(((-873 |#1| |#2|) (-10 -7 (-15 -1264 ((-454 |#1| |#2|) (-224 |#1| |#2|))) (-15 -3391 ((-224 |#1| |#2|) (-454 |#1| |#2|))) (-15 -1725 ((-454 |#1| |#2|) (-881 |#2|))) (-15 -3109 ((-881 |#2|) (-454 |#1| |#2|))) (-15 -3697 ((-881 |#2|) (-224 |#1| |#2|))) (-15 -2792 ((-224 |#1| |#2|) (-881 |#2|)))) (-588 (-1085)) (-971)) (T -873))
+((-2792 (*1 *2 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085))))) (-3697 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-454 *4 *5)) (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085))))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971)) (-5 *2 (-454 *4 *5)) (-5 *1 (-873 *4 *5)))))
+(-10 -7 (-15 -1264 ((-454 |#1| |#2|) (-224 |#1| |#2|))) (-15 -3391 ((-224 |#1| |#2|) (-454 |#1| |#2|))) (-15 -1725 ((-454 |#1| |#2|) (-881 |#2|))) (-15 -3109 ((-881 |#2|) (-454 |#1| |#2|))) (-15 -3697 ((-881 |#2|) (-224 |#1| |#2|))) (-15 -2792 ((-224 |#1| |#2|) (-881 |#2|))))
+((-2105 (((-588 |#2|) |#2| |#2|) 10)) (-2584 (((-708) (-588 |#1|)) 38 (|has| |#1| (-782)))) (-3343 (((-588 |#2|) |#2|) 11)) (-2914 (((-708) (-588 |#1|) (-522) (-522)) 37 (|has| |#1| (-782)))) (-3789 ((|#1| |#2|) 33 (|has| |#1| (-782)))))
+(((-874 |#1| |#2|) (-10 -7 (-15 -2105 ((-588 |#2|) |#2| |#2|)) (-15 -3343 ((-588 |#2|) |#2|)) (IF (|has| |#1| (-782)) (PROGN (-15 -3789 (|#1| |#2|)) (-15 -2584 ((-708) (-588 |#1|))) (-15 -2914 ((-708) (-588 |#1|) (-522) (-522)))) |%noBranch|)) (-338) (-1142 |#1|)) (T -874))
+((-2914 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-522)) (-4 *5 (-782)) (-4 *5 (-338)) (-5 *2 (-708)) (-5 *1 (-874 *5 *6)) (-4 *6 (-1142 *5)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-782)) (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-874 *4 *5)) (-4 *5 (-1142 *4)))) (-3789 (*1 *2 *3) (-12 (-4 *2 (-338)) (-4 *2 (-782)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1142 *2)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1142 *4)))) (-2105 (*1 *2 *3 *3) (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -2105 ((-588 |#2|) |#2| |#2|)) (-15 -3343 ((-588 |#2|) |#2|)) (IF (|has| |#1| (-782)) (PROGN (-15 -3789 (|#1| |#2|)) (-15 -2584 ((-708) (-588 |#1|))) (-15 -2914 ((-708) (-588 |#1|) (-522) (-522)))) |%noBranch|))
+((-1391 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 18)))
+(((-875 |#1| |#2|) (-10 -7 (-15 -1391 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-971) (-971)) (T -875))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-881 *6)) (-5 *1 (-875 *5 *6)))))
+(-10 -7 (-15 -1391 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|))))
+((-1282 (((-1139 |#1| (-881 |#2|)) (-881 |#2|) (-1162 |#1|)) 18)))
+(((-876 |#1| |#2|) (-10 -7 (-15 -1282 ((-1139 |#1| (-881 |#2|)) (-881 |#2|) (-1162 |#1|)))) (-1085) (-971)) (T -876))
+((-1282 (*1 *2 *3 *4) (-12 (-5 *4 (-1162 *5)) (-14 *5 (-1085)) (-4 *6 (-971)) (-5 *2 (-1139 *5 (-881 *6))) (-5 *1 (-876 *5 *6)) (-5 *3 (-881 *6)))))
+(-10 -7 (-15 -1282 ((-1139 |#1| (-881 |#2|)) (-881 |#2|) (-1162 |#1|))))
+((-3781 (((-708) $) 70) (((-708) $ (-588 |#4|)) 73)) (-3119 (($ $) 170)) (-3450 (((-393 $) $) 162)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 113)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 |#4| "failed") $) 59)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) NIL) (((-522) $) NIL) ((|#4| $) 58)) (-1950 (($ $ $ |#4|) 75)) (-2096 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 103) (((-628 |#2|) (-628 $)) 96)) (-2071 (($ $) 177) (($ $ |#4|) 180)) (-3147 (((-588 $) $) 62)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 195) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 189)) (-4052 (((-588 $) $) 28)) (-4049 (($ |#2| |#3|) NIL) (($ $ |#4| (-708)) NIL) (($ $ (-588 |#4|) (-588 (-708))) 56)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#4|) 159)) (-2462 (((-3 (-588 $) "failed") $) 42)) (-4193 (((-3 (-588 $) "failed") $) 31)) (-3285 (((-3 (-2 (|:| |var| |#4|) (|:| -1400 (-708))) "failed") $) 46)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 106)) (-3729 (((-393 (-1081 $)) (-1081 $)) 119)) (-3495 (((-393 (-1081 $)) (-1081 $)) 117)) (-1916 (((-393 $) $) 137)) (-2289 (($ $ (-588 (-270 $))) 20) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-588 |#4|) (-588 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-588 |#4|) (-588 $)) NIL)) (-2769 (($ $ |#4|) 77)) (-1431 (((-821 (-354)) $) 209) (((-821 (-522)) $) 202) (((-498) $) 217)) (-2255 ((|#2| $) NIL) (($ $ |#4|) 172)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 151)) (-3243 ((|#2| $ |#3|) NIL) (($ $ |#4| (-708)) 51) (($ $ (-588 |#4|) (-588 (-708))) 54)) (-2143 (((-3 $ "failed") $) 153)) (-1549 (((-108) $ $) 183)))
+(((-877 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -3495 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3729 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2412 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -2071 (|#1| |#1| |#4|)) (-15 -2255 (|#1| |#1| |#4|)) (-15 -2769 (|#1| |#1| |#4|)) (-15 -1950 (|#1| |#1| |#1| |#4|)) (-15 -3147 ((-588 |#1|) |#1|)) (-15 -3781 ((-708) |#1| (-588 |#4|))) (-15 -3781 ((-708) |#1|)) (-15 -3285 ((-3 (-2 (|:| |var| |#4|) (|:| -1400 (-708))) "failed") |#1|)) (-15 -2462 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -4193 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -4049 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -4049 (|#1| |#1| |#4| (-708))) (-15 -2478 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1| |#4|)) (-15 -4052 ((-588 |#1|) |#1|)) (-15 -3243 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -3243 (|#1| |#1| |#4| (-708))) (-15 -2096 ((-628 |#2|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -1484 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#4| |#1|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#4| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -4049 (|#1| |#2| |#3|)) (-15 -3243 (|#2| |#1| |#3|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2071 (|#1| |#1|))) (-878 |#2| |#3| |#4|) (-971) (-730) (-784)) (T -877))
+NIL
+(-10 -8 (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -2143 ((-3 |#1| "failed") |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -3495 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3729 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2412 ((-3 (-1166 |#1|) "failed") (-628 |#1|))) (-15 -2071 (|#1| |#1| |#4|)) (-15 -2255 (|#1| |#1| |#4|)) (-15 -2769 (|#1| |#1| |#4|)) (-15 -1950 (|#1| |#1| |#1| |#4|)) (-15 -3147 ((-588 |#1|) |#1|)) (-15 -3781 ((-708) |#1| (-588 |#4|))) (-15 -3781 ((-708) |#1|)) (-15 -3285 ((-3 (-2 (|:| |var| |#4|) (|:| -1400 (-708))) "failed") |#1|)) (-15 -2462 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -4193 ((-3 (-588 |#1|) "failed") |#1|)) (-15 -4049 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -4049 (|#1| |#1| |#4| (-708))) (-15 -2478 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1| |#4|)) (-15 -4052 ((-588 |#1|) |#1|)) (-15 -3243 (|#1| |#1| (-588 |#4|) (-588 (-708)))) (-15 -3243 (|#1| |#1| |#4| (-708))) (-15 -2096 ((-628 |#2|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -1484 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#4| |#1|)) (-15 -2289 (|#1| |#1| (-588 |#4|) (-588 |#2|))) (-15 -2289 (|#1| |#1| |#4| |#2|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -4049 (|#1| |#2| |#3|)) (-15 -3243 (|#2| |#1| |#3|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2071 (|#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 |#3|) $) 110)) (-1282 (((-1081 $) $ |#3|) 125) (((-1081 |#1|) $) 124)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2022 (($ $) 88 (|has| |#1| (-514)))) (-3739 (((-108) $) 90 (|has| |#1| (-514)))) (-3781 (((-708) $) 112) (((-708) $ (-588 |#3|)) 111)) (-1233 (((-3 $ "failed") $ $) 19)) (-1565 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-3119 (($ $) 98 (|has| |#1| (-426)))) (-3450 (((-393 $) $) 97 (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) 136)) (-1484 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) ((|#3| $) 135)) (-1950 (($ $ $ |#3|) 108 (|has| |#1| (-157)))) (-3156 (($ $) 154)) (-2096 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-2682 (((-3 $ "failed") $) 34)) (-2071 (($ $) 176 (|has| |#1| (-426))) (($ $ |#3|) 105 (|has| |#1| (-426)))) (-3147 (((-588 $) $) 109)) (-2813 (((-108) $) 96 (|has| |#1| (-838)))) (-2671 (($ $ |#1| |#2| $) 172)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| |#3| (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| |#3| (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-2782 (((-108) $) 31)) (-2112 (((-708) $) 169)) (-4073 (($ (-1081 |#1|) |#3|) 117) (($ (-1081 $) |#3|) 116)) (-4052 (((-588 $) $) 126)) (-3340 (((-108) $) 152)) (-4049 (($ |#1| |#2|) 153) (($ $ |#3| (-708)) 119) (($ $ (-588 |#3|) (-588 (-708))) 118)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#3|) 120)) (-2925 ((|#2| $) 170) (((-708) $ |#3|) 122) (((-588 (-708)) $ (-588 |#3|)) 121)) (-2814 (($ $ $) 79 (|has| |#1| (-784)))) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3861 (($ (-1 |#2| |#2|) $) 171)) (-1391 (($ (-1 |#1| |#1|) $) 151)) (-3145 (((-3 |#3| "failed") $) 123)) (-3128 (($ $) 149)) (-3138 ((|#1| $) 148)) (-2224 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-2385 (((-1068) $) 9)) (-2462 (((-3 (-588 $) "failed") $) 114)) (-4193 (((-3 (-588 $) "failed") $) 115)) (-3285 (((-3 (-2 (|:| |var| |#3|) (|:| -1400 (-708))) "failed") $) 113)) (-4151 (((-1032) $) 10)) (-3108 (((-108) $) 166)) (-3118 ((|#1| $) 167)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2259 (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-1916 (((-393 $) $) 99 (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-588 |#3|) (-588 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-588 |#3|) (-588 $)) 138)) (-2769 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2157 (($ $ |#3|) 42) (($ $ (-588 |#3|)) 41) (($ $ |#3| (-708)) 40) (($ $ (-588 |#3|) (-588 (-708))) 39)) (-2793 ((|#2| $) 150) (((-708) $ |#3|) 130) (((-588 (-708)) $ (-588 |#3|)) 129)) (-1431 (((-821 (-354)) $) 82 (-12 (|has| |#3| (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| |#3| (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| |#3| (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ |#3|) 106 (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4015 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-514))) (($ (-382 (-522))) 72 (-3708 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522))))))) (-3916 (((-588 |#1|) $) 168)) (-3243 ((|#1| $ |#2|) 155) (($ $ |#3| (-708)) 128) (($ $ (-588 |#3|) (-588 (-708))) 127)) (-2143 (((-3 $ "failed") $) 73 (-3708 (-4015 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) 29)) (-3632 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-3958 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ |#3|) 38) (($ $ (-588 |#3|)) 37) (($ $ |#3| (-708)) 36) (($ $ (-588 |#3|) (-588 (-708))) 35)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-878 |#1| |#2| |#3|) (-1197) (-971) (-730) (-784)) (T -878))
+((-2071 (*1 *1 *1) (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-708)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708))))) (-3243 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *2 (-784)))) (-3243 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)))) (-4052 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-1282 (*1 *2 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-1081 *1)) (-4 *1 (-878 *4 *5 *3)))) (-1282 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-1081 *3)))) (-3145 (*1 *2 *1) (|partial| -12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-2925 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-708)))) (-2925 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708))))) (-2478 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-878 *4 *5 *3)))) (-4049 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *2 (-784)))) (-4049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)))) (-4073 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *4)) (-4 *4 (-971)) (-4 *1 (-878 *4 *5 *3)) (-4 *5 (-730)) (-4 *3 (-784)))) (-4073 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)))) (-4193 (*1 *2 *1) (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-2462 (*1 *2 *1) (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-3285 (*1 *2 *1) (|partial| -12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |var| *5) (|:| -1400 (-708)))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-708)))) (-3781 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *5)))) (-3147 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5)))) (-1950 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2769 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-157)))) (-2255 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-426)))) (-2071 (*1 *1 *1 *2) (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *3 (-426)))) (-3119 (*1 *1 *1) (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-3450 (*1 *2 *1) (-12 (-4 *3 (-426)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-393 *1)) (-4 *1 (-878 *3 *4 *5)))))
+(-13 (-829 |t#3|) (-301 |t#1| |t#2|) (-285 $) (-483 |t#3| |t#1|) (-483 |t#3| $) (-962 |t#3|) (-352 |t#1|) (-10 -8 (-15 -2793 ((-708) $ |t#3|)) (-15 -2793 ((-588 (-708)) $ (-588 |t#3|))) (-15 -3243 ($ $ |t#3| (-708))) (-15 -3243 ($ $ (-588 |t#3|) (-588 (-708)))) (-15 -4052 ((-588 $) $)) (-15 -1282 ((-1081 $) $ |t#3|)) (-15 -1282 ((-1081 |t#1|) $)) (-15 -3145 ((-3 |t#3| "failed") $)) (-15 -2925 ((-708) $ |t#3|)) (-15 -2925 ((-588 (-708)) $ (-588 |t#3|))) (-15 -2478 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |t#3|)) (-15 -4049 ($ $ |t#3| (-708))) (-15 -4049 ($ $ (-588 |t#3|) (-588 (-708)))) (-15 -4073 ($ (-1081 |t#1|) |t#3|)) (-15 -4073 ($ (-1081 $) |t#3|)) (-15 -4193 ((-3 (-588 $) "failed") $)) (-15 -2462 ((-3 (-588 $) "failed") $)) (-15 -3285 ((-3 (-2 (|:| |var| |t#3|) (|:| -1400 (-708))) "failed") $)) (-15 -3781 ((-708) $)) (-15 -3781 ((-708) $ (-588 |t#3|))) (-15 -4090 ((-588 |t#3|) $)) (-15 -3147 ((-588 $) $)) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (IF (|has| |t#3| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-563 (-821 (-522)))) (IF (|has| |t#3| (-563 (-821 (-522)))) (-6 (-563 (-821 (-522)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-563 (-821 (-354)))) (IF (|has| |t#3| (-563 (-821 (-354)))) (-6 (-563 (-821 (-354)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-815 (-522))) (IF (|has| |t#3| (-815 (-522))) (-6 (-815 (-522))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-815 (-354))) (IF (|has| |t#3| (-815 (-354))) (-6 (-815 (-354))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -1950 ($ $ $ |t#3|)) (-15 -2769 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-6 (-426)) (-15 -2255 ($ $ |t#3|)) (-15 -2071 ($ $)) (-15 -2071 ($ $ |t#3|)) (-15 -3450 ((-393 $) $)) (-15 -3119 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4236)) (-6 -4236) |%noBranch|) (IF (|has| |t#1| (-838)) (-6 (-838)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) ((-266) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-285 $) . T) ((-301 |#1| |#2|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3708 (|has| |#1| (-838)) (|has| |#1| (-426))) ((-483 |#3| |#1|) . T) ((-483 |#3| $) . T) ((-483 $ $) . T) ((-514) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 |#3|) . T) ((-815 (-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) ((-838) |has| |#1| (-838)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-962 |#3|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) |has| |#1| (-838)))
+((-4090 (((-588 |#2|) |#5|) 36)) (-1282 (((-1081 |#5|) |#5| |#2| (-1081 |#5|)) 23) (((-382 (-1081 |#5|)) |#5| |#2|) 16)) (-4073 ((|#5| (-382 (-1081 |#5|)) |#2|) 30)) (-3145 (((-3 |#2| "failed") |#5|) 61)) (-2462 (((-3 (-588 |#5|) "failed") |#5|) 55)) (-2170 (((-3 (-2 (|:| |val| |#5|) (|:| -1400 (-522))) "failed") |#5|) 45)) (-4193 (((-3 (-588 |#5|) "failed") |#5|) 57)) (-3285 (((-3 (-2 (|:| |var| |#2|) (|:| -1400 (-522))) "failed") |#5|) 48)))
+(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4090 ((-588 |#2|) |#5|)) (-15 -3145 ((-3 |#2| "failed") |#5|)) (-15 -1282 ((-382 (-1081 |#5|)) |#5| |#2|)) (-15 -4073 (|#5| (-382 (-1081 |#5|)) |#2|)) (-15 -1282 ((-1081 |#5|) |#5| |#2| (-1081 |#5|))) (-15 -4193 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -2462 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -3285 ((-3 (-2 (|:| |var| |#2|) (|:| -1400 (-522))) "failed") |#5|)) (-15 -2170 ((-3 (-2 (|:| |val| |#5|) (|:| -1400 (-522))) "failed") |#5|))) (-730) (-784) (-971) (-878 |#3| |#1| |#2|) (-13 (-338) (-10 -8 (-15 -2190 ($ |#4|)) (-15 -2805 (|#4| $)) (-15 -2816 (|#4| $))))) (T -879))
+((-2170 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1400 (-522)))) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))) (-3285 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1400 (-522)))) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))) (-2462 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))) (-4193 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))) (-1282 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))) (-4 *7 (-878 *6 *5 *4)) (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) (-5 *1 (-879 *5 *4 *6 *7 *3)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-1081 *2))) (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) (-4 *2 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))) (-5 *1 (-879 *5 *4 *6 *7 *2)) (-4 *7 (-878 *6 *5 *4)))) (-1282 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-382 (-1081 *3))) (-5 *1 (-879 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))) (-3145 (*1 *2 *3) (|partial| -12 (-4 *4 (-730)) (-4 *5 (-971)) (-4 *6 (-878 *5 *4 *2)) (-4 *2 (-784)) (-5 *1 (-879 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *6)) (-15 -2805 (*6 $)) (-15 -2816 (*6 $))))))) (-4090 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *5)) (-5 *1 (-879 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $))))))))
+(-10 -7 (-15 -4090 ((-588 |#2|) |#5|)) (-15 -3145 ((-3 |#2| "failed") |#5|)) (-15 -1282 ((-382 (-1081 |#5|)) |#5| |#2|)) (-15 -4073 (|#5| (-382 (-1081 |#5|)) |#2|)) (-15 -1282 ((-1081 |#5|) |#5| |#2| (-1081 |#5|))) (-15 -4193 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -2462 ((-3 (-588 |#5|) "failed") |#5|)) (-15 -3285 ((-3 (-2 (|:| |var| |#2|) (|:| -1400 (-522))) "failed") |#5|)) (-15 -2170 ((-3 (-2 (|:| |val| |#5|) (|:| -1400 (-522))) "failed") |#5|)))
+((-1391 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-880 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1391 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-730) (-784) (-971) (-878 |#3| |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708)))))) (T -880))
+((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-784)) (-4 *8 (-971)) (-4 *6 (-730)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708)))))) (-5 *1 (-880 *6 *7 *8 *5 *2)) (-4 *5 (-878 *8 *6 *7)))))
+(-10 -7 (-15 -1391 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-1085)) $) 15)) (-1282 (((-1081 $) $ (-1085)) 21) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-1085))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 8) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-1085) "failed") $) NIL)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-1085) $) NIL)) (-1950 (($ $ $ (-1085)) NIL (|has| |#1| (-157)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ (-1085)) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-494 (-1085)) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1085) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1085) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#1|) (-1085)) NIL) (($ (-1081 $) (-1085)) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-1085)) NIL)) (-2925 (((-494 (-1085)) $) NIL) (((-708) $ (-1085)) NIL) (((-588 (-708)) $ (-588 (-1085))) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-494 (-1085)) (-494 (-1085))) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3145 (((-3 (-1085) "failed") $) 19)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-1085)) (|:| -1400 (-708))) "failed") $) NIL)) (-1858 (($ $ (-1085)) 29 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-588 (-1085)) (-588 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-588 (-1085)) (-588 $)) NIL)) (-2769 (($ $ (-1085)) NIL (|has| |#1| (-157)))) (-2157 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-2793 (((-494 (-1085)) $) NIL) (((-708) $ (-1085)) NIL) (((-588 (-708)) $ (-588 (-1085))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-1085) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-1085) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-1085) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-1085)) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) 25) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-1085)) 27) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-881 |#1|) (-13 (-878 |#1| (-494 (-1085)) (-1085)) (-10 -8 (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1085))) |%noBranch|))) (-971)) (T -881))
+((-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-881 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)))))
+(-13 (-878 |#1| (-494 (-1085)) (-1085)) (-10 -8 (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1085))) |%noBranch|)))
+((-2345 (((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) |#3| (-708)) 37)) (-1706 (((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) (-382 (-522)) (-708)) 33)) (-3171 (((-2 (|:| -1400 (-708)) (|:| -2977 |#4|) (|:| |radicand| (-588 |#4|))) |#4| (-708)) 52)) (-2961 (((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) |#5| (-708)) 62 (|has| |#3| (-426)))))
+(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2345 ((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) |#3| (-708))) (-15 -1706 ((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) (-382 (-522)) (-708))) (IF (|has| |#3| (-426)) (-15 -2961 ((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) |#5| (-708))) |%noBranch|) (-15 -3171 ((-2 (|:| -1400 (-708)) (|:| -2977 |#4|) (|:| |radicand| (-588 |#4|))) |#4| (-708)))) (-730) (-784) (-514) (-878 |#3| |#1| |#2|) (-13 (-338) (-10 -8 (-15 -2805 (|#4| $)) (-15 -2816 (|#4| $)) (-15 -2190 ($ |#4|))))) (T -882))
+((-3171 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) (-4 *3 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *3) (|:| |radicand| (-588 *3)))) (-5 *1 (-882 *5 *6 *7 *3 *8)) (-5 *4 (-708)) (-4 *8 (-13 (-338) (-10 -8 (-15 -2805 (*3 $)) (-15 -2816 (*3 $)) (-15 -2190 ($ *3))))))) (-2961 (*1 *2 *3 *4) (-12 (-4 *7 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) (-4 *8 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *3) (|:| |radicand| *3))) (-5 *1 (-882 *5 *6 *7 *8 *3)) (-5 *4 (-708)) (-4 *3 (-13 (-338) (-10 -8 (-15 -2805 (*8 $)) (-15 -2816 (*8 $)) (-15 -2190 ($ *8))))))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-522))) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514)) (-4 *8 (-878 *7 *5 *6)) (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *9) (|:| |radicand| *9))) (-5 *1 (-882 *5 *6 *7 *8 *9)) (-5 *4 (-708)) (-4 *9 (-13 (-338) (-10 -8 (-15 -2805 (*8 $)) (-15 -2816 (*8 $)) (-15 -2190 ($ *8))))))) (-2345 (*1 *2 *3 *4) (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-514)) (-4 *7 (-878 *3 *5 *6)) (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *8) (|:| |radicand| *8))) (-5 *1 (-882 *5 *6 *3 *7 *8)) (-5 *4 (-708)) (-4 *8 (-13 (-338) (-10 -8 (-15 -2805 (*7 $)) (-15 -2816 (*7 $)) (-15 -2190 ($ *7))))))))
+(-10 -7 (-15 -2345 ((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) |#3| (-708))) (-15 -1706 ((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) (-382 (-522)) (-708))) (IF (|has| |#3| (-426)) (-15 -2961 ((-2 (|:| -1400 (-708)) (|:| -2977 |#5|) (|:| |radicand| |#5|)) |#5| (-708))) |%noBranch|) (-15 -3171 ((-2 (|:| -1400 (-708)) (|:| -2977 |#4|) (|:| |radicand| (-588 |#4|))) |#4| (-708))))
+((-3808 (((-1009 (-202)) $) 8)) (-3794 (((-1009 (-202)) $) 9)) (-2745 (((-588 (-588 (-872 (-202)))) $) 10)) (-2190 (((-792) $) 6)))
+(((-883) (-1197)) (T -883))
+((-2745 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-588 (-588 (-872 (-202))))))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202))))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2745 ((-588 (-588 (-872 (-202)))) $)) (-15 -3794 ((-1009 (-202)) $)) (-15 -3808 ((-1009 (-202)) $))))
+(((-562 (-792)) . T))
+((-1597 (((-3 (-628 |#1|) "failed") |#2| (-850)) 14)))
+(((-884 |#1| |#2|) (-10 -7 (-15 -1597 ((-3 (-628 |#1|) "failed") |#2| (-850)))) (-514) (-598 |#1|)) (T -884))
+((-1597 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-850)) (-4 *5 (-514)) (-5 *2 (-628 *5)) (-5 *1 (-884 *5 *3)) (-4 *3 (-598 *5)))))
+(-10 -7 (-15 -1597 ((-3 (-628 |#1|) "failed") |#2| (-850))))
+((-3690 (((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|) 16)) (-3864 ((|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|) 18)) (-1391 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 13)))
+(((-885 |#1| |#2|) (-10 -7 (-15 -3690 ((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -1391 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1120) (-1120)) (T -885))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-886 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-885 *5 *2)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-886 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-886 *5)) (-5 *1 (-885 *6 *5)))))
+(-10 -7 (-15 -3690 ((-886 |#2|) (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-886 |#1|) |#2|)) (-15 -1391 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) |#1|) 17 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 16 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 14)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1811 (($ (-708) |#1|) 13)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) 10 (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) 12 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) 11)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) 15) (($ $ (-1133 (-522))) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) NIL)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-3480 (((-708) $) 8 (|has| $ (-6 -4238)))))
+(((-886 |#1|) (-19 |#1|) (-1120)) (T -886))
NIL
(-19 |#1|)
-((-3094 (($ $ (-1006 $)) 7) (($ $ (-1084)) 6)))
-(((-886) (-1196)) (T -886))
-((-3094 (*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-886)))) (-3094 (*1 *1 *1 *2) (-12 (-4 *1 (-886)) (-5 *2 (-1084)))))
-(-13 (-10 -8 (-15 -3094 ($ $ (-1084))) (-15 -3094 ($ $ (-1006 $)))))
-((-2464 (((-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-880 |#1|)) (-587 (-1084)) (-1084)) 23) (((-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-880 |#1|)) (-587 (-1084))) 24) (((-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 |#1|))) (-880 |#1|) (-1084) (-880 |#1|) (-1084)) 41)))
-(((-887 |#1|) (-10 -7 (-15 -2464 ((-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 |#1|))) (-880 |#1|) (-1084) (-880 |#1|) (-1084))) (-15 -2464 ((-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -2464 ((-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-880 |#1|)) (-587 (-1084)) (-1084)))) (-13 (-337) (-135))) (T -887))
-((-2464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-880 *6))) (-5 *4 (-587 (-1084))) (-5 *5 (-1084)) (-4 *6 (-13 (-337) (-135))) (-5 *2 (-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 *6))) (|:| |prim| (-1080 *6)))) (-5 *1 (-887 *6)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-337) (-135))) (-5 *2 (-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 *5))) (|:| |prim| (-1080 *5)))) (-5 *1 (-887 *5)))) (-2464 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1084)) (-4 *5 (-13 (-337) (-135))) (-5 *2 (-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 *5)))) (-5 *1 (-887 *5)))))
-(-10 -7 (-15 -2464 ((-2 (|:| |coef1| (-521)) (|:| |coef2| (-521)) (|:| |prim| (-1080 |#1|))) (-880 |#1|) (-1084) (-880 |#1|) (-1084))) (-15 -2464 ((-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-880 |#1|)) (-587 (-1084)))) (-15 -2464 ((-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 |#1|))) (|:| |prim| (-1080 |#1|))) (-587 (-880 |#1|)) (-587 (-1084)) (-1084))))
-((-2370 (((-587 |#1|) |#1| |#1|) 42)) (-2100 (((-108) |#1|) 39)) (-4131 ((|#1| |#1|) 65)) (-1943 ((|#1| |#1|) 64)))
-(((-888 |#1|) (-10 -7 (-15 -2100 ((-108) |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -2370 ((-587 |#1|) |#1| |#1|))) (-506)) (T -888))
-((-2370 (*1 *2 *3 *3) (-12 (-5 *2 (-587 *3)) (-5 *1 (-888 *3)) (-4 *3 (-506)))) (-4131 (*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-506)))) (-1943 (*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-506)))) (-2100 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-888 *3)) (-4 *3 (-506)))))
-(-10 -7 (-15 -2100 ((-108) |#1|)) (-15 -1943 (|#1| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -2370 ((-587 |#1|) |#1| |#1|)))
-((-2093 (((-1170) (-791)) 9)))
-(((-889) (-10 -7 (-15 -2093 ((-1170) (-791))))) (T -889))
-((-2093 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-889)))))
-(-10 -7 (-15 -2093 ((-1170) (-791))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 63 (|has| |#1| (-513)))) (-1954 (($ $) 64 (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 28)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3157 (($ $) 24)) (-2783 (((-3 $ "failed") $) 35)) (-1563 (($ $) NIL (|has| |#1| (-425)))) (-1709 (($ $ |#1| |#2| $) 48)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) 16)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| |#2|) NIL)) (-2401 ((|#2| $) 19)) (-2310 (($ (-1 |#2| |#2|) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3130 (($ $) 23)) (-3140 ((|#1| $) 21)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) 40)) (-3120 ((|#1| $) NIL)) (-3925 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-513))))) (-2261 (((-3 $ "failed") $ $) 74 (|has| |#1| (-513))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-513)))) (-2098 ((|#2| $) 17)) (-1391 ((|#1| $) NIL (|has| |#1| (-425)))) (-2223 (((-791) $) NIL) (($ (-521)) 39) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 34) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ |#2|) 31)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) 15)) (-1413 (($ $ $ (-707)) 59 (|has| |#1| (-157)))) (-1842 (((-108) $ $) 69 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 55) (($ $ (-707)) 56)) (-3562 (($) 22 T CONST)) (-3572 (($) 12 T CONST)) (-1549 (((-108) $ $) 68)) (-1648 (($ $ |#1|) 75 (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) 54) (($ $ (-707)) 52)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-890 |#1| |#2|) (-13 (-300 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| |#2| (-124)) (-15 -3925 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|))) (-970) (-728)) (T -890))
-((-3925 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-890 *3 *2)) (-4 *2 (-124)) (-4 *3 (-513)) (-4 *3 (-970)) (-4 *2 (-728)))))
-(-13 (-300 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| |#2| (-124)) (-15 -3925 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (-2303 (($ $ $) 63 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (-2057 (((-3 $ "failed") $ $) 50 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (-1659 (((-707)) 34 (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-3449 ((|#2| $) 21)) (-2541 ((|#1| $) 20)) (-2231 (($) NIL (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) CONST)) (-2783 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (-3254 (($) NIL (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-3637 (((-108) $) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (-2816 (($ $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-2459 (($ $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-4140 (($ |#1| |#2|) 19)) (-3999 (((-849) $) NIL (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 37 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-2723 (($ (-849)) NIL (-12 (|has| |#1| (-342)) (|has| |#2| (-342))))) (-4146 (((-1031) $) NIL)) (-1484 (($ $ $) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-2062 (($ $ $) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-2223 (((-791) $) 14)) (-3509 (($ $ (-521)) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))) (($ $ (-849)) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (-3562 (($) 40 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))) CONST)) (-3572 (($) 24 (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-1597 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1579 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1549 (((-108) $ $) 18)) (-1588 (((-108) $ $) NIL (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1569 (((-108) $ $) 66 (-3703 (-12 (|has| |#1| (-729)) (|has| |#2| (-729))) (-12 (|has| |#1| (-783)) (|has| |#2| (-783)))))) (-1648 (($ $ $) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446))))) (-1639 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1628 (($ $ $) 43 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729)))))) (** (($ $ (-521)) NIL (-12 (|has| |#1| (-446)) (|has| |#2| (-446)))) (($ $ (-707)) 31 (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))) (($ $ (-849)) NIL (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))) (* (($ (-521) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-707) $) 46 (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (($ (-849) $) NIL (-3703 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-729)) (|has| |#2| (-729))))) (($ $ $) 27 (-3703 (-12 (|has| |#1| (-446)) (|has| |#2| (-446))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))))))
-(((-891 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-446)) (-6 (-446)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-729)) (IF (|has| |#2| (-729)) (-6 (-729)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-783)) (IF (|has| |#2| (-783)) (-6 (-783)) |%noBranch|) |%noBranch|) (-15 -4140 ($ |#1| |#2|)) (-15 -2541 (|#1| $)) (-15 -3449 (|#2| $)))) (-1013) (-1013)) (T -891))
-((-4140 (*1 *1 *2 *3) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2541 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1013)))) (-3449 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1013)))))
-(-13 (-1013) (-10 -8 (IF (|has| |#1| (-342)) (IF (|has| |#2| (-342)) (-6 (-342)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-446)) (-6 (-446)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-729)) (IF (|has| |#2| (-729)) (-6 (-729)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-783)) (IF (|has| |#2| (-783)) (-6 (-783)) |%noBranch|) |%noBranch|) (-15 -4140 ($ |#1| |#2|)) (-15 -2541 (|#1| $)) (-15 -3449 (|#2| $))))
-((-3434 (((-1017) $) 12)) (-1987 (($ (-1084) (-1017)) 13)) (-2890 (((-1084) $) 10)) (-2223 (((-791) $) 24)))
-(((-892) (-13 (-561 (-791)) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -3434 ((-1017) $)) (-15 -1987 ($ (-1084) (-1017)))))) (T -892))
-((-2890 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-892)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-892)))) (-1987 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-892)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2890 ((-1084) $)) (-15 -3434 ((-1017) $)) (-15 -1987 ($ (-1084) (-1017)))))
-((-4085 (((-1015 (-1084)) $) 19)) (-2141 (((-108) $) 26)) (-1638 (((-1084) $) 27)) (-3578 (((-108) $) 24)) (-2508 ((|#1| $) 25)) (-2799 (((-801 $ $) $) 34)) (-2304 (((-108) $) 33)) (-3994 (($ $ $) 12)) (-2999 (($ $) 29)) (-2574 (((-108) $) 28)) (-2416 (($ $) 10)) (-3366 (((-801 $ $) $) 36)) (-4077 (((-108) $) 35)) (-3338 (($ $ $) 13)) (-2323 (((-801 $ $) $) 38)) (-2017 (((-108) $) 37)) (-2810 (($ $ $) 14)) (-2223 (($ |#1|) 7) (($ (-1084)) 9) (((-791) $) 40 (|has| |#1| (-561 (-791))))) (-2821 (((-801 $ $) $) 32)) (-1586 (((-108) $) 30)) (-4009 (($ $ $) 11)))
-(((-893 |#1|) (-13 (-894) (-10 -8 (IF (|has| |#1| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) (-15 -2223 ($ |#1|)) (-15 -2223 ($ (-1084))) (-15 -4085 ((-1015 (-1084)) $)) (-15 -3578 ((-108) $)) (-15 -2508 (|#1| $)) (-15 -2141 ((-108) $)) (-15 -1638 ((-1084) $)) (-15 -2574 ((-108) $)) (-15 -2999 ($ $)) (-15 -1586 ((-108) $)) (-15 -2821 ((-801 $ $) $)) (-15 -2304 ((-108) $)) (-15 -2799 ((-801 $ $) $)) (-15 -4077 ((-108) $)) (-15 -3366 ((-801 $ $) $)) (-15 -2017 ((-108) $)) (-15 -2323 ((-801 $ $) $)))) (-894)) (T -893))
-((-2223 (*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-1015 (-1084))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2508 (*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2574 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2999 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(-13 (-894) (-10 -8 (IF (|has| |#1| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) (-15 -2223 ($ |#1|)) (-15 -2223 ($ (-1084))) (-15 -4085 ((-1015 (-1084)) $)) (-15 -3578 ((-108) $)) (-15 -2508 (|#1| $)) (-15 -2141 ((-108) $)) (-15 -1638 ((-1084) $)) (-15 -2574 ((-108) $)) (-15 -2999 ($ $)) (-15 -1586 ((-108) $)) (-15 -2821 ((-801 $ $) $)) (-15 -2304 ((-108) $)) (-15 -2799 ((-801 $ $) $)) (-15 -4077 ((-108) $)) (-15 -3366 ((-801 $ $) $)) (-15 -2017 ((-108) $)) (-15 -2323 ((-801 $ $) $))))
-((-3994 (($ $ $) 8)) (-2416 (($ $) 6)) (-3338 (($ $ $) 9)) (-2810 (($ $ $) 10)) (-4009 (($ $ $) 7)))
-(((-894) (-1196)) (T -894))
-((-2810 (*1 *1 *1 *1) (-4 *1 (-894))) (-3338 (*1 *1 *1 *1) (-4 *1 (-894))) (-3994 (*1 *1 *1 *1) (-4 *1 (-894))) (-4009 (*1 *1 *1 *1) (-4 *1 (-894))) (-2416 (*1 *1 *1) (-4 *1 (-894))))
-(-13 (-10 -8 (-15 -2416 ($ $)) (-15 -4009 ($ $ $)) (-15 -3994 ($ $ $)) (-15 -3338 ($ $ $)) (-15 -2810 ($ $ $))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-4162 (($ $ $) 43)) (-3389 (($ $ $) 44)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2459 ((|#1| $) 45)) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-895 |#1|) (-1196) (-783)) (T -895))
-((-2459 (*1 *2 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-783)))) (-3389 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-783)))) (-4162 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-783)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4233) (-15 -2459 (|t#1| $)) (-15 -3389 ($ $ $)) (-15 -4162 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1736 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2286 |#2|)) |#2| |#2|) 85)) (-4127 ((|#2| |#2| |#2|) 83)) (-1694 (((-2 (|:| |coef2| |#2|) (|:| -2286 |#2|)) |#2| |#2|) 87)) (-3273 (((-2 (|:| |coef1| |#2|) (|:| -2286 |#2|)) |#2| |#2|) 89)) (-2041 (((-2 (|:| |coef2| |#2|) (|:| -2380 |#1|)) |#2| |#2|) 107 (|has| |#1| (-425)))) (-1637 (((-2 (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|) 46)) (-2971 (((-2 (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|) 64)) (-3612 (((-2 (|:| |coef1| |#2|) (|:| -3052 |#1|)) |#2| |#2|) 66)) (-3628 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1888 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 71)) (-3345 (((-2 (|:| |coef2| |#2|) (|:| -3011 |#1|)) |#2|) 97)) (-1620 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 74)) (-3735 (((-587 (-707)) |#2| |#2|) 82)) (-2878 ((|#1| |#2| |#2|) 42)) (-1988 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2380 |#1|)) |#2| |#2|) 105 (|has| |#1| (-425)))) (-2380 ((|#1| |#2| |#2|) 103 (|has| |#1| (-425)))) (-2981 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|) 44)) (-2364 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|) 63)) (-3052 ((|#1| |#2| |#2|) 61)) (-2483 (((-2 (|:| -2979 |#1|) (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2|) 35)) (-3367 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3538 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3543 ((|#2| |#2| |#2|) 75)) (-1331 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 69)) (-1856 ((|#2| |#2| |#2| (-707)) 67)) (-2286 ((|#2| |#2| |#2|) 111 (|has| |#1| (-425)))) (-2261 (((-1165 |#2|) (-1165 |#2|) |#1|) 21)) (-1904 (((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2|) 39)) (-3853 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3011 |#1|)) |#2|) 95)) (-3011 ((|#1| |#2|) 92)) (-2635 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707)) 73)) (-2305 ((|#2| |#2| |#2| (-707)) 72)) (-4011 (((-587 |#2|) |#2| |#2|) 80)) (-2113 ((|#2| |#2| |#1| |#1| (-707)) 50)) (-1760 ((|#1| |#1| |#1| (-707)) 49)) (* (((-1165 |#2|) |#1| (-1165 |#2|)) 16)))
-(((-896 |#1| |#2|) (-10 -7 (-15 -3052 (|#1| |#2| |#2|)) (-15 -2364 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -2971 ((-2 (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -3612 ((-2 (|:| |coef1| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -1856 (|#2| |#2| |#2| (-707))) (-15 -1331 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -1888 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -2305 (|#2| |#2| |#2| (-707))) (-15 -2635 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -1620 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -3543 (|#2| |#2| |#2|)) (-15 -3538 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3628 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4127 (|#2| |#2| |#2|)) (-15 -1736 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2286 |#2|)) |#2| |#2|)) (-15 -1694 ((-2 (|:| |coef2| |#2|) (|:| -2286 |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef1| |#2|) (|:| -2286 |#2|)) |#2| |#2|)) (-15 -3011 (|#1| |#2|)) (-15 -3853 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3011 |#1|)) |#2|)) (-15 -3345 ((-2 (|:| |coef2| |#2|) (|:| -3011 |#1|)) |#2|)) (-15 -4011 ((-587 |#2|) |#2| |#2|)) (-15 -3735 ((-587 (-707)) |#2| |#2|)) (IF (|has| |#1| (-425)) (PROGN (-15 -2380 (|#1| |#2| |#2|)) (-15 -1988 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2380 |#1|)) |#2| |#2|)) (-15 -2041 ((-2 (|:| |coef2| |#2|) (|:| -2380 |#1|)) |#2| |#2|)) (-15 -2286 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1165 |#2|) |#1| (-1165 |#2|))) (-15 -2261 ((-1165 |#2|) (-1165 |#2|) |#1|)) (-15 -2483 ((-2 (|:| -2979 |#1|) (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2|)) (-15 -1904 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-707))) (-15 -2113 (|#2| |#2| |#1| |#1| (-707))) (-15 -3367 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2878 (|#1| |#2| |#2|)) (-15 -2981 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -1637 ((-2 (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|))) (-513) (-1141 |#1|)) (T -896))
-((-1637 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3052 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2981 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3052 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))) (-3367 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-2113 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-1760 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *2 (-513)) (-5 *1 (-896 *2 *4)) (-4 *4 (-1141 *2)))) (-1904 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2483 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -2979 *4) (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2261 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513)) (-5 *1 (-896 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513)) (-5 *1 (-896 *3 *4)))) (-2286 (*1 *2 *2 *2) (-12 (-4 *3 (-425)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-2041 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2380 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2380 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2380 (*1 *2 *3 *3) (-12 (-4 *2 (-513)) (-4 *2 (-425)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))) (-3735 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-707))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-4011 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3011 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3853 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3011 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3011 (*1 *2 *3) (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2286 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1694 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2286 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-1736 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2286 *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-4127 (*1 *2 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-3628 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3538 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3543 (*1 *2 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))) (-1620 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-2635 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-2305 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2)) (-4 *2 (-1141 *4)))) (-1888 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-1331 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))) (-1856 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2)) (-4 *2 (-1141 *4)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3052 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2971 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3052 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-2364 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3052 *4))) (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))) (-3052 (*1 *2 *3 *3) (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))))
-(-10 -7 (-15 -3052 (|#1| |#2| |#2|)) (-15 -2364 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -2971 ((-2 (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -3612 ((-2 (|:| |coef1| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -1856 (|#2| |#2| |#2| (-707))) (-15 -1331 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -1888 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -2305 (|#2| |#2| |#2| (-707))) (-15 -2635 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -1620 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-707))) (-15 -3543 (|#2| |#2| |#2|)) (-15 -3538 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3628 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4127 (|#2| |#2| |#2|)) (-15 -1736 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2286 |#2|)) |#2| |#2|)) (-15 -1694 ((-2 (|:| |coef2| |#2|) (|:| -2286 |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef1| |#2|) (|:| -2286 |#2|)) |#2| |#2|)) (-15 -3011 (|#1| |#2|)) (-15 -3853 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3011 |#1|)) |#2|)) (-15 -3345 ((-2 (|:| |coef2| |#2|) (|:| -3011 |#1|)) |#2|)) (-15 -4011 ((-587 |#2|) |#2| |#2|)) (-15 -3735 ((-587 (-707)) |#2| |#2|)) (IF (|has| |#1| (-425)) (PROGN (-15 -2380 (|#1| |#2| |#2|)) (-15 -1988 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2380 |#1|)) |#2| |#2|)) (-15 -2041 ((-2 (|:| |coef2| |#2|) (|:| -2380 |#1|)) |#2| |#2|)) (-15 -2286 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1165 |#2|) |#1| (-1165 |#2|))) (-15 -2261 ((-1165 |#2|) (-1165 |#2|) |#1|)) (-15 -2483 ((-2 (|:| -2979 |#1|) (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2|)) (-15 -1904 ((-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) |#2| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-707))) (-15 -2113 (|#2| |#2| |#1| |#1| (-707))) (-15 -3367 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2878 (|#1| |#2| |#2|)) (-15 -2981 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)) (-15 -1637 ((-2 (|:| |coef2| |#2|) (|:| -3052 |#1|)) |#2| |#2|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) 27)) (-2231 (($) NIL T CONST)) (-3840 (((-587 (-587 (-521))) (-587 (-521))) 29)) (-2934 (((-521) $) 45)) (-3671 (($ (-587 (-521))) 17)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1438 (((-587 (-521)) $) 11)) (-1484 (($ $) 32)) (-2223 (((-791) $) 43) (((-587 (-521)) $) 9)) (-3562 (($) 7 T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 20)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 19)) (-1628 (($ $ $) 21)) (* (($ (-707) $) 25) (($ (-849) $) NIL)))
-(((-897) (-13 (-731) (-562 (-587 (-521))) (-10 -8 (-15 -3671 ($ (-587 (-521)))) (-15 -3840 ((-587 (-587 (-521))) (-587 (-521)))) (-15 -2934 ((-521) $)) (-15 -1484 ($ $)) (-15 -2223 ((-587 (-521)) $))))) (T -897))
-((-3671 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897)))) (-3840 (*1 *2 *3) (-12 (-5 *2 (-587 (-587 (-521)))) (-5 *1 (-897)) (-5 *3 (-587 (-521))))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-897)))) (-1484 (*1 *1 *1) (-5 *1 (-897))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897)))))
-(-13 (-731) (-562 (-587 (-521))) (-10 -8 (-15 -3671 ($ (-587 (-521)))) (-15 -3840 ((-587 (-587 (-521))) (-587 (-521)))) (-15 -2934 ((-521) $)) (-15 -1484 ($ $)) (-15 -2223 ((-587 (-521)) $))))
-((-1648 (($ $ |#2|) 30)) (-1639 (($ $) 22) (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-381 (-521)) $) 26) (($ $ (-381 (-521))) 28)))
-(((-898 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1648 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|))) (-899 |#2| |#3| |#4|) (-970) (-728) (-783)) (T -898))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-381 (-521)))) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 -1648 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 * (|#1| (-849) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 |#3|) $) 74)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-4193 (((-108) $) 73)) (-3637 (((-108) $) 31)) (-3573 (((-108) $) 62)) (-4044 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-587 |#3|) (-587 |#2|)) 75)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-2098 ((|#2| $) 64)) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1499 ((|#1| $ |#2|) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-899 |#1| |#2| |#3|) (-1196) (-970) (-728) (-783)) (T -899))
-((-3140 (*1 *2 *1) (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *3 (-728)) (-4 *4 (-783)) (-4 *2 (-970)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *4 (-783)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-899 *3 *2 *4)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *2 (-728)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-899 *4 *3 *2)) (-4 *4 (-970)) (-4 *3 (-728)) (-4 *2 (-783)))) (-4044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 *5)) (-4 *1 (-899 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-728)) (-4 *6 (-783)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-587 *5)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2145 (*1 *1 *1) (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728)) (-4 *4 (-783)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -4044 ($ $ |t#3| |t#2|)) (-15 -4044 ($ $ (-587 |t#3|) (-587 |t#2|))) (-15 -3130 ($ $)) (-15 -3140 (|t#1| $)) (-15 -2098 (|t#2| $)) (-15 -4085 ((-587 |t#3|) $)) (-15 -4193 ((-108) $)) (-15 -2145 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-265) |has| |#1| (-513)) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-3816 (((-1008 (-202)) $) 8)) (-3803 (((-1008 (-202)) $) 9)) (-3789 (((-1008 (-202)) $) 10)) (-3633 (((-587 (-587 (-871 (-202)))) $) 11)) (-2223 (((-791) $) 6)))
-(((-900) (-1196)) (T -900))
-((-3633 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-587 (-587 (-871 (-202))))))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
-(-13 (-561 (-791)) (-10 -8 (-15 -3633 ((-587 (-587 (-871 (-202)))) $)) (-15 -3789 ((-1008 (-202)) $)) (-15 -3803 ((-1008 (-202)) $)) (-15 -3816 ((-1008 (-202)) $))))
-(((-561 (-791)) . T))
-((-4085 (((-587 |#4|) $) 23)) (-2856 (((-108) $) 48)) (-2750 (((-108) $) 47)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#4|) 36)) (-1616 (((-108) $) 49)) (-3514 (((-108) $ $) 55)) (-3515 (((-108) $ $) 58)) (-2512 (((-108) $) 53)) (-2122 (((-587 |#5|) (-587 |#5|) $) 90)) (-3476 (((-587 |#5|) (-587 |#5|) $) 87)) (-2334 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2963 (((-587 |#4|) $) 27)) (-4065 (((-108) |#4| $) 30)) (-2923 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3680 (($ $ |#4|) 33)) (-2600 (($ $ |#4|) 32)) (-2222 (($ $ |#4|) 34)) (-1549 (((-108) $ $) 40)))
-(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2750 ((-108) |#1|)) (-15 -2122 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -3476 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -2334 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2923 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1616 ((-108) |#1|)) (-15 -3515 ((-108) |#1| |#1|)) (-15 -3514 ((-108) |#1| |#1|)) (-15 -2512 ((-108) |#1|)) (-15 -2856 ((-108) |#1|)) (-15 -3215 ((-2 (|:| |under| |#1|) (|:| -2720 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3680 (|#1| |#1| |#4|)) (-15 -2222 (|#1| |#1| |#4|)) (-15 -2600 (|#1| |#1| |#4|)) (-15 -4065 ((-108) |#4| |#1|)) (-15 -2963 ((-587 |#4|) |#1|)) (-15 -4085 ((-587 |#4|) |#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-902 |#2| |#3| |#4| |#5|) (-970) (-729) (-783) (-984 |#2| |#3| |#4|)) (T -901))
-NIL
-(-10 -8 (-15 -2750 ((-108) |#1|)) (-15 -2122 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -3476 ((-587 |#5|) (-587 |#5|) |#1|)) (-15 -2334 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2923 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1616 ((-108) |#1|)) (-15 -3515 ((-108) |#1| |#1|)) (-15 -3514 ((-108) |#1| |#1|)) (-15 -2512 ((-108) |#1|)) (-15 -2856 ((-108) |#1|)) (-15 -3215 ((-2 (|:| |under| |#1|) (|:| -2720 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3680 (|#1| |#1| |#4|)) (-15 -2222 (|#1| |#1| |#4|)) (-15 -2600 (|#1| |#1| |#4|)) (-15 -4065 ((-108) |#4| |#1|)) (-15 -2963 ((-587 |#4|) |#1|)) (-15 -4085 ((-587 |#4|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-4085 (((-587 |#3|) $) 33)) (-2856 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-513)))) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-108) $ (-707)) 44)) (-1658 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233)))) (-2231 (($) 45 T CONST)) (-1616 (((-108) $) 22 (|has| |#1| (-513)))) (-3514 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3515 (((-108) $ $) 23 (|has| |#1| (-513)))) (-2512 (((-108) $) 25 (|has| |#1| (-513)))) (-2122 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 36)) (-1496 (($ (-587 |#4|)) 35)) (-2354 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233)))) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-3131 ((|#3| $) 34)) (-1513 (((-108) $ (-707)) 43)) (-3568 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 47)) (-2963 (((-587 |#3|) $) 32)) (-4065 (((-108) |#3| $) 31)) (-2859 (((-108) $ (-707)) 42)) (-4024 (((-1067) $) 9)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-4146 (((-1031) $) 10)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1936 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) 38)) (-1447 (((-108) $) 41)) (-2280 (($) 40)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2420 (($ $) 39)) (-1438 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 60)) (-3680 (($ $ |#3|) 28)) (-2600 (($ $ |#3|) 30)) (-2222 (($ $ |#3|) 29)) (-2223 (((-791) $) 11) (((-587 |#4|) $) 37)) (-2006 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 6)) (-3478 (((-707) $) 46 (|has| $ (-6 -4233)))))
-(((-902 |#1| |#2| |#3| |#4|) (-1196) (-970) (-729) (-783) (-984 |t#1| |t#2| |t#3|)) (T -902))
-((-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *1 (-902 *3 *4 *5 *6)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *1 (-902 *3 *4 *5 *6)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-984 *3 *4 *2)) (-4 *2 (-783)))) (-4085 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))) (-4065 (*1 *2 *3 *1) (-12 (-4 *1 (-902 *4 *5 *3 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108)))) (-2600 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *5 (-984 *3 *4 *2)))) (-2222 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *5 (-984 *3 *4 *2)))) (-3680 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)) (-4 *5 (-984 *3 *4 *2)))) (-3215 (*1 *2 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2720 *1) (|:| |upper| *1))) (-4 *1 (-902 *4 *5 *3 *6)))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-3515 (*1 *2 *1 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))) (-2923 (*1 *2 *3 *1) (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2334 (*1 *2 *3 *1) (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3476 (*1 *2 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)))) (-2122 (*1 *2 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-5 *2 (-108)))))
-(-13 (-1013) (-139 |t#4|) (-561 (-587 |t#4|)) (-10 -8 (-6 -4233) (-15 -1296 ((-3 $ "failed") (-587 |t#4|))) (-15 -1496 ($ (-587 |t#4|))) (-15 -3131 (|t#3| $)) (-15 -4085 ((-587 |t#3|) $)) (-15 -2963 ((-587 |t#3|) $)) (-15 -4065 ((-108) |t#3| $)) (-15 -2600 ($ $ |t#3|)) (-15 -2222 ($ $ |t#3|)) (-15 -3680 ($ $ |t#3|)) (-15 -3215 ((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |t#3|)) (-15 -2856 ((-108) $)) (IF (|has| |t#1| (-513)) (PROGN (-15 -2512 ((-108) $)) (-15 -3514 ((-108) $ $)) (-15 -3515 ((-108) $ $)) (-15 -1616 ((-108) $)) (-15 -2923 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2334 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3476 ((-587 |t#4|) (-587 |t#4|) $)) (-15 -2122 ((-587 |t#4|) (-587 |t#4|) $)) (-15 -2750 ((-108) $))) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-791)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-1013) . T) ((-1119) . T))
-((-3401 (((-587 |#4|) |#4| |#4|) 115)) (-1622 (((-587 |#4|) (-587 |#4|) (-108)) 104 (|has| |#1| (-425))) (((-587 |#4|) (-587 |#4|)) 105 (|has| |#1| (-425)))) (-3028 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 35)) (-4057 (((-108) |#4|) 34)) (-3491 (((-587 |#4|) |#4|) 101 (|has| |#1| (-425)))) (-1589 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-108) |#4|) (-587 |#4|)) 20)) (-2120 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|)) 22)) (-1931 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|)) 23)) (-2811 (((-3 (-2 (|:| |bas| (-449 |#1| |#2| |#3| |#4|)) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|)) 73)) (-3714 (((-587 |#4|) (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2849 (((-587 |#4|) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-3116 (((-587 |#4|) (-587 |#4|)) 107)) (-1938 (((-587 |#4|) (-587 |#4|) (-587 |#4|) (-108)) 48) (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 50)) (-1349 ((|#4| |#4| (-587 |#4|)) 49)) (-3873 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 111 (|has| |#1| (-425)))) (-3958 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 114 (|has| |#1| (-425)))) (-2548 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 113 (|has| |#1| (-425)))) (-3544 (((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|))) 87) (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 89) (((-587 |#4|) (-587 |#4|) |#4|) 118) (((-587 |#4|) |#4| |#4|) 116) (((-587 |#4|) (-587 |#4|)) 88)) (-1400 (((-587 |#4|) (-587 |#4|) (-587 |#4|)) 98 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-2927 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 41)) (-2815 (((-108) (-587 |#4|)) 62)) (-2621 (((-108) (-587 |#4|) (-587 (-587 |#4|))) 53)) (-1925 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 29)) (-1985 (((-108) |#4|) 28)) (-3863 (((-587 |#4|) (-587 |#4|)) 97 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-3580 (((-587 |#4|) (-587 |#4|)) 96 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-3668 (((-587 |#4|) (-587 |#4|)) 66)) (-1798 (((-587 |#4|) (-587 |#4|)) 79)) (-2781 (((-108) (-587 |#4|) (-587 |#4|)) 51)) (-2412 (((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|)) 39)) (-4045 (((-108) |#4|) 36)))
-(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3544 ((-587 |#4|) (-587 |#4|))) (-15 -3544 ((-587 |#4|) |#4| |#4|)) (-15 -3116 ((-587 |#4|) (-587 |#4|))) (-15 -3401 ((-587 |#4|) |#4| |#4|)) (-15 -3544 ((-587 |#4|) (-587 |#4|) |#4|)) (-15 -3544 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -3544 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|)))) (-15 -2781 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2621 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -2815 ((-108) (-587 |#4|))) (-15 -1589 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-108) |#4|) (-587 |#4|))) (-15 -2120 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -1931 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -2927 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -4057 ((-108) |#4|)) (-15 -3028 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1985 ((-108) |#4|)) (-15 -1925 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -4045 ((-108) |#4|)) (-15 -2412 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1938 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -1938 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-108))) (-15 -1349 (|#4| |#4| (-587 |#4|))) (-15 -3668 ((-587 |#4|) (-587 |#4|))) (-15 -2811 ((-3 (-2 (|:| |bas| (-449 |#1| |#2| |#3| |#4|)) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|))) (-15 -1798 ((-587 |#4|) (-587 |#4|))) (-15 -3714 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2849 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-425)) (PROGN (-15 -3491 ((-587 |#4|) |#4|)) (-15 -1622 ((-587 |#4|) (-587 |#4|))) (-15 -1622 ((-587 |#4|) (-587 |#4|) (-108))) (-15 -3873 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2548 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -3958 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (PROGN (-15 -3580 ((-587 |#4|) (-587 |#4|))) (-15 -3863 ((-587 |#4|) (-587 |#4|))) (-15 -1400 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) |%noBranch|)) (-513) (-729) (-783) (-984 |#1| |#2| |#3|)) (T -903))
-((-1400 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3958 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2548 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3873 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-1622 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *7)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-2849 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-903 *5 *6 *7 *8)))) (-3714 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-587 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-783)) (-5 *1 (-903 *6 *7 *8 *9)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2811 (*1 *2 *3) (|partial| -12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-449 *4 *5 *6 *7)) (|:| -1354 (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-3668 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-1349 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *2)))) (-1938 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *7)))) (-1938 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2412 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-4045 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-1925 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-3028 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-2120 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-1589 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8)))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *7)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-108)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2781 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3544 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-587 *7) (-587 *7))) (-5 *2 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3544 (*1 *2 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3544 (*1 *2 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *3)))) (-3401 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))) (-3544 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3544 ((-587 |#4|) (-587 |#4|))) (-15 -3544 ((-587 |#4|) |#4| |#4|)) (-15 -3116 ((-587 |#4|) (-587 |#4|))) (-15 -3401 ((-587 |#4|) |#4| |#4|)) (-15 -3544 ((-587 |#4|) (-587 |#4|) |#4|)) (-15 -3544 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -3544 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-1 (-587 |#4|) (-587 |#4|)))) (-15 -2781 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -2621 ((-108) (-587 |#4|) (-587 (-587 |#4|)))) (-15 -2815 ((-108) (-587 |#4|))) (-15 -1589 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-1 (-108) |#4|) (-587 |#4|))) (-15 -2120 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -1931 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 (-1 (-108) |#4|)) (-587 |#4|))) (-15 -2927 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -4057 ((-108) |#4|)) (-15 -3028 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1985 ((-108) |#4|)) (-15 -1925 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -4045 ((-108) |#4|)) (-15 -2412 ((-2 (|:| |goodPols| (-587 |#4|)) (|:| |badPols| (-587 |#4|))) (-587 |#4|))) (-15 -1938 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -1938 ((-587 |#4|) (-587 |#4|) (-587 |#4|) (-108))) (-15 -1349 (|#4| |#4| (-587 |#4|))) (-15 -3668 ((-587 |#4|) (-587 |#4|))) (-15 -2811 ((-3 (-2 (|:| |bas| (-449 |#1| |#2| |#3| |#4|)) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|))) (-15 -1798 ((-587 |#4|) (-587 |#4|))) (-15 -3714 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2849 ((-587 |#4|) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-425)) (PROGN (-15 -3491 ((-587 |#4|) |#4|)) (-15 -1622 ((-587 |#4|) (-587 |#4|))) (-15 -1622 ((-587 |#4|) (-587 |#4|) (-108))) (-15 -3873 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -2548 ((-587 |#4|) (-587 |#4|) (-587 |#4|))) (-15 -3958 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (PROGN (-15 -3580 ((-587 |#4|) (-587 |#4|))) (-15 -3863 ((-587 |#4|) (-587 |#4|))) (-15 -1400 ((-587 |#4|) (-587 |#4|) (-587 |#4|)))) |%noBranch|) |%noBranch|))
-((-4120 (((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3661 (((-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|)) 36)) (-3112 (((-627 |#1|) (-627 |#1|) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-904 |#1|) (-10 -7 (-15 -4120 ((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3112 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3661 ((-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|)))) (-337)) (T -904))
-((-3661 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-5 *2 (-587 (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5))))) (-5 *1 (-904 *5)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)))) (-3112 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-627 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337)) (-5 *1 (-904 *5)))) (-4120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-337)) (-5 *2 (-2 (|:| R (-627 *6)) (|:| A (-627 *6)) (|:| |Ainv| (-627 *6)))) (-5 *1 (-904 *6)) (-5 *3 (-627 *6)))))
-(-10 -7 (-15 -4120 ((-2 (|:| R (-627 |#1|)) (|:| A (-627 |#1|)) (|:| |Ainv| (-627 |#1|))) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3112 ((-627 |#1|) (-627 |#1|) (-627 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3661 ((-587 (-2 (|:| C (-627 |#1|)) (|:| |g| (-1165 |#1|)))) (-627 |#1|) (-1165 |#1|))))
-((-2337 (((-392 |#4|) |#4|) 47)))
-(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2337 ((-392 |#4|) |#4|))) (-783) (-729) (-425) (-877 |#3| |#2| |#1|)) (T -905))
-((-2337 (*1 *2 *3) (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-425)) (-5 *2 (-392 *3)) (-5 *1 (-905 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
-(-10 -7 (-15 -2337 ((-392 |#4|) |#4|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3482 (($ (-707)) 112 (|has| |#1| (-23)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-3288 (($ $) 90 (|has| $ (-6 -4234)))) (-1924 (($ $) 100)) (-2354 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3236 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-2741 (($ (-587 |#1|)) 118)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3951 (((-627 |#1|) $ $) 105 (|has| |#1| (-970)))) (-1869 (($ (-707) |#1|) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 87 (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 86 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3020 ((|#1| $) 102 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-2859 (((-108) $ (-707)) 10)) (-2522 ((|#1| $) 103 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 42 (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2995 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-2191 (($ $ (-587 |#1|)) 115)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-4103 ((|#1| $ $) 106 (|has| |#1| (-970)))) (-2043 (((-849) $) 117)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-3255 (($ $ $) 104)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| |#1| (-562 (-497)))) (($ (-587 |#1|)) 116)) (-2234 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1588 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 82 (|has| |#1| (-783)))) (-1639 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1628 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-521) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-663))) (($ $ |#1|) 107 (|has| |#1| (-663)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-906 |#1|) (-1196) (-970)) (T -906))
-((-2741 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-906 *3)) (-4 *3 (-970)) (-5 *2 (-849)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3)))) (-3255 (*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-970)))) (-2191 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-906 *3)) (-4 *3 (-970)))))
-(-13 (-1163 |t#1|) (-10 -8 (-15 -2741 ($ (-587 |t#1|))) (-15 -2043 ((-849) $)) (-15 -1438 ($ (-587 |t#1|))) (-15 -3255 ($ $ $)) (-15 -2191 ($ $ (-587 |t#1|)))))
-(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-19 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-1119) . T) ((-1163 |#1|) . T))
-((-1393 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 17)))
-(((-907 |#1| |#2|) (-10 -7 (-15 -1393 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-970) (-970)) (T -907))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-871 *6)) (-5 *1 (-907 *5 *6)))))
-(-10 -7 (-15 -1393 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|))))
-((-3192 ((|#1| (-871 |#1|)) 13)) (-1804 ((|#1| (-871 |#1|)) 12)) (-1882 ((|#1| (-871 |#1|)) 11)) (-2909 ((|#1| (-871 |#1|)) 15)) (-3895 ((|#1| (-871 |#1|)) 21)) (-3604 ((|#1| (-871 |#1|)) 14)) (-3463 ((|#1| (-871 |#1|)) 16)) (-1249 ((|#1| (-871 |#1|)) 20)) (-3411 ((|#1| (-871 |#1|)) 19)))
-(((-908 |#1|) (-10 -7 (-15 -1882 (|#1| (-871 |#1|))) (-15 -1804 (|#1| (-871 |#1|))) (-15 -3192 (|#1| (-871 |#1|))) (-15 -3604 (|#1| (-871 |#1|))) (-15 -2909 (|#1| (-871 |#1|))) (-15 -3463 (|#1| (-871 |#1|))) (-15 -3411 (|#1| (-871 |#1|))) (-15 -1249 (|#1| (-871 |#1|))) (-15 -3895 (|#1| (-871 |#1|)))) (-970)) (T -908))
-((-3895 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-1249 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(-10 -7 (-15 -1882 (|#1| (-871 |#1|))) (-15 -1804 (|#1| (-871 |#1|))) (-15 -3192 (|#1| (-871 |#1|))) (-15 -3604 (|#1| (-871 |#1|))) (-15 -2909 (|#1| (-871 |#1|))) (-15 -3463 (|#1| (-871 |#1|))) (-15 -3411 (|#1| (-871 |#1|))) (-15 -1249 (|#1| (-871 |#1|))) (-15 -3895 (|#1| (-871 |#1|))))
-((-2034 (((-3 |#1| "failed") |#1|) 18)) (-3414 (((-3 |#1| "failed") |#1|) 6)) (-2925 (((-3 |#1| "failed") |#1|) 16)) (-4113 (((-3 |#1| "failed") |#1|) 4)) (-2079 (((-3 |#1| "failed") |#1|) 20)) (-1740 (((-3 |#1| "failed") |#1|) 8)) (-1578 (((-3 |#1| "failed") |#1| (-707)) 1)) (-1614 (((-3 |#1| "failed") |#1|) 3)) (-2748 (((-3 |#1| "failed") |#1|) 2)) (-3156 (((-3 |#1| "failed") |#1|) 21)) (-1492 (((-3 |#1| "failed") |#1|) 9)) (-1432 (((-3 |#1| "failed") |#1|) 19)) (-2163 (((-3 |#1| "failed") |#1|) 7)) (-3692 (((-3 |#1| "failed") |#1|) 17)) (-1547 (((-3 |#1| "failed") |#1|) 5)) (-3653 (((-3 |#1| "failed") |#1|) 24)) (-1294 (((-3 |#1| "failed") |#1|) 12)) (-3308 (((-3 |#1| "failed") |#1|) 22)) (-3917 (((-3 |#1| "failed") |#1|) 10)) (-4067 (((-3 |#1| "failed") |#1|) 26)) (-3099 (((-3 |#1| "failed") |#1|) 14)) (-1211 (((-3 |#1| "failed") |#1|) 27)) (-1210 (((-3 |#1| "failed") |#1|) 15)) (-1333 (((-3 |#1| "failed") |#1|) 25)) (-3040 (((-3 |#1| "failed") |#1|) 13)) (-2132 (((-3 |#1| "failed") |#1|) 23)) (-3535 (((-3 |#1| "failed") |#1|) 11)))
-(((-909 |#1|) (-1196) (-1105)) (T -909))
-((-1211 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-4067 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1333 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3653 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2132 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3308 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3156 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2079 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1432 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2034 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3692 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2925 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1210 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3099 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3040 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1294 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3535 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3917 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1492 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1740 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2163 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-3414 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1547 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-4113 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1614 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-2748 (*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))) (-1578 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-707)) (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(-13 (-10 -7 (-15 -1578 ((-3 |t#1| "failed") |t#1| (-707))) (-15 -2748 ((-3 |t#1| "failed") |t#1|)) (-15 -1614 ((-3 |t#1| "failed") |t#1|)) (-15 -4113 ((-3 |t#1| "failed") |t#1|)) (-15 -1547 ((-3 |t#1| "failed") |t#1|)) (-15 -3414 ((-3 |t#1| "failed") |t#1|)) (-15 -2163 ((-3 |t#1| "failed") |t#1|)) (-15 -1740 ((-3 |t#1| "failed") |t#1|)) (-15 -1492 ((-3 |t#1| "failed") |t#1|)) (-15 -3917 ((-3 |t#1| "failed") |t#1|)) (-15 -3535 ((-3 |t#1| "failed") |t#1|)) (-15 -1294 ((-3 |t#1| "failed") |t#1|)) (-15 -3040 ((-3 |t#1| "failed") |t#1|)) (-15 -3099 ((-3 |t#1| "failed") |t#1|)) (-15 -1210 ((-3 |t#1| "failed") |t#1|)) (-15 -2925 ((-3 |t#1| "failed") |t#1|)) (-15 -3692 ((-3 |t#1| "failed") |t#1|)) (-15 -2034 ((-3 |t#1| "failed") |t#1|)) (-15 -1432 ((-3 |t#1| "failed") |t#1|)) (-15 -2079 ((-3 |t#1| "failed") |t#1|)) (-15 -3156 ((-3 |t#1| "failed") |t#1|)) (-15 -3308 ((-3 |t#1| "failed") |t#1|)) (-15 -2132 ((-3 |t#1| "failed") |t#1|)) (-15 -3653 ((-3 |t#1| "failed") |t#1|)) (-15 -1333 ((-3 |t#1| "failed") |t#1|)) (-15 -4067 ((-3 |t#1| "failed") |t#1|)) (-15 -1211 ((-3 |t#1| "failed") |t#1|))))
-((-3222 ((|#4| |#4| (-587 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1348 ((|#4| |#4| (-587 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1393 ((|#4| (-1 |#4| (-880 |#1|)) |#4|) 30)))
-(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1348 (|#4| |#4| |#3|)) (-15 -1348 (|#4| |#4| (-587 |#3|))) (-15 -3222 (|#4| |#4| |#3|)) (-15 -3222 (|#4| |#4| (-587 |#3|))) (-15 -1393 (|#4| (-1 |#4| (-880 |#1|)) |#4|))) (-970) (-729) (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084))))) (-877 (-880 |#1|) |#2| |#3|)) (T -910))
-((-1393 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-880 *4))) (-4 *4 (-970)) (-4 *2 (-877 (-880 *4) *5 *6)) (-4 *5 (-729)) (-4 *6 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-5 *1 (-910 *4 *5 *6 *2)))) (-3222 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2)) (-4 *2 (-877 (-880 *4) *5 *6)))) (-3222 (*1 *2 *2 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3)))) (-1348 (*1 *2 *2 *3) (-12 (-5 *3 (-587 *6)) (-4 *6 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2)) (-4 *2 (-877 (-880 *4) *5 *6)))) (-1348 (*1 *2 *2 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)) (-15 -1638 ((-3 $ "failed") (-1084)))))) (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3)))))
-(-10 -7 (-15 -1348 (|#4| |#4| |#3|)) (-15 -1348 (|#4| |#4| (-587 |#3|))) (-15 -3222 (|#4| |#4| |#3|)) (-15 -3222 (|#4| |#4| (-587 |#3|))) (-15 -1393 (|#4| (-1 |#4| (-880 |#1|)) |#4|)))
-((-3487 ((|#2| |#3|) 34)) (-1635 (((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|) 71)) (-3807 (((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) 86)))
-(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3807 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -1635 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)) (-15 -3487 (|#2| |#3|))) (-323) (-1141 |#1|) (-1141 |#2|) (-661 |#2| |#3|)) (T -911))
-((-3487 (*1 *2 *3) (-12 (-4 *3 (-1141 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-911 *4 *2 *3 *5)) (-4 *4 (-323)) (-4 *5 (-661 *2 *3)))) (-1635 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3)) (-5 *2 (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-911 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3807 (*1 *2) (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -1245 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))))
-(-10 -7 (-15 -3807 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -1635 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)) (-15 -3487 (|#2| |#3|)))
-((-3884 (((-913 (-381 (-521)) (-793 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))) (-913 (-381 (-521)) (-793 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521))))) 65)))
-(((-912 |#1| |#2|) (-10 -7 (-15 -3884 ((-913 (-381 (-521)) (-793 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))) (-913 (-381 (-521)) (-793 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521))))))) (-587 (-1084)) (-707)) (T -912))
-((-3884 (*1 *2 *2) (-12 (-5 *2 (-913 (-381 (-521)) (-793 *3) (-217 *4 (-707)) (-224 *3 (-381 (-521))))) (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-912 *3 *4)))))
-(-10 -7 (-15 -3884 ((-913 (-381 (-521)) (-793 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))) (-913 (-381 (-521)) (-793 |#1|) (-217 |#2| (-707)) (-224 |#1| (-381 (-521)))))))
-((-1422 (((-108) $ $) NIL)) (-2833 (((-3 (-108) "failed") $) 67)) (-1205 (($ $) 35 (-12 (|has| |#1| (-135)) (|has| |#1| (-282))))) (-2395 (($ $ (-3 (-108) "failed")) 68)) (-1542 (($ (-587 |#4|) |#4|) 24)) (-4024 (((-1067) $) NIL)) (-1692 (($ $) 65)) (-4146 (((-1031) $) NIL)) (-1447 (((-108) $) 66)) (-2280 (($) 29)) (-2710 ((|#4| $) 70)) (-3108 (((-587 |#4|) $) 69)) (-2223 (((-791) $) 64)) (-1549 (((-108) $ $) NIL)))
-(((-913 |#1| |#2| |#3| |#4|) (-13 (-1013) (-561 (-791)) (-10 -8 (-15 -2280 ($)) (-15 -1542 ($ (-587 |#4|) |#4|)) (-15 -2833 ((-3 (-108) "failed") $)) (-15 -2395 ($ $ (-3 (-108) "failed"))) (-15 -1447 ((-108) $)) (-15 -3108 ((-587 |#4|) $)) (-15 -2710 (|#4| $)) (-15 -1692 ($ $)) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (-15 -1205 ($ $)) |%noBranch|) |%noBranch|))) (-425) (-783) (-729) (-877 |#1| |#3| |#2|)) (T -913))
-((-2280 (*1 *1) (-12 (-4 *2 (-425)) (-4 *3 (-783)) (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))) (-1542 (*1 *1 *2 *3) (-12 (-5 *2 (-587 *3)) (-4 *3 (-877 *4 *6 *5)) (-4 *4 (-425)) (-4 *5 (-783)) (-4 *6 (-729)) (-5 *1 (-913 *4 *5 *6 *3)))) (-2833 (*1 *2 *1) (|partial| -12 (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-2395 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-1447 (*1 *2 *1) (-12 (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)) (-5 *2 (-108)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-3108 (*1 *2 *1) (-12 (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)) (-5 *2 (-587 *6)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))) (-2710 (*1 *2 *1) (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)))) (-1692 (*1 *1 *1) (-12 (-4 *2 (-425)) (-4 *3 (-783)) (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))) (-1205 (*1 *1 *1) (-12 (-4 *2 (-135)) (-4 *2 (-282)) (-4 *2 (-425)) (-4 *3 (-783)) (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))))
-(-13 (-1013) (-561 (-791)) (-10 -8 (-15 -2280 ($)) (-15 -1542 ($ (-587 |#4|) |#4|)) (-15 -2833 ((-3 (-108) "failed") $)) (-15 -2395 ($ $ (-3 (-108) "failed"))) (-15 -1447 ((-108) $)) (-15 -3108 ((-587 |#4|) $)) (-15 -2710 (|#4| $)) (-15 -1692 ($ $)) (IF (|has| |#1| (-282)) (IF (|has| |#1| (-135)) (-15 -1205 ($ $)) |%noBranch|) |%noBranch|)))
-((-2685 (((-108) |#5| |#5|) 38)) (-3189 (((-108) |#5| |#5|) 52)) (-4145 (((-108) |#5| (-587 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1745 (((-108) (-587 |#4|) (-587 |#4|)) 58)) (-3809 (((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) 63)) (-2213 (((-1170)) 33)) (-1848 (((-1170) (-1067) (-1067) (-1067)) 29)) (-3745 (((-587 |#5|) (-587 |#5|)) 81)) (-1823 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) 79)) (-3377 (((-587 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108)) 101)) (-3583 (((-108) |#5| |#5|) 47)) (-1395 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3995 (((-108) (-587 |#4|) (-587 |#4|)) 57)) (-3576 (((-108) (-587 |#4|) (-587 |#4|)) 59)) (-3069 (((-108) (-587 |#4|) (-587 |#4|)) 60)) (-3420 (((-3 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-3684 (((-587 |#5|) (-587 |#5|)) 43)))
-(((-914 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1848 ((-1170) (-1067) (-1067) (-1067))) (-15 -2213 ((-1170))) (-15 -2685 ((-108) |#5| |#5|)) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3583 ((-108) |#5| |#5|)) (-15 -3189 ((-108) |#5| |#5|)) (-15 -1745 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3995 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3576 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3069 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -1395 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4145 ((-108) |#5| |#5|)) (-15 -4145 ((-108) |#5| (-587 |#5|))) (-15 -3745 ((-587 |#5|) (-587 |#5|))) (-15 -3809 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1823 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-15 -3377 ((-587 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3420 ((-3 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -914))
-((-3420 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| -3196 (-587 *9)) (|:| -1946 *4) (|:| |ineq| (-587 *9)))) (-5 *1 (-914 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-989 *6 *7 *8 *9)))) (-3377 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| -3196 (-587 *9)) (|:| -1946 *10) (|:| |ineq| (-587 *9))))) (-5 *1 (-914 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1946 *7)))) (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-914 *3 *4 *5 *6 *7)))) (-3809 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-914 *3 *4 *5 *6 *7)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-914 *5 *6 *7 *8 *3)))) (-4145 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-1395 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3069 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-1745 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3583 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-914 *3 *4 *5 *6 *7)))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-2213 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-914 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-1848 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1848 ((-1170) (-1067) (-1067) (-1067))) (-15 -2213 ((-1170))) (-15 -2685 ((-108) |#5| |#5|)) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3583 ((-108) |#5| |#5|)) (-15 -3189 ((-108) |#5| |#5|)) (-15 -1745 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3995 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3576 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3069 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -1395 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4145 ((-108) |#5| |#5|)) (-15 -4145 ((-108) |#5| (-587 |#5|))) (-15 -3745 ((-587 |#5|) (-587 |#5|))) (-15 -3809 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1823 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-15 -3377 ((-587 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3420 ((-3 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-1638 (((-1084) $) 15)) (-3434 (((-1067) $) 16)) (-1634 (($ (-1084) (-1067)) 14)) (-2223 (((-791) $) 13)))
-(((-915) (-13 (-561 (-791)) (-10 -8 (-15 -1634 ($ (-1084) (-1067))) (-15 -1638 ((-1084) $)) (-15 -3434 ((-1067) $))))) (T -915))
-((-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-915)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-915)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-915)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -1634 ($ (-1084) (-1067))) (-15 -1638 ((-1084) $)) (-15 -3434 ((-1067) $))))
-((-1393 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#4| (-1 |#2| |#1|) |#3|))) (-513) (-513) (-918 |#1|) (-918 |#2|)) (T -916))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-513)) (-4 *6 (-513)) (-4 *2 (-918 *6)) (-5 *1 (-916 *5 *6 *4 *2)) (-4 *4 (-918 *5)))))
-(-10 -7 (-15 -1393 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-1084) "failed") $) 65) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) 95)) (-1496 ((|#2| $) NIL) (((-1084) $) 60) (((-381 (-521)) $) NIL) (((-521) $) 92)) (-1961 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 112) (((-627 |#2|) (-627 $)) 28)) (-3254 (($) 98)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 74) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 83)) (-2399 (($ $) 10)) (-3035 (((-3 $ "failed") $) 20)) (-1393 (($ (-1 |#2| |#2|) $) 22)) (-3797 (($) 16)) (-1840 (($ $) 54)) (-2193 (($ $) NIL) (($ $ (-707)) NIL) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2259 (($ $) 12)) (-1438 (((-820 (-521)) $) 69) (((-820 (-353)) $) 78) (((-497) $) 40) (((-353) $) 44) (((-202) $) 47)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 90) (($ |#2|) NIL) (($ (-1084)) 57)) (-1592 (((-707)) 31)) (-1569 (((-108) $ $) 50)))
-(((-917 |#1| |#2|) (-10 -8 (-15 -1569 ((-108) |#1| |#1|)) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1438 ((-202) |#1|)) (-15 -1438 ((-353) |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1496 ((-1084) |#1|)) (-15 -1296 ((-3 (-1084) "failed") |#1|)) (-15 -2223 (|#1| (-1084))) (-15 -3254 (|#1|)) (-15 -1840 (|#1| |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1961 ((-627 |#2|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 -2223 ((-791) |#1|))) (-918 |#2|) (-513)) (T -917))
-((-1592 (*1 *2) (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-917 *3 *4)) (-4 *3 (-918 *4)))))
-(-10 -8 (-15 -1569 ((-108) |#1| |#1|)) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1438 ((-202) |#1|)) (-15 -1438 ((-353) |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1496 ((-1084) |#1|)) (-15 -1296 ((-3 (-1084) "failed") |#1|)) (-15 -2223 (|#1| (-1084))) (-15 -3254 (|#1|)) (-15 -1840 (|#1| |#1|)) (-15 -2259 (|#1| |#1|)) (-15 -2399 (|#1| |#1|)) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -2293 ((-817 (-521) |#1|) |#1| (-820 (-521)) (-817 (-521) |#1|))) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1961 ((-627 |#2|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2556 ((|#1| $) 139 (|has| |#1| (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2150 (((-392 (-1080 $)) (-1080 $)) 130 (|has| |#1| (-837)))) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 133 (|has| |#1| (-837)))) (-2165 (((-108) $ $) 59)) (-2578 (((-521) $) 120 (|has| |#1| (-756)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 178) (((-3 (-1084) "failed") $) 128 (|has| |#1| (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) 112 (|has| |#1| (-961 (-521)))) (((-3 (-521) "failed") $) 110 (|has| |#1| (-961 (-521))))) (-1496 ((|#1| $) 177) (((-1084) $) 127 (|has| |#1| (-961 (-1084)))) (((-381 (-521)) $) 111 (|has| |#1| (-961 (-521)))) (((-521) $) 109 (|has| |#1| (-961 (-521))))) (-2302 (($ $ $) 55)) (-1961 (((-627 (-521)) (-627 $)) 152 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 151 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 150) (((-627 |#1|) (-627 $)) 149)) (-2783 (((-3 $ "failed") $) 34)) (-3254 (($) 137 (|has| |#1| (-506)))) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2100 (((-108) $) 71)) (-2273 (((-108) $) 122 (|has| |#1| (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 146 (|has| |#1| (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 145 (|has| |#1| (-814 (-353))))) (-3637 (((-108) $) 31)) (-2399 (($ $) 141)) (-2807 ((|#1| $) 143)) (-3035 (((-3 $ "failed") $) 108 (|has| |#1| (-1060)))) (-3305 (((-108) $) 121 (|has| |#1| (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2816 (($ $ $) 118 (|has| |#1| (-783)))) (-2459 (($ $ $) 117 (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) 169)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-3797 (($) 107 (|has| |#1| (-1060)) CONST)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1840 (($ $) 138 (|has| |#1| (-282)))) (-2720 ((|#1| $) 135 (|has| |#1| (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 132 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 131 (|has| |#1| (-837)))) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) 175 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 173 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 172 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 171 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 170 (|has| |#1| (-482 (-1084) |#1|)))) (-3794 (((-707) $) 58)) (-2550 (($ $ |#1|) 176 (|has| |#1| (-261 |#1| |#1|)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-2193 (($ $) 168 (|has| |#1| (-210))) (($ $ (-707)) 166 (|has| |#1| (-210))) (($ $ (-1084)) 164 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 163 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 162 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 161 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2259 (($ $) 140)) (-2818 ((|#1| $) 142)) (-1438 (((-820 (-521)) $) 148 (|has| |#1| (-562 (-820 (-521))))) (((-820 (-353)) $) 147 (|has| |#1| (-562 (-820 (-353))))) (((-497) $) 125 (|has| |#1| (-562 (-497)))) (((-353) $) 124 (|has| |#1| (-946))) (((-202) $) 123 (|has| |#1| (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 134 (-4009 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ |#1|) 181) (($ (-1084)) 129 (|has| |#1| (-961 (-1084))))) (-2446 (((-3 $ "failed") $) 126 (-3703 (|has| |#1| (-133)) (-4009 (|has| $ (-133)) (|has| |#1| (-837)))))) (-1592 (((-707)) 29)) (-1281 ((|#1| $) 136 (|has| |#1| (-506)))) (-1842 (((-108) $ $) 39)) (-4012 (($ $) 119 (|has| |#1| (-756)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $) 167 (|has| |#1| (-210))) (($ $ (-707)) 165 (|has| |#1| (-210))) (($ $ (-1084)) 160 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 159 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 158 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 157 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1597 (((-108) $ $) 115 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 114 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 116 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 113 (|has| |#1| (-783)))) (-1648 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-918 |#1|) (-1196) (-513)) (T -918))
-((-1648 (*1 *1 *2 *2) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2399 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2259 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282)))) (-3254 (*1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-506)) (-4 *2 (-513)))) (-1281 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506)))))
-(-13 (-337) (-37 |t#1|) (-961 |t#1|) (-312 |t#1|) (-208 |t#1|) (-351 |t#1|) (-812 |t#1|) (-374 |t#1|) (-10 -8 (-15 -1648 ($ |t#1| |t#1|)) (-15 -2807 (|t#1| $)) (-15 -2818 (|t#1| $)) (-15 -2399 ($ $)) (-15 -2259 ($ $)) (IF (|has| |t#1| (-1060)) (-6 (-1060)) |%noBranch|) (IF (|has| |t#1| (-961 (-521))) (PROGN (-6 (-961 (-521))) (-6 (-961 (-381 (-521))))) |%noBranch|) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-946)) (-6 (-946)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-961 (-1084))) (-6 (-961 (-1084))) |%noBranch|) (IF (|has| |t#1| (-282)) (PROGN (-15 -2556 (|t#1| $)) (-15 -1840 ($ $))) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -3254 ($)) (-15 -1281 (|t#1| $)) (-15 -2720 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-837)) (-6 (-837)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) . T) ((-562 (-202)) |has| |#1| (-946)) ((-562 (-353)) |has| |#1| (-946)) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-562 (-820 (-353))) |has| |#1| (-562 (-820 (-353)))) ((-562 (-820 (-521))) |has| |#1| (-562 (-820 (-521)))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) . T) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-265) . T) ((-282) . T) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-337) . T) ((-312 |#1|) . T) ((-351 |#1|) . T) ((-374 |#1|) . T) ((-425) . T) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-727) |has| |#1| (-756)) ((-728) |has| |#1| (-756)) ((-730) |has| |#1| (-756)) ((-731) |has| |#1| (-756)) ((-756) |has| |#1| (-756)) ((-781) |has| |#1| (-756)) ((-783) -3703 (|has| |#1| (-783)) (|has| |#1| (-756))) ((-828 (-1084)) |has| |#1| (-828 (-1084))) ((-814 (-353)) |has| |#1| (-814 (-353))) ((-814 (-521)) |has| |#1| (-814 (-521))) ((-812 |#1|) . T) ((-837) |has| |#1| (-837)) ((-848) . T) ((-946) |has| |#1| (-946)) ((-961 (-381 (-521))) |has| |#1| (-961 (-521))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 (-1084)) |has| |#1| (-961 (-1084))) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-1060)) ((-1119) . T) ((-1123) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1665 (($ (-1051 |#1| |#2|)) 11)) (-1365 (((-1051 |#1| |#2|) $) 12)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2550 ((|#2| $ (-217 |#1| |#2|)) 16)) (-2223 (((-791) $) NIL)) (-3562 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL)))
-(((-919 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1665 ($ (-1051 |#1| |#2|))) (-15 -1365 ((-1051 |#1| |#2|) $)) (-15 -2550 (|#2| $ (-217 |#1| |#2|))))) (-849) (-337)) (T -919))
-((-1665 (*1 *1 *2) (-12 (-5 *2 (-1051 *3 *4)) (-14 *3 (-849)) (-4 *4 (-337)) (-5 *1 (-919 *3 *4)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-1051 *3 *4)) (-5 *1 (-919 *3 *4)) (-14 *3 (-849)) (-4 *4 (-337)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-849)) (-4 *2 (-337)) (-5 *1 (-919 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -1665 ($ (-1051 |#1| |#2|))) (-15 -1365 ((-1051 |#1| |#2|) $)) (-15 -2550 (|#2| $ (-217 |#1| |#2|)))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-2547 (($ $) 46)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-2522 (((-707) $) 45)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2690 ((|#1| $) 44)) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1759 ((|#1| |#1| $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2717 ((|#1| $) 47)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-1397 ((|#1| $) 43)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-920 |#1|) (-1196) (-1119)) (T -920))
-((-1759 (*1 *2 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-2547 (*1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4233) (-15 -1759 (|t#1| |t#1| $)) (-15 -2717 (|t#1| $)) (-15 -2547 ($ $)) (-15 -2522 ((-707) $)) (-15 -2690 (|t#1| $)) (-15 -1397 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-3398 (((-108) $) 42)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1496 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#2| $) 43)) (-3762 (((-3 (-381 (-521)) "failed") $) 78)) (-2428 (((-108) $) 72)) (-2758 (((-381 (-521)) $) 76)) (-3637 (((-108) $) 41)) (-2549 ((|#2| $) 22)) (-1393 (($ (-1 |#2| |#2|) $) 19)) (-3100 (($ $) 61)) (-2193 (($ $) NIL) (($ $ (-707)) NIL) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1438 (((-497) $) 67)) (-1484 (($ $) 17)) (-2223 (((-791) $) 56) (($ (-521)) 38) (($ |#2|) 36) (($ (-381 (-521))) NIL)) (-1592 (((-707)) 10)) (-4012 ((|#2| $) 71)) (-1549 (((-108) $ $) 25)) (-1569 (((-108) $ $) 69)) (-1639 (($ $) 29) (($ $ $) 28)) (-1628 (($ $ $) 26)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL)))
-(((-921 |#1| |#2|) (-10 -8 (-15 -2223 (|#1| (-381 (-521)))) (-15 -1569 ((-108) |#1| |#1|)) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 -3100 (|#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -4012 (|#2| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -2223 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 -3637 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -3398 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-922 |#2|) (-157)) (T -921))
-((-1592 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-921 *3 *4)) (-4 *3 (-922 *4)))))
-(-10 -8 (-15 -2223 (|#1| (-381 (-521)))) (-15 -1569 ((-108) |#1| |#1|)) (-15 * (|#1| (-381 (-521)) |#1|)) (-15 * (|#1| |#1| (-381 (-521)))) (-15 -3100 (|#1| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -4012 (|#2| |#1|)) (-15 -2549 (|#2| |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1393 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -2223 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 -3637 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 * (|#1| (-707) |#1|)) (-15 -3398 ((-108) |#1|)) (-15 * (|#1| (-849) |#1|)) (-15 -1628 (|#1| |#1| |#1|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-1296 (((-3 (-521) "failed") $) 119 (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 117 (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) 116)) (-1496 (((-521) $) 120 (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) 118 (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) 115)) (-1961 (((-627 (-521)) (-627 $)) 90 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 89 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 88) (((-627 |#1|) (-627 $)) 87)) (-2783 (((-3 $ "failed") $) 34)) (-1993 ((|#1| $) 80)) (-3762 (((-3 (-381 (-521)) "failed") $) 76 (|has| |#1| (-506)))) (-2428 (((-108) $) 78 (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) 77 (|has| |#1| (-506)))) (-2638 (($ |#1| |#1| |#1| |#1|) 81)) (-3637 (((-108) $) 31)) (-2549 ((|#1| $) 82)) (-2816 (($ $ $) 68 (|has| |#1| (-783)))) (-2459 (($ $ $) 67 (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) 91)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 73 (|has| |#1| (-337)))) (-2943 ((|#1| $) 83)) (-1868 ((|#1| $) 84)) (-2263 ((|#1| $) 85)) (-4146 (((-1031) $) 10)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) 97 (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) 95 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) 94 (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) 93 (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) 92 (|has| |#1| (-482 (-1084) |#1|)))) (-2550 (($ $ |#1|) 98 (|has| |#1| (-261 |#1| |#1|)))) (-2193 (($ $) 114 (|has| |#1| (-210))) (($ $ (-707)) 112 (|has| |#1| (-210))) (($ $ (-1084)) 110 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 109 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 108 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 107 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1438 (((-497) $) 74 (|has| |#1| (-562 (-497))))) (-1484 (($ $) 86)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 37) (($ (-381 (-521))) 62 (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-2446 (((-3 $ "failed") $) 75 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-4012 ((|#1| $) 79 (|has| |#1| (-979)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 72 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $) 113 (|has| |#1| (-210))) (($ $ (-707)) 111 (|has| |#1| (-210))) (($ $ (-1084)) 106 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 105 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 104 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 103 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1597 (((-108) $ $) 65 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 64 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 66 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 63 (|has| |#1| (-783)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 71 (|has| |#1| (-337)))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-381 (-521))) 70 (|has| |#1| (-337))) (($ (-381 (-521)) $) 69 (|has| |#1| (-337)))))
-(((-922 |#1|) (-1196) (-157)) (T -922))
-((-1484 (*1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-2549 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-2638 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)) (-4 *2 (-979)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))) (-3762 (*1 *2 *1) (|partial| -12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-381 (-521))))))
-(-13 (-37 |t#1|) (-385 |t#1|) (-208 |t#1|) (-312 |t#1|) (-351 |t#1|) (-10 -8 (-15 -1484 ($ $)) (-15 -2263 (|t#1| $)) (-15 -1868 (|t#1| $)) (-15 -2943 (|t#1| $)) (-15 -2549 (|t#1| $)) (-15 -2638 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1993 (|t#1| $)) (IF (|has| |t#1| (-265)) (-6 (-265)) |%noBranch|) (IF (|has| |t#1| (-783)) (-6 (-783)) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-220)) |%noBranch|) (IF (|has| |t#1| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-979)) (-15 -4012 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-506)) (PROGN (-15 -2428 ((-108) $)) (-15 -2758 ((-381 (-521)) $)) (-15 -3762 ((-3 (-381 (-521)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-337)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-337)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-337)) (|has| |#1| (-265))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) |has| |#1| (-337)) ((-261 |#1| $) |has| |#1| (-261 |#1| |#1|)) ((-265) -3703 (|has| |#1| (-337)) (|has| |#1| (-265))) ((-284 |#1|) |has| |#1| (-284 |#1|)) ((-312 |#1|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-482 (-1084) |#1|) |has| |#1| (-482 (-1084) |#1|)) ((-482 |#1| |#1|) |has| |#1| (-284 |#1|)) ((-589 #0#) |has| |#1| (-337)) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-337)) ((-654 |#1|) . T) ((-663) . T) ((-783) |has| |#1| (-783)) ((-828 (-1084)) |has| |#1| (-828 (-1084))) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-976 #0#) |has| |#1| (-337)) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-337)) (|has| |#1| (-265))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1393 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#3| (-1 |#4| |#2|) |#1|))) (-922 |#2|) (-157) (-922 |#4|) (-157)) (T -923))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-922 *6)) (-5 *1 (-923 *4 *5 *2 *6)) (-4 *4 (-922 *5)))))
-(-10 -7 (-15 -1393 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1993 ((|#1| $) 12)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-506)))) (-2428 (((-108) $) NIL (|has| |#1| (-506)))) (-2758 (((-381 (-521)) $) NIL (|has| |#1| (-506)))) (-2638 (($ |#1| |#1| |#1| |#1|) 16)) (-3637 (((-108) $) NIL)) (-2549 ((|#1| $) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-2943 ((|#1| $) 15)) (-1868 ((|#1| $) 14)) (-2263 ((|#1| $) 13)) (-4146 (((-1031) $) NIL)) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-284 |#1|))) (($ $ (-269 |#1|)) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-269 |#1|))) NIL (|has| |#1| (-284 |#1|))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-482 (-1084) |#1|))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-482 (-1084) |#1|)))) (-2550 (($ $ |#1|) NIL (|has| |#1| (-261 |#1| |#1|)))) (-2193 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-1484 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-4012 ((|#1| $) NIL (|has| |#1| (-979)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 8 T CONST)) (-3572 (($) 10 T CONST)) (-2244 (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-337)))))
-(((-924 |#1|) (-922 |#1|) (-157)) (T -924))
-NIL
-(-922 |#1|)
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1269 (((-108) $ (-707)) NIL)) (-2231 (($) NIL T CONST)) (-2547 (($ $) 20)) (-2632 (($ (-587 |#1|)) 29)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-2522 (((-707) $) 22)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1570 ((|#1| $) 24)) (-4135 (($ |#1| $) 15)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2690 ((|#1| $) 23)) (-2747 ((|#1| $) 19)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1759 ((|#1| |#1| $) 14)) (-1447 (((-108) $) 17)) (-2280 (($) NIL)) (-2717 ((|#1| $) 18)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) NIL)) (-1397 ((|#1| $) 26)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-925 |#1|) (-13 (-920 |#1|) (-10 -8 (-15 -2632 ($ (-587 |#1|))))) (-1013)) (T -925))
-((-2632 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-925 *3)))))
-(-13 (-920 |#1|) (-10 -8 (-15 -2632 ($ (-587 |#1|)))))
-((-1984 (($ $) 12)) (-3743 (($ $ (-521)) 13)))
-(((-926 |#1|) (-10 -8 (-15 -1984 (|#1| |#1|)) (-15 -3743 (|#1| |#1| (-521)))) (-927)) (T -926))
-NIL
-(-10 -8 (-15 -1984 (|#1| |#1|)) (-15 -3743 (|#1| |#1| (-521))))
-((-1984 (($ $) 6)) (-3743 (($ $ (-521)) 7)) (** (($ $ (-381 (-521))) 8)))
-(((-927) (-1196)) (T -927))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-381 (-521))))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-521)))) (-1984 (*1 *1 *1) (-4 *1 (-927))))
-(-13 (-10 -8 (-15 -1984 ($ $)) (-15 -3743 ($ $ (-521))) (-15 ** ($ $ (-381 (-521))))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1402 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| (-381 |#2|) (-337)))) (-1954 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-3795 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-1299 (((-627 (-381 |#2|)) (-1165 $)) NIL) (((-627 (-381 |#2|))) NIL)) (-1927 (((-381 |#2|) $) NIL)) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| (-381 |#2|) (-323)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2337 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-2165 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-1659 (((-707)) NIL (|has| (-381 |#2|) (-342)))) (-3723 (((-108)) NIL)) (-1918 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-3 (-381 |#2|) "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| (-381 |#2|) (-961 (-521)))) (((-381 (-521)) $) NIL (|has| (-381 |#2|) (-961 (-381 (-521))))) (((-381 |#2|) $) NIL)) (-3190 (($ (-1165 (-381 |#2|)) (-1165 $)) NIL) (($ (-1165 (-381 |#2|))) 70) (($ (-1165 |#2|) |#2|) NIL)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-381 |#2|) (-323)))) (-2302 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-3998 (((-627 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-381 |#2|) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-381 |#2|))) (|:| |vec| (-1165 (-381 |#2|)))) (-627 $) (-1165 $)) NIL) (((-627 (-381 |#2|)) (-627 $)) NIL)) (-1813 (((-1165 $) (-1165 $)) NIL)) (-3859 (($ |#3|) 65) (((-3 $ "failed") (-381 |#3|)) NIL (|has| (-381 |#2|) (-337)))) (-2783 (((-3 $ "failed") $) NIL)) (-1367 (((-587 (-587 |#1|))) NIL (|has| |#1| (-342)))) (-3536 (((-108) |#1| |#1|) NIL)) (-3167 (((-849)) NIL)) (-3254 (($) NIL (|has| (-381 |#2|) (-342)))) (-3982 (((-108)) NIL)) (-1469 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-2282 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| (-381 |#2|) (-337)))) (-1563 (($ $) NIL)) (-2464 (($) NIL (|has| (-381 |#2|) (-323)))) (-3299 (((-108) $) NIL (|has| (-381 |#2|) (-323)))) (-1375 (($ $ (-707)) NIL (|has| (-381 |#2|) (-323))) (($ $) NIL (|has| (-381 |#2|) (-323)))) (-2100 (((-108) $) NIL (|has| (-381 |#2|) (-337)))) (-3490 (((-849) $) NIL (|has| (-381 |#2|) (-323))) (((-769 (-849)) $) NIL (|has| (-381 |#2|) (-323)))) (-3637 (((-108) $) NIL)) (-2955 (((-707)) NIL)) (-2147 (((-1165 $) (-1165 $)) NIL)) (-2549 (((-381 |#2|) $) NIL)) (-2083 (((-587 (-880 |#1|)) (-1084)) NIL (|has| |#1| (-337)))) (-3035 (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-3769 ((|#3| $) NIL (|has| (-381 |#2|) (-337)))) (-3999 (((-849) $) NIL (|has| (-381 |#2|) (-342)))) (-3843 ((|#3| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-4024 (((-1067) $) NIL)) (-3263 (((-627 (-381 |#2|))) 52)) (-1463 (((-627 (-381 |#2|))) 51)) (-3100 (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2058 (($ (-1165 |#2|) |#2|) 71)) (-2352 (((-627 (-381 |#2|))) 50)) (-2784 (((-627 (-381 |#2|))) 49)) (-2121 (((-2 (|:| |num| (-627 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1455 (((-2 (|:| |num| (-1165 |#2|)) (|:| |den| |#2|)) $) 77)) (-3817 (((-1165 $)) 46)) (-3807 (((-1165 $)) 45)) (-3693 (((-108) $) NIL)) (-2655 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3797 (($) NIL (|has| (-381 |#2|) (-323)) CONST)) (-2723 (($ (-849)) NIL (|has| (-381 |#2|) (-342)))) (-1291 (((-3 |#2| "failed")) 63)) (-4146 (((-1031) $) NIL)) (-3511 (((-707)) NIL)) (-1384 (($) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| (-381 |#2|) (-337)))) (-2286 (($ (-587 $)) NIL (|has| (-381 |#2|) (-337))) (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| (-381 |#2|) (-323)))) (-1974 (((-392 $) $) NIL (|has| (-381 |#2|) (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-381 |#2|) (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| (-381 |#2|) (-337)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| (-381 |#2|) (-337)))) (-3794 (((-707) $) NIL (|has| (-381 |#2|) (-337)))) (-2550 ((|#1| $ |#1| |#1|) NIL)) (-3550 (((-3 |#2| "failed")) 62)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| (-381 |#2|) (-337)))) (-3011 (((-381 |#2|) (-1165 $)) NIL) (((-381 |#2|)) 42)) (-3660 (((-707) $) NIL (|has| (-381 |#2|) (-323))) (((-3 (-707) "failed") $ $) NIL (|has| (-381 |#2|) (-323)))) (-2193 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-3785 (((-627 (-381 |#2|)) (-1165 $) (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337)))) (-3436 ((|#3|) 53)) (-3923 (($) NIL (|has| (-381 |#2|) (-323)))) (-1816 (((-1165 (-381 |#2|)) $ (-1165 $)) NIL) (((-627 (-381 |#2|)) (-1165 $) (-1165 $)) NIL) (((-1165 (-381 |#2|)) $) 72) (((-627 (-381 |#2|)) (-1165 $)) NIL)) (-1438 (((-1165 (-381 |#2|)) $) NIL) (($ (-1165 (-381 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| (-381 |#2|) (-323)))) (-3758 (((-1165 $) (-1165 $)) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 |#2|)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| (-381 |#2|) (-961 (-381 (-521)))) (|has| (-381 |#2|) (-337)))) (($ $) NIL (|has| (-381 |#2|) (-337)))) (-2446 (($ $) NIL (|has| (-381 |#2|) (-323))) (((-3 $ "failed") $) NIL (|has| (-381 |#2|) (-133)))) (-3379 ((|#3| $) NIL)) (-1592 (((-707)) NIL)) (-3598 (((-108)) 60)) (-2458 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-1245 (((-1165 $)) 124)) (-1842 (((-108) $ $) NIL (|has| (-381 |#2|) (-337)))) (-3888 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3683 (((-108)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (-3562 (($) 94 T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-1 (-381 |#2|) (-381 |#2|)) (-707)) NIL (|has| (-381 |#2|) (-337))) (($ $ (-1 (-381 |#2|) (-381 |#2|))) NIL (|has| (-381 |#2|) (-337))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| (-381 |#2|) (-337)) (|has| (-381 |#2|) (-828 (-1084))))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323)))) (($ $) NIL (-3703 (-12 (|has| (-381 |#2|) (-210)) (|has| (-381 |#2|) (-337))) (|has| (-381 |#2|) (-323))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ $) NIL (|has| (-381 |#2|) (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| (-381 |#2|) (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 |#2|)) NIL) (($ (-381 |#2|) $) NIL) (($ (-381 (-521)) $) NIL (|has| (-381 |#2|) (-337))) (($ $ (-381 (-521))) NIL (|has| (-381 |#2|) (-337)))))
-(((-928 |#1| |#2| |#3| |#4| |#5|) (-316 |#1| |#2| |#3|) (-1123) (-1141 |#1|) (-1141 (-381 |#2|)) (-381 |#2|) (-707)) (T -928))
-NIL
-(-316 |#1| |#2| |#3|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2926 (((-587 (-521)) $) 54)) (-2316 (($ (-587 (-521))) 62)) (-2556 (((-521) $) 40 (|has| (-521) (-282)))) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL (|has| (-521) (-756)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) 49) (((-3 (-1084) "failed") $) NIL (|has| (-521) (-961 (-1084)))) (((-3 (-381 (-521)) "failed") $) 47 (|has| (-521) (-961 (-521)))) (((-3 (-521) "failed") $) 49 (|has| (-521) (-961 (-521))))) (-1496 (((-521) $) NIL) (((-1084) $) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) NIL (|has| (-521) (-961 (-521)))) (((-521) $) NIL (|has| (-521) (-961 (-521))))) (-2302 (($ $ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| (-521) (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3254 (($) NIL (|has| (-521) (-506)))) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-1858 (((-587 (-521)) $) 60)) (-2273 (((-108) $) NIL (|has| (-521) (-756)))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (|has| (-521) (-814 (-521)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (|has| (-521) (-814 (-353))))) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL)) (-2807 (((-521) $) 37)) (-3035 (((-3 $ "failed") $) NIL (|has| (-521) (-1060)))) (-3305 (((-108) $) NIL (|has| (-521) (-756)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-521) (-783)))) (-1393 (($ (-1 (-521) (-521)) $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL)) (-3797 (($) NIL (|has| (-521) (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-1840 (($ $) NIL (|has| (-521) (-282))) (((-381 (-521)) $) 42)) (-2295 (((-1065 (-521)) $) 59)) (-1372 (($ (-587 (-521)) (-587 (-521))) 63)) (-2720 (((-521) $) 53 (|has| (-521) (-506)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| (-521) (-837)))) (-1974 (((-392 $) $) NIL)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2313 (($ $ (-587 (-521)) (-587 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-521) (-521)) NIL (|has| (-521) (-284 (-521)))) (($ $ (-269 (-521))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-269 (-521)))) NIL (|has| (-521) (-284 (-521)))) (($ $ (-587 (-1084)) (-587 (-521))) NIL (|has| (-521) (-482 (-1084) (-521)))) (($ $ (-1084) (-521)) NIL (|has| (-521) (-482 (-1084) (-521))))) (-3794 (((-707) $) NIL)) (-2550 (($ $ (-521)) NIL (|has| (-521) (-261 (-521) (-521))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $) 11 (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-2259 (($ $) NIL)) (-2818 (((-521) $) 39)) (-1855 (((-587 (-521)) $) 61)) (-1438 (((-820 (-521)) $) NIL (|has| (-521) (-562 (-820 (-521))))) (((-820 (-353)) $) NIL (|has| (-521) (-562 (-820 (-353))))) (((-497) $) NIL (|has| (-521) (-562 (-497)))) (((-353) $) NIL (|has| (-521) (-946))) (((-202) $) NIL (|has| (-521) (-946)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-521) (-837))))) (-2223 (((-791) $) 77) (($ (-521)) 43) (($ $) NIL) (($ (-381 (-521))) 19) (($ (-521)) 43) (($ (-1084)) NIL (|has| (-521) (-961 (-1084)))) (((-381 (-521)) $) 17)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-521) (-837))) (|has| (-521) (-133))))) (-1592 (((-707)) 9)) (-1281 (((-521) $) 51 (|has| (-521) (-506)))) (-1842 (((-108) $ $) NIL)) (-4012 (($ $) NIL (|has| (-521) (-756)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 10 T CONST)) (-3572 (($) 12 T CONST)) (-2244 (($ $) NIL (|has| (-521) (-210))) (($ $ (-707)) NIL (|has| (-521) (-210))) (($ $ (-1084)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| (-521) (-828 (-1084)))) (($ $ (-1 (-521) (-521)) (-707)) NIL) (($ $ (-1 (-521) (-521))) NIL)) (-1597 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1549 (((-108) $ $) 14)) (-1588 (((-108) $ $) NIL (|has| (-521) (-783)))) (-1569 (((-108) $ $) 33 (|has| (-521) (-783)))) (-1648 (($ $ $) 29) (($ (-521) (-521)) 31)) (-1639 (($ $) 15) (($ $ $) 22)) (-1628 (($ $ $) 20)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 25) (($ $ $) 27) (($ $ (-381 (-521))) NIL) (($ (-381 (-521)) $) NIL) (($ (-521) $) 25) (($ $ (-521)) NIL)))
-(((-929 |#1|) (-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -2926 ((-587 (-521)) $)) (-15 -2295 ((-1065 (-521)) $)) (-15 -1858 ((-587 (-521)) $)) (-15 -1855 ((-587 (-521)) $)) (-15 -2316 ($ (-587 (-521)))) (-15 -1372 ($ (-587 (-521)) (-587 (-521)))))) (-521)) (T -929))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))) (-1372 (*1 *1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
-(-13 (-918 (-521)) (-10 -8 (-15 -2223 ((-381 (-521)) $)) (-15 -1840 ((-381 (-521)) $)) (-15 -2926 ((-587 (-521)) $)) (-15 -2295 ((-1065 (-521)) $)) (-15 -1858 ((-587 (-521)) $)) (-15 -1855 ((-587 (-521)) $)) (-15 -2316 ($ (-587 (-521)))) (-15 -1372 ($ (-587 (-521)) (-587 (-521))))))
-((-3300 (((-51) (-381 (-521)) (-521)) 9)))
-(((-930) (-10 -7 (-15 -3300 ((-51) (-381 (-521)) (-521))))) (T -930))
-((-3300 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-521))) (-5 *4 (-521)) (-5 *2 (-51)) (-5 *1 (-930)))))
-(-10 -7 (-15 -3300 ((-51) (-381 (-521)) (-521))))
-((-1659 (((-521)) 13)) (-3461 (((-521)) 16)) (-2013 (((-1170) (-521)) 15)) (-3252 (((-521) (-521)) 17) (((-521)) 12)))
-(((-931) (-10 -7 (-15 -3252 ((-521))) (-15 -1659 ((-521))) (-15 -3252 ((-521) (-521))) (-15 -2013 ((-1170) (-521))) (-15 -3461 ((-521))))) (T -931))
-((-3461 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-931)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))) (-1659 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))) (-3252 (*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))))
-(-10 -7 (-15 -3252 ((-521))) (-15 -1659 ((-521))) (-15 -3252 ((-521) (-521))) (-15 -2013 ((-1170) (-521))) (-15 -3461 ((-521))))
-((-3307 (((-392 |#1|) |#1|) 40)) (-1974 (((-392 |#1|) |#1|) 39)))
-(((-932 |#1|) (-10 -7 (-15 -1974 ((-392 |#1|) |#1|)) (-15 -3307 ((-392 |#1|) |#1|))) (-1141 (-381 (-521)))) (T -932))
-((-3307 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1141 (-381 (-521)))))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3)) (-4 *3 (-1141 (-381 (-521)))))))
-(-10 -7 (-15 -1974 ((-392 |#1|) |#1|)) (-15 -3307 ((-392 |#1|) |#1|)))
-((-3762 (((-3 (-381 (-521)) "failed") |#1|) 14)) (-2428 (((-108) |#1|) 13)) (-2758 (((-381 (-521)) |#1|) 9)))
-(((-933 |#1|) (-10 -7 (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|))) (-961 (-381 (-521)))) (T -933))
-((-3762 (*1 *2 *3) (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3)) (-4 *3 (-961 *2)))) (-2428 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-933 *3)) (-4 *3 (-961 (-381 (-521)))))) (-2758 (*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3)) (-4 *3 (-961 *2)))))
-(-10 -7 (-15 -2758 ((-381 (-521)) |#1|)) (-15 -2428 ((-108) |#1|)) (-15 -3762 ((-3 (-381 (-521)) "failed") |#1|)))
-((-2396 ((|#2| $ "value" |#2|) 12)) (-2550 ((|#2| $ "value") 10)) (-2960 (((-108) $ $) 18)))
-(((-934 |#1| |#2|) (-10 -8 (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -2960 ((-108) |#1| |#1|)) (-15 -2550 (|#2| |#1| "value"))) (-935 |#2|) (-1119)) (T -934))
-NIL
-(-10 -8 (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -2960 ((-108) |#1| |#1|)) (-15 -2550 (|#2| |#1| "value")))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2231 (($) 7 T CONST)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47)) (-1557 (((-521) $ $) 44)) (-1475 (((-108) $) 46)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-935 |#1|) (-1196) (-1119)) (T -935))
-((-3165 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3)))) (-1671 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1119)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-935 *2)) (-4 *2 (-1119)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-1278 (*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))) (-1557 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))) (-2960 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-1368 (*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-1871 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *1)) (|has| *1 (-6 -4234)) (-4 *1 (-935 *3)) (-4 *3 (-1119)))) (-2396 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4234)) (-4 *1 (-935 *2)) (-4 *2 (-1119)))) (-2603 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-935 *2)) (-4 *2 (-1119)))))
-(-13 (-460 |t#1|) (-10 -8 (-15 -3165 ((-587 $) $)) (-15 -1671 ((-587 $) $)) (-15 -2426 ((-108) $)) (-15 -3434 (|t#1| $)) (-15 -2550 (|t#1| $ "value")) (-15 -1475 ((-108) $)) (-15 -1278 ((-587 |t#1|) $)) (-15 -1557 ((-521) $ $)) (IF (|has| |t#1| (-1013)) (PROGN (-15 -2960 ((-108) $ $)) (-15 -1368 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4234)) (PROGN (-15 -1871 ($ $ (-587 $))) (-15 -2396 (|t#1| $ "value" |t#1|)) (-15 -2603 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1984 (($ $) 9) (($ $ (-707)) 43) (($ (-381 (-521))) 12) (($ (-521)) 15)) (-1444 (((-3 $ "failed") (-1080 $) (-849) (-791)) 23) (((-3 $ "failed") (-1080 $) (-849)) 28)) (-3743 (($ $ (-521)) 49)) (-1592 (((-707)) 16)) (-3724 (((-587 $) (-1080 $)) NIL) (((-587 $) (-1080 (-381 (-521)))) 54) (((-587 $) (-1080 (-521))) 59) (((-587 $) (-880 $)) 63) (((-587 $) (-880 (-381 (-521)))) 67) (((-587 $) (-880 (-521))) 71)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ $ (-381 (-521))) 47)))
-(((-936 |#1|) (-10 -8 (-15 -1984 (|#1| (-521))) (-15 -1984 (|#1| (-381 (-521)))) (-15 -1984 (|#1| |#1| (-707))) (-15 -3724 ((-587 |#1|) (-880 (-521)))) (-15 -3724 ((-587 |#1|) (-880 (-381 (-521))))) (-15 -3724 ((-587 |#1|) (-880 |#1|))) (-15 -3724 ((-587 |#1|) (-1080 (-521)))) (-15 -3724 ((-587 |#1|) (-1080 (-381 (-521))))) (-15 -3724 ((-587 |#1|) (-1080 |#1|))) (-15 -1444 ((-3 |#1| "failed") (-1080 |#1|) (-849))) (-15 -1444 ((-3 |#1| "failed") (-1080 |#1|) (-849) (-791))) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -3743 (|#1| |#1| (-521))) (-15 -1984 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -1592 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-849)))) (-937)) (T -936))
-((-1592 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-936 *3)) (-4 *3 (-937)))))
-(-10 -8 (-15 -1984 (|#1| (-521))) (-15 -1984 (|#1| (-381 (-521)))) (-15 -1984 (|#1| |#1| (-707))) (-15 -3724 ((-587 |#1|) (-880 (-521)))) (-15 -3724 ((-587 |#1|) (-880 (-381 (-521))))) (-15 -3724 ((-587 |#1|) (-880 |#1|))) (-15 -3724 ((-587 |#1|) (-1080 (-521)))) (-15 -3724 ((-587 |#1|) (-1080 (-381 (-521))))) (-15 -3724 ((-587 |#1|) (-1080 |#1|))) (-15 -1444 ((-3 |#1| "failed") (-1080 |#1|) (-849))) (-15 -1444 ((-3 |#1| "failed") (-1080 |#1|) (-849) (-791))) (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -3743 (|#1| |#1| (-521))) (-15 -1984 (|#1| |#1|)) (-15 ** (|#1| |#1| (-521))) (-15 -1592 ((-707))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 89)) (-1954 (($ $) 90)) (-3795 (((-108) $) 92)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 109)) (-2337 (((-392 $) $) 110)) (-1984 (($ $) 73) (($ $ (-707)) 59) (($ (-381 (-521))) 58) (($ (-521)) 57)) (-2165 (((-108) $ $) 100)) (-2578 (((-521) $) 127)) (-2231 (($) 17 T CONST)) (-1444 (((-3 $ "failed") (-1080 $) (-849) (-791)) 67) (((-3 $ "failed") (-1080 $) (-849)) 66)) (-1296 (((-3 (-521) "failed") $) 85 (|has| (-381 (-521)) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 83 (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-3 (-381 (-521)) "failed") $) 81)) (-1496 (((-521) $) 86 (|has| (-381 (-521)) (-961 (-521)))) (((-381 (-521)) $) 84 (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-381 (-521)) $) 80)) (-3934 (($ $ (-791)) 56)) (-3712 (($ $ (-791)) 55)) (-2302 (($ $ $) 104)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 103)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 98)) (-2100 (((-108) $) 111)) (-2273 (((-108) $) 125)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 72)) (-3305 (((-108) $) 126)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 107)) (-2816 (($ $ $) 124)) (-2459 (($ $ $) 123)) (-3177 (((-3 (-1080 $) "failed") $) 68)) (-3313 (((-3 (-791) "failed") $) 70)) (-2651 (((-3 (-1080 $) "failed") $) 69)) (-2254 (($ (-587 $)) 96) (($ $ $) 95)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 112)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 97)) (-2286 (($ (-587 $)) 94) (($ $ $) 93)) (-1974 (((-392 $) $) 108)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 105)) (-2261 (((-3 $ "failed") $ $) 88)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 99)) (-3794 (((-707) $) 101)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 102)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 117) (($ $) 87) (($ (-381 (-521))) 82) (($ (-521)) 79) (($ (-381 (-521))) 76)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 91)) (-3893 (((-381 (-521)) $ $) 54)) (-3724 (((-587 $) (-1080 $)) 65) (((-587 $) (-1080 (-381 (-521)))) 64) (((-587 $) (-1080 (-521))) 63) (((-587 $) (-880 $)) 62) (((-587 $) (-880 (-381 (-521)))) 61) (((-587 $) (-880 (-521))) 60)) (-4012 (($ $) 128)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 113)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 121)) (-1579 (((-108) $ $) 120)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 122)) (-1569 (((-108) $ $) 119)) (-1648 (($ $ $) 118)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 114) (($ $ (-381 (-521))) 71)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ (-381 (-521)) $) 116) (($ $ (-381 (-521))) 115) (($ (-521) $) 78) (($ $ (-521)) 77) (($ (-381 (-521)) $) 75) (($ $ (-381 (-521))) 74)))
-(((-937) (-1196)) (T -937))
-((-1984 (*1 *1 *1) (-4 *1 (-937))) (-3313 (*1 *2 *1) (|partial| -12 (-4 *1 (-937)) (-5 *2 (-791)))) (-2651 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))) (-3177 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))) (-1444 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-849)) (-5 *4 (-791)) (-4 *1 (-937)))) (-1444 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-849)) (-4 *1 (-937)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1080 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-880 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-880 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937)))) (-1984 (*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-707)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-937)))) (-1984 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-937)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-791)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-791)))) (-3893 (*1 *2 *1 *1) (-12 (-4 *1 (-937)) (-5 *2 (-381 (-521))))))
-(-13 (-135) (-781) (-157) (-337) (-385 (-381 (-521))) (-37 (-521)) (-37 (-381 (-521))) (-927) (-10 -8 (-15 -3313 ((-3 (-791) "failed") $)) (-15 -2651 ((-3 (-1080 $) "failed") $)) (-15 -3177 ((-3 (-1080 $) "failed") $)) (-15 -1444 ((-3 $ "failed") (-1080 $) (-849) (-791))) (-15 -1444 ((-3 $ "failed") (-1080 $) (-849))) (-15 -3724 ((-587 $) (-1080 $))) (-15 -3724 ((-587 $) (-1080 (-381 (-521))))) (-15 -3724 ((-587 $) (-1080 (-521)))) (-15 -3724 ((-587 $) (-880 $))) (-15 -3724 ((-587 $) (-880 (-381 (-521))))) (-15 -3724 ((-587 $) (-880 (-521)))) (-15 -1984 ($ $ (-707))) (-15 -1984 ($ $)) (-15 -1984 ($ (-381 (-521)))) (-15 -1984 ($ (-521))) (-15 -3934 ($ $ (-791))) (-15 -3712 ($ $ (-791))) (-15 -3893 ((-381 (-521)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 #1=(-521)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-791)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-385 (-381 (-521))) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 #1#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 #1#) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-848) . T) ((-927) . T) ((-961 (-381 (-521))) . T) ((-961 (-521)) |has| (-381 (-521)) (-961 (-521))) ((-976 #0#) . T) ((-976 #1#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-3507 (((-2 (|:| |ans| |#2|) (|:| -1981 |#2|) (|:| |sol?| (-108))) (-521) |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -3507 ((-2 (|:| |ans| |#2|) (|:| -1981 |#2|) (|:| |sol?| (-108))) (-521) |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-27) (-404 |#1|))) (T -938))
-((-3507 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1084)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-587 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1347 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1105) (-27) (-404 *8))) (-4 *8 (-13 (-425) (-783) (-135) (-961 *3) (-583 *3))) (-5 *3 (-521)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1981 *4) (|:| |sol?| (-108)))) (-5 *1 (-938 *8 *4)))))
-(-10 -7 (-15 -3507 ((-2 (|:| |ans| |#2|) (|:| -1981 |#2|) (|:| |sol?| (-108))) (-521) |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2518 (((-3 (-587 |#2|) "failed") (-521) |#2| |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
-(((-939 |#1| |#2|) (-10 -7 (-15 -2518 ((-3 (-587 |#2|) "failed") (-521) |#2| |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))) (-13 (-1105) (-27) (-404 |#1|))) (T -939))
-((-2518 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1084)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-587 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1347 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1105) (-27) (-404 *8))) (-4 *8 (-13 (-425) (-783) (-135) (-961 *3) (-583 *3))) (-5 *3 (-521)) (-5 *2 (-587 *4)) (-5 *1 (-939 *8 *4)))))
-(-10 -7 (-15 -2518 ((-3 (-587 |#2|) "failed") (-521) |#2| |#2| |#2| (-1084) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-587 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-587 |#2|)) (-1 (-3 (-2 (|:| -1347 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1339 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3196 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-521)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-521) (-1 |#2| |#2|)) 30)) (-1505 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |c| (-381 |#2|)) (|:| -1670 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|)) 57)) (-4174 (((-2 (|:| |ans| (-381 |#2|)) (|:| |nosol| (-108))) (-381 |#2|) (-381 |#2|)) 62)))
-(((-940 |#1| |#2|) (-10 -7 (-15 -1505 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |c| (-381 |#2|)) (|:| -1670 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -4174 ((-2 (|:| |ans| (-381 |#2|)) (|:| |nosol| (-108))) (-381 |#2|) (-381 |#2|))) (-15 -1339 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3196 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-521)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-521) (-1 |#2| |#2|)))) (-13 (-337) (-135) (-961 (-521))) (-1141 |#1|)) (T -940))
-((-1339 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1141 *6)) (-4 *6 (-13 (-337) (-135) (-961 *4))) (-5 *4 (-521)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3196 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-940 *6 *3)))) (-4174 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| |ans| (-381 *5)) (|:| |nosol| (-108)))) (-5 *1 (-940 *4 *5)) (-5 *3 (-381 *5)))) (-1505 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |c| (-381 *6)) (|:| -1670 *6))) (-5 *1 (-940 *5 *6)) (-5 *3 (-381 *6)))))
-(-10 -7 (-15 -1505 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |c| (-381 |#2|)) (|:| -1670 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -4174 ((-2 (|:| |ans| (-381 |#2|)) (|:| |nosol| (-108))) (-381 |#2|) (-381 |#2|))) (-15 -1339 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3196 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-521)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-521) (-1 |#2| |#2|))))
-((-2451 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |h| |#2|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| -1670 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|)) 22)) (-2073 (((-3 (-587 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|)) 32)))
-(((-941 |#1| |#2|) (-10 -7 (-15 -2451 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |h| |#2|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| -1670 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -2073 ((-3 (-587 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|)))) (-13 (-337) (-135) (-961 (-521))) (-1141 |#1|)) (T -941))
-((-2073 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4)) (-5 *2 (-587 (-381 *5))) (-5 *1 (-941 *4 *5)) (-5 *3 (-381 *5)))) (-2451 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |h| *6) (|:| |c1| (-381 *6)) (|:| |c2| (-381 *6)) (|:| -1670 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-381 *6)))))
-(-10 -7 (-15 -2451 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-381 |#2|)) (|:| |h| |#2|) (|:| |c1| (-381 |#2|)) (|:| |c2| (-381 |#2|)) (|:| -1670 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|) (-1 |#2| |#2|))) (-15 -2073 ((-3 (-587 (-381 |#2|)) "failed") (-381 |#2|) (-381 |#2|) (-381 |#2|))))
-((-1672 (((-1 |#1|) (-587 (-2 (|:| -3434 |#1|) (|:| -3245 (-521))))) 37)) (-3181 (((-1 |#1|) (-1015 |#1|)) 45)) (-2561 (((-1 |#1|) (-1165 |#1|) (-1165 (-521)) (-521)) 34)))
-(((-942 |#1|) (-10 -7 (-15 -3181 ((-1 |#1|) (-1015 |#1|))) (-15 -1672 ((-1 |#1|) (-587 (-2 (|:| -3434 |#1|) (|:| -3245 (-521)))))) (-15 -2561 ((-1 |#1|) (-1165 |#1|) (-1165 (-521)) (-521)))) (-1013)) (T -942))
-((-2561 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *6)) (-5 *4 (-1165 (-521))) (-5 *5 (-521)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-942 *6)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -3434 *4) (|:| -3245 (-521))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-942 *4)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1015 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-942 *4)))))
-(-10 -7 (-15 -3181 ((-1 |#1|) (-1015 |#1|))) (-15 -1672 ((-1 |#1|) (-587 (-2 (|:| -3434 |#1|) (|:| -3245 (-521)))))) (-15 -2561 ((-1 |#1|) (-1165 |#1|) (-1165 (-521)) (-521))))
-((-3490 (((-707) (-310 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3490 ((-707) (-310 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-337) (-1141 |#1|) (-1141 (-381 |#2|)) (-316 |#1| |#2| |#3|) (-13 (-342) (-337))) (T -943))
-((-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-337)) (-4 *7 (-1141 *6)) (-4 *4 (-1141 (-381 *7))) (-4 *8 (-316 *6 *7 *4)) (-4 *9 (-13 (-342) (-337))) (-5 *2 (-707)) (-5 *1 (-943 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3490 ((-707) (-310 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-2760 (((-3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) "failed") |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) 31) (((-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521))) 28)) (-1623 (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521))) 33) (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-381 (-521))) 29) (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) 32) (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1|) 27)) (-1710 (((-587 (-381 (-521))) (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) 19)) (-3239 (((-381 (-521)) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) 16)))
-(((-944 |#1|) (-10 -7 (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1|)) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) "failed") |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -3239 ((-381 (-521)) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -1710 ((-587 (-381 (-521))) (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))))) (-1141 (-521))) (T -944))
-((-1710 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *2 (-587 (-381 (-521)))) (-5 *1 (-944 *4)) (-4 *4 (-1141 (-521))))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) (-5 *2 (-381 (-521))) (-5 *1 (-944 *4)) (-4 *4 (-1141 (-521))))) (-2760 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))))) (-2760 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) (-5 *4 (-381 (-521))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))))) (-1623 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-381 (-521))) (-5 *2 (-587 (-2 (|:| -1970 *5) (|:| -1981 *5)))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-2 (|:| -1970 *5) (|:| -1981 *5))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-381 (-521))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))) (-1623 (*1 *2 *3) (-12 (-5 *2 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))))))
-(-10 -7 (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1|)) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) "failed") |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -3239 ((-381 (-521)) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -1710 ((-587 (-381 (-521))) (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))))
-((-2760 (((-3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) "failed") |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) 35) (((-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521))) 32)) (-1623 (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521))) 30) (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-381 (-521))) 26) (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) 28) (((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1|) 24)))
-(((-945 |#1|) (-10 -7 (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1|)) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) "failed") |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))) (-1141 (-381 (-521)))) (T -945))
-((-2760 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521)))))) (-2760 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) (-5 *4 (-381 (-521))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *4)))) (-1623 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-381 (-521))) (-5 *2 (-587 (-2 (|:| -1970 *5) (|:| -1981 *5)))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *5)) (-5 *4 (-2 (|:| -1970 *5) (|:| -1981 *5))))) (-1623 (*1 *2 *3 *4) (-12 (-5 *4 (-381 (-521))) (-5 *2 (-587 (-2 (|:| -1970 *4) (|:| -1981 *4)))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *4)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *2 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521)))) (-5 *4 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))) (-1623 (*1 *2 *3) (-12 (-5 *2 (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521)))))))
-(-10 -7 (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1|)) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-381 (-521)))) (-15 -1623 ((-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-381 (-521)))) (-15 -2760 ((-3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) "failed") |#1| (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))) (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))))
-((-1438 (((-202) $) 6) (((-353) $) 9)))
-(((-946) (-1196)) (T -946))
-NIL
-(-13 (-562 (-202)) (-562 (-353)))
-(((-562 (-202)) . T) ((-562 (-353)) . T))
-((-3278 (((-587 (-353)) (-880 (-521)) (-353)) 27) (((-587 (-353)) (-880 (-381 (-521))) (-353)) 26)) (-1834 (((-587 (-587 (-353))) (-587 (-880 (-521))) (-587 (-1084)) (-353)) 36)))
-(((-947) (-10 -7 (-15 -3278 ((-587 (-353)) (-880 (-381 (-521))) (-353))) (-15 -3278 ((-587 (-353)) (-880 (-521)) (-353))) (-15 -1834 ((-587 (-587 (-353))) (-587 (-880 (-521))) (-587 (-1084)) (-353))))) (T -947))
-((-1834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 (-353)))) (-5 *1 (-947)) (-5 *5 (-353)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-521))) (-5 *2 (-587 (-353))) (-5 *1 (-947)) (-5 *4 (-353)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-381 (-521)))) (-5 *2 (-587 (-353))) (-5 *1 (-947)) (-5 *4 (-353)))))
-(-10 -7 (-15 -3278 ((-587 (-353)) (-880 (-381 (-521))) (-353))) (-15 -3278 ((-587 (-353)) (-880 (-521)) (-353))) (-15 -1834 ((-587 (-587 (-353))) (-587 (-880 (-521))) (-587 (-1084)) (-353))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 70)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-1984 (($ $) NIL) (($ $ (-707)) NIL) (($ (-381 (-521))) NIL) (($ (-521)) NIL)) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) 65)) (-2231 (($) NIL T CONST)) (-1444 (((-3 $ "failed") (-1080 $) (-849) (-791)) NIL) (((-3 $ "failed") (-1080 $) (-849)) 49)) (-1296 (((-3 (-381 (-521)) "failed") $) NIL (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-521) "failed") $) NIL (-3703 (|has| (-381 (-521)) (-961 (-521))) (|has| |#1| (-961 (-521)))))) (-1496 (((-381 (-521)) $) 14 (|has| (-381 (-521)) (-961 (-381 (-521))))) (((-381 (-521)) $) 14) ((|#1| $) 109) (((-521) $) NIL (-3703 (|has| (-381 (-521)) (-961 (-521))) (|has| |#1| (-961 (-521)))))) (-3934 (($ $ (-791)) 40)) (-3712 (($ $ (-791)) 41)) (-2302 (($ $ $) NIL)) (-1843 (((-381 (-521)) $ $) 18)) (-2783 (((-3 $ "failed") $) 83)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2273 (((-108) $) 60)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL)) (-3305 (((-108) $) 63)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-3177 (((-3 (-1080 $) "failed") $) 78)) (-3313 (((-3 (-791) "failed") $) 77)) (-2651 (((-3 (-1080 $) "failed") $) 75)) (-2768 (((-3 (-980 $ (-1080 $)) "failed") $) 73)) (-2254 (($ (-587 $)) NIL) (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 84)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ (-587 $)) NIL) (($ $ $) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2223 (((-791) $) 82) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ $) 57) (($ (-381 (-521))) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ |#1|) 111)) (-1592 (((-707)) NIL)) (-1842 (((-108) $ $) NIL)) (-3893 (((-381 (-521)) $ $) 24)) (-3724 (((-587 $) (-1080 $)) 55) (((-587 $) (-1080 (-381 (-521)))) NIL) (((-587 $) (-1080 (-521))) NIL) (((-587 $) (-880 $)) NIL) (((-587 $) (-880 (-381 (-521)))) NIL) (((-587 $) (-880 (-521))) NIL)) (-1262 (($ (-980 $ (-1080 $)) (-791)) 39)) (-4012 (($ $) 19)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL)) (-3562 (($) 28 T CONST)) (-3572 (($) 34 T CONST)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 71)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 21)) (-1648 (($ $ $) 32)) (-1639 (($ $) 33) (($ $ $) 69)) (-1628 (($ $ $) 104)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL) (($ $ (-381 (-521))) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 92) (($ $ $) 97) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ (-521) $) 92) (($ $ (-521)) NIL) (($ (-381 (-521)) $) NIL) (($ $ (-381 (-521))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
-(((-948 |#1|) (-13 (-937) (-385 |#1|) (-37 |#1|) (-10 -8 (-15 -1262 ($ (-980 $ (-1080 $)) (-791))) (-15 -2768 ((-3 (-980 $ (-1080 $)) "failed") $)) (-15 -1843 ((-381 (-521)) $ $)))) (-13 (-781) (-337) (-946))) (T -948))
-((-1262 (*1 *1 *2 *3) (-12 (-5 *2 (-980 (-948 *4) (-1080 (-948 *4)))) (-5 *3 (-791)) (-5 *1 (-948 *4)) (-4 *4 (-13 (-781) (-337) (-946))))) (-2768 (*1 *2 *1) (|partial| -12 (-5 *2 (-980 (-948 *3) (-1080 (-948 *3)))) (-5 *1 (-948 *3)) (-4 *3 (-13 (-781) (-337) (-946))))) (-1843 (*1 *2 *1 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-948 *3)) (-4 *3 (-13 (-781) (-337) (-946))))))
-(-13 (-937) (-385 |#1|) (-37 |#1|) (-10 -8 (-15 -1262 ($ (-980 $ (-1080 $)) (-791))) (-15 -2768 ((-3 (-980 $ (-1080 $)) "failed") $)) (-15 -1843 ((-381 (-521)) $ $))))
-((-2095 (((-2 (|:| -3196 |#2|) (|:| -1426 (-587 |#1|))) |#2| (-587 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-949 |#1| |#2|) (-10 -7 (-15 -2095 (|#2| |#2| |#1|)) (-15 -2095 ((-2 (|:| -3196 |#2|) (|:| -1426 (-587 |#1|))) |#2| (-587 |#1|)))) (-337) (-597 |#1|)) (T -949))
-((-2095 (*1 *2 *3 *4) (-12 (-4 *5 (-337)) (-5 *2 (-2 (|:| -3196 *3) (|:| -1426 (-587 *5)))) (-5 *1 (-949 *5 *3)) (-5 *4 (-587 *5)) (-4 *3 (-597 *5)))) (-2095 (*1 *2 *2 *3) (-12 (-4 *3 (-337)) (-5 *1 (-949 *3 *2)) (-4 *2 (-597 *3)))))
-(-10 -7 (-15 -2095 (|#2| |#2| |#1|)) (-15 -2095 ((-2 (|:| -3196 |#2|) (|:| -1426 (-587 |#1|))) |#2| (-587 |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3622 ((|#1| $ |#1|) 14)) (-2396 ((|#1| $ |#1|) 12)) (-2582 (($ |#1|) 10)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2550 ((|#1| $) 11)) (-3561 ((|#1| $) 13)) (-2223 (((-791) $) 21 (|has| |#1| (-1013)))) (-1549 (((-108) $ $) 9)))
-(((-950 |#1|) (-13 (-1119) (-10 -8 (-15 -2582 ($ |#1|)) (-15 -2550 (|#1| $)) (-15 -2396 (|#1| $ |#1|)) (-15 -3561 (|#1| $)) (-15 -3622 (|#1| $ |#1|)) (-15 -1549 ((-108) $ $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1119)) (T -950))
-((-2582 (*1 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-2550 (*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-2396 (*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-3561 (*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-3622 (*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))) (-1549 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-950 *3)) (-4 *3 (-1119)))))
-(-13 (-1119) (-10 -8 (-15 -2582 ($ |#1|)) (-15 -2550 (|#1| $)) (-15 -2396 (|#1| $ |#1|)) (-15 -3561 (|#1| $)) (-15 -3622 (|#1| $ |#1|)) (-15 -1549 ((-108) $ $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) NIL)) (-4137 (((-587 $) (-587 |#4|)) 105) (((-587 $) (-587 |#4|) (-108)) 106) (((-587 $) (-587 |#4|) (-108) (-108)) 104) (((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108)) 107)) (-4085 (((-587 |#3|) $) NIL)) (-2856 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1613 ((|#4| |#4| $) NIL)) (-2694 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| $) 99)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1658 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 54)) (-2231 (($) NIL T CONST)) (-1616 (((-108) $) 26 (|has| |#1| (-513)))) (-3514 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3515 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2512 (((-108) $) NIL (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2122 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1496 (($ (-587 |#4|)) NIL)) (-2329 (((-3 $ "failed") $) 39)) (-1910 ((|#4| |#4| $) 57)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1429 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1860 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) NIL)) (-4008 (((-108) |#4| $) NIL)) (-3547 (((-108) |#4| $) NIL)) (-1781 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2490 (((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)) 119)) (-3831 (((-587 |#4|) $) 16 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3131 ((|#3| $) 33)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#4|) $) 17 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 21)) (-2963 (((-587 |#3|) $) NIL)) (-4065 (((-108) |#3| $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-3207 (((-3 |#4| (-587 $)) |#4| |#4| $) NIL)) (-3543 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| |#4| $) 97)) (-1450 (((-3 |#4| "failed") $) 37)) (-1732 (((-587 $) |#4| $) 80)) (-2051 (((-3 (-108) (-587 $)) |#4| $) NIL)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-1802 (((-587 $) |#4| $) 102) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 103) (((-587 $) |#4| (-587 $)) NIL)) (-3755 (((-587 $) (-587 |#4|) (-108) (-108) (-108)) 114)) (-3691 (($ |#4| $) 70) (($ (-587 |#4|) $) 71) (((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2942 (((-587 |#4|) $) NIL)) (-2626 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3432 ((|#4| |#4| $) NIL)) (-3069 (((-108) $ $) NIL)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1896 ((|#4| |#4| $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-3 |#4| "failed") $) 35)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1314 (((-3 $ "failed") $ |#4|) 48)) (-2191 (($ $ |#4|) NIL) (((-587 $) |#4| $) 82) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 77)) (-1936 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 15)) (-2280 (($) 13)) (-2098 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) 12)) (-1438 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 20)) (-3680 (($ $ |#3|) 42)) (-2600 (($ $ |#3|) 44)) (-2404 (($ $) NIL)) (-2222 (($ $ |#3|) NIL)) (-2223 (((-791) $) 31) (((-587 |#4|) $) 40)) (-2537 (((-707) $) NIL (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-3077 (((-587 $) |#4| $) 79) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) NIL)) (-2006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) NIL)) (-3355 (((-108) |#4| $) NIL)) (-2567 (((-108) |#3| $) 53)) (-1549 (((-108) $ $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-951 |#1| |#2| |#3| |#4|) (-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3691 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3755 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -2490 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108))))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|)) (T -951))
-((-3691 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-951 *5 *6 *7 *3))) (-5 *1 (-951 *5 *6 *7 *3)) (-4 *3 (-984 *5 *6 *7)))) (-4137 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8)))) (-4137 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8)))) (-3755 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8)))) (-2490 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-951 *5 *6 *7 *8))))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
-(-13 (-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3691 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3755 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -2490 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)))))
-((-1300 (((-587 (-627 |#1|)) (-587 (-627 |#1|))) 57) (((-627 |#1|) (-627 |#1|)) 56) (((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-587 (-627 |#1|))) 55) (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 52)) (-2127 (((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-849)) 51) (((-627 |#1|) (-627 |#1|) (-849)) 50)) (-2673 (((-587 (-627 (-521))) (-587 (-587 (-521)))) 67) (((-587 (-627 (-521))) (-587 (-833 (-521))) (-521)) 66) (((-627 (-521)) (-587 (-521))) 63) (((-627 (-521)) (-833 (-521)) (-521)) 62)) (-2641 (((-627 (-880 |#1|)) (-707)) 80)) (-3280 (((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-849)) 36 (|has| |#1| (-6 (-4235 "*")))) (((-627 |#1|) (-627 |#1|) (-849)) 34 (|has| |#1| (-6 (-4235 "*"))))))
-(((-952 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -3280 ((-627 |#1|) (-627 |#1|) (-849))) |%noBranch|) (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -3280 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-849))) |%noBranch|) (-15 -2641 ((-627 (-880 |#1|)) (-707))) (-15 -2127 ((-627 |#1|) (-627 |#1|) (-849))) (-15 -2127 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-849))) (-15 -1300 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1300 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -1300 ((-627 |#1|) (-627 |#1|))) (-15 -1300 ((-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2673 ((-627 (-521)) (-833 (-521)) (-521))) (-15 -2673 ((-627 (-521)) (-587 (-521)))) (-15 -2673 ((-587 (-627 (-521))) (-587 (-833 (-521))) (-521))) (-15 -2673 ((-587 (-627 (-521))) (-587 (-587 (-521)))))) (-970)) (T -952))
-((-2673 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-521)))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-952 *4)) (-4 *4 (-970)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-833 (-521)))) (-5 *4 (-521)) (-5 *2 (-587 (-627 *4))) (-5 *1 (-952 *5)) (-4 *5 (-970)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-952 *4)) (-4 *4 (-970)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-833 (-521))) (-5 *4 (-521)) (-5 *2 (-627 *4)) (-5 *1 (-952 *5)) (-4 *5 (-970)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-1300 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-1300 (*1 *2 *2 *2) (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-1300 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3)))) (-2127 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-849)) (-4 *4 (-970)) (-5 *1 (-952 *4)))) (-2127 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-849)) (-4 *4 (-970)) (-5 *1 (-952 *4)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-627 (-880 *4))) (-5 *1 (-952 *4)) (-4 *4 (-970)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-849)) (|has| *4 (-6 (-4235 "*"))) (-4 *4 (-970)) (-5 *1 (-952 *4)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-849)) (|has| *4 (-6 (-4235 "*"))) (-4 *4 (-970)) (-5 *1 (-952 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -3280 ((-627 |#1|) (-627 |#1|) (-849))) |%noBranch|) (IF (|has| |#1| (-6 (-4235 "*"))) (-15 -3280 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-849))) |%noBranch|) (-15 -2641 ((-627 (-880 |#1|)) (-707))) (-15 -2127 ((-627 |#1|) (-627 |#1|) (-849))) (-15 -2127 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-849))) (-15 -1300 ((-627 |#1|) (-627 |#1|) (-627 |#1|))) (-15 -1300 ((-587 (-627 |#1|)) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -1300 ((-627 |#1|) (-627 |#1|))) (-15 -1300 ((-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2673 ((-627 (-521)) (-833 (-521)) (-521))) (-15 -2673 ((-627 (-521)) (-587 (-521)))) (-15 -2673 ((-587 (-627 (-521))) (-587 (-833 (-521))) (-521))) (-15 -2673 ((-587 (-627 (-521))) (-587 (-587 (-521))))))
-((-3868 (((-627 |#1|) (-587 (-627 |#1|)) (-1165 |#1|)) 50 (|has| |#1| (-282)))) (-2090 (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 (-1165 |#1|))) 73 (|has| |#1| (-337))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 |#1|)) 71 (|has| |#1| (-337)))) (-3373 (((-1165 |#1|) (-587 (-1165 |#1|)) (-521)) 75 (-12 (|has| |#1| (-337)) (|has| |#1| (-342))))) (-1838 (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-849)) 80 (-12 (|has| |#1| (-337)) (|has| |#1| (-342)))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108)) 78 (-12 (|has| |#1| (-337)) (|has| |#1| (-342)))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|))) 77 (-12 (|has| |#1| (-337)) (|has| |#1| (-342)))) (((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108) (-521) (-521)) 76 (-12 (|has| |#1| (-337)) (|has| |#1| (-342))))) (-3007 (((-108) (-587 (-627 |#1|))) 69 (|has| |#1| (-337))) (((-108) (-587 (-627 |#1|)) (-521)) 68 (|has| |#1| (-337)))) (-3642 (((-1165 (-1165 |#1|)) (-587 (-627 |#1|)) (-1165 |#1|)) 48 (|has| |#1| (-282)))) (-3260 (((-627 |#1|) (-587 (-627 |#1|)) (-627 |#1|)) 33)) (-1251 (((-627 |#1|) (-1165 (-1165 |#1|))) 30)) (-2867 (((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-521)) 64 (|has| |#1| (-337))) (((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|))) 63 (|has| |#1| (-337))) (((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-108) (-521)) 62 (|has| |#1| (-337)))))
-(((-953 |#1|) (-10 -7 (-15 -1251 ((-627 |#1|) (-1165 (-1165 |#1|)))) (-15 -3260 ((-627 |#1|) (-587 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-282)) (PROGN (-15 -3642 ((-1165 (-1165 |#1|)) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -3868 ((-627 |#1|) (-587 (-627 |#1|)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -2867 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-108) (-521))) (-15 -2867 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2867 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-521))) (-15 -3007 ((-108) (-587 (-627 |#1|)) (-521))) (-15 -3007 ((-108) (-587 (-627 |#1|)))) (-15 -2090 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -2090 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 (-1165 |#1|))))) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#1| (-337)) (PROGN (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108) (-521) (-521))) (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)))) (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108))) (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-849))) (-15 -3373 ((-1165 |#1|) (-587 (-1165 |#1|)) (-521)))) |%noBranch|) |%noBranch|)) (-970)) (T -953))
-((-3373 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1165 *5))) (-5 *4 (-521)) (-5 *2 (-1165 *5)) (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)))) (-1838 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-1838 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-1838 (*1 *2 *3) (-12 (-4 *4 (-337)) (-4 *4 (-342)) (-4 *4 (-970)) (-5 *2 (-587 (-587 (-627 *4)))) (-5 *1 (-953 *4)) (-5 *3 (-587 (-627 *4))))) (-1838 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-521)) (-4 *6 (-337)) (-4 *6 (-342)) (-4 *6 (-970)) (-5 *2 (-587 (-587 (-627 *6)))) (-5 *1 (-953 *6)) (-5 *3 (-587 (-627 *6))))) (-2090 (*1 *2 *3 *4) (-12 (-5 *4 (-1165 (-1165 *5))) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-2090 (*1 *2 *3 *4) (-12 (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5)) (-5 *3 (-587 (-627 *5))))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337)) (-4 *4 (-970)) (-5 *2 (-108)) (-5 *1 (-953 *4)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-4 *5 (-337)) (-4 *5 (-970)) (-5 *2 (-108)) (-5 *1 (-953 *5)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-5 *2 (-627 *5)) (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-970)))) (-2867 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-5 *1 (-953 *4)) (-4 *4 (-337)) (-4 *4 (-970)))) (-2867 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-587 (-627 *6))) (-5 *4 (-108)) (-5 *5 (-521)) (-5 *2 (-627 *6)) (-5 *1 (-953 *6)) (-4 *6 (-337)) (-4 *6 (-970)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-1165 *5)) (-4 *5 (-282)) (-4 *5 (-970)) (-5 *2 (-627 *5)) (-5 *1 (-953 *5)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-627 *5))) (-4 *5 (-282)) (-4 *5 (-970)) (-5 *2 (-1165 (-1165 *5))) (-5 *1 (-953 *5)) (-5 *4 (-1165 *5)))) (-3260 (*1 *2 *3 *2) (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-970)) (-5 *1 (-953 *4)))) (-1251 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-4 *4 (-970)) (-5 *2 (-627 *4)) (-5 *1 (-953 *4)))))
-(-10 -7 (-15 -1251 ((-627 |#1|) (-1165 (-1165 |#1|)))) (-15 -3260 ((-627 |#1|) (-587 (-627 |#1|)) (-627 |#1|))) (IF (|has| |#1| (-282)) (PROGN (-15 -3642 ((-1165 (-1165 |#1|)) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -3868 ((-627 |#1|) (-587 (-627 |#1|)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -2867 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-108) (-521))) (-15 -2867 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -2867 ((-627 |#1|) (-587 (-627 |#1|)) (-587 (-627 |#1|)) (-521))) (-15 -3007 ((-108) (-587 (-627 |#1|)) (-521))) (-15 -3007 ((-108) (-587 (-627 |#1|)))) (-15 -2090 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 |#1|))) (-15 -2090 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-1165 (-1165 |#1|))))) |%noBranch|) (IF (|has| |#1| (-342)) (IF (|has| |#1| (-337)) (PROGN (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108) (-521) (-521))) (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)))) (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-108))) (-15 -1838 ((-587 (-587 (-627 |#1|))) (-587 (-627 |#1|)) (-849))) (-15 -3373 ((-1165 |#1|) (-587 (-1165 |#1|)) (-521)))) |%noBranch|) |%noBranch|))
-((-3368 ((|#1| (-849) |#1|) 9)))
-(((-954 |#1|) (-10 -7 (-15 -3368 (|#1| (-849) |#1|))) (-13 (-1013) (-10 -8 (-15 -1628 ($ $ $))))) (T -954))
-((-3368 (*1 *2 *3 *2) (-12 (-5 *3 (-849)) (-5 *1 (-954 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -1628 ($ $ $))))))))
-(-10 -7 (-15 -3368 (|#1| (-849) |#1|)))
-((-4023 (((-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521))))))) (-627 (-381 (-880 (-521))))) 58)) (-3557 (((-587 (-627 (-290 (-521)))) (-290 (-521)) (-627 (-381 (-880 (-521))))) 48)) (-3941 (((-587 (-290 (-521))) (-627 (-381 (-880 (-521))))) 41)) (-2153 (((-587 (-627 (-290 (-521)))) (-627 (-381 (-880 (-521))))) 68)) (-2255 (((-627 (-290 (-521))) (-627 (-290 (-521)))) 33)) (-3980 (((-587 (-627 (-290 (-521)))) (-587 (-627 (-290 (-521))))) 61)) (-1554 (((-3 (-627 (-290 (-521))) "failed") (-627 (-381 (-880 (-521))))) 65)))
-(((-955) (-10 -7 (-15 -4023 ((-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521))))))) (-627 (-381 (-880 (-521)))))) (-15 -3557 ((-587 (-627 (-290 (-521)))) (-290 (-521)) (-627 (-381 (-880 (-521)))))) (-15 -3941 ((-587 (-290 (-521))) (-627 (-381 (-880 (-521)))))) (-15 -1554 ((-3 (-627 (-290 (-521))) "failed") (-627 (-381 (-880 (-521)))))) (-15 -2255 ((-627 (-290 (-521))) (-627 (-290 (-521))))) (-15 -3980 ((-587 (-627 (-290 (-521)))) (-587 (-627 (-290 (-521)))))) (-15 -2153 ((-587 (-627 (-290 (-521)))) (-627 (-381 (-880 (-521)))))))) (T -955))
-((-2153 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-880 (-521))))) (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))) (-1554 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 (-381 (-880 (-521))))) (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-880 (-521))))) (-5 *2 (-587 (-290 (-521)))) (-5 *1 (-955)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-381 (-880 (-521))))) (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)) (-5 *3 (-290 (-521))))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-627 (-381 (-880 (-521))))) (-5 *2 (-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521)))))))) (-5 *1 (-955)))))
-(-10 -7 (-15 -4023 ((-587 (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521)) (|:| |radvect| (-587 (-627 (-290 (-521))))))) (-627 (-381 (-880 (-521)))))) (-15 -3557 ((-587 (-627 (-290 (-521)))) (-290 (-521)) (-627 (-381 (-880 (-521)))))) (-15 -3941 ((-587 (-290 (-521))) (-627 (-381 (-880 (-521)))))) (-15 -1554 ((-3 (-627 (-290 (-521))) "failed") (-627 (-381 (-880 (-521)))))) (-15 -2255 ((-627 (-290 (-521))) (-627 (-290 (-521))))) (-15 -3980 ((-587 (-627 (-290 (-521)))) (-587 (-627 (-290 (-521)))))) (-15 -2153 ((-587 (-627 (-290 (-521)))) (-627 (-381 (-880 (-521)))))))
-((-4038 ((|#1| |#1| (-849)) 9)))
-(((-956 |#1|) (-10 -7 (-15 -4038 (|#1| |#1| (-849)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -956))
-((-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-849)) (-5 *1 (-956 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -4038 (|#1| |#1| (-849))))
-((-2223 ((|#1| (-286)) 11) (((-1170) |#1|) 9)))
-(((-957 |#1|) (-10 -7 (-15 -2223 ((-1170) |#1|)) (-15 -2223 (|#1| (-286)))) (-1119)) (T -957))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-286)) (-5 *1 (-957 *2)) (-4 *2 (-1119)))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-957 *3)) (-4 *3 (-1119)))))
-(-10 -7 (-15 -2223 ((-1170) |#1|)) (-15 -2223 (|#1| (-286))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-3859 (($ |#4|) 25)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-3843 ((|#4| $) 27)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 46) (($ (-521)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1592 (((-707)) 43)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 21 T CONST)) (-3572 (($) 23 T CONST)) (-1549 (((-108) $ $) 40)) (-1639 (($ $) 31) (($ $ $) NIL)) (-1628 (($ $ $) 29)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-958 |#1| |#2| |#3| |#4| |#5|) (-13 (-157) (-37 |#1|) (-10 -8 (-15 -3859 ($ |#4|)) (-15 -2223 ($ |#4|)) (-15 -3843 (|#4| $)))) (-337) (-729) (-783) (-877 |#1| |#2| |#3|) (-587 |#4|)) (T -958))
-((-3859 (*1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5)) (-14 *6 (-587 *2)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5)) (-14 *6 (-587 *2)))) (-3843 (*1 *2 *1) (-12 (-4 *2 (-877 *3 *4 *5)) (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-14 *6 (-587 *2)))))
-(-13 (-157) (-37 |#1|) (-10 -8 (-15 -3859 ($ |#4|)) (-15 -2223 ($ |#4|)) (-15 -3843 (|#4| $))))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-3933 (((-1170) $ (-1084) (-1084)) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2094 (((-108) (-108)) 39)) (-3880 (((-108) (-108)) 38)) (-2396 (((-51) $ (-1084) (-51)) NIL)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 (-51) "failed") (-1084) $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-2726 (($ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-3 (-51) "failed") (-1084) $) NIL)) (-1429 (($ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-51) $ (-1084) (-51)) NIL (|has| $ (-6 -4234)))) (-3626 (((-51) $ (-1084)) NIL)) (-3831 (((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-1084) $) NIL (|has| (-1084) (-783)))) (-3568 (((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-3989 (((-1084) $) NIL (|has| (-1084) (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-2964 (((-587 (-1084)) $) 34)) (-3839 (((-108) (-1084) $) NIL)) (-1570 (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL)) (-4135 (($ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL)) (-1223 (((-587 (-1084)) $) NIL)) (-2131 (((-108) (-1084) $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-2319 (((-51) $) NIL (|has| (-1084) (-783)))) (-3733 (((-3 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) "failed") (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL)) (-2995 (($ $ (-51)) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-269 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-269 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-587 (-269 (-51)))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2481 (((-587 (-51)) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 (((-51) $ (-1084)) 35) (((-51) $ (-1084) (-51)) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (((-707) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013)))) (((-707) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-2223 (((-791) $) 37 (-3703 (|has| (-51) (-561 (-791))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-959) (-13 (-1096 (-1084) (-51)) (-10 -7 (-15 -2094 ((-108) (-108))) (-15 -3880 ((-108) (-108))) (-6 -4233)))) (T -959))
-((-2094 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))))
-(-13 (-1096 (-1084) (-51)) (-10 -7 (-15 -2094 ((-108) (-108))) (-15 -3880 ((-108) (-108))) (-6 -4233)))
-((-1496 ((|#2| $) 10)))
-(((-960 |#1| |#2|) (-10 -8 (-15 -1496 (|#2| |#1|))) (-961 |#2|) (-1119)) (T -960))
-NIL
-(-10 -8 (-15 -1496 (|#2| |#1|)))
-((-1296 (((-3 |#1| "failed") $) 7)) (-1496 ((|#1| $) 8)) (-2223 (($ |#1|) 6)))
-(((-961 |#1|) (-1196) (-1119)) (T -961))
-((-1496 (*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119)))) (-1296 (*1 *2 *1) (|partial| -12 (-4 *1 (-961 *2)) (-4 *2 (-1119)))) (-2223 (*1 *1 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119)))))
-(-13 (-10 -8 (-15 -2223 ($ |t#1|)) (-15 -1296 ((-3 |t#1| "failed") $)) (-15 -1496 (|t#1| $))))
-((-4031 (((-587 (-587 (-269 (-381 (-880 |#2|))))) (-587 (-880 |#2|)) (-587 (-1084))) 35)))
-(((-962 |#1| |#2|) (-10 -7 (-15 -4031 ((-587 (-587 (-269 (-381 (-880 |#2|))))) (-587 (-880 |#2|)) (-587 (-1084))))) (-513) (-13 (-513) (-961 |#1|))) (T -962))
-((-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *6))) (-5 *4 (-587 (-1084))) (-4 *6 (-13 (-513) (-961 *5))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *6)))))) (-5 *1 (-962 *5 *6)))))
-(-10 -7 (-15 -4031 ((-587 (-587 (-269 (-381 (-880 |#2|))))) (-587 (-880 |#2|)) (-587 (-1084)))))
-((-2991 (((-353)) 15)) (-3181 (((-1 (-353)) (-353) (-353)) 20)) (-1670 (((-1 (-353)) (-707)) 43)) (-1398 (((-353)) 34)) (-3658 (((-1 (-353)) (-353) (-353)) 35)) (-2045 (((-353)) 26)) (-2221 (((-1 (-353)) (-353)) 27)) (-4199 (((-353) (-707)) 38)) (-3327 (((-1 (-353)) (-707)) 39)) (-4049 (((-1 (-353)) (-707) (-707)) 42)) (-2847 (((-1 (-353)) (-707) (-707)) 40)))
-(((-963) (-10 -7 (-15 -2991 ((-353))) (-15 -1398 ((-353))) (-15 -2045 ((-353))) (-15 -4199 ((-353) (-707))) (-15 -3181 ((-1 (-353)) (-353) (-353))) (-15 -3658 ((-1 (-353)) (-353) (-353))) (-15 -2221 ((-1 (-353)) (-353))) (-15 -3327 ((-1 (-353)) (-707))) (-15 -2847 ((-1 (-353)) (-707) (-707))) (-15 -4049 ((-1 (-353)) (-707) (-707))) (-15 -1670 ((-1 (-353)) (-707))))) (T -963))
-((-1670 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-4049 (*1 *2 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-2847 (*1 *2 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))) (-2221 (*1 *2 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))) (-3181 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-353)) (-5 *1 (-963)))) (-2045 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))) (-1398 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))) (-2991 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
-(-10 -7 (-15 -2991 ((-353))) (-15 -1398 ((-353))) (-15 -2045 ((-353))) (-15 -4199 ((-353) (-707))) (-15 -3181 ((-1 (-353)) (-353) (-353))) (-15 -3658 ((-1 (-353)) (-353) (-353))) (-15 -2221 ((-1 (-353)) (-353))) (-15 -3327 ((-1 (-353)) (-707))) (-15 -2847 ((-1 (-353)) (-707) (-707))) (-15 -4049 ((-1 (-353)) (-707) (-707))) (-15 -1670 ((-1 (-353)) (-707))))
-((-1974 (((-392 |#1|) |#1|) 31)))
-(((-964 |#1|) (-10 -7 (-15 -1974 ((-392 |#1|) |#1|))) (-1141 (-381 (-880 (-521))))) (T -964))
-((-1974 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-964 *3)) (-4 *3 (-1141 (-381 (-880 (-521))))))))
-(-10 -7 (-15 -1974 ((-392 |#1|) |#1|)))
-((-1677 (((-381 (-392 (-880 |#1|))) (-381 (-880 |#1|))) 14)))
-(((-965 |#1|) (-10 -7 (-15 -1677 ((-381 (-392 (-880 |#1|))) (-381 (-880 |#1|))))) (-282)) (T -965))
-((-1677 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-282)) (-5 *2 (-381 (-392 (-880 *4)))) (-5 *1 (-965 *4)))))
-(-10 -7 (-15 -1677 ((-381 (-392 (-880 |#1|))) (-381 (-880 |#1|)))))
-((-4085 (((-587 (-1084)) (-381 (-880 |#1|))) 15)) (-1280 (((-381 (-1080 (-381 (-880 |#1|)))) (-381 (-880 |#1|)) (-1084)) 22)) (-4068 (((-381 (-880 |#1|)) (-381 (-1080 (-381 (-880 |#1|)))) (-1084)) 24)) (-2913 (((-3 (-1084) "failed") (-381 (-880 |#1|))) 18)) (-2313 (((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-587 (-269 (-381 (-880 |#1|))))) 29) (((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|)))) 31) (((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-587 (-1084)) (-587 (-381 (-880 |#1|)))) 26) (((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|))) 27)) (-2223 (((-381 (-880 |#1|)) |#1|) 11)))
-(((-966 |#1|) (-10 -7 (-15 -4085 ((-587 (-1084)) (-381 (-880 |#1|)))) (-15 -2913 ((-3 (-1084) "failed") (-381 (-880 |#1|)))) (-15 -1280 ((-381 (-1080 (-381 (-880 |#1|)))) (-381 (-880 |#1|)) (-1084))) (-15 -4068 ((-381 (-880 |#1|)) (-381 (-1080 (-381 (-880 |#1|)))) (-1084))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|)))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-587 (-1084)) (-587 (-381 (-880 |#1|))))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-587 (-269 (-381 (-880 |#1|)))))) (-15 -2223 ((-381 (-880 |#1|)) |#1|))) (-513)) (T -966))
-((-2223 (*1 *2 *3) (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-966 *3)) (-4 *3 (-513)))) (-2313 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-269 (-381 (-880 *4))))) (-5 *2 (-381 (-880 *4))) (-4 *4 (-513)) (-5 *1 (-966 *4)))) (-2313 (*1 *2 *2 *3) (-12 (-5 *3 (-269 (-381 (-880 *4)))) (-5 *2 (-381 (-880 *4))) (-4 *4 (-513)) (-5 *1 (-966 *4)))) (-2313 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-587 (-1084))) (-5 *4 (-587 (-381 (-880 *5)))) (-5 *2 (-381 (-880 *5))) (-4 *5 (-513)) (-5 *1 (-966 *5)))) (-2313 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-381 (-880 *4))) (-5 *3 (-1084)) (-4 *4 (-513)) (-5 *1 (-966 *4)))) (-4068 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-1080 (-381 (-880 *5))))) (-5 *4 (-1084)) (-5 *2 (-381 (-880 *5))) (-5 *1 (-966 *5)) (-4 *5 (-513)))) (-1280 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-513)) (-5 *2 (-381 (-1080 (-381 (-880 *5))))) (-5 *1 (-966 *5)) (-5 *3 (-381 (-880 *5))))) (-2913 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-5 *2 (-1084)) (-5 *1 (-966 *4)))) (-4085 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-1084))) (-5 *1 (-966 *4)))))
-(-10 -7 (-15 -4085 ((-587 (-1084)) (-381 (-880 |#1|)))) (-15 -2913 ((-3 (-1084) "failed") (-381 (-880 |#1|)))) (-15 -1280 ((-381 (-1080 (-381 (-880 |#1|)))) (-381 (-880 |#1|)) (-1084))) (-15 -4068 ((-381 (-880 |#1|)) (-381 (-1080 (-381 (-880 |#1|)))) (-1084))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|)))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-587 (-1084)) (-587 (-381 (-880 |#1|))))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-269 (-381 (-880 |#1|))))) (-15 -2313 ((-381 (-880 |#1|)) (-381 (-880 |#1|)) (-587 (-269 (-381 (-880 |#1|)))))) (-15 -2223 ((-381 (-880 |#1|)) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 (-716 |#1| (-793 |#2|)))))) (-587 (-716 |#1| (-793 |#2|)))) NIL)) (-4137 (((-587 $) (-587 (-716 |#1| (-793 |#2|)))) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-108)) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-108) (-108)) NIL)) (-4085 (((-587 (-793 |#2|)) $) NIL)) (-2856 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-513)))) (-2516 (((-108) (-716 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-1613 (((-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-2694 (((-587 (-2 (|:| |val| (-716 |#1| (-793 |#2|))) (|:| -1946 $))) (-716 |#1| (-793 |#2|)) $) NIL)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ (-793 |#2|)) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1658 (($ (-1 (-108) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 (-716 |#1| (-793 |#2|)) "failed") $ (-793 |#2|)) NIL)) (-2231 (($) NIL T CONST)) (-1616 (((-108) $) NIL (|has| |#1| (-513)))) (-3514 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3515 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2512 (((-108) $) NIL (|has| |#1| (-513)))) (-3388 (((-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|))) $ (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) (-1 (-108) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)))) NIL)) (-2122 (((-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|))) $) NIL (|has| |#1| (-513)))) (-3476 (((-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|))) $) NIL (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 (-716 |#1| (-793 |#2|)))) NIL)) (-1496 (($ (-587 (-716 |#1| (-793 |#2|)))) NIL)) (-2329 (((-3 $ "failed") $) NIL)) (-1910 (((-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-793 |#2|)) (-1013))))) (-1429 (($ (-716 |#1| (-793 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-793 |#2|)) (-1013)))) (($ (-1 (-108) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-716 |#1| (-793 |#2|))) (|:| |den| |#1|)) (-716 |#1| (-793 |#2|)) $) NIL (|has| |#1| (-513)))) (-3369 (((-108) (-716 |#1| (-793 |#2|)) $ (-1 (-108) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)))) NIL)) (-1860 (((-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-3859 (((-716 |#1| (-793 |#2|)) (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) $ (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-793 |#2|)) (-1013)))) (((-716 |#1| (-793 |#2|)) (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) $ (-716 |#1| (-793 |#2|))) NIL (|has| $ (-6 -4233))) (((-716 |#1| (-793 |#2|)) (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $ (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) (-1 (-108) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)))) NIL)) (-3066 (((-2 (|:| -1684 (-587 (-716 |#1| (-793 |#2|)))) (|:| -1564 (-587 (-716 |#1| (-793 |#2|))))) $) NIL)) (-4008 (((-108) (-716 |#1| (-793 |#2|)) $) NIL)) (-3547 (((-108) (-716 |#1| (-793 |#2|)) $) NIL)) (-1781 (((-108) (-716 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3831 (((-587 (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-4188 (((-108) (-716 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3131 (((-793 |#2|) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-716 |#1| (-793 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-793 |#2|)) (-1013))))) (-3833 (($ (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) $) NIL)) (-2963 (((-587 (-793 |#2|)) $) NIL)) (-4065 (((-108) (-793 |#2|) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-3207 (((-3 (-716 |#1| (-793 |#2|)) (-587 $)) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-3543 (((-587 (-2 (|:| |val| (-716 |#1| (-793 |#2|))) (|:| -1946 $))) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-1450 (((-3 (-716 |#1| (-793 |#2|)) "failed") $) NIL)) (-1732 (((-587 $) (-716 |#1| (-793 |#2|)) $) NIL)) (-2051 (((-3 (-108) (-587 $)) (-716 |#1| (-793 |#2|)) $) NIL)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) (-716 |#1| (-793 |#2|)) $) NIL) (((-108) (-716 |#1| (-793 |#2|)) $) NIL)) (-1802 (((-587 $) (-716 |#1| (-793 |#2|)) $) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) $) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-587 $)) NIL) (((-587 $) (-716 |#1| (-793 |#2|)) (-587 $)) NIL)) (-3691 (($ (-716 |#1| (-793 |#2|)) $) NIL) (($ (-587 (-716 |#1| (-793 |#2|))) $) NIL)) (-2942 (((-587 (-716 |#1| (-793 |#2|))) $) NIL)) (-2626 (((-108) (-716 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-3432 (((-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-3069 (((-108) $ $) NIL)) (-2923 (((-2 (|:| |num| (-716 |#1| (-793 |#2|))) (|:| |den| |#1|)) (-716 |#1| (-793 |#2|)) $) NIL (|has| |#1| (-513)))) (-2941 (((-108) (-716 |#1| (-793 |#2|)) $) NIL) (((-108) $) NIL)) (-1896 (((-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-3 (-716 |#1| (-793 |#2|)) "failed") $) NIL)) (-3733 (((-3 (-716 |#1| (-793 |#2|)) "failed") (-1 (-108) (-716 |#1| (-793 |#2|))) $) NIL)) (-1314 (((-3 $ "failed") $ (-716 |#1| (-793 |#2|))) NIL)) (-2191 (($ $ (-716 |#1| (-793 |#2|))) NIL) (((-587 $) (-716 |#1| (-793 |#2|)) $) NIL) (((-587 $) (-716 |#1| (-793 |#2|)) (-587 $)) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) $) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-587 $)) NIL)) (-1936 (((-108) (-1 (-108) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-716 |#1| (-793 |#2|))) (-587 (-716 |#1| (-793 |#2|)))) NIL (-12 (|has| (-716 |#1| (-793 |#2|)) (-284 (-716 |#1| (-793 |#2|)))) (|has| (-716 |#1| (-793 |#2|)) (-1013)))) (($ $ (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|))) NIL (-12 (|has| (-716 |#1| (-793 |#2|)) (-284 (-716 |#1| (-793 |#2|)))) (|has| (-716 |#1| (-793 |#2|)) (-1013)))) (($ $ (-269 (-716 |#1| (-793 |#2|)))) NIL (-12 (|has| (-716 |#1| (-793 |#2|)) (-284 (-716 |#1| (-793 |#2|)))) (|has| (-716 |#1| (-793 |#2|)) (-1013)))) (($ $ (-587 (-269 (-716 |#1| (-793 |#2|))))) NIL (-12 (|has| (-716 |#1| (-793 |#2|)) (-284 (-716 |#1| (-793 |#2|)))) (|has| (-716 |#1| (-793 |#2|)) (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2098 (((-707) $) NIL)) (-4163 (((-707) (-716 |#1| (-793 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-716 |#1| (-793 |#2|)) (-1013)))) (((-707) (-1 (-108) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-716 |#1| (-793 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-716 |#1| (-793 |#2|)))) NIL)) (-3680 (($ $ (-793 |#2|)) NIL)) (-2600 (($ $ (-793 |#2|)) NIL)) (-2404 (($ $) NIL)) (-2222 (($ $ (-793 |#2|)) NIL)) (-2223 (((-791) $) NIL) (((-587 (-716 |#1| (-793 |#2|))) $) NIL)) (-2537 (((-707) $) NIL (|has| (-793 |#2|) (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 (-716 |#1| (-793 |#2|))))) "failed") (-587 (-716 |#1| (-793 |#2|))) (-1 (-108) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 (-716 |#1| (-793 |#2|))))) "failed") (-587 (-716 |#1| (-793 |#2|))) (-1 (-108) (-716 |#1| (-793 |#2|))) (-1 (-108) (-716 |#1| (-793 |#2|)) (-716 |#1| (-793 |#2|)))) NIL)) (-3226 (((-108) $ (-1 (-108) (-716 |#1| (-793 |#2|)) (-587 (-716 |#1| (-793 |#2|))))) NIL)) (-3077 (((-587 $) (-716 |#1| (-793 |#2|)) $) NIL) (((-587 $) (-716 |#1| (-793 |#2|)) (-587 $)) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) $) NIL) (((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-587 $)) NIL)) (-2006 (((-108) (-1 (-108) (-716 |#1| (-793 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3408 (((-587 (-793 |#2|)) $) NIL)) (-3355 (((-108) (-716 |#1| (-793 |#2|)) $) NIL)) (-2567 (((-108) (-793 |#2|) $) NIL)) (-1549 (((-108) $ $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-967 |#1| |#2|) (-13 (-989 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|))) (-10 -8 (-15 -4137 ((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-108) (-108))))) (-425) (-587 (-1084))) (T -967))
-((-4137 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425)) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-967 *5 *6)))))
-(-13 (-989 |#1| (-493 (-793 |#2|)) (-793 |#2|) (-716 |#1| (-793 |#2|))) (-10 -8 (-15 -4137 ((-587 $) (-587 (-716 |#1| (-793 |#2|))) (-108) (-108)))))
-((-3181 (((-1 (-521)) (-1008 (-521))) 33)) (-3984 (((-521) (-521) (-521) (-521) (-521)) 30)) (-2063 (((-1 (-521)) |RationalNumber|) NIL)) (-3943 (((-1 (-521)) |RationalNumber|) NIL)) (-2475 (((-1 (-521)) (-521) |RationalNumber|) NIL)))
-(((-968) (-10 -7 (-15 -3181 ((-1 (-521)) (-1008 (-521)))) (-15 -2475 ((-1 (-521)) (-521) |RationalNumber|)) (-15 -2063 ((-1 (-521)) |RationalNumber|)) (-15 -3943 ((-1 (-521)) |RationalNumber|)) (-15 -3984 ((-521) (-521) (-521) (-521) (-521))))) (T -968))
-((-3984 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-968)))) (-3943 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))) (-2063 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)) (-5 *3 (-521)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-1008 (-521))) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
-(-10 -7 (-15 -3181 ((-1 (-521)) (-1008 (-521)))) (-15 -2475 ((-1 (-521)) (-521) |RationalNumber|)) (-15 -2063 ((-1 (-521)) |RationalNumber|)) (-15 -3943 ((-1 (-521)) |RationalNumber|)) (-15 -3984 ((-521) (-521) (-521) (-521) (-521))))
-((-2223 (((-791) $) NIL) (($ (-521)) 10)))
-(((-969 |#1|) (-10 -8 (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-970)) (T -969))
-NIL
-(-10 -8 (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-970) (-1196)) (T -970))
-((-1592 (*1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-707)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-970)))))
-(-13 (-977) (-663) (-589 $) (-10 -8 (-15 -1592 ((-707))) (-15 -2223 ($ (-521))) (-6 -4230)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 $) . T) ((-663) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2018 (((-381 (-880 |#2|)) (-587 |#2|) (-587 |#2|) (-707) (-707)) 45)))
-(((-971 |#1| |#2|) (-10 -7 (-15 -2018 ((-381 (-880 |#2|)) (-587 |#2|) (-587 |#2|) (-707) (-707)))) (-1084) (-337)) (T -971))
-((-2018 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-707)) (-4 *6 (-337)) (-5 *2 (-381 (-880 *6))) (-5 *1 (-971 *5 *6)) (-14 *5 (-1084)))))
-(-10 -7 (-15 -2018 ((-381 (-880 |#2|)) (-587 |#2|) (-587 |#2|) (-707) (-707))))
-((-1902 (((-108) $) 28)) (-3730 (((-108) $) 16)) (-1416 (((-707) $) 13)) (-1428 (((-707) $) 14)) (-3776 (((-108) $) 26)) (-2166 (((-108) $) 30)))
-(((-972 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1428 ((-707) |#1|)) (-15 -1416 ((-707) |#1|)) (-15 -2166 ((-108) |#1|)) (-15 -1902 ((-108) |#1|)) (-15 -3776 ((-108) |#1|)) (-15 -3730 ((-108) |#1|))) (-973 |#2| |#3| |#4| |#5| |#6|) (-707) (-707) (-970) (-215 |#3| |#4|) (-215 |#2| |#4|)) (T -972))
-NIL
-(-10 -8 (-15 -1428 ((-707) |#1|)) (-15 -1416 ((-707) |#1|)) (-15 -2166 ((-108) |#1|)) (-15 -1902 ((-108) |#1|)) (-15 -3776 ((-108) |#1|)) (-15 -3730 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1902 (((-108) $) 51)) (-2057 (((-3 $ "failed") $ $) 19)) (-3730 (((-108) $) 53)) (-1269 (((-108) $ (-707)) 61)) (-2231 (($) 17 T CONST)) (-4014 (($ $) 34 (|has| |#3| (-282)))) (-2185 ((|#4| $ (-521)) 39)) (-3167 (((-707) $) 33 (|has| |#3| (-513)))) (-3626 ((|#3| $ (-521) (-521)) 41)) (-3831 (((-587 |#3|) $) 68 (|has| $ (-6 -4233)))) (-2020 (((-707) $) 32 (|has| |#3| (-513)))) (-3993 (((-587 |#5|) $) 31 (|has| |#3| (-513)))) (-1416 (((-707) $) 45)) (-1428 (((-707) $) 44)) (-1513 (((-108) $ (-707)) 60)) (-1698 (((-521) $) 49)) (-1350 (((-521) $) 47)) (-3568 (((-587 |#3|) $) 69 (|has| $ (-6 -4233)))) (-1785 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -4233))))) (-1646 (((-521) $) 48)) (-2809 (((-521) $) 46)) (-1365 (($ (-587 (-587 |#3|))) 54)) (-3833 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3256 (((-587 (-587 |#3|)) $) 43)) (-2859 (((-108) $ (-707)) 59)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-513)))) (-1936 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#3|) (-587 |#3|)) 75 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) 73 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 (-269 |#3|))) 72 (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-3133 (((-108) $ $) 55)) (-1447 (((-108) $) 58)) (-2280 (($) 57)) (-2550 ((|#3| $ (-521) (-521)) 42) ((|#3| $ (-521) (-521) |#3|) 40)) (-3776 (((-108) $) 52)) (-4163 (((-707) |#3| $) 70 (-12 (|has| |#3| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4233)))) (-2420 (($ $) 56)) (-1335 ((|#5| $ (-521)) 38)) (-2223 (((-791) $) 11)) (-2006 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4233)))) (-2166 (((-108) $) 50)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#3|) 35 (|has| |#3| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3478 (((-707) $) 62 (|has| $ (-6 -4233)))))
-(((-973 |#1| |#2| |#3| |#4| |#5|) (-1196) (-707) (-707) (-970) (-215 |t#2| |t#3|) (-215 |t#1| |t#3|)) (T -973))
-((-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *5))) (-4 *5 (-970)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-1350 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-587 (-587 *5))))) (-2550 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970)))) (-3626 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970)))) (-2550 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *2 (-970)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)))) (-2185 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *2 *7)) (-4 *6 (-970)) (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *7 *2)) (-4 *6 (-970)) (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))) (-1393 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2261 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-513)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-337)))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-282)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513)) (-5 *2 (-707)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513)) (-5 *2 (-707)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513)) (-5 *2 (-587 *7)))))
-(-13 (-107 |t#3| |t#3|) (-460 |t#3|) (-10 -8 (-6 -4233) (IF (|has| |t#3| (-157)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -1365 ($ (-587 (-587 |t#3|)))) (-15 -3730 ((-108) $)) (-15 -3776 ((-108) $)) (-15 -1902 ((-108) $)) (-15 -2166 ((-108) $)) (-15 -1698 ((-521) $)) (-15 -1646 ((-521) $)) (-15 -1350 ((-521) $)) (-15 -2809 ((-521) $)) (-15 -1416 ((-707) $)) (-15 -1428 ((-707) $)) (-15 -3256 ((-587 (-587 |t#3|)) $)) (-15 -2550 (|t#3| $ (-521) (-521))) (-15 -3626 (|t#3| $ (-521) (-521))) (-15 -2550 (|t#3| $ (-521) (-521) |t#3|)) (-15 -2185 (|t#4| $ (-521))) (-15 -1335 (|t#5| $ (-521))) (-15 -1393 ($ (-1 |t#3| |t#3|) $)) (-15 -1393 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-513)) (-15 -2261 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-337)) (-15 -1648 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-282)) (-15 -4014 ($ $)) |%noBranch|) (IF (|has| |t#3| (-513)) (PROGN (-15 -3167 ((-707) $)) (-15 -2020 ((-707) $)) (-15 -3993 ((-587 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-561 (-791)) . T) ((-284 |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))) ((-460 |#3|) . T) ((-482 |#3| |#3|) -12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))) ((-589 |#3|) . T) ((-654 |#3|) |has| |#3| (-157)) ((-976 |#3|) . T) ((-1013) . T) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1902 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3730 (((-108) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-2231 (($) NIL T CONST)) (-4014 (($ $) 40 (|has| |#3| (-282)))) (-2185 (((-217 |#2| |#3|) $ (-521)) 29)) (-2312 (($ (-627 |#3|)) 38)) (-3167 (((-707) $) 42 (|has| |#3| (-513)))) (-3626 ((|#3| $ (-521) (-521)) NIL)) (-3831 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-2020 (((-707) $) 44 (|has| |#3| (-513)))) (-3993 (((-587 (-217 |#1| |#3|)) $) 48 (|has| |#3| (-513)))) (-1416 (((-707) $) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-1698 (((-521) $) NIL)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-1646 (((-521) $) NIL)) (-2809 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#3|))) 24)) (-3833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3256 (((-587 (-587 |#3|)) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-513)))) (-1936 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 (-269 |#3|))) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#3| $ (-521) (-521)) NIL) ((|#3| $ (-521) (-521) |#3|) NIL)) (-2043 (((-126)) 51 (|has| |#3| (-337)))) (-3776 (((-108) $) NIL)) (-4163 (((-707) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013)))) (((-707) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) 60 (|has| |#3| (-562 (-497))))) (-1335 (((-217 |#1| |#3|) $ (-521)) 33)) (-2223 (((-791) $) 16) (((-627 |#3|) $) 35)) (-2006 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2166 (((-108) $) NIL)) (-3562 (($) 13 T CONST)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#3|) NIL (|has| |#3| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-974 |#1| |#2| |#3|) (-13 (-973 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-561 (-627 |#3|)) (-10 -8 (IF (|has| |#3| (-337)) (-6 (-1172 |#3|)) |%noBranch|) (IF (|has| |#3| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (-15 -2312 ($ (-627 |#3|))) (-15 -2223 ((-627 |#3|) $)))) (-707) (-707) (-970)) (T -974))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-627 *5)) (-5 *1 (-974 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)) (-4 *5 (-970)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-970)) (-5 *1 (-974 *3 *4 *5)) (-14 *3 (-707)) (-14 *4 (-707)))))
-(-13 (-973 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-561 (-627 |#3|)) (-10 -8 (IF (|has| |#3| (-337)) (-6 (-1172 |#3|)) |%noBranch|) (IF (|has| |#3| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|) (-15 -2312 ($ (-627 |#3|))) (-15 -2223 ((-627 |#3|) $))))
-((-3859 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1393 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-975 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1393 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3859 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-707) (-707) (-970) (-215 |#2| |#3|) (-215 |#1| |#3|) (-973 |#1| |#2| |#3| |#4| |#5|) (-970) (-215 |#2| |#7|) (-215 |#1| |#7|) (-973 |#1| |#2| |#7| |#8| |#9|)) (T -975))
-((-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-970)) (-4 *2 (-970)) (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2)) (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *12 (-973 *5 *6 *2 *10 *11)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-970)) (-4 *10 (-970)) (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *2 (-973 *5 *6 *10 *11 *12)) (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10)) (-4 *12 (-215 *5 *10)))))
-(-10 -7 (-15 -1393 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3859 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ |#1|) 23)))
-(((-976 |#1|) (-1196) (-977)) (T -976))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-977)))))
+((-2355 (($ $ (-1007 $)) 7) (($ $ (-1085)) 6)))
+(((-887) (-1197)) (T -887))
+((-2355 (*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-887)))) (-2355 (*1 *1 *1 *2) (-12 (-4 *1 (-887)) (-5 *2 (-1085)))))
+(-13 (-10 -8 (-15 -2355 ($ $ (-1085))) (-15 -2355 ($ $ (-1007 $)))))
+((-1223 (((-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)) (-1085)) 23) (((-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085))) 24) (((-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 |#1|))) (-881 |#1|) (-1085) (-881 |#1|) (-1085)) 41)))
+(((-888 |#1|) (-10 -7 (-15 -1223 ((-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 |#1|))) (-881 |#1|) (-1085) (-881 |#1|) (-1085))) (-15 -1223 ((-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -1223 ((-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)) (-1085)))) (-13 (-338) (-135))) (T -888))
+((-1223 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-5 *5 (-1085)) (-4 *6 (-13 (-338) (-135))) (-5 *2 (-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 *6))) (|:| |prim| (-1081 *6)))) (-5 *1 (-888 *6)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-338) (-135))) (-5 *2 (-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 *5))) (|:| |prim| (-1081 *5)))) (-5 *1 (-888 *5)))) (-1223 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1085)) (-4 *5 (-13 (-338) (-135))) (-5 *2 (-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 *5)))) (-5 *1 (-888 *5)))))
+(-10 -7 (-15 -1223 ((-2 (|:| |coef1| (-522)) (|:| |coef2| (-522)) (|:| |prim| (-1081 |#1|))) (-881 |#1|) (-1085) (-881 |#1|) (-1085))) (-15 -1223 ((-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)))) (-15 -1223 ((-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 |#1|))) (|:| |prim| (-1081 |#1|))) (-588 (-881 |#1|)) (-588 (-1085)) (-1085))))
+((-2466 (((-588 |#1|) |#1| |#1|) 42)) (-2813 (((-108) |#1|) 39)) (-4039 ((|#1| |#1|) 65)) (-1910 ((|#1| |#1|) 64)))
+(((-889 |#1|) (-10 -7 (-15 -2813 ((-108) |#1|)) (-15 -1910 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2466 ((-588 |#1|) |#1| |#1|))) (-507)) (T -889))
+((-2466 (*1 *2 *3 *3) (-12 (-5 *2 (-588 *3)) (-5 *1 (-889 *3)) (-4 *3 (-507)))) (-4039 (*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507)))) (-1910 (*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507)))) (-2813 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-889 *3)) (-4 *3 (-507)))))
+(-10 -7 (-15 -2813 ((-108) |#1|)) (-15 -1910 (|#1| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2466 ((-588 |#1|) |#1| |#1|)))
+((-2050 (((-1171) (-792)) 9)))
+(((-890) (-10 -7 (-15 -2050 ((-1171) (-792))))) (T -890))
+((-2050 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-890)))))
+(-10 -7 (-15 -2050 ((-1171) (-792))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 63 (|has| |#1| (-514)))) (-2022 (($ $) 64 (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 28)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3156 (($ $) 24)) (-2682 (((-3 $ "failed") $) 35)) (-2071 (($ $) NIL (|has| |#1| (-426)))) (-2671 (($ $ |#1| |#2| $) 48)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) 16)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| |#2|) NIL)) (-2925 ((|#2| $) 19)) (-3861 (($ (-1 |#2| |#2|) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3128 (($ $) 23)) (-3138 ((|#1| $) 21)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) 40)) (-3118 ((|#1| $) NIL)) (-2600 (($ $ |#2| |#1| $) 72 (-12 (|has| |#2| (-124)) (|has| |#1| (-514))))) (-2232 (((-3 $ "failed") $ $) 74 (|has| |#1| (-514))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-514)))) (-2793 ((|#2| $) 17)) (-2255 ((|#1| $) NIL (|has| |#1| (-426)))) (-2190 (((-792) $) NIL) (($ (-522)) 39) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 34) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ |#2|) 31)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) 15)) (-3632 (($ $ $ (-708)) 59 (|has| |#1| (-157)))) (-3958 (((-108) $ $) 69 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 55) (($ $ (-708)) 56)) (-3566 (($) 22 T CONST)) (-3577 (($) 12 T CONST)) (-1531 (((-108) $ $) 68)) (-1620 (($ $ |#1|) 75 (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) 54) (($ $ (-708)) 52)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-891 |#1| |#2|) (-13 (-301 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| |#2| (-124)) (-15 -2600 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) (-971) (-729)) (T -891))
+((-2600 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-891 *3 *2)) (-4 *2 (-124)) (-4 *3 (-514)) (-4 *3 (-971)) (-4 *2 (-729)))))
+(-13 (-301 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| |#2| (-124)) (-15 -2600 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))))) (-1210 (($ $ $) 63 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))) (-1233 (((-3 $ "failed") $ $) 50 (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))))) (-1629 (((-708)) 34 (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-1587 ((|#2| $) 21)) (-2027 ((|#1| $) 20)) (-3175 (($) NIL (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) CONST)) (-2682 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (-3255 (($) NIL (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-2782 (((-108) $) NIL (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (-2814 (($ $ $) NIL (-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-2446 (($ $ $) NIL (-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-4176 (($ |#1| |#2|) 19)) (-2120 (((-850) $) NIL (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 37 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-2717 (($ (-850)) NIL (-12 (|has| |#1| (-343)) (|has| |#2| (-343))))) (-4151 (((-1032) $) NIL)) (-3122 (($ $ $) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-1288 (($ $ $) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-2190 (((-792) $) 14)) (-3510 (($ $ (-522)) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447)))) (($ $ (-708)) NIL (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))) (($ $ (-850)) NIL (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (-3566 (($) 40 (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))) CONST)) (-3577 (($) 24 (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-1574 (((-108) $ $) NIL (-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1558 (((-108) $ $) NIL (-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1531 (((-108) $ $) 18)) (-1566 (((-108) $ $) NIL (-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1549 (((-108) $ $) 66 (-3708 (-12 (|has| |#1| (-730)) (|has| |#2| (-730))) (-12 (|has| |#1| (-784)) (|has| |#2| (-784)))))) (-1620 (($ $ $) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447))))) (-1612 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1602 (($ $ $) 43 (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730)))))) (** (($ $ (-522)) NIL (-12 (|has| |#1| (-447)) (|has| |#2| (-447)))) (($ $ (-708)) 31 (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))) (($ $ (-850)) NIL (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))) (* (($ (-522) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-708) $) 46 (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))) (($ (-850) $) NIL (-3708 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-124)) (|has| |#2| (-124))) (-12 (|has| |#1| (-730)) (|has| |#2| (-730))))) (($ $ $) 27 (-3708 (-12 (|has| |#1| (-447)) (|has| |#2| (-447))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))))))
+(((-892 |#1| |#2|) (-13 (-1014) (-10 -8 (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-447)) (IF (|has| |#2| (-447)) (-6 (-447)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-730)) (IF (|has| |#2| (-730)) (-6 (-730)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (-15 -4176 ($ |#1| |#2|)) (-15 -2027 (|#1| $)) (-15 -1587 (|#2| $)))) (-1014) (-1014)) (T -892))
+((-4176 (*1 *1 *2 *3) (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2027 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1014)))) (-1587 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-892 *3 *2)) (-4 *3 (-1014)))))
+(-13 (-1014) (-10 -8 (IF (|has| |#1| (-343)) (IF (|has| |#2| (-343)) (-6 (-343)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-124)) (IF (|has| |#2| (-124)) (-6 (-124)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-447)) (IF (|has| |#2| (-447)) (-6 (-447)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-730)) (IF (|has| |#2| (-730)) (-6 (-730)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-784)) (IF (|has| |#2| (-784)) (-6 (-784)) |%noBranch|) |%noBranch|) (-15 -4176 ($ |#1| |#2|)) (-15 -2027 (|#1| $)) (-15 -1587 (|#2| $))))
+((-3435 (((-1018) $) 12)) (-1931 (($ (-1085) (-1018)) 13)) (-2888 (((-1085) $) 10)) (-2190 (((-792) $) 24)))
+(((-893) (-13 (-562 (-792)) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -3435 ((-1018) $)) (-15 -1931 ($ (-1085) (-1018)))))) (T -893))
+((-2888 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-893)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-893)))) (-1931 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-893)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2888 ((-1085) $)) (-15 -3435 ((-1018) $)) (-15 -1931 ($ (-1085) (-1018)))))
+((-4090 (((-1016 (-1085)) $) 19)) (-1487 (((-108) $) 26)) (-1611 (((-1085) $) 27)) (-3389 (((-108) $) 24)) (-3502 ((|#1| $) 25)) (-4018 (((-802 $ $) $) 34)) (-1224 (((-108) $) 33)) (-3999 (($ $ $) 12)) (-2639 (($ $) 29)) (-2570 (((-108) $) 28)) (-2401 (($ $) 10)) (-1911 (((-802 $ $) $) 36)) (-1684 (((-108) $) 35)) (-3338 (($ $ $) 13)) (-1407 (((-802 $ $) $) 38)) (-3762 (((-108) $) 37)) (-4150 (($ $ $) 14)) (-2190 (($ |#1|) 7) (($ (-1085)) 9) (((-792) $) 40 (|has| |#1| (-562 (-792))))) (-1246 (((-802 $ $) $) 32)) (-2261 (((-108) $) 30)) (-4015 (($ $ $) 11)))
+(((-894 |#1|) (-13 (-895) (-10 -8 (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (-15 -2190 ($ |#1|)) (-15 -2190 ($ (-1085))) (-15 -4090 ((-1016 (-1085)) $)) (-15 -3389 ((-108) $)) (-15 -3502 (|#1| $)) (-15 -1487 ((-108) $)) (-15 -1611 ((-1085) $)) (-15 -2570 ((-108) $)) (-15 -2639 ($ $)) (-15 -2261 ((-108) $)) (-15 -1246 ((-802 $ $) $)) (-15 -1224 ((-108) $)) (-15 -4018 ((-802 $ $) $)) (-15 -1684 ((-108) $)) (-15 -1911 ((-802 $ $) $)) (-15 -3762 ((-108) $)) (-15 -1407 ((-802 $ $) $)))) (-895)) (T -894))
+((-2190 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-1016 (-1085))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3502 (*1 *2 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-2639 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1246 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1224 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(-13 (-895) (-10 -8 (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (-15 -2190 ($ |#1|)) (-15 -2190 ($ (-1085))) (-15 -4090 ((-1016 (-1085)) $)) (-15 -3389 ((-108) $)) (-15 -3502 (|#1| $)) (-15 -1487 ((-108) $)) (-15 -1611 ((-1085) $)) (-15 -2570 ((-108) $)) (-15 -2639 ($ $)) (-15 -2261 ((-108) $)) (-15 -1246 ((-802 $ $) $)) (-15 -1224 ((-108) $)) (-15 -4018 ((-802 $ $) $)) (-15 -1684 ((-108) $)) (-15 -1911 ((-802 $ $) $)) (-15 -3762 ((-108) $)) (-15 -1407 ((-802 $ $) $))))
+((-3999 (($ $ $) 8)) (-2401 (($ $) 6)) (-3338 (($ $ $) 9)) (-4150 (($ $ $) 10)) (-4015 (($ $ $) 7)))
+(((-895) (-1197)) (T -895))
+((-4150 (*1 *1 *1 *1) (-4 *1 (-895))) (-3338 (*1 *1 *1 *1) (-4 *1 (-895))) (-3999 (*1 *1 *1 *1) (-4 *1 (-895))) (-4015 (*1 *1 *1 *1) (-4 *1 (-895))) (-2401 (*1 *1 *1) (-4 *1 (-895))))
+(-13 (-10 -8 (-15 -2401 ($ $)) (-15 -4015 ($ $ $)) (-15 -3999 ($ $ $)) (-15 -3338 ($ $ $)) (-15 -4150 ($ $ $))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-1369 (($ $ $) 43)) (-2160 (($ $ $) 44)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2446 ((|#1| $) 45)) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-896 |#1|) (-1197) (-784)) (T -896))
+((-2446 (*1 *2 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))) (-2160 (*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))) (-1369 (*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4238) (-15 -2446 (|t#1| $)) (-15 -2160 ($ $ $)) (-15 -1369 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-2935 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2259 |#2|)) |#2| |#2|) 85)) (-3984 ((|#2| |#2| |#2|) 83)) (-2560 (((-2 (|:| |coef2| |#2|) (|:| -2259 |#2|)) |#2| |#2|) 87)) (-3373 (((-2 (|:| |coef1| |#2|) (|:| -2259 |#2|)) |#2| |#2|) 89)) (-4063 (((-2 (|:| |coef2| |#2|) (|:| -2776 |#1|)) |#2| |#2|) 107 (|has| |#1| (-426)))) (-3812 (((-2 (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|) 46)) (-2506 (((-2 (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|) 64)) (-2562 (((-2 (|:| |coef1| |#2|) (|:| -1950 |#1|)) |#2| |#2|) 66)) (-2696 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2606 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 71)) (-2939 (((-2 (|:| |coef2| |#2|) (|:| -2769 |#1|)) |#2|) 97)) (-3660 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 74)) (-1436 (((-588 (-708)) |#2| |#2|) 82)) (-2865 ((|#1| |#2| |#2|) 42)) (-2338 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2776 |#1|)) |#2| |#2|) 105 (|has| |#1| (-426)))) (-2776 ((|#1| |#2| |#2|) 103 (|has| |#1| (-426)))) (-2495 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|) 44)) (-3467 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|) 63)) (-1950 ((|#1| |#2| |#2|) 61)) (-1541 (((-2 (|:| -2977 |#1|) (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2|) 35)) (-1922 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-1276 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1331 ((|#2| |#2| |#2|) 75)) (-3456 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 69)) (-4114 ((|#2| |#2| |#2| (-708)) 67)) (-2259 ((|#2| |#2| |#2|) 111 (|has| |#1| (-426)))) (-2232 (((-1166 |#2|) (-1166 |#2|) |#1|) 21)) (-2752 (((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2|) 39)) (-1364 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2769 |#1|)) |#2|) 95)) (-2769 ((|#1| |#2|) 92)) (-4137 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708)) 73)) (-1238 ((|#2| |#2| |#2| (-708)) 72)) (-2226 (((-588 |#2|) |#2| |#2|) 80)) (-2952 ((|#2| |#2| |#1| |#1| (-708)) 50)) (-1978 ((|#1| |#1| |#1| (-708)) 49)) (* (((-1166 |#2|) |#1| (-1166 |#2|)) 16)))
+(((-897 |#1| |#2|) (-10 -7 (-15 -1950 (|#1| |#2| |#2|)) (-15 -3467 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -2506 ((-2 (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -2562 ((-2 (|:| |coef1| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -4114 (|#2| |#2| |#2| (-708))) (-15 -3456 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -2606 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1238 (|#2| |#2| |#2| (-708))) (-15 -4137 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -3660 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1331 (|#2| |#2| |#2|)) (-15 -1276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2696 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3984 (|#2| |#2| |#2|)) (-15 -2935 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2259 |#2|)) |#2| |#2|)) (-15 -2560 ((-2 (|:| |coef2| |#2|) (|:| -2259 |#2|)) |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| -2259 |#2|)) |#2| |#2|)) (-15 -2769 (|#1| |#2|)) (-15 -1364 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2769 |#1|)) |#2|)) (-15 -2939 ((-2 (|:| |coef2| |#2|) (|:| -2769 |#1|)) |#2|)) (-15 -2226 ((-588 |#2|) |#2| |#2|)) (-15 -1436 ((-588 (-708)) |#2| |#2|)) (IF (|has| |#1| (-426)) (PROGN (-15 -2776 (|#1| |#2| |#2|)) (-15 -2338 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2776 |#1|)) |#2| |#2|)) (-15 -4063 ((-2 (|:| |coef2| |#2|) (|:| -2776 |#1|)) |#2| |#2|)) (-15 -2259 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1166 |#2|) |#1| (-1166 |#2|))) (-15 -2232 ((-1166 |#2|) (-1166 |#2|) |#1|)) (-15 -1541 ((-2 (|:| -2977 |#1|) (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2|)) (-15 -2752 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2|)) (-15 -1978 (|#1| |#1| |#1| (-708))) (-15 -2952 (|#2| |#2| |#1| |#1| (-708))) (-15 -1922 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2865 (|#1| |#2| |#2|)) (-15 -2495 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -3812 ((-2 (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|))) (-514) (-1142 |#1|)) (T -897))
+((-3812 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1950 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2495 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1950 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) (-1922 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-2952 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-1978 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *2 (-514)) (-5 *1 (-897 *2 *4)) (-4 *4 (-1142 *2)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1541 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -2977 *4) (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514)) (-5 *1 (-897 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514)) (-5 *1 (-897 *3 *4)))) (-2259 (*1 *2 *2 *2) (-12 (-4 *3 (-426)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-4063 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2776 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2338 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2776 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2776 (*1 *2 *3 *3) (-12 (-4 *2 (-514)) (-4 *2 (-426)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) (-1436 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-708))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2226 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2939 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2769 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2769 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2769 (*1 *2 *3) (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))) (-3373 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2259 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2560 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2259 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2935 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2259 *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3984 (*1 *2 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-2696 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1276 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1331 (*1 *2 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))) (-3660 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-4137 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-1238 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2)) (-4 *2 (-1142 *4)))) (-2606 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-3456 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))) (-4114 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2)) (-4 *2 (-1142 *4)))) (-2562 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1950 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1950 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-3467 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1950 *4))) (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))) (-1950 (*1 *2 *3 *3) (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))))
+(-10 -7 (-15 -1950 (|#1| |#2| |#2|)) (-15 -3467 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -2506 ((-2 (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -2562 ((-2 (|:| |coef1| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -4114 (|#2| |#2| |#2| (-708))) (-15 -3456 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -2606 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1238 (|#2| |#2| |#2| (-708))) (-15 -4137 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -3660 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-708))) (-15 -1331 (|#2| |#2| |#2|)) (-15 -1276 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2696 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3984 (|#2| |#2| |#2|)) (-15 -2935 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2259 |#2|)) |#2| |#2|)) (-15 -2560 ((-2 (|:| |coef2| |#2|) (|:| -2259 |#2|)) |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| -2259 |#2|)) |#2| |#2|)) (-15 -2769 (|#1| |#2|)) (-15 -1364 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2769 |#1|)) |#2|)) (-15 -2939 ((-2 (|:| |coef2| |#2|) (|:| -2769 |#1|)) |#2|)) (-15 -2226 ((-588 |#2|) |#2| |#2|)) (-15 -1436 ((-588 (-708)) |#2| |#2|)) (IF (|has| |#1| (-426)) (PROGN (-15 -2776 (|#1| |#2| |#2|)) (-15 -2338 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2776 |#1|)) |#2| |#2|)) (-15 -4063 ((-2 (|:| |coef2| |#2|) (|:| -2776 |#1|)) |#2| |#2|)) (-15 -2259 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1166 |#2|) |#1| (-1166 |#2|))) (-15 -2232 ((-1166 |#2|) (-1166 |#2|) |#1|)) (-15 -1541 ((-2 (|:| -2977 |#1|) (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2|)) (-15 -2752 ((-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) |#2| |#2|)) (-15 -1978 (|#1| |#1| |#1| (-708))) (-15 -2952 (|#2| |#2| |#1| |#1| (-708))) (-15 -1922 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2865 (|#1| |#2| |#2|)) (-15 -2495 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)) (-15 -3812 ((-2 (|:| |coef2| |#2|) (|:| -1950 |#1|)) |#2| |#2|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) 27)) (-3175 (($) NIL T CONST)) (-1247 (((-588 (-588 (-522))) (-588 (-522))) 29)) (-2151 (((-522) $) 45)) (-1918 (($ (-588 (-522))) 17)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1431 (((-588 (-522)) $) 11)) (-3122 (($ $) 32)) (-2190 (((-792) $) 43) (((-588 (-522)) $) 9)) (-3566 (($) 7 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 19)) (-1602 (($ $ $) 21)) (* (($ (-708) $) 25) (($ (-850) $) NIL)))
+(((-898) (-13 (-732) (-563 (-588 (-522))) (-10 -8 (-15 -1918 ($ (-588 (-522)))) (-15 -1247 ((-588 (-588 (-522))) (-588 (-522)))) (-15 -2151 ((-522) $)) (-15 -3122 ($ $)) (-15 -2190 ((-588 (-522)) $))))) (T -898))
+((-1918 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898)))) (-1247 (*1 *2 *3) (-12 (-5 *2 (-588 (-588 (-522)))) (-5 *1 (-898)) (-5 *3 (-588 (-522))))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-898)))) (-3122 (*1 *1 *1) (-5 *1 (-898))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898)))))
+(-13 (-732) (-563 (-588 (-522))) (-10 -8 (-15 -1918 ($ (-588 (-522)))) (-15 -1247 ((-588 (-588 (-522))) (-588 (-522)))) (-15 -2151 ((-522) $)) (-15 -3122 ($ $)) (-15 -2190 ((-588 (-522)) $))))
+((-1620 (($ $ |#2|) 30)) (-1612 (($ $) 22) (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-382 (-522)) $) 26) (($ $ (-382 (-522))) 28)))
+(((-899 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1620 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|))) (-900 |#2| |#3| |#4|) (-971) (-729) (-784)) (T -899))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-382 (-522)))) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 -1620 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 * (|#1| (-850) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 |#3|) $) 74)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-3390 (((-108) $) 73)) (-2782 (((-108) $) 31)) (-3340 (((-108) $) 62)) (-4049 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-588 |#3|) (-588 |#2|)) 75)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2793 ((|#2| $) 64)) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3243 ((|#1| $ |#2|) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-900 |#1| |#2| |#3|) (-1197) (-971) (-729) (-784)) (T -900))
+((-3138 (*1 *2 *1) (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784)) (-4 *2 (-971)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *4 (-784)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *2 *4)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *2 (-729)))) (-4049 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-900 *4 *3 *2)) (-4 *4 (-971)) (-4 *3 (-729)) (-4 *2 (-784)))) (-4049 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 *5)) (-4 *1 (-900 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-729)) (-4 *6 (-784)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-588 *5)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1522 (*1 *1 *1) (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729)) (-4 *4 (-784)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -4049 ($ $ |t#3| |t#2|)) (-15 -4049 ($ $ (-588 |t#3|) (-588 |t#2|))) (-15 -3128 ($ $)) (-15 -3138 (|t#1| $)) (-15 -2793 (|t#2| $)) (-15 -4090 ((-588 |t#3|) $)) (-15 -3390 ((-108) $)) (-15 -1522 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-266) |has| |#1| (-514)) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-3821 (((-1009 (-202)) $) 8)) (-3808 (((-1009 (-202)) $) 9)) (-3794 (((-1009 (-202)) $) 10)) (-2745 (((-588 (-588 (-872 (-202)))) $) 11)) (-2190 (((-792) $) 6)))
+(((-901) (-1197)) (T -901))
+((-2745 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-588 (-588 (-872 (-202))))))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2745 ((-588 (-588 (-872 (-202)))) $)) (-15 -3794 ((-1009 (-202)) $)) (-15 -3808 ((-1009 (-202)) $)) (-15 -3821 ((-1009 (-202)) $))))
+(((-562 (-792)) . T))
+((-4090 (((-588 |#4|) $) 23)) (-2690 (((-108) $) 48)) (-4140 (((-108) $) 47)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#4|) 36)) (-3639 (((-108) $) 49)) (-3982 (((-108) $ $) 55)) (-3996 (((-108) $ $) 58)) (-3538 (((-108) $) 53)) (-3050 (((-588 |#5|) (-588 |#5|) $) 90)) (-1787 (((-588 |#5|) (-588 |#5|) $) 87)) (-3421 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2458 (((-588 |#4|) $) 27)) (-1606 (((-108) |#4| $) 30)) (-2039 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-2020 (($ $ |#4|) 33)) (-3606 (($ $ |#4|) 32)) (-2463 (($ $ |#4|) 34)) (-1531 (((-108) $ $) 40)))
+(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4140 ((-108) |#1|)) (-15 -3050 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -1787 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -3421 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2039 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3639 ((-108) |#1|)) (-15 -3996 ((-108) |#1| |#1|)) (-15 -3982 ((-108) |#1| |#1|)) (-15 -3538 ((-108) |#1|)) (-15 -2690 ((-108) |#1|)) (-15 -3216 ((-2 (|:| |under| |#1|) (|:| -3686 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2020 (|#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#4|)) (-15 -3606 (|#1| |#1| |#4|)) (-15 -1606 ((-108) |#4| |#1|)) (-15 -2458 ((-588 |#4|) |#1|)) (-15 -4090 ((-588 |#4|) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-903 |#2| |#3| |#4| |#5|) (-971) (-730) (-784) (-985 |#2| |#3| |#4|)) (T -902))
+NIL
+(-10 -8 (-15 -4140 ((-108) |#1|)) (-15 -3050 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -1787 ((-588 |#5|) (-588 |#5|) |#1|)) (-15 -3421 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2039 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3639 ((-108) |#1|)) (-15 -3996 ((-108) |#1| |#1|)) (-15 -3982 ((-108) |#1| |#1|)) (-15 -3538 ((-108) |#1|)) (-15 -2690 ((-108) |#1|)) (-15 -3216 ((-2 (|:| |under| |#1|) (|:| -3686 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2020 (|#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#4|)) (-15 -3606 (|#1| |#1| |#4|)) (-15 -1606 ((-108) |#4| |#1|)) (-15 -2458 ((-588 |#4|) |#1|)) (-15 -4090 ((-588 |#4|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-4090 (((-588 |#3|) $) 33)) (-2690 (((-108) $) 26)) (-4140 (((-108) $) 17 (|has| |#1| (-514)))) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) 27)) (-4141 (((-108) $ (-708)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238)))) (-3175 (($) 45 T CONST)) (-3639 (((-108) $) 22 (|has| |#1| (-514)))) (-3982 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3996 (((-108) $ $) 23 (|has| |#1| (-514)))) (-3538 (((-108) $) 25 (|has| |#1| (-514)))) (-3050 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 36)) (-1484 (($ (-588 |#4|)) 35)) (-2333 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238)))) (-3837 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-1521 ((|#3| $) 34)) (-3352 (((-108) $ (-708)) 43)) (-3308 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 47)) (-2458 (((-588 |#3|) $) 32)) (-1606 (((-108) |#3| $) 31)) (-2720 (((-108) $ (-708)) 42)) (-2385 (((-1068) $) 9)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-4151 (((-1032) $) 10)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3053 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) 38)) (-3985 (((-108) $) 41)) (-3775 (($) 40)) (-4168 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2404 (($ $) 39)) (-1431 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 60)) (-2020 (($ $ |#3|) 28)) (-3606 (($ $ |#3|) 30)) (-2463 (($ $ |#3|) 29)) (-2190 (((-792) $) 11) (((-588 |#4|) $) 37)) (-3648 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 6)) (-3480 (((-708) $) 46 (|has| $ (-6 -4238)))))
+(((-903 |#1| |#2| |#3| |#4|) (-1197) (-971) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -903))
+((-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *1 (-903 *3 *4 *5 *6)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *1 (-903 *3 *4 *5 *6)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-985 *3 *4 *2)) (-4 *2 (-784)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) (-1606 (*1 *2 *3 *1) (-12 (-4 *1 (-903 *4 *5 *3 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108)))) (-3606 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))) (-2463 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))) (-2020 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))) (-3216 (*1 *2 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3686 *1) (|:| |upper| *1))) (-4 *1 (-903 *4 *5 *3 *6)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-3982 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-3996 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))) (-2039 (*1 *2 *3 *1) (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3421 (*1 *2 *3 *1) (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1787 (*1 *2 *2 *1) (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)))) (-3050 (*1 *2 *2 *1) (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-5 *2 (-108)))))
+(-13 (-1014) (-139 |t#4|) (-562 (-588 |t#4|)) (-10 -8 (-6 -4238) (-15 -1297 ((-3 $ "failed") (-588 |t#4|))) (-15 -1484 ($ (-588 |t#4|))) (-15 -1521 (|t#3| $)) (-15 -4090 ((-588 |t#3|) $)) (-15 -2458 ((-588 |t#3|) $)) (-15 -1606 ((-108) |t#3| $)) (-15 -3606 ($ $ |t#3|)) (-15 -2463 ($ $ |t#3|)) (-15 -2020 ($ $ |t#3|)) (-15 -3216 ((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |t#3|)) (-15 -2690 ((-108) $)) (IF (|has| |t#1| (-514)) (PROGN (-15 -3538 ((-108) $)) (-15 -3982 ((-108) $ $)) (-15 -3996 ((-108) $ $)) (-15 -3639 ((-108) $)) (-15 -2039 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3421 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1787 ((-588 |t#4|) (-588 |t#4|) $)) (-15 -3050 ((-588 |t#4|) (-588 |t#4|) $)) (-15 -4140 ((-108) $))) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-1014) . T) ((-1120) . T))
+((-2274 (((-588 |#4|) |#4| |#4|) 115)) (-3685 (((-588 |#4|) (-588 |#4|) (-108)) 104 (|has| |#1| (-426))) (((-588 |#4|) (-588 |#4|)) 105 (|has| |#1| (-426)))) (-2936 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 35)) (-1535 (((-108) |#4|) 34)) (-3725 (((-588 |#4|) |#4|) 101 (|has| |#1| (-426)))) (-2285 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-1 (-108) |#4|) (-588 |#4|)) 20)) (-3028 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|)) 22)) (-3007 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|)) 23)) (-4166 (((-3 (-2 (|:| |bas| (-450 |#1| |#2| |#3| |#4|)) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|)) 73)) (-2378 (((-588 |#4|) (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2647 (((-588 |#4|) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 108)) (-1413 (((-588 |#4|) (-588 |#4|)) 107)) (-3075 (((-588 |#4|) (-588 |#4|) (-588 |#4|) (-108)) 48) (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 50)) (-1875 ((|#4| |#4| (-588 |#4|)) 49)) (-3287 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 111 (|has| |#1| (-426)))) (-2934 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 114 (|has| |#1| (-426)))) (-2087 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 113 (|has| |#1| (-426)))) (-1338 (((-588 |#4|) (-588 |#4|) (-588 |#4|) (-1 (-588 |#4|) (-588 |#4|))) 87) (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 89) (((-588 |#4|) (-588 |#4|) |#4|) 118) (((-588 |#4|) |#4| |#4|) 116) (((-588 |#4|) (-588 |#4|)) 88)) (-2353 (((-588 |#4|) (-588 |#4|) (-588 |#4|)) 98 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-2086 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 41)) (-1208 (((-108) (-588 |#4|)) 62)) (-3368 (((-108) (-588 |#4|) (-588 (-588 |#4|))) 53)) (-2959 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 29)) (-2311 (((-108) |#4|) 28)) (-3204 (((-588 |#4|) (-588 |#4|)) 97 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-3411 (((-588 |#4|) (-588 |#4|)) 96 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-3101 (((-588 |#4|) (-588 |#4|)) 66)) (-2366 (((-588 |#4|) (-588 |#4|)) 79)) (-2659 (((-108) (-588 |#4|) (-588 |#4|)) 51)) (-3692 (((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|)) 39)) (-1432 (((-108) |#4|) 36)))
+(((-904 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1338 ((-588 |#4|) (-588 |#4|))) (-15 -1338 ((-588 |#4|) |#4| |#4|)) (-15 -1413 ((-588 |#4|) (-588 |#4|))) (-15 -2274 ((-588 |#4|) |#4| |#4|)) (-15 -1338 ((-588 |#4|) (-588 |#4|) |#4|)) (-15 -1338 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -1338 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-1 (-588 |#4|) (-588 |#4|)))) (-15 -2659 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3368 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -1208 ((-108) (-588 |#4|))) (-15 -2285 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-1 (-108) |#4|) (-588 |#4|))) (-15 -3028 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -3007 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -2086 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -1535 ((-108) |#4|)) (-15 -2936 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2311 ((-108) |#4|)) (-15 -2959 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -1432 ((-108) |#4|)) (-15 -3692 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -3075 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3075 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-108))) (-15 -1875 (|#4| |#4| (-588 |#4|))) (-15 -3101 ((-588 |#4|) (-588 |#4|))) (-15 -4166 ((-3 (-2 (|:| |bas| (-450 |#1| |#2| |#3| |#4|)) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|))) (-15 -2366 ((-588 |#4|) (-588 |#4|))) (-15 -2378 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2647 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-426)) (PROGN (-15 -3725 ((-588 |#4|) |#4|)) (-15 -3685 ((-588 |#4|) (-588 |#4|))) (-15 -3685 ((-588 |#4|) (-588 |#4|) (-108))) (-15 -3287 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -2087 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -2934 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (PROGN (-15 -3411 ((-588 |#4|) (-588 |#4|))) (-15 -3204 ((-588 |#4|) (-588 |#4|))) (-15 -2353 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) |%noBranch|)) (-514) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -904))
+((-2353 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3411 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135)) (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-2087 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3287 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3685 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3725 (*1 *2 *3) (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-2647 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-904 *5 *6 *7 *8)))) (-2378 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-588 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *1 (-904 *6 *7 *8 *9)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-4166 (*1 *2 *3) (|partial| -12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-450 *4 *5 *6 *7)) (|:| -1355 (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-1875 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *2)))) (-3075 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-1432 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-2959 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-2311 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-1535 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-2086 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7)))) (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) (-3028 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8)))) (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))) (-1208 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *7)))) (-3368 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *5 *6 *7 *8)))) (-2659 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-904 *4 *5 *6 *7)))) (-1338 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-588 *7) (-588 *7))) (-5 *2 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *7)))) (-1338 (*1 *2 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-1338 (*1 *2 *2 *3) (-12 (-5 *2 (-588 *3)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *3)))) (-2274 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))) (-1338 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))) (-1338 (*1 *2 *2) (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1338 ((-588 |#4|) (-588 |#4|))) (-15 -1338 ((-588 |#4|) |#4| |#4|)) (-15 -1413 ((-588 |#4|) (-588 |#4|))) (-15 -2274 ((-588 |#4|) |#4| |#4|)) (-15 -1338 ((-588 |#4|) (-588 |#4|) |#4|)) (-15 -1338 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -1338 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-1 (-588 |#4|) (-588 |#4|)))) (-15 -2659 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3368 ((-108) (-588 |#4|) (-588 (-588 |#4|)))) (-15 -1208 ((-108) (-588 |#4|))) (-15 -2285 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-1 (-108) |#4|) (-588 |#4|))) (-15 -3028 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -3007 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 (-1 (-108) |#4|)) (-588 |#4|))) (-15 -2086 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -1535 ((-108) |#4|)) (-15 -2936 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -2311 ((-108) |#4|)) (-15 -2959 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -1432 ((-108) |#4|)) (-15 -3692 ((-2 (|:| |goodPols| (-588 |#4|)) (|:| |badPols| (-588 |#4|))) (-588 |#4|))) (-15 -3075 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -3075 ((-588 |#4|) (-588 |#4|) (-588 |#4|) (-108))) (-15 -1875 (|#4| |#4| (-588 |#4|))) (-15 -3101 ((-588 |#4|) (-588 |#4|))) (-15 -4166 ((-3 (-2 (|:| |bas| (-450 |#1| |#2| |#3| |#4|)) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|))) (-15 -2366 ((-588 |#4|) (-588 |#4|))) (-15 -2378 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2647 ((-588 |#4|) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-426)) (PROGN (-15 -3725 ((-588 |#4|) |#4|)) (-15 -3685 ((-588 |#4|) (-588 |#4|))) (-15 -3685 ((-588 |#4|) (-588 |#4|) (-108))) (-15 -3287 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -2087 ((-588 |#4|) (-588 |#4|) (-588 |#4|))) (-15 -2934 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (PROGN (-15 -3411 ((-588 |#4|) (-588 |#4|))) (-15 -3204 ((-588 |#4|) (-588 |#4|))) (-15 -2353 ((-588 |#4|) (-588 |#4|) (-588 |#4|)))) |%noBranch|) |%noBranch|))
+((-3904 (((-2 (|:| R (-628 |#1|)) (|:| A (-628 |#1|)) (|:| |Ainv| (-628 |#1|))) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3029 (((-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)) 36)) (-1387 (((-628 |#1|) (-628 |#1|) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-905 |#1|) (-10 -7 (-15 -3904 ((-2 (|:| R (-628 |#1|)) (|:| A (-628 |#1|)) (|:| |Ainv| (-628 |#1|))) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1387 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3029 ((-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|)))) (-338)) (T -905))
+((-3029 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-5 *2 (-588 (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5))))) (-5 *1 (-905 *5)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)))) (-1387 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-628 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338)) (-5 *1 (-905 *5)))) (-3904 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-338)) (-5 *2 (-2 (|:| R (-628 *6)) (|:| A (-628 *6)) (|:| |Ainv| (-628 *6)))) (-5 *1 (-905 *6)) (-5 *3 (-628 *6)))))
+(-10 -7 (-15 -3904 ((-2 (|:| R (-628 |#1|)) (|:| A (-628 |#1|)) (|:| |Ainv| (-628 |#1|))) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1387 ((-628 |#1|) (-628 |#1|) (-628 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3029 ((-588 (-2 (|:| C (-628 |#1|)) (|:| |g| (-1166 |#1|)))) (-628 |#1|) (-1166 |#1|))))
+((-3450 (((-393 |#4|) |#4|) 47)))
+(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3450 ((-393 |#4|) |#4|))) (-784) (-730) (-426) (-878 |#3| |#2| |#1|)) (T -906))
+((-3450 (*1 *2 *3) (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-426)) (-5 *2 (-393 *3)) (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(-10 -7 (-15 -3450 ((-393 |#4|) |#4|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3483 (($ (-708)) 112 (|has| |#1| (-23)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3509 (($ $) 90 (|has| $ (-6 -4239)))) (-1862 (($ $) 100)) (-2333 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 51)) (-3238 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-2736 (($ (-588 |#1|)) 118)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3957 (((-628 |#1|) $ $) 105 (|has| |#1| (-971)))) (-1811 (($ (-708) |#1|) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 87 (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2845 ((|#1| $) 102 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-2720 (((-108) $ (-708)) 10)) (-2517 ((|#1| $) 103 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 42 (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2602 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3719 (($ $ (-588 |#1|)) 115)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-1883 ((|#1| $ $) 106 (|has| |#1| (-971)))) (-4078 (((-850) $) 117)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-3230 (($ $ $) 104)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| |#1| (-563 (-498)))) (($ (-588 |#1|)) 116)) (-2201 (($ (-588 |#1|)) 70)) (-4165 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-1612 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1602 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-522) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-664))) (($ $ |#1|) 107 (|has| |#1| (-664)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-907 |#1|) (-1197) (-971)) (T -907))
+((-2736 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-971)) (-5 *2 (-850)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3)))) (-3230 (*1 *1 *1 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-971)))) (-3719 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-907 *3)) (-4 *3 (-971)))))
+(-13 (-1164 |t#1|) (-10 -8 (-15 -2736 ($ (-588 |t#1|))) (-15 -4078 ((-850) $)) (-15 -1431 ($ (-588 |t#1|))) (-15 -3230 ($ $ $)) (-15 -3719 ($ $ (-588 |t#1|)))))
+(((-33) . T) ((-97) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T) ((-1164 |#1|) . T))
+((-1391 (((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)) 17)))
+(((-908 |#1| |#2|) (-10 -7 (-15 -1391 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|)))) (-971) (-971)) (T -908))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-872 *6)) (-5 *1 (-908 *5 *6)))))
+(-10 -7 (-15 -1391 ((-872 |#2|) (-1 |#2| |#1|) (-872 |#1|))))
+((-3791 ((|#1| (-872 |#1|)) 13)) (-2428 ((|#1| (-872 |#1|)) 12)) (-2555 ((|#1| (-872 |#1|)) 11)) (-3125 ((|#1| (-872 |#1|)) 15)) (-3455 ((|#1| (-872 |#1|)) 21)) (-3578 ((|#1| (-872 |#1|)) 14)) (-1692 ((|#1| (-872 |#1|)) 16)) (-3912 ((|#1| (-872 |#1|)) 20)) (-2395 ((|#1| (-872 |#1|)) 19)))
+(((-909 |#1|) (-10 -7 (-15 -2555 (|#1| (-872 |#1|))) (-15 -2428 (|#1| (-872 |#1|))) (-15 -3791 (|#1| (-872 |#1|))) (-15 -3578 (|#1| (-872 |#1|))) (-15 -3125 (|#1| (-872 |#1|))) (-15 -1692 (|#1| (-872 |#1|))) (-15 -2395 (|#1| (-872 |#1|))) (-15 -3912 (|#1| (-872 |#1|))) (-15 -3455 (|#1| (-872 |#1|)))) (-971)) (T -909))
+((-3455 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(-10 -7 (-15 -2555 (|#1| (-872 |#1|))) (-15 -2428 (|#1| (-872 |#1|))) (-15 -3791 (|#1| (-872 |#1|))) (-15 -3578 (|#1| (-872 |#1|))) (-15 -3125 (|#1| (-872 |#1|))) (-15 -1692 (|#1| (-872 |#1|))) (-15 -2395 (|#1| (-872 |#1|))) (-15 -3912 (|#1| (-872 |#1|))) (-15 -3455 (|#1| (-872 |#1|))))
+((-3967 (((-3 |#1| "failed") |#1|) 18)) (-2435 (((-3 |#1| "failed") |#1|) 6)) (-2063 (((-3 |#1| "failed") |#1|) 16)) (-3801 (((-3 |#1| "failed") |#1|) 4)) (-2623 (((-3 |#1| "failed") |#1|) 20)) (-2974 (((-3 |#1| "failed") |#1|) 8)) (-2192 (((-3 |#1| "failed") |#1| (-708)) 1)) (-3618 (((-3 |#1| "failed") |#1|) 3)) (-4108 (((-3 |#1| "failed") |#1|) 2)) (-1696 (((-3 |#1| "failed") |#1|) 21)) (-3200 (((-3 |#1| "failed") |#1|) 9)) (-3803 (((-3 |#1| "failed") |#1|) 19)) (-1672 (((-3 |#1| "failed") |#1|) 7)) (-2145 (((-3 |#1| "failed") |#1|) 17)) (-1898 (((-3 |#1| "failed") |#1|) 5)) (-2954 (((-3 |#1| "failed") |#1|) 24)) (-3146 (((-3 |#1| "failed") |#1|) 12)) (-2579 (((-3 |#1| "failed") |#1|) 22)) (-3644 (((-3 |#1| "failed") |#1|) 10)) (-1623 (((-3 |#1| "failed") |#1|) 26)) (-2415 (((-3 |#1| "failed") |#1|) 14)) (-3294 (((-3 |#1| "failed") |#1|) 27)) (-3286 (((-3 |#1| "failed") |#1|) 15)) (-3471 (((-3 |#1| "failed") |#1|) 25)) (-1834 (((-3 |#1| "failed") |#1|) 13)) (-1415 (((-3 |#1| "failed") |#1|) 23)) (-1239 (((-3 |#1| "failed") |#1|) 11)))
+(((-910 |#1|) (-1197) (-1106)) (T -910))
+((-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1623 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3471 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1415 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2579 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1696 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2623 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3803 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3967 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2145 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2063 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3286 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2415 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1834 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3146 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1239 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3644 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3200 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1672 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2435 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-1898 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3801 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-3618 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-4108 (*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))) (-2192 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-708)) (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(-13 (-10 -7 (-15 -2192 ((-3 |t#1| "failed") |t#1| (-708))) (-15 -4108 ((-3 |t#1| "failed") |t#1|)) (-15 -3618 ((-3 |t#1| "failed") |t#1|)) (-15 -3801 ((-3 |t#1| "failed") |t#1|)) (-15 -1898 ((-3 |t#1| "failed") |t#1|)) (-15 -2435 ((-3 |t#1| "failed") |t#1|)) (-15 -1672 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -3200 ((-3 |t#1| "failed") |t#1|)) (-15 -3644 ((-3 |t#1| "failed") |t#1|)) (-15 -1239 ((-3 |t#1| "failed") |t#1|)) (-15 -3146 ((-3 |t#1| "failed") |t#1|)) (-15 -1834 ((-3 |t#1| "failed") |t#1|)) (-15 -2415 ((-3 |t#1| "failed") |t#1|)) (-15 -3286 ((-3 |t#1| "failed") |t#1|)) (-15 -2063 ((-3 |t#1| "failed") |t#1|)) (-15 -2145 ((-3 |t#1| "failed") |t#1|)) (-15 -3967 ((-3 |t#1| "failed") |t#1|)) (-15 -3803 ((-3 |t#1| "failed") |t#1|)) (-15 -2623 ((-3 |t#1| "failed") |t#1|)) (-15 -1696 ((-3 |t#1| "failed") |t#1|)) (-15 -2579 ((-3 |t#1| "failed") |t#1|)) (-15 -1415 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -3471 ((-3 |t#1| "failed") |t#1|)) (-15 -1623 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|))))
+((-4146 ((|#4| |#4| (-588 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1864 ((|#4| |#4| (-588 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1391 ((|#4| (-1 |#4| (-881 |#1|)) |#4|) 30)))
+(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#4| |#4| |#3|)) (-15 -1864 (|#4| |#4| (-588 |#3|))) (-15 -4146 (|#4| |#4| |#3|)) (-15 -4146 (|#4| |#4| (-588 |#3|))) (-15 -1391 (|#4| (-1 |#4| (-881 |#1|)) |#4|))) (-971) (-730) (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085))))) (-878 (-881 |#1|) |#2| |#3|)) (T -911))
+((-1391 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-881 *4))) (-4 *4 (-971)) (-4 *2 (-878 (-881 *4) *5 *6)) (-4 *5 (-730)) (-4 *6 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-5 *1 (-911 *4 *5 *6 *2)))) (-4146 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *2 (-878 (-881 *4) *5 *6)))) (-4146 (*1 *2 *2 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))) (-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-588 *6)) (-4 *6 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2)) (-4 *2 (-878 (-881 *4) *5 *6)))) (-1864 (*1 *2 *2 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)) (-15 -1611 ((-3 $ "failed") (-1085)))))) (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3)))))
+(-10 -7 (-15 -1864 (|#4| |#4| |#3|)) (-15 -1864 (|#4| |#4| (-588 |#3|))) (-15 -4146 (|#4| |#4| |#3|)) (-15 -4146 (|#4| |#4| (-588 |#3|))) (-15 -1391 (|#4| (-1 |#4| (-881 |#1|)) |#4|)))
+((-3675 ((|#2| |#3|) 34)) (-3784 (((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|) 71)) (-3882 (((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) 86)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3784 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|)) (-15 -3675 (|#2| |#3|))) (-324) (-1142 |#1|) (-1142 |#2|) (-662 |#2| |#3|)) (T -912))
+((-3675 (*1 *2 *3) (-12 (-4 *3 (-1142 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-912 *4 *2 *3 *5)) (-4 *4 (-324)) (-4 *5 (-662 *2 *3)))) (-3784 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3)) (-5 *2 (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-912 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3882 (*1 *2) (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -3855 (-628 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-628 *4)))) (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))))
+(-10 -7 (-15 -3882 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3784 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|)) (-15 -3675 (|#2| |#3|)))
+((-3374 (((-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))) (-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522))))) 65)))
+(((-913 |#1| |#2|) (-10 -7 (-15 -3374 ((-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))) (-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522))))))) (-588 (-1085)) (-708)) (T -913))
+((-3374 (*1 *2 *2) (-12 (-5 *2 (-914 (-382 (-522)) (-794 *3) (-217 *4 (-708)) (-224 *3 (-382 (-522))))) (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-913 *3 *4)))))
+(-10 -7 (-15 -3374 ((-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))) (-914 (-382 (-522)) (-794 |#1|) (-217 |#2| (-708)) (-224 |#1| (-382 (-522)))))))
+((-1416 (((-108) $ $) NIL)) (-2831 (((-3 (-108) "failed") $) 67)) (-3245 (($ $) 35 (-12 (|has| |#1| (-135)) (|has| |#1| (-283))))) (-2867 (($ $ (-3 (-108) "failed")) 68)) (-1850 (($ (-588 |#4|) |#4|) 24)) (-2385 (((-1068) $) NIL)) (-2542 (($ $) 65)) (-4151 (((-1032) $) NIL)) (-3985 (((-108) $) 66)) (-3775 (($) 29)) (-1994 ((|#4| $) 70)) (-1361 (((-588 |#4|) $) 69)) (-2190 (((-792) $) 64)) (-1531 (((-108) $ $) NIL)))
+(((-914 |#1| |#2| |#3| |#4|) (-13 (-1014) (-562 (-792)) (-10 -8 (-15 -3775 ($)) (-15 -1850 ($ (-588 |#4|) |#4|)) (-15 -2831 ((-3 (-108) "failed") $)) (-15 -2867 ($ $ (-3 (-108) "failed"))) (-15 -3985 ((-108) $)) (-15 -1361 ((-588 |#4|) $)) (-15 -1994 (|#4| $)) (-15 -2542 ($ $)) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (-15 -3245 ($ $)) |%noBranch|) |%noBranch|))) (-426) (-784) (-730) (-878 |#1| |#3| |#2|)) (T -914))
+((-3775 (*1 *1) (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) (-1850 (*1 *1 *2 *3) (-12 (-5 *2 (-588 *3)) (-4 *3 (-878 *4 *6 *5)) (-4 *4 (-426)) (-4 *5 (-784)) (-4 *6 (-730)) (-5 *1 (-914 *4 *5 *6 *3)))) (-2831 (*1 *2 *1) (|partial| -12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-108)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-2867 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-3985 (*1 *2 *1) (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-108)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-1361 (*1 *2 *1) (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-588 *6)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))) (-1994 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-914 *3 *4 *5 *2)) (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)))) (-2542 (*1 *1 *1) (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))) (-3245 (*1 *1 *1) (-12 (-4 *2 (-135)) (-4 *2 (-283)) (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))))
+(-13 (-1014) (-562 (-792)) (-10 -8 (-15 -3775 ($)) (-15 -1850 ($ (-588 |#4|) |#4|)) (-15 -2831 ((-3 (-108) "failed") $)) (-15 -2867 ($ $ (-3 (-108) "failed"))) (-15 -3985 ((-108) $)) (-15 -1361 ((-588 |#4|) $)) (-15 -1994 (|#4| $)) (-15 -2542 ($ $)) (IF (|has| |#1| (-283)) (IF (|has| |#1| (-135)) (-15 -3245 ($ $)) |%noBranch|) |%noBranch|)))
+((-3407 (((-108) |#5| |#5|) 38)) (-3753 (((-108) |#5| |#5|) 52)) (-1215 (((-108) |#5| (-588 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-3027 (((-108) (-588 |#4|) (-588 |#4|)) 58)) (-3909 (((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) 63)) (-3020 (((-1171)) 33)) (-4041 (((-1171) (-1068) (-1068) (-1068)) 29)) (-1523 (((-588 |#5|) (-588 |#5|)) 81)) (-3742 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) 79)) (-2025 (((-588 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108)) 101)) (-3441 (((-108) |#5| |#5|) 47)) (-2291 (((-3 (-108) "failed") |#5| |#5|) 71)) (-2075 (((-108) (-588 |#4|) (-588 |#4|)) 57)) (-3370 (((-108) (-588 |#4|) (-588 |#4|)) 59)) (-2123 (((-108) (-588 |#4|) (-588 |#4|)) 60)) (-2492 (((-3 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-2069 (((-588 |#5|) (-588 |#5|)) 43)))
+(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4041 ((-1171) (-1068) (-1068) (-1068))) (-15 -3020 ((-1171))) (-15 -3407 ((-108) |#5| |#5|)) (-15 -2069 ((-588 |#5|) (-588 |#5|))) (-15 -3441 ((-108) |#5| |#5|)) (-15 -3753 ((-108) |#5| |#5|)) (-15 -3027 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2075 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3370 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2123 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2291 ((-3 (-108) "failed") |#5| |#5|)) (-15 -1215 ((-108) |#5| |#5|)) (-15 -1215 ((-108) |#5| (-588 |#5|))) (-15 -1523 ((-588 |#5|) (-588 |#5|))) (-15 -3909 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -3742 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-15 -2025 ((-588 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2492 ((-3 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -915))
+((-2492 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| -3197 (-588 *9)) (|:| -1886 *4) (|:| |ineq| (-588 *9)))) (-5 *1 (-915 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9)) (-4 *4 (-990 *6 *7 *8 *9)))) (-2025 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| -3197 (-588 *9)) (|:| -1886 *10) (|:| |ineq| (-588 *9))))) (-5 *1 (-915 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1886 *7)))) (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) (-3909 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-915 *5 *6 *7 *8 *3)))) (-1215 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2291 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2123 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3370 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-2075 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3027 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-3441 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-915 *3 *4 *5 *6 *7)))) (-3407 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-3020 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-915 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-4041 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4041 ((-1171) (-1068) (-1068) (-1068))) (-15 -3020 ((-1171))) (-15 -3407 ((-108) |#5| |#5|)) (-15 -2069 ((-588 |#5|) (-588 |#5|))) (-15 -3441 ((-108) |#5| |#5|)) (-15 -3753 ((-108) |#5| |#5|)) (-15 -3027 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2075 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3370 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2123 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2291 ((-3 (-108) "failed") |#5| |#5|)) (-15 -1215 ((-108) |#5| |#5|)) (-15 -1215 ((-108) |#5| (-588 |#5|))) (-15 -1523 ((-588 |#5|) (-588 |#5|))) (-15 -3909 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -3742 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-15 -2025 ((-588 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2492 ((-3 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-1611 (((-1085) $) 15)) (-3435 (((-1068) $) 16)) (-1607 (($ (-1085) (-1068)) 14)) (-2190 (((-792) $) 13)))
+(((-916) (-13 (-562 (-792)) (-10 -8 (-15 -1607 ($ (-1085) (-1068))) (-15 -1611 ((-1085) $)) (-15 -3435 ((-1068) $))))) (T -916))
+((-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-916)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-916)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-916)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -1607 ($ (-1085) (-1068))) (-15 -1611 ((-1085) $)) (-15 -3435 ((-1068) $))))
+((-1391 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#4| (-1 |#2| |#1|) |#3|))) (-514) (-514) (-919 |#1|) (-919 |#2|)) (T -917))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-514)) (-4 *6 (-514)) (-4 *2 (-919 *6)) (-5 *1 (-917 *5 *6 *4 *2)) (-4 *4 (-919 *5)))))
+(-10 -7 (-15 -1391 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-1085) "failed") $) 65) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) 95)) (-1484 ((|#2| $) NIL) (((-1085) $) 60) (((-382 (-522)) $) NIL) (((-522) $) 92)) (-2096 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 112) (((-628 |#2|) (-628 $)) 28)) (-3255 (($) 98)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 74) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 83)) (-2902 (($ $) 10)) (-3004 (((-3 $ "failed") $) 20)) (-1391 (($ (-1 |#2| |#2|) $) 22)) (-3802 (($) 16)) (-3933 (($ $) 54)) (-2157 (($ $) NIL) (($ $ (-708)) NIL) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3533 (($ $) 12)) (-1431 (((-821 (-522)) $) 69) (((-821 (-354)) $) 78) (((-498) $) 40) (((-354) $) 44) (((-202) $) 47)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 90) (($ |#2|) NIL) (($ (-1085)) 57)) (-2323 (((-708)) 31)) (-1549 (((-108) $ $) 50)))
+(((-918 |#1| |#2|) (-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1431 ((-202) |#1|)) (-15 -1431 ((-354) |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1484 ((-1085) |#1|)) (-15 -1297 ((-3 (-1085) "failed") |#1|)) (-15 -2190 (|#1| (-1085))) (-15 -3255 (|#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -2902 (|#1| |#1|)) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -2096 ((-628 |#2|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 -2190 ((-792) |#1|))) (-919 |#2|) (-514)) (T -918))
+((-2323 (*1 *2) (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-918 *3 *4)) (-4 *3 (-919 *4)))))
+(-10 -8 (-15 -1549 ((-108) |#1| |#1|)) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1431 ((-202) |#1|)) (-15 -1431 ((-354) |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1484 ((-1085) |#1|)) (-15 -1297 ((-3 (-1085) "failed") |#1|)) (-15 -2190 (|#1| (-1085))) (-15 -3255 (|#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -2902 (|#1| |#1|)) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -4011 ((-818 (-522) |#1|) |#1| (-821 (-522)) (-818 (-522) |#1|))) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -2096 ((-628 |#2|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2229 ((|#1| $) 139 (|has| |#1| (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-1565 (((-393 (-1081 $)) (-1081 $)) 130 (|has| |#1| (-838)))) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 133 (|has| |#1| (-838)))) (-1687 (((-108) $ $) 59)) (-1341 (((-522) $) 120 (|has| |#1| (-757)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 178) (((-3 (-1085) "failed") $) 128 (|has| |#1| (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) 112 (|has| |#1| (-962 (-522)))) (((-3 (-522) "failed") $) 110 (|has| |#1| (-962 (-522))))) (-1484 ((|#1| $) 177) (((-1085) $) 127 (|has| |#1| (-962 (-1085)))) (((-382 (-522)) $) 111 (|has| |#1| (-962 (-522)))) (((-522) $) 109 (|has| |#1| (-962 (-522))))) (-2277 (($ $ $) 55)) (-2096 (((-628 (-522)) (-628 $)) 152 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 151 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 150) (((-628 |#1|) (-628 $)) 149)) (-2682 (((-3 $ "failed") $) 34)) (-3255 (($) 137 (|has| |#1| (-507)))) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2813 (((-108) $) 71)) (-3687 (((-108) $) 122 (|has| |#1| (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 146 (|has| |#1| (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 145 (|has| |#1| (-815 (-354))))) (-2782 (((-108) $) 31)) (-2902 (($ $) 141)) (-2805 ((|#1| $) 143)) (-3004 (((-3 $ "failed") $) 108 (|has| |#1| (-1061)))) (-2556 (((-108) $) 121 (|has| |#1| (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2814 (($ $ $) 118 (|has| |#1| (-784)))) (-2446 (($ $ $) 117 (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) 169)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-3802 (($) 107 (|has| |#1| (-1061)) CONST)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-3933 (($ $) 138 (|has| |#1| (-283)))) (-3686 ((|#1| $) 135 (|has| |#1| (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 132 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 131 (|has| |#1| (-838)))) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) 175 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 173 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 172 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 171 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 170 (|has| |#1| (-483 (-1085) |#1|)))) (-3730 (((-708) $) 58)) (-2545 (($ $ |#1|) 176 (|has| |#1| (-262 |#1| |#1|)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-2157 (($ $) 168 (|has| |#1| (-210))) (($ $ (-708)) 166 (|has| |#1| (-210))) (($ $ (-1085)) 164 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 163 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 162 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 161 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3533 (($ $) 140)) (-2816 ((|#1| $) 142)) (-1431 (((-821 (-522)) $) 148 (|has| |#1| (-563 (-821 (-522))))) (((-821 (-354)) $) 147 (|has| |#1| (-563 (-821 (-354))))) (((-498) $) 125 (|has| |#1| (-563 (-498)))) (((-354) $) 124 (|has| |#1| (-947))) (((-202) $) 123 (|has| |#1| (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 134 (-4015 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ |#1|) 181) (($ (-1085)) 129 (|has| |#1| (-962 (-1085))))) (-2143 (((-3 $ "failed") $) 126 (-3708 (|has| |#1| (-133)) (-4015 (|has| $ (-133)) (|has| |#1| (-838)))))) (-2323 (((-708)) 29)) (-3025 ((|#1| $) 136 (|has| |#1| (-507)))) (-3958 (((-108) $ $) 39)) (-2241 (($ $) 119 (|has| |#1| (-757)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $) 167 (|has| |#1| (-210))) (($ $ (-708)) 165 (|has| |#1| (-210))) (($ $ (-1085)) 160 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 159 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 158 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 157 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1574 (((-108) $ $) 115 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 114 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 116 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 113 (|has| |#1| (-784)))) (-1620 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-919 |#1|) (-1197) (-514)) (T -919))
+((-1620 (*1 *1 *2 *2) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2902 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283)))) (-3933 (*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283)))) (-3255 (*1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-507)) (-4 *2 (-514)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507)))))
+(-13 (-338) (-37 |t#1|) (-962 |t#1|) (-313 |t#1|) (-208 |t#1|) (-352 |t#1|) (-813 |t#1|) (-375 |t#1|) (-10 -8 (-15 -1620 ($ |t#1| |t#1|)) (-15 -2805 (|t#1| $)) (-15 -2816 (|t#1| $)) (-15 -2902 ($ $)) (-15 -3533 ($ $)) (IF (|has| |t#1| (-1061)) (-6 (-1061)) |%noBranch|) (IF (|has| |t#1| (-962 (-522))) (PROGN (-6 (-962 (-522))) (-6 (-962 (-382 (-522))))) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-947)) (-6 (-947)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-962 (-1085))) (-6 (-962 (-1085))) |%noBranch|) (IF (|has| |t#1| (-283)) (PROGN (-15 -2229 (|t#1| $)) (-15 -3933 ($ $))) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -3255 ($)) (-15 -3025 (|t#1| $)) (-15 -3686 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-838)) (-6 (-838)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-563 (-202)) |has| |#1| (-947)) ((-563 (-354)) |has| |#1| (-947)) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-563 (-821 (-354))) |has| |#1| (-563 (-821 (-354)))) ((-563 (-821 (-522))) |has| |#1| (-563 (-821 (-522)))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) . T) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-266) . T) ((-283) . T) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-338) . T) ((-313 |#1|) . T) ((-352 |#1|) . T) ((-375 |#1|) . T) ((-426) . T) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-728) |has| |#1| (-757)) ((-729) |has| |#1| (-757)) ((-731) |has| |#1| (-757)) ((-732) |has| |#1| (-757)) ((-757) |has| |#1| (-757)) ((-782) |has| |#1| (-757)) ((-784) -3708 (|has| |#1| (-784)) (|has| |#1| (-757))) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-815 (-354)) |has| |#1| (-815 (-354))) ((-815 (-522)) |has| |#1| (-815 (-522))) ((-813 |#1|) . T) ((-838) |has| |#1| (-838)) ((-849) . T) ((-947) |has| |#1| (-947)) ((-962 (-382 (-522))) |has| |#1| (-962 (-522))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 (-1085)) |has| |#1| (-962 (-1085))) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-1061)) ((-1120) . T) ((-1124) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-4062 (($ (-1052 |#1| |#2|)) 11)) (-1366 (((-1052 |#1| |#2|) $) 12)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2545 ((|#2| $ (-217 |#1| |#2|)) 16)) (-2190 (((-792) $) NIL)) (-3566 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL)))
+(((-920 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -4062 ($ (-1052 |#1| |#2|))) (-15 -1366 ((-1052 |#1| |#2|) $)) (-15 -2545 (|#2| $ (-217 |#1| |#2|))))) (-850) (-338)) (T -920))
+((-4062 (*1 *1 *2) (-12 (-5 *2 (-1052 *3 *4)) (-14 *3 (-850)) (-4 *4 (-338)) (-5 *1 (-920 *3 *4)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-1052 *3 *4)) (-5 *1 (-920 *3 *4)) (-14 *3 (-850)) (-4 *4 (-338)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-850)) (-4 *2 (-338)) (-5 *1 (-920 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -4062 ($ (-1052 |#1| |#2|))) (-15 -1366 ((-1052 |#1| |#2|) $)) (-15 -2545 (|#2| $ (-217 |#1| |#2|)))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-2070 (($ $) 46)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2517 (((-708) $) 45)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-1698 ((|#1| $) 44)) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1965 ((|#1| |#1| $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-3650 ((|#1| $) 47)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-2316 ((|#1| $) 43)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-921 |#1|) (-1197) (-1120)) (T -921))
+((-1965 (*1 *2 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4238) (-15 -1965 (|t#1| |t#1| $)) (-15 -3650 (|t#1| $)) (-15 -2070 ($ $)) (-15 -2517 ((-708) $)) (-15 -1698 (|t#1| $)) (-15 -2316 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-2250 (((-108) $) 42)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1484 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#2| $) 43)) (-1664 (((-3 (-382 (-522)) "failed") $) 78)) (-1770 (((-108) $) 72)) (-1492 (((-382 (-522)) $) 76)) (-2782 (((-108) $) 41)) (-2100 ((|#2| $) 22)) (-1391 (($ (-1 |#2| |#2|) $) 19)) (-3098 (($ $) 61)) (-2157 (($ $) NIL) (($ $ (-708)) NIL) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1431 (((-498) $) 67)) (-3122 (($ $) 17)) (-2190 (((-792) $) 56) (($ (-522)) 38) (($ |#2|) 36) (($ (-382 (-522))) NIL)) (-2323 (((-708)) 10)) (-2241 ((|#2| $) 71)) (-1531 (((-108) $ $) 25)) (-1549 (((-108) $ $) 69)) (-1612 (($ $) 29) (($ $ $) 28)) (-1602 (($ $ $) 26)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL)))
+(((-922 |#1| |#2|) (-10 -8 (-15 -2190 (|#1| (-382 (-522)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 -3098 (|#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -2190 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 -2782 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-923 |#2|) (-157)) (T -922))
+((-2323 (*1 *2) (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-922 *3 *4)) (-4 *3 (-923 *4)))))
+(-10 -8 (-15 -2190 (|#1| (-382 (-522)))) (-15 -1549 ((-108) |#1| |#1|)) (-15 * (|#1| (-382 (-522)) |#1|)) (-15 * (|#1| |#1| (-382 (-522)))) (-15 -3098 (|#1| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -2241 (|#2| |#1|)) (-15 -2100 (|#2| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -1391 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -2190 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 -2782 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 * (|#1| (-708) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 * (|#1| (-850) |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-1297 (((-3 (-522) "failed") $) 119 (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 117 (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) 116)) (-1484 (((-522) $) 120 (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) 118 (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) 115)) (-2096 (((-628 (-522)) (-628 $)) 90 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 89 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 88) (((-628 |#1|) (-628 $)) 87)) (-2682 (((-3 $ "failed") $) 34)) (-1937 ((|#1| $) 80)) (-1664 (((-3 (-382 (-522)) "failed") $) 76 (|has| |#1| (-507)))) (-1770 (((-108) $) 78 (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) 77 (|has| |#1| (-507)))) (-4188 (($ |#1| |#1| |#1| |#1|) 81)) (-2782 (((-108) $) 31)) (-2100 ((|#1| $) 82)) (-2814 (($ $ $) 68 (|has| |#1| (-784)))) (-2446 (($ $ $) 67 (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) 91)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 73 (|has| |#1| (-338)))) (-2252 ((|#1| $) 83)) (-1245 ((|#1| $) 84)) (-3559 ((|#1| $) 85)) (-4151 (((-1032) $) 10)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) 97 (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) 95 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) 94 (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) 93 (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) 92 (|has| |#1| (-483 (-1085) |#1|)))) (-2545 (($ $ |#1|) 98 (|has| |#1| (-262 |#1| |#1|)))) (-2157 (($ $) 114 (|has| |#1| (-210))) (($ $ (-708)) 112 (|has| |#1| (-210))) (($ $ (-1085)) 110 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 109 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 108 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 107 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1431 (((-498) $) 74 (|has| |#1| (-563 (-498))))) (-3122 (($ $) 86)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 37) (($ (-382 (-522))) 62 (-3708 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-2143 (((-3 $ "failed") $) 75 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-2241 ((|#1| $) 79 (|has| |#1| (-980)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 72 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $) 113 (|has| |#1| (-210))) (($ $ (-708)) 111 (|has| |#1| (-210))) (($ $ (-1085)) 106 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 105 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 104 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 103 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1574 (((-108) $ $) 65 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 64 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 66 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 63 (|has| |#1| (-784)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 71 (|has| |#1| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-382 (-522))) 70 (|has| |#1| (-338))) (($ (-382 (-522)) $) 69 (|has| |#1| (-338)))))
+(((-923 |#1|) (-1197) (-157)) (T -923))
+((-3122 (*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-3559 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-1245 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-4188 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)) (-4 *2 (-980)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-382 (-522))))))
+(-13 (-37 |t#1|) (-386 |t#1|) (-208 |t#1|) (-313 |t#1|) (-352 |t#1|) (-10 -8 (-15 -3122 ($ $)) (-15 -3559 (|t#1| $)) (-15 -1245 (|t#1| $)) (-15 -2252 (|t#1| $)) (-15 -2100 (|t#1| $)) (-15 -4188 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1937 (|t#1| $)) (IF (|has| |t#1| (-266)) (-6 (-266)) |%noBranch|) (IF (|has| |t#1| (-784)) (-6 (-784)) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-220)) |%noBranch|) (IF (|has| |t#1| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#1| (-980)) (-15 -2241 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-507)) (PROGN (-15 -1770 ((-108) $)) (-15 -1492 ((-382 (-522)) $)) (-15 -1664 ((-3 (-382 (-522)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-338)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-338)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-338)) (|has| |#1| (-266))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-208 |#1|) . T) ((-210) |has| |#1| (-210)) ((-220) |has| |#1| (-338)) ((-262 |#1| $) |has| |#1| (-262 |#1| |#1|)) ((-266) -3708 (|has| |#1| (-338)) (|has| |#1| (-266))) ((-285 |#1|) |has| |#1| (-285 |#1|)) ((-313 |#1|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-483 (-1085) |#1|) |has| |#1| (-483 (-1085) |#1|)) ((-483 |#1| |#1|) |has| |#1| (-285 |#1|)) ((-590 #0#) |has| |#1| (-338)) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-338)) ((-655 |#1|) . T) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-977 #0#) |has| |#1| (-338)) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-338)) (|has| |#1| (-266))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1391 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#3| (-1 |#4| |#2|) |#1|))) (-923 |#2|) (-157) (-923 |#4|) (-157)) (T -924))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157)) (-4 *2 (-923 *6)) (-5 *1 (-924 *4 *5 *2 *6)) (-4 *4 (-923 *5)))))
+(-10 -7 (-15 -1391 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1937 ((|#1| $) 12)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-507)))) (-1770 (((-108) $) NIL (|has| |#1| (-507)))) (-1492 (((-382 (-522)) $) NIL (|has| |#1| (-507)))) (-4188 (($ |#1| |#1| |#1| |#1|) 16)) (-2782 (((-108) $) NIL)) (-2100 ((|#1| $) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-2252 ((|#1| $) 15)) (-1245 ((|#1| $) 14)) (-3559 ((|#1| $) 13)) (-4151 (((-1032) $) NIL)) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-285 |#1|))) (($ $ (-270 |#1|)) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-270 |#1|))) NIL (|has| |#1| (-285 |#1|))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-483 (-1085) |#1|))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-483 (-1085) |#1|)))) (-2545 (($ $ |#1|) NIL (|has| |#1| (-262 |#1| |#1|)))) (-2157 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-3122 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-2241 ((|#1| $) NIL (|has| |#1| (-980)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 8 T CONST)) (-3577 (($) 10 T CONST)) (-2213 (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-338)))))
+(((-925 |#1|) (-923 |#1|) (-157)) (T -925))
+NIL
+(-923 |#1|)
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-4141 (((-108) $ (-708)) NIL)) (-3175 (($) NIL T CONST)) (-2070 (($ $) 20)) (-4092 (($ (-588 |#1|)) 29)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2517 (((-708) $) 22)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2116 ((|#1| $) 24)) (-4095 (($ |#1| $) 15)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1698 ((|#1| $) 23)) (-4087 ((|#1| $) 19)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1965 ((|#1| |#1| $) 14)) (-3985 (((-108) $) 17)) (-3775 (($) NIL)) (-3650 ((|#1| $) 18)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) NIL)) (-2316 ((|#1| $) 26)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-926 |#1|) (-13 (-921 |#1|) (-10 -8 (-15 -4092 ($ (-588 |#1|))))) (-1014)) (T -926))
+((-4092 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-926 *3)))))
+(-13 (-921 |#1|) (-10 -8 (-15 -4092 ($ (-588 |#1|)))))
+((-1929 (($ $) 12)) (-1504 (($ $ (-522)) 13)))
+(((-927 |#1|) (-10 -8 (-15 -1929 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-522)))) (-928)) (T -927))
+NIL
+(-10 -8 (-15 -1929 (|#1| |#1|)) (-15 -1504 (|#1| |#1| (-522))))
+((-1929 (($ $) 6)) (-1504 (($ $ (-522)) 7)) (** (($ $ (-382 (-522))) 8)))
+(((-928) (-1197)) (T -928))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-382 (-522))))) (-1504 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-522)))) (-1929 (*1 *1 *1) (-4 *1 (-928))))
+(-13 (-10 -8 (-15 -1929 ($ $)) (-15 -1504 ($ $ (-522))) (-15 ** ($ $ (-382 (-522))))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2375 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| (-382 |#2|) (-338)))) (-2022 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3739 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3174 (((-628 (-382 |#2|)) (-1166 $)) NIL) (((-628 (-382 |#2|))) NIL)) (-1865 (((-382 |#2|) $) NIL)) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| (-382 |#2|) (-324)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-3450 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-1687 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-1629 (((-708)) NIL (|has| (-382 |#2|) (-343)))) (-2472 (((-108)) NIL)) (-2898 (((-108) |#1|) 147) (((-108) |#2|) 152)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-3 (-382 |#2|) "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| (-382 |#2|) (-962 (-522)))) (((-382 (-522)) $) NIL (|has| (-382 |#2|) (-962 (-382 (-522))))) (((-382 |#2|) $) NIL)) (-3766 (($ (-1166 (-382 |#2|)) (-1166 $)) NIL) (($ (-1166 (-382 |#2|))) 70) (($ (-1166 |#2|) |#2|) NIL)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-382 |#2|) (-324)))) (-2277 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2109 (((-628 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-382 |#2|) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-382 |#2|))) (|:| |vec| (-1166 (-382 |#2|)))) (-628 $) (-1166 $)) NIL) (((-628 (-382 |#2|)) (-628 $)) NIL)) (-3642 (((-1166 $) (-1166 $)) NIL)) (-3864 (($ |#3|) 65) (((-3 $ "failed") (-382 |#3|)) NIL (|has| (-382 |#2|) (-338)))) (-2682 (((-3 $ "failed") $) NIL)) (-2017 (((-588 (-588 |#1|))) NIL (|has| |#1| (-343)))) (-1250 (((-108) |#1| |#1|) NIL)) (-3166 (((-850)) NIL)) (-3255 (($) NIL (|has| (-382 |#2|) (-343)))) (-3144 (((-108)) NIL)) (-1228 (((-108) |#1|) 56) (((-108) |#2|) 149)) (-2254 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| (-382 |#2|) (-338)))) (-2071 (($ $) NIL)) (-1223 (($) NIL (|has| (-382 |#2|) (-324)))) (-2511 (((-108) $) NIL (|has| (-382 |#2|) (-324)))) (-2111 (($ $ (-708)) NIL (|has| (-382 |#2|) (-324))) (($ $) NIL (|has| (-382 |#2|) (-324)))) (-2813 (((-108) $) NIL (|has| (-382 |#2|) (-338)))) (-3714 (((-850) $) NIL (|has| (-382 |#2|) (-324))) (((-770 (-850)) $) NIL (|has| (-382 |#2|) (-324)))) (-2782 (((-108) $) NIL)) (-2397 (((-708)) NIL)) (-1538 (((-1166 $) (-1166 $)) NIL)) (-2100 (((-382 |#2|) $) NIL)) (-2653 (((-588 (-881 |#1|)) (-1085)) NIL (|has| |#1| (-338)))) (-3004 (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-1712 ((|#3| $) NIL (|has| (-382 |#2|) (-338)))) (-2120 (((-850) $) NIL (|has| (-382 |#2|) (-343)))) (-3849 ((|#3| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-2385 (((-1068) $) NIL)) (-3293 (((-628 (-382 |#2|))) 52)) (-4178 (((-628 (-382 |#2|))) 51)) (-3098 (($ $) NIL (|has| (-382 |#2|) (-338)))) (-1249 (($ (-1166 |#2|) |#2|) 71)) (-3189 (((-628 (-382 |#2|))) 50)) (-3319 (((-628 (-382 |#2|))) 49)) (-3041 (((-2 (|:| |num| (-628 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-4066 (((-2 (|:| |num| (-1166 |#2|)) (|:| |den| |#2|)) $) 77)) (-4003 (((-1166 $)) 46)) (-3882 (((-1166 $)) 45)) (-2156 (((-108) $) NIL)) (-1332 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3802 (($) NIL (|has| (-382 |#2|) (-324)) CONST)) (-2717 (($ (-850)) NIL (|has| (-382 |#2|) (-343)))) (-3117 (((-3 |#2| "failed")) 63)) (-4151 (((-1032) $) NIL)) (-3940 (((-708)) NIL)) (-1383 (($) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| (-382 |#2|) (-338)))) (-2259 (($ (-588 $)) NIL (|has| (-382 |#2|) (-338))) (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| (-382 |#2|) (-324)))) (-1916 (((-393 $) $) NIL (|has| (-382 |#2|) (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-382 |#2|) (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-2232 (((-3 $ "failed") $ $) NIL (|has| (-382 |#2|) (-338)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| (-382 |#2|) (-338)))) (-3730 (((-708) $) NIL (|has| (-382 |#2|) (-338)))) (-2545 ((|#1| $ |#1| |#1|) NIL)) (-3157 (((-3 |#2| "failed")) 62)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| (-382 |#2|) (-338)))) (-2769 (((-382 |#2|) (-1166 $)) NIL) (((-382 |#2|)) 42)) (-3018 (((-708) $) NIL (|has| (-382 |#2|) (-324))) (((-3 (-708) "failed") $ $) NIL (|has| (-382 |#2|) (-324)))) (-2157 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1859 (((-628 (-382 |#2|)) (-1166 $) (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338)))) (-1479 ((|#3|) 53)) (-2581 (($) NIL (|has| (-382 |#2|) (-324)))) (-3677 (((-1166 (-382 |#2|)) $ (-1166 $)) NIL) (((-628 (-382 |#2|)) (-1166 $) (-1166 $)) NIL) (((-1166 (-382 |#2|)) $) 72) (((-628 (-382 |#2|)) (-1166 $)) NIL)) (-1431 (((-1166 (-382 |#2|)) $) NIL) (($ (-1166 (-382 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| (-382 |#2|) (-324)))) (-1634 (((-1166 $) (-1166 $)) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 |#2|)) NIL) (($ (-382 (-522))) NIL (-3708 (|has| (-382 |#2|) (-962 (-382 (-522)))) (|has| (-382 |#2|) (-338)))) (($ $) NIL (|has| (-382 |#2|) (-338)))) (-2143 (($ $) NIL (|has| (-382 |#2|) (-324))) (((-3 $ "failed") $) NIL (|has| (-382 |#2|) (-133)))) (-2051 ((|#3| $) NIL)) (-2323 (((-708)) NIL)) (-3532 (((-108)) 60)) (-4170 (((-108) |#1|) 153) (((-108) |#2|) 154)) (-3855 (((-1166 $)) 124)) (-3958 (((-108) $ $) NIL (|has| (-382 |#2|) (-338)))) (-3406 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2058 (((-108)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (-3566 (($) 94 T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-1 (-382 |#2|) (-382 |#2|)) (-708)) NIL (|has| (-382 |#2|) (-338))) (($ $ (-1 (-382 |#2|) (-382 |#2|))) NIL (|has| (-382 |#2|) (-338))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| (-382 |#2|) (-338)) (|has| (-382 |#2|) (-829 (-1085))))) (($ $ (-708)) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324)))) (($ $) NIL (-3708 (-12 (|has| (-382 |#2|) (-210)) (|has| (-382 |#2|) (-338))) (|has| (-382 |#2|) (-324))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ $) NIL (|has| (-382 |#2|) (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| (-382 |#2|) (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 |#2|)) NIL) (($ (-382 |#2|) $) NIL) (($ (-382 (-522)) $) NIL (|has| (-382 |#2|) (-338))) (($ $ (-382 (-522))) NIL (|has| (-382 |#2|) (-338)))))
+(((-929 |#1| |#2| |#3| |#4| |#5|) (-317 |#1| |#2| |#3|) (-1124) (-1142 |#1|) (-1142 (-382 |#2|)) (-382 |#2|) (-708)) (T -929))
+NIL
+(-317 |#1| |#2| |#3|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2074 (((-588 (-522)) $) 54)) (-4134 (($ (-588 (-522))) 62)) (-2229 (((-522) $) 40 (|has| (-522) (-283)))) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL (|has| (-522) (-757)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) 49) (((-3 (-1085) "failed") $) NIL (|has| (-522) (-962 (-1085)))) (((-3 (-382 (-522)) "failed") $) 47 (|has| (-522) (-962 (-522)))) (((-3 (-522) "failed") $) 49 (|has| (-522) (-962 (-522))))) (-1484 (((-522) $) NIL) (((-1085) $) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) NIL (|has| (-522) (-962 (-522)))) (((-522) $) NIL (|has| (-522) (-962 (-522))))) (-2277 (($ $ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| (-522) (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3255 (($) NIL (|has| (-522) (-507)))) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-4129 (((-588 (-522)) $) 60)) (-3687 (((-108) $) NIL (|has| (-522) (-757)))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (|has| (-522) (-815 (-522)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (|has| (-522) (-815 (-354))))) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL)) (-2805 (((-522) $) 37)) (-3004 (((-3 $ "failed") $) NIL (|has| (-522) (-1061)))) (-2556 (((-108) $) NIL (|has| (-522) (-757)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-522) (-784)))) (-1391 (($ (-1 (-522) (-522)) $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL)) (-3802 (($) NIL (|has| (-522) (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-3933 (($ $) NIL (|has| (-522) (-283))) (((-382 (-522)) $) 42)) (-4037 (((-1066 (-522)) $) 59)) (-2077 (($ (-588 (-522)) (-588 (-522))) 63)) (-3686 (((-522) $) 53 (|has| (-522) (-507)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| (-522) (-838)))) (-1916 (((-393 $) $) NIL)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2289 (($ $ (-588 (-522)) (-588 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-522) (-522)) NIL (|has| (-522) (-285 (-522)))) (($ $ (-270 (-522))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-270 (-522)))) NIL (|has| (-522) (-285 (-522)))) (($ $ (-588 (-1085)) (-588 (-522))) NIL (|has| (-522) (-483 (-1085) (-522)))) (($ $ (-1085) (-522)) NIL (|has| (-522) (-483 (-1085) (-522))))) (-3730 (((-708) $) NIL)) (-2545 (($ $ (-522)) NIL (|has| (-522) (-262 (-522) (-522))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $) 11 (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-3533 (($ $) NIL)) (-2816 (((-522) $) 39)) (-4100 (((-588 (-522)) $) 61)) (-1431 (((-821 (-522)) $) NIL (|has| (-522) (-563 (-821 (-522))))) (((-821 (-354)) $) NIL (|has| (-522) (-563 (-821 (-354))))) (((-498) $) NIL (|has| (-522) (-563 (-498)))) (((-354) $) NIL (|has| (-522) (-947))) (((-202) $) NIL (|has| (-522) (-947)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-522) (-838))))) (-2190 (((-792) $) 77) (($ (-522)) 43) (($ $) NIL) (($ (-382 (-522))) 19) (($ (-522)) 43) (($ (-1085)) NIL (|has| (-522) (-962 (-1085)))) (((-382 (-522)) $) 17)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-522) (-838))) (|has| (-522) (-133))))) (-2323 (((-708)) 9)) (-3025 (((-522) $) 51 (|has| (-522) (-507)))) (-3958 (((-108) $ $) NIL)) (-2241 (($ $) NIL (|has| (-522) (-757)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 10 T CONST)) (-3577 (($) 12 T CONST)) (-2213 (($ $) NIL (|has| (-522) (-210))) (($ $ (-708)) NIL (|has| (-522) (-210))) (($ $ (-1085)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| (-522) (-829 (-1085)))) (($ $ (-1 (-522) (-522)) (-708)) NIL) (($ $ (-1 (-522) (-522))) NIL)) (-1574 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1531 (((-108) $ $) 14)) (-1566 (((-108) $ $) NIL (|has| (-522) (-784)))) (-1549 (((-108) $ $) 33 (|has| (-522) (-784)))) (-1620 (($ $ $) 29) (($ (-522) (-522)) 31)) (-1612 (($ $) 15) (($ $ $) 22)) (-1602 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 25) (($ $ $) 27) (($ $ (-382 (-522))) NIL) (($ (-382 (-522)) $) NIL) (($ (-522) $) 25) (($ $ (-522)) NIL)))
+(((-930 |#1|) (-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -2074 ((-588 (-522)) $)) (-15 -4037 ((-1066 (-522)) $)) (-15 -4129 ((-588 (-522)) $)) (-15 -4100 ((-588 (-522)) $)) (-15 -4134 ($ (-588 (-522)))) (-15 -2077 ($ (-588 (-522)) (-588 (-522)))))) (-522)) (T -930))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-4134 (*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))) (-2077 (*1 *1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
+(-13 (-919 (-522)) (-10 -8 (-15 -2190 ((-382 (-522)) $)) (-15 -3933 ((-382 (-522)) $)) (-15 -2074 ((-588 (-522)) $)) (-15 -4037 ((-1066 (-522)) $)) (-15 -4129 ((-588 (-522)) $)) (-15 -4100 ((-588 (-522)) $)) (-15 -4134 ($ (-588 (-522)))) (-15 -2077 ($ (-588 (-522)) (-588 (-522))))))
+((-2520 (((-51) (-382 (-522)) (-522)) 9)))
+(((-931) (-10 -7 (-15 -2520 ((-51) (-382 (-522)) (-522))))) (T -931))
+((-2520 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-522))) (-5 *4 (-522)) (-5 *2 (-51)) (-5 *1 (-931)))))
+(-10 -7 (-15 -2520 ((-51) (-382 (-522)) (-522))))
+((-1629 (((-522)) 13)) (-1683 (((-522)) 16)) (-3726 (((-1171) (-522)) 15)) (-3214 (((-522) (-522)) 17) (((-522)) 12)))
+(((-932) (-10 -7 (-15 -3214 ((-522))) (-15 -1629 ((-522))) (-15 -3214 ((-522) (-522))) (-15 -3726 ((-1171) (-522))) (-15 -1683 ((-522))))) (T -932))
+((-1683 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-932)))) (-3214 (*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) (-1629 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))) (-3214 (*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))))
+(-10 -7 (-15 -3214 ((-522))) (-15 -1629 ((-522))) (-15 -3214 ((-522) (-522))) (-15 -3726 ((-1171) (-522))) (-15 -1683 ((-522))))
+((-2571 (((-393 |#1|) |#1|) 40)) (-1916 (((-393 |#1|) |#1|) 39)))
+(((-933 |#1|) (-10 -7 (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2571 ((-393 |#1|) |#1|))) (-1142 (-382 (-522)))) (T -933))
+((-2571 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1142 (-382 (-522)))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3)) (-4 *3 (-1142 (-382 (-522)))))))
+(-10 -7 (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2571 ((-393 |#1|) |#1|)))
+((-1664 (((-3 (-382 (-522)) "failed") |#1|) 14)) (-1770 (((-108) |#1|) 13)) (-1492 (((-382 (-522)) |#1|) 9)))
+(((-934 |#1|) (-10 -7 (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|))) (-962 (-382 (-522)))) (T -934))
+((-1664 (*1 *2 *3) (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) (-4 *3 (-962 *2)))) (-1770 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-934 *3)) (-4 *3 (-962 (-382 (-522)))))) (-1492 (*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) (-4 *3 (-962 *2)))))
+(-10 -7 (-15 -1492 ((-382 (-522)) |#1|)) (-15 -1770 ((-108) |#1|)) (-15 -1664 ((-3 (-382 (-522)) "failed") |#1|)))
+((-2379 ((|#2| $ "value" |#2|) 12)) (-2545 ((|#2| $ "value") 10)) (-2425 (((-108) $ $) 18)))
+(((-935 |#1| |#2|) (-10 -8 (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -2425 ((-108) |#1| |#1|)) (-15 -2545 (|#2| |#1| "value"))) (-936 |#2|) (-1120)) (T -935))
+NIL
+(-10 -8 (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -2425 ((-108) |#1| |#1|)) (-15 -2545 (|#2| |#1| "value")))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3175 (($) 7 T CONST)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47)) (-2011 (((-522) $ $) 44)) (-3042 (((-108) $) 46)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-936 |#1|) (-1197) (-1120)) (T -936))
+((-1749 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1120)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-936 *2)) (-4 *2 (-1120)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-1279 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))) (-2011 (*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-522)))) (-2425 (*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2030 (*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *1)) (|has| *1 (-6 -4239)) (-4 *1 (-936 *3)) (-4 *3 (-1120)))) (-2379 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) (-4 *2 (-1120)))) (-3628 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) (-4 *2 (-1120)))))
+(-13 (-461 |t#1|) (-10 -8 (-15 -1749 ((-588 $) $)) (-15 -4138 ((-588 $) $)) (-15 -1754 ((-108) $)) (-15 -3435 (|t#1| $)) (-15 -2545 (|t#1| $ "value")) (-15 -3042 ((-108) $)) (-15 -1279 ((-588 |t#1|) $)) (-15 -2011 ((-522) $ $)) (IF (|has| |t#1| (-1014)) (PROGN (-15 -2425 ((-108) $ $)) (-15 -2030 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4239)) (PROGN (-15 -1268 ($ $ (-588 $))) (-15 -2379 (|t#1| $ "value" |t#1|)) (-15 -3628 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1929 (($ $) 9) (($ $ (-708)) 43) (($ (-382 (-522))) 12) (($ (-522)) 15)) (-3944 (((-3 $ "failed") (-1081 $) (-850) (-792)) 23) (((-3 $ "failed") (-1081 $) (-850)) 28)) (-1504 (($ $ (-522)) 49)) (-2323 (((-708)) 16)) (-2479 (((-588 $) (-1081 $)) NIL) (((-588 $) (-1081 (-382 (-522)))) 54) (((-588 $) (-1081 (-522))) 59) (((-588 $) (-881 $)) 63) (((-588 $) (-881 (-382 (-522)))) 67) (((-588 $) (-881 (-522))) 71)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ $ (-382 (-522))) 47)))
+(((-937 |#1|) (-10 -8 (-15 -1929 (|#1| (-522))) (-15 -1929 (|#1| (-382 (-522)))) (-15 -1929 (|#1| |#1| (-708))) (-15 -2479 ((-588 |#1|) (-881 (-522)))) (-15 -2479 ((-588 |#1|) (-881 (-382 (-522))))) (-15 -2479 ((-588 |#1|) (-881 |#1|))) (-15 -2479 ((-588 |#1|) (-1081 (-522)))) (-15 -2479 ((-588 |#1|) (-1081 (-382 (-522))))) (-15 -2479 ((-588 |#1|) (-1081 |#1|))) (-15 -3944 ((-3 |#1| "failed") (-1081 |#1|) (-850))) (-15 -3944 ((-3 |#1| "failed") (-1081 |#1|) (-850) (-792))) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -1504 (|#1| |#1| (-522))) (-15 -1929 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -2323 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850)))) (-938)) (T -937))
+((-2323 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-937 *3)) (-4 *3 (-938)))))
+(-10 -8 (-15 -1929 (|#1| (-522))) (-15 -1929 (|#1| (-382 (-522)))) (-15 -1929 (|#1| |#1| (-708))) (-15 -2479 ((-588 |#1|) (-881 (-522)))) (-15 -2479 ((-588 |#1|) (-881 (-382 (-522))))) (-15 -2479 ((-588 |#1|) (-881 |#1|))) (-15 -2479 ((-588 |#1|) (-1081 (-522)))) (-15 -2479 ((-588 |#1|) (-1081 (-382 (-522))))) (-15 -2479 ((-588 |#1|) (-1081 |#1|))) (-15 -3944 ((-3 |#1| "failed") (-1081 |#1|) (-850))) (-15 -3944 ((-3 |#1| "failed") (-1081 |#1|) (-850) (-792))) (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -1504 (|#1| |#1| (-522))) (-15 -1929 (|#1| |#1|)) (-15 ** (|#1| |#1| (-522))) (-15 -2323 ((-708))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 89)) (-2022 (($ $) 90)) (-3739 (((-108) $) 92)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 109)) (-3450 (((-393 $) $) 110)) (-1929 (($ $) 73) (($ $ (-708)) 59) (($ (-382 (-522))) 58) (($ (-522)) 57)) (-1687 (((-108) $ $) 100)) (-1341 (((-522) $) 127)) (-3175 (($) 17 T CONST)) (-3944 (((-3 $ "failed") (-1081 $) (-850) (-792)) 67) (((-3 $ "failed") (-1081 $) (-850)) 66)) (-1297 (((-3 (-522) "failed") $) 85 (|has| (-382 (-522)) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 83 (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-3 (-382 (-522)) "failed") $) 81)) (-1484 (((-522) $) 86 (|has| (-382 (-522)) (-962 (-522)))) (((-382 (-522)) $) 84 (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-382 (-522)) $) 80)) (-2691 (($ $ (-792)) 56)) (-2356 (($ $ (-792)) 55)) (-2277 (($ $ $) 104)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 103)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 98)) (-2813 (((-108) $) 111)) (-3687 (((-108) $) 125)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 72)) (-2556 (((-108) $) 126)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 107)) (-2814 (($ $ $) 124)) (-2446 (($ $ $) 123)) (-3634 (((-3 (-1081 $) "failed") $) 68)) (-2624 (((-3 (-792) "failed") $) 70)) (-1290 (((-3 (-1081 $) "failed") $) 69)) (-2224 (($ (-588 $)) 96) (($ $ $) 95)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 112)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 97)) (-2259 (($ (-588 $)) 94) (($ $ $) 93)) (-1916 (((-393 $) $) 108)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 105)) (-2232 (((-3 $ "failed") $ $) 88)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 99)) (-3730 (((-708) $) 101)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 102)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 117) (($ $) 87) (($ (-382 (-522))) 82) (($ (-522)) 79) (($ (-382 (-522))) 76)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 91)) (-3898 (((-382 (-522)) $ $) 54)) (-2479 (((-588 $) (-1081 $)) 65) (((-588 $) (-1081 (-382 (-522)))) 64) (((-588 $) (-1081 (-522))) 63) (((-588 $) (-881 $)) 62) (((-588 $) (-881 (-382 (-522)))) 61) (((-588 $) (-881 (-522))) 60)) (-2241 (($ $) 128)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 113)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 121)) (-1558 (((-108) $ $) 120)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 122)) (-1549 (((-108) $ $) 119)) (-1620 (($ $ $) 118)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 114) (($ $ (-382 (-522))) 71)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ (-382 (-522)) $) 116) (($ $ (-382 (-522))) 115) (($ (-522) $) 78) (($ $ (-522)) 77) (($ (-382 (-522)) $) 75) (($ $ (-382 (-522))) 74)))
+(((-938) (-1197)) (T -938))
+((-1929 (*1 *1 *1) (-4 *1 (-938))) (-2624 (*1 *2 *1) (|partial| -12 (-4 *1 (-938)) (-5 *2 (-792)))) (-1290 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938)))) (-3634 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938)))) (-3944 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-5 *4 (-792)) (-4 *1 (-938)))) (-3944 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-4 *1 (-938)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1081 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938)))) (-1929 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-708)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-938)))) (-1929 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-938)))) (-2691 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792)))) (-2356 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792)))) (-3898 (*1 *2 *1 *1) (-12 (-4 *1 (-938)) (-5 *2 (-382 (-522))))))
+(-13 (-135) (-782) (-157) (-338) (-386 (-382 (-522))) (-37 (-522)) (-37 (-382 (-522))) (-928) (-10 -8 (-15 -2624 ((-3 (-792) "failed") $)) (-15 -1290 ((-3 (-1081 $) "failed") $)) (-15 -3634 ((-3 (-1081 $) "failed") $)) (-15 -3944 ((-3 $ "failed") (-1081 $) (-850) (-792))) (-15 -3944 ((-3 $ "failed") (-1081 $) (-850))) (-15 -2479 ((-588 $) (-1081 $))) (-15 -2479 ((-588 $) (-1081 (-382 (-522))))) (-15 -2479 ((-588 $) (-1081 (-522)))) (-15 -2479 ((-588 $) (-881 $))) (-15 -2479 ((-588 $) (-881 (-382 (-522))))) (-15 -2479 ((-588 $) (-881 (-522)))) (-15 -1929 ($ $ (-708))) (-15 -1929 ($ $)) (-15 -1929 ($ (-382 (-522)))) (-15 -1929 ($ (-522))) (-15 -2691 ($ $ (-792))) (-15 -2356 ($ $ (-792))) (-15 -3898 ((-382 (-522)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 #1=(-522)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-386 (-382 (-522))) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 #1#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 #1#) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-849) . T) ((-928) . T) ((-962 (-382 (-522))) . T) ((-962 (-522)) |has| (-382 (-522)) (-962 (-522))) ((-977 #0#) . T) ((-977 #1#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-3902 (((-2 (|:| |ans| |#2|) (|:| -1924 |#2|) (|:| |sol?| (-108))) (-522) |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 62)))
+(((-939 |#1| |#2|) (-10 -7 (-15 -3902 ((-2 (|:| |ans| |#2|) (|:| -1924 |#2|) (|:| |sol?| (-108))) (-522) |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-27) (-405 |#1|))) (T -939))
+((-3902 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1085)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-588 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1856 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1106) (-27) (-405 *8))) (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3))) (-5 *3 (-522)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108)))) (-5 *1 (-939 *8 *4)))))
+(-10 -7 (-15 -3902 ((-2 (|:| |ans| |#2|) (|:| -1924 |#2|) (|:| |sol?| (-108))) (-522) |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3596 (((-3 (-588 |#2|) "failed") (-522) |#2| |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -3596 ((-3 (-588 |#2|) "failed") (-522) |#2| |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))) (-13 (-1106) (-27) (-405 |#1|))) (T -940))
+((-3596 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1085)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-588 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1856 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1106) (-27) (-405 *8))) (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3))) (-5 *3 (-522)) (-5 *2 (-588 *4)) (-5 *1 (-940 *8 *4)))))
+(-10 -7 (-15 -3596 ((-3 (-588 |#2|) "failed") (-522) |#2| |#2| |#2| (-1085) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-588 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-588 |#2|)) (-1 (-3 (-2 (|:| -1856 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1782 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3197 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-522)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-522) (-1 |#2| |#2|)) 30)) (-3284 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |c| (-382 |#2|)) (|:| -1639 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|)) 57)) (-3227 (((-2 (|:| |ans| (-382 |#2|)) (|:| |nosol| (-108))) (-382 |#2|) (-382 |#2|)) 62)))
+(((-941 |#1| |#2|) (-10 -7 (-15 -3284 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |c| (-382 |#2|)) (|:| -1639 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -3227 ((-2 (|:| |ans| (-382 |#2|)) (|:| |nosol| (-108))) (-382 |#2|) (-382 |#2|))) (-15 -1782 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3197 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-522)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-522) (-1 |#2| |#2|)))) (-13 (-338) (-135) (-962 (-522))) (-1142 |#1|)) (T -941))
+((-1782 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1142 *6)) (-4 *6 (-13 (-338) (-135) (-962 *4))) (-5 *4 (-522)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -3197 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-941 *6 *3)))) (-3227 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| |ans| (-382 *5)) (|:| |nosol| (-108)))) (-5 *1 (-941 *4 *5)) (-5 *3 (-382 *5)))) (-3284 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |c| (-382 *6)) (|:| -1639 *6))) (-5 *1 (-941 *5 *6)) (-5 *3 (-382 *6)))))
+(-10 -7 (-15 -3284 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |c| (-382 |#2|)) (|:| -1639 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -3227 ((-2 (|:| |ans| (-382 |#2|)) (|:| |nosol| (-108))) (-382 |#2|) (-382 |#2|))) (-15 -1782 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -3197 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-522)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-522) (-1 |#2| |#2|))))
+((-4072 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |h| |#2|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| -1639 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|)) 22)) (-2568 (((-3 (-588 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)) 32)))
+(((-942 |#1| |#2|) (-10 -7 (-15 -4072 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |h| |#2|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| -1639 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2568 ((-3 (-588 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|)))) (-13 (-338) (-135) (-962 (-522))) (-1142 |#1|)) (T -942))
+((-2568 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4)) (-5 *2 (-588 (-382 *5))) (-5 *1 (-942 *4 *5)) (-5 *3 (-382 *5)))) (-4072 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |h| *6) (|:| |c1| (-382 *6)) (|:| |c2| (-382 *6)) (|:| -1639 *6))) (-5 *1 (-942 *5 *6)) (-5 *3 (-382 *6)))))
+(-10 -7 (-15 -4072 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-382 |#2|)) (|:| |h| |#2|) (|:| |c1| (-382 |#2|)) (|:| |c2| (-382 |#2|)) (|:| -1639 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|) (-1 |#2| |#2|))) (-15 -2568 ((-3 (-588 (-382 |#2|)) "failed") (-382 |#2|) (-382 |#2|) (-382 |#2|))))
+((-4156 (((-1 |#1|) (-588 (-2 (|:| -3435 |#1|) (|:| -3152 (-522))))) 37)) (-3666 (((-1 |#1|) (-1016 |#1|)) 45)) (-2276 (((-1 |#1|) (-1166 |#1|) (-1166 (-522)) (-522)) 34)))
+(((-943 |#1|) (-10 -7 (-15 -3666 ((-1 |#1|) (-1016 |#1|))) (-15 -4156 ((-1 |#1|) (-588 (-2 (|:| -3435 |#1|) (|:| -3152 (-522)))))) (-15 -2276 ((-1 |#1|) (-1166 |#1|) (-1166 (-522)) (-522)))) (-1014)) (T -943))
+((-2276 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *6)) (-5 *4 (-1166 (-522))) (-5 *5 (-522)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-943 *6)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -3435 *4) (|:| -3152 (-522))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-943 *4)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-1016 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-943 *4)))))
+(-10 -7 (-15 -3666 ((-1 |#1|) (-1016 |#1|))) (-15 -4156 ((-1 |#1|) (-588 (-2 (|:| -3435 |#1|) (|:| -3152 (-522)))))) (-15 -2276 ((-1 |#1|) (-1166 |#1|) (-1166 (-522)) (-522))))
+((-3714 (((-708) (-311 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-944 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3714 ((-708) (-311 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-338) (-1142 |#1|) (-1142 (-382 |#2|)) (-317 |#1| |#2| |#3|) (-13 (-343) (-338))) (T -944))
+((-3714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-338)) (-4 *7 (-1142 *6)) (-4 *4 (-1142 (-382 *7))) (-4 *8 (-317 *6 *7 *4)) (-4 *9 (-13 (-343) (-338))) (-5 *2 (-708)) (-5 *1 (-944 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3714 ((-708) (-311 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-1499 (((-3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) "failed") |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) 31) (((-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522))) 28)) (-3699 (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522))) 33) (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-382 (-522))) 29) (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) 32) (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1|) 27)) (-2685 (((-588 (-382 (-522))) (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) 19)) (-3094 (((-382 (-522)) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) 16)))
+(((-945 |#1|) (-10 -7 (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1|)) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) "failed") |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -3094 ((-382 (-522)) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -2685 ((-588 (-382 (-522))) (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))))) (-1142 (-522))) (T -945))
+((-2685 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *2 (-588 (-382 (-522)))) (-5 *1 (-945 *4)) (-4 *4 (-1142 (-522))))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) (-5 *2 (-382 (-522))) (-5 *1 (-945 *4)) (-4 *4 (-1142 (-522))))) (-1499 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) (-1499 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) (-5 *4 (-382 (-522))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))) (-3699 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-382 (-522))) (-5 *2 (-588 (-2 (|:| -1913 *5) (|:| -1924 *5)))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-2 (|:| -1913 *5) (|:| -1924 *5))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-382 (-522))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))))))
+(-10 -7 (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1|)) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) "failed") |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -3094 ((-382 (-522)) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -2685 ((-588 (-382 (-522))) (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))))
+((-1499 (((-3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) "failed") |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) 35) (((-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522))) 32)) (-3699 (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522))) 30) (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-382 (-522))) 26) (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) 28) (((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1|) 24)))
+(((-946 |#1|) (-10 -7 (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1|)) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) "failed") |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))) (-1142 (-382 (-522)))) (T -946))
+((-1499 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))))) (-1499 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) (-5 *4 (-382 (-522))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *4)))) (-3699 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-382 (-522))) (-5 *2 (-588 (-2 (|:| -1913 *5) (|:| -1924 *5)))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *5)) (-5 *4 (-2 (|:| -1913 *5) (|:| -1924 *5))))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-382 (-522))) (-5 *2 (-588 (-2 (|:| -1913 *4) (|:| -1924 *4)))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *4)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *2 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))) (-5 *4 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522)))))))
+(-10 -7 (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1|)) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-382 (-522)))) (-15 -3699 ((-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-382 (-522)))) (-15 -1499 ((-3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) "failed") |#1| (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))) (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))))
+((-1431 (((-202) $) 6) (((-354) $) 9)))
+(((-947) (-1197)) (T -947))
+NIL
+(-13 (-563 (-202)) (-563 (-354)))
+(((-563 (-202)) . T) ((-563 (-354)) . T))
+((-3426 (((-588 (-354)) (-881 (-522)) (-354)) 27) (((-588 (-354)) (-881 (-382 (-522))) (-354)) 26)) (-3866 (((-588 (-588 (-354))) (-588 (-881 (-522))) (-588 (-1085)) (-354)) 36)))
+(((-948) (-10 -7 (-15 -3426 ((-588 (-354)) (-881 (-382 (-522))) (-354))) (-15 -3426 ((-588 (-354)) (-881 (-522)) (-354))) (-15 -3866 ((-588 (-588 (-354))) (-588 (-881 (-522))) (-588 (-1085)) (-354))))) (T -948))
+((-3866 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 (-354)))) (-5 *1 (-948)) (-5 *5 (-354)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 (-354))) (-5 *1 (-948)) (-5 *4 (-354)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 (-354))) (-5 *1 (-948)) (-5 *4 (-354)))))
+(-10 -7 (-15 -3426 ((-588 (-354)) (-881 (-382 (-522))) (-354))) (-15 -3426 ((-588 (-354)) (-881 (-522)) (-354))) (-15 -3866 ((-588 (-588 (-354))) (-588 (-881 (-522))) (-588 (-1085)) (-354))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 70)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1929 (($ $) NIL) (($ $ (-708)) NIL) (($ (-382 (-522))) NIL) (($ (-522)) NIL)) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) 65)) (-3175 (($) NIL T CONST)) (-3944 (((-3 $ "failed") (-1081 $) (-850) (-792)) NIL) (((-3 $ "failed") (-1081 $) (-850)) 49)) (-1297 (((-3 (-382 (-522)) "failed") $) NIL (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-522) "failed") $) NIL (-3708 (|has| (-382 (-522)) (-962 (-522))) (|has| |#1| (-962 (-522)))))) (-1484 (((-382 (-522)) $) 14 (|has| (-382 (-522)) (-962 (-382 (-522))))) (((-382 (-522)) $) 14) ((|#1| $) 109) (((-522) $) NIL (-3708 (|has| (-382 (-522)) (-962 (-522))) (|has| |#1| (-962 (-522)))))) (-2691 (($ $ (-792)) 40)) (-2356 (($ $ (-792)) 41)) (-2277 (($ $ $) NIL)) (-3971 (((-382 (-522)) $ $) 18)) (-2682 (((-3 $ "failed") $) 83)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-3687 (((-108) $) 60)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL)) (-2556 (((-108) $) 63)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3634 (((-3 (-1081 $) "failed") $) 78)) (-2624 (((-3 (-792) "failed") $) 77)) (-1290 (((-3 (-1081 $) "failed") $) 75)) (-1561 (((-3 (-981 $ (-1081 $)) "failed") $) 73)) (-2224 (($ (-588 $)) NIL) (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 84)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ (-588 $)) NIL) (($ $ $) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2190 (((-792) $) 82) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ $) 57) (($ (-382 (-522))) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ |#1|) 111)) (-2323 (((-708)) NIL)) (-3958 (((-108) $ $) NIL)) (-3898 (((-382 (-522)) $ $) 24)) (-2479 (((-588 $) (-1081 $)) 55) (((-588 $) (-1081 (-382 (-522)))) NIL) (((-588 $) (-1081 (-522))) NIL) (((-588 $) (-881 $)) NIL) (((-588 $) (-881 (-382 (-522)))) NIL) (((-588 $) (-881 (-522))) NIL)) (-4060 (($ (-981 $ (-1081 $)) (-792)) 39)) (-2241 (($ $) 19)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL)) (-3566 (($) 28 T CONST)) (-3577 (($) 34 T CONST)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 71)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 21)) (-1620 (($ $ $) 32)) (-1612 (($ $) 33) (($ $ $) 69)) (-1602 (($ $ $) 104)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL) (($ $ (-382 (-522))) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 92) (($ $ $) 97) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ (-522) $) 92) (($ $ (-522)) NIL) (($ (-382 (-522)) $) NIL) (($ $ (-382 (-522))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
+(((-949 |#1|) (-13 (-938) (-386 |#1|) (-37 |#1|) (-10 -8 (-15 -4060 ($ (-981 $ (-1081 $)) (-792))) (-15 -1561 ((-3 (-981 $ (-1081 $)) "failed") $)) (-15 -3971 ((-382 (-522)) $ $)))) (-13 (-782) (-338) (-947))) (T -949))
+((-4060 (*1 *1 *2 *3) (-12 (-5 *2 (-981 (-949 *4) (-1081 (-949 *4)))) (-5 *3 (-792)) (-5 *1 (-949 *4)) (-4 *4 (-13 (-782) (-338) (-947))))) (-1561 (*1 *2 *1) (|partial| -12 (-5 *2 (-981 (-949 *3) (-1081 (-949 *3)))) (-5 *1 (-949 *3)) (-4 *3 (-13 (-782) (-338) (-947))))) (-3971 (*1 *2 *1 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-949 *3)) (-4 *3 (-13 (-782) (-338) (-947))))))
+(-13 (-938) (-386 |#1|) (-37 |#1|) (-10 -8 (-15 -4060 ($ (-981 $ (-1081 $)) (-792))) (-15 -1561 ((-3 (-981 $ (-1081 $)) "failed") $)) (-15 -3971 ((-382 (-522)) $ $))))
+((-2760 (((-2 (|:| -3197 |#2|) (|:| -1420 (-588 |#1|))) |#2| (-588 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-950 |#1| |#2|) (-10 -7 (-15 -2760 (|#2| |#2| |#1|)) (-15 -2760 ((-2 (|:| -3197 |#2|) (|:| -1420 (-588 |#1|))) |#2| (-588 |#1|)))) (-338) (-598 |#1|)) (T -950))
+((-2760 (*1 *2 *3 *4) (-12 (-4 *5 (-338)) (-5 *2 (-2 (|:| -3197 *3) (|:| -1420 (-588 *5)))) (-5 *1 (-950 *5 *3)) (-5 *4 (-588 *5)) (-4 *3 (-598 *5)))) (-2760 (*1 *2 *2 *3) (-12 (-4 *3 (-338)) (-5 *1 (-950 *3 *2)) (-4 *2 (-598 *3)))))
+(-10 -7 (-15 -2760 (|#2| |#2| |#1|)) (-15 -2760 ((-2 (|:| -3197 |#2|) (|:| -1420 (-588 |#1|))) |#2| (-588 |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-2642 ((|#1| $ |#1|) 14)) (-2379 ((|#1| $ |#1|) 12)) (-1377 (($ |#1|) 10)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2545 ((|#1| $) 11)) (-3257 ((|#1| $) 13)) (-2190 (((-792) $) 21 (|has| |#1| (-1014)))) (-1531 (((-108) $ $) 9)))
+(((-951 |#1|) (-13 (-1120) (-10 -8 (-15 -1377 ($ |#1|)) (-15 -2545 (|#1| $)) (-15 -2379 (|#1| $ |#1|)) (-15 -3257 (|#1| $)) (-15 -2642 (|#1| $ |#1|)) (-15 -1531 ((-108) $ $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1120)) (T -951))
+((-1377 (*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-2545 (*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-2379 (*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-3257 (*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-2642 (*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))) (-1531 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-951 *3)) (-4 *3 (-1120)))))
+(-13 (-1120) (-10 -8 (-15 -1377 ($ |#1|)) (-15 -2545 (|#1| $)) (-15 -2379 (|#1| $ |#1|)) (-15 -3257 (|#1| $)) (-15 -2642 (|#1| $ |#1|)) (-15 -1531 ((-108) $ $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) NIL)) (-4125 (((-588 $) (-588 |#4|)) 105) (((-588 $) (-588 |#4|) (-108)) 106) (((-588 $) (-588 |#4|) (-108) (-108)) 104) (((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108)) 107)) (-4090 (((-588 |#3|) $) NIL)) (-2690 (((-108) $) NIL)) (-4140 (((-108) $) NIL (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3607 ((|#4| |#4| $) NIL)) (-3119 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| $) 99)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 54)) (-3175 (($) NIL T CONST)) (-3639 (((-108) $) 26 (|has| |#1| (-514)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3538 (((-108) $) NIL (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3050 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1484 (($ (-588 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 39)) (-2806 ((|#4| |#4| $) 57)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) NIL)) (-2208 (((-108) |#4| $) NIL)) (-3129 (((-108) |#4| $) NIL)) (-2198 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2352 (((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108)) 119)) (-3837 (((-588 |#4|) $) 16 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1521 ((|#3| $) 33)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#4|) $) 17 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-3838 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 21)) (-2458 (((-588 |#3|) $) NIL)) (-1606 (((-108) |#3| $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-3959 (((-3 |#4| (-588 $)) |#4| |#4| $) NIL)) (-1331 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| |#4| $) 97)) (-1442 (((-3 |#4| "failed") $) 37)) (-2893 (((-588 $) |#4| $) 80)) (-4190 (((-3 (-108) (-588 $)) |#4| $) NIL)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-2416 (((-588 $) |#4| $) 102) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 103) (((-588 $) |#4| (-588 $)) NIL)) (-1610 (((-588 $) (-588 |#4|) (-108) (-108) (-108)) 114)) (-2135 (($ |#4| $) 70) (($ (-588 |#4|) $) 71) (((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2242 (((-588 |#4|) $) NIL)) (-3409 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1451 ((|#4| |#4| $) NIL)) (-2123 (((-108) $ $) NIL)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2680 ((|#4| |#4| $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-3 |#4| "failed") $) 35)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3307 (((-3 $ "failed") $ |#4|) 48)) (-3719 (($ $ |#4|) NIL) (((-588 $) |#4| $) 82) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 77)) (-3053 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 15)) (-3775 (($) 13)) (-2793 (((-708) $) NIL)) (-4168 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) 12)) (-1431 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 20)) (-2020 (($ $ |#3|) 42)) (-3606 (($ $ |#3|) 44)) (-3968 (($ $) NIL)) (-2463 (($ $ |#3|) NIL)) (-2190 (((-792) $) 31) (((-588 |#4|) $) 40)) (-1974 (((-708) $) NIL (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-2188 (((-588 $) |#4| $) 79) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) NIL)) (-3648 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) NIL)) (-3021 (((-108) |#4| $) NIL)) (-2351 (((-108) |#3| $) 53)) (-1531 (((-108) $ $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-952 |#1| |#2| |#3| |#4|) (-13 (-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2135 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -1610 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -2352 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108))))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -952))
+((-2135 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *3))) (-5 *1 (-952 *5 *6 *7 *3)) (-4 *3 (-985 *5 *6 *7)))) (-4125 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) (-4125 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) (-1610 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8)))) (-2352 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-588 *8)) (|:| |towers| (-588 (-952 *5 *6 *7 *8))))) (-5 *1 (-952 *5 *6 *7 *8)) (-5 *3 (-588 *8)))))
+(-13 (-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2135 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -1610 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -2352 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108)))))
+((-3185 (((-588 (-628 |#1|)) (-588 (-628 |#1|))) 57) (((-628 |#1|) (-628 |#1|)) 56) (((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-588 (-628 |#1|))) 55) (((-628 |#1|) (-628 |#1|) (-628 |#1|)) 52)) (-3090 (((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850)) 51) (((-628 |#1|) (-628 |#1|) (-850)) 50)) (-3306 (((-588 (-628 (-522))) (-588 (-588 (-522)))) 67) (((-588 (-628 (-522))) (-588 (-834 (-522))) (-522)) 66) (((-628 (-522)) (-588 (-522))) 63) (((-628 (-522)) (-834 (-522)) (-522)) 62)) (-4192 (((-628 (-881 |#1|)) (-708)) 80)) (-3446 (((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850)) 36 (|has| |#1| (-6 (-4240 "*")))) (((-628 |#1|) (-628 |#1|) (-850)) 34 (|has| |#1| (-6 (-4240 "*"))))))
+(((-953 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3446 ((-628 |#1|) (-628 |#1|) (-850))) |%noBranch|) (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3446 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) |%noBranch|) (-15 -4192 ((-628 (-881 |#1|)) (-708))) (-15 -3090 ((-628 |#1|) (-628 |#1|) (-850))) (-15 -3090 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) (-15 -3185 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3185 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3185 ((-628 |#1|) (-628 |#1|))) (-15 -3185 ((-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3306 ((-628 (-522)) (-834 (-522)) (-522))) (-15 -3306 ((-628 (-522)) (-588 (-522)))) (-15 -3306 ((-588 (-628 (-522))) (-588 (-834 (-522))) (-522))) (-15 -3306 ((-588 (-628 (-522))) (-588 (-588 (-522)))))) (-971)) (T -953))
+((-3306 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-522)))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-953 *4)) (-4 *4 (-971)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-834 (-522)))) (-5 *4 (-522)) (-5 *2 (-588 (-628 *4))) (-5 *1 (-953 *5)) (-4 *5 (-971)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-953 *4)) (-4 *4 (-971)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-834 (-522))) (-5 *4 (-522)) (-5 *2 (-628 *4)) (-5 *1 (-953 *5)) (-4 *5 (-971)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-3185 (*1 *2 *2 *2) (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-3185 (*1 *2 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3)))) (-3090 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) (-4 *4 (-971)) (-5 *1 (-953 *4)))) (-3090 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (-4 *4 (-971)) (-5 *1 (-953 *4)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-628 (-881 *4))) (-5 *1 (-953 *4)) (-4 *4 (-971)))) (-3446 (*1 *2 *2 *3) (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) (|has| *4 (-6 (-4240 "*"))) (-4 *4 (-971)) (-5 *1 (-953 *4)))) (-3446 (*1 *2 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (|has| *4 (-6 (-4240 "*"))) (-4 *4 (-971)) (-5 *1 (-953 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3446 ((-628 |#1|) (-628 |#1|) (-850))) |%noBranch|) (IF (|has| |#1| (-6 (-4240 "*"))) (-15 -3446 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) |%noBranch|) (-15 -4192 ((-628 (-881 |#1|)) (-708))) (-15 -3090 ((-628 |#1|) (-628 |#1|) (-850))) (-15 -3090 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-850))) (-15 -3185 ((-628 |#1|) (-628 |#1|) (-628 |#1|))) (-15 -3185 ((-588 (-628 |#1|)) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3185 ((-628 |#1|) (-628 |#1|))) (-15 -3185 ((-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3306 ((-628 (-522)) (-834 (-522)) (-522))) (-15 -3306 ((-628 (-522)) (-588 (-522)))) (-15 -3306 ((-588 (-628 (-522))) (-588 (-834 (-522))) (-522))) (-15 -3306 ((-588 (-628 (-522))) (-588 (-588 (-522))))))
+((-3246 (((-628 |#1|) (-588 (-628 |#1|)) (-1166 |#1|)) 50 (|has| |#1| (-283)))) (-2724 (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 (-1166 |#1|))) 73 (|has| |#1| (-338))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 |#1|)) 71 (|has| |#1| (-338)))) (-1985 (((-1166 |#1|) (-588 (-1166 |#1|)) (-522)) 75 (-12 (|has| |#1| (-338)) (|has| |#1| (-343))))) (-3907 (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-850)) 80 (-12 (|has| |#1| (-338)) (|has| |#1| (-343)))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108)) 78 (-12 (|has| |#1| (-338)) (|has| |#1| (-343)))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|))) 77 (-12 (|has| |#1| (-338)) (|has| |#1| (-343)))) (((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108) (-522) (-522)) 76 (-12 (|has| |#1| (-338)) (|has| |#1| (-343))))) (-2723 (((-108) (-588 (-628 |#1|))) 69 (|has| |#1| (-338))) (((-108) (-588 (-628 |#1|)) (-522)) 68 (|has| |#1| (-338)))) (-2835 (((-1166 (-1166 |#1|)) (-588 (-628 |#1|)) (-1166 |#1|)) 48 (|has| |#1| (-283)))) (-3270 (((-628 |#1|) (-588 (-628 |#1|)) (-628 |#1|)) 33)) (-3937 (((-628 |#1|) (-1166 (-1166 |#1|))) 30)) (-2777 (((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-522)) 64 (|has| |#1| (-338))) (((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|))) 63 (|has| |#1| (-338))) (((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-108) (-522)) 62 (|has| |#1| (-338)))))
+(((-954 |#1|) (-10 -7 (-15 -3937 ((-628 |#1|) (-1166 (-1166 |#1|)))) (-15 -3270 ((-628 |#1|) (-588 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-283)) (PROGN (-15 -2835 ((-1166 (-1166 |#1|)) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -3246 ((-628 |#1|) (-588 (-628 |#1|)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2777 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-108) (-522))) (-15 -2777 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -2777 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-522))) (-15 -2723 ((-108) (-588 (-628 |#1|)) (-522))) (-15 -2723 ((-108) (-588 (-628 |#1|)))) (-15 -2724 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -2724 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 (-1166 |#1|))))) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#1| (-338)) (PROGN (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108) (-522) (-522))) (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)))) (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108))) (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-850))) (-15 -1985 ((-1166 |#1|) (-588 (-1166 |#1|)) (-522)))) |%noBranch|) |%noBranch|)) (-971)) (T -954))
+((-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1166 *5))) (-5 *4 (-522)) (-5 *2 (-1166 *5)) (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-338)) (-4 *4 (-343)) (-4 *4 (-971)) (-5 *2 (-588 (-588 (-628 *4)))) (-5 *1 (-954 *4)) (-5 *3 (-588 (-628 *4))))) (-3907 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-522)) (-4 *6 (-338)) (-4 *6 (-343)) (-4 *6 (-971)) (-5 *2 (-588 (-588 (-628 *6)))) (-5 *1 (-954 *6)) (-5 *3 (-588 (-628 *6))))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1166 (-1166 *5))) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5)) (-5 *3 (-588 (-628 *5))))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) (-4 *4 (-971)) (-5 *2 (-108)) (-5 *1 (-954 *4)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-4 *5 (-338)) (-4 *5 (-971)) (-5 *2 (-108)) (-5 *1 (-954 *5)))) (-2777 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-5 *2 (-628 *5)) (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-971)))) (-2777 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-5 *1 (-954 *4)) (-4 *4 (-338)) (-4 *4 (-971)))) (-2777 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-588 (-628 *6))) (-5 *4 (-108)) (-5 *5 (-522)) (-5 *2 (-628 *6)) (-5 *1 (-954 *6)) (-4 *6 (-338)) (-4 *6 (-971)))) (-3246 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-1166 *5)) (-4 *5 (-283)) (-4 *5 (-971)) (-5 *2 (-628 *5)) (-5 *1 (-954 *5)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-628 *5))) (-4 *5 (-283)) (-4 *5 (-971)) (-5 *2 (-1166 (-1166 *5))) (-5 *1 (-954 *5)) (-5 *4 (-1166 *5)))) (-3270 (*1 *2 *3 *2) (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-4 *4 (-971)) (-5 *1 (-954 *4)))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-4 *4 (-971)) (-5 *2 (-628 *4)) (-5 *1 (-954 *4)))))
+(-10 -7 (-15 -3937 ((-628 |#1|) (-1166 (-1166 |#1|)))) (-15 -3270 ((-628 |#1|) (-588 (-628 |#1|)) (-628 |#1|))) (IF (|has| |#1| (-283)) (PROGN (-15 -2835 ((-1166 (-1166 |#1|)) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -3246 ((-628 |#1|) (-588 (-628 |#1|)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2777 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-108) (-522))) (-15 -2777 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -2777 ((-628 |#1|) (-588 (-628 |#1|)) (-588 (-628 |#1|)) (-522))) (-15 -2723 ((-108) (-588 (-628 |#1|)) (-522))) (-15 -2723 ((-108) (-588 (-628 |#1|)))) (-15 -2724 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 |#1|))) (-15 -2724 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-1166 (-1166 |#1|))))) |%noBranch|) (IF (|has| |#1| (-343)) (IF (|has| |#1| (-338)) (PROGN (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108) (-522) (-522))) (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)))) (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-108))) (-15 -3907 ((-588 (-588 (-628 |#1|))) (-588 (-628 |#1|)) (-850))) (-15 -1985 ((-1166 |#1|) (-588 (-1166 |#1|)) (-522)))) |%noBranch|) |%noBranch|))
+((-3369 ((|#1| (-850) |#1|) 9)))
+(((-955 |#1|) (-10 -7 (-15 -3369 (|#1| (-850) |#1|))) (-13 (-1014) (-10 -8 (-15 -1602 ($ $ $))))) (T -955))
+((-3369 (*1 *2 *3 *2) (-12 (-5 *3 (-850)) (-5 *1 (-955 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -1602 ($ $ $))))))))
+(-10 -7 (-15 -3369 (|#1| (-850) |#1|)))
+((-2373 (((-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522))))))) (-628 (-382 (-881 (-522))))) 58)) (-3226 (((-588 (-628 (-291 (-522)))) (-291 (-522)) (-628 (-382 (-881 (-522))))) 48)) (-2754 (((-588 (-291 (-522))) (-628 (-382 (-881 (-522))))) 41)) (-1592 (((-588 (-628 (-291 (-522)))) (-628 (-382 (-881 (-522))))) 68)) (-1478 (((-628 (-291 (-522))) (-628 (-291 (-522)))) 33)) (-3126 (((-588 (-628 (-291 (-522)))) (-588 (-628 (-291 (-522))))) 61)) (-1970 (((-3 (-628 (-291 (-522))) "failed") (-628 (-382 (-881 (-522))))) 65)))
+(((-956) (-10 -7 (-15 -2373 ((-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522))))))) (-628 (-382 (-881 (-522)))))) (-15 -3226 ((-588 (-628 (-291 (-522)))) (-291 (-522)) (-628 (-382 (-881 (-522)))))) (-15 -2754 ((-588 (-291 (-522))) (-628 (-382 (-881 (-522)))))) (-15 -1970 ((-3 (-628 (-291 (-522))) "failed") (-628 (-382 (-881 (-522)))))) (-15 -1478 ((-628 (-291 (-522))) (-628 (-291 (-522))))) (-15 -3126 ((-588 (-628 (-291 (-522)))) (-588 (-628 (-291 (-522)))))) (-15 -1592 ((-588 (-628 (-291 (-522)))) (-628 (-382 (-881 (-522)))))))) (T -956))
+((-1592 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956)))) (-1970 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-291 (-522)))) (-5 *1 (-956)))) (-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)) (-5 *3 (-291 (-522))))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522)))))))) (-5 *1 (-956)))))
+(-10 -7 (-15 -2373 ((-588 (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522)) (|:| |radvect| (-588 (-628 (-291 (-522))))))) (-628 (-382 (-881 (-522)))))) (-15 -3226 ((-588 (-628 (-291 (-522)))) (-291 (-522)) (-628 (-382 (-881 (-522)))))) (-15 -2754 ((-588 (-291 (-522))) (-628 (-382 (-881 (-522)))))) (-15 -1970 ((-3 (-628 (-291 (-522))) "failed") (-628 (-382 (-881 (-522)))))) (-15 -1478 ((-628 (-291 (-522))) (-628 (-291 (-522))))) (-15 -3126 ((-588 (-628 (-291 (-522)))) (-588 (-628 (-291 (-522)))))) (-15 -1592 ((-588 (-628 (-291 (-522)))) (-628 (-382 (-881 (-522)))))))
+((-2522 ((|#1| |#1| (-850)) 9)))
+(((-957 |#1|) (-10 -7 (-15 -2522 (|#1| |#1| (-850)))) (-13 (-1014) (-10 -8 (-15 * ($ $ $))))) (T -957))
+((-2522 (*1 *2 *2 *3) (-12 (-5 *3 (-850)) (-5 *1 (-957 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2522 (|#1| |#1| (-850))))
+((-2190 ((|#1| (-287)) 11) (((-1171) |#1|) 9)))
+(((-958 |#1|) (-10 -7 (-15 -2190 ((-1171) |#1|)) (-15 -2190 (|#1| (-287)))) (-1120)) (T -958))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-287)) (-5 *1 (-958 *2)) (-4 *2 (-1120)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *1 (-958 *3)) (-4 *3 (-1120)))))
+(-10 -7 (-15 -2190 ((-1171) |#1|)) (-15 -2190 (|#1| (-287))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-3864 (($ |#4|) 25)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-3849 ((|#4| $) 27)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 46) (($ (-522)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2323 (((-708)) 43)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 21 T CONST)) (-3577 (($) 23 T CONST)) (-1531 (((-108) $ $) 40)) (-1612 (($ $) 31) (($ $ $) NIL)) (-1602 (($ $ $) 29)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-13 (-157) (-37 |#1|) (-10 -8 (-15 -3864 ($ |#4|)) (-15 -2190 ($ |#4|)) (-15 -3849 (|#4| $)))) (-338) (-730) (-784) (-878 |#1| |#2| |#3|) (-588 |#4|)) (T -959))
+((-3864 (*1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) (-14 *6 (-588 *2)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5)) (-14 *6 (-588 *2)))) (-3849 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-14 *6 (-588 *2)))))
+(-13 (-157) (-37 |#1|) (-10 -8 (-15 -3864 ($ |#4|)) (-15 -2190 ($ |#4|)) (-15 -3849 (|#4| $))))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-2679 (((-1171) $ (-1085) (-1085)) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2746 (((-108) (-108)) 39)) (-3335 (((-108) (-108)) 38)) (-2379 (((-51) $ (-1085) (-51)) NIL)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 (-51) "failed") (-1085) $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-3859 (($ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-3 (-51) "failed") (-1085) $) NIL)) (-1423 (($ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3854 (((-51) $ (-1085) (-51)) NIL (|has| $ (-6 -4239)))) (-3631 (((-51) $ (-1085)) NIL)) (-3837 (((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-1085) $) NIL (|has| (-1085) (-784)))) (-3308 (((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-2014 (((-1085) $) NIL (|has| (-1085) (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-2966 (((-588 (-1085)) $) 34)) (-1231 (((-108) (-1085) $) NIL)) (-2116 (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL)) (-4095 (($ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL)) (-3604 (((-588 (-1085)) $) NIL)) (-1405 (((-108) (-1085) $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-2294 (((-51) $) NIL (|has| (-1085) (-784)))) (-1414 (((-3 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) "failed") (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL)) (-2602 (($ $ (-51)) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-270 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-588 (-51)) (-588 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-270 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-588 (-270 (-51)))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-1525 (((-588 (-51)) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 (((-51) $ (-1085)) 35) (((-51) $ (-1085) (-51)) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (((-708) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014)))) (((-708) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-2190 (((-792) $) 37 (-3708 (|has| (-51) (-562 (-792))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-960) (-13 (-1097 (-1085) (-51)) (-10 -7 (-15 -2746 ((-108) (-108))) (-15 -3335 ((-108) (-108))) (-6 -4238)))) (T -960))
+((-2746 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960)))) (-3335 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960)))))
+(-13 (-1097 (-1085) (-51)) (-10 -7 (-15 -2746 ((-108) (-108))) (-15 -3335 ((-108) (-108))) (-6 -4238)))
+((-1484 ((|#2| $) 10)))
+(((-961 |#1| |#2|) (-10 -8 (-15 -1484 (|#2| |#1|))) (-962 |#2|) (-1120)) (T -961))
+NIL
+(-10 -8 (-15 -1484 (|#2| |#1|)))
+((-1297 (((-3 |#1| "failed") $) 7)) (-1484 ((|#1| $) 8)) (-2190 (($ |#1|) 6)))
+(((-962 |#1|) (-1197) (-1120)) (T -962))
+((-1484 (*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) (-1297 (*1 *2 *1) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))) (-2190 (*1 *1 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120)))))
+(-13 (-10 -8 (-15 -2190 ($ |t#1|)) (-15 -1297 ((-3 |t#1| "failed") $)) (-15 -1484 (|t#1| $))))
+((-2465 (((-588 (-588 (-270 (-382 (-881 |#2|))))) (-588 (-881 |#2|)) (-588 (-1085))) 35)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -2465 ((-588 (-588 (-270 (-382 (-881 |#2|))))) (-588 (-881 |#2|)) (-588 (-1085))))) (-514) (-13 (-514) (-962 |#1|))) (T -963))
+((-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-4 *6 (-13 (-514) (-962 *5))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *6)))))) (-5 *1 (-963 *5 *6)))))
+(-10 -7 (-15 -2465 ((-588 (-588 (-270 (-382 (-881 |#2|))))) (-588 (-881 |#2|)) (-588 (-1085)))))
+((-2566 (((-354)) 15)) (-3666 (((-1 (-354)) (-354) (-354)) 20)) (-1639 (((-1 (-354)) (-708)) 43)) (-2330 (((-354)) 34)) (-3663 (((-1 (-354)) (-354) (-354)) 35)) (-4110 (((-354)) 26)) (-2453 (((-1 (-354)) (-354)) 27)) (-3451 (((-354) (-708)) 38)) (-2764 (((-1 (-354)) (-708)) 39)) (-4055 (((-1 (-354)) (-708) (-708)) 42)) (-2627 (((-1 (-354)) (-708) (-708)) 40)))
+(((-964) (-10 -7 (-15 -2566 ((-354))) (-15 -2330 ((-354))) (-15 -4110 ((-354))) (-15 -3451 ((-354) (-708))) (-15 -3666 ((-1 (-354)) (-354) (-354))) (-15 -3663 ((-1 (-354)) (-354) (-354))) (-15 -2453 ((-1 (-354)) (-354))) (-15 -2764 ((-1 (-354)) (-708))) (-15 -2627 ((-1 (-354)) (-708) (-708))) (-15 -4055 ((-1 (-354)) (-708) (-708))) (-15 -1639 ((-1 (-354)) (-708))))) (T -964))
+((-1639 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-4055 (*1 *2 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-2627 (*1 *2 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))) (-2453 (*1 *2 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) (-3663 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) (-3666 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-354)) (-5 *1 (-964)))) (-4110 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))) (-2330 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))) (-2566 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))))
+(-10 -7 (-15 -2566 ((-354))) (-15 -2330 ((-354))) (-15 -4110 ((-354))) (-15 -3451 ((-354) (-708))) (-15 -3666 ((-1 (-354)) (-354) (-354))) (-15 -3663 ((-1 (-354)) (-354) (-354))) (-15 -2453 ((-1 (-354)) (-354))) (-15 -2764 ((-1 (-354)) (-708))) (-15 -2627 ((-1 (-354)) (-708) (-708))) (-15 -4055 ((-1 (-354)) (-708) (-708))) (-15 -1639 ((-1 (-354)) (-708))))
+((-1916 (((-393 |#1|) |#1|) 31)))
+(((-965 |#1|) (-10 -7 (-15 -1916 ((-393 |#1|) |#1|))) (-1142 (-382 (-881 (-522))))) (T -965))
+((-1916 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-965 *3)) (-4 *3 (-1142 (-382 (-881 (-522))))))))
+(-10 -7 (-15 -1916 ((-393 |#1|) |#1|)))
+((-1211 (((-382 (-393 (-881 |#1|))) (-382 (-881 |#1|))) 14)))
+(((-966 |#1|) (-10 -7 (-15 -1211 ((-382 (-393 (-881 |#1|))) (-382 (-881 |#1|))))) (-283)) (T -966))
+((-1211 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-283)) (-5 *2 (-382 (-393 (-881 *4)))) (-5 *1 (-966 *4)))))
+(-10 -7 (-15 -1211 ((-382 (-393 (-881 |#1|))) (-382 (-881 |#1|)))))
+((-4090 (((-588 (-1085)) (-382 (-881 |#1|))) 15)) (-1282 (((-382 (-1081 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085)) 22)) (-4073 (((-382 (-881 |#1|)) (-382 (-1081 (-382 (-881 |#1|)))) (-1085)) 24)) (-3145 (((-3 (-1085) "failed") (-382 (-881 |#1|))) 18)) (-2289 (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-270 (-382 (-881 |#1|))))) 29) (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|)))) 31) (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-1085)) (-588 (-382 (-881 |#1|)))) 26) (((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|))) 27)) (-2190 (((-382 (-881 |#1|)) |#1|) 11)))
+(((-967 |#1|) (-10 -7 (-15 -4090 ((-588 (-1085)) (-382 (-881 |#1|)))) (-15 -3145 ((-3 (-1085) "failed") (-382 (-881 |#1|)))) (-15 -1282 ((-382 (-1081 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -4073 ((-382 (-881 |#1|)) (-382 (-1081 (-382 (-881 |#1|)))) (-1085))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-1085)) (-588 (-382 (-881 |#1|))))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2190 ((-382 (-881 |#1|)) |#1|))) (-514)) (T -967))
+((-2190 (*1 *2 *3) (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-967 *3)) (-4 *3 (-514)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) (-5 *2 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *1 (-967 *4)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *3 (-270 (-382 (-881 *4)))) (-5 *2 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *1 (-967 *4)))) (-2289 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-588 (-1085))) (-5 *4 (-588 (-382 (-881 *5)))) (-5 *2 (-382 (-881 *5))) (-4 *5 (-514)) (-5 *1 (-967 *5)))) (-2289 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) (-4 *4 (-514)) (-5 *1 (-967 *4)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-1081 (-382 (-881 *5))))) (-5 *4 (-1085)) (-5 *2 (-382 (-881 *5))) (-5 *1 (-967 *5)) (-4 *5 (-514)))) (-1282 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-514)) (-5 *2 (-382 (-1081 (-382 (-881 *5))))) (-5 *1 (-967 *5)) (-5 *3 (-382 (-881 *5))))) (-3145 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-1085)) (-5 *1 (-967 *4)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-1085))) (-5 *1 (-967 *4)))))
+(-10 -7 (-15 -4090 ((-588 (-1085)) (-382 (-881 |#1|)))) (-15 -3145 ((-3 (-1085) "failed") (-382 (-881 |#1|)))) (-15 -1282 ((-382 (-1081 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -4073 ((-382 (-881 |#1|)) (-382 (-1081 (-382 (-881 |#1|)))) (-1085))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-1085)) (-588 (-382 (-881 |#1|))))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-270 (-382 (-881 |#1|))))) (-15 -2289 ((-382 (-881 |#1|)) (-382 (-881 |#1|)) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2190 ((-382 (-881 |#1|)) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 (-717 |#1| (-794 |#2|)))))) (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-4125 (((-588 $) (-588 (-717 |#1| (-794 |#2|)))) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108)) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108) (-108)) NIL)) (-4090 (((-588 (-794 |#2|)) $) NIL)) (-2690 (((-108) $) NIL)) (-4140 (((-108) $) NIL (|has| |#1| (-514)))) (-3575 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-3607 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-3119 (((-588 (-2 (|:| |val| (-717 |#1| (-794 |#2|))) (|:| -1886 $))) (-717 |#1| (-794 |#2|)) $) NIL)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ (-794 |#2|)) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1628 (($ (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 (-717 |#1| (-794 |#2|)) "failed") $ (-794 |#2|)) NIL)) (-3175 (($) NIL T CONST)) (-3639 (((-108) $) NIL (|has| |#1| (-514)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3538 (((-108) $) NIL (|has| |#1| (-514)))) (-2149 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))) $ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-3050 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| |#1| (-514)))) (-1787 (((-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-1484 (($ (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-2306 (((-3 $ "failed") $) NIL)) (-2806 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014))))) (-1423 (($ (-717 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-717 |#1| (-794 |#2|))) (|:| |den| |#1|)) (-717 |#1| (-794 |#2|)) $) NIL (|has| |#1| (-514)))) (-1934 (((-108) (-717 |#1| (-794 |#2|)) $ (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-4164 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-3864 (((-717 |#1| (-794 |#2|)) (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $ (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (((-717 |#1| (-794 |#2|)) (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $ (-717 |#1| (-794 |#2|))) NIL (|has| $ (-6 -4238))) (((-717 |#1| (-794 |#2|)) (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-2091 (((-2 (|:| -1650 (-588 (-717 |#1| (-794 |#2|)))) (|:| -1544 (-588 (-717 |#1| (-794 |#2|))))) $) NIL)) (-2208 (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-3129 (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-2198 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-3837 (((-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3341 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-1521 (((-794 |#2|) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-717 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014))))) (-3838 (($ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) $) NIL)) (-2458 (((-588 (-794 |#2|)) $) NIL)) (-1606 (((-108) (-794 |#2|) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-3959 (((-3 (-717 |#1| (-794 |#2|)) (-588 $)) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-1331 (((-588 (-2 (|:| |val| (-717 |#1| (-794 |#2|))) (|:| -1886 $))) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-1442 (((-3 (-717 |#1| (-794 |#2|)) "failed") $) NIL)) (-2893 (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL)) (-4190 (((-3 (-108) (-588 $)) (-717 |#1| (-794 |#2|)) $) NIL)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-2416 (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-588 $)) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) (-588 $)) NIL)) (-2135 (($ (-717 |#1| (-794 |#2|)) $) NIL) (($ (-588 (-717 |#1| (-794 |#2|))) $) NIL)) (-2242 (((-588 (-717 |#1| (-794 |#2|))) $) NIL)) (-3409 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-1451 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-2123 (((-108) $ $) NIL)) (-2039 (((-2 (|:| |num| (-717 |#1| (-794 |#2|))) (|:| |den| |#1|)) (-717 |#1| (-794 |#2|)) $) NIL (|has| |#1| (-514)))) (-2230 (((-108) (-717 |#1| (-794 |#2|)) $) NIL) (((-108) $) NIL)) (-2680 (((-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-3 (-717 |#1| (-794 |#2|)) "failed") $) NIL)) (-1414 (((-3 (-717 |#1| (-794 |#2|)) "failed") (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL)) (-3307 (((-3 $ "failed") $ (-717 |#1| (-794 |#2|))) NIL)) (-3719 (($ $ (-717 |#1| (-794 |#2|))) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) (-588 $)) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-588 $)) NIL)) (-3053 (((-108) (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-717 |#1| (-794 |#2|))) (-588 (-717 |#1| (-794 |#2|)))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ $ (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ $ (-270 (-717 |#1| (-794 |#2|)))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (($ $ (-588 (-270 (-717 |#1| (-794 |#2|))))) NIL (-12 (|has| (-717 |#1| (-794 |#2|)) (-285 (-717 |#1| (-794 |#2|)))) (|has| (-717 |#1| (-794 |#2|)) (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2793 (((-708) $) NIL)) (-4168 (((-708) (-717 |#1| (-794 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-717 |#1| (-794 |#2|)) (-1014)))) (((-708) (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-717 |#1| (-794 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-717 |#1| (-794 |#2|)))) NIL)) (-2020 (($ $ (-794 |#2|)) NIL)) (-3606 (($ $ (-794 |#2|)) NIL)) (-3968 (($ $) NIL)) (-2463 (($ $ (-794 |#2|)) NIL)) (-2190 (((-792) $) NIL) (((-588 (-717 |#1| (-794 |#2|))) $) NIL)) (-1974 (((-708) $) NIL (|has| (-794 |#2|) (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 (-717 |#1| (-794 |#2|))))) "failed") (-588 (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 (-717 |#1| (-794 |#2|))))) "failed") (-588 (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|))) (-1 (-108) (-717 |#1| (-794 |#2|)) (-717 |#1| (-794 |#2|)))) NIL)) (-4212 (((-108) $ (-1 (-108) (-717 |#1| (-794 |#2|)) (-588 (-717 |#1| (-794 |#2|))))) NIL)) (-2188 (((-588 $) (-717 |#1| (-794 |#2|)) $) NIL) (((-588 $) (-717 |#1| (-794 |#2|)) (-588 $)) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) $) NIL) (((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-588 $)) NIL)) (-3648 (((-108) (-1 (-108) (-717 |#1| (-794 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2360 (((-588 (-794 |#2|)) $) NIL)) (-3021 (((-108) (-717 |#1| (-794 |#2|)) $) NIL)) (-2351 (((-108) (-794 |#2|) $) NIL)) (-1531 (((-108) $ $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-968 |#1| |#2|) (-13 (-990 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) (-10 -8 (-15 -4125 ((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108) (-108))))) (-426) (-588 (-1085))) (T -968))
+((-4125 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426)) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-968 *5 *6)))))
+(-13 (-990 |#1| (-494 (-794 |#2|)) (-794 |#2|) (-717 |#1| (-794 |#2|))) (-10 -8 (-15 -4125 ((-588 $) (-588 (-717 |#1| (-794 |#2|))) (-108) (-108)))))
+((-3666 (((-1 (-522)) (-1009 (-522))) 33)) (-1960 (((-522) (-522) (-522) (-522) (-522)) 30)) (-1300 (((-1 (-522)) |RationalNumber|) NIL)) (-2778 (((-1 (-522)) |RationalNumber|) NIL)) (-1480 (((-1 (-522)) (-522) |RationalNumber|) NIL)))
+(((-969) (-10 -7 (-15 -3666 ((-1 (-522)) (-1009 (-522)))) (-15 -1480 ((-1 (-522)) (-522) |RationalNumber|)) (-15 -1300 ((-1 (-522)) |RationalNumber|)) (-15 -2778 ((-1 (-522)) |RationalNumber|)) (-15 -1960 ((-522) (-522) (-522) (-522) (-522))))) (T -969))
+((-1960 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-969)))) (-2778 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)))) (-1300 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)) (-5 *3 (-522)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-1009 (-522))) (-5 *2 (-1 (-522))) (-5 *1 (-969)))))
+(-10 -7 (-15 -3666 ((-1 (-522)) (-1009 (-522)))) (-15 -1480 ((-1 (-522)) (-522) |RationalNumber|)) (-15 -1300 ((-1 (-522)) |RationalNumber|)) (-15 -2778 ((-1 (-522)) |RationalNumber|)) (-15 -1960 ((-522) (-522) (-522) (-522) (-522))))
+((-2190 (((-792) $) NIL) (($ (-522)) 10)))
+(((-970 |#1|) (-10 -8 (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-971)) (T -970))
+NIL
+(-10 -8 (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-971) (-1197)) (T -971))
+((-2323 (*1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-708)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-971)))))
+(-13 (-978) (-664) (-590 $) (-10 -8 (-15 -2323 ((-708))) (-15 -2190 ($ (-522))) (-6 -4235)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 $) . T) ((-664) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-3774 (((-382 (-881 |#2|)) (-588 |#2|) (-588 |#2|) (-708) (-708)) 45)))
+(((-972 |#1| |#2|) (-10 -7 (-15 -3774 ((-382 (-881 |#2|)) (-588 |#2|) (-588 |#2|) (-708) (-708)))) (-1085) (-338)) (T -972))
+((-3774 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-708)) (-4 *6 (-338)) (-5 *2 (-382 (-881 *6))) (-5 *1 (-972 *5 *6)) (-14 *5 (-1085)))))
+(-10 -7 (-15 -3774 ((-382 (-881 |#2|)) (-588 |#2|) (-588 |#2|) (-708) (-708))))
+((-2727 (((-108) $) 28)) (-2527 (((-108) $) 16)) (-1411 (((-708) $) 13)) (-1422 (((-708) $) 14)) (-1767 (((-108) $) 26)) (-1697 (((-108) $) 30)))
+(((-973 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1422 ((-708) |#1|)) (-15 -1411 ((-708) |#1|)) (-15 -1697 ((-108) |#1|)) (-15 -2727 ((-108) |#1|)) (-15 -1767 ((-108) |#1|)) (-15 -2527 ((-108) |#1|))) (-974 |#2| |#3| |#4| |#5| |#6|) (-708) (-708) (-971) (-215 |#3| |#4|) (-215 |#2| |#4|)) (T -973))
+NIL
+(-10 -8 (-15 -1422 ((-708) |#1|)) (-15 -1411 ((-708) |#1|)) (-15 -1697 ((-108) |#1|)) (-15 -2727 ((-108) |#1|)) (-15 -1767 ((-108) |#1|)) (-15 -2527 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2727 (((-108) $) 51)) (-1233 (((-3 $ "failed") $ $) 19)) (-2527 (((-108) $) 53)) (-4141 (((-108) $ (-708)) 61)) (-3175 (($) 17 T CONST)) (-2264 (($ $) 34 (|has| |#3| (-283)))) (-1860 ((|#4| $ (-522)) 39)) (-3166 (((-708) $) 33 (|has| |#3| (-514)))) (-3631 ((|#3| $ (-522) (-522)) 41)) (-3837 (((-588 |#3|) $) 68 (|has| $ (-6 -4238)))) (-3799 (((-708) $) 32 (|has| |#3| (-514)))) (-2064 (((-588 |#5|) $) 31 (|has| |#3| (-514)))) (-1411 (((-708) $) 45)) (-1422 (((-708) $) 44)) (-3352 (((-108) $ (-708)) 60)) (-2575 (((-522) $) 49)) (-1885 (((-522) $) 47)) (-3308 (((-588 |#3|) $) 69 (|has| $ (-6 -4238)))) (-2246 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1014)) (|has| $ (-6 -4238))))) (-3886 (((-522) $) 48)) (-4132 (((-522) $) 46)) (-1366 (($ (-588 (-588 |#3|))) 54)) (-3838 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3237 (((-588 (-588 |#3|)) $) 43)) (-2720 (((-108) $ (-708)) 59)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-514)))) (-3053 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#3|) (-588 |#3|)) 75 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) 73 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 (-270 |#3|))) 72 (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-1536 (((-108) $ $) 55)) (-3985 (((-108) $) 58)) (-3775 (($) 57)) (-2545 ((|#3| $ (-522) (-522)) 42) ((|#3| $ (-522) (-522) |#3|) 40)) (-1767 (((-108) $) 52)) (-4168 (((-708) |#3| $) 70 (-12 (|has| |#3| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4238)))) (-2404 (($ $) 56)) (-3488 ((|#5| $ (-522)) 38)) (-2190 (((-792) $) 11)) (-3648 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4238)))) (-1697 (((-108) $) 50)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#3|) 35 (|has| |#3| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3480 (((-708) $) 62 (|has| $ (-6 -4238)))))
+(((-974 |#1| |#2| |#3| |#4| |#5|) (-1197) (-708) (-708) (-971) (-215 |t#2| |t#3|) (-215 |t#1| |t#3|)) (T -974))
+((-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *5))) (-4 *5 (-971)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-1697 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-588 (-588 *5))))) (-2545 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971)))) (-3631 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971)))) (-2545 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *2 (-971)) (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *2 *7)) (-4 *6 (-971)) (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *7 *2)) (-4 *6 (-971)) (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))) (-1391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)))) (-2232 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-514)))) (-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971)) (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-338)))) (-2264 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-283)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) (-5 *2 (-708)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) (-5 *2 (-708)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514)) (-5 *2 (-588 *7)))))
+(-13 (-107 |t#3| |t#3|) (-461 |t#3|) (-10 -8 (-6 -4238) (IF (|has| |t#3| (-157)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -1366 ($ (-588 (-588 |t#3|)))) (-15 -2527 ((-108) $)) (-15 -1767 ((-108) $)) (-15 -2727 ((-108) $)) (-15 -1697 ((-108) $)) (-15 -2575 ((-522) $)) (-15 -3886 ((-522) $)) (-15 -1885 ((-522) $)) (-15 -4132 ((-522) $)) (-15 -1411 ((-708) $)) (-15 -1422 ((-708) $)) (-15 -3237 ((-588 (-588 |t#3|)) $)) (-15 -2545 (|t#3| $ (-522) (-522))) (-15 -3631 (|t#3| $ (-522) (-522))) (-15 -2545 (|t#3| $ (-522) (-522) |t#3|)) (-15 -1860 (|t#4| $ (-522))) (-15 -3488 (|t#5| $ (-522))) (-15 -1391 ($ (-1 |t#3| |t#3|) $)) (-15 -1391 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-514)) (-15 -2232 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-338)) (-15 -1620 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-283)) (-15 -2264 ($ $)) |%noBranch|) (IF (|has| |t#3| (-514)) (PROGN (-15 -3166 ((-708) $)) (-15 -3799 ((-708) $)) (-15 -2064 ((-588 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-124) . T) ((-562 (-792)) . T) ((-285 |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))) ((-461 |#3|) . T) ((-483 |#3| |#3|) -12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))) ((-590 |#3|) . T) ((-655 |#3|) |has| |#3| (-157)) ((-977 |#3|) . T) ((-1014) . T) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2727 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-2527 (((-108) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3175 (($) NIL T CONST)) (-2264 (($ $) 40 (|has| |#3| (-283)))) (-1860 (((-217 |#2| |#3|) $ (-522)) 29)) (-4088 (($ (-628 |#3|)) 38)) (-3166 (((-708) $) 42 (|has| |#3| (-514)))) (-3631 ((|#3| $ (-522) (-522)) NIL)) (-3837 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-3799 (((-708) $) 44 (|has| |#3| (-514)))) (-2064 (((-588 (-217 |#1| |#3|)) $) 48 (|has| |#3| (-514)))) (-1411 (((-708) $) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-2575 (((-522) $) NIL)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-3886 (((-522) $) NIL)) (-4132 (((-522) $) NIL)) (-1366 (($ (-588 (-588 |#3|))) 24)) (-3838 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3237 (((-588 (-588 |#3|)) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-514)))) (-3053 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#3|) (-588 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 (-270 |#3|))) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#3| $ (-522) (-522)) NIL) ((|#3| $ (-522) (-522) |#3|) NIL)) (-4078 (((-126)) 51 (|has| |#3| (-338)))) (-1767 (((-108) $) NIL)) (-4168 (((-708) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014)))) (((-708) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) 60 (|has| |#3| (-563 (-498))))) (-3488 (((-217 |#1| |#3|) $ (-522)) 33)) (-2190 (((-792) $) 16) (((-628 |#3|) $) 35)) (-3648 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-1697 (((-108) $) NIL)) (-3566 (($) 13 T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#3|) NIL (|has| |#3| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-975 |#1| |#2| |#3|) (-13 (-974 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-562 (-628 |#3|)) (-10 -8 (IF (|has| |#3| (-338)) (-6 (-1173 |#3|)) |%noBranch|) (IF (|has| |#3| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (-15 -4088 ($ (-628 |#3|))) (-15 -2190 ((-628 |#3|) $)))) (-708) (-708) (-971)) (T -975))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-628 *5)) (-5 *1 (-975 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)) (-4 *5 (-971)))) (-4088 (*1 *1 *2) (-12 (-5 *2 (-628 *5)) (-4 *5 (-971)) (-5 *1 (-975 *3 *4 *5)) (-14 *3 (-708)) (-14 *4 (-708)))))
+(-13 (-974 |#1| |#2| |#3| (-217 |#2| |#3|) (-217 |#1| |#3|)) (-562 (-628 |#3|)) (-10 -8 (IF (|has| |#3| (-338)) (-6 (-1173 |#3|)) |%noBranch|) (IF (|has| |#3| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|) (-15 -4088 ($ (-628 |#3|))) (-15 -2190 ((-628 |#3|) $))))
+((-3864 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1391 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-976 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1391 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3864 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-708) (-708) (-971) (-215 |#2| |#3|) (-215 |#1| |#3|) (-974 |#1| |#2| |#3| |#4| |#5|) (-971) (-215 |#2| |#7|) (-215 |#1| |#7|) (-974 |#1| |#2| |#7| |#8| |#9|)) (T -976))
+((-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-971)) (-4 *2 (-971)) (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2)) (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *12 (-974 *5 *6 *2 *10 *11)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-971)) (-4 *10 (-971)) (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7)) (-4 *9 (-215 *5 *7)) (-4 *2 (-974 *5 *6 *10 *11 *12)) (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10)) (-4 *12 (-215 *5 *10)))))
+(-10 -7 (-15 -1391 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3864 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ |#1|) 23)))
+(((-977 |#1|) (-1197) (-978)) (T -977))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-978)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3509 (($ $ (-849)) 26)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-977) (-1196)) (T -977))
-NIL
-(-13 (-21) (-1025))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-561 (-791)) . T) ((-1025) . T) ((-1013) . T))
-((-2868 (($ $) 16)) (-2844 (($ $) 22)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 49)) (-2549 (($ $) 24)) (-1840 (($ $) 11)) (-2720 (($ $) 38)) (-1438 (((-353) $) NIL) (((-202) $) NIL) (((-820 (-353)) $) 33)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL) (($ (-381 (-521))) 28) (($ (-521)) NIL) (($ (-381 (-521))) 28)) (-1592 (((-707)) 8)) (-1281 (($ $) 39)))
-(((-978 |#1|) (-10 -8 (-15 -2844 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -2720 (|#1| |#1|)) (-15 -1281 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| (-521))) (-15 -1438 ((-202) |#1|)) (-15 -1438 ((-353) |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 -2223 ((-791) |#1|))) (-979)) (T -978))
-((-1592 (*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-978 *3)) (-4 *3 (-979)))))
-(-10 -8 (-15 -2844 (|#1| |#1|)) (-15 -2868 (|#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -2720 (|#1| |#1|)) (-15 -1281 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -2293 ((-817 (-353) |#1|) |#1| (-820 (-353)) (-817 (-353) |#1|))) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| (-521))) (-15 -1438 ((-202) |#1|)) (-15 -1438 ((-353) |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-521))) (-15 -1592 ((-707))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2556 (((-521) $) 89)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2868 (($ $) 87)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-1984 (($ $) 97)) (-2165 (((-108) $ $) 59)) (-2578 (((-521) $) 114)) (-2231 (($) 17 T CONST)) (-2844 (($ $) 86)) (-1296 (((-3 (-521) "failed") $) 102) (((-3 (-381 (-521)) "failed") $) 99)) (-1496 (((-521) $) 101) (((-381 (-521)) $) 98)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-2100 (((-108) $) 71)) (-2273 (((-108) $) 112)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 93)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 96)) (-2549 (($ $) 92)) (-3305 (((-108) $) 113)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2816 (($ $ $) 111)) (-2459 (($ $ $) 110)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1840 (($ $) 88)) (-2720 (($ $) 90)) (-1974 (((-392 $) $) 74)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-1438 (((-353) $) 105) (((-202) $) 104) (((-820 (-353)) $) 94)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ (-521)) 103) (($ (-381 (-521))) 100)) (-1592 (((-707)) 29)) (-1281 (($ $) 91)) (-1842 (((-108) $ $) 39)) (-4012 (($ $) 115)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1597 (((-108) $ $) 108)) (-1579 (((-108) $ $) 107)) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 109)) (-1569 (((-108) $ $) 106)) (-1648 (($ $ $) 64)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68) (($ $ (-381 (-521))) 95)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66)))
-(((-979) (-1196)) (T -979))
-((-4012 (*1 *1 *1) (-4 *1 (-979))) (-2549 (*1 *1 *1) (-4 *1 (-979))) (-1281 (*1 *1 *1) (-4 *1 (-979))) (-2720 (*1 *1 *1) (-4 *1 (-979))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-979)) (-5 *2 (-521)))) (-1840 (*1 *1 *1) (-4 *1 (-979))) (-2868 (*1 *1 *1) (-4 *1 (-979))) (-2844 (*1 *1 *1) (-4 *1 (-979))))
-(-13 (-337) (-781) (-946) (-961 (-521)) (-961 (-381 (-521))) (-927) (-562 (-820 (-353))) (-814 (-353)) (-135) (-10 -8 (-15 -2549 ($ $)) (-15 -1281 ($ $)) (-15 -2720 ($ $)) (-15 -2556 ((-521) $)) (-15 -1840 ($ $)) (-15 -2868 ($ $)) (-15 -2844 ($ $)) (-15 -4012 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-561 (-791)) . T) ((-157) . T) ((-562 (-202)) . T) ((-562 (-353)) . T) ((-562 (-820 (-353))) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-663) . T) ((-727) . T) ((-728) . T) ((-730) . T) ((-731) . T) ((-781) . T) ((-783) . T) ((-814 (-353)) . T) ((-848) . T) ((-927) . T) ((-946) . T) ((-961 (-381 (-521))) . T) ((-961 (-521)) . T) ((-976 #0#) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) |#2| $) 23)) (-1659 ((|#1| $) 10)) (-2578 (((-521) |#2| $) 89)) (-1444 (((-3 $ "failed") |#2| (-849)) 58)) (-1981 ((|#1| $) 28)) (-1843 ((|#1| |#2| $ |#1|) 37)) (-2760 (($ $) 25)) (-2783 (((-3 |#2| "failed") |#2| $) 88)) (-2273 (((-108) |#2| $) NIL)) (-3305 (((-108) |#2| $) NIL)) (-2716 (((-108) |#2| $) 24)) (-3164 ((|#1| $) 90)) (-1970 ((|#1| $) 27)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3436 ((|#2| $) 80)) (-2223 (((-791) $) 71)) (-3893 ((|#1| |#2| $ |#1|) 38)) (-3724 (((-587 $) |#2|) 60)) (-1549 (((-108) $ $) 75)))
-(((-980 |#1| |#2|) (-13 (-986 |#1| |#2|) (-10 -8 (-15 -1970 (|#1| $)) (-15 -1981 (|#1| $)) (-15 -1659 (|#1| $)) (-15 -3164 (|#1| $)) (-15 -2760 ($ $)) (-15 -2716 ((-108) |#2| $)) (-15 -1843 (|#1| |#2| $ |#1|)))) (-13 (-781) (-337)) (-1141 |#1|)) (T -980))
-((-1843 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1970 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1981 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-1659 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-3164 (*1 *2 *1) (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-2760 (*1 *1 *1) (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3)) (-4 *3 (-1141 *2)))) (-2716 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-781) (-337))) (-5 *2 (-108)) (-5 *1 (-980 *4 *3)) (-4 *3 (-1141 *4)))))
-(-13 (-986 |#1| |#2|) (-10 -8 (-15 -1970 (|#1| $)) (-15 -1981 (|#1| $)) (-15 -1659 (|#1| $)) (-15 -3164 (|#1| $)) (-15 -2760 ($ $)) (-15 -2716 ((-108) |#2| $)) (-15 -1843 (|#1| |#2| $ |#1|))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-1645 (($ $ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3591 (($ $ $ $) NIL)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL)) (-1697 (($ $ $) NIL)) (-2231 (($) NIL T CONST)) (-3935 (($ (-1084)) 10) (($ (-521)) 7)) (-1296 (((-3 (-521) "failed") $) NIL)) (-1496 (((-521) $) NIL)) (-2302 (($ $ $) NIL)) (-1961 (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-627 (-521)) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL)) (-2428 (((-108) $) NIL)) (-2758 (((-381 (-521)) $) NIL)) (-3254 (($) NIL) (($ $) NIL)) (-2282 (($ $ $) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2085 (($ $ $ $) NIL)) (-4020 (($ $ $) NIL)) (-2273 (((-108) $) NIL)) (-3556 (($ $ $) NIL)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL)) (-3637 (((-108) $) NIL)) (-3924 (((-108) $) NIL)) (-3035 (((-3 $ "failed") $) NIL)) (-3305 (((-108) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2830 (($ $ $ $) NIL)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-3890 (($ $) NIL)) (-2522 (($ $) NIL)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-2489 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2959 (($ $) NIL)) (-4146 (((-1031) $) NIL) (($ $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) NIL) (($ (-587 $)) NIL)) (-3022 (($ $) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2060 (((-108) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2193 (($ $ (-707)) NIL) (($ $) NIL)) (-3055 (($ $) NIL)) (-2420 (($ $) NIL)) (-1438 (((-521) $) 16) (((-497) $) NIL) (((-820 (-521)) $) NIL) (((-353) $) NIL) (((-202) $) NIL) (($ (-1084)) 9)) (-2223 (((-791) $) 20) (($ (-521)) 6) (($ $) NIL) (($ (-521)) 6)) (-1592 (((-707)) NIL)) (-4212 (((-108) $ $) NIL)) (-2475 (($ $ $) NIL)) (-3354 (($) NIL)) (-1842 (((-108) $ $) NIL)) (-2798 (($ $ $ $) NIL)) (-4012 (($ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) NIL)) (-1639 (($ $) 19) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL)))
-(((-981) (-13 (-506) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -1438 ($ (-1084))) (-15 -3935 ($ (-1084))) (-15 -3935 ($ (-521)))))) (T -981))
-((-1438 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-981)))))
-(-13 (-506) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -1438 ($ (-1084))) (-15 -3935 ($ (-1084))) (-15 -3935 ($ (-521)))))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-3933 (((-1170) $ (-1084) (-1084)) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-3225 (($) 9)) (-2396 (((-51) $ (-1084) (-51)) NIL)) (-1880 (($ $) 23)) (-1814 (($ $) 21)) (-2858 (($ $) 20)) (-3396 (($ $) 22)) (-3235 (($ $) 25)) (-3244 (($ $) 26)) (-2885 (($ $) 19)) (-1621 (($ $) 24)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) 18 (|has| $ (-6 -4233)))) (-2754 (((-3 (-51) "failed") (-1084) $) 34)) (-2231 (($) NIL T CONST)) (-2703 (($) 7)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-2726 (($ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) 46 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-3 (-51) "failed") (-1084) $) NIL)) (-1429 (($ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233)))) (-1332 (((-3 (-1067) "failed") $ (-1067) (-521)) 59)) (-3849 (((-51) $ (-1084) (-51)) NIL (|has| $ (-6 -4234)))) (-3626 (((-51) $ (-1084)) NIL)) (-3831 (((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-1084) $) NIL (|has| (-1084) (-783)))) (-3568 (((-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) 28 (|has| $ (-6 -4233))) (((-587 (-51)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-3989 (((-1084) $) NIL (|has| (-1084) (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4234))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-2964 (((-587 (-1084)) $) NIL)) (-3839 (((-108) (-1084) $) NIL)) (-1570 (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL)) (-4135 (($ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) 37)) (-1223 (((-587 (-1084)) $) NIL)) (-2131 (((-108) (-1084) $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-1725 (((-353) $ (-1084)) 45)) (-3883 (((-587 (-1067)) $ (-1067)) 60)) (-2319 (((-51) $) NIL (|has| (-1084) (-783)))) (-3733 (((-3 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) "failed") (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL)) (-2995 (($ $ (-51)) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-269 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL (-12 (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-284 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (($ $ (-587 (-51)) (-587 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-269 (-51))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013)))) (($ $ (-587 (-269 (-51)))) NIL (-12 (|has| (-51) (-284 (-51))) (|has| (-51) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013))))) (-2481 (((-587 (-51)) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 (((-51) $ (-1084)) NIL) (((-51) $ (-1084) (-51)) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-1330 (($ $ (-1084)) 47)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013)))) (((-707) (-51) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-51) (-1013)))) (((-707) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) 30)) (-4159 (($ $ $) 31)) (-2223 (((-791) $) NIL (-3703 (|has| (-51) (-561 (-791))) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-561 (-791)))))) (-3773 (($ $ (-1084) (-353)) 43)) (-3303 (($ $ (-1084) (-353)) 44)) (-2869 (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 (-1084)) (|:| -3050 (-51)))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-51) (-1013)) (|has| (-2 (|:| -2535 (-1084)) (|:| -3050 (-51))) (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-982) (-13 (-1096 (-1084) (-51)) (-10 -8 (-15 -4159 ($ $ $)) (-15 -2703 ($)) (-15 -2885 ($ $)) (-15 -2858 ($ $)) (-15 -1814 ($ $)) (-15 -3396 ($ $)) (-15 -1621 ($ $)) (-15 -1880 ($ $)) (-15 -3235 ($ $)) (-15 -3244 ($ $)) (-15 -3773 ($ $ (-1084) (-353))) (-15 -3303 ($ $ (-1084) (-353))) (-15 -1725 ((-353) $ (-1084))) (-15 -3883 ((-587 (-1067)) $ (-1067))) (-15 -1330 ($ $ (-1084))) (-15 -3225 ($)) (-15 -1332 ((-3 (-1067) "failed") $ (-1067) (-521))) (-6 -4233)))) (T -982))
-((-4159 (*1 *1 *1 *1) (-5 *1 (-982))) (-2703 (*1 *1) (-5 *1 (-982))) (-2885 (*1 *1 *1) (-5 *1 (-982))) (-2858 (*1 *1 *1) (-5 *1 (-982))) (-1814 (*1 *1 *1) (-5 *1 (-982))) (-3396 (*1 *1 *1) (-5 *1 (-982))) (-1621 (*1 *1 *1) (-5 *1 (-982))) (-1880 (*1 *1 *1) (-5 *1 (-982))) (-3235 (*1 *1 *1) (-5 *1 (-982))) (-3244 (*1 *1 *1) (-5 *1 (-982))) (-3773 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))) (-3303 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))) (-1725 (*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-353)) (-5 *1 (-982)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-982)) (-5 *3 (-1067)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-982)))) (-3225 (*1 *1) (-5 *1 (-982))) (-1332 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-982)))))
-(-13 (-1096 (-1084) (-51)) (-10 -8 (-15 -4159 ($ $ $)) (-15 -2703 ($)) (-15 -2885 ($ $)) (-15 -2858 ($ $)) (-15 -1814 ($ $)) (-15 -3396 ($ $)) (-15 -1621 ($ $)) (-15 -1880 ($ $)) (-15 -3235 ($ $)) (-15 -3244 ($ $)) (-15 -3773 ($ $ (-1084) (-353))) (-15 -3303 ($ $ (-1084) (-353))) (-15 -1725 ((-353) $ (-1084))) (-15 -3883 ((-587 (-1067)) $ (-1067))) (-15 -1330 ($ $ (-1084))) (-15 -3225 ($)) (-15 -1332 ((-3 (-1067) "failed") $ (-1067) (-521))) (-6 -4233)))
-((-3830 (($ $) 45)) (-3071 (((-108) $ $) 74)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-880 (-381 (-521)))) 227) (((-3 $ "failed") (-880 (-521))) 226) (((-3 $ "failed") (-880 |#2|)) 229)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) NIL) (((-521) $) NIL) ((|#4| $) NIL) (($ (-880 (-381 (-521)))) 215) (($ (-880 (-521))) 211) (($ (-880 |#2|)) 231)) (-3157 (($ $) NIL) (($ $ |#4|) 43)) (-3369 (((-108) $ $) 112) (((-108) $ (-587 $)) 113)) (-4069 (((-108) $) 56)) (-2483 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 107)) (-1870 (($ $) 138)) (-1328 (($ $) 134)) (-3629 (($ $) 133)) (-3158 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2803 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4188 (((-108) $ $) 121) (((-108) $ (-587 $)) 122)) (-3131 ((|#4| $) 33)) (-2883 (($ $ $) 110)) (-2895 (((-108) $) 55)) (-2729 (((-707) $) 35)) (-1217 (($ $) 152)) (-2435 (($ $) 149)) (-3232 (((-587 $) $) 68)) (-3894 (($ $) 57)) (-2575 (($ $) 145)) (-3276 (((-587 $) $) 65)) (-2019 (($ $) 59)) (-3140 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3818 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3214 (-707))) $ $) 111)) (-3051 (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $) 108) (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $ |#4|) 109)) (-3297 (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $) 104) (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $ |#4|) 105)) (-2743 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3142 (($ $ $) 90) (($ $ $ |#4|) 96)) (-2774 (((-587 $) $) 51)) (-2626 (((-108) $ $) 118) (((-108) $ (-587 $)) 119)) (-3432 (($ $ $) 103)) (-3797 (($ $) 37)) (-3069 (((-108) $ $) 72)) (-2941 (((-108) $ $) 114) (((-108) $ (-587 $)) 116)) (-1896 (($ $ $) 101)) (-1845 (($ $) 40)) (-2286 ((|#2| |#2| $) 142) (($ (-587 $)) NIL) (($ $ $) NIL)) (-2270 (($ $ |#2|) NIL) (($ $ $) 131)) (-1301 (($ $ |#2|) 126) (($ $ $) 129)) (-2616 (($ $) 48)) (-2158 (($ $) 52)) (-1438 (((-820 (-353)) $) NIL) (((-820 (-521)) $) NIL) (((-497) $) NIL) (($ (-880 (-381 (-521)))) 217) (($ (-880 (-521))) 213) (($ (-880 |#2|)) 228) (((-1067) $) 250) (((-880 |#2|) $) 162)) (-2223 (((-791) $) 30) (($ (-521)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-880 |#2|) $) 163) (($ (-381 (-521))) NIL) (($ $) NIL)) (-2846 (((-3 (-108) "failed") $ $) 71)))
-(((-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2223 (|#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 ((-880 |#2|) |#1|)) (-15 -1438 ((-880 |#2|) |#1|)) (-15 -1438 ((-1067) |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -2575 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -2286 (|#2| |#2| |#1|)) (-15 -2270 (|#1| |#1| |#1|)) (-15 -1301 (|#1| |#1| |#1|)) (-15 -2270 (|#1| |#1| |#2|)) (-15 -1301 (|#1| |#1| |#2|)) (-15 -1328 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -1438 (|#1| (-880 |#2|))) (-15 -1496 (|#1| (-880 |#2|))) (-15 -1296 ((-3 |#1| "failed") (-880 |#2|))) (-15 -1438 (|#1| (-880 (-521)))) (-15 -1496 (|#1| (-880 (-521)))) (-15 -1296 ((-3 |#1| "failed") (-880 (-521)))) (-15 -1438 (|#1| (-880 (-381 (-521))))) (-15 -1496 (|#1| (-880 (-381 (-521))))) (-15 -1296 ((-3 |#1| "failed") (-880 (-381 (-521))))) (-15 -3432 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#1|)) (-15 -3818 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3214 (-707))) |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2483 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3051 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1| |#4|)) (-15 -3051 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3297 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -2334 |#1|)) |#1| |#1| |#4|)) (-15 -3297 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1| |#4|)) (-15 -2743 (|#1| |#1| |#1| |#4|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -2743 (|#1| |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#1| |#4|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -4188 ((-108) |#1| (-587 |#1|))) (-15 -4188 ((-108) |#1| |#1|)) (-15 -2626 ((-108) |#1| (-587 |#1|))) (-15 -2626 ((-108) |#1| |#1|)) (-15 -2941 ((-108) |#1| (-587 |#1|))) (-15 -2941 ((-108) |#1| |#1|)) (-15 -3369 ((-108) |#1| (-587 |#1|))) (-15 -3369 ((-108) |#1| |#1|)) (-15 -3071 ((-108) |#1| |#1|)) (-15 -3069 ((-108) |#1| |#1|)) (-15 -2846 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3232 ((-587 |#1|) |#1|)) (-15 -3276 ((-587 |#1|) |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -4069 ((-108) |#1|)) (-15 -2895 ((-108) |#1|)) (-15 -3157 (|#1| |#1| |#4|)) (-15 -3140 (|#1| |#1| |#4|)) (-15 -2158 (|#1| |#1|)) (-15 -2774 ((-587 |#1|) |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1845 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2729 ((-707) |#1|)) (-15 -3131 (|#4| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1496 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2223 (|#1| |#4|)) (-15 -3140 (|#2| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-984 |#2| |#3| |#4|) (-970) (-729) (-783)) (T -983))
-NIL
-(-10 -8 (-15 -2223 (|#1| |#1|)) (-15 -2286 (|#1| |#1| |#1|)) (-15 -2286 (|#1| (-587 |#1|))) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 ((-880 |#2|) |#1|)) (-15 -1438 ((-880 |#2|) |#1|)) (-15 -1438 ((-1067) |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -2435 (|#1| |#1|)) (-15 -2575 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -2286 (|#2| |#2| |#1|)) (-15 -2270 (|#1| |#1| |#1|)) (-15 -1301 (|#1| |#1| |#1|)) (-15 -2270 (|#1| |#1| |#2|)) (-15 -1301 (|#1| |#1| |#2|)) (-15 -1328 (|#1| |#1|)) (-15 -3629 (|#1| |#1|)) (-15 -1438 (|#1| (-880 |#2|))) (-15 -1496 (|#1| (-880 |#2|))) (-15 -1296 ((-3 |#1| "failed") (-880 |#2|))) (-15 -1438 (|#1| (-880 (-521)))) (-15 -1496 (|#1| (-880 (-521)))) (-15 -1296 ((-3 |#1| "failed") (-880 (-521)))) (-15 -1438 (|#1| (-880 (-381 (-521))))) (-15 -1496 (|#1| (-880 (-381 (-521))))) (-15 -1296 ((-3 |#1| "failed") (-880 (-381 (-521))))) (-15 -3432 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#1|)) (-15 -3818 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3214 (-707))) |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -2483 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3051 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1| |#4|)) (-15 -3051 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3297 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -2334 |#1|)) |#1| |#1| |#4|)) (-15 -3297 ((-2 (|:| -2979 |#1|) (|:| |gap| (-707)) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -3142 (|#1| |#1| |#1| |#4|)) (-15 -2743 (|#1| |#1| |#1| |#4|)) (-15 -3142 (|#1| |#1| |#1|)) (-15 -2743 (|#1| |#1| |#1|)) (-15 -2803 (|#1| |#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#1| |#4|)) (-15 -2803 (|#1| |#1| |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -4188 ((-108) |#1| (-587 |#1|))) (-15 -4188 ((-108) |#1| |#1|)) (-15 -2626 ((-108) |#1| (-587 |#1|))) (-15 -2626 ((-108) |#1| |#1|)) (-15 -2941 ((-108) |#1| (-587 |#1|))) (-15 -2941 ((-108) |#1| |#1|)) (-15 -3369 ((-108) |#1| (-587 |#1|))) (-15 -3369 ((-108) |#1| |#1|)) (-15 -3071 ((-108) |#1| |#1|)) (-15 -3069 ((-108) |#1| |#1|)) (-15 -2846 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3232 ((-587 |#1|) |#1|)) (-15 -3276 ((-587 |#1|) |#1|)) (-15 -2019 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -4069 ((-108) |#1|)) (-15 -2895 ((-108) |#1|)) (-15 -3157 (|#1| |#1| |#4|)) (-15 -3140 (|#1| |#1| |#4|)) (-15 -2158 (|#1| |#1|)) (-15 -2774 ((-587 |#1|) |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1845 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2729 ((-707) |#1|)) (-15 -3131 (|#4| |#1|)) (-15 -1438 ((-497) |#1|)) (-15 -1438 ((-820 (-521)) |#1|)) (-15 -1438 ((-820 (-353)) |#1|)) (-15 -1496 (|#4| |#1|)) (-15 -1296 ((-3 |#4| "failed") |#1|)) (-15 -2223 (|#1| |#4|)) (-15 -3140 (|#2| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 |#3|) $) 110)) (-1280 (((-1080 $) $ |#3|) 125) (((-1080 |#1|) $) 124)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-1954 (($ $) 88 (|has| |#1| (-513)))) (-3795 (((-108) $) 90 (|has| |#1| (-513)))) (-2197 (((-707) $) 112) (((-707) $ (-587 |#3|)) 111)) (-3830 (($ $) 271)) (-3071 (((-108) $ $) 257)) (-2057 (((-3 $ "failed") $ $) 19)) (-4127 (($ $ $) 216 (|has| |#1| (-513)))) (-2000 (((-587 $) $ $) 211 (|has| |#1| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-837)))) (-2694 (($ $) 98 (|has| |#1| (-425)))) (-2337 (((-392 $) $) 97 (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-837)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-880 (-381 (-521)))) 231 (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))) (((-3 $ "failed") (-880 (-521))) 228 (-3703 (-12 (-2416 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084)))))) (((-3 $ "failed") (-880 |#1|)) 225 (-3703 (-12 (-2416 (|has| |#1| (-37 (-381 (-521))))) (-2416 (|has| |#1| (-37 (-521)))) (|has| |#3| (-562 (-1084)))) (-12 (-2416 (|has| |#1| (-506))) (-2416 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (-2416 (|has| |#1| (-918 (-521)))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))))) (-1496 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) ((|#3| $) 135) (($ (-880 (-381 (-521)))) 230 (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))) (($ (-880 (-521))) 227 (-3703 (-12 (-2416 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084)))))) (($ (-880 |#1|)) 224 (-3703 (-12 (-2416 (|has| |#1| (-37 (-381 (-521))))) (-2416 (|has| |#1| (-37 (-521)))) (|has| |#3| (-562 (-1084)))) (-12 (-2416 (|has| |#1| (-506))) (-2416 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (-2416 (|has| |#1| (-918 (-521)))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))))) (-3052 (($ $ $ |#3|) 108 (|has| |#1| (-157))) (($ $ $) 212 (|has| |#1| (-513)))) (-3157 (($ $) 154) (($ $ |#3|) 266)) (-1961 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-3369 (((-108) $ $) 256) (((-108) $ (-587 $)) 255)) (-2783 (((-3 $ "failed") $) 34)) (-4069 (((-108) $) 264)) (-2483 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 236)) (-1870 (($ $) 205 (|has| |#1| (-425)))) (-1563 (($ $) 176 (|has| |#1| (-425))) (($ $ |#3|) 105 (|has| |#1| (-425)))) (-3149 (((-587 $) $) 109)) (-2100 (((-108) $) 96 (|has| |#1| (-837)))) (-1328 (($ $) 221 (|has| |#1| (-513)))) (-3629 (($ $) 222 (|has| |#1| (-513)))) (-3158 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2803 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1709 (($ $ |#1| |#2| $) 172)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 84 (-12 (|has| |#3| (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 83 (-12 (|has| |#3| (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3637 (((-108) $) 31)) (-2443 (((-707) $) 169)) (-4188 (((-108) $ $) 250) (((-108) $ (-587 $)) 249)) (-2737 (($ $ $ $ $) 207 (|has| |#1| (-513)))) (-3131 ((|#3| $) 275)) (-4068 (($ (-1080 |#1|) |#3|) 117) (($ (-1080 $) |#3|) 116)) (-2411 (((-587 $) $) 126)) (-3573 (((-108) $) 152)) (-4044 (($ |#1| |#2|) 153) (($ $ |#3| (-707)) 119) (($ $ (-587 |#3|) (-587 (-707))) 118)) (-2883 (($ $ $) 235)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#3|) 120)) (-2895 (((-108) $) 265)) (-2401 ((|#2| $) 170) (((-707) $ |#3|) 122) (((-587 (-707)) $ (-587 |#3|)) 121)) (-2816 (($ $ $) 79 (|has| |#1| (-783)))) (-2729 (((-707) $) 274)) (-2459 (($ $ $) 78 (|has| |#1| (-783)))) (-2310 (($ (-1 |#2| |#2|) $) 171)) (-1393 (($ (-1 |#1| |#1|) $) 151)) (-2913 (((-3 |#3| "failed") $) 123)) (-1217 (($ $) 202 (|has| |#1| (-425)))) (-2435 (($ $) 203 (|has| |#1| (-425)))) (-3232 (((-587 $) $) 260)) (-3894 (($ $) 263)) (-2575 (($ $) 204 (|has| |#1| (-425)))) (-3276 (((-587 $) $) 261)) (-2019 (($ $) 262)) (-3130 (($ $) 149)) (-3140 ((|#1| $) 148) (($ $ |#3|) 267)) (-2254 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-3818 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3214 (-707))) $ $) 234)) (-3051 (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $) 238) (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $ |#3|) 237)) (-3297 (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $) 240) (((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $ |#3|) 239)) (-2743 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3142 (($ $ $) 243) (($ $ $ |#3|) 241)) (-4024 (((-1067) $) 9)) (-3543 (($ $ $) 210 (|has| |#1| (-513)))) (-2774 (((-587 $) $) 269)) (-3722 (((-3 (-587 $) "failed") $) 114)) (-4141 (((-3 (-587 $) "failed") $) 115)) (-3262 (((-3 (-2 (|:| |var| |#3|) (|:| -2246 (-707))) "failed") $) 113)) (-2626 (((-108) $ $) 252) (((-108) $ (-587 $)) 251)) (-3432 (($ $ $) 232)) (-3797 (($ $) 273)) (-3069 (((-108) $ $) 258)) (-2941 (((-108) $ $) 254) (((-108) $ (-587 $)) 253)) (-1896 (($ $ $) 233)) (-1845 (($ $) 272)) (-4146 (((-1031) $) 10)) (-3282 (((-2 (|:| -2286 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-513)))) (-4108 (((-2 (|:| -2286 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-513)))) (-3110 (((-108) $) 166)) (-3120 ((|#1| $) 167)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2286 ((|#1| |#1| $) 206 (|has| |#1| (-425))) (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-837)))) (-1974 (((-392 $) $) 99 (|has| |#1| (-837)))) (-1441 (((-2 (|:| -2286 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-513)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-2270 (($ $ |#1|) 219 (|has| |#1| (-513))) (($ $ $) 217 (|has| |#1| (-513)))) (-1301 (($ $ |#1|) 220 (|has| |#1| (-513))) (($ $ $) 218 (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-587 |#3|) (-587 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-587 |#3|) (-587 $)) 138)) (-3011 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2193 (($ $ |#3|) 42) (($ $ (-587 |#3|)) 41) (($ $ |#3| (-707)) 40) (($ $ (-587 |#3|) (-587 (-707))) 39)) (-2098 ((|#2| $) 150) (((-707) $ |#3|) 130) (((-587 (-707)) $ (-587 |#3|)) 129)) (-2616 (($ $) 270)) (-2158 (($ $) 268)) (-1438 (((-820 (-353)) $) 82 (-12 (|has| |#3| (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) 81 (-12 (|has| |#3| (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) 80 (-12 (|has| |#3| (-562 (-497))) (|has| |#1| (-562 (-497))))) (($ (-880 (-381 (-521)))) 229 (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084))))) (($ (-880 (-521))) 226 (-3703 (-12 (-2416 (|has| |#1| (-37 (-381 (-521))))) (|has| |#1| (-37 (-521))) (|has| |#3| (-562 (-1084)))) (-12 (|has| |#1| (-37 (-381 (-521)))) (|has| |#3| (-562 (-1084)))))) (($ (-880 |#1|)) 223 (|has| |#3| (-562 (-1084)))) (((-1067) $) 201 (-12 (|has| |#1| (-961 (-521))) (|has| |#3| (-562 (-1084))))) (((-880 |#1|) $) 200 (|has| |#3| (-562 (-1084))))) (-1391 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ |#3|) 106 (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-880 |#1|) $) 199 (|has| |#3| (-562 (-1084)))) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521)))))) (($ $) 85 (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) 168)) (-1499 ((|#1| $ |#2|) 155) (($ $ |#3| (-707)) 128) (($ $ (-587 |#3|) (-587 (-707))) 127)) (-2446 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) 29)) (-1413 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-1842 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-2846 (((-3 (-108) "failed") $ $) 259)) (-3572 (($) 30 T CONST)) (-1983 (($ $ $ $ (-707)) 208 (|has| |#1| (-513)))) (-1829 (($ $ $ (-707)) 209 (|has| |#1| (-513)))) (-2244 (($ $ |#3|) 38) (($ $ (-587 |#3|)) 37) (($ $ |#3| (-707)) 36) (($ $ (-587 |#3|) (-587 (-707))) 35)) (-1597 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1648 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-984 |#1| |#2| |#3|) (-1196) (-970) (-729) (-783)) (T -984))
-((-3131 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-707)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-1845 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-2774 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-2158 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3140 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-3157 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3894 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-2019 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3276 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-3232 (*1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-2846 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3069 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3071 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3369 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-3369 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)))) (-2941 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)))) (-2626 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)))) (-4188 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)))) (-3158 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-2803 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3158 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-2803 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-2743 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3142 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-2743 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-3142 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *2 (-783)))) (-3297 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -2334 *1))) (-4 *1 (-984 *3 *4 *5)))) (-3297 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -2334 *1))) (-4 *1 (-984 *4 *5 *3)))) (-3051 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-984 *3 *4 *5)))) (-3051 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-984 *4 *5 *3)))) (-2483 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-984 *3 *4 *5)))) (-2883 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3818 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3214 (-707)))) (-4 *1 (-984 *3 *4 *5)))) (-1896 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-3432 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)))) (-1296 (*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-880 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-880 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))) (-1296 (*1 *1 *2) (|partial| -3703 (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))))) (-1496 (*1 *1 *2) (-3703 (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))))) (-1438 (*1 *1 *2) (-3703 (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5)) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))))) (-1296 (*1 *1 *2) (|partial| -3703 (-12 (-5 *2 (-880 *3)) (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-2416 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2416 (-4 *3 (-506))) (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2416 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783))))) (-1496 (*1 *1 *2) (-3703 (-12 (-5 *2 (-880 *3)) (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-2416 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2416 (-4 *3 (-506))) (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783))) (-12 (-5 *2 (-880 *3)) (-12 (-2416 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084)))) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729)) (-4 *5 (-783))))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *5 (-562 (-1084))) (-4 *4 (-729)) (-4 *5 (-783)))) (-3629 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-1301 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-2270 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-1301 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-2270 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-4127 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2286 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-984 *3 *4 *5)))) (-4108 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2286 *1) (|:| |coef1| *1))) (-4 *1 (-984 *3 *4 *5)))) (-3282 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-2 (|:| -2286 *1) (|:| |coef2| *1))) (-4 *1 (-984 *3 *4 *5)))) (-3052 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-2000 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))) (-3543 (*1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-1829 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *3 (-513)))) (-1983 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *3 (-513)))) (-2737 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-513)))) (-2286 (*1 *2 *2 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))) (-1870 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))) (-2575 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))) (-2435 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-425)))))
-(-13 (-877 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3131 (|t#3| $)) (-15 -2729 ((-707) $)) (-15 -3797 ($ $)) (-15 -1845 ($ $)) (-15 -3830 ($ $)) (-15 -2616 ($ $)) (-15 -2774 ((-587 $) $)) (-15 -2158 ($ $)) (-15 -3140 ($ $ |t#3|)) (-15 -3157 ($ $ |t#3|)) (-15 -2895 ((-108) $)) (-15 -4069 ((-108) $)) (-15 -3894 ($ $)) (-15 -2019 ($ $)) (-15 -3276 ((-587 $) $)) (-15 -3232 ((-587 $) $)) (-15 -2846 ((-3 (-108) "failed") $ $)) (-15 -3069 ((-108) $ $)) (-15 -3071 ((-108) $ $)) (-15 -3369 ((-108) $ $)) (-15 -3369 ((-108) $ (-587 $))) (-15 -2941 ((-108) $ $)) (-15 -2941 ((-108) $ (-587 $))) (-15 -2626 ((-108) $ $)) (-15 -2626 ((-108) $ (-587 $))) (-15 -4188 ((-108) $ $)) (-15 -4188 ((-108) $ (-587 $))) (-15 -3158 ($ $ $)) (-15 -2803 ($ $ $)) (-15 -3158 ($ $ $ |t#3|)) (-15 -2803 ($ $ $ |t#3|)) (-15 -2743 ($ $ $)) (-15 -3142 ($ $ $)) (-15 -2743 ($ $ $ |t#3|)) (-15 -3142 ($ $ $ |t#3|)) (-15 -3297 ((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $)) (-15 -3297 ((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -2334 $)) $ $ |t#3|)) (-15 -3051 ((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3051 ((-2 (|:| -2979 $) (|:| |gap| (-707)) (|:| -3852 $) (|:| -2334 $)) $ $ |t#3|)) (-15 -2483 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -2883 ($ $ $)) (-15 -3818 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3214 (-707))) $ $)) (-15 -1896 ($ $ $)) (-15 -3432 ($ $ $)) (IF (|has| |t#3| (-562 (-1084))) (PROGN (-6 (-561 (-880 |t#1|))) (-6 (-562 (-880 |t#1|))) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -1296 ((-3 $ "failed") (-880 (-381 (-521))))) (-15 -1496 ($ (-880 (-381 (-521))))) (-15 -1438 ($ (-880 (-381 (-521))))) (-15 -1296 ((-3 $ "failed") (-880 (-521)))) (-15 -1496 ($ (-880 (-521)))) (-15 -1438 ($ (-880 (-521)))) (IF (|has| |t#1| (-918 (-521))) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 |t#1|))) (-15 -1496 ($ (-880 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-521))) (IF (|has| |t#1| (-37 (-381 (-521)))) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 (-521)))) (-15 -1496 ($ (-880 (-521)))) (-15 -1438 ($ (-880 (-521)))) (IF (|has| |t#1| (-506)) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 |t#1|))) (-15 -1496 ($ (-880 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-521))) |%noBranch| (IF (|has| |t#1| (-37 (-381 (-521)))) |%noBranch| (PROGN (-15 -1296 ((-3 $ "failed") (-880 |t#1|))) (-15 -1496 ($ (-880 |t#1|)))))) (-15 -1438 ($ (-880 |t#1|))) (IF (|has| |t#1| (-961 (-521))) (-6 (-562 (-1067))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-15 -3629 ($ $)) (-15 -1328 ($ $)) (-15 -1301 ($ $ |t#1|)) (-15 -2270 ($ $ |t#1|)) (-15 -1301 ($ $ $)) (-15 -2270 ($ $ $)) (-15 -4127 ($ $ $)) (-15 -1441 ((-2 (|:| -2286 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4108 ((-2 (|:| -2286 $) (|:| |coef1| $)) $ $)) (-15 -3282 ((-2 (|:| -2286 $) (|:| |coef2| $)) $ $)) (-15 -3052 ($ $ $)) (-15 -2000 ((-587 $) $ $)) (-15 -3543 ($ $ $)) (-15 -1829 ($ $ $ (-707))) (-15 -1983 ($ $ $ $ (-707))) (-15 -2737 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-425)) (PROGN (-15 -2286 (|t#1| |t#1| $)) (-15 -1870 ($ $)) (-15 -2575 ($ $)) (-15 -2435 ($ $)) (-15 -1217 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-561 (-880 |#1|)) |has| |#3| (-562 (-1084))) ((-157) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| |#1| (-562 (-497))) (|has| |#3| (-562 (-497)))) ((-562 (-820 (-353))) -12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#3| (-562 (-820 (-353))))) ((-562 (-820 (-521))) -12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#3| (-562 (-820 (-521))))) ((-562 (-880 |#1|)) |has| |#3| (-562 (-1084))) ((-562 (-1067)) -12 (|has| |#1| (-961 (-521))) (|has| |#3| (-562 (-1084)))) ((-265) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-284 $) . T) ((-300 |#1| |#2|) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-837)) (|has| |#1| (-425))) ((-482 |#3| |#1|) . T) ((-482 |#3| $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425))) ((-663) . T) ((-783) |has| |#1| (-783)) ((-828 |#3|) . T) ((-814 (-353)) -12 (|has| |#1| (-814 (-353))) (|has| |#3| (-814 (-353)))) ((-814 (-521)) -12 (|has| |#1| (-814 (-521))) (|has| |#3| (-814 (-521)))) ((-877 |#1| |#2| |#3|) . T) ((-837) |has| |#1| (-837)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 |#1|) . T) ((-961 |#3|) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) |has| |#1| (-837)))
-((-3398 (((-108) |#3| $) 13)) (-1444 (((-3 $ "failed") |#3| (-849)) 23)) (-2783 (((-3 |#3| "failed") |#3| $) 37)) (-2273 (((-108) |#3| $) 16)) (-3305 (((-108) |#3| $) 14)))
-(((-985 |#1| |#2| |#3|) (-10 -8 (-15 -1444 ((-3 |#1| "failed") |#3| (-849))) (-15 -2783 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2273 ((-108) |#3| |#1|)) (-15 -3305 ((-108) |#3| |#1|)) (-15 -3398 ((-108) |#3| |#1|))) (-986 |#2| |#3|) (-13 (-781) (-337)) (-1141 |#2|)) (T -985))
-NIL
-(-10 -8 (-15 -1444 ((-3 |#1| "failed") |#3| (-849))) (-15 -2783 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2273 ((-108) |#3| |#1|)) (-15 -3305 ((-108) |#3| |#1|)) (-15 -3398 ((-108) |#3| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) |#2| $) 21)) (-2578 (((-521) |#2| $) 22)) (-1444 (((-3 $ "failed") |#2| (-849)) 15)) (-1843 ((|#1| |#2| $ |#1|) 13)) (-2783 (((-3 |#2| "failed") |#2| $) 18)) (-2273 (((-108) |#2| $) 19)) (-3305 (((-108) |#2| $) 20)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-3436 ((|#2| $) 17)) (-2223 (((-791) $) 11)) (-3893 ((|#1| |#2| $ |#1|) 14)) (-3724 (((-587 $) |#2|) 16)) (-1549 (((-108) $ $) 6)))
-(((-986 |#1| |#2|) (-1196) (-13 (-781) (-337)) (-1141 |t#1|)) (T -986))
-((-2578 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-521)))) (-3398 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-108)))) (-3305 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-108)))) (-2273 (*1 *2 *3 *1) (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-108)))) (-2783 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-781) (-337))) (-4 *2 (-1141 *3)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-781) (-337))) (-4 *2 (-1141 *3)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-13 (-781) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-587 *1)) (-4 *1 (-986 *4 *3)))) (-1444 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-849)) (-4 *4 (-13 (-781) (-337))) (-4 *1 (-986 *4 *2)) (-4 *2 (-1141 *4)))) (-3893 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-781) (-337))) (-4 *3 (-1141 *2)))) (-1843 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-781) (-337))) (-4 *3 (-1141 *2)))))
-(-13 (-1013) (-10 -8 (-15 -2578 ((-521) |t#2| $)) (-15 -3398 ((-108) |t#2| $)) (-15 -3305 ((-108) |t#2| $)) (-15 -2273 ((-108) |t#2| $)) (-15 -2783 ((-3 |t#2| "failed") |t#2| $)) (-15 -3436 (|t#2| $)) (-15 -3724 ((-587 $) |t#2|)) (-15 -1444 ((-3 $ "failed") |t#2| (-849))) (-15 -3893 (|t#1| |t#2| $ |t#1|)) (-15 -1843 (|t#1| |t#2| $ |t#1|))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-3468 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-707)) 96)) (-1533 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707)) 55)) (-1964 (((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-707)) 87)) (-4160 (((-707) (-587 |#4|) (-587 |#5|)) 27)) (-1789 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707)) 57) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707) (-108)) 59)) (-3593 (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108)) 79)) (-1438 (((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) 82)) (-3962 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-108)) 54)) (-2820 (((-707) (-587 |#4|) (-587 |#5|)) 19)))
-(((-987 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2820 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -4160 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -3962 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-108))) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3468 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-707))) (-15 -1438 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1964 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-707)))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -987))
-((-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9)))) (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-1170)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1067)) (-5 *1 (-987 *4 *5 *6 *7 *8)))) (-3468 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-587 *11)) (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1946 *11)))))) (-5 *6 (-707)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1946 *11)))) (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9)) (-4 *11 (-989 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-783)) (-5 *1 (-987 *7 *8 *9 *10 *11)))) (-3593 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-3593 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-1789 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1789 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-1789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-783)) (-4 *3 (-984 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-987 *7 *8 *9 *3 *4)) (-4 *4 (-989 *7 *8 *9 *3)))) (-1533 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1533 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-3962 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2820 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -4160 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -3962 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-108))) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3468 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-707))) (-15 -1438 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1964 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-707))))
-((-4008 (((-108) |#5| $) 21)) (-3547 (((-108) |#5| $) 24)) (-1781 (((-108) |#5| $) 16) (((-108) $) 45)) (-1802 (((-587 $) |#5| $) NIL) (((-587 $) (-587 |#5|) $) 77) (((-587 $) (-587 |#5|) (-587 $)) 75) (((-587 $) |#5| (-587 $)) 78)) (-2191 (($ $ |#5|) NIL) (((-587 $) |#5| $) NIL) (((-587 $) |#5| (-587 $)) 60) (((-587 $) (-587 |#5|) $) 62) (((-587 $) (-587 |#5|) (-587 $)) 64)) (-3077 (((-587 $) |#5| $) NIL) (((-587 $) |#5| (-587 $)) 54) (((-587 $) (-587 |#5|) $) 56) (((-587 $) (-587 |#5|) (-587 $)) 58)) (-3355 (((-108) |#5| $) 27)))
-(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2191 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -2191 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -2191 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -2191 ((-587 |#1|) |#5| |#1|)) (-15 -3077 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -3077 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -3077 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -3077 ((-587 |#1|) |#5| |#1|)) (-15 -1802 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -1802 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -1802 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -1802 ((-587 |#1|) |#5| |#1|)) (-15 -3547 ((-108) |#5| |#1|)) (-15 -1781 ((-108) |#1|)) (-15 -3355 ((-108) |#5| |#1|)) (-15 -4008 ((-108) |#5| |#1|)) (-15 -1781 ((-108) |#5| |#1|)) (-15 -2191 (|#1| |#1| |#5|))) (-989 |#2| |#3| |#4| |#5|) (-425) (-729) (-783) (-984 |#2| |#3| |#4|)) (T -988))
-NIL
-(-10 -8 (-15 -2191 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -2191 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -2191 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -2191 ((-587 |#1|) |#5| |#1|)) (-15 -3077 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -3077 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -3077 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -3077 ((-587 |#1|) |#5| |#1|)) (-15 -1802 ((-587 |#1|) |#5| (-587 |#1|))) (-15 -1802 ((-587 |#1|) (-587 |#5|) (-587 |#1|))) (-15 -1802 ((-587 |#1|) (-587 |#5|) |#1|)) (-15 -1802 ((-587 |#1|) |#5| |#1|)) (-15 -3547 ((-108) |#5| |#1|)) (-15 -1781 ((-108) |#1|)) (-15 -3355 ((-108) |#5| |#1|)) (-15 -4008 ((-108) |#5| |#1|)) (-15 -1781 ((-108) |#5| |#1|)) (-15 -2191 (|#1| |#1| |#5|)))
-((-1422 (((-108) $ $) 7)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) 85)) (-4137 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4085 (((-587 |#3|) $) 33)) (-2856 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) 101) (((-108) $) 97)) (-1613 ((|#4| |#4| $) 92)) (-2694 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| $) 126)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-108) $ (-707)) 44)) (-1658 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2231 (($) 45 T CONST)) (-1616 (((-108) $) 22 (|has| |#1| (-513)))) (-3514 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3515 (((-108) $ $) 23 (|has| |#1| (-513)))) (-2512 (((-108) $) 25 (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2122 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 36)) (-1496 (($ (-587 |#4|)) 35)) (-2329 (((-3 $ "failed") $) 82)) (-1910 ((|#4| |#4| $) 89)) (-2354 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1860 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) 105)) (-4008 (((-108) |#4| $) 136)) (-3547 (((-108) |#4| $) 133)) (-1781 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) 104) (((-108) $) 103)) (-3131 ((|#3| $) 34)) (-1513 (((-108) $ (-707)) 43)) (-3568 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 47)) (-2963 (((-587 |#3|) $) 32)) (-4065 (((-108) |#3| $) 31)) (-2859 (((-108) $ (-707)) 42)) (-4024 (((-1067) $) 9)) (-3207 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-3543 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| |#4| $) 127)) (-1450 (((-3 |#4| "failed") $) 83)) (-1732 (((-587 $) |#4| $) 129)) (-2051 (((-3 (-108) (-587 $)) |#4| $) 132)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1802 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3691 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2942 (((-587 |#4|) $) 107)) (-2626 (((-108) |#4| $) 99) (((-108) $) 95)) (-3432 ((|#4| |#4| $) 90)) (-3069 (((-108) $ $) 110)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) 100) (((-108) $) 96)) (-1896 ((|#4| |#4| $) 91)) (-4146 (((-1031) $) 10)) (-2319 (((-3 |#4| "failed") $) 84)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1314 (((-3 $ "failed") $ |#4|) 78)) (-2191 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1936 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) 38)) (-1447 (((-108) $) 41)) (-2280 (($) 40)) (-2098 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2420 (($ $) 39)) (-1438 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 60)) (-3680 (($ $ |#3|) 28)) (-2600 (($ $ |#3|) 30)) (-2404 (($ $) 88)) (-2222 (($ $ |#3|) 29)) (-2223 (((-791) $) 11) (((-587 |#4|) $) 37)) (-2537 (((-707) $) 76 (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-3077 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-2006 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) 81)) (-3355 (((-108) |#4| $) 135)) (-2567 (((-108) |#3| $) 80)) (-1549 (((-108) $ $) 6)) (-3478 (((-707) $) 46 (|has| $ (-6 -4233)))))
-(((-989 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-783) (-984 |t#1| |t#2| |t#3|)) (T -989))
-((-1781 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-4008 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3355 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3547 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-2051 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 (-108) (-587 *1))) (-4 *1 (-989 *4 *5 *6 *3)))) (-1437 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *1)))) (-4 *1 (-989 *4 *5 *6 *3)))) (-1437 (*1 *2 *3 *1) (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-1732 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-3207 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 *3 (-587 *1))) (-4 *1 (-989 *4 *5 *6 *3)))) (-3543 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *1)))) (-4 *1 (-989 *4 *5 *6 *3)))) (-2694 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *1)))) (-4 *1 (-989 *4 *5 *6 *3)))) (-1802 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-1802 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *7)))) (-1802 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)))) (-1802 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)))) (-3077 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-3077 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)))) (-3077 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *7)))) (-3077 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)))) (-3691 (*1 *1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-3691 (*1 *1 *2 *1) (-12 (-5 *2 (-587 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)))) (-2191 (*1 *2 *3 *1) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)))) (-2191 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)))) (-2191 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *7)))) (-2191 (*1 *2 *3 *2) (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)))) (-4137 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-989 *5 *6 *7 *8)))))
-(-13 (-1113 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1781 ((-108) |t#4| $)) (-15 -4008 ((-108) |t#4| $)) (-15 -3355 ((-108) |t#4| $)) (-15 -1781 ((-108) $)) (-15 -3547 ((-108) |t#4| $)) (-15 -2051 ((-3 (-108) (-587 $)) |t#4| $)) (-15 -1437 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |t#4| $)) (-15 -1437 ((-108) |t#4| $)) (-15 -1732 ((-587 $) |t#4| $)) (-15 -3207 ((-3 |t#4| (-587 $)) |t#4| |t#4| $)) (-15 -3543 ((-587 (-2 (|:| |val| |t#4|) (|:| -1946 $))) |t#4| |t#4| $)) (-15 -2694 ((-587 (-2 (|:| |val| |t#4|) (|:| -1946 $))) |t#4| $)) (-15 -1802 ((-587 $) |t#4| $)) (-15 -1802 ((-587 $) (-587 |t#4|) $)) (-15 -1802 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -1802 ((-587 $) |t#4| (-587 $))) (-15 -3077 ((-587 $) |t#4| $)) (-15 -3077 ((-587 $) |t#4| (-587 $))) (-15 -3077 ((-587 $) (-587 |t#4|) $)) (-15 -3077 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -3691 ($ |t#4| $)) (-15 -3691 ($ (-587 |t#4|) $)) (-15 -2191 ((-587 $) |t#4| $)) (-15 -2191 ((-587 $) |t#4| (-587 $))) (-15 -2191 ((-587 $) (-587 |t#4|) $)) (-15 -2191 ((-587 $) (-587 |t#4|) (-587 $))) (-15 -4137 ((-587 $) (-587 |t#4|) (-108)))))
-(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-791)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
-((-3533 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|) 81)) (-3042 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|) 113)) (-1581 (((-587 |#5|) |#4| |#5|) 70)) (-2097 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-2133 (((-1170)) 35)) (-4071 (((-1170)) 25)) (-4096 (((-1170) (-1067) (-1067) (-1067)) 31)) (-2653 (((-1170) (-1067) (-1067) (-1067)) 20)) (-3065 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#4| |#4| |#5|) 96)) (-3217 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#3| (-108)) 107) (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-1654 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|) 102)))
-(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2653 ((-1170) (-1067) (-1067) (-1067))) (-15 -4071 ((-1170))) (-15 -4096 ((-1170) (-1067) (-1067) (-1067))) (-15 -2133 ((-1170))) (-15 -3065 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -3217 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3217 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#3| (-108))) (-15 -1654 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -3042 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -2097 ((-108) |#4| |#5|)) (-15 -2097 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -1581 ((-587 |#5|) |#4| |#5|)) (-15 -3533 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -990))
-((-3533 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1581 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2097 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2097 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3042 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1654 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9)))) (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-783)) (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1946 *9)))) (-5 *1 (-990 *6 *7 *4 *8 *9)))) (-3217 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-3065 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))) (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2133 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-4096 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-4071 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-2653 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2653 ((-1170) (-1067) (-1067) (-1067))) (-15 -4071 ((-1170))) (-15 -4096 ((-1170) (-1067) (-1067) (-1067))) (-15 -2133 ((-1170))) (-15 -3065 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -3217 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3217 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#3| (-108))) (-15 -1654 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -3042 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -2097 ((-108) |#4| |#5|)) (-15 -2097 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -1581 ((-587 |#5|) |#4| |#5|)) (-15 -3533 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|)))
-((-1422 (((-108) $ $) NIL)) (-2890 (((-1084) $) 8)) (-4024 (((-1067) $) 16)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 13)))
-(((-991 |#1|) (-13 (-1013) (-10 -8 (-15 -2890 ((-1084) $)))) (-1084)) (T -991))
-((-2890 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-991 *3)) (-14 *3 *2))))
-(-13 (-1013) (-10 -8 (-15 -2890 ((-1084) $))))
-((-1422 (((-108) $ $) NIL)) (-1932 (($ $ (-587 (-1084)) (-1 (-108) (-587 |#3|))) 29)) (-1361 (($ |#3| |#3|) 21) (($ |#3| |#3| (-587 (-1084))) 19)) (-3597 ((|#3| $) 13)) (-1296 (((-3 (-269 |#3|) "failed") $) 56)) (-1496 (((-269 |#3|) $) NIL)) (-2961 (((-587 (-1084)) $) 15)) (-1379 (((-820 |#1|) $) 11)) (-3588 ((|#3| $) 12)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2550 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-849)) 36)) (-2223 (((-791) $) 85) (($ (-269 |#3|)) 20)) (-1549 (((-108) $ $) 33)))
-(((-992 |#1| |#2| |#3|) (-13 (-1013) (-261 |#3| |#3|) (-961 (-269 |#3|)) (-10 -8 (-15 -1361 ($ |#3| |#3|)) (-15 -1361 ($ |#3| |#3| (-587 (-1084)))) (-15 -1932 ($ $ (-587 (-1084)) (-1 (-108) (-587 |#3|)))) (-15 -1379 ((-820 |#1|) $)) (-15 -3588 (|#3| $)) (-15 -3597 (|#3| $)) (-15 -2550 (|#3| $ |#3| (-849))) (-15 -2961 ((-587 (-1084)) $)))) (-1013) (-13 (-970) (-814 |#1|) (-783) (-562 (-820 |#1|))) (-13 (-404 |#2|) (-814 |#1|) (-562 (-820 |#1|)))) (T -992))
-((-1361 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3)))) (-5 *1 (-992 *3 *4 *2)) (-4 *2 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))))) (-1361 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4)))) (-5 *1 (-992 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))))) (-1932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1 (-108) (-587 *6))) (-4 *6 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4)))) (-5 *1 (-992 *4 *5 *6)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 *2))) (-5 *2 (-820 *3)) (-5 *1 (-992 *3 *4 *5)) (-4 *5 (-13 (-404 *4) (-814 *3) (-562 *2))))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))) (-5 *1 (-992 *3 *4 *2)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3)))))) (-3597 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))) (-5 *1 (-992 *3 *4 *2)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3)))))) (-2550 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-849)) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4)))) (-5 *1 (-992 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))))) (-2961 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3)))) (-5 *2 (-587 (-1084))) (-5 *1 (-992 *3 *4 *5)) (-4 *5 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))))))
-(-13 (-1013) (-261 |#3| |#3|) (-961 (-269 |#3|)) (-10 -8 (-15 -1361 ($ |#3| |#3|)) (-15 -1361 ($ |#3| |#3| (-587 (-1084)))) (-15 -1932 ($ $ (-587 (-1084)) (-1 (-108) (-587 |#3|)))) (-15 -1379 ((-820 |#1|) $)) (-15 -3588 (|#3| $)) (-15 -3597 (|#3| $)) (-15 -2550 (|#3| $ |#3| (-849))) (-15 -2961 ((-587 (-1084)) $))))
-((-1422 (((-108) $ $) NIL)) (-1897 (($ (-587 (-992 |#1| |#2| |#3|))) 12)) (-3298 (((-587 (-992 |#1| |#2| |#3|)) $) 19)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2550 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-849)) 25)) (-2223 (((-791) $) 15)) (-1549 (((-108) $ $) 18)))
-(((-993 |#1| |#2| |#3|) (-13 (-1013) (-261 |#3| |#3|) (-10 -8 (-15 -1897 ($ (-587 (-992 |#1| |#2| |#3|)))) (-15 -3298 ((-587 (-992 |#1| |#2| |#3|)) $)) (-15 -2550 (|#3| $ |#3| (-849))))) (-1013) (-13 (-970) (-814 |#1|) (-783) (-562 (-820 |#1|))) (-13 (-404 |#2|) (-814 |#1|) (-562 (-820 |#1|)))) (T -993))
-((-1897 (*1 *1 *2) (-12 (-5 *2 (-587 (-992 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3)))) (-4 *5 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))) (-5 *1 (-993 *3 *4 *5)))) (-3298 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3)))) (-5 *2 (-587 (-992 *3 *4 *5))) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))))) (-2550 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-849)) (-4 *4 (-1013)) (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))))))
-(-13 (-1013) (-261 |#3| |#3|) (-10 -8 (-15 -1897 ($ (-587 (-992 |#1| |#2| |#3|)))) (-15 -3298 ((-587 (-992 |#1| |#2| |#3|)) $)) (-15 -2550 (|#3| $ |#3| (-849)))))
-((-3472 (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108)) 74) (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|))) 76) (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108)) 75)))
-(((-994 |#1| |#2|) (-10 -7 (-15 -3472 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108))) (-15 -3472 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)))) (-15 -3472 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108)))) (-13 (-282) (-135)) (-587 (-1084))) (T -994))
-((-3472 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5)))))) (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-880 *5))) (-14 *6 (-587 (-1084))))) (-3472 (*1 *2 *3) (-12 (-4 *4 (-13 (-282) (-135))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *4)) (|:| -1816 (-587 (-880 *4)))))) (-5 *1 (-994 *4 *5)) (-5 *3 (-587 (-880 *4))) (-14 *5 (-587 (-1084))))) (-3472 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5)))))) (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-880 *5))) (-14 *6 (-587 (-1084))))))
-(-10 -7 (-15 -3472 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108))) (-15 -3472 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)))) (-15 -3472 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108))))
-((-1974 (((-392 |#3|) |#3|) 16)))
-(((-995 |#1| |#2| |#3|) (-10 -7 (-15 -1974 ((-392 |#3|) |#3|))) (-1141 (-381 (-521))) (-13 (-337) (-135) (-661 (-381 (-521)) |#1|)) (-1141 |#2|)) (T -995))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-13 (-337) (-135) (-661 (-381 (-521)) *4))) (-5 *2 (-392 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1141 *5)))))
-(-10 -7 (-15 -1974 ((-392 |#3|) |#3|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 125)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-337)))) (-1954 (($ $) NIL (|has| |#1| (-337)))) (-3795 (((-108) $) NIL (|has| |#1| (-337)))) (-1299 (((-627 |#1|) (-1165 $)) NIL) (((-627 |#1|)) 115)) (-1927 ((|#1| $) 119)) (-2130 (((-1093 (-849) (-707)) (-521)) NIL (|has| |#1| (-323)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-1659 (((-707)) 40 (|has| |#1| (-342)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3190 (($ (-1165 |#1|) (-1165 $)) NIL) (($ (-1165 |#1|)) 43)) (-3386 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-323)))) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3998 (((-627 |#1|) $ (-1165 $)) NIL) (((-627 |#1|) $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 106) (((-627 |#1|) (-627 $)) 100)) (-3859 (($ |#2|) 61) (((-3 $ "failed") (-381 |#2|)) NIL (|has| |#1| (-337)))) (-2783 (((-3 $ "failed") $) NIL)) (-3167 (((-849)) 77)) (-3254 (($) 44 (|has| |#1| (-342)))) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2464 (($) NIL (|has| |#1| (-323)))) (-3299 (((-108) $) NIL (|has| |#1| (-323)))) (-1375 (($ $ (-707)) NIL (|has| |#1| (-323))) (($ $) NIL (|has| |#1| (-323)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-3490 (((-849) $) NIL (|has| |#1| (-323))) (((-769 (-849)) $) NIL (|has| |#1| (-323)))) (-3637 (((-108) $) NIL)) (-2549 ((|#1| $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-323)))) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3769 ((|#2| $) 84 (|has| |#1| (-337)))) (-3999 (((-849) $) 130 (|has| |#1| (-342)))) (-3843 ((|#2| $) 58)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-3797 (($) NIL (|has| |#1| (-323)) CONST)) (-2723 (($ (-849)) 124 (|has| |#1| (-342)))) (-4146 (((-1031) $) NIL)) (-1384 (($) 121)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-2789 (((-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))) NIL (|has| |#1| (-323)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-3011 ((|#1| (-1165 $)) NIL) ((|#1|) 109)) (-3660 (((-707) $) NIL (|has| |#1| (-323))) (((-3 (-707) "failed") $ $) NIL (|has| |#1| (-323)))) (-2193 (($ $) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-1 |#1| |#1|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-3785 (((-627 |#1|) (-1165 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-3436 ((|#2|) 73)) (-3923 (($) NIL (|has| |#1| (-323)))) (-1816 (((-1165 |#1|) $ (-1165 $)) 89) (((-627 |#1|) (-1165 $) (-1165 $)) NIL) (((-1165 |#1|) $) 71) (((-627 |#1|) (-1165 $)) 85)) (-1438 (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (|has| |#1| (-323)))) (-2223 (((-791) $) 57) (($ (-521)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-337))) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-337)) (|has| |#1| (-961 (-381 (-521))))))) (-2446 (($ $) NIL (|has| |#1| (-323))) (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-3379 ((|#2| $) 82)) (-1592 (((-707)) 75)) (-1245 (((-1165 $)) 81)) (-1842 (((-108) $ $) NIL (|has| |#1| (-337)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 30 T CONST)) (-3572 (($) 19 T CONST)) (-2244 (($ $) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#1| (-210)) (|has| |#1| (-337))) (|has| |#1| (-323)))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-337)) (|has| |#1| (-828 (-1084))))) (($ $ (-1 |#1| |#1|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-337)))) (-1549 (((-108) $ $) 63)) (-1648 (($ $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) 67) (($ $ $) NIL)) (-1628 (($ $ $) 65)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-381 (-521)) $) NIL (|has| |#1| (-337))) (($ $ (-381 (-521))) NIL (|has| |#1| (-337)))))
-(((-996 |#1| |#2| |#3|) (-661 |#1| |#2|) (-157) (-1141 |#1|) |#2|) (T -996))
-NIL
-(-661 |#1| |#2|)
-((-1974 (((-392 |#3|) |#3|) 16)))
-(((-997 |#1| |#2| |#3|) (-10 -7 (-15 -1974 ((-392 |#3|) |#3|))) (-1141 (-381 (-880 (-521)))) (-13 (-337) (-135) (-661 (-381 (-880 (-521))) |#1|)) (-1141 |#2|)) (T -997))
-((-1974 (*1 *2 *3) (-12 (-4 *4 (-1141 (-381 (-880 (-521))))) (-4 *5 (-13 (-337) (-135) (-661 (-381 (-880 (-521))) *4))) (-5 *2 (-392 *3)) (-5 *1 (-997 *4 *5 *3)) (-4 *3 (-1141 *5)))))
-(-10 -7 (-15 -1974 ((-392 |#3|) |#3|)))
-((-1422 (((-108) $ $) NIL)) (-2816 (($ $ $) 14)) (-2459 (($ $ $) 15)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1633 (($) 6)) (-1438 (((-1084) $) 18)) (-2223 (((-791) $) 12)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 13)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 8)))
-(((-998) (-13 (-783) (-10 -8 (-15 -1633 ($)) (-15 -1438 ((-1084) $))))) (T -998))
-((-1633 (*1 *1) (-5 *1 (-998))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-998)))))
-(-13 (-783) (-10 -8 (-15 -1633 ($)) (-15 -1438 ((-1084) $))))
-((-3072 ((|#1| |#1| (-1 (-521) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1568 (((-1170)) 15)) (-2876 (((-587 |#1|)) 9)))
-(((-999 |#1|) (-10 -7 (-15 -1568 ((-1170))) (-15 -2876 ((-587 |#1|))) (-15 -3072 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3072 (|#1| |#1| (-1 (-521) |#1| |#1|)))) (-125)) (T -999))
-((-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-521) *2 *2)) (-4 *2 (-125)) (-5 *1 (-999 *2)))) (-3072 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-999 *2)))) (-2876 (*1 *2) (-12 (-5 *2 (-587 *3)) (-5 *1 (-999 *3)) (-4 *3 (-125)))) (-1568 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-999 *3)) (-4 *3 (-125)))))
-(-10 -7 (-15 -1568 ((-1170))) (-15 -2876 ((-587 |#1|))) (-15 -3072 (|#1| |#1| (-1 (-108) |#1|))) (-15 -3072 (|#1| |#1| (-1 (-521) |#1| |#1|))))
-((-1238 (($ (-104) $) 15)) (-3443 (((-3 (-104) "failed") (-1084) $) 13)) (-2280 (($) 6)) (-4180 (($) 16)) (-3410 (($) 17)) (-3163 (((-587 (-159)) $) 8)) (-2223 (((-791) $) 20)))
-(((-1000) (-13 (-561 (-791)) (-10 -8 (-15 -2280 ($)) (-15 -3163 ((-587 (-159)) $)) (-15 -3443 ((-3 (-104) "failed") (-1084) $)) (-15 -1238 ($ (-104) $)) (-15 -4180 ($)) (-15 -3410 ($))))) (T -1000))
-((-2280 (*1 *1) (-5 *1 (-1000))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-587 (-159))) (-5 *1 (-1000)))) (-3443 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-1000)))) (-1238 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1000)))) (-4180 (*1 *1) (-5 *1 (-1000))) (-3410 (*1 *1) (-5 *1 (-1000))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2280 ($)) (-15 -3163 ((-587 (-159)) $)) (-15 -3443 ((-3 (-104) "failed") (-1084) $)) (-15 -1238 ($ (-104) $)) (-15 -4180 ($)) (-15 -3410 ($))))
-((-2772 (((-1165 (-627 |#1|)) (-587 (-627 |#1|))) 41) (((-1165 (-627 (-880 |#1|))) (-587 (-1084)) (-627 (-880 |#1|))) 61) (((-1165 (-627 (-381 (-880 |#1|)))) (-587 (-1084)) (-627 (-381 (-880 |#1|)))) 77)) (-1816 (((-1165 |#1|) (-627 |#1|) (-587 (-627 |#1|))) 35)))
-(((-1001 |#1|) (-10 -7 (-15 -2772 ((-1165 (-627 (-381 (-880 |#1|)))) (-587 (-1084)) (-627 (-381 (-880 |#1|))))) (-15 -2772 ((-1165 (-627 (-880 |#1|))) (-587 (-1084)) (-627 (-880 |#1|)))) (-15 -2772 ((-1165 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -1816 ((-1165 |#1|) (-627 |#1|) (-587 (-627 |#1|))))) (-337)) (T -1001))
-((-1816 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-627 *5))) (-5 *3 (-627 *5)) (-4 *5 (-337)) (-5 *2 (-1165 *5)) (-5 *1 (-1001 *5)))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-1001 *4)))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337)) (-5 *2 (-1165 (-627 (-880 *5)))) (-5 *1 (-1001 *5)) (-5 *4 (-627 (-880 *5))))) (-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337)) (-5 *2 (-1165 (-627 (-381 (-880 *5))))) (-5 *1 (-1001 *5)) (-5 *4 (-627 (-381 (-880 *5)))))))
-(-10 -7 (-15 -2772 ((-1165 (-627 (-381 (-880 |#1|)))) (-587 (-1084)) (-627 (-381 (-880 |#1|))))) (-15 -2772 ((-1165 (-627 (-880 |#1|))) (-587 (-1084)) (-627 (-880 |#1|)))) (-15 -2772 ((-1165 (-627 |#1|)) (-587 (-627 |#1|)))) (-15 -1816 ((-1165 |#1|) (-627 |#1|) (-587 (-627 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-1452 (((-587 (-707)) $) NIL) (((-587 (-707)) $ (-1084)) NIL)) (-3245 (((-707) $) NIL) (((-707) $ (-1084)) NIL)) (-4085 (((-587 (-1003 (-1084))) $) NIL)) (-1280 (((-1080 $) $ (-1003 (-1084))) NIL) (((-1080 |#1|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-1003 (-1084)))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-3234 (($ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-1003 (-1084)) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL) (((-3 (-1036 |#1| (-1084)) "failed") $) NIL)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-1003 (-1084)) $) NIL) (((-1084) $) NIL) (((-1036 |#1| (-1084)) $) NIL)) (-3052 (($ $ $ (-1003 (-1084))) NIL (|has| |#1| (-157)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ (-1003 (-1084))) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-493 (-1003 (-1084))) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-1003 (-1084)) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-1003 (-1084)) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3490 (((-707) $ (-1084)) NIL) (((-707) $) NIL)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-4068 (($ (-1080 |#1|) (-1003 (-1084))) NIL) (($ (-1080 $) (-1003 (-1084))) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-493 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-1003 (-1084))) NIL)) (-2401 (((-493 (-1003 (-1084))) $) NIL) (((-707) $ (-1003 (-1084))) NIL) (((-587 (-707)) $ (-587 (-1003 (-1084)))) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-493 (-1003 (-1084))) (-493 (-1003 (-1084)))) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2308 (((-1 $ (-707)) (-1084)) NIL) (((-1 $ (-707)) $) NIL (|has| |#1| (-210)))) (-2913 (((-3 (-1003 (-1084)) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-1593 (((-1003 (-1084)) $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3742 (((-108) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-1003 (-1084))) (|:| -2246 (-707))) "failed") $) NIL)) (-1959 (($ $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-1003 (-1084)) |#1|) NIL) (($ $ (-587 (-1003 (-1084))) (-587 |#1|)) NIL) (($ $ (-1003 (-1084)) $) NIL) (($ $ (-587 (-1003 (-1084))) (-587 $)) NIL) (($ $ (-1084) $) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 $)) NIL (|has| |#1| (-210))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-210))) (($ $ (-587 (-1084)) (-587 |#1|)) NIL (|has| |#1| (-210)))) (-3011 (($ $ (-1003 (-1084))) NIL (|has| |#1| (-157)))) (-2193 (($ $ (-1003 (-1084))) NIL) (($ $ (-587 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1279 (((-587 (-1084)) $) NIL)) (-2098 (((-493 (-1003 (-1084))) $) NIL) (((-707) $ (-1003 (-1084))) NIL) (((-587 (-707)) $ (-587 (-1003 (-1084)))) NIL) (((-707) $ (-1084)) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-1003 (-1084)) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-1003 (-1084)) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-1003 (-1084)) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) NIL (|has| |#1| (-425))) (($ $ (-1003 (-1084))) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-1003 (-1084))) NIL) (($ (-1084)) NIL) (($ (-1036 |#1| (-1084))) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-493 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-1003 (-1084))) NIL) (($ $ (-587 (-1003 (-1084)))) NIL) (($ $ (-1003 (-1084)) (-707)) NIL) (($ $ (-587 (-1003 (-1084))) (-587 (-707))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-707)) NIL (|has| |#1| (-210))) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1002 |#1|) (-13 (-229 |#1| (-1084) (-1003 (-1084)) (-493 (-1003 (-1084)))) (-961 (-1036 |#1| (-1084)))) (-970)) (T -1002))
-NIL
-(-13 (-229 |#1| (-1084) (-1003 (-1084)) (-493 (-1003 (-1084)))) (-961 (-1036 |#1| (-1084))))
-((-1422 (((-108) $ $) NIL)) (-3245 (((-707) $) NIL)) (-1638 ((|#1| $) 10)) (-1296 (((-3 |#1| "failed") $) NIL)) (-1496 ((|#1| $) NIL)) (-3490 (((-707) $) 11)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-2308 (($ |#1| (-707)) 9)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2193 (($ $) NIL) (($ $ (-707)) NIL)) (-2223 (((-791) $) NIL) (($ |#1|) NIL)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 15)))
-(((-1003 |#1|) (-242 |#1|) (-783)) (T -1003))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3510 (($ $ (-850)) 26)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-978) (-1197)) (T -978))
+NIL
+(-13 (-21) (-1026))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-124) . T) ((-562 (-792)) . T) ((-1026) . T) ((-1014) . T))
+((-2789 (($ $) 16)) (-2599 (($ $) 22)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 49)) (-2100 (($ $) 24)) (-3933 (($ $) 11)) (-3686 (($ $) 38)) (-1431 (((-354) $) NIL) (((-202) $) NIL) (((-821 (-354)) $) 33)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL) (($ (-382 (-522))) 28) (($ (-522)) NIL) (($ (-382 (-522))) 28)) (-2323 (((-708)) 8)) (-3025 (($ $) 39)))
+(((-979 |#1|) (-10 -8 (-15 -2599 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| (-522))) (-15 -1431 ((-202) |#1|)) (-15 -1431 ((-354) |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 -2190 ((-792) |#1|))) (-980)) (T -979))
+((-2323 (*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-979 *3)) (-4 *3 (-980)))))
+(-10 -8 (-15 -2599 (|#1| |#1|)) (-15 -2789 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -4011 ((-818 (-354) |#1|) |#1| (-821 (-354)) (-818 (-354) |#1|))) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| (-522))) (-15 -1431 ((-202) |#1|)) (-15 -1431 ((-354) |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-522))) (-15 -2323 ((-708))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2229 (((-522) $) 89)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-2789 (($ $) 87)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1929 (($ $) 97)) (-1687 (((-108) $ $) 59)) (-1341 (((-522) $) 114)) (-3175 (($) 17 T CONST)) (-2599 (($ $) 86)) (-1297 (((-3 (-522) "failed") $) 102) (((-3 (-382 (-522)) "failed") $) 99)) (-1484 (((-522) $) 101) (((-382 (-522)) $) 98)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2813 (((-108) $) 71)) (-3687 (((-108) $) 112)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 93)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 96)) (-2100 (($ $) 92)) (-2556 (((-108) $) 113)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2814 (($ $ $) 111)) (-2446 (($ $ $) 110)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-3933 (($ $) 88)) (-3686 (($ $) 90)) (-1916 (((-393 $) $) 74)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-1431 (((-354) $) 105) (((-202) $) 104) (((-821 (-354)) $) 94)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ (-522)) 103) (($ (-382 (-522))) 100)) (-2323 (((-708)) 29)) (-3025 (($ $) 91)) (-3958 (((-108) $ $) 39)) (-2241 (($ $) 115)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1574 (((-108) $ $) 108)) (-1558 (((-108) $ $) 107)) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 109)) (-1549 (((-108) $ $) 106)) (-1620 (($ $ $) 64)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68) (($ $ (-382 (-522))) 95)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66)))
+(((-980) (-1197)) (T -980))
+((-2241 (*1 *1 *1) (-4 *1 (-980))) (-2100 (*1 *1 *1) (-4 *1 (-980))) (-3025 (*1 *1 *1) (-4 *1 (-980))) (-3686 (*1 *1 *1) (-4 *1 (-980))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-522)))) (-3933 (*1 *1 *1) (-4 *1 (-980))) (-2789 (*1 *1 *1) (-4 *1 (-980))) (-2599 (*1 *1 *1) (-4 *1 (-980))))
+(-13 (-338) (-782) (-947) (-962 (-522)) (-962 (-382 (-522))) (-928) (-563 (-821 (-354))) (-815 (-354)) (-135) (-10 -8 (-15 -2100 ($ $)) (-15 -3025 ($ $)) (-15 -3686 ($ $)) (-15 -2229 ((-522) $)) (-15 -3933 ($ $)) (-15 -2789 ($ $)) (-15 -2599 ($ $)) (-15 -2241 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-124) . T) ((-135) . T) ((-562 (-792)) . T) ((-157) . T) ((-563 (-202)) . T) ((-563 (-354)) . T) ((-563 (-821 (-354))) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 $) . T) ((-664) . T) ((-728) . T) ((-729) . T) ((-731) . T) ((-732) . T) ((-782) . T) ((-784) . T) ((-815 (-354)) . T) ((-849) . T) ((-928) . T) ((-947) . T) ((-962 (-382 (-522))) . T) ((-962 (-522)) . T) ((-977 #0#) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) |#2| $) 23)) (-1629 ((|#1| $) 10)) (-1341 (((-522) |#2| $) 89)) (-3944 (((-3 $ "failed") |#2| (-850)) 58)) (-1924 ((|#1| $) 28)) (-3971 ((|#1| |#2| $ |#1|) 37)) (-1499 (($ $) 25)) (-2682 (((-3 |#2| "failed") |#2| $) 88)) (-3687 (((-108) |#2| $) NIL)) (-2556 (((-108) |#2| $) NIL)) (-3110 (((-108) |#2| $) 24)) (-1742 ((|#1| $) 90)) (-1913 ((|#1| $) 27)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1479 ((|#2| $) 80)) (-2190 (((-792) $) 71)) (-3898 ((|#1| |#2| $ |#1|) 38)) (-2479 (((-588 $) |#2|) 60)) (-1531 (((-108) $ $) 75)))
+(((-981 |#1| |#2|) (-13 (-987 |#1| |#2|) (-10 -8 (-15 -1913 (|#1| $)) (-15 -1924 (|#1| $)) (-15 -1629 (|#1| $)) (-15 -1742 (|#1| $)) (-15 -1499 ($ $)) (-15 -3110 ((-108) |#2| $)) (-15 -3971 (|#1| |#2| $ |#1|)))) (-13 (-782) (-338)) (-1142 |#1|)) (T -981))
+((-3971 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1913 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1924 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1629 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1742 (*1 *2 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-1499 (*1 *1 *1) (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3)) (-4 *3 (-1142 *2)))) (-3110 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-782) (-338))) (-5 *2 (-108)) (-5 *1 (-981 *4 *3)) (-4 *3 (-1142 *4)))))
+(-13 (-987 |#1| |#2|) (-10 -8 (-15 -1913 (|#1| $)) (-15 -1924 (|#1| $)) (-15 -1629 (|#1| $)) (-15 -1742 (|#1| $)) (-15 -1499 ($ $)) (-15 -3110 ((-108) |#2| $)) (-15 -3971 (|#1| |#2| $ |#1|))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-3871 (($ $ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3481 (($ $ $ $) NIL)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL)) (-1662 (($ $ $) NIL)) (-3175 (($) NIL T CONST)) (-2700 (($ (-1085)) 10) (($ (-522)) 7)) (-1297 (((-3 (-522) "failed") $) NIL)) (-1484 (((-522) $) NIL)) (-2277 (($ $ $) NIL)) (-2096 (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-628 (-522)) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL)) (-1770 (((-108) $) NIL)) (-1492 (((-382 (-522)) $) NIL)) (-3255 (($) NIL) (($ $) NIL)) (-2254 (($ $ $) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2676 (($ $ $ $) NIL)) (-2339 (($ $ $) NIL)) (-3687 (((-108) $) NIL)) (-3219 (($ $ $) NIL)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2782 (((-108) $) NIL)) (-2591 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $) NIL)) (-2556 (((-108) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1335 (($ $ $ $) NIL)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3893 (($ $) NIL)) (-2517 (($ $) NIL)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-2341 (($ $ $) NIL)) (-3802 (($) NIL T CONST)) (-2957 (($ $) NIL)) (-4151 (((-1032) $) NIL) (($ $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2868 (($ $) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1263 (((-108) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2157 (($ $ (-708)) NIL) (($ $) NIL)) (-3056 (($ $) NIL)) (-2404 (($ $) NIL)) (-1431 (((-522) $) 16) (((-498) $) NIL) (((-821 (-522)) $) NIL) (((-354) $) NIL) (((-202) $) NIL) (($ (-1085)) 9)) (-2190 (((-792) $) 20) (($ (-522)) 6) (($ $) NIL) (($ (-522)) 6)) (-2323 (((-708)) NIL)) (-3558 (((-108) $ $) NIL)) (-1480 (($ $ $) NIL)) (-3355 (($) NIL)) (-3958 (((-108) $ $) NIL)) (-4004 (($ $ $ $) NIL)) (-2241 (($ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) NIL)) (-1612 (($ $) 19) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL)))
+(((-982) (-13 (-507) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -1431 ($ (-1085))) (-15 -2700 ($ (-1085))) (-15 -2700 ($ (-522)))))) (T -982))
+((-1431 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982)))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982)))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-982)))))
+(-13 (-507) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -1431 ($ (-1085))) (-15 -2700 ($ (-1085))) (-15 -2700 ($ (-522)))))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-2679 (((-1171) $ (-1085) (-1085)) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-4196 (($) 9)) (-2379 (((-51) $ (-1085) (-51)) NIL)) (-2535 (($ $) 23)) (-3654 (($ $) 21)) (-2710 (($ $) 20)) (-2227 (($ $) 22)) (-1305 (($ $) 25)) (-3142 (($ $) 26)) (-2942 (($ $) 19)) (-3673 (($ $) 24)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) 18 (|has| $ (-6 -4238)))) (-2750 (((-3 (-51) "failed") (-1085) $) 34)) (-3175 (($) NIL T CONST)) (-1919 (($) 7)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-3859 (($ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) 46 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-3 (-51) "failed") (-1085) $) NIL)) (-1423 (($ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238)))) (-3464 (((-3 (-1068) "failed") $ (-1068) (-522)) 59)) (-3854 (((-51) $ (-1085) (-51)) NIL (|has| $ (-6 -4239)))) (-3631 (((-51) $ (-1085)) NIL)) (-3837 (((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-1085) $) NIL (|has| (-1085) (-784)))) (-3308 (((-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) 28 (|has| $ (-6 -4238))) (((-588 (-51)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-2014 (((-1085) $) NIL (|has| (-1085) (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4239))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-2966 (((-588 (-1085)) $) NIL)) (-1231 (((-108) (-1085) $) NIL)) (-2116 (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL)) (-4095 (($ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) 37)) (-3604 (((-588 (-1085)) $) NIL)) (-1405 (((-108) (-1085) $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-2811 (((-354) $ (-1085)) 45)) (-3364 (((-588 (-1068)) $ (-1068)) 60)) (-2294 (((-51) $) NIL (|has| (-1085) (-784)))) (-1414 (((-3 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) "failed") (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL)) (-2602 (($ $ (-51)) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-270 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL (-12 (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-285 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (($ $ (-588 (-51)) (-588 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-270 (-51))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014)))) (($ $ (-588 (-270 (-51)))) NIL (-12 (|has| (-51) (-285 (-51))) (|has| (-51) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014))))) (-1525 (((-588 (-51)) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 (((-51) $ (-1085)) NIL) (((-51) $ (-1085) (-51)) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-3448 (($ $ (-1085)) 47)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014)))) (((-708) (-51) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-51) (-1014)))) (((-708) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) 30)) (-4165 (($ $ $) 31)) (-2190 (((-792) $) NIL (-3708 (|has| (-51) (-562 (-792))) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-562 (-792)))))) (-1744 (($ $ (-1085) (-354)) 43)) (-2547 (($ $ (-1085) (-354)) 44)) (-2795 (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 (-1085)) (|:| -3048 (-51)))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-51) (-1014)) (|has| (-2 (|:| -2530 (-1085)) (|:| -3048 (-51))) (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-983) (-13 (-1097 (-1085) (-51)) (-10 -8 (-15 -4165 ($ $ $)) (-15 -1919 ($)) (-15 -2942 ($ $)) (-15 -2710 ($ $)) (-15 -3654 ($ $)) (-15 -2227 ($ $)) (-15 -3673 ($ $)) (-15 -2535 ($ $)) (-15 -1305 ($ $)) (-15 -3142 ($ $)) (-15 -1744 ($ $ (-1085) (-354))) (-15 -2547 ($ $ (-1085) (-354))) (-15 -2811 ((-354) $ (-1085))) (-15 -3364 ((-588 (-1068)) $ (-1068))) (-15 -3448 ($ $ (-1085))) (-15 -4196 ($)) (-15 -3464 ((-3 (-1068) "failed") $ (-1068) (-522))) (-6 -4238)))) (T -983))
+((-4165 (*1 *1 *1 *1) (-5 *1 (-983))) (-1919 (*1 *1) (-5 *1 (-983))) (-2942 (*1 *1 *1) (-5 *1 (-983))) (-2710 (*1 *1 *1) (-5 *1 (-983))) (-3654 (*1 *1 *1) (-5 *1 (-983))) (-2227 (*1 *1 *1) (-5 *1 (-983))) (-3673 (*1 *1 *1) (-5 *1 (-983))) (-2535 (*1 *1 *1) (-5 *1 (-983))) (-1305 (*1 *1 *1) (-5 *1 (-983))) (-3142 (*1 *1 *1) (-5 *1 (-983))) (-1744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983)))) (-2547 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983)))) (-2811 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-354)) (-5 *1 (-983)))) (-3364 (*1 *2 *1 *3) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-983)) (-5 *3 (-1068)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-983)))) (-4196 (*1 *1) (-5 *1 (-983))) (-3464 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-983)))))
+(-13 (-1097 (-1085) (-51)) (-10 -8 (-15 -4165 ($ $ $)) (-15 -1919 ($)) (-15 -2942 ($ $)) (-15 -2710 ($ $)) (-15 -3654 ($ $)) (-15 -2227 ($ $)) (-15 -3673 ($ $)) (-15 -2535 ($ $)) (-15 -1305 ($ $)) (-15 -3142 ($ $)) (-15 -1744 ($ $ (-1085) (-354))) (-15 -2547 ($ $ (-1085) (-354))) (-15 -2811 ((-354) $ (-1085))) (-15 -3364 ((-588 (-1068)) $ (-1068))) (-15 -3448 ($ $ (-1085))) (-15 -4196 ($)) (-15 -3464 ((-3 (-1068) "failed") $ (-1068) (-522))) (-6 -4238)))
+((-3835 (($ $) 45)) (-2134 (((-108) $ $) 74)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-881 (-382 (-522)))) 227) (((-3 $ "failed") (-881 (-522))) 226) (((-3 $ "failed") (-881 |#2|)) 229)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) NIL) (((-522) $) NIL) ((|#4| $) NIL) (($ (-881 (-382 (-522)))) 215) (($ (-881 (-522))) 211) (($ (-881 |#2|)) 231)) (-3156 (($ $) NIL) (($ $ |#4|) 43)) (-1934 (((-108) $ $) 112) (((-108) $ (-588 $)) 113)) (-1630 (((-108) $) 56)) (-1541 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 107)) (-1258 (($ $) 138)) (-3429 (($ $) 134)) (-2705 (($ $) 133)) (-1704 (($ $ $) 79) (($ $ $ |#4|) 84)) (-4069 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3341 (((-108) $ $) 121) (((-108) $ (-588 $)) 122)) (-1521 ((|#4| $) 33)) (-2924 (($ $ $) 110)) (-3012 (((-108) $) 55)) (-3903 (((-708) $) 35)) (-3547 (($ $) 152)) (-1842 (($ $) 149)) (-1269 (((-588 $) $) 68)) (-3447 (($ $) 57)) (-1313 (($ $) 145)) (-3405 (((-588 $) $) 65)) (-3786 (($ $) 59)) (-3138 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4019 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4042 (-708))) $ $) 111)) (-1938 (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $) 108) (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $ |#4|) 109)) (-3592 (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $) 104) (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $ |#4|) 105)) (-1819 (($ $ $) 89) (($ $ $ |#4|) 95)) (-1599 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1817 (((-588 $) $) 51)) (-3409 (((-108) $ $) 118) (((-108) $ (-588 $)) 119)) (-1451 (($ $ $) 103)) (-3802 (($ $) 37)) (-2123 (((-108) $ $) 72)) (-2230 (((-108) $ $) 114) (((-108) $ (-588 $)) 116)) (-2680 (($ $ $) 101)) (-4002 (($ $) 40)) (-2259 ((|#2| |#2| $) 142) (($ (-588 $)) NIL) (($ $ $) NIL)) (-3620 (($ $ |#2|) NIL) (($ $ $) 131)) (-3195 (($ $ |#2|) 126) (($ $ $) 129)) (-2044 (($ $) 48)) (-1635 (($ $) 52)) (-1431 (((-821 (-354)) $) NIL) (((-821 (-522)) $) NIL) (((-498) $) NIL) (($ (-881 (-382 (-522)))) 217) (($ (-881 (-522))) 213) (($ (-881 |#2|)) 228) (((-1068) $) 250) (((-881 |#2|) $) 162)) (-2190 (((-792) $) 30) (($ (-522)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-881 |#2|) $) 163) (($ (-382 (-522))) NIL) (($ $) NIL)) (-2618 (((-3 (-108) "failed") $ $) 71)))
+(((-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -2259 (|#1| |#1| |#1|)) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 ((-881 |#2|) |#1|)) (-15 -1431 ((-881 |#2|) |#1|)) (-15 -1431 ((-1068) |#1|)) (-15 -3547 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1313 (|#1| |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -2259 (|#2| |#2| |#1|)) (-15 -3620 (|#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -3620 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| |#2|)) (-15 -3429 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -1431 (|#1| (-881 |#2|))) (-15 -1484 (|#1| (-881 |#2|))) (-15 -1297 ((-3 |#1| "failed") (-881 |#2|))) (-15 -1431 (|#1| (-881 (-522)))) (-15 -1484 (|#1| (-881 (-522)))) (-15 -1297 ((-3 |#1| "failed") (-881 (-522)))) (-15 -1431 (|#1| (-881 (-382 (-522))))) (-15 -1484 (|#1| (-881 (-382 (-522))))) (-15 -1297 ((-3 |#1| "failed") (-881 (-382 (-522))))) (-15 -1451 (|#1| |#1| |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -4019 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4042 (-708))) |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -1541 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -1938 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1| |#4|)) (-15 -1938 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -3592 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -3421 |#1|)) |#1| |#1| |#4|)) (-15 -3592 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -1599 (|#1| |#1| |#1| |#4|)) (-15 -1819 (|#1| |#1| |#1| |#4|)) (-15 -1599 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -4069 (|#1| |#1| |#1| |#4|)) (-15 -1704 (|#1| |#1| |#1| |#4|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -3341 ((-108) |#1| (-588 |#1|))) (-15 -3341 ((-108) |#1| |#1|)) (-15 -3409 ((-108) |#1| (-588 |#1|))) (-15 -3409 ((-108) |#1| |#1|)) (-15 -2230 ((-108) |#1| (-588 |#1|))) (-15 -2230 ((-108) |#1| |#1|)) (-15 -1934 ((-108) |#1| (-588 |#1|))) (-15 -1934 ((-108) |#1| |#1|)) (-15 -2134 ((-108) |#1| |#1|)) (-15 -2123 ((-108) |#1| |#1|)) (-15 -2618 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1269 ((-588 |#1|) |#1|)) (-15 -3405 ((-588 |#1|) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -1630 ((-108) |#1|)) (-15 -3012 ((-108) |#1|)) (-15 -3156 (|#1| |#1| |#4|)) (-15 -3138 (|#1| |#1| |#4|)) (-15 -1635 (|#1| |#1|)) (-15 -1817 ((-588 |#1|) |#1|)) (-15 -2044 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3903 ((-708) |#1|)) (-15 -1521 (|#4| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1484 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2190 (|#1| |#4|)) (-15 -3138 (|#2| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-985 |#2| |#3| |#4|) (-971) (-730) (-784)) (T -984))
+NIL
+(-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -2259 (|#1| |#1| |#1|)) (-15 -2259 (|#1| (-588 |#1|))) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 ((-881 |#2|) |#1|)) (-15 -1431 ((-881 |#2|) |#1|)) (-15 -1431 ((-1068) |#1|)) (-15 -3547 (|#1| |#1|)) (-15 -1842 (|#1| |#1|)) (-15 -1313 (|#1| |#1|)) (-15 -1258 (|#1| |#1|)) (-15 -2259 (|#2| |#2| |#1|)) (-15 -3620 (|#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -3620 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| |#2|)) (-15 -3429 (|#1| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -1431 (|#1| (-881 |#2|))) (-15 -1484 (|#1| (-881 |#2|))) (-15 -1297 ((-3 |#1| "failed") (-881 |#2|))) (-15 -1431 (|#1| (-881 (-522)))) (-15 -1484 (|#1| (-881 (-522)))) (-15 -1297 ((-3 |#1| "failed") (-881 (-522)))) (-15 -1431 (|#1| (-881 (-382 (-522))))) (-15 -1484 (|#1| (-881 (-382 (-522))))) (-15 -1297 ((-3 |#1| "failed") (-881 (-382 (-522))))) (-15 -1451 (|#1| |#1| |#1|)) (-15 -2680 (|#1| |#1| |#1|)) (-15 -4019 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4042 (-708))) |#1| |#1|)) (-15 -2924 (|#1| |#1| |#1|)) (-15 -1541 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -1938 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1| |#4|)) (-15 -1938 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -3592 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -3421 |#1|)) |#1| |#1| |#4|)) (-15 -3592 ((-2 (|:| -2977 |#1|) (|:| |gap| (-708)) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -1599 (|#1| |#1| |#1| |#4|)) (-15 -1819 (|#1| |#1| |#1| |#4|)) (-15 -1599 (|#1| |#1| |#1|)) (-15 -1819 (|#1| |#1| |#1|)) (-15 -4069 (|#1| |#1| |#1| |#4|)) (-15 -1704 (|#1| |#1| |#1| |#4|)) (-15 -4069 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -3341 ((-108) |#1| (-588 |#1|))) (-15 -3341 ((-108) |#1| |#1|)) (-15 -3409 ((-108) |#1| (-588 |#1|))) (-15 -3409 ((-108) |#1| |#1|)) (-15 -2230 ((-108) |#1| (-588 |#1|))) (-15 -2230 ((-108) |#1| |#1|)) (-15 -1934 ((-108) |#1| (-588 |#1|))) (-15 -1934 ((-108) |#1| |#1|)) (-15 -2134 ((-108) |#1| |#1|)) (-15 -2123 ((-108) |#1| |#1|)) (-15 -2618 ((-3 (-108) "failed") |#1| |#1|)) (-15 -1269 ((-588 |#1|) |#1|)) (-15 -3405 ((-588 |#1|) |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -1630 ((-108) |#1|)) (-15 -3012 ((-108) |#1|)) (-15 -3156 (|#1| |#1| |#4|)) (-15 -3138 (|#1| |#1| |#4|)) (-15 -1635 (|#1| |#1|)) (-15 -1817 ((-588 |#1|) |#1|)) (-15 -2044 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3903 ((-708) |#1|)) (-15 -1521 (|#4| |#1|)) (-15 -1431 ((-498) |#1|)) (-15 -1431 ((-821 (-522)) |#1|)) (-15 -1431 ((-821 (-354)) |#1|)) (-15 -1484 (|#4| |#1|)) (-15 -1297 ((-3 |#4| "failed") |#1|)) (-15 -2190 (|#1| |#4|)) (-15 -3138 (|#2| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 |#3|) $) 110)) (-1282 (((-1081 $) $ |#3|) 125) (((-1081 |#1|) $) 124)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2022 (($ $) 88 (|has| |#1| (-514)))) (-3739 (((-108) $) 90 (|has| |#1| (-514)))) (-3781 (((-708) $) 112) (((-708) $ (-588 |#3|)) 111)) (-3835 (($ $) 271)) (-2134 (((-108) $ $) 257)) (-1233 (((-3 $ "failed") $ $) 19)) (-3984 (($ $ $) 216 (|has| |#1| (-514)))) (-2467 (((-588 $) $ $) 211 (|has| |#1| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-3119 (($ $) 98 (|has| |#1| (-426)))) (-3450 (((-393 $) $) 97 (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-881 (-382 (-522)))) 231 (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))) (((-3 $ "failed") (-881 (-522))) 228 (-3708 (-12 (-2401 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085)))))) (((-3 $ "failed") (-881 |#1|)) 225 (-3708 (-12 (-2401 (|has| |#1| (-37 (-382 (-522))))) (-2401 (|has| |#1| (-37 (-522)))) (|has| |#3| (-563 (-1085)))) (-12 (-2401 (|has| |#1| (-507))) (-2401 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (-2401 (|has| |#1| (-919 (-522)))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))))) (-1484 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) ((|#3| $) 135) (($ (-881 (-382 (-522)))) 230 (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))) (($ (-881 (-522))) 227 (-3708 (-12 (-2401 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085)))))) (($ (-881 |#1|)) 224 (-3708 (-12 (-2401 (|has| |#1| (-37 (-382 (-522))))) (-2401 (|has| |#1| (-37 (-522)))) (|has| |#3| (-563 (-1085)))) (-12 (-2401 (|has| |#1| (-507))) (-2401 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (-2401 (|has| |#1| (-919 (-522)))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))))) (-1950 (($ $ $ |#3|) 108 (|has| |#1| (-157))) (($ $ $) 212 (|has| |#1| (-514)))) (-3156 (($ $) 154) (($ $ |#3|) 266)) (-2096 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-1934 (((-108) $ $) 256) (((-108) $ (-588 $)) 255)) (-2682 (((-3 $ "failed") $) 34)) (-1630 (((-108) $) 264)) (-1541 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 236)) (-1258 (($ $) 205 (|has| |#1| (-426)))) (-2071 (($ $) 176 (|has| |#1| (-426))) (($ $ |#3|) 105 (|has| |#1| (-426)))) (-3147 (((-588 $) $) 109)) (-2813 (((-108) $) 96 (|has| |#1| (-838)))) (-3429 (($ $) 221 (|has| |#1| (-514)))) (-2705 (($ $) 222 (|has| |#1| (-514)))) (-1704 (($ $ $) 248) (($ $ $ |#3|) 246)) (-4069 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2671 (($ $ |#1| |#2| $) 172)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| |#3| (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| |#3| (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-2782 (((-108) $) 31)) (-2112 (((-708) $) 169)) (-3341 (((-108) $ $) 250) (((-108) $ (-588 $)) 249)) (-1460 (($ $ $ $ $) 207 (|has| |#1| (-514)))) (-1521 ((|#3| $) 275)) (-4073 (($ (-1081 |#1|) |#3|) 117) (($ (-1081 $) |#3|) 116)) (-4052 (((-588 $) $) 126)) (-3340 (((-108) $) 152)) (-4049 (($ |#1| |#2|) 153) (($ $ |#3| (-708)) 119) (($ $ (-588 |#3|) (-588 (-708))) 118)) (-2924 (($ $ $) 235)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#3|) 120)) (-3012 (((-108) $) 265)) (-2925 ((|#2| $) 170) (((-708) $ |#3|) 122) (((-588 (-708)) $ (-588 |#3|)) 121)) (-2814 (($ $ $) 79 (|has| |#1| (-784)))) (-3903 (((-708) $) 274)) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3861 (($ (-1 |#2| |#2|) $) 171)) (-1391 (($ (-1 |#1| |#1|) $) 151)) (-3145 (((-3 |#3| "failed") $) 123)) (-3547 (($ $) 202 (|has| |#1| (-426)))) (-1842 (($ $) 203 (|has| |#1| (-426)))) (-1269 (((-588 $) $) 260)) (-3447 (($ $) 263)) (-1313 (($ $) 204 (|has| |#1| (-426)))) (-3405 (((-588 $) $) 261)) (-3786 (($ $) 262)) (-3128 (($ $) 149)) (-3138 ((|#1| $) 148) (($ $ |#3|) 267)) (-2224 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-4019 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4042 (-708))) $ $) 234)) (-1938 (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $) 238) (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $ |#3|) 237)) (-3592 (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $) 240) (((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $ |#3|) 239)) (-1819 (($ $ $) 244) (($ $ $ |#3|) 242)) (-1599 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2385 (((-1068) $) 9)) (-1331 (($ $ $) 210 (|has| |#1| (-514)))) (-1817 (((-588 $) $) 269)) (-2462 (((-3 (-588 $) "failed") $) 114)) (-4193 (((-3 (-588 $) "failed") $) 115)) (-3285 (((-3 (-2 (|:| |var| |#3|) (|:| -1400 (-708))) "failed") $) 113)) (-3409 (((-108) $ $) 252) (((-108) $ (-588 $)) 251)) (-1451 (($ $ $) 232)) (-3802 (($ $) 273)) (-2123 (((-108) $ $) 258)) (-2230 (((-108) $ $) 254) (((-108) $ (-588 $)) 253)) (-2680 (($ $ $) 233)) (-4002 (($ $) 272)) (-4151 (((-1032) $) 10)) (-3461 (((-2 (|:| -2259 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-514)))) (-3738 (((-2 (|:| -2259 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-514)))) (-3108 (((-108) $) 166)) (-3118 ((|#1| $) 167)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2259 ((|#1| |#1| $) 206 (|has| |#1| (-426))) (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-1916 (((-393 $) $) 99 (|has| |#1| (-838)))) (-3905 (((-2 (|:| -2259 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-514)))) (-2232 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-3620 (($ $ |#1|) 219 (|has| |#1| (-514))) (($ $ $) 217 (|has| |#1| (-514)))) (-3195 (($ $ |#1|) 220 (|has| |#1| (-514))) (($ $ $) 218 (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-588 |#3|) (-588 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-588 |#3|) (-588 $)) 138)) (-2769 (($ $ |#3|) 107 (|has| |#1| (-157)))) (-2157 (($ $ |#3|) 42) (($ $ (-588 |#3|)) 41) (($ $ |#3| (-708)) 40) (($ $ (-588 |#3|) (-588 (-708))) 39)) (-2793 ((|#2| $) 150) (((-708) $ |#3|) 130) (((-588 (-708)) $ (-588 |#3|)) 129)) (-2044 (($ $) 270)) (-1635 (($ $) 268)) (-1431 (((-821 (-354)) $) 82 (-12 (|has| |#3| (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| |#3| (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| |#3| (-563 (-498))) (|has| |#1| (-563 (-498))))) (($ (-881 (-382 (-522)))) 229 (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085))))) (($ (-881 (-522))) 226 (-3708 (-12 (-2401 (|has| |#1| (-37 (-382 (-522))))) (|has| |#1| (-37 (-522))) (|has| |#3| (-563 (-1085)))) (-12 (|has| |#1| (-37 (-382 (-522)))) (|has| |#3| (-563 (-1085)))))) (($ (-881 |#1|)) 223 (|has| |#3| (-563 (-1085)))) (((-1068) $) 201 (-12 (|has| |#1| (-962 (-522))) (|has| |#3| (-563 (-1085))))) (((-881 |#1|) $) 200 (|has| |#3| (-563 (-1085))))) (-2255 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ |#3|) 106 (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4015 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-881 |#1|) $) 199 (|has| |#3| (-563 (-1085)))) (($ (-382 (-522))) 72 (-3708 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522)))))) (($ $) 85 (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) 168)) (-3243 ((|#1| $ |#2|) 155) (($ $ |#3| (-708)) 128) (($ $ (-588 |#3|) (-588 (-708))) 127)) (-2143 (((-3 $ "failed") $) 73 (-3708 (-4015 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) 29)) (-3632 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-3958 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-2618 (((-3 (-108) "failed") $ $) 259)) (-3577 (($) 30 T CONST)) (-2298 (($ $ $ $ (-708)) 208 (|has| |#1| (-514)))) (-3818 (($ $ $ (-708)) 209 (|has| |#1| (-514)))) (-2213 (($ $ |#3|) 38) (($ $ (-588 |#3|)) 37) (($ $ |#3| (-708)) 36) (($ $ (-588 |#3|) (-588 (-708))) 35)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-985 |#1| |#2| |#3|) (-1197) (-971) (-730) (-784)) (T -985))
+((-1521 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3903 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-708)))) (-3802 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-4002 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-2044 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-1817 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-1635 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3138 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3156 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3447 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-3405 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-1269 (*1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-2618 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2123 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2134 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1934 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-1934 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-2230 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3409 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3409 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-3341 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)))) (-1704 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-4069 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-1704 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-4069 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-1819 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-1599 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-1819 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-1599 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *2 (-784)))) (-3592 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -3421 *1))) (-4 *1 (-985 *3 *4 *5)))) (-3592 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -3421 *1))) (-4 *1 (-985 *4 *5 *3)))) (-1938 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-985 *3 *4 *5)))) (-1938 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-985 *4 *5 *3)))) (-1541 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-985 *3 *4 *5)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-4019 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4042 (-708)))) (-4 *1 (-985 *3 *4 *5)))) (-2680 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-1451 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)))) (-1297 (*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))) (-1297 (*1 *1 *2) (|partial| -3708 (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1484 (*1 *1 *2) (-3708 (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1431 (*1 *1 *2) (-3708 (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5)) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1297 (*1 *1 *2) (|partial| -3708 (-12 (-5 *2 (-881 *3)) (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-2401 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2401 (-4 *3 (-507))) (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2401 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1484 (*1 *1 *2) (-3708 (-12 (-5 *2 (-881 *3)) (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-2401 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2401 (-4 *3 (-507))) (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))) (-12 (-5 *2 (-881 *3)) (-12 (-2401 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085)))) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730)) (-4 *5 (-784))))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *5 (-563 (-1085))) (-4 *4 (-730)) (-4 *5 (-784)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3429 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3195 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3620 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3195 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3620 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3905 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2259 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-985 *3 *4 *5)))) (-3738 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2259 *1) (|:| |coef1| *1))) (-4 *1 (-985 *3 *4 *5)))) (-3461 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-2 (|:| -2259 *1) (|:| |coef2| *1))) (-4 *1 (-985 *3 *4 *5)))) (-1950 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2467 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))) (-1331 (*1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-3818 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514)))) (-2298 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514)))) (-1460 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-514)))) (-2259 (*1 *2 *2 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-1258 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-1313 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-1842 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))) (-3547 (*1 *1 *1) (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-426)))))
+(-13 (-878 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1521 (|t#3| $)) (-15 -3903 ((-708) $)) (-15 -3802 ($ $)) (-15 -4002 ($ $)) (-15 -3835 ($ $)) (-15 -2044 ($ $)) (-15 -1817 ((-588 $) $)) (-15 -1635 ($ $)) (-15 -3138 ($ $ |t#3|)) (-15 -3156 ($ $ |t#3|)) (-15 -3012 ((-108) $)) (-15 -1630 ((-108) $)) (-15 -3447 ($ $)) (-15 -3786 ($ $)) (-15 -3405 ((-588 $) $)) (-15 -1269 ((-588 $) $)) (-15 -2618 ((-3 (-108) "failed") $ $)) (-15 -2123 ((-108) $ $)) (-15 -2134 ((-108) $ $)) (-15 -1934 ((-108) $ $)) (-15 -1934 ((-108) $ (-588 $))) (-15 -2230 ((-108) $ $)) (-15 -2230 ((-108) $ (-588 $))) (-15 -3409 ((-108) $ $)) (-15 -3409 ((-108) $ (-588 $))) (-15 -3341 ((-108) $ $)) (-15 -3341 ((-108) $ (-588 $))) (-15 -1704 ($ $ $)) (-15 -4069 ($ $ $)) (-15 -1704 ($ $ $ |t#3|)) (-15 -4069 ($ $ $ |t#3|)) (-15 -1819 ($ $ $)) (-15 -1599 ($ $ $)) (-15 -1819 ($ $ $ |t#3|)) (-15 -1599 ($ $ $ |t#3|)) (-15 -3592 ((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $)) (-15 -3592 ((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -3421 $)) $ $ |t#3|)) (-15 -1938 ((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -1938 ((-2 (|:| -2977 $) (|:| |gap| (-708)) (|:| -1353 $) (|:| -3421 $)) $ $ |t#3|)) (-15 -1541 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -2924 ($ $ $)) (-15 -4019 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4042 (-708))) $ $)) (-15 -2680 ($ $ $)) (-15 -1451 ($ $ $)) (IF (|has| |t#3| (-563 (-1085))) (PROGN (-6 (-562 (-881 |t#1|))) (-6 (-563 (-881 |t#1|))) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -1297 ((-3 $ "failed") (-881 (-382 (-522))))) (-15 -1484 ($ (-881 (-382 (-522))))) (-15 -1431 ($ (-881 (-382 (-522))))) (-15 -1297 ((-3 $ "failed") (-881 (-522)))) (-15 -1484 ($ (-881 (-522)))) (-15 -1431 ($ (-881 (-522)))) (IF (|has| |t#1| (-919 (-522))) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 |t#1|))) (-15 -1484 ($ (-881 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-522))) (IF (|has| |t#1| (-37 (-382 (-522)))) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 (-522)))) (-15 -1484 ($ (-881 (-522)))) (-15 -1431 ($ (-881 (-522)))) (IF (|has| |t#1| (-507)) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 |t#1|))) (-15 -1484 ($ (-881 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-522))) |%noBranch| (IF (|has| |t#1| (-37 (-382 (-522)))) |%noBranch| (PROGN (-15 -1297 ((-3 $ "failed") (-881 |t#1|))) (-15 -1484 ($ (-881 |t#1|)))))) (-15 -1431 ($ (-881 |t#1|))) (IF (|has| |t#1| (-962 (-522))) (-6 (-563 (-1068))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-15 -2705 ($ $)) (-15 -3429 ($ $)) (-15 -3195 ($ $ |t#1|)) (-15 -3620 ($ $ |t#1|)) (-15 -3195 ($ $ $)) (-15 -3620 ($ $ $)) (-15 -3984 ($ $ $)) (-15 -3905 ((-2 (|:| -2259 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3738 ((-2 (|:| -2259 $) (|:| |coef1| $)) $ $)) (-15 -3461 ((-2 (|:| -2259 $) (|:| |coef2| $)) $ $)) (-15 -1950 ($ $ $)) (-15 -2467 ((-588 $) $ $)) (-15 -1331 ($ $ $)) (-15 -3818 ($ $ $ (-708))) (-15 -2298 ($ $ $ $ (-708))) (-15 -1460 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-426)) (PROGN (-15 -2259 (|t#1| |t#1| $)) (-15 -1258 ($ $)) (-15 -1313 ($ $)) (-15 -1842 ($ $)) (-15 -3547 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-562 (-881 |#1|)) |has| |#3| (-563 (-1085))) ((-157) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| |#1| (-563 (-498))) (|has| |#3| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#3| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#3| (-563 (-821 (-522))))) ((-563 (-881 |#1|)) |has| |#3| (-563 (-1085))) ((-563 (-1068)) -12 (|has| |#1| (-962 (-522))) (|has| |#3| (-563 (-1085)))) ((-266) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-285 $) . T) ((-301 |#1| |#2|) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3708 (|has| |#1| (-838)) (|has| |#1| (-426))) ((-483 |#3| |#1|) . T) ((-483 |#3| $) . T) ((-483 $ $) . T) ((-514) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 |#3|) . T) ((-815 (-354)) -12 (|has| |#1| (-815 (-354))) (|has| |#3| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-815 (-522))) (|has| |#3| (-815 (-522)))) ((-878 |#1| |#2| |#3|) . T) ((-838) |has| |#1| (-838)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 |#1|) . T) ((-962 |#3|) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) |has| |#1| (-838)))
+((-2250 (((-108) |#3| $) 13)) (-3944 (((-3 $ "failed") |#3| (-850)) 23)) (-2682 (((-3 |#3| "failed") |#3| $) 37)) (-3687 (((-108) |#3| $) 16)) (-2556 (((-108) |#3| $) 14)))
+(((-986 |#1| |#2| |#3|) (-10 -8 (-15 -3944 ((-3 |#1| "failed") |#3| (-850))) (-15 -2682 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3687 ((-108) |#3| |#1|)) (-15 -2556 ((-108) |#3| |#1|)) (-15 -2250 ((-108) |#3| |#1|))) (-987 |#2| |#3|) (-13 (-782) (-338)) (-1142 |#2|)) (T -986))
+NIL
+(-10 -8 (-15 -3944 ((-3 |#1| "failed") |#3| (-850))) (-15 -2682 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3687 ((-108) |#3| |#1|)) (-15 -2556 ((-108) |#3| |#1|)) (-15 -2250 ((-108) |#3| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) |#2| $) 21)) (-1341 (((-522) |#2| $) 22)) (-3944 (((-3 $ "failed") |#2| (-850)) 15)) (-3971 ((|#1| |#2| $ |#1|) 13)) (-2682 (((-3 |#2| "failed") |#2| $) 18)) (-3687 (((-108) |#2| $) 19)) (-2556 (((-108) |#2| $) 20)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1479 ((|#2| $) 17)) (-2190 (((-792) $) 11)) (-3898 ((|#1| |#2| $ |#1|) 14)) (-2479 (((-588 $) |#2|) 16)) (-1531 (((-108) $ $) 6)))
+(((-987 |#1| |#2|) (-1197) (-13 (-782) (-338)) (-1142 |t#1|)) (T -987))
+((-1341 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-522)))) (-2250 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-108)))) (-2556 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-108)))) (-3687 (*1 *2 *3 *1) (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-108)))) (-2682 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338))) (-4 *2 (-1142 *3)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338))) (-4 *2 (-1142 *3)))) (-2479 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-588 *1)) (-4 *1 (-987 *4 *3)))) (-3944 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-850)) (-4 *4 (-13 (-782) (-338))) (-4 *1 (-987 *4 *2)) (-4 *2 (-1142 *4)))) (-3898 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338))) (-4 *3 (-1142 *2)))) (-3971 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338))) (-4 *3 (-1142 *2)))))
+(-13 (-1014) (-10 -8 (-15 -1341 ((-522) |t#2| $)) (-15 -2250 ((-108) |t#2| $)) (-15 -2556 ((-108) |t#2| $)) (-15 -3687 ((-108) |t#2| $)) (-15 -2682 ((-3 |t#2| "failed") |t#2| $)) (-15 -1479 (|t#2| $)) (-15 -2479 ((-588 $) |t#2|)) (-15 -3944 ((-3 $ "failed") |t#2| (-850))) (-15 -3898 (|t#1| |t#2| $ |t#1|)) (-15 -3971 (|t#1| |t#2| $ |t#1|))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1732 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-708)) 96)) (-3499 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708)) 55)) (-1906 (((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-708)) 87)) (-1349 (((-708) (-588 |#4|) (-588 |#5|)) 27)) (-2268 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708)) 57) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708) (-108)) 59)) (-3496 (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108)) 79)) (-1431 (((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) 82)) (-2971 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-108)) 54)) (-1232 (((-708) (-588 |#4|) (-588 |#5|)) 19)))
+(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1232 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -1349 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -2971 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-108))) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1732 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-708))) (-15 -1431 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -1906 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-708)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -988))
+((-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9)))) (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068)) (-5 *1 (-988 *4 *5 *6 *7 *8)))) (-1732 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-588 *11)) (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1886 *11)))))) (-5 *6 (-708)) (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1886 *11)))) (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9)) (-4 *11 (-990 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-5 *1 (-988 *7 *8 *9 *10 *11)))) (-3496 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-3496 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-2268 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2268 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-2268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-988 *7 *8 *9 *3 *4)) (-4 *4 (-990 *7 *8 *9 *3)))) (-3499 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3499 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-2971 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1232 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -1349 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -2971 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-108))) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1732 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-708))) (-15 -1431 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -1906 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-708))))
+((-2208 (((-108) |#5| $) 21)) (-3129 (((-108) |#5| $) 24)) (-2198 (((-108) |#5| $) 16) (((-108) $) 45)) (-2416 (((-588 $) |#5| $) NIL) (((-588 $) (-588 |#5|) $) 77) (((-588 $) (-588 |#5|) (-588 $)) 75) (((-588 $) |#5| (-588 $)) 78)) (-3719 (($ $ |#5|) NIL) (((-588 $) |#5| $) NIL) (((-588 $) |#5| (-588 $)) 60) (((-588 $) (-588 |#5|) $) 62) (((-588 $) (-588 |#5|) (-588 $)) 64)) (-2188 (((-588 $) |#5| $) NIL) (((-588 $) |#5| (-588 $)) 54) (((-588 $) (-588 |#5|) $) 56) (((-588 $) (-588 |#5|) (-588 $)) 58)) (-3021 (((-108) |#5| $) 27)))
+(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3719 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -3719 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -3719 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -3719 ((-588 |#1|) |#5| |#1|)) (-15 -2188 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -2188 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -2188 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -2188 ((-588 |#1|) |#5| |#1|)) (-15 -2416 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -2416 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -2416 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -2416 ((-588 |#1|) |#5| |#1|)) (-15 -3129 ((-108) |#5| |#1|)) (-15 -2198 ((-108) |#1|)) (-15 -3021 ((-108) |#5| |#1|)) (-15 -2208 ((-108) |#5| |#1|)) (-15 -2198 ((-108) |#5| |#1|)) (-15 -3719 (|#1| |#1| |#5|))) (-990 |#2| |#3| |#4| |#5|) (-426) (-730) (-784) (-985 |#2| |#3| |#4|)) (T -989))
+NIL
+(-10 -8 (-15 -3719 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -3719 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -3719 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -3719 ((-588 |#1|) |#5| |#1|)) (-15 -2188 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -2188 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -2188 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -2188 ((-588 |#1|) |#5| |#1|)) (-15 -2416 ((-588 |#1|) |#5| (-588 |#1|))) (-15 -2416 ((-588 |#1|) (-588 |#5|) (-588 |#1|))) (-15 -2416 ((-588 |#1|) (-588 |#5|) |#1|)) (-15 -2416 ((-588 |#1|) |#5| |#1|)) (-15 -3129 ((-108) |#5| |#1|)) (-15 -2198 ((-108) |#1|)) (-15 -3021 ((-108) |#5| |#1|)) (-15 -2208 ((-108) |#5| |#1|)) (-15 -2198 ((-108) |#5| |#1|)) (-15 -3719 (|#1| |#1| |#5|)))
+((-1416 (((-108) $ $) 7)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) 85)) (-4125 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-4090 (((-588 |#3|) $) 33)) (-2690 (((-108) $) 26)) (-4140 (((-108) $) 17 (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) 101) (((-108) $) 97)) (-3607 ((|#4| |#4| $) 92)) (-3119 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| $) 126)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) 27)) (-4141 (((-108) $ (-708)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3175 (($) 45 T CONST)) (-3639 (((-108) $) 22 (|has| |#1| (-514)))) (-3982 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3996 (((-108) $ $) 23 (|has| |#1| (-514)))) (-3538 (((-108) $) 25 (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3050 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 36)) (-1484 (($ (-588 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-2806 ((|#4| |#4| $) 89)) (-2333 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-4164 ((|#4| |#4| $) 87)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) 105)) (-2208 (((-108) |#4| $) 136)) (-3129 (((-108) |#4| $) 133)) (-2198 (((-108) |#4| $) 137) (((-108) $) 134)) (-3837 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) 104) (((-108) $) 103)) (-1521 ((|#3| $) 34)) (-3352 (((-108) $ (-708)) 43)) (-3308 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 47)) (-2458 (((-588 |#3|) $) 32)) (-1606 (((-108) |#3| $) 31)) (-2720 (((-108) $ (-708)) 42)) (-2385 (((-1068) $) 9)) (-3959 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1331 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-2893 (((-588 $) |#4| $) 129)) (-4190 (((-3 (-108) (-588 $)) |#4| $) 132)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2416 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2135 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-2242 (((-588 |#4|) $) 107)) (-3409 (((-108) |#4| $) 99) (((-108) $) 95)) (-1451 ((|#4| |#4| $) 90)) (-2123 (((-108) $ $) 110)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) 100) (((-108) $) 96)) (-2680 ((|#4| |#4| $) 91)) (-4151 (((-1032) $) 10)) (-2294 (((-3 |#4| "failed") $) 84)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3307 (((-3 $ "failed") $ |#4|) 78)) (-3719 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3053 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) 38)) (-3985 (((-108) $) 41)) (-3775 (($) 40)) (-2793 (((-708) $) 106)) (-4168 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2404 (($ $) 39)) (-1431 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 60)) (-2020 (($ $ |#3|) 28)) (-3606 (($ $ |#3|) 30)) (-3968 (($ $) 88)) (-2463 (($ $ |#3|) 29)) (-2190 (((-792) $) 11) (((-588 |#4|) $) 37)) (-1974 (((-708) $) 76 (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-2188 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-3648 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) 81)) (-3021 (((-108) |#4| $) 135)) (-2351 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3480 (((-708) $) 46 (|has| $ (-6 -4238)))))
+(((-990 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -990))
+((-2198 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2208 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-3021 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3129 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-4190 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 (-108) (-588 *1))) (-4 *1 (-990 *4 *5 *6 *3)))) (-3878 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *1)))) (-4 *1 (-990 *4 *5 *6 *3)))) (-3878 (*1 *2 *3 *1) (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2893 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-3959 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 *3 (-588 *1))) (-4 *1 (-990 *4 *5 *6 *3)))) (-1331 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *1)))) (-4 *1 (-990 *4 *5 *6 *3)))) (-3119 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *1)))) (-4 *1 (-990 *4 *5 *6 *3)))) (-2416 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-2416 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *7)))) (-2416 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)))) (-2416 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) (-2188 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-2188 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) (-2188 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *7)))) (-2188 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)))) (-2135 (*1 *1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5 *2)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2135 (*1 *1 *2 *1) (-12 (-5 *2 (-588 *6)) (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)))) (-3719 (*1 *2 *3 *1) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)))) (-3719 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *7)))) (-3719 (*1 *2 *3 *2) (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)))) (-4125 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-990 *5 *6 *7 *8)))))
+(-13 (-1114 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2198 ((-108) |t#4| $)) (-15 -2208 ((-108) |t#4| $)) (-15 -3021 ((-108) |t#4| $)) (-15 -2198 ((-108) $)) (-15 -3129 ((-108) |t#4| $)) (-15 -4190 ((-3 (-108) (-588 $)) |t#4| $)) (-15 -3878 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |t#4| $)) (-15 -3878 ((-108) |t#4| $)) (-15 -2893 ((-588 $) |t#4| $)) (-15 -3959 ((-3 |t#4| (-588 $)) |t#4| |t#4| $)) (-15 -1331 ((-588 (-2 (|:| |val| |t#4|) (|:| -1886 $))) |t#4| |t#4| $)) (-15 -3119 ((-588 (-2 (|:| |val| |t#4|) (|:| -1886 $))) |t#4| $)) (-15 -2416 ((-588 $) |t#4| $)) (-15 -2416 ((-588 $) (-588 |t#4|) $)) (-15 -2416 ((-588 $) (-588 |t#4|) (-588 $))) (-15 -2416 ((-588 $) |t#4| (-588 $))) (-15 -2188 ((-588 $) |t#4| $)) (-15 -2188 ((-588 $) |t#4| (-588 $))) (-15 -2188 ((-588 $) (-588 |t#4|) $)) (-15 -2188 ((-588 $) (-588 |t#4|) (-588 $))) (-15 -2135 ($ |t#4| $)) (-15 -2135 ($ (-588 |t#4|) $)) (-15 -3719 ((-588 $) |t#4| $)) (-15 -3719 ((-588 $) |t#4| (-588 $))) (-15 -3719 ((-588 $) (-588 |t#4|) $)) (-15 -3719 ((-588 $) (-588 |t#4|) (-588 $))) (-15 -4125 ((-588 $) (-588 |t#4|) (-108)))))
+(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T))
+((-1213 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|) 81)) (-1857 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|) 113)) (-2215 (((-588 |#5|) |#4| |#5|) 70)) (-2783 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-1426 (((-1171)) 35)) (-1637 (((-1171)) 25)) (-1821 (((-1171) (-1068) (-1068) (-1068)) 31)) (-1312 (((-1171) (-1068) (-1068) (-1068)) 20)) (-2078 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#4| |#4| |#5|) 96)) (-4068 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#3| (-108)) 107) (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3964 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|) 102)))
+(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1312 ((-1171) (-1068) (-1068) (-1068))) (-15 -1637 ((-1171))) (-15 -1821 ((-1171) (-1068) (-1068) (-1068))) (-15 -1426 ((-1171))) (-15 -2078 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -4068 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -4068 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#3| (-108))) (-15 -3964 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -1857 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -2783 ((-108) |#4| |#5|)) (-15 -2783 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -2215 ((-588 |#5|) |#4| |#5|)) (-15 -1213 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -991))
+((-1213 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2215 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2783 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1857 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3964 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-4068 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9)))) (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784)) (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1886 *9)))) (-5 *1 (-991 *6 *7 *4 *8 *9)))) (-4068 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-991 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-2078 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))) (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1426 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-1821 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-1637 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-1312 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1312 ((-1171) (-1068) (-1068) (-1068))) (-15 -1637 ((-1171))) (-15 -1821 ((-1171) (-1068) (-1068) (-1068))) (-15 -1426 ((-1171))) (-15 -2078 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -4068 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -4068 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#3| (-108))) (-15 -3964 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -1857 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -2783 ((-108) |#4| |#5|)) (-15 -2783 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -2215 ((-588 |#5|) |#4| |#5|)) (-15 -1213 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|)))
+((-1416 (((-108) $ $) NIL)) (-2888 (((-1085) $) 8)) (-2385 (((-1068) $) 16)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 13)))
+(((-992 |#1|) (-13 (-1014) (-10 -8 (-15 -2888 ((-1085) $)))) (-1085)) (T -992))
+((-2888 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-992 *3)) (-14 *3 *2))))
+(-13 (-1014) (-10 -8 (-15 -2888 ((-1085) $))))
+((-1416 (((-108) $ $) NIL)) (-1870 (($ $ (-588 (-1085)) (-1 (-108) (-588 |#3|))) 29)) (-1362 (($ |#3| |#3|) 21) (($ |#3| |#3| (-588 (-1085))) 19)) (-3602 ((|#3| $) 13)) (-1297 (((-3 (-270 |#3|) "failed") $) 56)) (-1484 (((-270 |#3|) $) NIL)) (-2437 (((-588 (-1085)) $) 15)) (-1379 (((-821 |#1|) $) 11)) (-3593 ((|#3| $) 12)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2545 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-850)) 36)) (-2190 (((-792) $) 85) (($ (-270 |#3|)) 20)) (-1531 (((-108) $ $) 33)))
+(((-993 |#1| |#2| |#3|) (-13 (-1014) (-262 |#3| |#3|) (-962 (-270 |#3|)) (-10 -8 (-15 -1362 ($ |#3| |#3|)) (-15 -1362 ($ |#3| |#3| (-588 (-1085)))) (-15 -1870 ($ $ (-588 (-1085)) (-1 (-108) (-588 |#3|)))) (-15 -1379 ((-821 |#1|) $)) (-15 -3593 (|#3| $)) (-15 -3602 (|#3| $)) (-15 -2545 (|#3| $ |#3| (-850))) (-15 -2437 ((-588 (-1085)) $)))) (-1014) (-13 (-971) (-815 |#1|) (-784) (-563 (-821 |#1|))) (-13 (-405 |#2|) (-815 |#1|) (-563 (-821 |#1|)))) (T -993))
+((-1362 (*1 *1 *2 *2) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-5 *1 (-993 *3 *4 *2)) (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))) (-1362 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) (-1870 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1 (-108) (-588 *6))) (-4 *6 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-993 *4 *5 *6)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 *2))) (-5 *2 (-821 *3)) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 *2))))) (-3593 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) (-5 *1 (-993 *3 *4 *2)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))))) (-3602 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) (-5 *1 (-993 *3 *4 *2)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))))) (-2545 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-993 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))) (-2437 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-5 *2 (-588 (-1085))) (-5 *1 (-993 *3 *4 *5)) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))))
+(-13 (-1014) (-262 |#3| |#3|) (-962 (-270 |#3|)) (-10 -8 (-15 -1362 ($ |#3| |#3|)) (-15 -1362 ($ |#3| |#3| (-588 (-1085)))) (-15 -1870 ($ $ (-588 (-1085)) (-1 (-108) (-588 |#3|)))) (-15 -1379 ((-821 |#1|) $)) (-15 -3593 (|#3| $)) (-15 -3602 (|#3| $)) (-15 -2545 (|#3| $ |#3| (-850))) (-15 -2437 ((-588 (-1085)) $))))
+((-1416 (((-108) $ $) NIL)) (-1837 (($ (-588 (-993 |#1| |#2| |#3|))) 12)) (-3299 (((-588 (-993 |#1| |#2| |#3|)) $) 19)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2545 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-850)) 25)) (-2190 (((-792) $) 15)) (-1531 (((-108) $ $) 18)))
+(((-994 |#1| |#2| |#3|) (-13 (-1014) (-262 |#3| |#3|) (-10 -8 (-15 -1837 ($ (-588 (-993 |#1| |#2| |#3|)))) (-15 -3299 ((-588 (-993 |#1| |#2| |#3|)) $)) (-15 -2545 (|#3| $ |#3| (-850))))) (-1014) (-13 (-971) (-815 |#1|) (-784) (-563 (-821 |#1|))) (-13 (-405 |#2|) (-815 |#1|) (-563 (-821 |#1|)))) (T -994))
+((-1837 (*1 *1 *2) (-12 (-5 *2 (-588 (-993 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))) (-5 *1 (-994 *3 *4 *5)))) (-3299 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3)))) (-5 *2 (-588 (-993 *3 *4 *5))) (-5 *1 (-994 *3 *4 *5)) (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))) (-2545 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-850)) (-4 *4 (-1014)) (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4)))) (-5 *1 (-994 *4 *5 *2)) (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))))
+(-13 (-1014) (-262 |#3| |#3|) (-10 -8 (-15 -1837 ($ (-588 (-993 |#1| |#2| |#3|)))) (-15 -3299 ((-588 (-993 |#1| |#2| |#3|)) $)) (-15 -2545 (|#3| $ |#3| (-850)))))
+((-1761 (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)) 74) (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|))) 76) (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108)) 75)))
+(((-995 |#1| |#2|) (-10 -7 (-15 -1761 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -1761 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -1761 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)))) (-13 (-283) (-135)) (-588 (-1085))) (T -995))
+((-1761 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5)))))) (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))))) (-1761 (*1 *2 *3) (-12 (-4 *4 (-13 (-283) (-135))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *4)) (|:| -3677 (-588 (-881 *4)))))) (-5 *1 (-995 *4 *5)) (-5 *3 (-588 (-881 *4))) (-14 *5 (-588 (-1085))))) (-1761 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5)))))) (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))))))
+(-10 -7 (-15 -1761 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -1761 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -1761 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108))))
+((-1916 (((-393 |#3|) |#3|) 16)))
+(((-996 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-393 |#3|) |#3|))) (-1142 (-382 (-522))) (-13 (-338) (-135) (-662 (-382 (-522)) |#1|)) (-1142 |#2|)) (T -996))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-13 (-338) (-135) (-662 (-382 (-522)) *4))) (-5 *2 (-393 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1142 *5)))))
+(-10 -7 (-15 -1916 ((-393 |#3|) |#3|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 125)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-338)))) (-2022 (($ $) NIL (|has| |#1| (-338)))) (-3739 (((-108) $) NIL (|has| |#1| (-338)))) (-3174 (((-628 |#1|) (-1166 $)) NIL) (((-628 |#1|)) 115)) (-1865 ((|#1| $) 119)) (-1398 (((-1094 (-850) (-708)) (-522)) NIL (|has| |#1| (-324)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-1629 (((-708)) 40 (|has| |#1| (-343)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3766 (($ (-1166 |#1|) (-1166 $)) NIL) (($ (-1166 |#1|)) 43)) (-2128 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-324)))) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-2109 (((-628 |#1|) $ (-1166 $)) NIL) (((-628 |#1|) $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 106) (((-628 |#1|) (-628 $)) 100)) (-3864 (($ |#2|) 61) (((-3 $ "failed") (-382 |#2|)) NIL (|has| |#1| (-338)))) (-2682 (((-3 $ "failed") $) NIL)) (-3166 (((-850)) 77)) (-3255 (($) 44 (|has| |#1| (-343)))) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-1223 (($) NIL (|has| |#1| (-324)))) (-2511 (((-108) $) NIL (|has| |#1| (-324)))) (-2111 (($ $ (-708)) NIL (|has| |#1| (-324))) (($ $) NIL (|has| |#1| (-324)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3714 (((-850) $) NIL (|has| |#1| (-324))) (((-770 (-850)) $) NIL (|has| |#1| (-324)))) (-2782 (((-108) $) NIL)) (-2100 ((|#1| $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-324)))) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-1712 ((|#2| $) 84 (|has| |#1| (-338)))) (-2120 (((-850) $) 130 (|has| |#1| (-343)))) (-3849 ((|#2| $) 58)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-3802 (($) NIL (|has| |#1| (-324)) CONST)) (-2717 (($ (-850)) 124 (|has| |#1| (-343)))) (-4151 (((-1032) $) NIL)) (-1383 (($) 121)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-4179 (((-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))) NIL (|has| |#1| (-324)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2769 ((|#1| (-1166 $)) NIL) ((|#1|) 109)) (-3018 (((-708) $) NIL (|has| |#1| (-324))) (((-3 (-708) "failed") $ $) NIL (|has| |#1| (-324)))) (-2157 (($ $) NIL (-3708 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) NIL (-3708 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1 |#1| |#1|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1859 (((-628 |#1|) (-1166 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1479 ((|#2|) 73)) (-2581 (($) NIL (|has| |#1| (-324)))) (-3677 (((-1166 |#1|) $ (-1166 $)) 89) (((-628 |#1|) (-1166 $) (-1166 $)) NIL) (((-1166 |#1|) $) 71) (((-628 |#1|) (-1166 $)) 85)) (-1431 (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (|has| |#1| (-324)))) (-2190 (((-792) $) 57) (($ (-522)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-338))) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-338)) (|has| |#1| (-962 (-382 (-522))))))) (-2143 (($ $) NIL (|has| |#1| (-324))) (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2051 ((|#2| $) 82)) (-2323 (((-708)) 75)) (-3855 (((-1166 $)) 81)) (-3958 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 30 T CONST)) (-3577 (($) 19 T CONST)) (-2213 (($ $) NIL (-3708 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-708)) NIL (-3708 (-12 (|has| |#1| (-210)) (|has| |#1| (-338))) (|has| |#1| (-324)))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-338)) (|has| |#1| (-829 (-1085))))) (($ $ (-1 |#1| |#1|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-338)))) (-1531 (((-108) $ $) 63)) (-1620 (($ $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) 67) (($ $ $) NIL)) (-1602 (($ $ $) 65)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-382 (-522)) $) NIL (|has| |#1| (-338))) (($ $ (-382 (-522))) NIL (|has| |#1| (-338)))))
+(((-997 |#1| |#2| |#3|) (-662 |#1| |#2|) (-157) (-1142 |#1|) |#2|) (T -997))
+NIL
+(-662 |#1| |#2|)
+((-1916 (((-393 |#3|) |#3|) 16)))
+(((-998 |#1| |#2| |#3|) (-10 -7 (-15 -1916 ((-393 |#3|) |#3|))) (-1142 (-382 (-881 (-522)))) (-13 (-338) (-135) (-662 (-382 (-881 (-522))) |#1|)) (-1142 |#2|)) (T -998))
+((-1916 (*1 *2 *3) (-12 (-4 *4 (-1142 (-382 (-881 (-522))))) (-4 *5 (-13 (-338) (-135) (-662 (-382 (-881 (-522))) *4))) (-5 *2 (-393 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1142 *5)))))
+(-10 -7 (-15 -1916 ((-393 |#3|) |#3|)))
+((-1416 (((-108) $ $) NIL)) (-2814 (($ $ $) 14)) (-2446 (($ $ $) 15)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3772 (($) 6)) (-1431 (((-1085) $) 18)) (-2190 (((-792) $) 12)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 13)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 8)))
+(((-999) (-13 (-784) (-10 -8 (-15 -3772 ($)) (-15 -1431 ((-1085) $))))) (T -999))
+((-3772 (*1 *1) (-5 *1 (-999))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-999)))))
+(-13 (-784) (-10 -8 (-15 -3772 ($)) (-15 -1431 ((-1085) $))))
+((-2144 ((|#1| |#1| (-1 (-522) |#1| |#1|)) 23) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1548 (((-1171)) 15)) (-2874 (((-588 |#1|)) 9)))
+(((-1000 |#1|) (-10 -7 (-15 -1548 ((-1171))) (-15 -2874 ((-588 |#1|))) (-15 -2144 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2144 (|#1| |#1| (-1 (-522) |#1| |#1|)))) (-125)) (T -1000))
+((-2144 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-522) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2)))) (-2144 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2)))) (-2874 (*1 *2) (-12 (-5 *2 (-588 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-125)))) (-1548 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1000 *3)) (-4 *3 (-125)))))
+(-10 -7 (-15 -1548 ((-1171))) (-15 -2874 ((-588 |#1|))) (-15 -2144 (|#1| |#1| (-1 (-108) |#1|))) (-15 -2144 (|#1| |#1| (-1 (-522) |#1| |#1|))))
+((-3771 (($ (-104) $) 15)) (-1533 (((-3 (-104) "failed") (-1085) $) 13)) (-3775 (($) 6)) (-3275 (($) 16)) (-2383 (($) 17)) (-1735 (((-588 (-159)) $) 8)) (-2190 (((-792) $) 20)))
+(((-1001) (-13 (-562 (-792)) (-10 -8 (-15 -3775 ($)) (-15 -1735 ((-588 (-159)) $)) (-15 -1533 ((-3 (-104) "failed") (-1085) $)) (-15 -3771 ($ (-104) $)) (-15 -3275 ($)) (-15 -2383 ($))))) (T -1001))
+((-3775 (*1 *1) (-5 *1 (-1001))) (-1735 (*1 *2 *1) (-12 (-5 *2 (-588 (-159))) (-5 *1 (-1001)))) (-1533 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-1001)))) (-3771 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1001)))) (-3275 (*1 *1) (-5 *1 (-1001))) (-2383 (*1 *1) (-5 *1 (-1001))))
+(-13 (-562 (-792)) (-10 -8 (-15 -3775 ($)) (-15 -1735 ((-588 (-159)) $)) (-15 -1533 ((-3 (-104) "failed") (-1085) $)) (-15 -3771 ($ (-104) $)) (-15 -3275 ($)) (-15 -2383 ($))))
+((-1588 (((-1166 (-628 |#1|)) (-588 (-628 |#1|))) 41) (((-1166 (-628 (-881 |#1|))) (-588 (-1085)) (-628 (-881 |#1|))) 61) (((-1166 (-628 (-382 (-881 |#1|)))) (-588 (-1085)) (-628 (-382 (-881 |#1|)))) 77)) (-3677 (((-1166 |#1|) (-628 |#1|) (-588 (-628 |#1|))) 35)))
+(((-1002 |#1|) (-10 -7 (-15 -1588 ((-1166 (-628 (-382 (-881 |#1|)))) (-588 (-1085)) (-628 (-382 (-881 |#1|))))) (-15 -1588 ((-1166 (-628 (-881 |#1|))) (-588 (-1085)) (-628 (-881 |#1|)))) (-15 -1588 ((-1166 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3677 ((-1166 |#1|) (-628 |#1|) (-588 (-628 |#1|))))) (-338)) (T -1002))
+((-3677 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-628 *5))) (-5 *3 (-628 *5)) (-4 *5 (-338)) (-5 *2 (-1166 *5)) (-5 *1 (-1002 *5)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-1002 *4)))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338)) (-5 *2 (-1166 (-628 (-881 *5)))) (-5 *1 (-1002 *5)) (-5 *4 (-628 (-881 *5))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338)) (-5 *2 (-1166 (-628 (-382 (-881 *5))))) (-5 *1 (-1002 *5)) (-5 *4 (-628 (-382 (-881 *5)))))))
+(-10 -7 (-15 -1588 ((-1166 (-628 (-382 (-881 |#1|)))) (-588 (-1085)) (-628 (-382 (-881 |#1|))))) (-15 -1588 ((-1166 (-628 (-881 |#1|))) (-588 (-1085)) (-628 (-881 |#1|)))) (-15 -1588 ((-1166 (-628 |#1|)) (-588 (-628 |#1|)))) (-15 -3677 ((-1166 |#1|) (-628 |#1|) (-588 (-628 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4040 (((-588 (-708)) $) NIL) (((-588 (-708)) $ (-1085)) NIL)) (-3152 (((-708) $) NIL) (((-708) $ (-1085)) NIL)) (-4090 (((-588 (-1004 (-1085))) $) NIL)) (-1282 (((-1081 $) $ (-1004 (-1085))) NIL) (((-1081 |#1|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-1004 (-1085)))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1292 (($ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-1004 (-1085)) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL) (((-3 (-1037 |#1| (-1085)) "failed") $) NIL)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-1004 (-1085)) $) NIL) (((-1085) $) NIL) (((-1037 |#1| (-1085)) $) NIL)) (-1950 (($ $ $ (-1004 (-1085))) NIL (|has| |#1| (-157)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ (-1004 (-1085))) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-494 (-1004 (-1085))) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1004 (-1085)) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1004 (-1085)) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3714 (((-708) $ (-1085)) NIL) (((-708) $) NIL)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4073 (($ (-1081 |#1|) (-1004 (-1085))) NIL) (($ (-1081 $) (-1004 (-1085))) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-494 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-1004 (-1085))) NIL)) (-2925 (((-494 (-1004 (-1085))) $) NIL) (((-708) $ (-1004 (-1085))) NIL) (((-588 (-708)) $ (-588 (-1004 (-1085)))) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-494 (-1004 (-1085))) (-494 (-1004 (-1085)))) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3830 (((-1 $ (-708)) (-1085)) NIL) (((-1 $ (-708)) $) NIL (|has| |#1| (-210)))) (-3145 (((-3 (-1004 (-1085)) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-1570 (((-1004 (-1085)) $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-1494 (((-108) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-1004 (-1085))) (|:| -1400 (-708))) "failed") $) NIL)) (-1901 (($ $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-1004 (-1085)) |#1|) NIL) (($ $ (-588 (-1004 (-1085))) (-588 |#1|)) NIL) (($ $ (-1004 (-1085)) $) NIL) (($ $ (-588 (-1004 (-1085))) (-588 $)) NIL) (($ $ (-1085) $) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 $)) NIL (|has| |#1| (-210))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-210))) (($ $ (-588 (-1085)) (-588 |#1|)) NIL (|has| |#1| (-210)))) (-2769 (($ $ (-1004 (-1085))) NIL (|has| |#1| (-157)))) (-2157 (($ $ (-1004 (-1085))) NIL) (($ $ (-588 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3013 (((-588 (-1085)) $) NIL)) (-2793 (((-494 (-1004 (-1085))) $) NIL) (((-708) $ (-1004 (-1085))) NIL) (((-588 (-708)) $ (-588 (-1004 (-1085)))) NIL) (((-708) $ (-1085)) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-1004 (-1085)) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-1004 (-1085)) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-1004 (-1085)) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) NIL (|has| |#1| (-426))) (($ $ (-1004 (-1085))) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-1004 (-1085))) NIL) (($ (-1085)) NIL) (($ (-1037 |#1| (-1085))) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-494 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-1004 (-1085))) NIL) (($ $ (-588 (-1004 (-1085)))) NIL) (($ $ (-1004 (-1085)) (-708)) NIL) (($ $ (-588 (-1004 (-1085))) (-588 (-708))) NIL) (($ $) NIL (|has| |#1| (-210))) (($ $ (-708)) NIL (|has| |#1| (-210))) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1003 |#1|) (-13 (-229 |#1| (-1085) (-1004 (-1085)) (-494 (-1004 (-1085)))) (-962 (-1037 |#1| (-1085)))) (-971)) (T -1003))
+NIL
+(-13 (-229 |#1| (-1085) (-1004 (-1085)) (-494 (-1004 (-1085)))) (-962 (-1037 |#1| (-1085))))
+((-1416 (((-108) $ $) NIL)) (-3152 (((-708) $) NIL)) (-1611 ((|#1| $) 10)) (-1297 (((-3 |#1| "failed") $) NIL)) (-1484 ((|#1| $) NIL)) (-3714 (((-708) $) 11)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-3830 (($ |#1| (-708)) 9)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2157 (($ $) NIL) (($ $ (-708)) NIL)) (-2190 (((-792) $) NIL) (($ |#1|) NIL)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 15)))
+(((-1004 |#1|) (-242 |#1|) (-784)) (T -1004))
NIL
(-242 |#1|)
-((-1393 (((-587 |#2|) (-1 |#2| |#1|) (-1008 |#1|)) 24 (|has| |#1| (-781))) (((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|)) 14)))
-(((-1004 |#1| |#2|) (-10 -7 (-15 -1393 ((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) (IF (|has| |#1| (-781)) (-15 -1393 ((-587 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) |%noBranch|)) (-1119) (-1119)) (T -1004))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-781)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-587 *6)) (-5 *1 (-1004 *5 *6)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1008 *6)) (-5 *1 (-1004 *5 *6)))))
-(-10 -7 (-15 -1393 ((-1008 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) (IF (|has| |#1| (-781)) (-15 -1393 ((-587 |#2|) (-1 |#2| |#1|) (-1008 |#1|))) |%noBranch|))
-((-1393 (((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)) 19)))
-(((-1005 |#1| |#2|) (-10 -7 (-15 -1393 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|)))) (-1119) (-1119)) (T -1005))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1006 *6)) (-5 *1 (-1005 *5 *6)))))
-(-10 -7 (-15 -1393 ((-1006 |#2|) (-1 |#2| |#1|) (-1006 |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1638 (((-1084) $) 11)) (-1558 (((-1008 |#1|) $) 12)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1634 (($ (-1084) (-1008 |#1|)) 10)) (-2223 (((-791) $) 20 (|has| |#1| (-1013)))) (-1549 (((-108) $ $) 15 (|has| |#1| (-1013)))))
-(((-1006 |#1|) (-13 (-1119) (-10 -8 (-15 -1634 ($ (-1084) (-1008 |#1|))) (-15 -1638 ((-1084) $)) (-15 -1558 ((-1008 |#1|) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1119)) (T -1006))
-((-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1008 *4)) (-4 *4 (-1119)) (-5 *1 (-1006 *4)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1006 *3)) (-4 *3 (-1119)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1008 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1119)))))
-(-13 (-1119) (-10 -8 (-15 -1634 ($ (-1084) (-1008 |#1|))) (-15 -1638 ((-1084) $)) (-15 -1558 ((-1008 |#1|) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|)))
-((-1558 (($ |#1| |#1|) 7)) (-2948 ((|#1| $) 10)) (-1460 ((|#1| $) 12)) (-1470 (((-521) $) 8)) (-4164 ((|#1| $) 9)) (-1482 ((|#1| $) 11)) (-1438 (($ |#1|) 6)) (-1713 (($ |#1| |#1|) 14)) (-1346 (($ $ (-521)) 13)))
-(((-1007 |#1|) (-1196) (-1119)) (T -1007))
-((-1713 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1346 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1007 *3)) (-4 *3 (-1119)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))) (-1558 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))) (-1438 (*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
-(-13 (-1119) (-10 -8 (-15 -1713 ($ |t#1| |t#1|)) (-15 -1346 ($ $ (-521))) (-15 -1460 (|t#1| $)) (-15 -1482 (|t#1| $)) (-15 -2948 (|t#1| $)) (-15 -4164 (|t#1| $)) (-15 -1470 ((-521) $)) (-15 -1558 ($ |t#1| |t#1|)) (-15 -1438 ($ |t#1|))))
-(((-1119) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1558 (($ |#1| |#1|) 15)) (-1393 (((-587 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-781)))) (-2948 ((|#1| $) 10)) (-1460 ((|#1| $) 9)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1470 (((-521) $) 14)) (-4164 ((|#1| $) 12)) (-1482 ((|#1| $) 11)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1631 (((-587 |#1|) $) 36 (|has| |#1| (-781))) (((-587 |#1|) (-587 $)) 35 (|has| |#1| (-781)))) (-1438 (($ |#1|) 26)) (-2223 (((-791) $) 25 (|has| |#1| (-1013)))) (-1713 (($ |#1| |#1|) 8)) (-1346 (($ $ (-521)) 16)) (-1549 (((-108) $ $) 19 (|has| |#1| (-1013)))))
-(((-1008 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1009 |#1| (-587 |#1|))) |%noBranch|))) (-1119)) (T -1008))
-NIL
-(-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1009 |#1| (-587 |#1|))) |%noBranch|)))
-((-1558 (($ |#1| |#1|) 7)) (-1393 ((|#2| (-1 |#1| |#1|) $) 16)) (-2948 ((|#1| $) 10)) (-1460 ((|#1| $) 12)) (-1470 (((-521) $) 8)) (-4164 ((|#1| $) 9)) (-1482 ((|#1| $) 11)) (-1631 ((|#2| (-587 $)) 18) ((|#2| $) 17)) (-1438 (($ |#1|) 6)) (-1713 (($ |#1| |#1|) 14)) (-1346 (($ $ (-521)) 13)))
-(((-1009 |#1| |#2|) (-1196) (-781) (-1058 |t#1|)) (T -1009))
-((-1631 (*1 *2 *3) (-12 (-5 *3 (-587 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-781)) (-4 *2 (-1058 *4)))) (-1631 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-781)) (-4 *2 (-1058 *3)))) (-1393 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-781)) (-4 *2 (-1058 *4)))))
-(-13 (-1007 |t#1|) (-10 -8 (-15 -1631 (|t#2| (-587 $))) (-15 -1631 (|t#2| $)) (-15 -1393 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1007 |#1|) . T) ((-1119) . T))
-((-2296 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1769 (($ $ $) 10)) (-2686 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1010 |#1| |#2|) (-10 -8 (-15 -2296 (|#1| |#2| |#1|)) (-15 -2296 (|#1| |#1| |#2|)) (-15 -2296 (|#1| |#1| |#1|)) (-15 -1769 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#2|)) (-15 -2686 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010))
-NIL
-(-10 -8 (-15 -2296 (|#1| |#2| |#1|)) (-15 -2296 (|#1| |#1| |#2|)) (-15 -2296 (|#1| |#1| |#1|)) (-15 -1769 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#2|)) (-15 -2686 (|#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-2296 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1769 (($ $ $) 20)) (-3601 (((-108) $ $) 19)) (-1269 (((-108) $ (-707)) 35)) (-1817 (($) 25) (($ (-587 |#1|)) 24)) (-1658 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4233)))) (-2231 (($) 36 T CONST)) (-2354 (($ $) 59 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 58 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4233)))) (-3831 (((-587 |#1|) $) 43 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 34)) (-3568 (((-587 |#1|) $) 44 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 38)) (-2859 (((-108) $ (-707)) 33)) (-4024 (((-1067) $) 9)) (-1802 (($ $ $) 23)) (-4146 (((-1031) $) 10)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-1936 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#1|) (-587 |#1|)) 50 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 48 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 (-269 |#1|))) 47 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 29)) (-1447 (((-108) $) 32)) (-2280 (($) 31)) (-2686 (($ $ $) 22) (($ $ |#1|) 21)) (-4163 (((-707) |#1| $) 45 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4233)))) (-2420 (($ $) 30)) (-1438 (((-497) $) 60 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 51)) (-2223 (((-791) $) 11)) (-3391 (($) 27) (($ (-587 |#1|)) 26)) (-2006 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 6)) (-1569 (((-108) $ $) 28)) (-3478 (((-707) $) 37 (|has| $ (-6 -4233)))))
-(((-1011 |#1|) (-1196) (-1013)) (T -1011))
-((-1569 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-3391 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-1817 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-1817 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-1802 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2686 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2686 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-1769 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3601 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))) (-2296 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2296 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-2296 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(-13 (-1013) (-139 |t#1|) (-10 -8 (-6 -4223) (-15 -1569 ((-108) $ $)) (-15 -3391 ($)) (-15 -3391 ($ (-587 |t#1|))) (-15 -1817 ($)) (-15 -1817 ($ (-587 |t#1|))) (-15 -1802 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2686 ($ $ |t#1|)) (-15 -1769 ($ $ $)) (-15 -3601 ((-108) $ $)) (-15 -2296 ($ $ $)) (-15 -2296 ($ $ |t#1|)) (-15 -2296 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-561 (-791)) . T) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) . T) ((-1119) . T))
-((-4024 (((-1067) $) 10)) (-4146 (((-1031) $) 8)))
-(((-1012 |#1|) (-10 -8 (-15 -4024 ((-1067) |#1|)) (-15 -4146 ((-1031) |#1|))) (-1013)) (T -1012))
-NIL
-(-10 -8 (-15 -4024 ((-1067) |#1|)) (-15 -4146 ((-1031) |#1|)))
-((-1422 (((-108) $ $) 7)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-1013) (-1196)) (T -1013))
-((-4146 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1031)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1067)))))
-(-13 (-97) (-561 (-791)) (-10 -8 (-15 -4146 ((-1031) $)) (-15 -4024 ((-1067) $))))
-(((-97) . T) ((-561 (-791)) . T))
-((-1422 (((-108) $ $) NIL)) (-1659 (((-707)) 30)) (-3669 (($ (-587 (-849))) 52)) (-4168 (((-3 $ "failed") $ (-849) (-849)) 57)) (-3254 (($) 32)) (-1785 (((-108) (-849) $) 35)) (-3999 (((-849) $) 50)) (-4024 (((-1067) $) NIL)) (-2723 (($ (-849)) 31)) (-2652 (((-3 $ "failed") $ (-849)) 55)) (-4146 (((-1031) $) NIL)) (-3082 (((-1165 $)) 40)) (-2837 (((-587 (-849)) $) 23)) (-1202 (((-707) $ (-849) (-849)) 56)) (-2223 (((-791) $) 29)) (-1549 (((-108) $ $) 21)))
-(((-1014 |#1| |#2|) (-13 (-342) (-10 -8 (-15 -2652 ((-3 $ "failed") $ (-849))) (-15 -4168 ((-3 $ "failed") $ (-849) (-849))) (-15 -2837 ((-587 (-849)) $)) (-15 -3669 ($ (-587 (-849)))) (-15 -3082 ((-1165 $))) (-15 -1785 ((-108) (-849) $)) (-15 -1202 ((-707) $ (-849) (-849))))) (-849) (-849)) (T -1014))
-((-2652 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4168 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-3082 (*1 *2) (-12 (-5 *2 (-1165 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849)))) (-1785 (*1 *2 *3 *1) (-12 (-5 *3 (-849)) (-5 *2 (-108)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1202 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-707)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-342) (-10 -8 (-15 -2652 ((-3 $ "failed") $ (-849))) (-15 -4168 ((-3 $ "failed") $ (-849) (-849))) (-15 -2837 ((-587 (-849)) $)) (-15 -3669 ($ (-587 (-849)))) (-15 -3082 ((-1165 $))) (-15 -1785 ((-108) (-849) $)) (-15 -1202 ((-707) $ (-849) (-849)))))
-((-1422 (((-108) $ $) NIL)) (-4062 (($) NIL (|has| |#1| (-342)))) (-2296 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1769 (($ $ $) 72)) (-3601 (((-108) $ $) 73)) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| |#1| (-342)))) (-1817 (($ (-587 |#1|)) NIL) (($) 13)) (-3014 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2726 (($ |#1| $) 67 (|has| $ (-6 -4233))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4233)))) (-3254 (($) NIL (|has| |#1| (-342)))) (-3831 (((-587 |#1|) $) 19 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2816 ((|#1| $) 57 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2459 ((|#1| $) 55 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 34)) (-3999 (((-849) $) NIL (|has| |#1| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1802 (($ $ $) 70)) (-1570 ((|#1| $) 25)) (-4135 (($ |#1| $) 65)) (-2723 (($ (-849)) NIL (|has| |#1| (-342)))) (-4146 (((-1031) $) NIL)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-2747 ((|#1| $) 27)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 21)) (-2280 (($) 11)) (-2686 (($ $ |#1|) NIL) (($ $ $) 71)) (-2036 (($) NIL) (($ (-587 |#1|)) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 16)) (-1438 (((-497) $) 52 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 61)) (-4110 (($ $) NIL (|has| |#1| (-342)))) (-2223 (((-791) $) NIL)) (-3064 (((-707) $) NIL)) (-3391 (($ (-587 |#1|)) NIL) (($) 12)) (-2869 (($ (-587 |#1|)) NIL)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 54)) (-1569 (((-108) $ $) NIL)) (-3478 (((-707) $) 10 (|has| $ (-6 -4233)))))
-(((-1015 |#1|) (-399 |#1|) (-1013)) (T -1015))
-NIL
-(-399 |#1|)
-((-1422 (((-108) $ $) 7)) (-2615 (((-108) $) 32)) (-1503 ((|#2| $) 27)) (-2397 (((-108) $) 33)) (-1523 ((|#1| $) 28)) (-4086 (((-108) $) 35)) (-3682 (((-108) $) 37)) (-2075 (((-108) $) 34)) (-4024 (((-1067) $) 9)) (-3976 (((-108) $) 31)) (-1524 ((|#3| $) 26)) (-4146 (((-1031) $) 10)) (-1487 (((-108) $) 30)) (-3073 ((|#4| $) 25)) (-1598 ((|#5| $) 24)) (-3196 (((-108) $ $) 38)) (-2550 (($ $ (-521)) 14) (($ $ (-587 (-521))) 13)) (-2042 (((-587 $) $) 29)) (-1438 (($ (-587 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2223 (((-791) $) 11)) (-3211 (($ $) 16)) (-3200 (($ $) 17)) (-3125 (((-108) $) 36)) (-1549 (((-108) $ $) 6)) (-3478 (((-521) $) 15)))
-(((-1016 |#1| |#2| |#3| |#4| |#5|) (-1196) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016))
-((-3196 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2075 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))) (-2042 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)))) (-1438 (*1 *1 *2) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-1438 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *2 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-1438 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-1438 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-4 *6 (-1013)))) (-1438 (*1 *1 *2) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3200 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3211 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-521)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -3196 ((-108) $ $)) (-15 -3682 ((-108) $)) (-15 -3125 ((-108) $)) (-15 -4086 ((-108) $)) (-15 -2075 ((-108) $)) (-15 -2397 ((-108) $)) (-15 -2615 ((-108) $)) (-15 -3976 ((-108) $)) (-15 -1487 ((-108) $)) (-15 -2042 ((-587 $) $)) (-15 -1523 (|t#1| $)) (-15 -1503 (|t#2| $)) (-15 -1524 (|t#3| $)) (-15 -3073 (|t#4| $)) (-15 -1598 (|t#5| $)) (-15 -1438 ($ (-587 $))) (-15 -1438 ($ |t#1|)) (-15 -1438 ($ |t#2|)) (-15 -1438 ($ |t#3|)) (-15 -1438 ($ |t#4|)) (-15 -1438 ($ |t#5|)) (-15 -3200 ($ $)) (-15 -3211 ($ $)) (-15 -3478 ((-521) $)) (-15 -2550 ($ $ (-521))) (-15 -2550 ($ $ (-587 (-521))))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-2615 (((-108) $) NIL)) (-1503 (((-1084) $) NIL)) (-2397 (((-108) $) NIL)) (-1523 (((-1067) $) NIL)) (-4086 (((-108) $) NIL)) (-3682 (((-108) $) NIL)) (-2075 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-3976 (((-108) $) NIL)) (-1524 (((-521) $) NIL)) (-4146 (((-1031) $) NIL)) (-1487 (((-108) $) NIL)) (-3073 (((-202) $) NIL)) (-1598 (((-791) $) NIL)) (-3196 (((-108) $ $) NIL)) (-2550 (($ $ (-521)) NIL) (($ $ (-587 (-521))) NIL)) (-2042 (((-587 $) $) NIL)) (-1438 (($ (-587 $)) NIL) (($ (-1067)) NIL) (($ (-1084)) NIL) (($ (-521)) NIL) (($ (-202)) NIL) (($ (-791)) NIL)) (-2223 (((-791) $) NIL)) (-3211 (($ $) NIL)) (-3200 (($ $) NIL)) (-3125 (((-108) $) NIL)) (-1549 (((-108) $ $) NIL)) (-3478 (((-521) $) NIL)))
-(((-1017) (-1016 (-1067) (-1084) (-521) (-202) (-791))) (T -1017))
-NIL
-(-1016 (-1067) (-1084) (-521) (-202) (-791))
-((-1422 (((-108) $ $) NIL)) (-2615 (((-108) $) 38)) (-1503 ((|#2| $) 42)) (-2397 (((-108) $) 37)) (-1523 ((|#1| $) 41)) (-4086 (((-108) $) 35)) (-3682 (((-108) $) 14)) (-2075 (((-108) $) 36)) (-4024 (((-1067) $) NIL)) (-3976 (((-108) $) 39)) (-1524 ((|#3| $) 44)) (-4146 (((-1031) $) NIL)) (-1487 (((-108) $) 40)) (-3073 ((|#4| $) 43)) (-1598 ((|#5| $) 45)) (-3196 (((-108) $ $) 34)) (-2550 (($ $ (-521)) 56) (($ $ (-587 (-521))) 58)) (-2042 (((-587 $) $) 22)) (-1438 (($ (-587 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2223 (((-791) $) 23)) (-3211 (($ $) 21)) (-3200 (($ $) 52)) (-3125 (((-108) $) 18)) (-1549 (((-108) $ $) 33)) (-3478 (((-521) $) 54)))
-(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1018))
-NIL
-(-1016 |#1| |#2| |#3| |#4| |#5|)
-((-2059 (((-1170) $) 23)) (-1474 (($ (-1084) (-408) |#2|) 11)) (-2223 (((-791) $) 16)))
-(((-1019 |#1| |#2|) (-13 (-369) (-10 -8 (-15 -1474 ($ (-1084) (-408) |#2|)))) (-783) (-404 |#1|)) (T -1019))
-((-1474 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1084)) (-5 *3 (-408)) (-4 *5 (-783)) (-5 *1 (-1019 *5 *4)) (-4 *4 (-404 *5)))))
-(-13 (-369) (-10 -8 (-15 -1474 ($ (-1084) (-408) |#2|))))
-((-2685 (((-108) |#5| |#5|) 38)) (-3189 (((-108) |#5| |#5|) 52)) (-4145 (((-108) |#5| (-587 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1745 (((-108) (-587 |#4|) (-587 |#4|)) 58)) (-3809 (((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) 63)) (-2213 (((-1170)) 33)) (-1848 (((-1170) (-1067) (-1067) (-1067)) 29)) (-3745 (((-587 |#5|) (-587 |#5|)) 82)) (-1823 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) 80)) (-3377 (((-587 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108)) 102)) (-3583 (((-108) |#5| |#5|) 47)) (-1395 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3995 (((-108) (-587 |#4|) (-587 |#4|)) 57)) (-3576 (((-108) (-587 |#4|) (-587 |#4|)) 59)) (-3069 (((-108) (-587 |#4|) (-587 |#4|)) 60)) (-3420 (((-3 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-3684 (((-587 |#5|) (-587 |#5|)) 43)))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1848 ((-1170) (-1067) (-1067) (-1067))) (-15 -2213 ((-1170))) (-15 -2685 ((-108) |#5| |#5|)) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3583 ((-108) |#5| |#5|)) (-15 -3189 ((-108) |#5| |#5|)) (-15 -1745 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3995 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3576 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3069 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -1395 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4145 ((-108) |#5| |#5|)) (-15 -4145 ((-108) |#5| (-587 |#5|))) (-15 -3745 ((-587 |#5|) (-587 |#5|))) (-15 -3809 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1823 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-15 -3377 ((-587 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3420 ((-3 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -1020))
-((-3420 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| -3196 (-587 *9)) (|:| -1946 *4) (|:| |ineq| (-587 *9)))) (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9)) (-4 *4 (-989 *6 *7 *8 *9)))) (-3377 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| -3196 (-587 *9)) (|:| -1946 *10) (|:| |ineq| (-587 *9))))) (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1946 *7)))) (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-3809 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)))) (-3745 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1020 *5 *6 *7 *8 *3)))) (-4145 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-1395 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3069 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3995 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-1745 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-3189 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3583 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-3684 (*1 *2 *2) (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))) (-2213 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-1848 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1848 ((-1170) (-1067) (-1067) (-1067))) (-15 -2213 ((-1170))) (-15 -2685 ((-108) |#5| |#5|)) (-15 -3684 ((-587 |#5|) (-587 |#5|))) (-15 -3583 ((-108) |#5| |#5|)) (-15 -3189 ((-108) |#5| |#5|)) (-15 -1745 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3995 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3576 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -3069 ((-108) (-587 |#4|) (-587 |#4|))) (-15 -1395 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4145 ((-108) |#5| |#5|)) (-15 -4145 ((-108) |#5| (-587 |#5|))) (-15 -3745 ((-587 |#5|) (-587 |#5|))) (-15 -3809 ((-108) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1823 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-15 -3377 ((-587 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|)))) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3420 ((-3 (-2 (|:| -3196 (-587 |#4|)) (|:| -1946 |#5|) (|:| |ineq| (-587 |#4|))) "failed") (-587 |#4|) |#5| (-587 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-2247 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|) 95)) (-2903 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#4| |#4| |#5|) 71)) (-1446 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|) 89)) (-3898 (((-587 |#5|) |#4| |#5|) 110)) (-3248 (((-587 |#5|) |#4| |#5|) 117)) (-3600 (((-587 |#5|) |#4| |#5|) 118)) (-3309 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|) 96)) (-2429 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|) 116)) (-2070 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-1255 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#3| (-108)) 83) (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-3053 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|) 78)) (-2133 (((-1170)) 35)) (-4071 (((-1170)) 25)) (-4096 (((-1170) (-1067) (-1067) (-1067)) 31)) (-2653 (((-1170) (-1067) (-1067) (-1067)) 20)))
-(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2653 ((-1170) (-1067) (-1067) (-1067))) (-15 -4071 ((-1170))) (-15 -4096 ((-1170) (-1067) (-1067) (-1067))) (-15 -2133 ((-1170))) (-15 -2903 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -1255 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1255 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#3| (-108))) (-15 -3053 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -1446 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -2070 ((-108) |#4| |#5|)) (-15 -3309 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3898 ((-587 |#5|) |#4| |#5|)) (-15 -2429 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3248 ((-587 |#5|) |#4| |#5|)) (-15 -2070 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3600 ((-587 |#5|) |#4| |#5|)) (-15 -2247 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-989 |#1| |#2| |#3| |#4|)) (T -1021))
-((-2247 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3600 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3248 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3898 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3309 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2070 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1446 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-3053 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-1255 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9)))) (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-783)) (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1946 *9)))) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) (-1255 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3)))) (-2903 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))) (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))) (-2133 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-4096 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))) (-4071 (*1 *2) (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))) (-2653 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2653 ((-1170) (-1067) (-1067) (-1067))) (-15 -4071 ((-1170))) (-15 -4096 ((-1170) (-1067) (-1067) (-1067))) (-15 -2133 ((-1170))) (-15 -2903 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -1255 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -1255 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) |#3| (-108))) (-15 -3053 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -1446 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#4| |#5|)) (-15 -2070 ((-108) |#4| |#5|)) (-15 -3309 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3898 ((-587 |#5|) |#4| |#5|)) (-15 -2429 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3248 ((-587 |#5|) |#4| |#5|)) (-15 -2070 ((-587 (-2 (|:| |val| (-108)) (|:| -1946 |#5|))) |#4| |#5|)) (-15 -3600 ((-587 |#5|) |#4| |#5|)) (-15 -2247 ((-587 (-2 (|:| |val| |#4|) (|:| -1946 |#5|))) |#4| |#5|)))
-((-1422 (((-108) $ $) 7)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) 85)) (-4137 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4085 (((-587 |#3|) $) 33)) (-2856 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) 101) (((-108) $) 97)) (-1613 ((|#4| |#4| $) 92)) (-2694 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| $) 126)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-108) $ (-707)) 44)) (-1658 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2231 (($) 45 T CONST)) (-1616 (((-108) $) 22 (|has| |#1| (-513)))) (-3514 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3515 (((-108) $ $) 23 (|has| |#1| (-513)))) (-2512 (((-108) $) 25 (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2122 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 36)) (-1496 (($ (-587 |#4|)) 35)) (-2329 (((-3 $ "failed") $) 82)) (-1910 ((|#4| |#4| $) 89)) (-2354 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1860 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) 105)) (-4008 (((-108) |#4| $) 136)) (-3547 (((-108) |#4| $) 133)) (-1781 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) 104) (((-108) $) 103)) (-3131 ((|#3| $) 34)) (-1513 (((-108) $ (-707)) 43)) (-3568 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 47)) (-2963 (((-587 |#3|) $) 32)) (-4065 (((-108) |#3| $) 31)) (-2859 (((-108) $ (-707)) 42)) (-4024 (((-1067) $) 9)) (-3207 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-3543 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| |#4| $) 127)) (-1450 (((-3 |#4| "failed") $) 83)) (-1732 (((-587 $) |#4| $) 129)) (-2051 (((-3 (-108) (-587 $)) |#4| $) 132)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1802 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3691 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2942 (((-587 |#4|) $) 107)) (-2626 (((-108) |#4| $) 99) (((-108) $) 95)) (-3432 ((|#4| |#4| $) 90)) (-3069 (((-108) $ $) 110)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) 100) (((-108) $) 96)) (-1896 ((|#4| |#4| $) 91)) (-4146 (((-1031) $) 10)) (-2319 (((-3 |#4| "failed") $) 84)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1314 (((-3 $ "failed") $ |#4|) 78)) (-2191 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1936 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) 38)) (-1447 (((-108) $) 41)) (-2280 (($) 40)) (-2098 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2420 (($ $) 39)) (-1438 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 60)) (-3680 (($ $ |#3|) 28)) (-2600 (($ $ |#3|) 30)) (-2404 (($ $) 88)) (-2222 (($ $ |#3|) 29)) (-2223 (((-791) $) 11) (((-587 |#4|) $) 37)) (-2537 (((-707) $) 76 (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-3077 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-2006 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) 81)) (-3355 (((-108) |#4| $) 135)) (-2567 (((-108) |#3| $) 80)) (-1549 (((-108) $ $) 6)) (-3478 (((-707) $) 46 (|has| $ (-6 -4233)))))
-(((-1022 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-783) (-984 |t#1| |t#2| |t#3|)) (T -1022))
-NIL
-(-13 (-989 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-791)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
-((-3362 (((-587 (-521)) (-521) (-521) (-521)) 22)) (-1212 (((-587 (-521)) (-521) (-521) (-521)) 12)) (-3987 (((-587 (-521)) (-521) (-521) (-521)) 18)) (-1942 (((-521) (-521) (-521)) 9)) (-3737 (((-1165 (-521)) (-587 (-521)) (-1165 (-521)) (-521)) 45) (((-1165 (-521)) (-1165 (-521)) (-1165 (-521)) (-521)) 40)) (-4205 (((-587 (-521)) (-587 (-521)) (-587 (-521)) (-108)) 27)) (-1388 (((-627 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521))) 44)) (-2452 (((-627 (-521)) (-587 (-521)) (-587 (-521))) 32)) (-2362 (((-587 (-627 (-521))) (-587 (-521))) 34)) (-4153 (((-587 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521))) 47)) (-2179 (((-627 (-521)) (-587 (-521)) (-587 (-521)) (-587 (-521))) 55)))
-(((-1023) (-10 -7 (-15 -2179 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -4153 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -2362 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -2452 ((-627 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -1388 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -4205 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-108))) (-15 -3737 ((-1165 (-521)) (-1165 (-521)) (-1165 (-521)) (-521))) (-15 -3737 ((-1165 (-521)) (-587 (-521)) (-1165 (-521)) (-521))) (-15 -1942 ((-521) (-521) (-521))) (-15 -3987 ((-587 (-521)) (-521) (-521) (-521))) (-15 -1212 ((-587 (-521)) (-521) (-521) (-521))) (-15 -3362 ((-587 (-521)) (-521) (-521) (-521))))) (T -1023))
-((-3362 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))) (-1212 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))) (-3987 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))) (-1942 (*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1023)))) (-3737 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-587 (-521))) (-5 *4 (-521)) (-5 *1 (-1023)))) (-3737 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-521)) (-5 *1 (-1023)))) (-4205 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *3 (-108)) (-5 *1 (-1023)))) (-1388 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-627 (-521))) (-5 *3 (-587 (-521))) (-5 *1 (-1023)))) (-2452 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-1023)))) (-4153 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *3 (-627 (-521))) (-5 *1 (-1023)))) (-2179 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))))
-(-10 -7 (-15 -2179 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -4153 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -2362 ((-587 (-627 (-521))) (-587 (-521)))) (-15 -2452 ((-627 (-521)) (-587 (-521)) (-587 (-521)))) (-15 -1388 ((-627 (-521)) (-587 (-521)) (-587 (-521)) (-627 (-521)))) (-15 -4205 ((-587 (-521)) (-587 (-521)) (-587 (-521)) (-108))) (-15 -3737 ((-1165 (-521)) (-1165 (-521)) (-1165 (-521)) (-521))) (-15 -3737 ((-1165 (-521)) (-587 (-521)) (-1165 (-521)) (-521))) (-15 -1942 ((-521) (-521) (-521))) (-15 -3987 ((-587 (-521)) (-521) (-521) (-521))) (-15 -1212 ((-587 (-521)) (-521) (-521) (-521))) (-15 -3362 ((-587 (-521)) (-521) (-521) (-521))))
-((-3509 (($ $ (-849)) 12)) (** (($ $ (-849)) 10)))
-(((-1024 |#1|) (-10 -8 (-15 -3509 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849)))) (-1025)) (T -1024))
-NIL
-(-10 -8 (-15 -3509 (|#1| |#1| (-849))) (-15 ** (|#1| |#1| (-849))))
-((-1422 (((-108) $ $) 7)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-3509 (($ $ (-849)) 13)) (-1549 (((-108) $ $) 6)) (** (($ $ (-849)) 14)) (* (($ $ $) 15)))
-(((-1025) (-1196)) (T -1025))
-((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-849)))) (-3509 (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-849)))))
-(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-849))) (-15 -3509 ($ $ (-849)))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL (|has| |#3| (-1013)))) (-3398 (((-108) $) NIL (|has| |#3| (-124)))) (-2965 (($ (-849)) NIL (|has| |#3| (-970)))) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2303 (($ $ $) NIL (|has| |#3| (-729)))) (-2057 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-1269 (((-108) $ (-707)) NIL)) (-1659 (((-707)) NIL (|has| |#3| (-342)))) (-2578 (((-521) $) NIL (|has| |#3| (-781)))) (-2396 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1013)))) (-1496 (((-521) $) NIL (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013)))) (((-381 (-521)) $) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013)))) ((|#3| $) NIL (|has| |#3| (-1013)))) (-1961 (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#3| (-583 (-521))) (|has| |#3| (-970)))) (((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) NIL (|has| |#3| (-970))) (((-627 |#3|) (-627 $)) NIL (|has| |#3| (-970)))) (-2783 (((-3 $ "failed") $) NIL (|has| |#3| (-970)))) (-3254 (($) NIL (|has| |#3| (-342)))) (-3849 ((|#3| $ (-521) |#3|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#3| $ (-521)) 12)) (-2273 (((-108) $) NIL (|has| |#3| (-781)))) (-3831 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL (|has| |#3| (-970)))) (-3305 (((-108) $) NIL (|has| |#3| (-781)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-3568 (((-587 |#3|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-3833 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#3| |#3|) $) NIL)) (-3999 (((-849) $) NIL (|has| |#3| (-342)))) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#3| (-1013)))) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-2723 (($ (-849)) NIL (|has| |#3| (-342)))) (-4146 (((-1031) $) NIL (|has| |#3| (-1013)))) (-2319 ((|#3| $) NIL (|has| (-521) (-783)))) (-2995 (($ $ |#3|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#3|))) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-269 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013)))) (($ $ (-587 |#3|) (-587 |#3|)) NIL (-12 (|has| |#3| (-284 |#3|)) (|has| |#3| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2481 (((-587 |#3|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#3| $ (-521) |#3|) NIL) ((|#3| $ (-521)) NIL)) (-4103 ((|#3| $ $) NIL (|has| |#3| (-970)))) (-2015 (($ (-1165 |#3|)) NIL)) (-2043 (((-126)) NIL (|has| |#3| (-337)))) (-2193 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970)))) (-4163 (((-707) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233))) (((-707) |#3| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#3| (-1013))))) (-2420 (($ $) NIL)) (-2223 (((-1165 |#3|) $) NIL) (($ (-521)) NIL (-3703 (-12 (|has| |#3| (-961 (-521))) (|has| |#3| (-1013))) (|has| |#3| (-970)))) (($ (-381 (-521))) NIL (-12 (|has| |#3| (-961 (-381 (-521)))) (|has| |#3| (-1013)))) (($ |#3|) NIL (|has| |#3| (-1013))) (((-791) $) NIL (|has| |#3| (-561 (-791))))) (-1592 (((-707)) NIL (|has| |#3| (-970)))) (-2006 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4233)))) (-4012 (($ $) NIL (|has| |#3| (-781)))) (-3509 (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-849)) NIL (|has| |#3| (-970)))) (-3562 (($) NIL (|has| |#3| (-124)) CONST)) (-3572 (($) NIL (|has| |#3| (-970)) CONST)) (-2244 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-707)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-970)))) (($ $ (-1084)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#3| (-828 (-1084))) (|has| |#3| (-970)))) (($ $ (-1 |#3| |#3|) (-707)) NIL (|has| |#3| (-970))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-970)))) (-1597 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1579 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1549 (((-108) $ $) NIL (|has| |#3| (-1013)))) (-1588 (((-108) $ $) NIL (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1569 (((-108) $ $) 17 (-3703 (|has| |#3| (-729)) (|has| |#3| (-781))))) (-1648 (($ $ |#3|) NIL (|has| |#3| (-337)))) (-1639 (($ $ $) NIL (|has| |#3| (-970))) (($ $) NIL (|has| |#3| (-970)))) (-1628 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-707)) NIL (|has| |#3| (-970))) (($ $ (-849)) NIL (|has| |#3| (-970)))) (* (($ $ $) NIL (|has| |#3| (-970))) (($ (-521) $) NIL (|has| |#3| (-970))) (($ $ |#3|) NIL (|has| |#3| (-663))) (($ |#3| $) NIL (|has| |#3| (-663))) (($ (-707) $) NIL (|has| |#3| (-124))) (($ (-849) $) NIL (|has| |#3| (-25)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1026 |#1| |#2| |#3|) (-215 |#1| |#3|) (-707) (-707) (-729)) (T -1026))
+((-1391 (((-588 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 24 (|has| |#1| (-782))) (((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|)) 14)))
+(((-1005 |#1| |#2|) (-10 -7 (-15 -1391 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) (IF (|has| |#1| (-782)) (-15 -1391 ((-588 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) |%noBranch|)) (-1120) (-1120)) (T -1005))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-782)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-588 *6)) (-5 *1 (-1005 *5 *6)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1009 *6)) (-5 *1 (-1005 *5 *6)))))
+(-10 -7 (-15 -1391 ((-1009 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) (IF (|has| |#1| (-782)) (-15 -1391 ((-588 |#2|) (-1 |#2| |#1|) (-1009 |#1|))) |%noBranch|))
+((-1391 (((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|)) 19)))
+(((-1006 |#1| |#2|) (-10 -7 (-15 -1391 ((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|)))) (-1120) (-1120)) (T -1006))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1007 *6)) (-5 *1 (-1006 *5 *6)))))
+(-10 -7 (-15 -1391 ((-1007 |#2|) (-1 |#2| |#1|) (-1007 |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1611 (((-1085) $) 11)) (-1539 (((-1009 |#1|) $) 12)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1607 (($ (-1085) (-1009 |#1|)) 10)) (-2190 (((-792) $) 20 (|has| |#1| (-1014)))) (-1531 (((-108) $ $) 15 (|has| |#1| (-1014)))))
+(((-1007 |#1|) (-13 (-1120) (-10 -8 (-15 -1607 ($ (-1085) (-1009 |#1|))) (-15 -1611 ((-1085) $)) (-15 -1539 ((-1009 |#1|) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1120)) (T -1007))
+((-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1009 *4)) (-4 *4 (-1120)) (-5 *1 (-1007 *4)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1007 *3)) (-4 *3 (-1120)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1120)))))
+(-13 (-1120) (-10 -8 (-15 -1607 ($ (-1085) (-1009 |#1|))) (-15 -1611 ((-1085) $)) (-15 -1539 ((-1009 |#1|) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|)))
+((-1539 (($ |#1| |#1|) 7)) (-2314 ((|#1| $) 10)) (-1450 ((|#1| $) 12)) (-1461 (((-522) $) 8)) (-1376 ((|#1| $) 9)) (-1471 ((|#1| $) 11)) (-1431 (($ |#1|) 6)) (-1673 (($ |#1| |#1|) 14)) (-1345 (($ $ (-522)) 13)))
+(((-1008 |#1|) (-1197) (-1120)) (T -1008))
+((-1673 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1345 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1008 *3)) (-4 *3 (-1120)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1120)) (-5 *2 (-522)))) (-1539 (*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))) (-1431 (*1 *1 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))))
+(-13 (-1120) (-10 -8 (-15 -1673 ($ |t#1| |t#1|)) (-15 -1345 ($ $ (-522))) (-15 -1450 (|t#1| $)) (-15 -1471 (|t#1| $)) (-15 -2314 (|t#1| $)) (-15 -1376 (|t#1| $)) (-15 -1461 ((-522) $)) (-15 -1539 ($ |t#1| |t#1|)) (-15 -1431 ($ |t#1|))))
+(((-1120) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1539 (($ |#1| |#1|) 15)) (-1391 (((-588 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-782)))) (-2314 ((|#1| $) 10)) (-1450 ((|#1| $) 9)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1461 (((-522) $) 14)) (-1376 ((|#1| $) 12)) (-1471 ((|#1| $) 11)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1604 (((-588 |#1|) $) 36 (|has| |#1| (-782))) (((-588 |#1|) (-588 $)) 35 (|has| |#1| (-782)))) (-1431 (($ |#1|) 26)) (-2190 (((-792) $) 25 (|has| |#1| (-1014)))) (-1673 (($ |#1| |#1|) 8)) (-1345 (($ $ (-522)) 16)) (-1531 (((-108) $ $) 19 (|has| |#1| (-1014)))))
+(((-1009 |#1|) (-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-588 |#1|))) |%noBranch|))) (-1120)) (T -1009))
+NIL
+(-13 (-1008 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-588 |#1|))) |%noBranch|)))
+((-1539 (($ |#1| |#1|) 7)) (-1391 ((|#2| (-1 |#1| |#1|) $) 16)) (-2314 ((|#1| $) 10)) (-1450 ((|#1| $) 12)) (-1461 (((-522) $) 8)) (-1376 ((|#1| $) 9)) (-1471 ((|#1| $) 11)) (-1604 ((|#2| (-588 $)) 18) ((|#2| $) 17)) (-1431 (($ |#1|) 6)) (-1673 (($ |#1| |#1|) 14)) (-1345 (($ $ (-522)) 13)))
+(((-1010 |#1| |#2|) (-1197) (-782) (-1059 |t#1|)) (T -1010))
+((-1604 (*1 *2 *3) (-12 (-5 *3 (-588 *1)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782)) (-4 *2 (-1059 *4)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-1010 *3 *2)) (-4 *3 (-782)) (-4 *2 (-1059 *3)))) (-1391 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782)) (-4 *2 (-1059 *4)))))
+(-13 (-1008 |t#1|) (-10 -8 (-15 -1604 (|t#2| (-588 $))) (-15 -1604 (|t#2| $)) (-15 -1391 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1008 |#1|) . T) ((-1120) . T))
+((-2270 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2079 (($ $ $) 10)) (-3417 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1011 |#1| |#2|) (-10 -8 (-15 -2270 (|#1| |#2| |#1|)) (-15 -2270 (|#1| |#1| |#2|)) (-15 -2270 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#2|)) (-15 -3417 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011))
+NIL
+(-10 -8 (-15 -2270 (|#1| |#2| |#1|)) (-15 -2270 (|#1| |#1| |#2|)) (-15 -2270 (|#1| |#1| |#1|)) (-15 -2079 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#2|)) (-15 -3417 (|#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2270 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2079 (($ $ $) 20)) (-3557 (((-108) $ $) 19)) (-4141 (((-108) $ (-708)) 35)) (-1764 (($) 25) (($ (-588 |#1|)) 24)) (-1628 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4238)))) (-3175 (($) 36 T CONST)) (-2333 (($ $) 59 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 58 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4238)))) (-3837 (((-588 |#1|) $) 43 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 34)) (-3308 (((-588 |#1|) $) 44 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 38)) (-2720 (((-108) $ (-708)) 33)) (-2385 (((-1068) $) 9)) (-2416 (($ $ $) 23)) (-4151 (((-1032) $) 10)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3053 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#1|) (-588 |#1|)) 50 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 48 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 (-270 |#1|))) 47 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 29)) (-3985 (((-108) $) 32)) (-3775 (($) 31)) (-3417 (($ $ $) 22) (($ $ |#1|) 21)) (-4168 (((-708) |#1| $) 45 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4238)))) (-2404 (($ $) 30)) (-1431 (((-498) $) 60 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 51)) (-2190 (((-792) $) 11)) (-3392 (($) 27) (($ (-588 |#1|)) 26)) (-3648 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 6)) (-1549 (((-108) $ $) 28)) (-3480 (((-708) $) 37 (|has| $ (-6 -4238)))))
+(((-1012 |#1|) (-1197) (-1014)) (T -1012))
+((-1549 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-3392 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3392 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-1764 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-1764 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-2416 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3417 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-2079 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3557 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))) (-2270 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-2270 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-2270 (*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(-13 (-1014) (-139 |t#1|) (-10 -8 (-6 -4228) (-15 -1549 ((-108) $ $)) (-15 -3392 ($)) (-15 -3392 ($ (-588 |t#1|))) (-15 -1764 ($)) (-15 -1764 ($ (-588 |t#1|))) (-15 -2416 ($ $ $)) (-15 -3417 ($ $ $)) (-15 -3417 ($ $ |t#1|)) (-15 -2079 ($ $ $)) (-15 -3557 ((-108) $ $)) (-15 -2270 ($ $ $)) (-15 -2270 ($ $ |t#1|)) (-15 -2270 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) . T) ((-1120) . T))
+((-2385 (((-1068) $) 10)) (-4151 (((-1032) $) 8)))
+(((-1013 |#1|) (-10 -8 (-15 -2385 ((-1068) |#1|)) (-15 -4151 ((-1032) |#1|))) (-1014)) (T -1013))
+NIL
+(-10 -8 (-15 -2385 ((-1068) |#1|)) (-15 -4151 ((-1032) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-1014) (-1197)) (T -1014))
+((-4151 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1032)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1068)))))
+(-13 (-97) (-562 (-792)) (-10 -8 (-15 -4151 ((-1032) $)) (-15 -2385 ((-1068) $))))
+(((-97) . T) ((-562 (-792)) . T))
+((-1416 (((-108) $ $) NIL)) (-1629 (((-708)) 30)) (-3111 (($ (-588 (-850))) 52)) (-1403 (((-3 $ "failed") $ (-850) (-850)) 57)) (-3255 (($) 32)) (-2246 (((-108) (-850) $) 35)) (-2120 (((-850) $) 50)) (-2385 (((-1068) $) NIL)) (-2717 (($ (-850)) 31)) (-1302 (((-3 $ "failed") $ (-850)) 55)) (-4151 (((-1032) $) NIL)) (-2234 (((-1166 $)) 40)) (-1389 (((-588 (-850)) $) 23)) (-1203 (((-708) $ (-850) (-850)) 56)) (-2190 (((-792) $) 29)) (-1531 (((-108) $ $) 21)))
+(((-1015 |#1| |#2|) (-13 (-343) (-10 -8 (-15 -1302 ((-3 $ "failed") $ (-850))) (-15 -1403 ((-3 $ "failed") $ (-850) (-850))) (-15 -1389 ((-588 (-850)) $)) (-15 -3111 ($ (-588 (-850)))) (-15 -2234 ((-1166 $))) (-15 -2246 ((-108) (-850) $)) (-15 -1203 ((-708) $ (-850) (-850))))) (-850) (-850)) (T -1015))
+((-1302 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1403 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-3111 (*1 *1 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-2234 (*1 *2) (-12 (-5 *2 (-1166 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850)))) (-2246 (*1 *2 *3 *1) (-12 (-5 *3 (-850)) (-5 *2 (-108)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1203 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-708)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-343) (-10 -8 (-15 -1302 ((-3 $ "failed") $ (-850))) (-15 -1403 ((-3 $ "failed") $ (-850) (-850))) (-15 -1389 ((-588 (-850)) $)) (-15 -3111 ($ (-588 (-850)))) (-15 -2234 ((-1166 $))) (-15 -2246 ((-108) (-850) $)) (-15 -1203 ((-708) $ (-850) (-850)))))
+((-1416 (((-108) $ $) NIL)) (-1579 (($) NIL (|has| |#1| (-343)))) (-2270 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2079 (($ $ $) 72)) (-3557 (((-108) $ $) 73)) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| |#1| (-343)))) (-1764 (($ (-588 |#1|)) NIL) (($) 13)) (-2790 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3859 (($ |#1| $) 67 (|has| $ (-6 -4238))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4238)))) (-3255 (($) NIL (|has| |#1| (-343)))) (-3837 (((-588 |#1|) $) 19 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-2814 ((|#1| $) 57 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2446 ((|#1| $) 55 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 34)) (-2120 (((-850) $) NIL (|has| |#1| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-2416 (($ $ $) 70)) (-2116 ((|#1| $) 25)) (-4095 (($ |#1| $) 65)) (-2717 (($ (-850)) NIL (|has| |#1| (-343)))) (-4151 (((-1032) $) NIL)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-4087 ((|#1| $) 27)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 21)) (-3775 (($) 11)) (-3417 (($ $ |#1|) NIL) (($ $ $) 71)) (-3990 (($) NIL) (($ (-588 |#1|)) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 16)) (-1431 (((-498) $) 52 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 61)) (-3763 (($ $) NIL (|has| |#1| (-343)))) (-2190 (((-792) $) NIL)) (-2067 (((-708) $) NIL)) (-3392 (($ (-588 |#1|)) NIL) (($) 12)) (-2795 (($ (-588 |#1|)) NIL)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 54)) (-1549 (((-108) $ $) NIL)) (-3480 (((-708) $) 10 (|has| $ (-6 -4238)))))
+(((-1016 |#1|) (-400 |#1|) (-1014)) (T -1016))
+NIL
+(-400 |#1|)
+((-1416 (((-108) $ $) 7)) (-2031 (((-108) $) 32)) (-1490 ((|#2| $) 27)) (-2879 (((-108) $) 33)) (-1507 ((|#1| $) 28)) (-1741 (((-108) $) 35)) (-2045 (((-108) $) 37)) (-2586 (((-108) $) 34)) (-2385 (((-1068) $) 9)) (-3096 (((-108) $) 31)) (-1509 ((|#3| $) 26)) (-4151 (((-1032) $) 10)) (-3151 (((-108) $) 30)) (-3071 ((|#4| $) 25)) (-1575 ((|#5| $) 24)) (-3197 (((-108) $ $) 38)) (-2545 (($ $ (-522)) 14) (($ $ (-588 (-522))) 13)) (-1991 (((-588 $) $) 29)) (-1431 (($ (-588 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2190 (((-792) $) 11)) (-3212 (($ $) 16)) (-3201 (($ $) 17)) (-1474 (((-108) $) 36)) (-1531 (((-108) $ $) 6)) (-3480 (((-522) $) 15)))
+(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1197) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017))
+((-3197 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2586 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))) (-1991 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))) (-1431 (*1 *1 *2) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-1431 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *2 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-1431 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-1431 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-4 *6 (-1014)))) (-1431 (*1 *1 *2) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3201 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-522)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -3197 ((-108) $ $)) (-15 -2045 ((-108) $)) (-15 -1474 ((-108) $)) (-15 -1741 ((-108) $)) (-15 -2586 ((-108) $)) (-15 -2879 ((-108) $)) (-15 -2031 ((-108) $)) (-15 -3096 ((-108) $)) (-15 -3151 ((-108) $)) (-15 -1991 ((-588 $) $)) (-15 -1507 (|t#1| $)) (-15 -1490 (|t#2| $)) (-15 -1509 (|t#3| $)) (-15 -3071 (|t#4| $)) (-15 -1575 (|t#5| $)) (-15 -1431 ($ (-588 $))) (-15 -1431 ($ |t#1|)) (-15 -1431 ($ |t#2|)) (-15 -1431 ($ |t#3|)) (-15 -1431 ($ |t#4|)) (-15 -1431 ($ |t#5|)) (-15 -3201 ($ $)) (-15 -3212 ($ $)) (-15 -3480 ((-522) $)) (-15 -2545 ($ $ (-522))) (-15 -2545 ($ $ (-588 (-522))))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2031 (((-108) $) NIL)) (-1490 (((-1085) $) NIL)) (-2879 (((-108) $) NIL)) (-1507 (((-1068) $) NIL)) (-1741 (((-108) $) NIL)) (-2045 (((-108) $) NIL)) (-2586 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-3096 (((-108) $) NIL)) (-1509 (((-522) $) NIL)) (-4151 (((-1032) $) NIL)) (-3151 (((-108) $) NIL)) (-3071 (((-202) $) NIL)) (-1575 (((-792) $) NIL)) (-3197 (((-108) $ $) NIL)) (-2545 (($ $ (-522)) NIL) (($ $ (-588 (-522))) NIL)) (-1991 (((-588 $) $) NIL)) (-1431 (($ (-588 $)) NIL) (($ (-1068)) NIL) (($ (-1085)) NIL) (($ (-522)) NIL) (($ (-202)) NIL) (($ (-792)) NIL)) (-2190 (((-792) $) NIL)) (-3212 (($ $) NIL)) (-3201 (($ $) NIL)) (-1474 (((-108) $) NIL)) (-1531 (((-108) $ $) NIL)) (-3480 (((-522) $) NIL)))
+(((-1018) (-1017 (-1068) (-1085) (-522) (-202) (-792))) (T -1018))
+NIL
+(-1017 (-1068) (-1085) (-522) (-202) (-792))
+((-1416 (((-108) $ $) NIL)) (-2031 (((-108) $) 38)) (-1490 ((|#2| $) 42)) (-2879 (((-108) $) 37)) (-1507 ((|#1| $) 41)) (-1741 (((-108) $) 35)) (-2045 (((-108) $) 14)) (-2586 (((-108) $) 36)) (-2385 (((-1068) $) NIL)) (-3096 (((-108) $) 39)) (-1509 ((|#3| $) 44)) (-4151 (((-1032) $) NIL)) (-3151 (((-108) $) 40)) (-3071 ((|#4| $) 43)) (-1575 ((|#5| $) 45)) (-3197 (((-108) $ $) 34)) (-2545 (($ $ (-522)) 56) (($ $ (-588 (-522))) 58)) (-1991 (((-588 $) $) 22)) (-1431 (($ (-588 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2190 (((-792) $) 23)) (-3212 (($ $) 21)) (-3201 (($ $) 52)) (-1474 (((-108) $) 18)) (-1531 (((-108) $ $) 33)) (-3480 (((-522) $) 54)))
+(((-1019 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1019))
+NIL
+(-1017 |#1| |#2| |#3| |#4| |#5|)
+((-2009 (((-1171) $) 23)) (-1464 (($ (-1085) (-409) |#2|) 11)) (-2190 (((-792) $) 16)))
+(((-1020 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1464 ($ (-1085) (-409) |#2|)))) (-784) (-405 |#1|)) (T -1020))
+((-1464 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1085)) (-5 *3 (-409)) (-4 *5 (-784)) (-5 *1 (-1020 *5 *4)) (-4 *4 (-405 *5)))))
+(-13 (-370) (-10 -8 (-15 -1464 ($ (-1085) (-409) |#2|))))
+((-3407 (((-108) |#5| |#5|) 38)) (-3753 (((-108) |#5| |#5|) 52)) (-1215 (((-108) |#5| (-588 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-3027 (((-108) (-588 |#4|) (-588 |#4|)) 58)) (-3909 (((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) 63)) (-3020 (((-1171)) 33)) (-4041 (((-1171) (-1068) (-1068) (-1068)) 29)) (-1523 (((-588 |#5|) (-588 |#5|)) 82)) (-3742 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) 80)) (-2025 (((-588 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108)) 102)) (-3441 (((-108) |#5| |#5|) 47)) (-2291 (((-3 (-108) "failed") |#5| |#5|) 71)) (-2075 (((-108) (-588 |#4|) (-588 |#4|)) 57)) (-3370 (((-108) (-588 |#4|) (-588 |#4|)) 59)) (-2123 (((-108) (-588 |#4|) (-588 |#4|)) 60)) (-2492 (((-3 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-2069 (((-588 |#5|) (-588 |#5|)) 43)))
+(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4041 ((-1171) (-1068) (-1068) (-1068))) (-15 -3020 ((-1171))) (-15 -3407 ((-108) |#5| |#5|)) (-15 -2069 ((-588 |#5|) (-588 |#5|))) (-15 -3441 ((-108) |#5| |#5|)) (-15 -3753 ((-108) |#5| |#5|)) (-15 -3027 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2075 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3370 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2123 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2291 ((-3 (-108) "failed") |#5| |#5|)) (-15 -1215 ((-108) |#5| |#5|)) (-15 -1215 ((-108) |#5| (-588 |#5|))) (-15 -1523 ((-588 |#5|) (-588 |#5|))) (-15 -3909 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -3742 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-15 -2025 ((-588 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2492 ((-3 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -1021))
+((-2492 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| -3197 (-588 *9)) (|:| -1886 *4) (|:| |ineq| (-588 *9)))) (-5 *1 (-1021 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9)) (-4 *4 (-990 *6 *7 *8 *9)))) (-2025 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| -3197 (-588 *9)) (|:| -1886 *10) (|:| |ineq| (-588 *9))))) (-5 *1 (-1021 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1886 *7)))) (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))) (-3909 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1021 *5 *6 *7 *8 *3)))) (-1215 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2291 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2123 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3370 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-2075 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3027 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-3441 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))) (-3407 (*1 *2 *3 *3) (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))) (-3020 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-4041 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4041 ((-1171) (-1068) (-1068) (-1068))) (-15 -3020 ((-1171))) (-15 -3407 ((-108) |#5| |#5|)) (-15 -2069 ((-588 |#5|) (-588 |#5|))) (-15 -3441 ((-108) |#5| |#5|)) (-15 -3753 ((-108) |#5| |#5|)) (-15 -3027 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2075 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -3370 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2123 ((-108) (-588 |#4|) (-588 |#4|))) (-15 -2291 ((-3 (-108) "failed") |#5| |#5|)) (-15 -1215 ((-108) |#5| |#5|)) (-15 -1215 ((-108) |#5| (-588 |#5|))) (-15 -1523 ((-588 |#5|) (-588 |#5|))) (-15 -3909 ((-108) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -3742 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-15 -2025 ((-588 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|)))) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -2492 ((-3 (-2 (|:| -3197 (-588 |#4|)) (|:| -1886 |#5|) (|:| |ineq| (-588 |#4|))) "failed") (-588 |#4|) |#5| (-588 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-1409 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|) 95)) (-3077 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#4| |#4| |#5|) 71)) (-3970 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|) 89)) (-3477 (((-588 |#5|) |#4| |#5|) 110)) (-3172 (((-588 |#5|) |#4| |#5|) 117)) (-3548 (((-588 |#5|) |#4| |#5|) 118)) (-2589 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|) 96)) (-1779 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|) 116)) (-2544 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|) 44) (((-108) |#4| |#5|) 52)) (-3963 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#3| (-108)) 83) (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5| (-108) (-108)) 49)) (-1966 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|) 78)) (-1426 (((-1171)) 35)) (-1637 (((-1171)) 25)) (-1821 (((-1171) (-1068) (-1068) (-1068)) 31)) (-1312 (((-1171) (-1068) (-1068) (-1068)) 20)))
+(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1312 ((-1171) (-1068) (-1068) (-1068))) (-15 -1637 ((-1171))) (-15 -1821 ((-1171) (-1068) (-1068) (-1068))) (-15 -1426 ((-1171))) (-15 -3077 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -3963 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3963 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#3| (-108))) (-15 -1966 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -3970 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -2544 ((-108) |#4| |#5|)) (-15 -2589 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -3477 ((-588 |#5|) |#4| |#5|)) (-15 -1779 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -3172 ((-588 |#5|) |#4| |#5|)) (-15 -2544 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -3548 ((-588 |#5|) |#4| |#5|)) (-15 -1409 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-990 |#1| |#2| |#3| |#4|)) (T -1022))
+((-1409 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3548 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2544 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3172 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1779 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3477 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2589 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-2544 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3970 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1966 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-3963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9)))) (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784)) (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1886 *9)))) (-5 *1 (-1022 *6 *7 *4 *8 *9)))) (-3963 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3)))) (-3077 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))) (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))) (-1426 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-1821 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))) (-1637 (*1 *2) (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171)) (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))) (-1312 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171)) (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1312 ((-1171) (-1068) (-1068) (-1068))) (-15 -1637 ((-1171))) (-15 -1821 ((-1171) (-1068) (-1068) (-1068))) (-15 -1426 ((-1171))) (-15 -3077 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -3963 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3963 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) |#3| (-108))) (-15 -1966 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -3970 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#4| |#5|)) (-15 -2544 ((-108) |#4| |#5|)) (-15 -2589 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -3477 ((-588 |#5|) |#4| |#5|)) (-15 -1779 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -3172 ((-588 |#5|) |#4| |#5|)) (-15 -2544 ((-588 (-2 (|:| |val| (-108)) (|:| -1886 |#5|))) |#4| |#5|)) (-15 -3548 ((-588 |#5|) |#4| |#5|)) (-15 -1409 ((-588 (-2 (|:| |val| |#4|) (|:| -1886 |#5|))) |#4| |#5|)))
+((-1416 (((-108) $ $) 7)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) 85)) (-4125 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-4090 (((-588 |#3|) $) 33)) (-2690 (((-108) $) 26)) (-4140 (((-108) $) 17 (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) 101) (((-108) $) 97)) (-3607 ((|#4| |#4| $) 92)) (-3119 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| $) 126)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) 27)) (-4141 (((-108) $ (-708)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3175 (($) 45 T CONST)) (-3639 (((-108) $) 22 (|has| |#1| (-514)))) (-3982 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3996 (((-108) $ $) 23 (|has| |#1| (-514)))) (-3538 (((-108) $) 25 (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3050 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 36)) (-1484 (($ (-588 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-2806 ((|#4| |#4| $) 89)) (-2333 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-4164 ((|#4| |#4| $) 87)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) 105)) (-2208 (((-108) |#4| $) 136)) (-3129 (((-108) |#4| $) 133)) (-2198 (((-108) |#4| $) 137) (((-108) $) 134)) (-3837 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) 104) (((-108) $) 103)) (-1521 ((|#3| $) 34)) (-3352 (((-108) $ (-708)) 43)) (-3308 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 47)) (-2458 (((-588 |#3|) $) 32)) (-1606 (((-108) |#3| $) 31)) (-2720 (((-108) $ (-708)) 42)) (-2385 (((-1068) $) 9)) (-3959 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1331 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-2893 (((-588 $) |#4| $) 129)) (-4190 (((-3 (-108) (-588 $)) |#4| $) 132)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2416 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2135 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-2242 (((-588 |#4|) $) 107)) (-3409 (((-108) |#4| $) 99) (((-108) $) 95)) (-1451 ((|#4| |#4| $) 90)) (-2123 (((-108) $ $) 110)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) 100) (((-108) $) 96)) (-2680 ((|#4| |#4| $) 91)) (-4151 (((-1032) $) 10)) (-2294 (((-3 |#4| "failed") $) 84)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3307 (((-3 $ "failed") $ |#4|) 78)) (-3719 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3053 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) 38)) (-3985 (((-108) $) 41)) (-3775 (($) 40)) (-2793 (((-708) $) 106)) (-4168 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2404 (($ $) 39)) (-1431 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 60)) (-2020 (($ $ |#3|) 28)) (-3606 (($ $ |#3|) 30)) (-3968 (($ $) 88)) (-2463 (($ $ |#3|) 29)) (-2190 (((-792) $) 11) (((-588 |#4|) $) 37)) (-1974 (((-708) $) 76 (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-2188 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-3648 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) 81)) (-3021 (((-108) |#4| $) 135)) (-2351 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3480 (((-708) $) 46 (|has| $ (-6 -4238)))))
+(((-1023 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -1023))
+NIL
+(-13 (-990 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-990 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T))
+((-1873 (((-588 (-522)) (-522) (-522) (-522)) 22)) (-3303 (((-588 (-522)) (-522) (-522) (-522)) 12)) (-1987 (((-588 (-522)) (-522) (-522) (-522)) 18)) (-1899 (((-522) (-522) (-522)) 9)) (-1457 (((-1166 (-522)) (-588 (-522)) (-1166 (-522)) (-522)) 45) (((-1166 (-522)) (-1166 (-522)) (-1166 (-522)) (-522)) 40)) (-3497 (((-588 (-522)) (-588 (-522)) (-588 (-522)) (-108)) 27)) (-2220 (((-628 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522))) 44)) (-4091 (((-628 (-522)) (-588 (-522)) (-588 (-522))) 32)) (-3452 (((-588 (-628 (-522))) (-588 (-522))) 34)) (-1291 (((-588 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522))) 47)) (-1804 (((-628 (-522)) (-588 (-522)) (-588 (-522)) (-588 (-522))) 55)))
+(((-1024) (-10 -7 (-15 -1804 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -1291 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -3452 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -4091 ((-628 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -2220 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -3497 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-108))) (-15 -1457 ((-1166 (-522)) (-1166 (-522)) (-1166 (-522)) (-522))) (-15 -1457 ((-1166 (-522)) (-588 (-522)) (-1166 (-522)) (-522))) (-15 -1899 ((-522) (-522) (-522))) (-15 -1987 ((-588 (-522)) (-522) (-522) (-522))) (-15 -3303 ((-588 (-522)) (-522) (-522) (-522))) (-15 -1873 ((-588 (-522)) (-522) (-522) (-522))))) (T -1024))
+((-1873 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))) (-3303 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))) (-1987 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))) (-1899 (*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1024)))) (-1457 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-588 (-522))) (-5 *4 (-522)) (-5 *1 (-1024)))) (-1457 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-522)) (-5 *1 (-1024)))) (-3497 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *3 (-108)) (-5 *1 (-1024)))) (-2220 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-628 (-522))) (-5 *3 (-588 (-522))) (-5 *1 (-1024)))) (-4091 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-1024)))) (-1291 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *3 (-628 (-522))) (-5 *1 (-1024)))) (-1804 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024)))))
+(-10 -7 (-15 -1804 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -1291 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -3452 ((-588 (-628 (-522))) (-588 (-522)))) (-15 -4091 ((-628 (-522)) (-588 (-522)) (-588 (-522)))) (-15 -2220 ((-628 (-522)) (-588 (-522)) (-588 (-522)) (-628 (-522)))) (-15 -3497 ((-588 (-522)) (-588 (-522)) (-588 (-522)) (-108))) (-15 -1457 ((-1166 (-522)) (-1166 (-522)) (-1166 (-522)) (-522))) (-15 -1457 ((-1166 (-522)) (-588 (-522)) (-1166 (-522)) (-522))) (-15 -1899 ((-522) (-522) (-522))) (-15 -1987 ((-588 (-522)) (-522) (-522) (-522))) (-15 -3303 ((-588 (-522)) (-522) (-522) (-522))) (-15 -1873 ((-588 (-522)) (-522) (-522) (-522))))
+((-3510 (($ $ (-850)) 12)) (** (($ $ (-850)) 10)))
+(((-1025 |#1|) (-10 -8 (-15 -3510 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850)))) (-1026)) (T -1025))
+NIL
+(-10 -8 (-15 -3510 (|#1| |#1| (-850))) (-15 ** (|#1| |#1| (-850))))
+((-1416 (((-108) $ $) 7)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-3510 (($ $ (-850)) 13)) (-1531 (((-108) $ $) 6)) (** (($ $ (-850)) 14)) (* (($ $ $) 15)))
+(((-1026) (-1197)) (T -1026))
+((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850)))))
+(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-850))) (-15 -3510 ($ $ (-850)))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL (|has| |#3| (-1014)))) (-2250 (((-108) $) NIL (|has| |#3| (-124)))) (-2468 (($ (-850)) NIL (|has| |#3| (-971)))) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-1210 (($ $ $) NIL (|has| |#3| (-730)))) (-1233 (((-3 $ "failed") $ $) NIL (|has| |#3| (-124)))) (-4141 (((-108) $ (-708)) NIL)) (-1629 (((-708)) NIL (|has| |#3| (-343)))) (-1341 (((-522) $) NIL (|has| |#3| (-782)))) (-2379 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1014)))) (-1484 (((-522) $) NIL (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014)))) (((-382 (-522)) $) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) ((|#3| $) NIL (|has| |#3| (-1014)))) (-2096 (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#3| (-584 (-522))) (|has| |#3| (-971)))) (((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) NIL (|has| |#3| (-971))) (((-628 |#3|) (-628 $)) NIL (|has| |#3| (-971)))) (-2682 (((-3 $ "failed") $) NIL (|has| |#3| (-971)))) (-3255 (($) NIL (|has| |#3| (-343)))) (-3854 ((|#3| $ (-522) |#3|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#3| $ (-522)) 12)) (-3687 (((-108) $) NIL (|has| |#3| (-782)))) (-3837 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL (|has| |#3| (-971)))) (-2556 (((-108) $) NIL (|has| |#3| (-782)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-3308 (((-588 |#3|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-3838 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#3| |#3|) $) NIL)) (-2120 (((-850) $) NIL (|has| |#3| (-343)))) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#3| (-1014)))) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-2717 (($ (-850)) NIL (|has| |#3| (-343)))) (-4151 (((-1032) $) NIL (|has| |#3| (-1014)))) (-2294 ((|#3| $) NIL (|has| (-522) (-784)))) (-2602 (($ $ |#3|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#3|))) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-270 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014)))) (($ $ (-588 |#3|) (-588 |#3|)) NIL (-12 (|has| |#3| (-285 |#3|)) (|has| |#3| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-1525 (((-588 |#3|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#3| $ (-522) |#3|) NIL) ((|#3| $ (-522)) NIL)) (-1883 ((|#3| $ $) NIL (|has| |#3| (-971)))) (-1962 (($ (-1166 |#3|)) NIL)) (-4078 (((-126)) NIL (|has| |#3| (-338)))) (-2157 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971)))) (-4168 (((-708) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238))) (((-708) |#3| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#3| (-1014))))) (-2404 (($ $) NIL)) (-2190 (((-1166 |#3|) $) NIL) (($ (-522)) NIL (-3708 (-12 (|has| |#3| (-962 (-522))) (|has| |#3| (-1014))) (|has| |#3| (-971)))) (($ (-382 (-522))) NIL (-12 (|has| |#3| (-962 (-382 (-522)))) (|has| |#3| (-1014)))) (($ |#3|) NIL (|has| |#3| (-1014))) (((-792) $) NIL (|has| |#3| (-562 (-792))))) (-2323 (((-708)) NIL (|has| |#3| (-971)))) (-3648 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4238)))) (-2241 (($ $) NIL (|has| |#3| (-782)))) (-3510 (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (-3566 (($) NIL (|has| |#3| (-124)) CONST)) (-3577 (($) NIL (|has| |#3| (-971)) CONST)) (-2213 (($ $) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-708)) NIL (-12 (|has| |#3| (-210)) (|has| |#3| (-971)))) (($ $ (-1085)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#3| (-829 (-1085))) (|has| |#3| (-971)))) (($ $ (-1 |#3| |#3|) (-708)) NIL (|has| |#3| (-971))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-971)))) (-1574 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1558 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1531 (((-108) $ $) NIL (|has| |#3| (-1014)))) (-1566 (((-108) $ $) NIL (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1549 (((-108) $ $) 17 (-3708 (|has| |#3| (-730)) (|has| |#3| (-782))))) (-1620 (($ $ |#3|) NIL (|has| |#3| (-338)))) (-1612 (($ $ $) NIL (|has| |#3| (-971))) (($ $) NIL (|has| |#3| (-971)))) (-1602 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-708)) NIL (|has| |#3| (-971))) (($ $ (-850)) NIL (|has| |#3| (-971)))) (* (($ $ $) NIL (|has| |#3| (-971))) (($ (-522) $) NIL (|has| |#3| (-971))) (($ $ |#3|) NIL (|has| |#3| (-664))) (($ |#3| $) NIL (|has| |#3| (-664))) (($ (-708) $) NIL (|has| |#3| (-124))) (($ (-850) $) NIL (|has| |#3| (-25)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1027 |#1| |#2| |#3|) (-215 |#1| |#3|) (-708) (-708) (-730)) (T -1027))
NIL
(-215 |#1| |#3|)
-((-2679 (((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 37)) (-3242 (((-521) (-1138 |#2| |#1|)) 68 (|has| |#1| (-425)))) (-4063 (((-521) (-1138 |#2| |#1|)) 54)) (-3240 (((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 45)) (-2007 (((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 56 (|has| |#1| (-425)))) (-2324 (((-587 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 48)) (-3686 (((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 53)))
-(((-1027 |#1| |#2|) (-10 -7 (-15 -2679 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3240 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -2324 ((-587 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3686 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -4063 ((-521) (-1138 |#2| |#1|))) (IF (|has| |#1| (-425)) (PROGN (-15 -2007 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3242 ((-521) (-1138 |#2| |#1|)))) |%noBranch|)) (-756) (-1084)) (T -1027))
-((-3242 (*1 *2 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-2007 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-3686 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))) (-2324 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-587 *4)) (-5 *1 (-1027 *4 *5)))) (-3240 (*1 *2 *3 *3) (-12 (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))) (-2679 (*1 *2 *3 *3) (-12 (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))))
-(-10 -7 (-15 -2679 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3240 ((-587 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -2324 ((-587 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3686 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -4063 ((-521) (-1138 |#2| |#1|))) (IF (|has| |#1| (-425)) (PROGN (-15 -2007 ((-521) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3242 ((-521) (-1138 |#2| |#1|)))) |%noBranch|))
-((-2578 (((-3 (-521) "failed") |#2| (-1084) |#2| (-1067)) 16) (((-3 (-521) "failed") |#2| (-1084) (-776 |#2|)) 14) (((-3 (-521) "failed") |#2|) 51)))
-(((-1028 |#1| |#2|) (-10 -7 (-15 -2578 ((-3 (-521) "failed") |#2|)) (-15 -2578 ((-3 (-521) "failed") |#2| (-1084) (-776 |#2|))) (-15 -2578 ((-3 (-521) "failed") |#2| (-1084) |#2| (-1067)))) (-13 (-513) (-783) (-961 (-521)) (-583 (-521)) (-425)) (-13 (-27) (-1105) (-404 |#1|))) (T -1028))
-((-2578 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-1067)) (-4 *6 (-13 (-513) (-783) (-961 *2) (-583 *2) (-425))) (-5 *2 (-521)) (-5 *1 (-1028 *6 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))))) (-2578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-776 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6))) (-4 *6 (-13 (-513) (-783) (-961 *2) (-583 *2) (-425))) (-5 *2 (-521)) (-5 *1 (-1028 *6 *3)))) (-2578 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-513) (-783) (-961 *2) (-583 *2) (-425))) (-5 *2 (-521)) (-5 *1 (-1028 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))))
-(-10 -7 (-15 -2578 ((-3 (-521) "failed") |#2|)) (-15 -2578 ((-3 (-521) "failed") |#2| (-1084) (-776 |#2|))) (-15 -2578 ((-3 (-521) "failed") |#2| (-1084) |#2| (-1067))))
-((-2578 (((-3 (-521) "failed") (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|)) (-1067)) 34) (((-3 (-521) "failed") (-381 (-880 |#1|)) (-1084) (-776 (-381 (-880 |#1|)))) 29) (((-3 (-521) "failed") (-381 (-880 |#1|))) 12)))
-(((-1029 |#1|) (-10 -7 (-15 -2578 ((-3 (-521) "failed") (-381 (-880 |#1|)))) (-15 -2578 ((-3 (-521) "failed") (-381 (-880 |#1|)) (-1084) (-776 (-381 (-880 |#1|))))) (-15 -2578 ((-3 (-521) "failed") (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|)) (-1067)))) (-425)) (T -1029))
-((-2578 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-381 (-880 *6))) (-5 *4 (-1084)) (-5 *5 (-1067)) (-4 *6 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *6)))) (-2578 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-776 (-381 (-880 *6)))) (-5 *3 (-381 (-880 *6))) (-4 *6 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *6)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *4)))))
-(-10 -7 (-15 -2578 ((-3 (-521) "failed") (-381 (-880 |#1|)))) (-15 -2578 ((-3 (-521) "failed") (-381 (-880 |#1|)) (-1084) (-776 (-381 (-880 |#1|))))) (-15 -2578 ((-3 (-521) "failed") (-381 (-880 |#1|)) (-1084) (-381 (-880 |#1|)) (-1067))))
-((-1205 (((-290 (-521)) (-47)) 11)))
-(((-1030) (-10 -7 (-15 -1205 ((-290 (-521)) (-47))))) (T -1030))
-((-1205 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-290 (-521))) (-5 *1 (-1030)))))
-(-10 -7 (-15 -1205 ((-290 (-521)) (-47))))
-((-1422 (((-108) $ $) NIL)) (-1515 (($ $) 41)) (-3398 (((-108) $) 65)) (-3348 (($ $ $) 48)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 84)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-1645 (($ $ $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3591 (($ $ $ $) 74)) (-2694 (($ $) NIL)) (-2337 (((-392 $) $) NIL)) (-2165 (((-108) $ $) NIL)) (-2578 (((-521) $) NIL)) (-1697 (($ $ $) 71)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL)) (-1496 (((-521) $) NIL)) (-2302 (($ $ $) 59)) (-1961 (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 78) (((-627 (-521)) (-627 $)) 28)) (-2783 (((-3 $ "failed") $) NIL)) (-3762 (((-3 (-381 (-521)) "failed") $) NIL)) (-2428 (((-108) $) NIL)) (-2758 (((-381 (-521)) $) NIL)) (-3254 (($) 81) (($ $) 82)) (-2282 (($ $ $) 58)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL)) (-2100 (((-108) $) NIL)) (-2085 (($ $ $ $) NIL)) (-4020 (($ $ $) 79)) (-2273 (((-108) $) NIL)) (-3556 (($ $ $) NIL)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL)) (-3637 (((-108) $) 66)) (-3924 (((-108) $) 64)) (-2416 (($ $) 42)) (-3035 (((-3 $ "failed") $) NIL)) (-3305 (((-108) $) 75)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2830 (($ $ $ $) 72)) (-2816 (($ $ $) 68) (($) 39)) (-2459 (($ $ $) 67) (($) 38)) (-3890 (($ $) NIL)) (-2522 (($ $) 70)) (-2254 (($ $ $) NIL) (($ (-587 $)) NIL)) (-4024 (((-1067) $) NIL)) (-2489 (($ $ $) NIL)) (-3797 (($) NIL T CONST)) (-2959 (($ $) 50)) (-4146 (((-1031) $) NIL) (($ $) 69)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL)) (-2286 (($ $ $) 62) (($ (-587 $)) NIL)) (-3022 (($ $) NIL)) (-1974 (((-392 $) $) NIL)) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL)) (-2261 (((-3 $ "failed") $ $) NIL)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL)) (-2060 (((-108) $) NIL)) (-3794 (((-707) $) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 61)) (-2193 (($ $ (-707)) NIL) (($ $) NIL)) (-3055 (($ $) 51)) (-2420 (($ $) NIL)) (-1438 (((-521) $) 32) (((-497) $) NIL) (((-820 (-521)) $) NIL) (((-353) $) NIL) (((-202) $) NIL)) (-2223 (((-791) $) 31) (($ (-521)) 80) (($ $) NIL) (($ (-521)) 80)) (-1592 (((-707)) NIL)) (-4212 (((-108) $ $) NIL)) (-2475 (($ $ $) NIL)) (-3354 (($) 37)) (-1842 (((-108) $ $) NIL)) (-2798 (($ $ $ $) 73)) (-4012 (($ $) 63)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-2770 (($ $ $) 44)) (-3562 (($) 35 T CONST)) (-3505 (($ $ $) 47)) (-3572 (($) 36 T CONST)) (-3828 (((-1067) $) 21) (((-1067) $ (-108)) 23) (((-1170) (-758) $) 24) (((-1170) (-758) $ (-108)) 25)) (-3516 (($ $) 45)) (-2244 (($ $ (-707)) NIL) (($ $) NIL)) (-3497 (($ $ $) 46)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 40)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 49)) (-2345 (($ $ $) 43)) (-1639 (($ $) 52) (($ $ $) 54)) (-1628 (($ $ $) 53)) (** (($ $ (-849)) NIL) (($ $ (-707)) 57)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 34) (($ $ $) 55)))
-(((-1031) (-13 (-506) (-602) (-764) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -2459 ($)) (-15 -2816 ($)) (-15 -2416 ($ $)) (-15 -1515 ($ $)) (-15 -2345 ($ $ $)) (-15 -2770 ($ $ $)) (-15 -3348 ($ $ $)) (-15 -3516 ($ $)) (-15 -3497 ($ $ $)) (-15 -3505 ($ $ $))))) (T -1031))
-((-2770 (*1 *1 *1 *1) (-5 *1 (-1031))) (-2345 (*1 *1 *1 *1) (-5 *1 (-1031))) (-1515 (*1 *1 *1) (-5 *1 (-1031))) (-2459 (*1 *1) (-5 *1 (-1031))) (-2816 (*1 *1) (-5 *1 (-1031))) (-2416 (*1 *1 *1) (-5 *1 (-1031))) (-3348 (*1 *1 *1 *1) (-5 *1 (-1031))) (-3516 (*1 *1 *1) (-5 *1 (-1031))) (-3497 (*1 *1 *1 *1) (-5 *1 (-1031))) (-3505 (*1 *1 *1 *1) (-5 *1 (-1031))))
-(-13 (-506) (-602) (-764) (-10 -8 (-6 -4220) (-6 -4225) (-6 -4221) (-15 -2459 ($)) (-15 -2816 ($)) (-15 -2416 ($ $)) (-15 -1515 ($ $)) (-15 -2345 ($ $ $)) (-15 -2770 ($ $ $)) (-15 -3348 ($ $ $)) (-15 -3516 ($ $)) (-15 -3497 ($ $ $)) (-15 -3505 ($ $ $))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-1354 ((|#1| $) 44)) (-1269 (((-108) $ (-707)) 8)) (-2231 (($) 7 T CONST)) (-2237 ((|#1| |#1| $) 46)) (-4019 ((|#1| $) 45)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1570 ((|#1| $) 39)) (-4135 (($ |#1| $) 40)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2747 ((|#1| $) 41)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-1252 (((-707) $) 43)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) 42)) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1032 |#1|) (-1196) (-1119)) (T -1032))
-((-2237 (*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))) (-1252 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4233) (-15 -2237 (|t#1| |t#1| $)) (-15 -4019 (|t#1| $)) (-15 -1354 (|t#1| $)) (-15 -1252 ((-707) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1927 ((|#3| $) 76)) (-1296 (((-3 (-521) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1496 (((-521) $) NIL) (((-381 (-521)) $) NIL) ((|#3| $) 37)) (-1961 (((-627 (-521)) (-627 $)) NIL) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL) (((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 $) (-1165 $)) 73) (((-627 |#3|) (-627 $)) 65)) (-2193 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084)) NIL) (($ $ (-707)) NIL) (($ $) NIL)) (-3465 ((|#3| $) 78)) (-2668 ((|#4| $) 32)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ |#3|) 16)) (** (($ $ (-849)) NIL) (($ $ (-707)) 15) (($ $ (-521)) 82)))
-(((-1033 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-521))) (-15 -3465 (|#3| |#1|)) (-15 -1927 (|#3| |#1|)) (-15 -2668 (|#4| |#1|)) (-15 -1961 ((-627 |#3|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1496 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2223 (|#1| |#3|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2223 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-849))) (-15 -2223 ((-791) |#1|))) (-1034 |#2| |#3| |#4| |#5|) (-707) (-970) (-215 |#2| |#3|) (-215 |#2| |#3|)) (T -1033))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-521))) (-15 -3465 (|#3| |#1|)) (-15 -1927 (|#3| |#1|)) (-15 -2668 (|#4| |#1|)) (-15 -1961 ((-627 |#3|) (-627 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 |#3|)) (|:| |vec| (-1165 |#3|))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 |#1|) (-1165 |#1|))) (-15 -1961 ((-627 (-521)) (-627 |#1|))) (-15 -1496 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -2223 (|#1| |#3|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-521) |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|) (-707))) (-15 -2193 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2223 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-849))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-1927 ((|#2| $) 72)) (-1902 (((-108) $) 112)) (-2057 (((-3 $ "failed") $ $) 19)) (-3730 (((-108) $) 110)) (-1269 (((-108) $ (-707)) 102)) (-1933 (($ |#2|) 75)) (-2231 (($) 17 T CONST)) (-4014 (($ $) 129 (|has| |#2| (-282)))) (-2185 ((|#3| $ (-521)) 124)) (-1296 (((-3 (-521) "failed") $) 86 (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) 84 (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) 81)) (-1496 (((-521) $) 87 (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) 85 (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) 80)) (-1961 (((-627 (-521)) (-627 $)) 79 (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 78 (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 77) (((-627 |#2|) (-627 $)) 76)) (-2783 (((-3 $ "failed") $) 34)) (-3167 (((-707) $) 130 (|has| |#2| (-513)))) (-3626 ((|#2| $ (-521) (-521)) 122)) (-3831 (((-587 |#2|) $) 95 (|has| $ (-6 -4233)))) (-3637 (((-108) $) 31)) (-2020 (((-707) $) 131 (|has| |#2| (-513)))) (-3993 (((-587 |#4|) $) 132 (|has| |#2| (-513)))) (-1416 (((-707) $) 118)) (-1428 (((-707) $) 119)) (-1513 (((-108) $ (-707)) 103)) (-3666 ((|#2| $) 67 (|has| |#2| (-6 (-4235 "*"))))) (-1698 (((-521) $) 114)) (-1350 (((-521) $) 116)) (-3568 (((-587 |#2|) $) 94 (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-1646 (((-521) $) 115)) (-2809 (((-521) $) 117)) (-1365 (($ (-587 (-587 |#2|))) 109)) (-3833 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3256 (((-587 (-587 |#2|)) $) 120)) (-2859 (((-108) $ (-707)) 104)) (-4024 (((-1067) $) 9)) (-1573 (((-3 $ "failed") $) 66 (|has| |#2| (-337)))) (-4146 (((-1031) $) 10)) (-2261 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-513)))) (-1936 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) 91 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 90 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 88 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) 108)) (-1447 (((-108) $) 105)) (-2280 (($) 106)) (-2550 ((|#2| $ (-521) (-521) |#2|) 123) ((|#2| $ (-521) (-521)) 121)) (-2193 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-707)) 51) (($ $ (-587 (-1084)) (-587 (-707))) 44 (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) 43 (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) 42 (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) 41 (|has| |#2| (-828 (-1084)))) (($ $ (-707)) 39 (|has| |#2| (-210))) (($ $) 37 (|has| |#2| (-210)))) (-3465 ((|#2| $) 71)) (-3523 (($ (-587 |#2|)) 74)) (-3776 (((-108) $) 111)) (-2668 ((|#3| $) 73)) (-1302 ((|#2| $) 68 (|has| |#2| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4233))) (((-707) |#2| $) 93 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 107)) (-1335 ((|#4| $ (-521)) 125)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 83 (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) 82)) (-1592 (((-707)) 29)) (-2006 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4233)))) (-2166 (((-108) $) 113)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-707)) 49) (($ $ (-587 (-1084)) (-587 (-707))) 48 (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) 47 (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) 46 (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) 45 (|has| |#2| (-828 (-1084)))) (($ $ (-707)) 40 (|has| |#2| (-210))) (($ $) 38 (|has| |#2| (-210)))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#2|) 128 (|has| |#2| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 65 (|has| |#2| (-337)))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3478 (((-707) $) 101 (|has| $ (-6 -4233)))))
-(((-1034 |#1| |#2| |#3| |#4|) (-1196) (-707) (-970) (-215 |t#1| |t#2|) (-215 |t#1| |t#2|)) (T -1034))
-((-1933 (*1 *1 *2) (-12 (-4 *2 (-970)) (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-970)) (-4 *1 (-1034 *3 *4 *5 *6)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1034 *3 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *2 (-215 *3 *4)) (-4 *5 (-215 *3 *4)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-3666 (*1 *2 *1) (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))) (-1573 (*1 *1 *1) (|partial| -12 (-4 *1 (-1034 *2 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-337)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1034 *3 *4 *5 *6)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-337)))))
-(-13 (-208 |t#2|) (-107 |t#2| |t#2|) (-973 |t#1| |t#1| |t#2| |t#3| |t#4|) (-385 |t#2|) (-351 |t#2|) (-10 -8 (IF (|has| |t#2| (-157)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -1933 ($ |t#2|)) (-15 -3523 ($ (-587 |t#2|))) (-15 -2668 (|t#3| $)) (-15 -1927 (|t#2| $)) (-15 -3465 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4235 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -1302 (|t#2| $)) (-15 -3666 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-337)) (PROGN (-15 -1573 ((-3 $ "failed") $)) (-15 ** ($ $ (-521)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4235 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-791)) . T) ((-208 |#2|) . T) ((-210) |has| |#2| (-210)) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-351 |#2|) . T) ((-385 |#2|) . T) ((-460 |#2|) . T) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-589 |#2|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#2| (-583 (-521))) ((-583 |#2|) . T) ((-654 |#2|) -3703 (|has| |#2| (-157)) (|has| |#2| (-6 (-4235 "*")))) ((-663) . T) ((-828 (-1084)) |has| |#2| (-828 (-1084))) ((-973 |#1| |#1| |#2| |#3| |#4|) . T) ((-961 (-381 (-521))) |has| |#2| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#2| (-961 (-521))) ((-961 |#2|) . T) ((-976 |#2|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1119) . T))
-((-3296 ((|#4| |#4|) 68)) (-1207 ((|#4| |#4|) 63)) (-3555 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|))) |#4| |#3|) 76)) (-3213 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-1976 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
-(((-1035 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1207 (|#4| |#4|)) (-15 -1976 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3296 (|#4| |#4|)) (-15 -3213 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3555 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|))) |#4| |#3|))) (-282) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -1035))
-((-3555 (*1 *2 *3 *4) (-12 (-4 *5 (-282)) (-4 *6 (-347 *5)) (-4 *4 (-347 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4)))) (-5 *1 (-1035 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-1976 (*1 *2 *3) (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))) (-1207 (*1 *2 *2) (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
-(-10 -7 (-15 -1207 (|#4| |#4|)) (-15 -1976 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3296 (|#4| |#4|)) (-15 -3213 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3555 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1245 (-587 |#3|))) |#4| |#3|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 17)) (-4085 (((-587 |#2|) $) 159)) (-1280 (((-1080 $) $ |#2|) 53) (((-1080 |#1|) $) 42)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 109 (|has| |#1| (-513)))) (-1954 (($ $) 111 (|has| |#1| (-513)))) (-3795 (((-108) $) 113 (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 |#2|)) 193)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) 156) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 |#2| "failed") $) NIL)) (-1496 ((|#1| $) 154) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) ((|#2| $) NIL)) (-3052 (($ $ $ |#2|) NIL (|has| |#1| (-157)))) (-3157 (($ $) 197)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) 81)) (-1563 (($ $) NIL (|has| |#1| (-425))) (($ $ |#2|) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-493 |#2|) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| |#1| (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| |#1| (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3637 (((-108) $) 19)) (-2443 (((-707) $) 26)) (-4068 (($ (-1080 |#1|) |#2|) 47) (($ (-1080 $) |#2|) 63)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) 31)) (-4044 (($ |#1| (-493 |#2|)) 70) (($ $ |#2| (-707)) 51) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ |#2|) NIL)) (-2401 (((-493 |#2|) $) 186) (((-707) $ |#2|) 187) (((-587 (-707)) $ (-587 |#2|)) 188)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-493 |#2|) (-493 |#2|)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) 121)) (-2913 (((-3 |#2| "failed") $) 161)) (-3130 (($ $) 196)) (-3140 ((|#1| $) 36)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| |#2|) (|:| -2246 (-707))) "failed") $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) 32)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 139 (|has| |#1| (-425)))) (-2286 (($ (-587 $)) 144 (|has| |#1| (-425))) (($ $ $) 131 (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#1| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-837)))) (-2261 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-513)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-587 |#2|) (-587 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-587 |#2|) (-587 $)) 176)) (-3011 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2193 (($ $ |#2|) 195) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2098 (((-493 |#2|) $) 182) (((-707) $ |#2|) 178) (((-587 (-707)) $ (-587 |#2|)) 180)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| |#1| (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| |#1| (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| |#1| (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-1391 ((|#1| $) 127 (|has| |#1| (-425))) (($ $ |#2|) 130 (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-2223 (((-791) $) 150) (($ (-521)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-513))) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2730 (((-587 |#1|) $) 153)) (-1499 ((|#1| $ (-493 |#2|)) 72) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) 78)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) 116 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 101) (($ $ (-707)) 103)) (-3562 (($) 12 T CONST)) (-3572 (($) 14 T CONST)) (-2244 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 96)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) 125 (|has| |#1| (-337)))) (-1639 (($ $) 84) (($ $ $) 94)) (-1628 (($ $ $) 48)) (** (($ $ (-849)) 102) (($ $ (-707)) 99)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 87) (($ $ $) 64) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-1036 |#1| |#2|) (-877 |#1| (-493 |#2|) |#2|) (-970) (-783)) (T -1036))
-NIL
-(-877 |#1| (-493 |#2|) |#2|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 |#2|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2910 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2886 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 114 (|has| |#1| (-37 (-381 (-521)))))) (-2932 (($ $) 146 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2232 (((-880 |#1|) $ (-707)) NIL) (((-880 |#1|) $ (-707) (-707)) NIL)) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-707) $ |#2|) NIL) (((-707) $ |#2| (-707)) NIL)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3573 (((-108) $) NIL)) (-4044 (($ $ (-587 |#2|) (-587 (-493 |#2|))) NIL) (($ $ |#2| (-493 |#2|)) NIL) (($ |#1| (-493 |#2|)) NIL) (($ $ |#2| (-707)) 58) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) 112 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-1749 (($ $ |#2|) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-3939 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-381 (-521)))))) (-2191 (($ $ (-707)) 15)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3265 (($ $) 110 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (($ $ |#2| $) 96) (($ $ (-587 |#2|) (-587 $)) 89) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL)) (-2193 (($ $ |#2|) 99) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-2098 (((-493 |#2|) $) NIL)) (-2664 (((-1 (-1065 |#3|) |#3|) (-587 |#2|) (-587 (-1065 |#3|))) 79)) (-1787 (($ $) 148 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 144 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 116 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 17)) (-2223 (((-791) $) 180) (($ (-521)) NIL) (($ |#1|) 44 (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-513))) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#2|) 65) (($ |#3|) 63)) (-1499 ((|#1| $ (-493 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL) ((|#3| $ (-707)) 42)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1811 (($ $) 154 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) 150 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 158 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-3919 (($ $) 160 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 156 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 152 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 18 T CONST)) (-3572 (($) 10 T CONST)) (-2244 (($ $ |#2|) NIL) (($ $ (-587 |#2|)) NIL) (($ $ |#2| (-707)) NIL) (($ $ (-587 |#2|) (-587 (-707))) NIL)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) 182 (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 61)) (** (($ $ (-849)) NIL) (($ $ (-707)) 70) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 102 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 60) (($ $ (-381 (-521))) 107 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 105 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1037 |#1| |#2| |#3|) (-13 (-677 |#1| |#2|) (-10 -8 (-15 -1499 (|#3| $ (-707))) (-15 -2223 ($ |#2|)) (-15 -2223 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2664 ((-1 (-1065 |#3|) |#3|) (-587 |#2|) (-587 (-1065 |#3|)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $ |#2| |#1|)) (-15 -3939 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-970) (-783) (-877 |#1| (-493 |#2|) |#2|)) (T -1037))
-((-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *2 (-877 *4 (-493 *5) *5)) (-5 *1 (-1037 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-783)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *2 (-783)) (-5 *1 (-1037 *3 *2 *4)) (-4 *4 (-877 *3 (-493 *2) *2)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *4 (-783)) (-5 *1 (-1037 *3 *4 *2)) (-4 *2 (-877 *3 (-493 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-970)) (-4 *4 (-783)) (-5 *1 (-1037 *3 *4 *2)) (-4 *2 (-877 *3 (-493 *4) *4)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1065 *7))) (-4 *6 (-783)) (-4 *7 (-877 *5 (-493 *6) *6)) (-4 *5 (-970)) (-5 *2 (-1 (-1065 *7) *7)) (-5 *1 (-1037 *5 *6 *7)))) (-1749 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-4 *2 (-783)) (-5 *1 (-1037 *3 *2 *4)) (-4 *4 (-877 *3 (-493 *2) *2)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1037 *4 *3 *5))) (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)) (-4 *3 (-783)) (-5 *1 (-1037 *4 *3 *5)) (-4 *5 (-877 *4 (-493 *3) *3)))))
-(-13 (-677 |#1| |#2|) (-10 -8 (-15 -1499 (|#3| $ (-707))) (-15 -2223 ($ |#2|)) (-15 -2223 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2664 ((-1 (-1065 |#3|) |#3|) (-587 |#2|) (-587 (-1065 |#3|)))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $ |#2| |#1|)) (-15 -3939 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1422 (((-108) $ $) 7)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) 85)) (-4137 (((-587 $) (-587 |#4|)) 86) (((-587 $) (-587 |#4|) (-108)) 111)) (-4085 (((-587 |#3|) $) 33)) (-2856 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) 101) (((-108) $) 97)) (-1613 ((|#4| |#4| $) 92)) (-2694 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| $) 126)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-108) $ (-707)) 44)) (-1658 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2231 (($) 45 T CONST)) (-1616 (((-108) $) 22 (|has| |#1| (-513)))) (-3514 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3515 (((-108) $ $) 23 (|has| |#1| (-513)))) (-2512 (((-108) $) 25 (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2122 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 36)) (-1496 (($ (-587 |#4|)) 35)) (-2329 (((-3 $ "failed") $) 82)) (-1910 ((|#4| |#4| $) 89)) (-2354 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1860 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) 105)) (-4008 (((-108) |#4| $) 136)) (-3547 (((-108) |#4| $) 133)) (-1781 (((-108) |#4| $) 137) (((-108) $) 134)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) 104) (((-108) $) 103)) (-3131 ((|#3| $) 34)) (-1513 (((-108) $ (-707)) 43)) (-3568 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 47)) (-2963 (((-587 |#3|) $) 32)) (-4065 (((-108) |#3| $) 31)) (-2859 (((-108) $ (-707)) 42)) (-4024 (((-1067) $) 9)) (-3207 (((-3 |#4| (-587 $)) |#4| |#4| $) 128)) (-3543 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| |#4| $) 127)) (-1450 (((-3 |#4| "failed") $) 83)) (-1732 (((-587 $) |#4| $) 129)) (-2051 (((-3 (-108) (-587 $)) |#4| $) 132)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-1802 (((-587 $) |#4| $) 125) (((-587 $) (-587 |#4|) $) 124) (((-587 $) (-587 |#4|) (-587 $)) 123) (((-587 $) |#4| (-587 $)) 122)) (-3691 (($ |#4| $) 117) (($ (-587 |#4|) $) 116)) (-2942 (((-587 |#4|) $) 107)) (-2626 (((-108) |#4| $) 99) (((-108) $) 95)) (-3432 ((|#4| |#4| $) 90)) (-3069 (((-108) $ $) 110)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) 100) (((-108) $) 96)) (-1896 ((|#4| |#4| $) 91)) (-4146 (((-1031) $) 10)) (-2319 (((-3 |#4| "failed") $) 84)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1314 (((-3 $ "failed") $ |#4|) 78)) (-2191 (($ $ |#4|) 77) (((-587 $) |#4| $) 115) (((-587 $) |#4| (-587 $)) 114) (((-587 $) (-587 |#4|) $) 113) (((-587 $) (-587 |#4|) (-587 $)) 112)) (-1936 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) 38)) (-1447 (((-108) $) 41)) (-2280 (($) 40)) (-2098 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2420 (($ $) 39)) (-1438 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 60)) (-3680 (($ $ |#3|) 28)) (-2600 (($ $ |#3|) 30)) (-2404 (($ $) 88)) (-2222 (($ $ |#3|) 29)) (-2223 (((-791) $) 11) (((-587 |#4|) $) 37)) (-2537 (((-707) $) 76 (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-3077 (((-587 $) |#4| $) 121) (((-587 $) |#4| (-587 $)) 120) (((-587 $) (-587 |#4|) $) 119) (((-587 $) (-587 |#4|) (-587 $)) 118)) (-2006 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) 81)) (-3355 (((-108) |#4| $) 135)) (-2567 (((-108) |#3| $) 80)) (-1549 (((-108) $ $) 6)) (-3478 (((-707) $) 46 (|has| $ (-6 -4233)))))
-(((-1038 |#1| |#2| |#3| |#4|) (-1196) (-425) (-729) (-783) (-984 |t#1| |t#2| |t#3|)) (T -1038))
-NIL
-(-13 (-1022 |t#1| |t#2| |t#3| |t#4|) (-720 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-791)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-720 |#1| |#2| |#3| |#4|) . T) ((-902 |#1| |#2| |#3| |#4|) . T) ((-989 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1022 |#1| |#2| |#3| |#4|) . T) ((-1113 |#1| |#2| |#3| |#4|) . T) ((-1119) . T))
-((-3278 (((-587 |#2|) |#1|) 12)) (-1878 (((-587 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-587 |#2|) |#1|) 47)) (-4134 (((-587 |#2|) |#2| |#2| |#2|) 35) (((-587 |#2|) |#1|) 45)) (-3708 ((|#2| |#1|) 42)) (-2822 (((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2211 (((-587 |#2|) |#2| |#2|) 34) (((-587 |#2|) |#1|) 44)) (-2944 (((-587 |#2|) |#2| |#2| |#2| |#2|) 36) (((-587 |#2|) |#1|) 46)) (-3405 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2801 ((|#2| |#2| |#2| |#2|) 39)) (-3787 ((|#2| |#2| |#2|) 38)) (-3903 ((|#2| |#2| |#2| |#2| |#2|) 40)))
-(((-1039 |#1| |#2|) (-10 -7 (-15 -3278 ((-587 |#2|) |#1|)) (-15 -3708 (|#2| |#1|)) (-15 -2822 ((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2211 ((-587 |#2|) |#1|)) (-15 -4134 ((-587 |#2|) |#1|)) (-15 -2944 ((-587 |#2|) |#1|)) (-15 -1878 ((-587 |#2|) |#1|)) (-15 -2211 ((-587 |#2|) |#2| |#2|)) (-15 -4134 ((-587 |#2|) |#2| |#2| |#2|)) (-15 -2944 ((-587 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1878 ((-587 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3787 (|#2| |#2| |#2|)) (-15 -2801 (|#2| |#2| |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3405 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1141 |#2|) (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (T -1039))
-((-3405 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3903 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-2801 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3787 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-1878 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-2944 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-4134 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-2211 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))) (-1878 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-2944 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-4134 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-2211 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))) (-2822 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-2 (|:| |solns| (-587 *5)) (|:| |maps| (-587 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1039 *3 *5)) (-4 *3 (-1141 *5)))) (-3708 (*1 *2 *3) (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521))))))) (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -3278 ((-587 |#2|) |#1|)) (-15 -3708 (|#2| |#1|)) (-15 -2822 ((-2 (|:| |solns| (-587 |#2|)) (|:| |maps| (-587 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2211 ((-587 |#2|) |#1|)) (-15 -4134 ((-587 |#2|) |#1|)) (-15 -2944 ((-587 |#2|) |#1|)) (-15 -1878 ((-587 |#2|) |#1|)) (-15 -2211 ((-587 |#2|) |#2| |#2|)) (-15 -4134 ((-587 |#2|) |#2| |#2| |#2|)) (-15 -2944 ((-587 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1878 ((-587 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3787 (|#2| |#2| |#2|)) (-15 -2801 (|#2| |#2| |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3405 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2335 (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-880 |#1|))))) 95) (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-880 |#1|)))) (-587 (-1084))) 94) (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-880 |#1|)))) 92) (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-880 |#1|))) (-587 (-1084))) 90) (((-587 (-269 (-290 |#1|))) (-269 (-381 (-880 |#1|)))) 76) (((-587 (-269 (-290 |#1|))) (-269 (-381 (-880 |#1|))) (-1084)) 77) (((-587 (-269 (-290 |#1|))) (-381 (-880 |#1|))) 71) (((-587 (-269 (-290 |#1|))) (-381 (-880 |#1|)) (-1084)) 60)) (-3624 (((-587 (-587 (-290 |#1|))) (-587 (-381 (-880 |#1|))) (-587 (-1084))) 88) (((-587 (-290 |#1|)) (-381 (-880 |#1|)) (-1084)) 43)) (-1686 (((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-381 (-880 |#1|)) (-1084)) 98) (((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-269 (-381 (-880 |#1|))) (-1084)) 97)))
-(((-1040 |#1|) (-10 -7 (-15 -2335 ((-587 (-269 (-290 |#1|))) (-381 (-880 |#1|)) (-1084))) (-15 -2335 ((-587 (-269 (-290 |#1|))) (-381 (-880 |#1|)))) (-15 -2335 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-880 |#1|))) (-1084))) (-15 -2335 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-880 |#1|))))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-880 |#1|))))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-880 |#1|)))) (-587 (-1084)))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-880 |#1|)))))) (-15 -3624 ((-587 (-290 |#1|)) (-381 (-880 |#1|)) (-1084))) (-15 -3624 ((-587 (-587 (-290 |#1|))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -1686 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-269 (-381 (-880 |#1|))) (-1084))) (-15 -1686 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-381 (-880 |#1|)) (-1084)))) (-13 (-282) (-783) (-135))) (T -1040))
-((-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-880 *5)))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-587 (-290 *5)))) (-5 *1 (-1040 *5)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-290 *5))) (-5 *1 (-1040 *5)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-587 (-269 (-381 (-880 *4))))) (-4 *4 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-269 (-381 (-880 *5))))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-587 (-381 (-880 *4)))) (-4 *4 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-269 (-381 (-880 *4)))) (-4 *4 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1040 *4)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-269 (-381 (-880 *5)))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1040 *5)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1040 *4)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1040 *5)))))
-(-10 -7 (-15 -2335 ((-587 (-269 (-290 |#1|))) (-381 (-880 |#1|)) (-1084))) (-15 -2335 ((-587 (-269 (-290 |#1|))) (-381 (-880 |#1|)))) (-15 -2335 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-880 |#1|))) (-1084))) (-15 -2335 ((-587 (-269 (-290 |#1|))) (-269 (-381 (-880 |#1|))))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-381 (-880 |#1|))))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-880 |#1|)))) (-587 (-1084)))) (-15 -2335 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-381 (-880 |#1|)))))) (-15 -3624 ((-587 (-290 |#1|)) (-381 (-880 |#1|)) (-1084))) (-15 -3624 ((-587 (-587 (-290 |#1|))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -1686 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-269 (-381 (-880 |#1|))) (-1084))) (-15 -1686 ((-1074 (-587 (-290 |#1|)) (-587 (-269 (-290 |#1|)))) (-381 (-880 |#1|)) (-1084))))
-((-2639 (((-381 (-1080 (-290 |#1|))) (-1165 (-290 |#1|)) (-381 (-1080 (-290 |#1|))) (-521)) 27)) (-3705 (((-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|)))) 39)))
-(((-1041 |#1|) (-10 -7 (-15 -3705 ((-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))))) (-15 -2639 ((-381 (-1080 (-290 |#1|))) (-1165 (-290 |#1|)) (-381 (-1080 (-290 |#1|))) (-521)))) (-13 (-513) (-783))) (T -1041))
-((-2639 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-381 (-1080 (-290 *5)))) (-5 *3 (-1165 (-290 *5))) (-5 *4 (-521)) (-4 *5 (-13 (-513) (-783))) (-5 *1 (-1041 *5)))) (-3705 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-381 (-1080 (-290 *3)))) (-4 *3 (-13 (-513) (-783))) (-5 *1 (-1041 *3)))))
-(-10 -7 (-15 -3705 ((-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))) (-381 (-1080 (-290 |#1|))))) (-15 -2639 ((-381 (-1080 (-290 |#1|))) (-1165 (-290 |#1|)) (-381 (-1080 (-290 |#1|))) (-521))))
-((-3278 (((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-290 |#1|))) (-587 (-1084))) 217) (((-587 (-269 (-290 |#1|))) (-290 |#1|) (-1084)) 20) (((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)) (-1084)) 26) (((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|))) 25) (((-587 (-269 (-290 |#1|))) (-290 |#1|)) 21)))
-(((-1042 |#1|) (-10 -7 (-15 -3278 ((-587 (-269 (-290 |#1|))) (-290 |#1|))) (-15 -3278 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)))) (-15 -3278 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)) (-1084))) (-15 -3278 ((-587 (-269 (-290 |#1|))) (-290 |#1|) (-1084))) (-15 -3278 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-290 |#1|))) (-587 (-1084))))) (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (T -1042))
-((-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1084))) (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1042 *5)) (-5 *3 (-587 (-269 (-290 *5)))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-290 *5)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5)) (-5 *3 (-269 (-290 *5))))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4)) (-5 *3 (-269 (-290 *4))))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135))) (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4)) (-5 *3 (-290 *4)))))
-(-10 -7 (-15 -3278 ((-587 (-269 (-290 |#1|))) (-290 |#1|))) (-15 -3278 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)))) (-15 -3278 ((-587 (-269 (-290 |#1|))) (-269 (-290 |#1|)) (-1084))) (-15 -3278 ((-587 (-269 (-290 |#1|))) (-290 |#1|) (-1084))) (-15 -3278 ((-587 (-587 (-269 (-290 |#1|)))) (-587 (-269 (-290 |#1|))) (-587 (-1084)))))
-((-2746 ((|#2| |#2|) 20 (|has| |#1| (-783))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-1808 ((|#2| |#2|) 19 (|has| |#1| (-783))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15)))
-(((-1043 |#1| |#2|) (-10 -7 (-15 -1808 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2746 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-783)) (PROGN (-15 -1808 (|#2| |#2|)) (-15 -2746 (|#2| |#2|))) |%noBranch|)) (-1119) (-13 (-554 (-521) |#1|) (-10 -7 (-6 -4233) (-6 -4234)))) (T -1043))
-((-2746 (*1 *2 *2) (-12 (-4 *3 (-783)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))) (-1808 (*1 *2 *2) (-12 (-4 *3 (-783)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2)) (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))) (-2746 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2)) (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234)))))) (-1808 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2)) (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234)))))))
-(-10 -7 (-15 -1808 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2746 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-783)) (PROGN (-15 -1808 (|#2| |#2|)) (-15 -2746 (|#2| |#2|))) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-2795 (((-1073 3 |#1|) $) 106)) (-1764 (((-108) $) 72)) (-1536 (($ $ (-587 (-871 |#1|))) 20) (($ $ (-587 (-587 |#1|))) 75) (($ (-587 (-871 |#1|))) 74) (((-587 (-871 |#1|)) $) 73)) (-1883 (((-108) $) 41)) (-2741 (($ $ (-871 |#1|)) 46) (($ $ (-587 |#1|)) 51) (($ $ (-707)) 53) (($ (-871 |#1|)) 47) (((-871 |#1|) $) 45)) (-3344 (((-2 (|:| -2625 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707))) $) 104)) (-3757 (((-707) $) 26)) (-2955 (((-707) $) 25)) (-2195 (($ $ (-707) (-871 |#1|)) 39)) (-3956 (((-108) $) 82)) (-1958 (($ $ (-587 (-587 (-871 |#1|))) (-587 (-156)) (-156)) 89) (($ $ (-587 (-587 (-587 |#1|))) (-587 (-156)) (-156)) 91) (($ $ (-587 (-587 (-871 |#1|))) (-108) (-108)) 85) (($ $ (-587 (-587 (-587 |#1|))) (-108) (-108)) 93) (($ (-587 (-587 (-871 |#1|)))) 86) (($ (-587 (-587 (-871 |#1|))) (-108) (-108)) 87) (((-587 (-587 (-871 |#1|))) $) 84)) (-3389 (($ (-587 $)) 28) (($ $ $) 29)) (-2233 (((-587 (-156)) $) 102)) (-4041 (((-587 (-871 |#1|)) $) 97)) (-1477 (((-587 (-587 (-156))) $) 101)) (-1246 (((-587 (-587 (-587 (-871 |#1|)))) $) NIL)) (-1532 (((-587 (-587 (-587 (-707)))) $) 99)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1396 (((-707) $ (-587 (-871 |#1|))) 37)) (-4178 (((-108) $) 54)) (-1889 (($ $ (-587 (-871 |#1|))) 56) (($ $ (-587 (-587 |#1|))) 62) (($ (-587 (-871 |#1|))) 57) (((-587 (-871 |#1|)) $) 55)) (-2381 (($) 23) (($ (-1073 3 |#1|)) 24)) (-2420 (($ $) 35)) (-2393 (((-587 $) $) 34)) (-1288 (($ (-587 $)) 31)) (-3501 (((-587 $) $) 33)) (-2223 (((-791) $) 110)) (-3777 (((-108) $) 64)) (-4186 (($ $ (-587 (-871 |#1|))) 66) (($ $ (-587 (-587 |#1|))) 69) (($ (-587 (-871 |#1|))) 67) (((-587 (-871 |#1|)) $) 65)) (-2973 (($ $) 105)) (-1549 (((-108) $ $) NIL)))
-(((-1044 |#1|) (-1045 |#1|) (-970)) (T -1044))
-NIL
-(-1045 |#1|)
-((-1422 (((-108) $ $) 7)) (-2795 (((-1073 3 |#1|) $) 13)) (-1764 (((-108) $) 29)) (-1536 (($ $ (-587 (-871 |#1|))) 33) (($ $ (-587 (-587 |#1|))) 32) (($ (-587 (-871 |#1|))) 31) (((-587 (-871 |#1|)) $) 30)) (-1883 (((-108) $) 44)) (-2741 (($ $ (-871 |#1|)) 49) (($ $ (-587 |#1|)) 48) (($ $ (-707)) 47) (($ (-871 |#1|)) 46) (((-871 |#1|) $) 45)) (-3344 (((-2 (|:| -2625 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707))) $) 15)) (-3757 (((-707) $) 58)) (-2955 (((-707) $) 59)) (-2195 (($ $ (-707) (-871 |#1|)) 50)) (-3956 (((-108) $) 21)) (-1958 (($ $ (-587 (-587 (-871 |#1|))) (-587 (-156)) (-156)) 28) (($ $ (-587 (-587 (-587 |#1|))) (-587 (-156)) (-156)) 27) (($ $ (-587 (-587 (-871 |#1|))) (-108) (-108)) 26) (($ $ (-587 (-587 (-587 |#1|))) (-108) (-108)) 25) (($ (-587 (-587 (-871 |#1|)))) 24) (($ (-587 (-587 (-871 |#1|))) (-108) (-108)) 23) (((-587 (-587 (-871 |#1|))) $) 22)) (-3389 (($ (-587 $)) 57) (($ $ $) 56)) (-2233 (((-587 (-156)) $) 16)) (-4041 (((-587 (-871 |#1|)) $) 20)) (-1477 (((-587 (-587 (-156))) $) 17)) (-1246 (((-587 (-587 (-587 (-871 |#1|)))) $) 18)) (-1532 (((-587 (-587 (-587 (-707)))) $) 19)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-1396 (((-707) $ (-587 (-871 |#1|))) 51)) (-4178 (((-108) $) 39)) (-1889 (($ $ (-587 (-871 |#1|))) 43) (($ $ (-587 (-587 |#1|))) 42) (($ (-587 (-871 |#1|))) 41) (((-587 (-871 |#1|)) $) 40)) (-2381 (($) 61) (($ (-1073 3 |#1|)) 60)) (-2420 (($ $) 52)) (-2393 (((-587 $) $) 53)) (-1288 (($ (-587 $)) 55)) (-3501 (((-587 $) $) 54)) (-2223 (((-791) $) 11)) (-3777 (((-108) $) 34)) (-4186 (($ $ (-587 (-871 |#1|))) 38) (($ $ (-587 (-587 |#1|))) 37) (($ (-587 (-871 |#1|))) 36) (((-587 (-871 |#1|)) $) 35)) (-2973 (($ $) 14)) (-1549 (((-108) $ $) 6)))
-(((-1045 |#1|) (-1196) (-970)) (T -1045))
-((-2223 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-791)))) (-2381 (*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-1073 3 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-2955 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))) (-3389 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-3389 (*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-1288 (*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-3501 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))) (-2393 (*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))) (-2420 (*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-1396 (*1 *2 *1 *3) (-12 (-5 *3 (-587 (-871 *4))) (-4 *1 (-1045 *4)) (-4 *4 (-970)) (-5 *2 (-707)))) (-2195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-871 *4)) (-4 *1 (-1045 *4)) (-4 *4 (-970)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-2741 (*1 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-871 *3)))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-1889 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-871 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1889 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-587 (-871 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-1889 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3))))) (-4178 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-4186 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-871 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-4186 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-4186 (*1 *1 *2) (-12 (-5 *2 (-587 (-871 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3))))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-1536 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-871 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1536 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))) (-1536 (*1 *1 *2) (-12 (-5 *2 (-587 (-871 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3))))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-1958 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-587 (-871 *5)))) (-5 *3 (-587 (-156))) (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970)))) (-1958 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-587 (-156))) (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970)))) (-1958 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-871 *4)))) (-5 *3 (-108)) (-4 *1 (-1045 *4)) (-4 *4 (-970)))) (-1958 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-108)) (-4 *1 (-1045 *4)) (-4 *4 (-970)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-871 *3)))) (-4 *3 (-970)) (-4 *1 (-1045 *3)))) (-1958 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-587 (-587 (-871 *4)))) (-5 *3 (-108)) (-4 *4 (-970)) (-4 *1 (-1045 *4)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-871 *3)))))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3))))) (-1532 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-587 (-707))))))) (-1246 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-587 (-871 *3))))))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-156)))))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-156))))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -2625 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707)))))) (-2973 (*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-1073 3 *3)))))
-(-13 (-1013) (-10 -8 (-15 -2381 ($)) (-15 -2381 ($ (-1073 3 |t#1|))) (-15 -2955 ((-707) $)) (-15 -3757 ((-707) $)) (-15 -3389 ($ (-587 $))) (-15 -3389 ($ $ $)) (-15 -1288 ($ (-587 $))) (-15 -3501 ((-587 $) $)) (-15 -2393 ((-587 $) $)) (-15 -2420 ($ $)) (-15 -1396 ((-707) $ (-587 (-871 |t#1|)))) (-15 -2195 ($ $ (-707) (-871 |t#1|))) (-15 -2741 ($ $ (-871 |t#1|))) (-15 -2741 ($ $ (-587 |t#1|))) (-15 -2741 ($ $ (-707))) (-15 -2741 ($ (-871 |t#1|))) (-15 -2741 ((-871 |t#1|) $)) (-15 -1883 ((-108) $)) (-15 -1889 ($ $ (-587 (-871 |t#1|)))) (-15 -1889 ($ $ (-587 (-587 |t#1|)))) (-15 -1889 ($ (-587 (-871 |t#1|)))) (-15 -1889 ((-587 (-871 |t#1|)) $)) (-15 -4178 ((-108) $)) (-15 -4186 ($ $ (-587 (-871 |t#1|)))) (-15 -4186 ($ $ (-587 (-587 |t#1|)))) (-15 -4186 ($ (-587 (-871 |t#1|)))) (-15 -4186 ((-587 (-871 |t#1|)) $)) (-15 -3777 ((-108) $)) (-15 -1536 ($ $ (-587 (-871 |t#1|)))) (-15 -1536 ($ $ (-587 (-587 |t#1|)))) (-15 -1536 ($ (-587 (-871 |t#1|)))) (-15 -1536 ((-587 (-871 |t#1|)) $)) (-15 -1764 ((-108) $)) (-15 -1958 ($ $ (-587 (-587 (-871 |t#1|))) (-587 (-156)) (-156))) (-15 -1958 ($ $ (-587 (-587 (-587 |t#1|))) (-587 (-156)) (-156))) (-15 -1958 ($ $ (-587 (-587 (-871 |t#1|))) (-108) (-108))) (-15 -1958 ($ $ (-587 (-587 (-587 |t#1|))) (-108) (-108))) (-15 -1958 ($ (-587 (-587 (-871 |t#1|))))) (-15 -1958 ($ (-587 (-587 (-871 |t#1|))) (-108) (-108))) (-15 -1958 ((-587 (-587 (-871 |t#1|))) $)) (-15 -3956 ((-108) $)) (-15 -4041 ((-587 (-871 |t#1|)) $)) (-15 -1532 ((-587 (-587 (-587 (-707)))) $)) (-15 -1246 ((-587 (-587 (-587 (-871 |t#1|)))) $)) (-15 -1477 ((-587 (-587 (-156))) $)) (-15 -2233 ((-587 (-156)) $)) (-15 -3344 ((-2 (|:| -2625 (-707)) (|:| |curves| (-707)) (|:| |polygons| (-707)) (|:| |constructs| (-707))) $)) (-15 -2973 ($ $)) (-15 -2795 ((-1073 3 |t#1|) $)) (-15 -2223 ((-791) $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-2585 (((-587 (-1089)) (-1067)) 8)))
-(((-1046) (-10 -7 (-15 -2585 ((-587 (-1089)) (-1067))))) (T -1046))
-((-2585 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-1046)))))
-(-10 -7 (-15 -2585 ((-587 (-1089)) (-1067))))
-((-3485 (((-1170) (-587 (-791))) 23) (((-1170) (-791)) 22)) (-1674 (((-1170) (-587 (-791))) 21) (((-1170) (-791)) 20)) (-2059 (((-1170) (-587 (-791))) 19) (((-1170) (-791)) 11) (((-1170) (-1067) (-791)) 17)))
-(((-1047) (-10 -7 (-15 -2059 ((-1170) (-1067) (-791))) (-15 -2059 ((-1170) (-791))) (-15 -1674 ((-1170) (-791))) (-15 -3485 ((-1170) (-791))) (-15 -2059 ((-1170) (-587 (-791)))) (-15 -1674 ((-1170) (-587 (-791)))) (-15 -3485 ((-1170) (-587 (-791)))))) (T -1047))
-((-3485 (*1 *2 *3) (-12 (-5 *3 (-587 (-791))) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-587 (-791))) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-587 (-791))) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-1067)) (-5 *4 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047)))))
-(-10 -7 (-15 -2059 ((-1170) (-1067) (-791))) (-15 -2059 ((-1170) (-791))) (-15 -1674 ((-1170) (-791))) (-15 -3485 ((-1170) (-791))) (-15 -2059 ((-1170) (-587 (-791)))) (-15 -1674 ((-1170) (-587 (-791)))) (-15 -3485 ((-1170) (-587 (-791)))))
-((-2708 (($ $ $) 10)) (-1498 (($ $) 9)) (-3481 (($ $ $) 13)) (-3321 (($ $ $) 15)) (-4032 (($ $ $) 12)) (-2053 (($ $ $) 14)) (-2154 (($ $) 17)) (-2845 (($ $) 16)) (-4012 (($ $) 6)) (-1763 (($ $ $) 11) (($ $) 7)) (-2847 (($ $ $) 8)))
-(((-1048) (-1196)) (T -1048))
-((-2154 (*1 *1 *1) (-4 *1 (-1048))) (-2845 (*1 *1 *1) (-4 *1 (-1048))) (-3321 (*1 *1 *1 *1) (-4 *1 (-1048))) (-2053 (*1 *1 *1 *1) (-4 *1 (-1048))) (-3481 (*1 *1 *1 *1) (-4 *1 (-1048))) (-4032 (*1 *1 *1 *1) (-4 *1 (-1048))) (-1763 (*1 *1 *1 *1) (-4 *1 (-1048))) (-2708 (*1 *1 *1 *1) (-4 *1 (-1048))) (-1498 (*1 *1 *1) (-4 *1 (-1048))) (-2847 (*1 *1 *1 *1) (-4 *1 (-1048))) (-1763 (*1 *1 *1) (-4 *1 (-1048))) (-4012 (*1 *1 *1) (-4 *1 (-1048))))
-(-13 (-10 -8 (-15 -4012 ($ $)) (-15 -1763 ($ $)) (-15 -2847 ($ $ $)) (-15 -1498 ($ $)) (-15 -2708 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -4032 ($ $ $)) (-15 -3481 ($ $ $)) (-15 -2053 ($ $ $)) (-15 -3321 ($ $ $)) (-15 -2845 ($ $)) (-15 -2154 ($ $))))
-((-1422 (((-108) $ $) 41)) (-3434 ((|#1| $) 15)) (-2024 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2833 (((-108) $) 17)) (-2353 (($ $ |#1|) 28)) (-4026 (($ $ (-108)) 30)) (-2118 (($ $) 31)) (-1240 (($ $ |#2|) 29)) (-4024 (((-1067) $) NIL)) (-2418 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-4146 (((-1031) $) NIL)) (-1447 (((-108) $) 14)) (-2280 (($) 10)) (-2420 (($ $) 27)) (-2234 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1946 |#2|))) 21) (((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1946 |#2|)))) 24) (((-587 $) |#1| (-587 |#2|)) 26)) (-1705 ((|#2| $) 16)) (-2223 (((-791) $) 50)) (-1549 (((-108) $ $) 39)))
-(((-1049 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2280 ($)) (-15 -1447 ((-108) $)) (-15 -3434 (|#1| $)) (-15 -1705 (|#2| $)) (-15 -2833 ((-108) $)) (-15 -2234 ($ |#1| |#2| (-108))) (-15 -2234 ($ |#1| |#2|)) (-15 -2234 ($ (-2 (|:| |val| |#1|) (|:| -1946 |#2|)))) (-15 -2234 ((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1946 |#2|))))) (-15 -2234 ((-587 $) |#1| (-587 |#2|))) (-15 -2420 ($ $)) (-15 -2353 ($ $ |#1|)) (-15 -1240 ($ $ |#2|)) (-15 -4026 ($ $ (-108))) (-15 -2118 ($ $)) (-15 -2418 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2024 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1013) (-33)) (-13 (-1013) (-33))) (T -1049))
-((-2280 (*1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-3434 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *2 *3)) (-4 *3 (-13 (-1013) (-33))))) (-1705 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *3 *2)) (-4 *3 (-13 (-1013) (-33))))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2234 (*1 *1 *2 *3) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1946 *4))) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1049 *3 *4)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-587 (-2 (|:| |val| *4) (|:| -1946 *5)))) (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-587 (-1049 *4 *5))) (-5 *1 (-1049 *4 *5)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *4 (-587 *5)) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-587 (-1049 *3 *5))) (-5 *1 (-1049 *3 *5)) (-4 *3 (-13 (-1013) (-33))))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2353 (*1 *1 *1 *2) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-1240 (*1 *1 *1 *2) (-12 (-5 *1 (-1049 *3 *2)) (-4 *3 (-13 (-1013) (-33))) (-4 *2 (-13 (-1013) (-33))))) (-4026 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-2118 (*1 *1 *1) (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2418 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *5 *6)))) (-2024 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33))))))
-(-13 (-1013) (-10 -8 (-15 -2280 ($)) (-15 -1447 ((-108) $)) (-15 -3434 (|#1| $)) (-15 -1705 (|#2| $)) (-15 -2833 ((-108) $)) (-15 -2234 ($ |#1| |#2| (-108))) (-15 -2234 ($ |#1| |#2|)) (-15 -2234 ($ (-2 (|:| |val| |#1|) (|:| -1946 |#2|)))) (-15 -2234 ((-587 $) (-587 (-2 (|:| |val| |#1|) (|:| -1946 |#2|))))) (-15 -2234 ((-587 $) |#1| (-587 |#2|))) (-15 -2420 ($ $)) (-15 -2353 ($ $ |#1|)) (-15 -1240 ($ $ |#2|)) (-15 -4026 ($ $ (-108))) (-15 -2118 ($ $)) (-15 -2418 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -2024 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
-((-1422 (((-108) $ $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-3434 (((-1049 |#1| |#2|) $) 25)) (-1392 (($ $) 76)) (-1359 (((-108) (-1049 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2425 (($ $ $ (-587 (-1049 |#1| |#2|))) 90) (($ $ $ (-587 (-1049 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-1269 (((-108) $ (-707)) NIL)) (-2603 (((-1049 |#1| |#2|) $ (-1049 |#1| |#2|)) 43 (|has| $ (-6 -4234)))) (-2396 (((-1049 |#1| |#2|) $ "value" (-1049 |#1| |#2|)) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-1786 (((-587 (-2 (|:| |val| |#1|) (|:| -1946 |#2|))) $) 80)) (-2726 (($ (-1049 |#1| |#2|) $) 39)) (-1429 (($ (-1049 |#1| |#2|) $) 31)) (-3831 (((-587 (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 51)) (-4142 (((-108) (-1049 |#1| |#2|) $) 82)) (-1368 (((-108) $ $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 (-1049 |#1| |#2|)) $) 55 (|has| $ (-6 -4233)))) (-1785 (((-108) (-1049 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-1049 |#1| |#2|) (-1013))))) (-3833 (($ (-1 (-1049 |#1| |#2|) (-1049 |#1| |#2|)) $) 47 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-1049 |#1| |#2|) (-1049 |#1| |#2|)) $) 46)) (-2859 (((-108) $ (-707)) NIL)) (-1278 (((-587 (-1049 |#1| |#2|)) $) 53)) (-2426 (((-108) $) 42)) (-4024 (((-1067) $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-4146 (((-1031) $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-3498 (((-3 $ "failed") $) 75)) (-1936 (((-108) (-1 (-108) (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-1049 |#1| |#2|)))) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013)))) (($ $ (-269 (-1049 |#1| |#2|))) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013)))) (($ $ (-1049 |#1| |#2|) (-1049 |#1| |#2|)) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013)))) (($ $ (-587 (-1049 |#1| |#2|)) (-587 (-1049 |#1| |#2|))) NIL (-12 (|has| (-1049 |#1| |#2|) (-284 (-1049 |#1| |#2|))) (|has| (-1049 |#1| |#2|) (-1013))))) (-3133 (((-108) $ $) 50)) (-1447 (((-108) $) 22)) (-2280 (($) 24)) (-2550 (((-1049 |#1| |#2|) $ "value") NIL)) (-1557 (((-521) $ $) NIL)) (-1475 (((-108) $) 44)) (-4163 (((-707) (-1 (-108) (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233))) (((-707) (-1049 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-1049 |#1| |#2|) (-1013))))) (-2420 (($ $) 49)) (-2234 (($ (-1049 |#1| |#2|)) 9) (($ |#1| |#2| (-587 $)) 12) (($ |#1| |#2| (-587 (-1049 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-587 |#2|)) 17)) (-4125 (((-587 |#2|) $) 81)) (-2223 (((-791) $) 73 (|has| (-1049 |#1| |#2|) (-561 (-791))))) (-3165 (((-587 $) $) 28)) (-2960 (((-108) $ $) NIL (|has| (-1049 |#1| |#2|) (-1013)))) (-2006 (((-108) (-1 (-108) (-1049 |#1| |#2|)) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 64 (|has| (-1049 |#1| |#2|) (-1013)))) (-3478 (((-707) $) 58 (|has| $ (-6 -4233)))))
-(((-1050 |#1| |#2|) (-13 (-935 (-1049 |#1| |#2|)) (-10 -8 (-6 -4234) (-6 -4233) (-15 -3498 ((-3 $ "failed") $)) (-15 -1392 ($ $)) (-15 -2234 ($ (-1049 |#1| |#2|))) (-15 -2234 ($ |#1| |#2| (-587 $))) (-15 -2234 ($ |#1| |#2| (-587 (-1049 |#1| |#2|)))) (-15 -2234 ($ |#1| |#2| |#1| (-587 |#2|))) (-15 -4125 ((-587 |#2|) $)) (-15 -1786 ((-587 (-2 (|:| |val| |#1|) (|:| -1946 |#2|))) $)) (-15 -4142 ((-108) (-1049 |#1| |#2|) $)) (-15 -1359 ((-108) (-1049 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1429 ($ (-1049 |#1| |#2|) $)) (-15 -2726 ($ (-1049 |#1| |#2|) $)) (-15 -2425 ($ $ $ (-587 (-1049 |#1| |#2|)))) (-15 -2425 ($ $ $ (-587 (-1049 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1013) (-33)) (-13 (-1013) (-33))) (T -1050))
-((-3498 (*1 *1 *1) (|partial| -12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-1392 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-587 (-1050 *2 *3))) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))))) (-2234 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-587 (-1049 *2 *3))) (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33))) (-5 *1 (-1050 *2 *3)))) (-2234 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-587 *3)) (-4 *3 (-13 (-1013) (-33))) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33))))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-587 *4)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-1786 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4)))) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))) (-4142 (*1 *2 *3 *1) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)))) (-1359 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1049 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))) (-1429 (*1 *1 *2 *1) (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2726 (*1 *1 *2 *1) (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2425 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-587 (-1049 *3 *4))) (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))) (-2425 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-1049 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33))) (-5 *1 (-1050 *4 *5)))))
-(-13 (-935 (-1049 |#1| |#2|)) (-10 -8 (-6 -4234) (-6 -4233) (-15 -3498 ((-3 $ "failed") $)) (-15 -1392 ($ $)) (-15 -2234 ($ (-1049 |#1| |#2|))) (-15 -2234 ($ |#1| |#2| (-587 $))) (-15 -2234 ($ |#1| |#2| (-587 (-1049 |#1| |#2|)))) (-15 -2234 ($ |#1| |#2| |#1| (-587 |#2|))) (-15 -4125 ((-587 |#2|) $)) (-15 -1786 ((-587 (-2 (|:| |val| |#1|) (|:| -1946 |#2|))) $)) (-15 -4142 ((-108) (-1049 |#1| |#2|) $)) (-15 -1359 ((-108) (-1049 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1429 ($ (-1049 |#1| |#2|) $)) (-15 -2726 ($ (-1049 |#1| |#2|) $)) (-15 -2425 ($ $ $ (-587 (-1049 |#1| |#2|)))) (-15 -2425 ($ $ $ (-587 (-1049 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-3091 (($ $) NIL)) (-1927 ((|#2| $) NIL)) (-1902 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2005 (($ (-627 |#2|)) 45)) (-3730 (((-108) $) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1933 (($ |#2|) 9)) (-2231 (($) NIL T CONST)) (-4014 (($ $) 58 (|has| |#2| (-282)))) (-2185 (((-217 |#1| |#2|) $ (-521)) 31)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 |#2| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) ((|#2| $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) 72)) (-3167 (((-707) $) 60 (|has| |#2| (-513)))) (-3626 ((|#2| $ (-521) (-521)) NIL)) (-3831 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-3637 (((-108) $) NIL)) (-2020 (((-707) $) 62 (|has| |#2| (-513)))) (-3993 (((-587 (-217 |#1| |#2|)) $) 66 (|has| |#2| (-513)))) (-1416 (((-707) $) NIL)) (-1428 (((-707) $) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-3666 ((|#2| $) 56 (|has| |#2| (-6 (-4235 "*"))))) (-1698 (((-521) $) NIL)) (-1350 (((-521) $) NIL)) (-3568 (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-1646 (((-521) $) NIL)) (-2809 (((-521) $) NIL)) (-1365 (($ (-587 (-587 |#2|))) 26)) (-3833 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3256 (((-587 (-587 |#2|)) $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1573 (((-3 $ "failed") $) 69 (|has| |#2| (-337)))) (-4146 (((-1031) $) NIL)) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513)))) (-1936 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ (-521) (-521) |#2|) NIL) ((|#2| $ (-521) (-521)) NIL)) (-2193 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-3465 ((|#2| $) NIL)) (-3523 (($ (-587 |#2|)) 40)) (-3776 (((-108) $) NIL)) (-2668 (((-217 |#1| |#2|) $) NIL)) (-1302 ((|#2| $) 54 (|has| |#2| (-6 (-4235 "*"))))) (-4163 (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2420 (($ $) NIL)) (-1438 (((-497) $) 81 (|has| |#2| (-562 (-497))))) (-1335 (((-217 |#1| |#2|) $ (-521)) 33)) (-2223 (((-791) $) 36) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#2| (-961 (-381 (-521))))) (($ |#2|) NIL) (((-627 |#2|) $) 42)) (-1592 (((-707)) 17)) (-2006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2166 (((-108) $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 11 T CONST)) (-3572 (($) 14 T CONST)) (-2244 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-707)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) 52) (($ $ (-521)) 71 (|has| |#2| (-337)))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) 48) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) 50)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1051 |#1| |#2|) (-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-10 -8 (-15 -3091 ($ $)) (-15 -2005 ($ (-627 |#2|))) (-15 -2223 ((-627 |#2|) $)) (IF (|has| |#2| (-6 (-4235 "*"))) (-6 -4222) |%noBranch|) (IF (|has| |#2| (-6 (-4235 "*"))) (IF (|has| |#2| (-6 -4230)) (-6 -4230) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|))) (-707) (-970)) (T -1051))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-627 *4)) (-5 *1 (-1051 *3 *4)) (-14 *3 (-707)) (-4 *4 (-970)))) (-3091 (*1 *1 *1) (-12 (-5 *1 (-1051 *2 *3)) (-14 *2 (-707)) (-4 *3 (-970)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-627 *4)) (-4 *4 (-970)) (-5 *1 (-1051 *3 *4)) (-14 *3 (-707)))))
-(-13 (-1034 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-561 (-627 |#2|)) (-10 -8 (-15 -3091 ($ $)) (-15 -2005 ($ (-627 |#2|))) (-15 -2223 ((-627 |#2|) $)) (IF (|has| |#2| (-6 (-4235 "*"))) (-6 -4222) |%noBranch|) (IF (|has| |#2| (-6 (-4235 "*"))) (IF (|has| |#2| (-6 -4230)) (-6 -4230) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-562 (-497))) (-6 (-562 (-497))) |%noBranch|)))
-((-1960 (($ $) 19)) (-3250 (($ $ (-132)) 10) (($ $ (-129)) 14)) (-3788 (((-108) $ $) 24)) (-1800 (($ $) 17)) (-2550 (((-132) $ (-521) (-132)) NIL) (((-132) $ (-521)) NIL) (($ $ (-1132 (-521))) NIL) (($ $ $) 29)) (-2223 (($ (-132)) 27) (((-791) $) NIL)))
-(((-1052 |#1|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -2550 (|#1| |#1| |#1|)) (-15 -3250 (|#1| |#1| (-129))) (-15 -3250 (|#1| |#1| (-132))) (-15 -2223 (|#1| (-132))) (-15 -3788 ((-108) |#1| |#1|)) (-15 -1960 (|#1| |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -2550 ((-132) |#1| (-521))) (-15 -2550 ((-132) |#1| (-521) (-132)))) (-1053)) (T -1052))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -2550 (|#1| |#1| |#1|)) (-15 -3250 (|#1| |#1| (-129))) (-15 -3250 (|#1| |#1| (-132))) (-15 -2223 (|#1| (-132))) (-15 -3788 ((-108) |#1| |#1|)) (-15 -1960 (|#1| |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -2550 ((-132) |#1| (-521))) (-15 -2550 ((-132) |#1| (-521) (-132))))
-((-1422 (((-108) $ $) 19 (|has| (-132) (-1013)))) (-3599 (($ $) 120)) (-1960 (($ $) 121)) (-3250 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-3764 (((-108) $ $) 118)) (-3739 (((-108) $ $ (-521)) 117)) (-2090 (((-587 $) $ (-132)) 110) (((-587 $) $ (-129)) 109)) (-2299 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-783)))) (-1216 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| (-132) (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2396 (((-132) $ (-521) (-132)) 52 (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2852 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-3288 (($ $) 90 (|has| $ (-6 -4234)))) (-1924 (($ $) 100)) (-2521 (($ $ (-1132 (-521)) $) 114)) (-2354 (($ $) 78 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ (-132) $) 77 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) 53 (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) 51)) (-3788 (((-108) $ $) 119)) (-3236 (((-521) (-1 (-108) (-132)) $) 97) (((-521) (-132) $) 96 (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) 95 (|has| (-132) (-1013))) (((-521) $ $ (-521)) 113) (((-521) (-129) $ (-521)) 112)) (-3831 (((-587 (-132)) $) 30 (|has| $ (-6 -4233)))) (-1869 (($ (-707) (-132)) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 87 (|has| (-132) (-783)))) (-3389 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-783)))) (-3568 (((-587 (-132)) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 86 (|has| (-132) (-783)))) (-1464 (((-108) $ $ (-132)) 115)) (-4143 (((-707) $ $ (-132)) 116)) (-3833 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1548 (($ $) 122)) (-1800 (($ $) 123)) (-2859 (((-108) $ (-707)) 10)) (-2864 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-4024 (((-1067) $) 22 (|has| (-132) (-1013)))) (-1696 (($ (-132) $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| (-132) (-1013)))) (-2319 (((-132) $) 42 (|has| (-521) (-783)))) (-3733 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-2995 (($ $ (-132)) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-132)))) 26 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) 25 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) 23 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2481 (((-587 (-132)) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 (((-132) $ (-521) (-132)) 50) (((-132) $ (-521)) 49) (($ $ (-1132 (-521))) 63) (($ $ $) 102)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4233))) (((-707) (-132) $) 28 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| (-132) (-562 (-497))))) (-2234 (($ (-587 (-132))) 70)) (-4159 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (($ (-132)) 111) (((-791) $) 18 (|has| (-132) (-561 (-791))))) (-2006 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 84 (|has| (-132) (-783)))) (-1579 (((-108) $ $) 83 (|has| (-132) (-783)))) (-1549 (((-108) $ $) 20 (|has| (-132) (-1013)))) (-1588 (((-108) $ $) 85 (|has| (-132) (-783)))) (-1569 (((-108) $ $) 82 (|has| (-132) (-783)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1053) (-1196)) (T -1053))
-((-1800 (*1 *1 *1) (-4 *1 (-1053))) (-1548 (*1 *1 *1) (-4 *1 (-1053))) (-1960 (*1 *1 *1) (-4 *1 (-1053))) (-3599 (*1 *1 *1) (-4 *1 (-1053))) (-3788 (*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))) (-3764 (*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))) (-3739 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-521)) (-5 *2 (-108)))) (-4143 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-707)))) (-1464 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-108)))) (-2521 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1132 (-521))))) (-3236 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)))) (-3236 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)) (-5 *3 (-129)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1053)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-587 *1)) (-4 *1 (-1053)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-587 *1)) (-4 *1 (-1053)))) (-3250 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))) (-3250 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-2864 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))) (-2864 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-2852 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))) (-2852 (*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129)))) (-2550 (*1 *1 *1 *1) (-4 *1 (-1053))))
-(-13 (-19 (-132)) (-10 -8 (-15 -1800 ($ $)) (-15 -1548 ($ $)) (-15 -1960 ($ $)) (-15 -3599 ($ $)) (-15 -3788 ((-108) $ $)) (-15 -3764 ((-108) $ $)) (-15 -3739 ((-108) $ $ (-521))) (-15 -4143 ((-707) $ $ (-132))) (-15 -1464 ((-108) $ $ (-132))) (-15 -2521 ($ $ (-1132 (-521)) $)) (-15 -3236 ((-521) $ $ (-521))) (-15 -3236 ((-521) (-129) $ (-521))) (-15 -2223 ($ (-132))) (-15 -2090 ((-587 $) $ (-132))) (-15 -2090 ((-587 $) $ (-129))) (-15 -3250 ($ $ (-132))) (-15 -3250 ($ $ (-129))) (-15 -2864 ($ $ (-132))) (-15 -2864 ($ $ (-129))) (-15 -2852 ($ $ (-132))) (-15 -2852 ($ $ (-129))) (-15 -2550 ($ $ $))))
-(((-33) . T) ((-97) -3703 (|has| (-132) (-1013)) (|has| (-132) (-783))) ((-561 (-791)) -3703 (|has| (-132) (-1013)) (|has| (-132) (-783)) (|has| (-132) (-561 (-791)))) ((-139 #0=(-132)) . T) ((-562 (-497)) |has| (-132) (-562 (-497))) ((-261 #1=(-521) #0#) . T) ((-263 #1# #0#) . T) ((-284 #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-347 #0#) . T) ((-460 #0#) . T) ((-554 #1# #0#) . T) ((-482 #0# #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-592 #0#) . T) ((-19 #0#) . T) ((-783) |has| (-132) (-783)) ((-1013) -3703 (|has| (-132) (-1013)) (|has| (-132) (-783))) ((-1119) . T))
-((-3468 (((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-707)) 94)) (-1533 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707)) 53)) (-1964 (((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-707)) 85)) (-4160 (((-707) (-587 |#4|) (-587 |#5|)) 27)) (-1789 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707)) 55) (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707) (-108)) 57)) (-3593 (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108)) 77)) (-1438 (((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) 80)) (-3962 (((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|) 52)) (-2820 (((-707) (-587 |#4|) (-587 |#5|)) 19)))
-(((-1054 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2820 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -4160 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -3962 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3468 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-707))) (-15 -1438 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1964 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-707)))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|) (-1022 |#1| |#2| |#3| |#4|)) (T -1054))
-((-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9)))) (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-1170)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8))) (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1067)) (-5 *1 (-1054 *4 *5 *6 *7 *8)))) (-3468 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-587 *11)) (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1946 *11)))))) (-5 *6 (-707)) (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1946 *11)))) (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9)) (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-783)) (-5 *1 (-1054 *7 *8 *9 *10 *11)))) (-3593 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-3593 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-1789 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-1789 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-1789 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729)) (-4 *9 (-783)) (-4 *3 (-984 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-1054 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3)))) (-1533 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-1533 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *3 (-984 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3)))) (-3962 (*1 *2 *3 *4) (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-587 *4)) (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4)))))) (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2820 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -4160 ((-707) (-587 |#4|) (-587 |#5|))) (-15 -3962 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1533 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707) (-108))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5| (-707))) (-15 -1789 ((-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) |#4| |#5|)) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108))) (-15 -3593 ((-587 |#5|) (-587 |#4|) (-587 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3468 ((-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-587 |#4|) (-587 |#5|) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-2 (|:| |done| (-587 |#5|)) (|:| |todo| (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))))) (-707))) (-15 -1438 ((-1067) (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|)))) (-15 -1964 ((-1170) (-587 (-2 (|:| |val| (-587 |#4|)) (|:| -1946 |#5|))) (-707))))
-((-1422 (((-108) $ $) NIL)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) NIL)) (-4137 (((-587 $) (-587 |#4|)) 110) (((-587 $) (-587 |#4|) (-108)) 111) (((-587 $) (-587 |#4|) (-108) (-108)) 109) (((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108)) 112)) (-4085 (((-587 |#3|) $) NIL)) (-2856 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1613 ((|#4| |#4| $) NIL)) (-2694 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| $) 84)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1658 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 62)) (-2231 (($) NIL T CONST)) (-1616 (((-108) $) 26 (|has| |#1| (-513)))) (-3514 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3515 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2512 (((-108) $) NIL (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2122 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1496 (($ (-587 |#4|)) NIL)) (-2329 (((-3 $ "failed") $) 39)) (-1910 ((|#4| |#4| $) 65)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1429 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1860 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) NIL)) (-4008 (((-108) |#4| $) NIL)) (-3547 (((-108) |#4| $) NIL)) (-1781 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2490 (((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)) 124)) (-3831 (((-587 |#4|) $) 16 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3131 ((|#3| $) 33)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#4|) $) 17 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-3833 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 21)) (-2963 (((-587 |#3|) $) NIL)) (-4065 (((-108) |#3| $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-3207 (((-3 |#4| (-587 $)) |#4| |#4| $) NIL)) (-3543 (((-587 (-2 (|:| |val| |#4|) (|:| -1946 $))) |#4| |#4| $) 103)) (-1450 (((-3 |#4| "failed") $) 37)) (-1732 (((-587 $) |#4| $) 88)) (-2051 (((-3 (-108) (-587 $)) |#4| $) NIL)) (-1437 (((-587 (-2 (|:| |val| (-108)) (|:| -1946 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-1802 (((-587 $) |#4| $) 107) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 108) (((-587 $) |#4| (-587 $)) NIL)) (-3755 (((-587 $) (-587 |#4|) (-108) (-108) (-108)) 119)) (-3691 (($ |#4| $) 75) (($ (-587 |#4|) $) 76) (((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2942 (((-587 |#4|) $) NIL)) (-2626 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3432 ((|#4| |#4| $) NIL)) (-3069 (((-108) $ $) NIL)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1896 ((|#4| |#4| $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-3 |#4| "failed") $) 35)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1314 (((-3 $ "failed") $ |#4|) 48)) (-2191 (($ $ |#4|) NIL) (((-587 $) |#4| $) 90) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) 86)) (-1936 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 15)) (-2280 (($) 13)) (-2098 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) 12)) (-1438 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 20)) (-3680 (($ $ |#3|) 42)) (-2600 (($ $ |#3|) 44)) (-2404 (($ $) NIL)) (-2222 (($ $ |#3|) NIL)) (-2223 (((-791) $) 31) (((-587 |#4|) $) 40)) (-2537 (((-707) $) NIL (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-3077 (((-587 $) |#4| $) 54) (((-587 $) |#4| (-587 $)) NIL) (((-587 $) (-587 |#4|) $) NIL) (((-587 $) (-587 |#4|) (-587 $)) NIL)) (-2006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) NIL)) (-3355 (((-108) |#4| $) NIL)) (-2567 (((-108) |#3| $) 61)) (-1549 (((-108) $ $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1055 |#1| |#2| |#3| |#4|) (-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3691 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3755 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -2490 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108))))) (-425) (-729) (-783) (-984 |#1| |#2| |#3|)) (T -1055))
-((-3691 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-1055 *5 *6 *7 *3))) (-5 *1 (-1055 *5 *6 *7 *3)) (-4 *3 (-984 *5 *6 *7)))) (-4137 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))) (-4137 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))) (-3755 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))) (-2490 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-1055 *5 *6 *7 *8))))) (-5 *1 (-1055 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
-(-13 (-1022 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3691 ((-587 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108))) (-15 -4137 ((-587 $) (-587 |#4|) (-108) (-108) (-108) (-108))) (-15 -3755 ((-587 $) (-587 |#4|) (-108) (-108) (-108))) (-15 -2490 ((-2 (|:| |val| (-587 |#4|)) (|:| |towers| (-587 $))) (-587 |#4|) (-108) (-108)))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1354 ((|#1| $) 34)) (-3975 (($ (-587 |#1|)) 39)) (-1269 (((-108) $ (-707)) NIL)) (-2231 (($) NIL T CONST)) (-2237 ((|#1| |#1| $) 36)) (-4019 ((|#1| $) 32)) (-3831 (((-587 |#1|) $) 18 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 22)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1570 ((|#1| $) 35)) (-4135 (($ |#1| $) 37)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2747 ((|#1| $) 33)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 31)) (-2280 (($) 38)) (-1252 (((-707) $) 29)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 27)) (-2223 (((-791) $) 14 (|has| |#1| (-561 (-791))))) (-2869 (($ (-587 |#1|)) NIL)) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 17 (|has| |#1| (-1013)))) (-3478 (((-707) $) 30 (|has| $ (-6 -4233)))))
-(((-1056 |#1|) (-13 (-1032 |#1|) (-10 -8 (-15 -3975 ($ (-587 |#1|))))) (-1119)) (T -1056))
-((-3975 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1056 *3)))))
-(-13 (-1032 |#1|) (-10 -8 (-15 -3975 ($ (-587 |#1|)))))
-((-2396 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1132 (-521)) |#2|) 44) ((|#2| $ (-521) |#2|) 41)) (-2125 (((-108) $) 12)) (-3833 (($ (-1 |#2| |#2|) $) 39)) (-2319 ((|#2| $) NIL) (($ $ (-707)) 17)) (-2995 (($ $ |#2|) 40)) (-2394 (((-108) $) 11)) (-2550 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1132 (-521))) 31) ((|#2| $ (-521)) 23) ((|#2| $ (-521) |#2|) NIL)) (-2240 (($ $ $) 47) (($ $ |#2|) NIL)) (-4159 (($ $ $) 33) (($ |#2| $) NIL) (($ (-587 $)) 36) (($ $ |#2|) NIL)))
-(((-1057 |#1| |#2|) (-10 -8 (-15 -2125 ((-108) |#1|)) (-15 -2394 ((-108) |#1|)) (-15 -2396 (|#2| |#1| (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521))) (-15 -2995 (|#1| |#1| |#2|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -2396 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -2396 (|#2| |#1| "last" |#2|)) (-15 -2396 (|#1| |#1| "rest" |#1|)) (-15 -2396 (|#2| |#1| "first" |#2|)) (-15 -2240 (|#1| |#1| |#2|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -2550 (|#2| |#1| "last")) (-15 -2550 (|#1| |#1| "rest")) (-15 -2319 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "first")) (-15 -2319 (|#2| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -2550 (|#2| |#1| "value")) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|))) (-1058 |#2|) (-1119)) (T -1057))
-NIL
-(-10 -8 (-15 -2125 ((-108) |#1|)) (-15 -2394 ((-108) |#1|)) (-15 -2396 (|#2| |#1| (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521) |#2|)) (-15 -2550 (|#2| |#1| (-521))) (-15 -2995 (|#1| |#1| |#2|)) (-15 -4159 (|#1| |#1| |#2|)) (-15 -4159 (|#1| (-587 |#1|))) (-15 -2550 (|#1| |#1| (-1132 (-521)))) (-15 -2396 (|#2| |#1| (-1132 (-521)) |#2|)) (-15 -2396 (|#2| |#1| "last" |#2|)) (-15 -2396 (|#1| |#1| "rest" |#1|)) (-15 -2396 (|#2| |#1| "first" |#2|)) (-15 -2240 (|#1| |#1| |#2|)) (-15 -2240 (|#1| |#1| |#1|)) (-15 -2550 (|#2| |#1| "last")) (-15 -2550 (|#1| |#1| "rest")) (-15 -2319 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "first")) (-15 -2319 (|#2| |#1|)) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -2550 (|#2| |#1| "value")) (-15 -3833 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-3830 (($ $) 67)) (-3933 (((-1170) $ (-521) (-521)) 97 (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1471 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 117 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 86 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4233)))) (-2124 ((|#1| $) 66)) (-2231 (($) 7 T CONST)) (-2329 (($ $) 73) (($ $ (-707)) 71)) (-2354 (($ $) 99 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4233))) (($ |#1| $) 100 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3849 ((|#1| $ (-521) |#1|) 85 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 87)) (-2125 (((-108) $) 83)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1869 (($ (-707) |#1|) 108)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 95 (|has| (-521) (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 94 (|has| (-521) (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1450 ((|#1| $) 70) (($ $ (-707)) 68)) (-1696 (($ $ $ (-521)) 116) (($ |#1| $ (-521)) 115)) (-1223 (((-587 (-521)) $) 92)) (-2131 (((-108) (-521) $) 91)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 76) (($ $ (-707)) 74)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2995 (($ $ |#1|) 96 (|has| $ (-6 -4234)))) (-2394 (((-108) $) 84)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 90)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1132 (-521))) 112) ((|#1| $ (-521)) 89) ((|#1| $ (-521) |#1|) 88)) (-1557 (((-521) $ $) 44)) (-3694 (($ $ (-1132 (-521))) 114) (($ $ (-521)) 113)) (-1475 (((-108) $) 46)) (-1290 (($ $) 62)) (-2780 (($ $) 59 (|has| $ (-6 -4234)))) (-1602 (((-707) $) 63)) (-1376 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-1438 (((-497) $) 98 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 107)) (-2240 (($ $ $) 61 (|has| $ (-6 -4234))) (($ $ |#1|) 60 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 78) (($ |#1| $) 77) (($ (-587 $)) 110) (($ $ |#1|) 109)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1058 |#1|) (-1196) (-1119)) (T -1058))
-((-2394 (*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
-(-13 (-1153 |t#1|) (-592 |t#1|) (-10 -8 (-15 -2394 ((-108) $)) (-15 -2125 ((-108) $))))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T) ((-1153 |#1|) . T))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#2| $ |#1| |#2|) NIL)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2964 (((-587 |#1|) $) NIL)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1223 (((-587 |#1|) $) NIL)) (-2131 (((-108) |#1| $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1059 |#1| |#2| |#3|) (-1096 |#1| |#2|) (-1013) (-1013) |#2|) (T -1059))
-NIL
-(-1096 |#1| |#2|)
-((-1422 (((-108) $ $) 7)) (-3035 (((-3 $ "failed") $) 13)) (-4024 (((-1067) $) 9)) (-3797 (($) 14 T CONST)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11)) (-1549 (((-108) $ $) 6)))
-(((-1060) (-1196)) (T -1060))
-((-3797 (*1 *1) (-4 *1 (-1060))) (-3035 (*1 *1 *1) (|partial| -4 *1 (-1060))))
-(-13 (-1013) (-10 -8 (-15 -3797 ($) -2682) (-15 -3035 ((-3 $ "failed") $))))
-(((-97) . T) ((-561 (-791)) . T) ((-1013) . T))
-((-3899 (((-1065 |#1|) (-1065 |#1|)) 17)) (-3005 (((-1065 |#1|) (-1065 |#1|)) 13)) (-1735 (((-1065 |#1|) (-1065 |#1|) (-521) (-521)) 20)) (-3404 (((-1065 |#1|) (-1065 |#1|)) 15)))
-(((-1061 |#1|) (-10 -7 (-15 -3005 ((-1065 |#1|) (-1065 |#1|))) (-15 -3404 ((-1065 |#1|) (-1065 |#1|))) (-15 -3899 ((-1065 |#1|) (-1065 |#1|))) (-15 -1735 ((-1065 |#1|) (-1065 |#1|) (-521) (-521)))) (-13 (-513) (-135))) (T -1061))
-((-1735 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-1061 *4)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1061 *3)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1061 *3)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1061 *3)))))
-(-10 -7 (-15 -3005 ((-1065 |#1|) (-1065 |#1|))) (-15 -3404 ((-1065 |#1|) (-1065 |#1|))) (-15 -3899 ((-1065 |#1|) (-1065 |#1|))) (-15 -1735 ((-1065 |#1|) (-1065 |#1|) (-521) (-521))))
-((-4159 (((-1065 |#1|) (-1065 (-1065 |#1|))) 15)))
-(((-1062 |#1|) (-10 -7 (-15 -4159 ((-1065 |#1|) (-1065 (-1065 |#1|))))) (-1119)) (T -1062))
-((-4159 (*1 *2 *3) (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1062 *4)) (-4 *4 (-1119)))))
-(-10 -7 (-15 -4159 ((-1065 |#1|) (-1065 (-1065 |#1|)))))
-((-3184 (((-1065 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|)) 25)) (-3859 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|)) 26)) (-1393 (((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)) 16)))
-(((-1063 |#1| |#2|) (-10 -7 (-15 -1393 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|))) (-15 -3184 ((-1065 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|))) (-15 -3859 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|)))) (-1119) (-1119)) (T -1063))
-((-3859 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1065 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-1063 *5 *2)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1065 *6)) (-4 *6 (-1119)) (-4 *3 (-1119)) (-5 *2 (-1065 *3)) (-5 *1 (-1063 *6 *3)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1065 *6)) (-5 *1 (-1063 *5 *6)))))
-(-10 -7 (-15 -1393 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|))) (-15 -3184 ((-1065 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|))) (-15 -3859 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1065 |#1|))))
-((-1393 (((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-1065 |#2|)) 21)))
-(((-1064 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-1065 |#2|)))) (-1119) (-1119) (-1119)) (T -1064))
-((-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-1065 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8)) (-5 *1 (-1064 *6 *7 *8)))))
-(-10 -7 (-15 -1393 ((-1065 |#3|) (-1 |#3| |#1| |#2|) (-1065 |#1|) (-1065 |#2|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) NIL)) (-2135 ((|#1| $) NIL)) (-3830 (($ $) 49)) (-3933 (((-1170) $ (-521) (-521)) 74 (|has| $ (-6 -4234)))) (-2506 (($ $ (-521)) 108 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-3614 (((-791) $) 38 (|has| |#1| (-1013)))) (-4079 (((-108)) 39 (|has| |#1| (-1013)))) (-2603 ((|#1| $ |#1|) NIL (|has| $ (-6 -4234)))) (-1471 (($ $ $) 96 (|has| $ (-6 -4234))) (($ $ (-521) $) 118)) (-1561 ((|#1| $ |#1|) 105 (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) 100 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4234))) (($ $ "rest" $) 104 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 87 (|has| $ (-6 -4234))) ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 56)) (-2124 ((|#1| $) NIL)) (-2231 (($) NIL T CONST)) (-3107 (($ $) 14)) (-2329 (($ $) 29) (($ $ (-707)) 86)) (-4099 (((-108) (-587 |#1|) $) 113 (|has| |#1| (-1013)))) (-3530 (($ (-587 |#1|)) 110)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) 55)) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-2125 (((-108) $) NIL)) (-3831 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1610 (((-1170) (-521) $) 117 (|has| |#1| (-1013)))) (-2742 (((-707) $) 115)) (-1671 (((-587 $) $) NIL)) (-1368 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2859 (((-108) $ (-707)) NIL)) (-1278 (((-587 |#1|) $) NIL)) (-2426 (((-108) $) NIL)) (-3074 (($ $) 88)) (-1923 (((-108) $) 13)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1450 ((|#1| $) NIL) (($ $ (-707)) NIL)) (-1696 (($ $ $ (-521)) NIL) (($ |#1| $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) 72)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1601 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-2866 ((|#1| $) 10)) (-2319 ((|#1| $) 28) (($ $ (-707)) 47)) (-3208 (((-2 (|:| |cycle?| (-108)) (|:| -3374 (-707)) (|:| |period| (-707))) (-707) $) 25)) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1641 (($ (-1 (-108) |#1|) $) 122)) (-1651 (($ (-1 (-108) |#1|) $) 123)) (-2995 (($ $ |#1|) 66 (|has| $ (-6 -4234)))) (-2191 (($ $ (-521)) 32)) (-2394 (((-108) $) 70)) (-2800 (((-108) $) 12)) (-2037 (((-108) $) 114)) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 20)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) 15)) (-2280 (($) 41)) (-2550 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1132 (-521))) NIL) ((|#1| $ (-521)) 52) ((|#1| $ (-521) |#1|) NIL)) (-1557 (((-521) $ $) 46)) (-3694 (($ $ (-1132 (-521))) NIL) (($ $ (-521)) NIL)) (-3618 (($ (-1 $)) 45)) (-1475 (((-108) $) 67)) (-1290 (($ $) 68)) (-2780 (($ $) 97 (|has| $ (-6 -4234)))) (-1602 (((-707) $) NIL)) (-1376 (($ $) NIL)) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 42)) (-1438 (((-497) $) NIL (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 51)) (-3439 (($ |#1| $) 95)) (-2240 (($ $ $) 98 (|has| $ (-6 -4234))) (($ $ |#1|) 99 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 76) (($ |#1| $) 43) (($ (-587 $)) 81) (($ $ |#1|) 75)) (-2145 (($ $) 48)) (-2223 (($ (-587 |#1|)) 109) (((-791) $) 40 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) NIL)) (-2960 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 112 (|has| |#1| (-1013)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1065 |#1|) (-13 (-614 |#1|) (-10 -8 (-6 -4234) (-15 -2223 ($ (-587 |#1|))) (-15 -3530 ($ (-587 |#1|))) (IF (|has| |#1| (-1013)) (-15 -4099 ((-108) (-587 |#1|) $)) |%noBranch|) (-15 -3208 ((-2 (|:| |cycle?| (-108)) (|:| -3374 (-707)) (|:| |period| (-707))) (-707) $)) (-15 -3618 ($ (-1 $))) (-15 -3439 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1610 ((-1170) (-521) $)) (-15 -3614 ((-791) $)) (-15 -4079 ((-108)))) |%noBranch|) (-15 -1471 ($ $ (-521) $)) (-15 -1601 ($ (-1 |#1|))) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -1641 ($ (-1 (-108) |#1|) $)) (-15 -1651 ($ (-1 (-108) |#1|) $)))) (-1119)) (T -1065))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-3530 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-4099 (*1 *2 *3 *1) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-4 *4 (-1119)) (-5 *2 (-108)) (-5 *1 (-1065 *4)))) (-3208 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3374 (-707)) (|:| |period| (-707)))) (-5 *1 (-1065 *4)) (-4 *4 (-1119)) (-5 *3 (-707)))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-1 (-1065 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-1119)))) (-3439 (*1 *1 *2 *1) (-12 (-5 *1 (-1065 *2)) (-4 *2 (-1119)))) (-1610 (*1 *2 *3 *1) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1065 *4)) (-4 *4 (-1013)) (-4 *4 (-1119)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1065 *3)) (-4 *3 (-1013)) (-4 *3 (-1119)))) (-4079 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1065 *3)) (-4 *3 (-1013)) (-4 *3 (-1119)))) (-1471 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1065 *3)) (-4 *3 (-1119)))) (-1601 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-1641 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))) (-1651 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
-(-13 (-614 |#1|) (-10 -8 (-6 -4234) (-15 -2223 ($ (-587 |#1|))) (-15 -3530 ($ (-587 |#1|))) (IF (|has| |#1| (-1013)) (-15 -4099 ((-108) (-587 |#1|) $)) |%noBranch|) (-15 -3208 ((-2 (|:| |cycle?| (-108)) (|:| -3374 (-707)) (|:| |period| (-707))) (-707) $)) (-15 -3618 ($ (-1 $))) (-15 -3439 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -1610 ((-1170) (-521) $)) (-15 -3614 ((-791) $)) (-15 -4079 ((-108)))) |%noBranch|) (-15 -1471 ($ $ (-521) $)) (-15 -1601 ($ (-1 |#1|))) (-15 -1601 ($ (-1 |#1| |#1|) |#1|)) (-15 -1641 ($ (-1 (-108) |#1|) $)) (-15 -1651 ($ (-1 (-108) |#1|) $))))
-((-1422 (((-108) $ $) 19)) (-3599 (($ $) 120)) (-1960 (($ $) 121)) (-3250 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-3764 (((-108) $ $) 118)) (-3739 (((-108) $ $ (-521)) 117)) (-1523 (($ (-521)) 127)) (-2090 (((-587 $) $ (-132)) 110) (((-587 $) $ (-129)) 109)) (-2299 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-783)))) (-1216 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| (-132) (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2396 (((-132) $ (-521) (-132)) 52 (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-2852 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-3288 (($ $) 90 (|has| $ (-6 -4234)))) (-1924 (($ $) 100)) (-2521 (($ $ (-1132 (-521)) $) 114)) (-2354 (($ $) 78 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ (-132) $) 77 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) 53 (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) 51)) (-3788 (((-108) $ $) 119)) (-3236 (((-521) (-1 (-108) (-132)) $) 97) (((-521) (-132) $) 96 (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) 95 (|has| (-132) (-1013))) (((-521) $ $ (-521)) 113) (((-521) (-129) $ (-521)) 112)) (-3831 (((-587 (-132)) $) 30 (|has| $ (-6 -4233)))) (-1869 (($ (-707) (-132)) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 87 (|has| (-132) (-783)))) (-3389 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-783)))) (-3568 (((-587 (-132)) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 86 (|has| (-132) (-783)))) (-1464 (((-108) $ $ (-132)) 115)) (-4143 (((-707) $ $ (-132)) 116)) (-3833 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1548 (($ $) 122)) (-1800 (($ $) 123)) (-2859 (((-108) $ (-707)) 10)) (-2864 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-4024 (((-1067) $) 22)) (-1696 (($ (-132) $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21)) (-2319 (((-132) $) 42 (|has| (-521) (-783)))) (-3733 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-2995 (($ $ (-132)) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-132)))) 26 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) 25 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) 23 (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2481 (((-587 (-132)) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 (((-132) $ (-521) (-132)) 50) (((-132) $ (-521)) 49) (($ $ (-1132 (-521))) 63) (($ $ $) 102)) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-4163 (((-707) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4233))) (((-707) (-132) $) 28 (-12 (|has| (-132) (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| (-132) (-562 (-497))))) (-2234 (($ (-587 (-132))) 70)) (-4159 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (($ (-132)) 111) (((-791) $) 18)) (-2006 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4233)))) (-3828 (((-1067) $) 131) (((-1067) $ (-108)) 130) (((-1170) (-758) $) 129) (((-1170) (-758) $ (-108)) 128)) (-1597 (((-108) $ $) 84 (|has| (-132) (-783)))) (-1579 (((-108) $ $) 83 (|has| (-132) (-783)))) (-1549 (((-108) $ $) 20)) (-1588 (((-108) $ $) 85 (|has| (-132) (-783)))) (-1569 (((-108) $ $) 82 (|has| (-132) (-783)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1066) (-1196)) (T -1066))
-((-1523 (*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1066)))))
-(-13 (-1053) (-1013) (-764) (-10 -8 (-15 -1523 ($ (-521)))))
-(((-33) . T) ((-97) . T) ((-561 (-791)) . T) ((-139 #0=(-132)) . T) ((-562 (-497)) |has| (-132) (-562 (-497))) ((-261 #1=(-521) #0#) . T) ((-263 #1# #0#) . T) ((-284 #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-347 #0#) . T) ((-460 #0#) . T) ((-554 #1# #0#) . T) ((-482 #0# #0#) -12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))) ((-592 #0#) . T) ((-19 #0#) . T) ((-764) . T) ((-783) |has| (-132) (-783)) ((-1013) . T) ((-1053) . T) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3599 (($ $) NIL)) (-1960 (($ $) NIL)) (-3250 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-3764 (((-108) $ $) NIL)) (-3739 (((-108) $ $ (-521)) NIL)) (-1523 (($ (-521)) 7)) (-2090 (((-587 $) $ (-132)) NIL) (((-587 $) $ (-129)) NIL)) (-2299 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-783)))) (-1216 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| (-132) (-783))))) (-3215 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 (((-132) $ (-521) (-132)) NIL (|has| $ (-6 -4234))) (((-132) $ (-1132 (-521)) (-132)) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-2852 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2521 (($ $ (-1132 (-521)) $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-1429 (($ (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4233))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3849 (((-132) $ (-521) (-132)) NIL (|has| $ (-6 -4234)))) (-3626 (((-132) $ (-521)) NIL)) (-3788 (((-108) $ $) NIL)) (-3236 (((-521) (-1 (-108) (-132)) $) NIL) (((-521) (-132) $) NIL (|has| (-132) (-1013))) (((-521) (-132) $ (-521)) NIL (|has| (-132) (-1013))) (((-521) $ $ (-521)) NIL) (((-521) (-129) $ (-521)) NIL)) (-3831 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1869 (($ (-707) (-132)) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| (-132) (-783)))) (-3389 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-783)))) (-3568 (((-587 (-132)) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| (-132) (-783)))) (-1464 (((-108) $ $ (-132)) NIL)) (-4143 (((-707) $ $ (-132)) NIL)) (-3833 (($ (-1 (-132) (-132)) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1548 (($ $) NIL)) (-1800 (($ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-2864 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-4024 (((-1067) $) NIL)) (-1696 (($ (-132) $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-132) $) NIL (|has| (-521) (-783)))) (-3733 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2995 (($ $ (-132)) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-132)))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-269 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013)))) (($ $ (-587 (-132)) (-587 (-132))) NIL (-12 (|has| (-132) (-284 (-132))) (|has| (-132) (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-2481 (((-587 (-132)) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 (((-132) $ (-521) (-132)) NIL) (((-132) $ (-521)) NIL) (($ $ (-1132 (-521))) NIL) (($ $ $) NIL)) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4163 (((-707) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233))) (((-707) (-132) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-132) (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-132) (-562 (-497))))) (-2234 (($ (-587 (-132))) NIL)) (-4159 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (($ (-132)) NIL) (((-791) $) NIL)) (-2006 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4233)))) (-3828 (((-1067) $) 18) (((-1067) $ (-108)) 20) (((-1170) (-758) $) 21) (((-1170) (-758) $ (-108)) 22)) (-1597 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1579 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| (-132) (-783)))) (-1569 (((-108) $ $) NIL (|has| (-132) (-783)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1067) (-1066)) (T -1067))
-NIL
-(-1066)
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL)) (-3933 (((-1170) $ (-1067) (-1067)) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-1067) |#1|) NIL)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#1| "failed") (-1067) $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#1| "failed") (-1067) $) NIL)) (-1429 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-1067) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-1067)) NIL)) (-3831 (((-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-1067) $) NIL (|has| (-1067) (-783)))) (-3568 (((-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-1067) $) NIL (|has| (-1067) (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-2964 (((-587 (-1067)) $) NIL)) (-3839 (((-108) (-1067) $) NIL)) (-1570 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL)) (-1223 (((-587 (-1067)) $) NIL)) (-2131 (((-108) (-1067) $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-2319 ((|#1| $) NIL (|has| (-1067) (-783)))) (-3733 (((-3 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) "failed") (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL (-12 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-284 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-1067)) NIL) ((|#1| $ (-1067) |#1|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-561 (-791))) (|has| |#1| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 (-1067)) (|:| -3050 |#1|)) (-1013)) (|has| |#1| (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1068 |#1|) (-13 (-1096 (-1067) |#1|) (-10 -7 (-6 -4233))) (-1013)) (T -1068))
-NIL
-(-13 (-1096 (-1067) |#1|) (-10 -7 (-6 -4233)))
-((-1750 (((-1065 |#1|) (-1065 |#1|)) 77)) (-2783 (((-3 (-1065 |#1|) "failed") (-1065 |#1|)) 37)) (-3106 (((-1065 |#1|) (-381 (-521)) (-1065 |#1|)) 117 (|has| |#1| (-37 (-381 (-521)))))) (-3214 (((-1065 |#1|) |#1| (-1065 |#1|)) 121 (|has| |#1| (-337)))) (-3169 (((-1065 |#1|) (-1065 |#1|)) 90)) (-1916 (((-1065 (-521)) (-521)) 57)) (-3688 (((-1065 |#1|) (-1065 (-1065 |#1|))) 108 (|has| |#1| (-37 (-381 (-521)))))) (-2022 (((-1065 |#1|) (-521) (-521) (-1065 |#1|)) 95)) (-2523 (((-1065 |#1|) |#1| (-521)) 45)) (-2514 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 60)) (-3057 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 119 (|has| |#1| (-337)))) (-3492 (((-1065 |#1|) |#1| (-1 (-1065 |#1|))) 107 (|has| |#1| (-37 (-381 (-521)))))) (-1292 (((-1065 |#1|) (-1 |#1| (-521)) |#1| (-1 (-1065 |#1|))) 120 (|has| |#1| (-337)))) (-2761 (((-1065 |#1|) (-1065 |#1|)) 89)) (-1596 (((-1065 |#1|) (-1065 |#1|)) 76)) (-3371 (((-1065 |#1|) (-521) (-521) (-1065 |#1|)) 96)) (-1749 (((-1065 |#1|) |#1| (-1065 |#1|)) 105 (|has| |#1| (-37 (-381 (-521)))))) (-2467 (((-1065 (-521)) (-521)) 56)) (-1412 (((-1065 |#1|) |#1|) 59)) (-2064 (((-1065 |#1|) (-1065 |#1|) (-521) (-521)) 92)) (-1311 (((-1065 |#1|) (-1 |#1| (-521)) (-1065 |#1|)) 66)) (-2261 (((-3 (-1065 |#1|) "failed") (-1065 |#1|) (-1065 |#1|)) 35)) (-3796 (((-1065 |#1|) (-1065 |#1|)) 91)) (-2313 (((-1065 |#1|) (-1065 |#1|) |#1|) 71)) (-4129 (((-1065 |#1|) (-1065 |#1|)) 62)) (-4097 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 72)) (-2223 (((-1065 |#1|) |#1|) 67)) (-2613 (((-1065 |#1|) (-1065 (-1065 |#1|))) 82)) (-1648 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 36)) (-1639 (((-1065 |#1|) (-1065 |#1|)) 21) (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 23)) (-1628 (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 17)) (* (((-1065 |#1|) (-1065 |#1|) |#1|) 29) (((-1065 |#1|) |#1| (-1065 |#1|)) 26) (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 27)))
-(((-1069 |#1|) (-10 -7 (-15 -1628 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1639 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1639 ((-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -2261 ((-3 (-1065 |#1|) "failed") (-1065 |#1|) (-1065 |#1|))) (-15 -1648 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2783 ((-3 (-1065 |#1|) "failed") (-1065 |#1|))) (-15 -2523 ((-1065 |#1|) |#1| (-521))) (-15 -2467 ((-1065 (-521)) (-521))) (-15 -1916 ((-1065 (-521)) (-521))) (-15 -1412 ((-1065 |#1|) |#1|)) (-15 -2514 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -4129 ((-1065 |#1|) (-1065 |#1|))) (-15 -1311 ((-1065 |#1|) (-1 |#1| (-521)) (-1065 |#1|))) (-15 -2223 ((-1065 |#1|) |#1|)) (-15 -2313 ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -4097 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1596 ((-1065 |#1|) (-1065 |#1|))) (-15 -1750 ((-1065 |#1|) (-1065 |#1|))) (-15 -2613 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -2761 ((-1065 |#1|) (-1065 |#1|))) (-15 -3169 ((-1065 |#1|) (-1065 |#1|))) (-15 -3796 ((-1065 |#1|) (-1065 |#1|))) (-15 -2064 ((-1065 |#1|) (-1065 |#1|) (-521) (-521))) (-15 -2022 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (-15 -3371 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 -3492 ((-1065 |#1|) |#1| (-1 (-1065 |#1|)))) (-15 -3688 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -3106 ((-1065 |#1|) (-381 (-521)) (-1065 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -3057 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1292 ((-1065 |#1|) (-1 |#1| (-521)) |#1| (-1 (-1065 |#1|)))) (-15 -3214 ((-1065 |#1|) |#1| (-1065 |#1|)))) |%noBranch|)) (-970)) (T -1069))
-((-3214 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-521))) (-5 *5 (-1 (-1065 *4))) (-4 *4 (-337)) (-4 *4 (-970)) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3106 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *4)) (-4 *4 (-37 *3)) (-4 *4 (-970)) (-5 *3 (-381 (-521))) (-5 *1 (-1069 *4)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1065 *3))) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))) (-1749 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3371 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-2022 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-2064 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-3169 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2613 (*1 *2 *3) (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)) (-4 *4 (-970)))) (-1750 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-4097 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2313 (*1 *2 *2 *3) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))) (-1311 (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *4)) (-5 *3 (-1 *4 (-521))) (-4 *4 (-970)) (-5 *1 (-1069 *4)))) (-4129 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2514 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1412 (*1 *2 *3) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970)) (-5 *3 (-521)))) (-2467 (*1 *2 *3) (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970)) (-5 *3 (-521)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))) (-2783 (*1 *2 *2) (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1648 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-2261 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1639 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1639 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))) (-1628 (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
-(-10 -7 (-15 -1628 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1639 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1639 ((-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 * ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 * ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -2261 ((-3 (-1065 |#1|) "failed") (-1065 |#1|) (-1065 |#1|))) (-15 -1648 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2783 ((-3 (-1065 |#1|) "failed") (-1065 |#1|))) (-15 -2523 ((-1065 |#1|) |#1| (-521))) (-15 -2467 ((-1065 (-521)) (-521))) (-15 -1916 ((-1065 (-521)) (-521))) (-15 -1412 ((-1065 |#1|) |#1|)) (-15 -2514 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -4129 ((-1065 |#1|) (-1065 |#1|))) (-15 -1311 ((-1065 |#1|) (-1 |#1| (-521)) (-1065 |#1|))) (-15 -2223 ((-1065 |#1|) |#1|)) (-15 -2313 ((-1065 |#1|) (-1065 |#1|) |#1|)) (-15 -4097 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1596 ((-1065 |#1|) (-1065 |#1|))) (-15 -1750 ((-1065 |#1|) (-1065 |#1|))) (-15 -2613 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -2761 ((-1065 |#1|) (-1065 |#1|))) (-15 -3169 ((-1065 |#1|) (-1065 |#1|))) (-15 -3796 ((-1065 |#1|) (-1065 |#1|))) (-15 -2064 ((-1065 |#1|) (-1065 |#1|) (-521) (-521))) (-15 -2022 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (-15 -3371 ((-1065 |#1|) (-521) (-521) (-1065 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ((-1065 |#1|) |#1| (-1065 |#1|))) (-15 -3492 ((-1065 |#1|) |#1| (-1 (-1065 |#1|)))) (-15 -3688 ((-1065 |#1|) (-1065 (-1065 |#1|)))) (-15 -3106 ((-1065 |#1|) (-381 (-521)) (-1065 |#1|)))) |%noBranch|) (IF (|has| |#1| (-337)) (PROGN (-15 -3057 ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -1292 ((-1065 |#1|) (-1 |#1| (-521)) |#1| (-1 (-1065 |#1|)))) (-15 -3214 ((-1065 |#1|) |#1| (-1065 |#1|)))) |%noBranch|))
-((-2910 (((-1065 |#1|) (-1065 |#1|)) 57)) (-2775 (((-1065 |#1|) (-1065 |#1|)) 39)) (-2886 (((-1065 |#1|) (-1065 |#1|)) 53)) (-2752 (((-1065 |#1|) (-1065 |#1|)) 35)) (-2932 (((-1065 |#1|) (-1065 |#1|)) 60)) (-2796 (((-1065 |#1|) (-1065 |#1|)) 42)) (-1253 (((-1065 |#1|) (-1065 |#1|)) 31)) (-3265 (((-1065 |#1|) (-1065 |#1|)) 27)) (-1787 (((-1065 |#1|) (-1065 |#1|)) 61)) (-2806 (((-1065 |#1|) (-1065 |#1|)) 43)) (-2921 (((-1065 |#1|) (-1065 |#1|)) 58)) (-2786 (((-1065 |#1|) (-1065 |#1|)) 40)) (-2898 (((-1065 |#1|) (-1065 |#1|)) 55)) (-2764 (((-1065 |#1|) (-1065 |#1|)) 37)) (-1811 (((-1065 |#1|) (-1065 |#1|)) 65)) (-2838 (((-1065 |#1|) (-1065 |#1|)) 47)) (-1795 (((-1065 |#1|) (-1065 |#1|)) 63)) (-2817 (((-1065 |#1|) (-1065 |#1|)) 45)) (-1830 (((-1065 |#1|) (-1065 |#1|)) 68)) (-2862 (((-1065 |#1|) (-1065 |#1|)) 50)) (-3919 (((-1065 |#1|) (-1065 |#1|)) 69)) (-2874 (((-1065 |#1|) (-1065 |#1|)) 51)) (-1821 (((-1065 |#1|) (-1065 |#1|)) 67)) (-2850 (((-1065 |#1|) (-1065 |#1|)) 49)) (-1803 (((-1065 |#1|) (-1065 |#1|)) 66)) (-2827 (((-1065 |#1|) (-1065 |#1|)) 48)) (** (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 33)))
-(((-1070 |#1|) (-10 -7 (-15 -3265 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2752 ((-1065 |#1|) (-1065 |#1|))) (-15 -2764 ((-1065 |#1|) (-1065 |#1|))) (-15 -2775 ((-1065 |#1|) (-1065 |#1|))) (-15 -2786 ((-1065 |#1|) (-1065 |#1|))) (-15 -2796 ((-1065 |#1|) (-1065 |#1|))) (-15 -2806 ((-1065 |#1|) (-1065 |#1|))) (-15 -2817 ((-1065 |#1|) (-1065 |#1|))) (-15 -2827 ((-1065 |#1|) (-1065 |#1|))) (-15 -2838 ((-1065 |#1|) (-1065 |#1|))) (-15 -2850 ((-1065 |#1|) (-1065 |#1|))) (-15 -2862 ((-1065 |#1|) (-1065 |#1|))) (-15 -2874 ((-1065 |#1|) (-1065 |#1|))) (-15 -2886 ((-1065 |#1|) (-1065 |#1|))) (-15 -2898 ((-1065 |#1|) (-1065 |#1|))) (-15 -2910 ((-1065 |#1|) (-1065 |#1|))) (-15 -2921 ((-1065 |#1|) (-1065 |#1|))) (-15 -2932 ((-1065 |#1|) (-1065 |#1|))) (-15 -1787 ((-1065 |#1|) (-1065 |#1|))) (-15 -1795 ((-1065 |#1|) (-1065 |#1|))) (-15 -1803 ((-1065 |#1|) (-1065 |#1|))) (-15 -1811 ((-1065 |#1|) (-1065 |#1|))) (-15 -1821 ((-1065 |#1|) (-1065 |#1|))) (-15 -1830 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|)))) (-37 (-381 (-521)))) (T -1070))
-((-3919 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2862 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2838 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2817 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-1253 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1070 *3)))))
-(-10 -7 (-15 -3265 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2752 ((-1065 |#1|) (-1065 |#1|))) (-15 -2764 ((-1065 |#1|) (-1065 |#1|))) (-15 -2775 ((-1065 |#1|) (-1065 |#1|))) (-15 -2786 ((-1065 |#1|) (-1065 |#1|))) (-15 -2796 ((-1065 |#1|) (-1065 |#1|))) (-15 -2806 ((-1065 |#1|) (-1065 |#1|))) (-15 -2817 ((-1065 |#1|) (-1065 |#1|))) (-15 -2827 ((-1065 |#1|) (-1065 |#1|))) (-15 -2838 ((-1065 |#1|) (-1065 |#1|))) (-15 -2850 ((-1065 |#1|) (-1065 |#1|))) (-15 -2862 ((-1065 |#1|) (-1065 |#1|))) (-15 -2874 ((-1065 |#1|) (-1065 |#1|))) (-15 -2886 ((-1065 |#1|) (-1065 |#1|))) (-15 -2898 ((-1065 |#1|) (-1065 |#1|))) (-15 -2910 ((-1065 |#1|) (-1065 |#1|))) (-15 -2921 ((-1065 |#1|) (-1065 |#1|))) (-15 -2932 ((-1065 |#1|) (-1065 |#1|))) (-15 -1787 ((-1065 |#1|) (-1065 |#1|))) (-15 -1795 ((-1065 |#1|) (-1065 |#1|))) (-15 -1803 ((-1065 |#1|) (-1065 |#1|))) (-15 -1811 ((-1065 |#1|) (-1065 |#1|))) (-15 -1821 ((-1065 |#1|) (-1065 |#1|))) (-15 -1830 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|))))
-((-2910 (((-1065 |#1|) (-1065 |#1|)) 100)) (-2775 (((-1065 |#1|) (-1065 |#1|)) 64)) (-1921 (((-2 (|:| -2886 (-1065 |#1|)) (|:| -2898 (-1065 |#1|))) (-1065 |#1|)) 96)) (-2886 (((-1065 |#1|) (-1065 |#1|)) 97)) (-2336 (((-2 (|:| -2752 (-1065 |#1|)) (|:| -2764 (-1065 |#1|))) (-1065 |#1|)) 53)) (-2752 (((-1065 |#1|) (-1065 |#1|)) 54)) (-2932 (((-1065 |#1|) (-1065 |#1|)) 102)) (-2796 (((-1065 |#1|) (-1065 |#1|)) 71)) (-1253 (((-1065 |#1|) (-1065 |#1|)) 39)) (-3265 (((-1065 |#1|) (-1065 |#1|)) 36)) (-1787 (((-1065 |#1|) (-1065 |#1|)) 103)) (-2806 (((-1065 |#1|) (-1065 |#1|)) 72)) (-2921 (((-1065 |#1|) (-1065 |#1|)) 101)) (-2786 (((-1065 |#1|) (-1065 |#1|)) 67)) (-2898 (((-1065 |#1|) (-1065 |#1|)) 98)) (-2764 (((-1065 |#1|) (-1065 |#1|)) 55)) (-1811 (((-1065 |#1|) (-1065 |#1|)) 111)) (-2838 (((-1065 |#1|) (-1065 |#1|)) 86)) (-1795 (((-1065 |#1|) (-1065 |#1|)) 105)) (-2817 (((-1065 |#1|) (-1065 |#1|)) 82)) (-1830 (((-1065 |#1|) (-1065 |#1|)) 115)) (-2862 (((-1065 |#1|) (-1065 |#1|)) 90)) (-3919 (((-1065 |#1|) (-1065 |#1|)) 117)) (-2874 (((-1065 |#1|) (-1065 |#1|)) 92)) (-1821 (((-1065 |#1|) (-1065 |#1|)) 113)) (-2850 (((-1065 |#1|) (-1065 |#1|)) 88)) (-1803 (((-1065 |#1|) (-1065 |#1|)) 107)) (-2827 (((-1065 |#1|) (-1065 |#1|)) 84)) (** (((-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) 40)))
-(((-1071 |#1|) (-10 -7 (-15 -3265 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2336 ((-2 (|:| -2752 (-1065 |#1|)) (|:| -2764 (-1065 |#1|))) (-1065 |#1|))) (-15 -2752 ((-1065 |#1|) (-1065 |#1|))) (-15 -2764 ((-1065 |#1|) (-1065 |#1|))) (-15 -2775 ((-1065 |#1|) (-1065 |#1|))) (-15 -2786 ((-1065 |#1|) (-1065 |#1|))) (-15 -2796 ((-1065 |#1|) (-1065 |#1|))) (-15 -2806 ((-1065 |#1|) (-1065 |#1|))) (-15 -2817 ((-1065 |#1|) (-1065 |#1|))) (-15 -2827 ((-1065 |#1|) (-1065 |#1|))) (-15 -2838 ((-1065 |#1|) (-1065 |#1|))) (-15 -2850 ((-1065 |#1|) (-1065 |#1|))) (-15 -2862 ((-1065 |#1|) (-1065 |#1|))) (-15 -2874 ((-1065 |#1|) (-1065 |#1|))) (-15 -1921 ((-2 (|:| -2886 (-1065 |#1|)) (|:| -2898 (-1065 |#1|))) (-1065 |#1|))) (-15 -2886 ((-1065 |#1|) (-1065 |#1|))) (-15 -2898 ((-1065 |#1|) (-1065 |#1|))) (-15 -2910 ((-1065 |#1|) (-1065 |#1|))) (-15 -2921 ((-1065 |#1|) (-1065 |#1|))) (-15 -2932 ((-1065 |#1|) (-1065 |#1|))) (-15 -1787 ((-1065 |#1|) (-1065 |#1|))) (-15 -1795 ((-1065 |#1|) (-1065 |#1|))) (-15 -1803 ((-1065 |#1|) (-1065 |#1|))) (-15 -1811 ((-1065 |#1|) (-1065 |#1|))) (-15 -1821 ((-1065 |#1|) (-1065 |#1|))) (-15 -1830 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|)))) (-37 (-381 (-521)))) (T -1071))
-((-3919 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1811 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1921 (*1 *2 *3) (-12 (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-2 (|:| -2886 (-1065 *4)) (|:| -2898 (-1065 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2862 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2838 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2817 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-2336 (*1 *2 *3) (-12 (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-2 (|:| -2752 (-1065 *4)) (|:| -2764 (-1065 *4)))) (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-1253 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1071 *3)))))
-(-10 -7 (-15 -3265 ((-1065 |#1|) (-1065 |#1|))) (-15 -1253 ((-1065 |#1|) (-1065 |#1|))) (-15 ** ((-1065 |#1|) (-1065 |#1|) (-1065 |#1|))) (-15 -2336 ((-2 (|:| -2752 (-1065 |#1|)) (|:| -2764 (-1065 |#1|))) (-1065 |#1|))) (-15 -2752 ((-1065 |#1|) (-1065 |#1|))) (-15 -2764 ((-1065 |#1|) (-1065 |#1|))) (-15 -2775 ((-1065 |#1|) (-1065 |#1|))) (-15 -2786 ((-1065 |#1|) (-1065 |#1|))) (-15 -2796 ((-1065 |#1|) (-1065 |#1|))) (-15 -2806 ((-1065 |#1|) (-1065 |#1|))) (-15 -2817 ((-1065 |#1|) (-1065 |#1|))) (-15 -2827 ((-1065 |#1|) (-1065 |#1|))) (-15 -2838 ((-1065 |#1|) (-1065 |#1|))) (-15 -2850 ((-1065 |#1|) (-1065 |#1|))) (-15 -2862 ((-1065 |#1|) (-1065 |#1|))) (-15 -2874 ((-1065 |#1|) (-1065 |#1|))) (-15 -1921 ((-2 (|:| -2886 (-1065 |#1|)) (|:| -2898 (-1065 |#1|))) (-1065 |#1|))) (-15 -2886 ((-1065 |#1|) (-1065 |#1|))) (-15 -2898 ((-1065 |#1|) (-1065 |#1|))) (-15 -2910 ((-1065 |#1|) (-1065 |#1|))) (-15 -2921 ((-1065 |#1|) (-1065 |#1|))) (-15 -2932 ((-1065 |#1|) (-1065 |#1|))) (-15 -1787 ((-1065 |#1|) (-1065 |#1|))) (-15 -1795 ((-1065 |#1|) (-1065 |#1|))) (-15 -1803 ((-1065 |#1|) (-1065 |#1|))) (-15 -1811 ((-1065 |#1|) (-1065 |#1|))) (-15 -1821 ((-1065 |#1|) (-1065 |#1|))) (-15 -1830 ((-1065 |#1|) (-1065 |#1|))) (-15 -3919 ((-1065 |#1|) (-1065 |#1|))))
-((-3036 (((-885 |#2|) |#2| |#2|) 36)) (-1563 ((|#2| |#2| |#1|) 19 (|has| |#1| (-282)))))
-(((-1072 |#1| |#2|) (-10 -7 (-15 -3036 ((-885 |#2|) |#2| |#2|)) (IF (|has| |#1| (-282)) (-15 -1563 (|#2| |#2| |#1|)) |%noBranch|)) (-513) (-1141 |#1|)) (T -1072))
-((-1563 (*1 *2 *2 *3) (-12 (-4 *3 (-282)) (-4 *3 (-513)) (-5 *1 (-1072 *3 *2)) (-4 *2 (-1141 *3)))) (-3036 (*1 *2 *3 *3) (-12 (-4 *4 (-513)) (-5 *2 (-885 *3)) (-5 *1 (-1072 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -3036 ((-885 |#2|) |#2| |#2|)) (IF (|has| |#1| (-282)) (-15 -1563 (|#2| |#2| |#1|)) |%noBranch|))
-((-1422 (((-108) $ $) NIL)) (-2936 (($ $ (-587 (-707))) 67)) (-2795 (($) 26)) (-1274 (($ $) 42)) (-4046 (((-587 $) $) 51)) (-1708 (((-108) $) 16)) (-1462 (((-587 (-871 |#2|)) $) 74)) (-1859 (($ $) 68)) (-4165 (((-707) $) 37)) (-1869 (($) 25)) (-3092 (($ $ (-587 (-707)) (-871 |#2|)) 60) (($ $ (-587 (-707)) (-707)) 61) (($ $ (-707) (-871 |#2|)) 63)) (-3389 (($ $ $) 48) (($ (-587 $)) 50)) (-1575 (((-707) $) 75)) (-2426 (((-108) $) 15)) (-4024 (((-1067) $) NIL)) (-1327 (((-108) $) 18)) (-4146 (((-1031) $) NIL)) (-2229 (((-156) $) 73)) (-3791 (((-871 |#2|) $) 69)) (-3113 (((-707) $) 70)) (-2558 (((-108) $) 72)) (-4158 (($ $ (-587 (-707)) (-156)) 66)) (-4107 (($ $) 43)) (-2223 (((-791) $) 85)) (-2212 (($ $ (-587 (-707)) (-108)) 65)) (-3165 (((-587 $) $) 11)) (-3869 (($ $ (-707)) 36)) (-1353 (($ $) 32)) (-2448 (($ $ $ (-871 |#2|) (-707)) 56)) (-1770 (($ $ (-871 |#2|)) 55)) (-3926 (($ $ (-587 (-707)) (-871 |#2|)) 54) (($ $ (-587 (-707)) (-707)) 58) (((-707) $ (-871 |#2|)) 59)) (-1549 (((-108) $ $) 79)))
-(((-1073 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2426 ((-108) $)) (-15 -1708 ((-108) $)) (-15 -1327 ((-108) $)) (-15 -1869 ($)) (-15 -2795 ($)) (-15 -1353 ($ $)) (-15 -3869 ($ $ (-707))) (-15 -3165 ((-587 $) $)) (-15 -4165 ((-707) $)) (-15 -1274 ($ $)) (-15 -4107 ($ $)) (-15 -3389 ($ $ $)) (-15 -3389 ($ (-587 $))) (-15 -4046 ((-587 $) $)) (-15 -3926 ($ $ (-587 (-707)) (-871 |#2|))) (-15 -1770 ($ $ (-871 |#2|))) (-15 -2448 ($ $ $ (-871 |#2|) (-707))) (-15 -3092 ($ $ (-587 (-707)) (-871 |#2|))) (-15 -3926 ($ $ (-587 (-707)) (-707))) (-15 -3092 ($ $ (-587 (-707)) (-707))) (-15 -3926 ((-707) $ (-871 |#2|))) (-15 -3092 ($ $ (-707) (-871 |#2|))) (-15 -2212 ($ $ (-587 (-707)) (-108))) (-15 -4158 ($ $ (-587 (-707)) (-156))) (-15 -2936 ($ $ (-587 (-707)))) (-15 -3791 ((-871 |#2|) $)) (-15 -3113 ((-707) $)) (-15 -2558 ((-108) $)) (-15 -2229 ((-156) $)) (-15 -1575 ((-707) $)) (-15 -1859 ($ $)) (-15 -1462 ((-587 (-871 |#2|)) $)))) (-849) (-970)) (T -1073))
-((-2426 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-1869 (*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-2795 (*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-1353 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-1274 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-3389 (*1 *1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-3389 (*1 *1 *2) (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-3926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-871 *5)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))) (-1770 (*1 *1 *1 *2) (-12 (-5 *2 (-871 *4)) (-4 *4 (-970)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)))) (-2448 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-871 *5)) (-5 *3 (-707)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-871 *5)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))) (-3926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)) (-4 *5 (-970)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)) (-4 *5 (-970)))) (-3926 (*1 *2 *1 *3) (-12 (-5 *3 (-871 *5)) (-4 *5 (-970)) (-5 *2 (-707)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-871 *5)) (-4 *5 (-970)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))) (-2212 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-108)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)) (-4 *5 (-970)))) (-4158 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-587 (-707))) (-5 *3 (-156)) (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)) (-4 *5 (-970)))) (-2936 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-871 *4)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))) (-1859 (*1 *1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-587 (-871 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849)) (-4 *4 (-970)))))
-(-13 (-1013) (-10 -8 (-15 -2426 ((-108) $)) (-15 -1708 ((-108) $)) (-15 -1327 ((-108) $)) (-15 -1869 ($)) (-15 -2795 ($)) (-15 -1353 ($ $)) (-15 -3869 ($ $ (-707))) (-15 -3165 ((-587 $) $)) (-15 -4165 ((-707) $)) (-15 -1274 ($ $)) (-15 -4107 ($ $)) (-15 -3389 ($ $ $)) (-15 -3389 ($ (-587 $))) (-15 -4046 ((-587 $) $)) (-15 -3926 ($ $ (-587 (-707)) (-871 |#2|))) (-15 -1770 ($ $ (-871 |#2|))) (-15 -2448 ($ $ $ (-871 |#2|) (-707))) (-15 -3092 ($ $ (-587 (-707)) (-871 |#2|))) (-15 -3926 ($ $ (-587 (-707)) (-707))) (-15 -3092 ($ $ (-587 (-707)) (-707))) (-15 -3926 ((-707) $ (-871 |#2|))) (-15 -3092 ($ $ (-707) (-871 |#2|))) (-15 -2212 ($ $ (-587 (-707)) (-108))) (-15 -4158 ($ $ (-587 (-707)) (-156))) (-15 -2936 ($ $ (-587 (-707)))) (-15 -3791 ((-871 |#2|) $)) (-15 -3113 ((-707) $)) (-15 -2558 ((-108) $)) (-15 -2229 ((-156) $)) (-15 -1575 ((-707) $)) (-15 -1859 ($ $)) (-15 -1462 ((-587 (-871 |#2|)) $))))
-((-1422 (((-108) $ $) NIL)) (-3597 ((|#2| $) 11)) (-3588 ((|#1| $) 10)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2234 (($ |#1| |#2|) 9)) (-2223 (((-791) $) 16)) (-1549 (((-108) $ $) NIL)))
-(((-1074 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2234 ($ |#1| |#2|)) (-15 -3588 (|#1| $)) (-15 -3597 (|#2| $)))) (-1013) (-1013)) (T -1074))
-((-2234 (*1 *1 *2 *3) (-12 (-5 *1 (-1074 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3588 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1013)))) (-3597 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *3 *2)) (-4 *3 (-1013)))))
-(-13 (-1013) (-10 -8 (-15 -2234 ($ |#1| |#2|)) (-15 -3588 (|#1| $)) (-15 -3597 (|#2| $))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-1082 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 11)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1954 (($ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-3795 (((-108) $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-2868 (($ $ (-521)) NIL) (($ $ (-521) (-521)) 66)) (-3704 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) NIL)) (-2675 (((-1082 |#1| |#2| |#3|) $) 36)) (-3068 (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 29)) (-3060 (((-1082 |#1| |#2| |#3|) $) 30)) (-2910 (($ $) 107 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 83 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) 103 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 79 (|has| |#1| (-37 (-381 (-521)))))) (-2578 (((-521) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-2776 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) NIL)) (-2932 (($ $) 111 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 87 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1084) "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-521) "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-1496 (((-1082 |#1| |#2| |#3|) $) 131) (((-1084) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-381 (-521)) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-521) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-2274 (($ $) 34) (($ (-521) $) 35)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-1082 |#1| |#2| |#3|)) (-627 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 (-1082 |#1| |#2| |#3|))) (|:| |vec| (-1165 (-1082 |#1| |#2| |#3|)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337))))) (-2783 (((-3 $ "failed") $) 48)) (-1977 (((-381 (-880 |#1|)) $ (-521)) 65 (|has| |#1| (-513))) (((-381 (-880 |#1|)) $ (-521) (-521)) 67 (|has| |#1| (-513)))) (-3254 (($) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-2273 (((-108) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-4193 (((-108) $) 25)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-814 (-521))) (|has| |#1| (-337)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-814 (-353))) (|has| |#1| (-337))))) (-3490 (((-521) $) NIL) (((-521) $ (-521)) 24)) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL (|has| |#1| (-337)))) (-2807 (((-1082 |#1| |#2| |#3|) $) 38 (|has| |#1| (-337)))) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3035 (((-3 $ "failed") $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))))) (-3305 (((-108) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-3381 (($ $ (-849)) NIL)) (-1653 (($ (-1 |#1| (-521)) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-521)) 18) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-2816 (($ $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-2459 (($ $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-337)))) (-1253 (($ $) 72 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3070 (($ (-521) (-1082 |#1| |#2| |#3|)) 33)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-1749 (($ $) 70 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 71 (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1840 (($ $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-2720 (((-1082 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-521)) 145)) (-2261 (((-3 $ "failed") $ $) 49 (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) 73 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) (-1082 |#1| |#2| |#3|)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-482 (-1084) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-1082 |#1| |#2| |#3|))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-482 (-1084) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-269 (-1082 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-269 (-1082 |#1| |#2| |#3|))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1082 |#1| |#2| |#3|)) (-587 (-1082 |#1| |#2| |#3|))) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-284 (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-521)) NIL) (($ $ $) 54 (|has| (-521) (-1025))) (($ $ (-1082 |#1| |#2| |#3|)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-261 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1161 |#2|)) 51) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 50 (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))) (-2259 (($ $) NIL (|has| |#1| (-337)))) (-2818 (((-1082 |#1| |#2| |#3|) $) 41 (|has| |#1| (-337)))) (-2098 (((-521) $) 37)) (-1787 (($ $) 113 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 89 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 109 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 85 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 105 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 81 (|has| |#1| (-37 (-381 (-521)))))) (-1438 (((-497) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-562 (-497))) (|has| |#1| (-337)))) (((-353) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-202) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-820 (-353)) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-562 (-820 (-353)))) (|has| |#1| (-337)))) (((-820 (-521)) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-562 (-820 (-521)))) (|has| |#1| (-337))))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) 149) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1082 |#1| |#2| |#3|)) 27) (($ (-1161 |#2|)) 23) (($ (-1084)) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (($ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513)))) (($ (-381 (-521))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))) (|has| |#1| (-37 (-381 (-521))))))) (-1499 ((|#1| $ (-521)) 68)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 12)) (-1281 (((-1082 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1811 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 95 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1795 (($ $) 115 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 91 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 99 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-521)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 101 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 97 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 93 (|has| |#1| (-37 (-381 (-521)))))) (-4012 (($ $) NIL (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 20 T CONST)) (-3572 (($) 16 T CONST)) (-2244 (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))) (-1597 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1579 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1569 (((-108) $ $) NIL (-3703 (-12 (|has| (-1082 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1082 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 44 (|has| |#1| (-337))) (($ (-1082 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3|)) 45 (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 21)) (** (($ $ (-849)) NIL) (($ $ (-707)) 53) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) 74 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 128 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1082 |#1| |#2| |#3|)) 43 (|has| |#1| (-337))) (($ (-1082 |#1| |#2| |#3|) $) 42 (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1075 |#1| |#2| |#3|) (-13 (-1127 |#1| (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1075))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1127 |#1| (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-3517 ((|#2| |#2| (-1006 |#2|)) 26) ((|#2| |#2| (-1084)) 28)))
-(((-1076 |#1| |#2|) (-10 -7 (-15 -3517 (|#2| |#2| (-1084))) (-15 -3517 (|#2| |#2| (-1006 |#2|)))) (-13 (-513) (-783) (-961 (-521)) (-583 (-521))) (-13 (-404 |#1|) (-146) (-27) (-1105))) (T -1076))
-((-3517 (*1 *2 *2 *3) (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105))) (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1076 *4 *2)))) (-3517 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105))))))
-(-10 -7 (-15 -3517 (|#2| |#2| (-1084))) (-15 -3517 (|#2| |#2| (-1006 |#2|))))
-((-3517 (((-3 (-381 (-880 |#1|)) (-290 |#1|)) (-381 (-880 |#1|)) (-1006 (-381 (-880 |#1|)))) 30) (((-381 (-880 |#1|)) (-880 |#1|) (-1006 (-880 |#1|))) 44) (((-3 (-381 (-880 |#1|)) (-290 |#1|)) (-381 (-880 |#1|)) (-1084)) 32) (((-381 (-880 |#1|)) (-880 |#1|) (-1084)) 36)))
-(((-1077 |#1|) (-10 -7 (-15 -3517 ((-381 (-880 |#1|)) (-880 |#1|) (-1084))) (-15 -3517 ((-3 (-381 (-880 |#1|)) (-290 |#1|)) (-381 (-880 |#1|)) (-1084))) (-15 -3517 ((-381 (-880 |#1|)) (-880 |#1|) (-1006 (-880 |#1|)))) (-15 -3517 ((-3 (-381 (-880 |#1|)) (-290 |#1|)) (-381 (-880 |#1|)) (-1006 (-381 (-880 |#1|)))))) (-13 (-513) (-783) (-961 (-521)))) (T -1077))
-((-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-381 (-880 *5)))) (-5 *3 (-381 (-880 *5))) (-4 *5 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-3 *3 (-290 *5))) (-5 *1 (-1077 *5)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1006 (-880 *5))) (-5 *3 (-880 *5)) (-4 *5 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-381 *3)) (-5 *1 (-1077 *5)))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-3 (-381 (-880 *5)) (-290 *5))) (-5 *1 (-1077 *5)) (-5 *3 (-381 (-880 *5))))) (-3517 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-381 (-880 *5))) (-5 *1 (-1077 *5)) (-5 *3 (-880 *5)))))
-(-10 -7 (-15 -3517 ((-381 (-880 |#1|)) (-880 |#1|) (-1084))) (-15 -3517 ((-3 (-381 (-880 |#1|)) (-290 |#1|)) (-381 (-880 |#1|)) (-1084))) (-15 -3517 ((-381 (-880 |#1|)) (-880 |#1|) (-1006 (-880 |#1|)))) (-15 -3517 ((-3 (-381 (-880 |#1|)) (-290 |#1|)) (-381 (-880 |#1|)) (-1006 (-381 (-880 |#1|))))))
-((-1393 (((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)) 13)))
-(((-1078 |#1| |#2|) (-10 -7 (-15 -1393 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)))) (-970) (-970)) (T -1078))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6)))))
-(-10 -7 (-15 -1393 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))))
-((-2337 (((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|))) 50)) (-1974 (((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|))) 51)))
-(((-1079 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1974 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|)))) (-15 -2337 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|))))) (-729) (-783) (-425) (-877 |#3| |#1| |#2|)) (T -1079))
-((-2337 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-425)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7)))) (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7))))) (-1974 (*1 *2 *3) (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-425)) (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7)))) (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7))))))
-(-10 -7 (-15 -1974 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|)))) (-15 -2337 ((-392 (-1080 (-381 |#4|))) (-1080 (-381 |#4|)))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 30)) (-2794 (((-1165 |#1|) $ (-707)) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-3800 (($ (-1080 |#1|)) NIL)) (-1280 (((-1080 $) $ (-998)) 59) (((-1080 |#1|) $) 48)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) 133 (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-4127 (($ $ $) 127 (|has| |#1| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) 72 (|has| |#1| (-837)))) (-2694 (($ $) NIL (|has| |#1| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 92 (|has| |#1| (-837)))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-4176 (($ $ (-707)) 42)) (-1587 (($ $ (-707)) 43)) (-4046 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-425)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#1| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) NIL)) (-1496 ((|#1| $) NIL) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-998) $) NIL)) (-3052 (($ $ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $ $) 129 (|has| |#1| (-157)))) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) 57)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) NIL) (((-627 |#1|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-2924 (($ $ $) 105)) (-2317 (($ $ $) NIL (|has| |#1| (-513)))) (-2483 (((-2 (|:| -2979 |#1|) (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-1563 (($ $) 134 (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-707) $) 46)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-998) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-998) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-1526 (((-791) $ (-791)) 118)) (-3490 (((-707) $ $) NIL (|has| |#1| (-513)))) (-3637 (((-108) $) 32)) (-2443 (((-707) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-1060)))) (-4068 (($ (-1080 |#1|) (-998)) 50) (($ (-1080 $) (-998)) 66)) (-3381 (($ $ (-707)) 34)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) 64) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-998)) NIL) (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 122)) (-2401 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-2310 (($ (-1 (-707) (-707)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1810 (((-1080 |#1|) $) NIL)) (-2913 (((-3 (-998) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) 53)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) NIL (|has| |#1| (-425)))) (-4024 (((-1067) $) NIL)) (-3241 (((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707)) 41)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-998)) (|:| -2246 (-707))) "failed") $) NIL)) (-1749 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#1| (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) 33)) (-3120 ((|#1| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 80 (|has| |#1| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-425))) (($ $ $) 136 (|has| |#1| (-425)))) (-3925 (($ $ (-707) |#1| $) 100)) (-1822 (((-392 (-1080 $)) (-1080 $)) 78 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 77 (|has| |#1| (-837)))) (-1974 (((-392 $) $) 85 (|has| |#1| (-837)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#1|) NIL) (($ $ (-587 (-998)) (-587 |#1|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) NIL (|has| |#1| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#1| (-513)))) (-2297 (((-3 $ "failed") $ (-707)) 37)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 139 (|has| |#1| (-337)))) (-3011 (($ $ (-998)) NIL (|has| |#1| (-157))) ((|#1| $) 125 (|has| |#1| (-157)))) (-2193 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2098 (((-707) $) 55) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-998) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-998) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) 131 (|has| |#1| (-425))) (($ $ (-998)) NIL (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-837))))) (-1288 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#1| (-513)))) (-2223 (((-791) $) 119) (($ (-521)) NIL) (($ |#1|) 54) (($ (-998)) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) 28 (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 15) (($ $ (-707)) 16)) (-3562 (($) 17 T CONST)) (-3572 (($) 18 T CONST)) (-2244 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) 97)) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1648 (($ $ |#1|) 140 (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 67)) (** (($ $ (-849)) 14) (($ $ (-707)) 12)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 27) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
-(((-1080 |#1|) (-13 (-1141 |#1|) (-10 -8 (-15 -1526 ((-791) $ (-791))) (-15 -3925 ($ $ (-707) |#1| $)))) (-970)) (T -1080))
-((-1526 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1080 *3)) (-4 *3 (-970)))) (-3925 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1080 *3)) (-4 *3 (-970)))))
-(-13 (-1141 |#1|) (-10 -8 (-15 -1526 ((-791) $ (-791))) (-15 -3925 ($ $ (-707) |#1| $))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 11)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) NIL)) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 35)) (-1496 (((-1075 |#1| |#2| |#3|) $) NIL) (((-1082 |#1| |#2| |#3|) $) NIL)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1844 (((-381 (-521)) $) 55)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-3080 (($ (-381 (-521)) (-1075 |#1| |#2| |#3|)) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) NIL)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) NIL) (($ $ (-381 (-521))) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-381 (-521))) 19) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1805 (((-1075 |#1| |#2| |#3|) $) 40)) (-1259 (((-3 (-1075 |#1| |#2| |#3|) "failed") $) NIL)) (-3070 (((-1075 |#1| |#2| |#3|) $) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-1749 (($ $) 38 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 39 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $ (-1161 |#2|)) 37)) (-2098 (((-381 (-521)) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) 58) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1075 |#1| |#2| |#3|)) 29) (($ (-1082 |#1| |#2| |#3|)) 30) (($ (-1161 |#2|)) 25) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 12)) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 21 T CONST)) (-3572 (($) 16 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 23)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1081 |#1| |#2| |#3|) (-13 (-1148 |#1| (-1075 |#1| |#2| |#3|)) (-961 (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1081))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1148 |#1| (-1075 |#1| |#2| |#3|)) (-961 (-1082 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 125)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 116)) (-4042 (((-1138 |#2| |#1|) $ (-707)) 63)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-707)) 79) (($ $ (-707) (-707)) 76)) (-3704 (((-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|))) $) 102)) (-2910 (($ $) 169 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 145 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2886 (($ $) 165 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|)))) 115) (($ (-1065 |#1|)) 110)) (-2932 (($ $) 173 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 149 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) 23)) (-2513 (($ $) 26)) (-2232 (((-880 |#1|) $ (-707)) 75) (((-880 |#1|) $ (-707) (-707)) 77)) (-4193 (((-108) $) 120)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-707) $) 122) (((-707) $ (-707)) 124)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) NIL)) (-1653 (($ (-1 |#1| (-521)) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) 13) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-1749 (($ $) 129 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 130 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-2191 (($ $ (-707)) 15)) (-2261 (((-3 $ "failed") $ $) 24 (|has| |#1| (-513)))) (-3265 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-707)))))) (-2550 ((|#1| $ (-707)) 119) (($ $ $) 128 (|has| (-707) (-1025)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $ (-1161 |#2|)) 29)) (-2098 (((-707) $) NIL)) (-1787 (($ $) 175 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 151 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 171 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 147 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 167 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) 201) (($ (-521)) NIL) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 126 (|has| |#1| (-157))) (($ (-1138 |#2| |#1|)) 51) (($ (-1161 |#2|)) 32)) (-2730 (((-1065 |#1|) $) 98)) (-1499 ((|#1| $ (-707)) 118)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 54)) (-1811 (($ $) 181 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 157 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) 177 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 153 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 185 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 161 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-707)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-707)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 187 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 163 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 183 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 159 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 179 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 155 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 17 T CONST)) (-3572 (($) 19 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) 194)) (-1628 (($ $ $) 31)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ |#1|) 198 (|has| |#1| (-337))) (($ $ $) 134 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 137 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1082 |#1| |#2| |#3|) (-13 (-1156 |#1|) (-10 -8 (-15 -2223 ($ (-1138 |#2| |#1|))) (-15 -4042 ((-1138 |#2| |#1|) $ (-707))) (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1082))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-1082 *3 *4 *5)))) (-4042 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1082 *4 *5 *6)) (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1156 |#1|) (-10 -8 (-15 -2223 ($ (-1138 |#2| |#1|))) (-15 -4042 ((-1138 |#2| |#1|) $ (-707))) (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-2223 (((-791) $) 22) (($ (-1084)) 24)) (-3703 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 35)) (-3690 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 28) (($ $) 29)) (-3179 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 30)) (-3170 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 32)) (-3160 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 31)) (-3152 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 33)) (-3087 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $))) 34)))
-(((-1083) (-13 (-561 (-791)) (-10 -8 (-15 -2223 ($ (-1084))) (-15 -3179 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3160 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3170 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3152 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3703 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3087 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ $))))) (T -1083))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1083)))) (-3179 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3160 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3170 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3152 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3703 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3087 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083)))) (-5 *1 (-1083)))) (-3690 (*1 *1 *1) (-5 *1 (-1083))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2223 ($ (-1084))) (-15 -3179 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3160 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3170 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3152 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3703 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3087 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)) (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353))) (|:| CF (-290 (-154 (-353)))) (|:| |switch| $)))) (-15 -3690 ($ $))))
-((-1422 (((-108) $ $) NIL)) (-2030 (($ $ (-587 (-791))) 58)) (-2465 (($ $ (-587 (-791))) 56)) (-1523 (((-1067) $) 82)) (-2531 (((-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791)))) $) 85)) (-3977 (((-108) $) 21)) (-1605 (($ $ (-587 (-587 (-791)))) 54) (($ $ (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791))))) 80)) (-2231 (($) 123 T CONST)) (-1908 (((-1170)) 104)) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 65) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 71)) (-1869 (($) 93) (($ $) 99)) (-2890 (($ $) 81)) (-2816 (($ $ $) NIL)) (-2459 (($ $ $) NIL)) (-1604 (((-587 $) $) 105)) (-4024 (((-1067) $) 88)) (-4146 (((-1031) $) NIL)) (-2550 (($ $ (-587 (-791))) 57)) (-1438 (((-497) $) 45) (((-1084) $) 46) (((-820 (-521)) $) 75) (((-820 (-353)) $) 73)) (-2223 (((-791) $) 52) (($ (-1067)) 47)) (-3709 (($ $ (-587 (-791))) 59)) (-3828 (((-1067) $) 33) (((-1067) $ (-108)) 34) (((-1170) (-758) $) 35) (((-1170) (-758) $ (-108)) 36)) (-1597 (((-108) $ $) NIL)) (-1579 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 48)) (-1588 (((-108) $ $) NIL)) (-1569 (((-108) $ $) 49)))
-(((-1084) (-13 (-783) (-562 (-497)) (-764) (-562 (-1084)) (-562 (-820 (-521))) (-562 (-820 (-353))) (-814 (-521)) (-814 (-353)) (-10 -8 (-15 -1869 ($)) (-15 -1869 ($ $)) (-15 -1908 ((-1170))) (-15 -2223 ($ (-1067))) (-15 -2890 ($ $)) (-15 -3977 ((-108) $)) (-15 -2531 ((-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791)))) $)) (-15 -1605 ($ $ (-587 (-587 (-791))))) (-15 -1605 ($ $ (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791)))))) (-15 -2465 ($ $ (-587 (-791)))) (-15 -2030 ($ $ (-587 (-791)))) (-15 -3709 ($ $ (-587 (-791)))) (-15 -2550 ($ $ (-587 (-791)))) (-15 -1523 ((-1067) $)) (-15 -1604 ((-587 $) $)) (-15 -2231 ($) -2682)))) (T -1084))
-((-1869 (*1 *1) (-5 *1 (-1084))) (-1869 (*1 *1 *1) (-5 *1 (-1084))) (-1908 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1084)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1084)))) (-2890 (*1 *1 *1) (-5 *1 (-1084))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1084)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791))))) (-5 *1 (-1084)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 (-791)))) (-5 *1 (-1084)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791))))) (-5 *1 (-1084)))) (-2465 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1084)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1084)))) (-2231 (*1 *1) (-5 *1 (-1084))))
-(-13 (-783) (-562 (-497)) (-764) (-562 (-1084)) (-562 (-820 (-521))) (-562 (-820 (-353))) (-814 (-521)) (-814 (-353)) (-10 -8 (-15 -1869 ($)) (-15 -1869 ($ $)) (-15 -1908 ((-1170))) (-15 -2223 ($ (-1067))) (-15 -2890 ($ $)) (-15 -3977 ((-108) $)) (-15 -2531 ((-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791)))) $)) (-15 -1605 ($ $ (-587 (-587 (-791))))) (-15 -1605 ($ $ (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791))) (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791))) (|:| |args| (-587 (-791)))))) (-15 -2465 ($ $ (-587 (-791)))) (-15 -2030 ($ $ (-587 (-791)))) (-15 -3709 ($ $ (-587 (-791)))) (-15 -2550 ($ $ (-587 (-791)))) (-15 -1523 ((-1067) $)) (-15 -1604 ((-587 $) $)) (-15 -2231 ($) -2682)))
-((-3822 (((-1165 |#1|) |#1| (-849)) 16) (((-1165 |#1|) (-587 |#1|)) 20)))
-(((-1085 |#1|) (-10 -7 (-15 -3822 ((-1165 |#1|) (-587 |#1|))) (-15 -3822 ((-1165 |#1|) |#1| (-849)))) (-970)) (T -1085))
-((-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-1165 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-970)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-970)) (-5 *2 (-1165 *4)) (-5 *1 (-1085 *4)))))
-(-10 -7 (-15 -3822 ((-1165 |#1|) (-587 |#1|))) (-15 -3822 ((-1165 |#1|) |#1| (-849))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| |#1| (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#1| (-961 (-381 (-521))))) (((-3 |#1| "failed") $) NIL)) (-1496 (((-521) $) NIL (|has| |#1| (-961 (-521)))) (((-381 (-521)) $) NIL (|has| |#1| (-961 (-381 (-521))))) ((|#1| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1563 (($ $) NIL (|has| |#1| (-425)))) (-1709 (($ $ |#1| (-897) $) NIL)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-897)) NIL)) (-2401 (((-897) $) NIL)) (-2310 (($ (-1 (-897) (-897)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#1| $) NIL)) (-3925 (($ $ (-897) |#1| $) NIL (-12 (|has| (-897) (-124)) (|has| |#1| (-513))))) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-513)))) (-2098 (((-897) $) NIL)) (-1391 ((|#1| $) NIL (|has| |#1| (-425)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) NIL) (($ (-381 (-521))) NIL (-3703 (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-961 (-381 (-521))))))) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ (-897)) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#1| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 9 T CONST)) (-3572 (($) 14 T CONST)) (-1549 (((-108) $ $) 16)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 19)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1086 |#1|) (-13 (-300 |#1| (-897)) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| (-897) (-124)) (-15 -3925 ($ $ (-897) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|))) (-970)) (T -1086))
-((-3925 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-897)) (-4 *2 (-124)) (-5 *1 (-1086 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
-(-13 (-300 |#1| (-897)) (-10 -8 (IF (|has| |#1| (-513)) (IF (|has| (-897) (-124)) (-15 -3925 ($ $ (-897) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|)))
-((-2249 (((-1088) (-1084) $) 24)) (-1790 (($) 28)) (-3228 (((-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-1084) $) 21)) (-3829 (((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) $) 40) (((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) 41) (((-1170) (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) 42)) (-3290 (((-1170) (-1084)) 57)) (-3365 (((-1170) (-1084) $) 54) (((-1170) (-1084)) 55) (((-1170)) 56)) (-3353 (((-1170) (-1084)) 36)) (-3914 (((-1084)) 35)) (-2280 (($) 33)) (-3425 (((-411) (-1084) (-411) (-1084) $) 44) (((-411) (-587 (-1084)) (-411) (-1084) $) 48) (((-411) (-1084) (-411)) 45) (((-411) (-1084) (-411) (-1084)) 49)) (-3034 (((-1084)) 34)) (-2223 (((-791) $) 27)) (-1689 (((-1170)) 29) (((-1170) (-1084)) 32)) (-1934 (((-587 (-1084)) (-1084) $) 23)) (-2227 (((-1170) (-1084) (-587 (-1084)) $) 37) (((-1170) (-1084) (-587 (-1084))) 38) (((-1170) (-587 (-1084))) 39)))
-(((-1087) (-13 (-561 (-791)) (-10 -8 (-15 -1790 ($)) (-15 -1689 ((-1170))) (-15 -1689 ((-1170) (-1084))) (-15 -3425 ((-411) (-1084) (-411) (-1084) $)) (-15 -3425 ((-411) (-587 (-1084)) (-411) (-1084) $)) (-15 -3425 ((-411) (-1084) (-411))) (-15 -3425 ((-411) (-1084) (-411) (-1084))) (-15 -3353 ((-1170) (-1084))) (-15 -3034 ((-1084))) (-15 -3914 ((-1084))) (-15 -2227 ((-1170) (-1084) (-587 (-1084)) $)) (-15 -2227 ((-1170) (-1084) (-587 (-1084)))) (-15 -2227 ((-1170) (-587 (-1084)))) (-15 -3829 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -3829 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -3829 ((-1170) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -3365 ((-1170) (-1084) $)) (-15 -3365 ((-1170) (-1084))) (-15 -3365 ((-1170))) (-15 -3290 ((-1170) (-1084))) (-15 -2280 ($)) (-15 -3228 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-1084) $)) (-15 -1934 ((-587 (-1084)) (-1084) $)) (-15 -2249 ((-1088) (-1084) $))))) (T -1087))
-((-1790 (*1 *1) (-5 *1 (-1087))) (-1689 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3425 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087)))) (-3425 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *4 (-1084)) (-5 *1 (-1087)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087)))) (-3425 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3034 (*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))) (-3914 (*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))) (-2227 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3829 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1084)) (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3365 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3365 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))) (-2280 (*1 *1) (-5 *1 (-1087))) (-3228 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *1 (-1087)))) (-1934 (*1 *2 *3 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1087)) (-5 *3 (-1084)))) (-2249 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1088)) (-5 *1 (-1087)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -1790 ($)) (-15 -1689 ((-1170))) (-15 -1689 ((-1170) (-1084))) (-15 -3425 ((-411) (-1084) (-411) (-1084) $)) (-15 -3425 ((-411) (-587 (-1084)) (-411) (-1084) $)) (-15 -3425 ((-411) (-1084) (-411))) (-15 -3425 ((-411) (-1084) (-411) (-1084))) (-15 -3353 ((-1170) (-1084))) (-15 -3034 ((-1084))) (-15 -3914 ((-1084))) (-15 -2227 ((-1170) (-1084) (-587 (-1084)) $)) (-15 -2227 ((-1170) (-1084) (-587 (-1084)))) (-15 -2227 ((-1170) (-587 (-1084)))) (-15 -3829 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")) $)) (-15 -3829 ((-1170) (-1084) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -3829 ((-1170) (-3 (|:| |fst| (-408)) (|:| -1366 "void")))) (-15 -3365 ((-1170) (-1084) $)) (-15 -3365 ((-1170) (-1084))) (-15 -3365 ((-1170))) (-15 -3290 ((-1170) (-1084))) (-15 -2280 ($)) (-15 -3228 ((-3 (|:| |fst| (-408)) (|:| -1366 "void")) (-1084) $)) (-15 -1934 ((-587 (-1084)) (-1084) $)) (-15 -2249 ((-1088) (-1084) $))))
-((-3399 (((-587 (-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521))))))))) $) 57)) (-4132 (((-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521)))))))) (-408) $) 40)) (-2008 (($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-411))))) 15)) (-3290 (((-1170) $) 65)) (-1715 (((-587 (-1084)) $) 20)) (-1727 (((-1017) $) 53)) (-3320 (((-411) (-1084) $) 27)) (-3446 (((-587 (-1084)) $) 30)) (-2280 (($) 17)) (-3425 (((-411) (-587 (-1084)) (-411) $) 25) (((-411) (-1084) (-411) $) 24)) (-2223 (((-791) $) 9) (((-1093 (-1084) (-411)) $) 11)))
-(((-1088) (-13 (-561 (-791)) (-10 -8 (-15 -2223 ((-1093 (-1084) (-411)) $)) (-15 -2280 ($)) (-15 -3425 ((-411) (-587 (-1084)) (-411) $)) (-15 -3425 ((-411) (-1084) (-411) $)) (-15 -3320 ((-411) (-1084) $)) (-15 -1715 ((-587 (-1084)) $)) (-15 -4132 ((-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521)))))))) (-408) $)) (-15 -3446 ((-587 (-1084)) $)) (-15 -3399 ((-587 (-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521))))))))) $)) (-15 -1727 ((-1017) $)) (-15 -3290 ((-1170) $)) (-15 -2008 ($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-411))))))))) (T -1088))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-1093 (-1084) (-411))) (-5 *1 (-1088)))) (-2280 (*1 *1) (-5 *1 (-1088))) (-3425 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *1 (-1088)))) (-3425 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1088)))) (-3320 (*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-411)) (-5 *1 (-1088)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))) (-4132 (*1 *2 *3 *1) (-12 (-5 *3 (-408)) (-5 *2 (-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521))))))))) (-5 *1 (-1088)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521)))))))))) (-5 *1 (-1088)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1088)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1088)))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-411))))) (-5 *1 (-1088)))))
-(-13 (-561 (-791)) (-10 -8 (-15 -2223 ((-1093 (-1084) (-411)) $)) (-15 -2280 ($)) (-15 -3425 ((-411) (-587 (-1084)) (-411) $)) (-15 -3425 ((-411) (-1084) (-411) $)) (-15 -3320 ((-411) (-1084) $)) (-15 -1715 ((-587 (-1084)) $)) (-15 -4132 ((-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521)))))))) (-408) $)) (-15 -3446 ((-587 (-1084)) $)) (-15 -3399 ((-587 (-587 (-3 (|:| -2890 (-1084)) (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521))))))))) $)) (-15 -1727 ((-1017) $)) (-15 -3290 ((-1170) $)) (-15 -2008 ($ (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-411))))))))
-((-1652 (((-108) $) 41)) (-2968 (((-3 (-521) (-202) (-1084) (-1067) $) $) 49)) (-3570 (((-587 $) $) 54)) (-1438 (((-1017) $) 19) (($ (-1017)) 20)) (-2294 (((-108) $) 51)) (-2223 (((-791) $) NIL) (($ (-521)) 22) (((-521) $) 24) (($ (-202)) 26) (((-202) $) 28) (($ (-1084)) 30) (((-1084) $) 32) (($ (-1067)) 34) (((-1067) $) 36)) (-2209 (((-108) $ (|[\|\|]| (-521))) 9) (((-108) $ (|[\|\|]| (-202))) 12) (((-108) $ (|[\|\|]| (-1084))) 18) (((-108) $ (|[\|\|]| (-1067))) 15)) (-3910 (($ (-1084) (-587 $)) 38) (($ $ (-587 $)) 39)) (-2453 (((-521) $) 23) (((-202) $) 27) (((-1084) $) 31) (((-1067) $) 35)))
-(((-1089) (-13 (-1160) (-561 (-791)) (-10 -8 (-15 -1438 ((-1017) $)) (-15 -1438 ($ (-1017))) (-15 -2223 ($ (-521))) (-15 -2223 ((-521) $)) (-15 -2453 ((-521) $)) (-15 -2223 ($ (-202))) (-15 -2223 ((-202) $)) (-15 -2453 ((-202) $)) (-15 -2223 ($ (-1084))) (-15 -2223 ((-1084) $)) (-15 -2453 ((-1084) $)) (-15 -2223 ($ (-1067))) (-15 -2223 ((-1067) $)) (-15 -2453 ((-1067) $)) (-15 -3910 ($ (-1084) (-587 $))) (-15 -3910 ($ $ (-587 $))) (-15 -1652 ((-108) $)) (-15 -2968 ((-3 (-521) (-202) (-1084) (-1067) $) $)) (-15 -3570 ((-587 $) $)) (-15 -2294 ((-108) $)) (-15 -2209 ((-108) $ (|[\|\|]| (-521)))) (-15 -2209 ((-108) $ (|[\|\|]| (-202)))) (-15 -2209 ((-108) $ (|[\|\|]| (-1084)))) (-15 -2209 ((-108) $ (|[\|\|]| (-1067))))))) (T -1089))
-((-1438 (*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1089)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1089)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1089)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1089)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1089)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089)))) (-3910 (*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-1089))) (-5 *1 (-1089)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089)))) (-1652 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-3 (-521) (-202) (-1084) (-1067) (-1089))) (-5 *1 (-1089)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-521))) (-5 *2 (-108)) (-5 *1 (-1089)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1089)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-108)) (-5 *1 (-1089)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-108)) (-5 *1 (-1089)))))
-(-13 (-1160) (-561 (-791)) (-10 -8 (-15 -1438 ((-1017) $)) (-15 -1438 ($ (-1017))) (-15 -2223 ($ (-521))) (-15 -2223 ((-521) $)) (-15 -2453 ((-521) $)) (-15 -2223 ($ (-202))) (-15 -2223 ((-202) $)) (-15 -2453 ((-202) $)) (-15 -2223 ($ (-1084))) (-15 -2223 ((-1084) $)) (-15 -2453 ((-1084) $)) (-15 -2223 ($ (-1067))) (-15 -2223 ((-1067) $)) (-15 -2453 ((-1067) $)) (-15 -3910 ($ (-1084) (-587 $))) (-15 -3910 ($ $ (-587 $))) (-15 -1652 ((-108) $)) (-15 -2968 ((-3 (-521) (-202) (-1084) (-1067) $) $)) (-15 -3570 ((-587 $) $)) (-15 -2294 ((-108) $)) (-15 -2209 ((-108) $ (|[\|\|]| (-521)))) (-15 -2209 ((-108) $ (|[\|\|]| (-202)))) (-15 -2209 ((-108) $ (|[\|\|]| (-1084)))) (-15 -2209 ((-108) $ (|[\|\|]| (-1067))))))
-((-3936 (((-587 (-587 (-880 |#1|))) (-587 (-381 (-880 |#1|))) (-587 (-1084))) 55)) (-3278 (((-587 (-269 (-381 (-880 |#1|)))) (-269 (-381 (-880 |#1|)))) 67) (((-587 (-269 (-381 (-880 |#1|)))) (-381 (-880 |#1|))) 63) (((-587 (-269 (-381 (-880 |#1|)))) (-269 (-381 (-880 |#1|))) (-1084)) 68) (((-587 (-269 (-381 (-880 |#1|)))) (-381 (-880 |#1|)) (-1084)) 62) (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-269 (-381 (-880 |#1|))))) 92) (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-381 (-880 |#1|)))) 91) (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-269 (-381 (-880 |#1|)))) (-587 (-1084))) 93) (((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-381 (-880 |#1|))) (-587 (-1084))) 90)))
-(((-1090 |#1|) (-10 -7 (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-269 (-381 (-880 |#1|)))) (-587 (-1084)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-381 (-880 |#1|))))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-269 (-381 (-880 |#1|)))))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-381 (-880 |#1|)) (-1084))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-269 (-381 (-880 |#1|))) (-1084))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-381 (-880 |#1|)))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-269 (-381 (-880 |#1|))))) (-15 -3936 ((-587 (-587 (-880 |#1|))) (-587 (-381 (-880 |#1|))) (-587 (-1084))))) (-513)) (T -1090))
-((-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-880 *5)))) (-5 *1 (-1090 *5)))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-880 *4))))) (-5 *1 (-1090 *4)) (-5 *3 (-269 (-381 (-880 *4)))))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-880 *4))))) (-5 *1 (-1090 *4)) (-5 *3 (-381 (-880 *4))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-513)) (-5 *2 (-587 (-269 (-381 (-880 *5))))) (-5 *1 (-1090 *5)) (-5 *3 (-269 (-381 (-880 *5)))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-1084)) (-4 *5 (-513)) (-5 *2 (-587 (-269 (-381 (-880 *5))))) (-5 *1 (-1090 *5)) (-5 *3 (-381 (-880 *5))))) (-3278 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-1090 *4)) (-5 *3 (-587 (-269 (-381 (-880 *4))))))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-587 (-381 (-880 *4)))) (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-1090 *4)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-1090 *5)) (-5 *3 (-587 (-269 (-381 (-880 *5))))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084))) (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-1090 *5)))))
-(-10 -7 (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-269 (-381 (-880 |#1|)))) (-587 (-1084)))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-381 (-880 |#1|))))) (-15 -3278 ((-587 (-587 (-269 (-381 (-880 |#1|))))) (-587 (-269 (-381 (-880 |#1|)))))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-381 (-880 |#1|)) (-1084))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-269 (-381 (-880 |#1|))) (-1084))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-381 (-880 |#1|)))) (-15 -3278 ((-587 (-269 (-381 (-880 |#1|)))) (-269 (-381 (-880 |#1|))))) (-15 -3936 ((-587 (-587 (-880 |#1|))) (-587 (-381 (-880 |#1|))) (-587 (-1084)))))
-((-1448 (((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|)))) 38)) (-3227 (((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|))) 24)) (-2146 (((-1092 (-587 |#1|)) (-587 |#1|)) 34)) (-3865 (((-587 (-587 |#1|)) (-587 |#1|)) 30)) (-3918 (((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|)))) 37)) (-1394 (((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|)))) 36)) (-4184 (((-587 (-587 |#1|)) (-587 (-587 |#1|))) 28)) (-1573 (((-587 |#1|) (-587 |#1|)) 31)) (-4004 (((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|)))) 18)) (-4055 (((-587 (-587 (-587 |#1|))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|)))) 15)) (-1612 (((-2 (|:| |fs| (-108)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|))) 13)) (-1360 (((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|)))) 39)) (-2534 (((-587 (-587 |#1|)) (-1092 (-587 |#1|))) 41)))
-(((-1091 |#1|) (-10 -7 (-15 -1612 ((-2 (|:| |fs| (-108)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|)))) (-15 -4055 ((-587 (-587 (-587 |#1|))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -4004 ((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -1448 ((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -1360 ((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -2534 ((-587 (-587 |#1|)) (-1092 (-587 |#1|)))) (-15 -3227 ((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)))) (-15 -2146 ((-1092 (-587 |#1|)) (-587 |#1|))) (-15 -4184 ((-587 (-587 |#1|)) (-587 (-587 |#1|)))) (-15 -3865 ((-587 (-587 |#1|)) (-587 |#1|))) (-15 -1573 ((-587 |#1|) (-587 |#1|))) (-15 -1394 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))))) (-15 -3918 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|)))))) (-783)) (T -1091))
-((-3918 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-2 (|:| |f1| (-587 *4)) (|:| |f2| (-587 (-587 (-587 *4)))) (|:| |f3| (-587 (-587 *4))) (|:| |f4| (-587 (-587 (-587 *4)))))) (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 (-587 *4)))))) (-1394 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-783)) (-5 *3 (-587 *6)) (-5 *5 (-587 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-587 *5)) (|:| |f3| *5) (|:| |f4| (-587 *5)))) (-5 *1 (-1091 *6)) (-5 *4 (-587 *5)))) (-1573 (*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-1091 *3)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)) (-5 *3 (-587 *4)))) (-4184 (*1 *2 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-783)) (-5 *1 (-1091 *3)))) (-2146 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-1092 (-587 *4))) (-5 *1 (-1091 *4)) (-5 *3 (-587 *4)))) (-3227 (*1 *2 *3) (-12 (-4 *4 (-783)) (-5 *2 (-587 (-587 (-587 *4)))) (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 *4))))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-1092 (-587 *4))) (-4 *4 (-783)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)) (-4 *4 (-783)))) (-1448 (*1 *2 *2 *3) (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4))) (-4 *4 (-783)) (-5 *1 (-1091 *4)))) (-4004 (*1 *2 *3 *2) (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-587 *4)) (-4 *4 (-783)) (-5 *1 (-1091 *4)))) (-4055 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-587 *5)) (-4 *5 (-783)) (-5 *1 (-1091 *5)))) (-1612 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-783)) (-5 *4 (-587 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-587 *4)))) (-5 *1 (-1091 *6)) (-5 *5 (-587 *4)))))
-(-10 -7 (-15 -1612 ((-2 (|:| |fs| (-108)) (|:| |sd| (-587 |#1|)) (|:| |td| (-587 (-587 |#1|)))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 |#1|)))) (-15 -4055 ((-587 (-587 (-587 |#1|))) (-1 (-108) |#1| |#1|) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -4004 ((-587 (-587 (-587 |#1|))) (-587 |#1|) (-587 (-587 (-587 |#1|))))) (-15 -1448 ((-587 (-587 |#1|)) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -1360 ((-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))))) (-15 -2534 ((-587 (-587 |#1|)) (-1092 (-587 |#1|)))) (-15 -3227 ((-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)))) (-15 -2146 ((-1092 (-587 |#1|)) (-587 |#1|))) (-15 -4184 ((-587 (-587 |#1|)) (-587 (-587 |#1|)))) (-15 -3865 ((-587 (-587 |#1|)) (-587 |#1|))) (-15 -1573 ((-587 |#1|) (-587 |#1|))) (-15 -1394 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 |#1|) (-587 (-587 (-587 |#1|))) (-587 (-587 |#1|)) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))) (-587 (-587 (-587 |#1|))))) (-15 -3918 ((-2 (|:| |f1| (-587 |#1|)) (|:| |f2| (-587 (-587 (-587 |#1|)))) (|:| |f3| (-587 (-587 |#1|))) (|:| |f4| (-587 (-587 (-587 |#1|))))) (-587 (-587 (-587 |#1|))))))
-((-3403 (($ (-587 (-587 |#1|))) 9)) (-3256 (((-587 (-587 |#1|)) $) 10)) (-2223 (((-791) $) 25)))
-(((-1092 |#1|) (-10 -8 (-15 -3403 ($ (-587 (-587 |#1|)))) (-15 -3256 ((-587 (-587 |#1|)) $)) (-15 -2223 ((-791) $))) (-1013)) (T -1092))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1092 *3)) (-4 *3 (-1013)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 *3))) (-5 *1 (-1092 *3)) (-4 *3 (-1013)))) (-3403 (*1 *1 *2) (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-1092 *3)))))
-(-10 -8 (-15 -3403 ($ (-587 (-587 |#1|)))) (-15 -3256 ((-587 (-587 |#1|)) $)) (-15 -2223 ((-791) $)))
-((-1422 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-1857 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-3933 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#2| $ |#1| |#2|) NIL)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) NIL)) (-2231 (($) NIL T CONST)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) NIL)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) NIL)) (-2658 ((|#1| $) NIL (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-587 |#2|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-3989 ((|#1| $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2964 (((-587 |#1|) $) NIL)) (-3839 (((-108) |#1| $) NIL)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1223 (((-587 |#1|) $) NIL)) (-2131 (((-108) |#1| $) NIL)) (-4146 (((-1031) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-2319 ((|#2| $) NIL (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL)) (-2995 (($ $ |#2|) NIL (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2036 (($) NIL) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) NIL (-12 (|has| $ (-6 -4233)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (((-707) |#2| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013)))) (((-707) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2223 (((-791) $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791))) (|has| |#2| (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) NIL)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) NIL (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) NIL (-3703 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| |#2| (-1013))))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1093 |#1| |#2|) (-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233))) (-1013) (-1013)) (T -1093))
-NIL
-(-13 (-1096 |#1| |#2|) (-10 -7 (-6 -4233)))
-((-1506 ((|#1| (-587 |#1|)) 32)) (-2520 ((|#1| |#1| (-521)) 18)) (-2589 (((-1080 |#1|) |#1| (-849)) 15)))
-(((-1094 |#1|) (-10 -7 (-15 -1506 (|#1| (-587 |#1|))) (-15 -2589 ((-1080 |#1|) |#1| (-849))) (-15 -2520 (|#1| |#1| (-521)))) (-337)) (T -1094))
-((-2520 (*1 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *4 (-849)) (-5 *2 (-1080 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-337)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))))
-(-10 -7 (-15 -1506 (|#1| (-587 |#1|))) (-15 -2589 ((-1080 |#1|) |#1| (-849))) (-15 -2520 (|#1| |#1| (-521))))
-((-1857 (($) 10) (($ (-587 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)))) 14)) (-2726 (($ (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3831 (((-587 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) 39) (((-587 |#3|) $) 41)) (-3833 (($ (-1 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1393 (($ (-1 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1570 (((-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) $) 53)) (-4135 (($ (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) $) 16)) (-1223 (((-587 |#2|) $) 19)) (-2131 (((-108) |#2| $) 58)) (-3733 (((-3 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) "failed") (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) 57)) (-2747 (((-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) $) 62)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-2481 (((-587 |#3|) $) 43)) (-2550 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) NIL) (((-707) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) $) NIL) (((-707) |#3| $) NIL) (((-707) (-1 (-108) |#3|) $) 67)) (-2223 (((-791) $) 27)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-1549 (((-108) $ $) 48)))
-(((-1095 |#1| |#2| |#3|) (-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1393 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1857 (|#1| (-587 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))))) (-15 -1857 (|#1|)) (-15 -1393 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#3|) |#1|)) (-15 -3831 ((-587 |#3|) |#1|)) (-15 -4163 ((-707) |#3| |#1|)) (-15 -2550 (|#3| |#1| |#2| |#3|)) (-15 -2550 (|#3| |#1| |#2|)) (-15 -2481 ((-587 |#3|) |#1|)) (-15 -2131 ((-108) |#2| |#1|)) (-15 -1223 ((-587 |#2|) |#1|)) (-15 -2726 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2726 (|#1| (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -2726 (|#1| (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -3733 ((-3 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) "failed") (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -1570 ((-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -4135 (|#1| (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -2747 ((-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -4163 ((-707) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -3831 ((-587 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -4163 ((-707) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -1936 ((-108) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -2006 ((-108) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -3833 (|#1| (-1 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -1393 (|#1| (-1 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|))) (-1096 |#2| |#3|) (-1013) (-1013)) (T -1095))
-NIL
-(-10 -8 (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -1393 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1857 (|#1| (-587 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))))) (-15 -1857 (|#1|)) (-15 -1393 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3833 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2006 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -1936 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4163 ((-707) (-1 (-108) |#3|) |#1|)) (-15 -3831 ((-587 |#3|) |#1|)) (-15 -4163 ((-707) |#3| |#1|)) (-15 -2550 (|#3| |#1| |#2| |#3|)) (-15 -2550 (|#3| |#1| |#2|)) (-15 -2481 ((-587 |#3|) |#1|)) (-15 -2131 ((-108) |#2| |#1|)) (-15 -1223 ((-587 |#2|) |#1|)) (-15 -2726 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2726 (|#1| (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -2726 (|#1| (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -3733 ((-3 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) "failed") (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -1570 ((-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -4135 (|#1| (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -2747 ((-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -4163 ((-707) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) |#1|)) (-15 -3831 ((-587 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -4163 ((-707) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -1936 ((-108) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -2006 ((-108) (-1 (-108) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -3833 (|#1| (-1 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)) (-15 -1393 (|#1| (-1 (-2 (|:| -2535 |#2|) (|:| -3050 |#3|)) (-2 (|:| -2535 |#2|) (|:| -3050 |#3|))) |#1|)))
-((-1422 (((-108) $ $) 19 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-1857 (($) 72) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 71)) (-3933 (((-1170) $ |#1| |#1|) 99 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#2| $ |#1| |#2|) 73)) (-3014 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 45 (|has| $ (-6 -4233)))) (-1658 (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 55 (|has| $ (-6 -4233)))) (-2754 (((-3 |#2| "failed") |#1| $) 61)) (-2231 (($) 7 T CONST)) (-2354 (($ $) 58 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233))))) (-2726 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 47 (|has| $ (-6 -4233))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 46 (|has| $ (-6 -4233))) (((-3 |#2| "failed") |#1| $) 62)) (-1429 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 54 (|has| $ (-6 -4233)))) (-3859 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 56 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 53 (|has| $ (-6 -4233))) (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 52 (|has| $ (-6 -4233)))) (-3849 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4234)))) (-3626 ((|#2| $ |#1|) 88)) (-3831 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 30 (|has| $ (-6 -4233))) (((-587 |#2|) $) 79 (|has| $ (-6 -4233)))) (-1513 (((-108) $ (-707)) 9)) (-2658 ((|#1| $) 96 (|has| |#1| (-783)))) (-3568 (((-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 29 (|has| $ (-6 -4233))) (((-587 |#2|) $) 80 (|has| $ (-6 -4233)))) (-1785 (((-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233))))) (-3989 ((|#1| $) 95 (|has| |#1| (-783)))) (-3833 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 34 (|has| $ (-6 -4234))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4234)))) (-1393 (($ (-1 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2859 (((-108) $ (-707)) 10)) (-4024 (((-1067) $) 22 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2964 (((-587 |#1|) $) 63)) (-3839 (((-108) |#1| $) 64)) (-1570 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 39)) (-4135 (($ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 40)) (-1223 (((-587 |#1|) $) 93)) (-2131 (((-108) |#1| $) 92)) (-4146 (((-1031) $) 21 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-2319 ((|#2| $) 97 (|has| |#1| (-783)))) (-3733 (((-3 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) "failed") (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 51)) (-2995 (($ $ |#2|) 98 (|has| $ (-6 -4234)))) (-2747 (((-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 41)) (-1936 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 32 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))))) 26 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-269 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 25 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) 24 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 23 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)))) (($ $ (-587 |#2|) (-587 |#2|)) 86 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-269 |#2|)) 84 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013)))) (($ $ (-587 (-269 |#2|))) 83 (-12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4233)) (|has| |#2| (-1013))))) (-2481 (((-587 |#2|) $) 91)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2036 (($) 49) (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 48)) (-4163 (((-707) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 31 (|has| $ (-6 -4233))) (((-707) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| $ (-6 -4233)))) (((-707) |#2| $) 81 (-12 (|has| |#2| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4233)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 59 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))))) (-2234 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 50)) (-2223 (((-791) $) 18 (-3703 (|has| |#2| (-561 (-791))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791)))))) (-2869 (($ (-587 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) 42)) (-2006 (((-108) (-1 (-108) (-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) $) 33 (|has| $ (-6 -4233))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (-3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1096 |#1| |#2|) (-1196) (-1013) (-1013)) (T -1096))
-((-2396 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1857 (*1 *1) (-12 (-4 *1 (-1096 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1857 (*1 *1 *2) (-12 (-5 *2 (-587 (-2 (|:| -2535 *3) (|:| -3050 *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1096 *3 *4)))) (-1393 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1096 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-(-13 (-558 |t#1| |t#2|) (-554 |t#1| |t#2|) (-10 -8 (-15 -2396 (|t#2| $ |t#1| |t#2|)) (-15 -1857 ($)) (-15 -1857 ($ (-587 (-2 (|:| -2535 |t#1|) (|:| -3050 |t#2|))))) (-15 -1393 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -2535 |#1|) (|:| -3050 |#2|))) . T) ((-97) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-561 (-791)) -3703 (|has| |#2| (-1013)) (|has| |#2| (-561 (-791))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-561 (-791)))) ((-139 #0#) . T) ((-562 (-497)) |has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-562 (-497))) ((-206 #0#) . T) ((-212 #0#) . T) ((-261 |#1| |#2|) . T) ((-263 |#1| |#2|) . T) ((-284 #0#) -12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-284 |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-460 #0#) . T) ((-460 |#2|) . T) ((-554 |#1| |#2|) . T) ((-482 #0# #0#) -12 (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-284 (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)))) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-482 |#2| |#2|) -12 (|has| |#2| (-284 |#2|)) (|has| |#2| (-1013))) ((-558 |#1| |#2|) . T) ((-1013) -3703 (|has| |#2| (-1013)) (|has| (-2 (|:| -2535 |#1|) (|:| -3050 |#2|)) (-1013))) ((-1119) . T))
-((-1730 (((-108)) 24)) (-3114 (((-1170) (-1067)) 26)) (-3798 (((-108)) 36)) (-3269 (((-1170)) 34)) (-1565 (((-1170) (-1067) (-1067)) 25)) (-2706 (((-108)) 37)) (-4135 (((-1170) |#1| |#2|) 44)) (-1890 (((-1170)) 20)) (-3000 (((-3 |#2| "failed") |#1|) 42)) (-3295 (((-1170)) 35)))
-(((-1097 |#1| |#2|) (-10 -7 (-15 -1890 ((-1170))) (-15 -1565 ((-1170) (-1067) (-1067))) (-15 -3114 ((-1170) (-1067))) (-15 -3269 ((-1170))) (-15 -3295 ((-1170))) (-15 -1730 ((-108))) (-15 -3798 ((-108))) (-15 -2706 ((-108))) (-15 -3000 ((-3 |#2| "failed") |#1|)) (-15 -4135 ((-1170) |#1| |#2|))) (-1013) (-1013)) (T -1097))
-((-4135 (*1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3000 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1013)))) (-2706 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3798 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1730 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3295 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3269 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-1565 (*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-1890 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
-(-10 -7 (-15 -1890 ((-1170))) (-15 -1565 ((-1170) (-1067) (-1067))) (-15 -3114 ((-1170) (-1067))) (-15 -3269 ((-1170))) (-15 -3295 ((-1170))) (-15 -1730 ((-108))) (-15 -3798 ((-108))) (-15 -2706 ((-108))) (-15 -3000 ((-3 |#2| "failed") |#1|)) (-15 -4135 ((-1170) |#1| |#2|)))
-((-2038 (((-1067) (-1067)) 18)) (-3877 (((-51) (-1067)) 21)))
-(((-1098) (-10 -7 (-15 -3877 ((-51) (-1067))) (-15 -2038 ((-1067) (-1067))))) (T -1098))
-((-2038 (*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1098)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-1098)))))
-(-10 -7 (-15 -3877 ((-51) (-1067))) (-15 -2038 ((-1067) (-1067))))
-((-2223 (((-1100) |#1|) 11)))
-(((-1099 |#1|) (-10 -7 (-15 -2223 ((-1100) |#1|))) (-1013)) (T -1099))
-((-2223 (*1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *1 (-1099 *3)) (-4 *3 (-1013)))))
-(-10 -7 (-15 -2223 ((-1100) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-1662 (((-587 (-1067)) $) 33)) (-2713 (((-587 (-1067)) $ (-587 (-1067))) 36)) (-2563 (((-587 (-1067)) $ (-587 (-1067))) 35)) (-1647 (((-587 (-1067)) $ (-587 (-1067))) 37)) (-3302 (((-587 (-1067)) $) 32)) (-1869 (($) 22)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-4006 (((-587 (-1067)) $) 34)) (-1718 (((-1170) $ (-521)) 29) (((-1170) $) 30)) (-1438 (($ (-791) (-521)) 26) (($ (-791) (-521) (-791)) NIL)) (-2223 (((-791) $) 39) (($ (-791)) 24)) (-1549 (((-108) $ $) NIL)))
-(((-1100) (-13 (-1013) (-10 -8 (-15 -2223 ($ (-791))) (-15 -1438 ($ (-791) (-521))) (-15 -1438 ($ (-791) (-521) (-791))) (-15 -1718 ((-1170) $ (-521))) (-15 -1718 ((-1170) $)) (-15 -4006 ((-587 (-1067)) $)) (-15 -1662 ((-587 (-1067)) $)) (-15 -1869 ($)) (-15 -3302 ((-587 (-1067)) $)) (-15 -1647 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2713 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2563 ((-587 (-1067)) $ (-587 (-1067))))))) (T -1100))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1100)))) (-1438 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-521)) (-5 *1 (-1100)))) (-1438 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-791)) (-5 *3 (-521)) (-5 *1 (-1100)))) (-1718 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1100)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1100)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1869 (*1 *1) (-5 *1 (-1100))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-1647 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-2713 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))) (-2563 (*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(-13 (-1013) (-10 -8 (-15 -2223 ($ (-791))) (-15 -1438 ($ (-791) (-521))) (-15 -1438 ($ (-791) (-521) (-791))) (-15 -1718 ((-1170) $ (-521))) (-15 -1718 ((-1170) $)) (-15 -4006 ((-587 (-1067)) $)) (-15 -1662 ((-587 (-1067)) $)) (-15 -1869 ($)) (-15 -3302 ((-587 (-1067)) $)) (-15 -1647 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2713 ((-587 (-1067)) $ (-587 (-1067)))) (-15 -2563 ((-587 (-1067)) $ (-587 (-1067))))))
-((-1422 (((-108) $ $) NIL)) (-3948 (((-1067) $ (-1067)) 15) (((-1067) $) 14)) (-2823 (((-1067) $ (-1067)) 13)) (-3306 (($ $ (-1067)) NIL)) (-3844 (((-3 (-1067) "failed") $) 11)) (-1535 (((-1067) $) 8)) (-1340 (((-3 (-1067) "failed") $) 12)) (-2629 (((-1067) $) 9)) (-1564 (($ (-362)) NIL) (($ (-362) (-1067)) NIL)) (-2890 (((-362) $) NIL)) (-4024 (((-1067) $) NIL)) (-3283 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1895 (((-108) $) 17)) (-2223 (((-791) $) NIL)) (-1777 (($ $) NIL)) (-1549 (((-108) $ $) NIL)))
-(((-1101) (-13 (-338 (-362) (-1067)) (-10 -8 (-15 -3948 ((-1067) $ (-1067))) (-15 -3948 ((-1067) $)) (-15 -1535 ((-1067) $)) (-15 -3844 ((-3 (-1067) "failed") $)) (-15 -1340 ((-3 (-1067) "failed") $)) (-15 -1895 ((-108) $))))) (T -1101))
-((-3948 (*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-3844 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-1340 (*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1101)))))
-(-13 (-338 (-362) (-1067)) (-10 -8 (-15 -3948 ((-1067) $ (-1067))) (-15 -3948 ((-1067) $)) (-15 -1535 ((-1067) $)) (-15 -3844 ((-3 (-1067) "failed") $)) (-15 -1340 ((-3 (-1067) "failed") $)) (-15 -1895 ((-108) $))))
-((-2578 (((-3 (-521) "failed") |#1|) 19)) (-3237 (((-3 (-521) "failed") |#1|) 13)) (-3402 (((-521) (-1067)) 28)))
-(((-1102 |#1|) (-10 -7 (-15 -2578 ((-3 (-521) "failed") |#1|)) (-15 -3237 ((-3 (-521) "failed") |#1|)) (-15 -3402 ((-521) (-1067)))) (-970)) (T -1102))
-((-3402 (*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-1102 *4)) (-4 *4 (-970)))) (-3237 (*1 *2 *3) (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))) (-2578 (*1 *2 *3) (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))))
-(-10 -7 (-15 -2578 ((-3 (-521) "failed") |#1|)) (-15 -3237 ((-3 (-521) "failed") |#1|)) (-15 -3402 ((-521) (-1067))))
-((-3721 (((-1044 (-202))) 8)))
-(((-1103) (-10 -7 (-15 -3721 ((-1044 (-202)))))) (T -1103))
-((-3721 (*1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1103)))))
-(-10 -7 (-15 -3721 ((-1044 (-202)))))
-((-2840 (($) 11)) (-1811 (($ $) 35)) (-1795 (($ $) 33)) (-2817 (($ $) 25)) (-1830 (($ $) 17)) (-3919 (($ $) 15)) (-1821 (($ $) 19)) (-2850 (($ $) 30)) (-1803 (($ $) 34)) (-2827 (($ $) 29)))
-(((-1104 |#1|) (-10 -8 (-15 -2840 (|#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2850 (|#1| |#1|)) (-15 -2827 (|#1| |#1|))) (-1105)) (T -1104))
-NIL
-(-10 -8 (-15 -2840 (|#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2850 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)))
-((-2910 (($ $) 26)) (-2775 (($ $) 11)) (-2886 (($ $) 27)) (-2752 (($ $) 10)) (-2932 (($ $) 28)) (-2796 (($ $) 9)) (-2840 (($) 16)) (-1253 (($ $) 19)) (-3265 (($ $) 18)) (-1787 (($ $) 29)) (-2806 (($ $) 8)) (-2921 (($ $) 30)) (-2786 (($ $) 7)) (-2898 (($ $) 31)) (-2764 (($ $) 6)) (-1811 (($ $) 20)) (-2838 (($ $) 32)) (-1795 (($ $) 21)) (-2817 (($ $) 33)) (-1830 (($ $) 22)) (-2862 (($ $) 34)) (-3919 (($ $) 23)) (-2874 (($ $) 35)) (-1821 (($ $) 24)) (-2850 (($ $) 36)) (-1803 (($ $) 25)) (-2827 (($ $) 37)) (** (($ $ $) 17)))
-(((-1105) (-1196)) (T -1105))
-((-2840 (*1 *1) (-4 *1 (-1105))))
-(-13 (-1108) (-91) (-462) (-34) (-259) (-10 -8 (-15 -2840 ($))))
-(((-34) . T) ((-91) . T) ((-259) . T) ((-462) . T) ((-1108) . T))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3434 ((|#1| $) 17)) (-3473 (($ |#1| (-587 $)) 23) (($ (-587 |#1|)) 27) (($ |#1|) 25)) (-1269 (((-108) $ (-707)) 47)) (-2603 ((|#1| $ |#1|) 14 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 13 (|has| $ (-6 -4234)))) (-2231 (($) NIL T CONST)) (-3831 (((-587 |#1|) $) 51 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 42)) (-1368 (((-108) $ $) 33 (|has| |#1| (-1013)))) (-1513 (((-108) $ (-707)) 40)) (-3568 (((-587 |#1|) $) 52 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 50 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3833 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 22)) (-2859 (((-108) $ (-707)) 39)) (-1278 (((-587 |#1|) $) 37)) (-2426 (((-108) $) 36)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1936 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 74)) (-1447 (((-108) $) 9)) (-2280 (($) 10)) (-2550 ((|#1| $ "value") NIL)) (-1557 (((-521) $ $) 32)) (-1309 (((-587 $) $) 58)) (-2359 (((-108) $ $) 76)) (-2360 (((-587 $) $) 71)) (-2526 (($ $) 72)) (-1475 (((-108) $) 55)) (-4163 (((-707) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4233))) (((-707) |#1| $) 16 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2420 (($ $) 57)) (-2223 (((-791) $) 60 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 12)) (-2960 (((-108) $ $) 29 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 48 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 28 (|has| |#1| (-1013)))) (-3478 (((-707) $) 38 (|has| $ (-6 -4233)))))
-(((-1106 |#1|) (-13 (-935 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3473 ($ |#1| (-587 $))) (-15 -3473 ($ (-587 |#1|))) (-15 -3473 ($ |#1|)) (-15 -1475 ((-108) $)) (-15 -2526 ($ $)) (-15 -2360 ((-587 $) $)) (-15 -2359 ((-108) $ $)) (-15 -1309 ((-587 $) $)))) (-1013)) (T -1106))
-((-1475 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))) (-3473 (*1 *1 *2 *3) (-12 (-5 *3 (-587 (-1106 *2))) (-5 *1 (-1106 *2)) (-4 *2 (-1013)))) (-3473 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-1106 *3)))) (-3473 (*1 *1 *2) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013)))) (-2526 (*1 *1 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))) (-2359 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
-(-13 (-935 |#1|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3473 ($ |#1| (-587 $))) (-15 -3473 ($ (-587 |#1|))) (-15 -3473 ($ |#1|)) (-15 -1475 ((-108) $)) (-15 -2526 ($ $)) (-15 -2360 ((-587 $) $)) (-15 -2359 ((-108) $ $)) (-15 -1309 ((-587 $) $))))
-((-2775 (($ $) 15)) (-2796 (($ $) 12)) (-2806 (($ $) 10)) (-2786 (($ $) 17)))
-(((-1107 |#1|) (-10 -8 (-15 -2786 (|#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2775 (|#1| |#1|))) (-1108)) (T -1107))
-NIL
-(-10 -8 (-15 -2786 (|#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2775 (|#1| |#1|)))
-((-2775 (($ $) 11)) (-2752 (($ $) 10)) (-2796 (($ $) 9)) (-2806 (($ $) 8)) (-2786 (($ $) 7)) (-2764 (($ $) 6)))
-(((-1108) (-1196)) (T -1108))
-((-2775 (*1 *1 *1) (-4 *1 (-1108))) (-2752 (*1 *1 *1) (-4 *1 (-1108))) (-2796 (*1 *1 *1) (-4 *1 (-1108))) (-2806 (*1 *1 *1) (-4 *1 (-1108))) (-2786 (*1 *1 *1) (-4 *1 (-1108))) (-2764 (*1 *1 *1) (-4 *1 (-1108))))
-(-13 (-10 -8 (-15 -2764 ($ $)) (-15 -2786 ($ $)) (-15 -2806 ($ $)) (-15 -2796 ($ $)) (-15 -2752 ($ $)) (-15 -2775 ($ $))))
-((-2026 ((|#2| |#2|) 85)) (-3717 (((-108) |#2|) 25)) (-1993 ((|#2| |#2|) 29)) (-2004 ((|#2| |#2|) 31)) (-4116 ((|#2| |#2| (-1084)) 79) ((|#2| |#2|) 80)) (-3223 (((-154 |#2|) |#2|) 27)) (-3096 ((|#2| |#2| (-1084)) 81) ((|#2| |#2|) 82)))
-(((-1109 |#1| |#2|) (-10 -7 (-15 -4116 (|#2| |#2|)) (-15 -4116 (|#2| |#2| (-1084))) (-15 -3096 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1084))) (-15 -2026 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -2004 (|#2| |#2|)) (-15 -3717 ((-108) |#2|)) (-15 -3223 ((-154 |#2|) |#2|))) (-13 (-425) (-783) (-961 (-521)) (-583 (-521))) (-13 (-27) (-1105) (-404 |#1|))) (T -1109))
-((-3223 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-154 *3)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-3717 (*1 *2 *3) (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *2 (-108)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *4))))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-2026 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))) (-4116 (*1 *2 *2 *3) (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
-(-10 -7 (-15 -4116 (|#2| |#2|)) (-15 -4116 (|#2| |#2| (-1084))) (-15 -3096 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1084))) (-15 -2026 (|#2| |#2|)) (-15 -1993 (|#2| |#2|)) (-15 -2004 (|#2| |#2|)) (-15 -3717 ((-108) |#2|)) (-15 -3223 ((-154 |#2|) |#2|)))
-((-3793 ((|#4| |#4| |#1|) 27)) (-3963 ((|#4| |#4| |#1|) 28)))
-(((-1110 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3793 (|#4| |#4| |#1|)) (-15 -3963 (|#4| |#4| |#1|))) (-513) (-347 |#1|) (-347 |#1|) (-625 |#1| |#2| |#3|)) (T -1110))
-((-3963 (*1 *2 *2 *3) (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))) (-3793 (*1 *2 *2 *3) (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
-(-10 -7 (-15 -3793 (|#4| |#4| |#1|)) (-15 -3963 (|#4| |#4| |#1|)))
-((-1415 ((|#2| |#2|) 132)) (-1560 ((|#2| |#2|) 129)) (-2159 ((|#2| |#2|) 120)) (-1286 ((|#2| |#2|) 117)) (-2605 ((|#2| |#2|) 125)) (-3824 ((|#2| |#2|) 113)) (-2300 ((|#2| |#2|) 42)) (-1275 ((|#2| |#2|) 93)) (-1205 ((|#2| |#2|) 73)) (-2735 ((|#2| |#2|) 127)) (-2091 ((|#2| |#2|) 115)) (-3056 ((|#2| |#2|) 137)) (-3143 ((|#2| |#2|) 135)) (-1617 ((|#2| |#2|) 136)) (-2177 ((|#2| |#2|) 134)) (-3731 ((|#2| |#2|) 146)) (-1310 ((|#2| |#2|) 30 (-12 (|has| |#2| (-562 (-820 |#1|))) (|has| |#2| (-814 |#1|)) (|has| |#1| (-562 (-820 |#1|))) (|has| |#1| (-814 |#1|))))) (-2573 ((|#2| |#2|) 74)) (-2519 ((|#2| |#2|) 138)) (-1631 ((|#2| |#2|) 139)) (-3774 ((|#2| |#2|) 126)) (-2157 ((|#2| |#2|) 114)) (-3696 ((|#2| |#2|) 133)) (-2289 ((|#2| |#2|) 131)) (-3013 ((|#2| |#2|) 121)) (-3266 ((|#2| |#2|) 119)) (-4191 ((|#2| |#2|) 123)) (-4039 ((|#2| |#2|) 111)))
-(((-1111 |#1| |#2|) (-10 -7 (-15 -1631 (|#2| |#2|)) (-15 -1205 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -4039 (|#2| |#2|)) (-15 -4191 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -2157 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1560 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2177 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -3056 (|#2| |#2|)) (IF (|has| |#1| (-814 |#1|)) (IF (|has| |#1| (-562 (-820 |#1|))) (IF (|has| |#2| (-562 (-820 |#1|))) (IF (|has| |#2| (-814 |#1|)) (-15 -1310 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-783) (-425)) (-13 (-404 |#1|) (-1105))) (T -1111))
-((-1310 (*1 *2 *2) (-12 (-4 *3 (-562 (-820 *3))) (-4 *3 (-814 *3)) (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-562 (-820 *3))) (-4 *2 (-814 *3)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3056 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2177 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2289 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1560 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1286 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2735 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2157 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-4191 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-4039 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-2300 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1275 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1205 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))) (-1631 (*1 *2 *2) (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-404 *3) (-1105))))))
-(-10 -7 (-15 -1631 (|#2| |#2|)) (-15 -1205 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -2300 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -4039 (|#2| |#2|)) (-15 -4191 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -2157 (|#2| |#2|)) (-15 -3774 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -2735 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -2159 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1286 (|#2| |#2|)) (-15 -1560 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2289 (|#2| |#2|)) (-15 -2177 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -3056 (|#2| |#2|)) (IF (|has| |#1| (-814 |#1|)) (IF (|has| |#1| (-562 (-820 |#1|))) (IF (|has| |#2| (-562 (-820 |#1|))) (IF (|has| |#2| (-814 |#1|)) (-15 -1310 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2516 (((-108) |#5| $) 60) (((-108) $) 102)) (-1613 ((|#5| |#5| $) 75)) (-1658 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3388 (((-587 |#5|) (-587 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1296 (((-3 $ "failed") (-587 |#5|)) 126)) (-2329 (((-3 $ "failed") $) 112)) (-1910 ((|#5| |#5| $) 94)) (-3369 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-1860 ((|#5| |#5| $) 98)) (-3859 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-3066 (((-2 (|:| -1684 (-587 |#5|)) (|:| -1564 (-587 |#5|))) $) 55)) (-4188 (((-108) |#5| $) 58) (((-108) $) 103)) (-3131 ((|#4| $) 108)) (-1450 (((-3 |#5| "failed") $) 110)) (-2942 (((-587 |#5|) $) 49)) (-2626 (((-108) |#5| $) 67) (((-108) $) 107)) (-3432 ((|#5| |#5| $) 81)) (-3069 (((-108) $ $) 27)) (-2941 (((-108) |#5| $) 63) (((-108) $) 105)) (-1896 ((|#5| |#5| $) 78)) (-2319 (((-3 |#5| "failed") $) 109)) (-2191 (($ $ |#5|) 127)) (-2098 (((-707) $) 52)) (-2234 (($ (-587 |#5|)) 124)) (-3680 (($ $ |#4|) 122)) (-2600 (($ $ |#4|) 121)) (-2404 (($ $) 120)) (-2223 (((-791) $) NIL) (((-587 |#5|) $) 113)) (-2537 (((-707) $) 130)) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-3226 (((-108) $ (-1 (-108) |#5| (-587 |#5|))) 100)) (-3408 (((-587 |#4|) $) 115)) (-2567 (((-108) |#4| $) 118)) (-1549 (((-108) $ $) 19)))
-(((-1112 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2537 ((-707) |#1|)) (-15 -2191 (|#1| |#1| |#5|)) (-15 -1658 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2567 ((-108) |#4| |#1|)) (-15 -3408 ((-587 |#4|) |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1|)) (-15 -1450 ((-3 |#5| "failed") |#1|)) (-15 -2319 ((-3 |#5| "failed") |#1|)) (-15 -1860 (|#5| |#5| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -1910 (|#5| |#5| |#1|)) (-15 -3432 (|#5| |#5| |#1|)) (-15 -1896 (|#5| |#5| |#1|)) (-15 -1613 (|#5| |#5| |#1|)) (-15 -3388 ((-587 |#5|) (-587 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3859 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2626 ((-108) |#1|)) (-15 -2941 ((-108) |#1|)) (-15 -2516 ((-108) |#1|)) (-15 -3226 ((-108) |#1| (-1 (-108) |#5| (-587 |#5|)))) (-15 -2626 ((-108) |#5| |#1|)) (-15 -2941 ((-108) |#5| |#1|)) (-15 -2516 ((-108) |#5| |#1|)) (-15 -3369 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4188 ((-108) |#1|)) (-15 -4188 ((-108) |#5| |#1|)) (-15 -3066 ((-2 (|:| -1684 (-587 |#5|)) (|:| -1564 (-587 |#5|))) |#1|)) (-15 -2098 ((-707) |#1|)) (-15 -2942 ((-587 |#5|) |#1|)) (-15 -3815 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3815 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3069 ((-108) |#1| |#1|)) (-15 -3680 (|#1| |#1| |#4|)) (-15 -2600 (|#1| |#1| |#4|)) (-15 -3131 (|#4| |#1|)) (-15 -1296 ((-3 |#1| "failed") (-587 |#5|))) (-15 -2223 ((-587 |#5|) |#1|)) (-15 -2234 (|#1| (-587 |#5|))) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1658 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|))) (-1113 |#2| |#3| |#4| |#5|) (-513) (-729) (-783) (-984 |#2| |#3| |#4|)) (T -1112))
-NIL
-(-10 -8 (-15 -2537 ((-707) |#1|)) (-15 -2191 (|#1| |#1| |#5|)) (-15 -1658 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2567 ((-108) |#4| |#1|)) (-15 -3408 ((-587 |#4|) |#1|)) (-15 -2329 ((-3 |#1| "failed") |#1|)) (-15 -1450 ((-3 |#5| "failed") |#1|)) (-15 -2319 ((-3 |#5| "failed") |#1|)) (-15 -1860 (|#5| |#5| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -1910 (|#5| |#5| |#1|)) (-15 -3432 (|#5| |#5| |#1|)) (-15 -1896 (|#5| |#5| |#1|)) (-15 -1613 (|#5| |#5| |#1|)) (-15 -3388 ((-587 |#5|) (-587 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3859 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -2626 ((-108) |#1|)) (-15 -2941 ((-108) |#1|)) (-15 -2516 ((-108) |#1|)) (-15 -3226 ((-108) |#1| (-1 (-108) |#5| (-587 |#5|)))) (-15 -2626 ((-108) |#5| |#1|)) (-15 -2941 ((-108) |#5| |#1|)) (-15 -2516 ((-108) |#5| |#1|)) (-15 -3369 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4188 ((-108) |#1|)) (-15 -4188 ((-108) |#5| |#1|)) (-15 -3066 ((-2 (|:| -1684 (-587 |#5|)) (|:| -1564 (-587 |#5|))) |#1|)) (-15 -2098 ((-707) |#1|)) (-15 -2942 ((-587 |#5|) |#1|)) (-15 -3815 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3815 ((-3 (-2 (|:| |bas| |#1|) (|:| -1354 (-587 |#5|))) "failed") (-587 |#5|) (-1 (-108) |#5| |#5|))) (-15 -3069 ((-108) |#1| |#1|)) (-15 -3680 (|#1| |#1| |#4|)) (-15 -2600 (|#1| |#1| |#4|)) (-15 -3131 (|#4| |#1|)) (-15 -1296 ((-3 |#1| "failed") (-587 |#5|))) (-15 -2223 ((-587 |#5|) |#1|)) (-15 -2234 (|#1| (-587 |#5|))) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1658 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3859 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2223 ((-791) |#1|)) (-15 -1549 ((-108) |#1| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) 85)) (-4137 (((-587 $) (-587 |#4|)) 86)) (-4085 (((-587 |#3|) $) 33)) (-2856 (((-108) $) 26)) (-2750 (((-108) $) 17 (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) 101) (((-108) $) 97)) (-1613 ((|#4| |#4| $) 92)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-108) $ (-707)) 44)) (-1658 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) 79)) (-2231 (($) 45 T CONST)) (-1616 (((-108) $) 22 (|has| |#1| (-513)))) (-3514 (((-108) $ $) 24 (|has| |#1| (-513)))) (-3515 (((-108) $ $) 23 (|has| |#1| (-513)))) (-2512 (((-108) $) 25 (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-2122 (((-587 |#4|) (-587 |#4|) $) 18 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) 19 (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) 36)) (-1496 (($ (-587 |#4|)) 35)) (-2329 (((-3 $ "failed") $) 82)) (-1910 ((|#4| |#4| $) 89)) (-2354 (($ $) 68 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#4| $) 67 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-1860 ((|#4| |#4| $) 87)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) 105)) (-3831 (((-587 |#4|) $) 52 (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) 104) (((-108) $) 103)) (-3131 ((|#3| $) 34)) (-1513 (((-108) $ (-707)) 43)) (-3568 (((-587 |#4|) $) 53 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) 47)) (-2963 (((-587 |#3|) $) 32)) (-4065 (((-108) |#3| $) 31)) (-2859 (((-108) $ (-707)) 42)) (-4024 (((-1067) $) 9)) (-1450 (((-3 |#4| "failed") $) 83)) (-2942 (((-587 |#4|) $) 107)) (-2626 (((-108) |#4| $) 99) (((-108) $) 95)) (-3432 ((|#4| |#4| $) 90)) (-3069 (((-108) $ $) 110)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) 100) (((-108) $) 96)) (-1896 ((|#4| |#4| $) 91)) (-4146 (((-1031) $) 10)) (-2319 (((-3 |#4| "failed") $) 84)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-1314 (((-3 $ "failed") $ |#4|) 78)) (-2191 (($ $ |#4|) 77)) (-1936 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) 59 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) 57 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) 56 (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) 38)) (-1447 (((-108) $) 41)) (-2280 (($) 40)) (-2098 (((-707) $) 106)) (-4163 (((-707) |#4| $) 54 (-12 (|has| |#4| (-1013)) (|has| $ (-6 -4233)))) (((-707) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4233)))) (-2420 (($ $) 39)) (-1438 (((-497) $) 69 (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) 60)) (-3680 (($ $ |#3|) 28)) (-2600 (($ $ |#3|) 30)) (-2404 (($ $) 88)) (-2222 (($ $ |#3|) 29)) (-2223 (((-791) $) 11) (((-587 |#4|) $) 37)) (-2537 (((-707) $) 76 (|has| |#3| (-342)))) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) 98)) (-2006 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) 81)) (-2567 (((-108) |#3| $) 80)) (-1549 (((-108) $ $) 6)) (-3478 (((-707) $) 46 (|has| $ (-6 -4233)))))
-(((-1113 |#1| |#2| |#3| |#4|) (-1196) (-513) (-729) (-783) (-984 |t#1| |t#2| |t#3|)) (T -1113))
-((-3069 (*1 *2 *1 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3815 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *8)))) (-5 *3 (-587 *8)) (-4 *1 (-1113 *5 *6 *7 *8)))) (-3815 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-783)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *9)))) (-5 *3 (-587 *9)) (-4 *1 (-1113 *6 *7 *8 *9)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *6)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-707)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-2 (|:| -1684 (-587 *6)) (|:| -1564 (-587 *6)))))) (-4188 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3369 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1113 *5 *6 *7 *3)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)))) (-2516 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-2941 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-2626 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-587 *7))) (-4 *1 (-1113 *4 *5 *6 *7)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))) (-3859 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1113 *5 *6 *7 *2)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *2 (-984 *5 *6 *7)))) (-3388 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1113 *5 *6 *7 *8)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)))) (-1613 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-1896 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-3432 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-1910 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-984 *2 *3 *4)))) (-1860 (*1 *2 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1)) (-4 *1 (-1113 *4 *5 *6 *7)))) (-3960 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-587 (-2 (|:| -1684 *1) (|:| -1564 (-587 *7))))) (-5 *3 (-587 *7)) (-4 *1 (-1113 *4 *5 *6 *7)))) (-2319 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-1450 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-2329 (*1 *1 *1) (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513)) (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-984 *2 *3 *4)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))) (-2567 (*1 *2 *3 *1) (-12 (-4 *1 (-1113 *4 *5 *3 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *3 (-783)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108)))) (-1658 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1113 *4 *5 *3 *2)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *3 (-783)) (-4 *2 (-984 *4 *5 *3)))) (-1314 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-2191 (*1 *1 *1 *2) (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *5 (-342)) (-5 *2 (-707)))))
-(-13 (-902 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4233) (-6 -4234) (-15 -3069 ((-108) $ $)) (-15 -3815 ((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |t#4|))) "failed") (-587 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3815 ((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |t#4|))) "failed") (-587 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2942 ((-587 |t#4|) $)) (-15 -2098 ((-707) $)) (-15 -3066 ((-2 (|:| -1684 (-587 |t#4|)) (|:| -1564 (-587 |t#4|))) $)) (-15 -4188 ((-108) |t#4| $)) (-15 -4188 ((-108) $)) (-15 -3369 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2516 ((-108) |t#4| $)) (-15 -2941 ((-108) |t#4| $)) (-15 -2626 ((-108) |t#4| $)) (-15 -3226 ((-108) $ (-1 (-108) |t#4| (-587 |t#4|)))) (-15 -2516 ((-108) $)) (-15 -2941 ((-108) $)) (-15 -2626 ((-108) $)) (-15 -3859 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3388 ((-587 |t#4|) (-587 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1613 (|t#4| |t#4| $)) (-15 -1896 (|t#4| |t#4| $)) (-15 -3432 (|t#4| |t#4| $)) (-15 -1910 (|t#4| |t#4| $)) (-15 -2404 ($ $)) (-15 -1860 (|t#4| |t#4| $)) (-15 -4137 ((-587 $) (-587 |t#4|))) (-15 -3960 ((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |t#4|)))) (-587 |t#4|))) (-15 -2319 ((-3 |t#4| "failed") $)) (-15 -1450 ((-3 |t#4| "failed") $)) (-15 -2329 ((-3 $ "failed") $)) (-15 -3408 ((-587 |t#3|) $)) (-15 -2567 ((-108) |t#3| $)) (-15 -1658 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1314 ((-3 $ "failed") $ |t#4|)) (-15 -2191 ($ $ |t#4|)) (IF (|has| |t#3| (-342)) (-15 -2537 ((-707) $)) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-561 (-587 |#4|)) . T) ((-561 (-791)) . T) ((-139 |#4|) . T) ((-562 (-497)) |has| |#4| (-562 (-497))) ((-284 |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-460 |#4|) . T) ((-482 |#4| |#4|) -12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))) ((-902 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1119) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-1084)) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2232 (((-880 |#1|) $ (-707)) 17) (((-880 |#1|) $ (-707) (-707)) NIL)) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-707) $ (-1084)) NIL) (((-707) $ (-1084) (-707)) NIL)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3573 (((-108) $) NIL)) (-4044 (($ $ (-587 (-1084)) (-587 (-493 (-1084)))) NIL) (($ $ (-1084) (-493 (-1084))) NIL) (($ |#1| (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-1749 (($ $ (-1084)) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084) |#1|) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-3939 (($ (-1 $) (-1084) |#1|) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2191 (($ $ (-707)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2313 (($ $ (-1084) $) NIL) (($ $ (-587 (-1084)) (-587 $)) NIL) (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL)) (-2193 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-2098 (((-493 (-1084)) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-513))) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-1084)) NIL) (($ (-880 |#1|)) NIL)) (-1499 ((|#1| $ (-493 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (((-880 |#1|) $ (-707)) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) NIL T CONST)) (-2244 (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1114 |#1|) (-13 (-677 |#1| (-1084)) (-10 -8 (-15 -1499 ((-880 |#1|) $ (-707))) (-15 -2223 ($ (-1084))) (-15 -2223 ($ (-880 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $ (-1084) |#1|)) (-15 -3939 ($ (-1 $) (-1084) |#1|))) |%noBranch|))) (-970)) (T -1114))
-((-1499 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-880 *4)) (-5 *1 (-1114 *4)) (-4 *4 (-970)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-970)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-970)) (-5 *1 (-1114 *3)))) (-1749 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1114 *4))) (-5 *3 (-1084)) (-5 *1 (-1114 *4)) (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))))
-(-13 (-677 |#1| (-1084)) (-10 -8 (-15 -1499 ((-880 |#1|) $ (-707))) (-15 -2223 ($ (-1084))) (-15 -2223 ($ (-880 |#1|))) (IF (|has| |#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $ (-1084) |#1|)) (-15 -3939 ($ (-1 $) (-1084) |#1|))) |%noBranch|)))
-((-1773 (($ |#1| (-587 (-587 (-871 (-202)))) (-108)) 16)) (-2106 (((-108) $ (-108)) 15)) (-2491 (((-108) $) 14)) (-3623 (((-587 (-587 (-871 (-202)))) $) 10)) (-4054 ((|#1| $) 8)) (-2728 (((-108) $) 12)))
-(((-1115 |#1|) (-10 -8 (-15 -4054 (|#1| $)) (-15 -3623 ((-587 (-587 (-871 (-202)))) $)) (-15 -2728 ((-108) $)) (-15 -2491 ((-108) $)) (-15 -2106 ((-108) $ (-108))) (-15 -1773 ($ |#1| (-587 (-587 (-871 (-202)))) (-108)))) (-900)) (T -1115))
-((-1773 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-108)) (-5 *1 (-1115 *2)) (-4 *2 (-900)))) (-2106 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-2728 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-1115 *3)) (-4 *3 (-900)))) (-4054 (*1 *2 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-900)))))
-(-10 -8 (-15 -4054 (|#1| $)) (-15 -3623 ((-587 (-587 (-871 (-202)))) $)) (-15 -2728 ((-108) $)) (-15 -2491 ((-108) $)) (-15 -2106 ((-108) $ (-108))) (-15 -1773 ($ |#1| (-587 (-587 (-871 (-202)))) (-108))))
-((-2965 (((-871 (-202)) (-871 (-202))) 25)) (-2741 (((-871 (-202)) (-202) (-202) (-202) (-202)) 10)) (-4109 (((-587 (-871 (-202))) (-871 (-202)) (-871 (-202)) (-871 (-202)) (-202) (-587 (-587 (-202)))) 37)) (-4103 (((-202) (-871 (-202)) (-871 (-202))) 21)) (-3255 (((-871 (-202)) (-871 (-202)) (-871 (-202))) 22)) (-2892 (((-587 (-587 (-202))) (-521)) 31)) (-1639 (((-871 (-202)) (-871 (-202)) (-871 (-202))) 20)) (-1628 (((-871 (-202)) (-871 (-202)) (-871 (-202))) 19)) (* (((-871 (-202)) (-202) (-871 (-202))) 18)))
-(((-1116) (-10 -7 (-15 -2741 ((-871 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-871 (-202)) (-202) (-871 (-202)))) (-15 -1628 ((-871 (-202)) (-871 (-202)) (-871 (-202)))) (-15 -1639 ((-871 (-202)) (-871 (-202)) (-871 (-202)))) (-15 -4103 ((-202) (-871 (-202)) (-871 (-202)))) (-15 -3255 ((-871 (-202)) (-871 (-202)) (-871 (-202)))) (-15 -2965 ((-871 (-202)) (-871 (-202)))) (-15 -2892 ((-587 (-587 (-202))) (-521))) (-15 -4109 ((-587 (-871 (-202))) (-871 (-202)) (-871 (-202)) (-871 (-202)) (-202) (-587 (-587 (-202))))))) (T -1116))
-((-4109 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-587 (-587 (-202)))) (-5 *4 (-202)) (-5 *2 (-587 (-871 *4))) (-5 *1 (-1116)) (-5 *3 (-871 *4)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-521)) (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-1116)))) (-2965 (*1 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)))) (-3255 (*1 *2 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)))) (-4103 (*1 *2 *3 *3) (-12 (-5 *3 (-871 (-202))) (-5 *2 (-202)) (-5 *1 (-1116)))) (-1639 (*1 *2 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)))) (-1628 (*1 *2 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-871 (-202))) (-5 *3 (-202)) (-5 *1 (-1116)))) (-2741 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)) (-5 *3 (-202)))))
-(-10 -7 (-15 -2741 ((-871 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-871 (-202)) (-202) (-871 (-202)))) (-15 -1628 ((-871 (-202)) (-871 (-202)) (-871 (-202)))) (-15 -1639 ((-871 (-202)) (-871 (-202)) (-871 (-202)))) (-15 -4103 ((-202) (-871 (-202)) (-871 (-202)))) (-15 -3255 ((-871 (-202)) (-871 (-202)) (-871 (-202)))) (-15 -2965 ((-871 (-202)) (-871 (-202)))) (-15 -2892 ((-587 (-587 (-202))) (-521))) (-15 -4109 ((-587 (-871 (-202))) (-871 (-202)) (-871 (-202)) (-871 (-202)) (-202) (-587 (-587 (-202))))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1658 ((|#1| $ (-707)) 13)) (-2522 (((-707) $) 12)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2223 (((-885 |#1|) $) 10) (($ (-885 |#1|)) 9) (((-791) $) 23 (|has| |#1| (-561 (-791))))) (-1549 (((-108) $ $) 16 (|has| |#1| (-1013)))))
-(((-1117 |#1|) (-13 (-561 (-885 |#1|)) (-10 -8 (-15 -2223 ($ (-885 |#1|))) (-15 -1658 (|#1| $ (-707))) (-15 -2522 ((-707) $)) (IF (|has| |#1| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1119)) (T -1117))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-885 *3)) (-4 *3 (-1119)) (-5 *1 (-1117 *3)))) (-1658 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-1117 *2)) (-4 *2 (-1119)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1117 *3)) (-4 *3 (-1119)))))
-(-13 (-561 (-885 |#1|)) (-10 -8 (-15 -2223 ($ (-885 |#1|))) (-15 -1658 (|#1| $ (-707))) (-15 -2522 ((-707) $)) (IF (|has| |#1| (-561 (-791))) (-6 (-561 (-791))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|)))
-((-4133 (((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)) (-521)) 79)) (-3275 (((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|))) 73)) (-2527 (((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|))) 58)))
-(((-1118 |#1|) (-10 -7 (-15 -3275 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -2527 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -4133 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)) (-521)))) (-323)) (T -1118))
-((-4133 (*1 *2 *3 *4) (-12 (-5 *4 (-521)) (-4 *5 (-323)) (-5 *2 (-392 (-1080 (-1080 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-1080 (-1080 *5))))) (-2527 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))))
-(-10 -7 (-15 -3275 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -2527 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)))) (-15 -4133 ((-392 (-1080 (-1080 |#1|))) (-1080 (-1080 |#1|)) (-521))))
-NIL
-(((-1119) (-1196)) (T -1119))
-NIL
-(-13 (-10 -7 (-6 -2092)))
-((-2649 (((-108)) 15)) (-3323 (((-1170) (-587 |#1|) (-587 |#1|)) 19) (((-1170) (-587 |#1|)) 20)) (-1513 (((-108) |#1| |#1|) 31 (|has| |#1| (-783)))) (-2859 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-4117 ((|#1| (-587 |#1|)) 32 (|has| |#1| (-783))) ((|#1| (-587 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3382 (((-2 (|:| -2948 (-587 |#1|)) (|:| -4164 (-587 |#1|)))) 17)))
-(((-1120 |#1|) (-10 -7 (-15 -3323 ((-1170) (-587 |#1|))) (-15 -3323 ((-1170) (-587 |#1|) (-587 |#1|))) (-15 -3382 ((-2 (|:| -2948 (-587 |#1|)) (|:| -4164 (-587 |#1|))))) (-15 -2859 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2859 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -4117 (|#1| (-587 |#1|) (-1 (-108) |#1| |#1|))) (-15 -2649 ((-108))) (IF (|has| |#1| (-783)) (PROGN (-15 -4117 (|#1| (-587 |#1|))) (-15 -1513 ((-108) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1120))
-((-1513 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-783)) (-4 *3 (-1013)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-783)) (-5 *1 (-1120 *2)))) (-2649 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))) (-4117 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1120 *2)) (-4 *2 (-1013)))) (-2859 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-108)) (-5 *1 (-1120 *3)))) (-2859 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))) (-3382 (*1 *2) (-12 (-5 *2 (-2 (|:| -2948 (-587 *3)) (|:| -4164 (-587 *3)))) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))) (-3323 (*1 *2 *3 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170)) (-5 *1 (-1120 *4)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170)) (-5 *1 (-1120 *4)))))
-(-10 -7 (-15 -3323 ((-1170) (-587 |#1|))) (-15 -3323 ((-1170) (-587 |#1|) (-587 |#1|))) (-15 -3382 ((-2 (|:| -2948 (-587 |#1|)) (|:| -4164 (-587 |#1|))))) (-15 -2859 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2859 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -4117 (|#1| (-587 |#1|) (-1 (-108) |#1| |#1|))) (-15 -2649 ((-108))) (IF (|has| |#1| (-783)) (PROGN (-15 -4117 (|#1| (-587 |#1|))) (-15 -1513 ((-108) |#1| |#1|))) |%noBranch|))
-((-3922 (((-1170) (-587 (-1084)) (-587 (-1084))) 12) (((-1170) (-587 (-1084))) 10)) (-3127 (((-1170)) 13)) (-1687 (((-2 (|:| -4164 (-587 (-1084))) (|:| -2948 (-587 (-1084))))) 17)))
-(((-1121) (-10 -7 (-15 -3922 ((-1170) (-587 (-1084)))) (-15 -3922 ((-1170) (-587 (-1084)) (-587 (-1084)))) (-15 -1687 ((-2 (|:| -4164 (-587 (-1084))) (|:| -2948 (-587 (-1084)))))) (-15 -3127 ((-1170))))) (T -1121))
-((-3127 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1121)))) (-1687 (*1 *2) (-12 (-5 *2 (-2 (|:| -4164 (-587 (-1084))) (|:| -2948 (-587 (-1084))))) (-5 *1 (-1121)))) (-3922 (*1 *2 *3 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121)))))
-(-10 -7 (-15 -3922 ((-1170) (-587 (-1084)))) (-15 -3922 ((-1170) (-587 (-1084)) (-587 (-1084)))) (-15 -1687 ((-2 (|:| -4164 (-587 (-1084))) (|:| -2948 (-587 (-1084)))))) (-15 -3127 ((-1170))))
-((-2694 (($ $) 16)) (-2100 (((-108) $) 23)))
-(((-1122 |#1|) (-10 -8 (-15 -2694 (|#1| |#1|)) (-15 -2100 ((-108) |#1|))) (-1123)) (T -1122))
-NIL
-(-10 -8 (-15 -2694 (|#1| |#1|)) (-15 -2100 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 51)) (-2337 (((-392 $) $) 52)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-2100 (((-108) $) 53)) (-3637 (((-108) $) 31)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1974 (((-392 $) $) 50)) (-2261 (((-3 $ "failed") $ $) 42)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43)) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24)))
-(((-1123) (-1196)) (T -1123))
-((-2100 (*1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-108)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123)))) (-2694 (*1 *1 *1) (-4 *1 (-1123))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123)))))
-(-13 (-425) (-10 -8 (-15 -2100 ((-108) $)) (-15 -2337 ((-392 $) $)) (-15 -2694 ($ $)) (-15 -1974 ((-392 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-561 (-791)) . T) ((-157) . T) ((-265) . T) ((-425) . T) ((-513) . T) ((-589 $) . T) ((-654 $) . T) ((-663) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1393 (((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|)) 23)))
-(((-1124 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1393 ((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|)))) (-970) (-970) (-1084) (-1084) |#1| |#2|) (T -1124))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5 *7 *9)) (-4 *5 (-970)) (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1129 *6 *8 *10)) (-5 *1 (-1124 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1084)))))
-(-10 -7 (-15 -1393 ((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 (-998)) $) 74)) (-1638 (((-1084) $) 103)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2868 (($ $ (-521)) 98) (($ $ (-521) (-521)) 97)) (-3704 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 105)) (-2910 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 162 (|has| |#1| (-337)))) (-2337 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1984 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2886 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 174)) (-2932 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) 17 T CONST)) (-2302 (($ $ $) 157 (|has| |#1| (-337)))) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-1977 (((-381 (-880 |#1|)) $ (-521)) 172 (|has| |#1| (-513))) (((-381 (-880 |#1|)) $ (-521) (-521)) 171 (|has| |#1| (-513)))) (-2282 (($ $ $) 156 (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2100 (((-108) $) 164 (|has| |#1| (-337)))) (-4193 (((-108) $) 73)) (-2840 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-521) $) 100) (((-521) $ (-521)) 99)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) 101)) (-1653 (($ (-1 |#1| (-521)) $) 173)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3573 (((-108) $) 62)) (-4044 (($ |#1| (-521)) 61) (($ $ (-998) (-521)) 76) (($ $ (-587 (-998)) (-587 (-521))) 75)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-2254 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-4024 (((-1067) $) 9)) (-3100 (($ $) 165 (|has| |#1| (-337)))) (-1749 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-886)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2286 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1974 (((-392 $) $) 161 (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 158 (|has| |#1| (-337)))) (-2191 (($ $ (-521)) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3265 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-521)))))) (-3794 (((-707) $) 154 (|has| |#1| (-337)))) (-2550 ((|#1| $ (-521)) 104) (($ $ $) 81 (|has| (-521) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 155 (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-2098 (((-521) $) 64)) (-1787 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-1499 ((|#1| $ (-521)) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1952 ((|#1| $) 102)) (-1811 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1795 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-521)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-521) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-1125 |#1|) (-1196) (-970)) (T -1125))
-((-2776 (*1 *1 *2) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3)))) (-4 *3 (-970)) (-4 *1 (-1125 *3)))) (-1653 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1125 *3)) (-4 *3 (-970)))) (-1977 (*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513)) (-5 *2 (-381 (-880 *4))))) (-1977 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513)) (-5 *2 (-381 (-880 *4))))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))) (-1749 (*1 *1 *1 *2) (-3703 (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970)) (-12 (-4 *3 (-29 (-521))) (-4 *3 (-886)) (-4 *3 (-1105)) (-4 *3 (-37 (-381 (-521)))))) (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970)) (-12 (|has| *3 (-15 -4085 ((-587 *2) *3))) (|has| *3 (-15 -1749 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521)))))))))
-(-13 (-1143 |t#1| (-521)) (-10 -8 (-15 -2776 ($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |t#1|))))) (-15 -1653 ($ (-1 |t#1| (-521)) $)) (IF (|has| |t#1| (-513)) (PROGN (-15 -1977 ((-381 (-880 |t#1|)) $ (-521))) (-15 -1977 ((-381 (-880 |t#1|)) $ (-521) (-521)))) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $)) (IF (|has| |t#1| (-15 -1749 (|t#1| |t#1| (-1084)))) (IF (|has| |t#1| (-15 -4085 ((-587 (-1084)) |t#1|))) (-15 -1749 ($ $ (-1084))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-29 (-521))) (-15 -1749 ($ $ (-1084))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-927)) (-6 (-1105))) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-337)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-521)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-521) |#1|))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-521) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-337) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-828 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-848) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1123) |has| |#1| (-337)) ((-1143 |#1| #0#) . T))
-((-3398 (((-108) $) 12)) (-1296 (((-3 |#3| "failed") $) 17) (((-3 (-1084) "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL)) (-1496 ((|#3| $) 14) (((-1084) $) NIL) (((-381 (-521)) $) NIL) (((-521) $) NIL)))
-(((-1126 |#1| |#2| |#3|) (-10 -8 (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-1084) |#1|)) (-15 -1296 ((-3 (-1084) "failed") |#1|)) (-15 -1496 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -3398 ((-108) |#1|))) (-1127 |#2| |#3|) (-970) (-1156 |#2|)) (T -1126))
-NIL
-(-10 -8 (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -1496 ((-1084) |#1|)) (-15 -1296 ((-3 (-1084) "failed") |#1|)) (-15 -1496 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -3398 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2556 ((|#2| $) 231 (-4009 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-4085 (((-587 (-998)) $) 74)) (-1638 (((-1084) $) 103)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2868 (($ $ (-521)) 98) (($ $ (-521) (-521)) 97)) (-3704 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 105)) (-2675 ((|#2| $) 267)) (-3068 (((-3 |#2| "failed") $) 263)) (-3060 ((|#2| $) 264)) (-2910 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) 19)) (-2150 (((-392 (-1080 $)) (-1080 $)) 240 (-4009 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-2694 (($ $) 162 (|has| |#1| (-337)))) (-2337 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1984 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 237 (-4009 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-2165 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2886 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2578 (((-521) $) 249 (-4009 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-2776 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 174)) (-2932 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#2| "failed") $) 270) (((-3 (-521) "failed") $) 259 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) 257 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-1084) "failed") $) 242 (-4009 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-1496 ((|#2| $) 269) (((-521) $) 260 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-381 (-521)) $) 258 (-4009 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-1084) $) 243 (-4009 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-2274 (($ $) 266) (($ (-521) $) 265)) (-2302 (($ $ $) 157 (|has| |#1| (-337)))) (-3157 (($ $) 60)) (-1961 (((-627 |#2|) (-627 $)) 221 (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) 220 (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 219 (-4009 (|has| |#2| (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) 218 (-4009 (|has| |#2| (-583 (-521))) (|has| |#1| (-337))))) (-2783 (((-3 $ "failed") $) 34)) (-1977 (((-381 (-880 |#1|)) $ (-521)) 172 (|has| |#1| (-513))) (((-381 (-880 |#1|)) $ (-521) (-521)) 171 (|has| |#1| (-513)))) (-3254 (($) 233 (-4009 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-2282 (($ $ $) 156 (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2100 (((-108) $) 164 (|has| |#1| (-337)))) (-2273 (((-108) $) 247 (-4009 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-4193 (((-108) $) 73)) (-2840 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 225 (-4009 (|has| |#2| (-814 (-353))) (|has| |#1| (-337)))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 224 (-4009 (|has| |#2| (-814 (-521))) (|has| |#1| (-337))))) (-3490 (((-521) $) 100) (((-521) $ (-521)) 99)) (-3637 (((-108) $) 31)) (-2399 (($ $) 229 (|has| |#1| (-337)))) (-2807 ((|#2| $) 227 (|has| |#1| (-337)))) (-3743 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3035 (((-3 $ "failed") $) 261 (-4009 (|has| |#2| (-1060)) (|has| |#1| (-337))))) (-3305 (((-108) $) 248 (-4009 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-3381 (($ $ (-849)) 101)) (-1653 (($ (-1 |#1| (-521)) $) 173)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3573 (((-108) $) 62)) (-4044 (($ |#1| (-521)) 61) (($ $ (-998) (-521)) 76) (($ $ (-587 (-998)) (-587 (-521))) 75)) (-2816 (($ $ $) 251 (-4009 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-2459 (($ $ $) 252 (-4009 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1393 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-337)))) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-2254 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-3070 (($ (-521) |#2|) 268)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 165 (|has| |#1| (-337)))) (-1749 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-886)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-3797 (($) 262 (-4009 (|has| |#2| (-1060)) (|has| |#1| (-337))) CONST)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2286 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1840 (($ $) 232 (-4009 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-2720 ((|#2| $) 235 (-4009 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1822 (((-392 (-1080 $)) (-1080 $)) 238 (-4009 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-1336 (((-392 (-1080 $)) (-1080 $)) 239 (-4009 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-1974 (((-392 $) $) 161 (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 158 (|has| |#1| (-337)))) (-2191 (($ $ (-521)) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3265 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) |#2|) 212 (-4009 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 |#2|)) 211 (-4009 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-269 |#2|))) 210 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-269 |#2|)) 209 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ |#2| |#2|) 208 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-587 |#2|) (-587 |#2|)) 207 (-4009 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337))))) (-3794 (((-707) $) 154 (|has| |#1| (-337)))) (-2550 ((|#1| $ (-521)) 104) (($ $ $) 81 (|has| (-521) (-1025))) (($ $ |#2|) 206 (-4009 (|has| |#2| (-261 |#2| |#2|)) (|has| |#1| (-337))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 155 (|has| |#1| (-337)))) (-2193 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) 216 (|has| |#1| (-337))) (($ $ (-707)) 84 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 82 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) 89 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084) (-707)) 88 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-587 (-1084))) 87 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084)) 86 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))))) (-2259 (($ $) 230 (|has| |#1| (-337)))) (-2818 ((|#2| $) 228 (|has| |#1| (-337)))) (-2098 (((-521) $) 64)) (-1787 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-1438 (((-202) $) 246 (-4009 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-353) $) 245 (-4009 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-497) $) 244 (-4009 (|has| |#2| (-562 (-497))) (|has| |#1| (-337)))) (((-820 (-353)) $) 223 (-4009 (|has| |#2| (-562 (-820 (-353)))) (|has| |#1| (-337)))) (((-820 (-521)) $) 222 (-4009 (|has| |#2| (-562 (-820 (-521)))) (|has| |#1| (-337))))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 236 (-4009 (-4009 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#1| (-337))))) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 271) (($ (-1084)) 241 (-4009 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337)))) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-1499 ((|#1| $ (-521)) 59)) (-2446 (((-3 $ "failed") $) 48 (-3703 (-4009 (-3703 (|has| |#2| (-133)) (-4009 (|has| $ (-133)) (|has| |#2| (-837)))) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-1592 (((-707)) 29)) (-1952 ((|#1| $) 102)) (-1281 ((|#2| $) 234 (-4009 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1811 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1795 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-521)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-4012 (($ $) 250 (-4009 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) 214 (|has| |#1| (-337))) (($ $ (-707)) 85 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 83 (-3703 (-4009 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) 93 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084) (-707)) 92 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-587 (-1084))) 91 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))))) (($ $ (-1084)) 90 (-3703 (-4009 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))))) (-1597 (((-108) $ $) 254 (-4009 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1579 (((-108) $ $) 255 (-4009 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 253 (-4009 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1569 (((-108) $ $) 256 (-4009 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337))) (($ |#2| |#2|) 226 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-337))) (($ |#2| $) 204 (|has| |#1| (-337))) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-1127 |#1| |#2|) (-1196) (-970) (-1156 |t#1|)) (T -1127))
-((-2098 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1156 *3)) (-5 *2 (-521)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-1127 *3 *2)) (-4 *2 (-1156 *3)))) (-3070 (*1 *1 *2 *3) (-12 (-5 *2 (-521)) (-4 *4 (-970)) (-4 *1 (-1127 *4 *3)) (-4 *3 (-1156 *4)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))) (-2274 (*1 *1 *1) (-12 (-4 *1 (-1127 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1156 *2)))) (-2274 (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-1127 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1156 *3)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))) (-3068 (*1 *2 *1) (|partial| -12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))))
-(-13 (-1125 |t#1|) (-961 |t#2|) (-10 -8 (-15 -3070 ($ (-521) |t#2|)) (-15 -2098 ((-521) $)) (-15 -2675 (|t#2| $)) (-15 -2274 ($ $)) (-15 -2274 ($ (-521) $)) (-15 -2223 ($ |t#2|)) (-15 -3060 (|t#2| $)) (-15 -3068 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-337)) (-6 (-918 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-521)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 |#2|) |has| |#1| (-337)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-337)) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-133))) (|has| |#1| (-133))) ((-135) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-135))) (|has| |#1| (-135))) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-562 (-202)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) ((-562 (-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) ((-562 (-497)) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-497)))) ((-562 (-820 (-353))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-820 (-353))))) ((-562 (-820 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-562 (-820 (-521))))) ((-208 |#2|) |has| |#1| (-337)) ((-210) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-210))) (|has| |#1| (-15 * (|#1| (-521) |#1|)))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 |#2| $) -12 (|has| |#1| (-337)) (|has| |#2| (-261 |#2| |#2|))) ((-261 $ $) |has| (-521) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-284 |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))) ((-337) |has| |#1| (-337)) ((-312 |#2|) |has| |#1| (-337)) ((-351 |#2|) |has| |#1| (-337)) ((-374 |#2|) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-482 (-1084) |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-482 (-1084) |#2|))) ((-482 |#2| |#2|) -12 (|has| |#1| (-337)) (|has| |#2| (-284 |#2|))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-337)) ((-589 $) . T) ((-583 (-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-583 (-521)))) ((-583 |#2|) |has| |#1| (-337)) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 |#2|) |has| |#1| (-337)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-727) -12 (|has| |#1| (-337)) (|has| |#2| (-756))) ((-728) -12 (|has| |#1| (-337)) (|has| |#2| (-756))) ((-730) -12 (|has| |#1| (-337)) (|has| |#2| (-756))) ((-731) -12 (|has| |#1| (-337)) (|has| |#2| (-756))) ((-756) -12 (|has| |#1| (-337)) (|has| |#2| (-756))) ((-781) -12 (|has| |#1| (-337)) (|has| |#2| (-756))) ((-783) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-783))) (-12 (|has| |#1| (-337)) (|has| |#2| (-756)))) ((-828 (-1084)) -3703 (-12 (|has| |#1| (-337)) (|has| |#2| (-828 (-1084)))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))) ((-814 (-353)) -12 (|has| |#1| (-337)) (|has| |#2| (-814 (-353)))) ((-814 (-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-814 (-521)))) ((-812 |#2|) |has| |#1| (-337)) ((-837) -12 (|has| |#1| (-337)) (|has| |#2| (-837))) ((-899 |#1| #0# (-998)) . T) ((-848) |has| |#1| (-337)) ((-918 |#2|) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-946) -12 (|has| |#1| (-337)) (|has| |#2| (-946))) ((-961 (-381 (-521))) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))) ((-961 (-521)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-521)))) ((-961 (-1084)) -12 (|has| |#1| (-337)) (|has| |#2| (-961 (-1084)))) ((-961 |#2|) . T) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 |#2|) |has| |#1| (-337)) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) -12 (|has| |#1| (-337)) (|has| |#2| (-1060))) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1119) |has| |#1| (-337)) ((-1123) |has| |#1| (-337)) ((-1125 |#1|) . T) ((-1143 |#1| #0#) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 70)) (-2556 ((|#2| $) NIL (-12 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 88)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-521)) 97) (($ $ (-521) (-521)) 99)) (-3704 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) 47)) (-2675 ((|#2| $) 11)) (-3068 (((-3 |#2| "failed") $) 30)) (-3060 ((|#2| $) 31)) (-2910 (($ $) 192 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 168 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) 188 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 164 (|has| |#1| (-37 (-381 (-521)))))) (-2578 (((-521) $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-2776 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) 57)) (-2932 (($ $) 196 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 172 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) 144) (((-3 (-521) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-1084) "failed") $) NIL (-12 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-1496 ((|#2| $) 143) (((-521) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-381 (-521)) $) NIL (-12 (|has| |#2| (-961 (-521))) (|has| |#1| (-337)))) (((-1084) $) NIL (-12 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337))))) (-2274 (($ $) 61) (($ (-521) $) 24)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-1961 (((-627 |#2|) (-627 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| |#2| (-583 (-521))) (|has| |#1| (-337))))) (-2783 (((-3 $ "failed") $) 77)) (-1977 (((-381 (-880 |#1|)) $ (-521)) 112 (|has| |#1| (-513))) (((-381 (-880 |#1|)) $ (-521) (-521)) 114 (|has| |#1| (-513)))) (-3254 (($) NIL (-12 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-2273 (((-108) $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-4193 (((-108) $) 64)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| |#2| (-814 (-353))) (|has| |#1| (-337)))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| |#2| (-814 (-521))) (|has| |#1| (-337))))) (-3490 (((-521) $) 93) (((-521) $ (-521)) 95)) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL (|has| |#1| (-337)))) (-2807 ((|#2| $) 151 (|has| |#1| (-337)))) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3035 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1060)) (|has| |#1| (-337))))) (-3305 (((-108) $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-3381 (($ $ (-849)) 136)) (-1653 (($ (-1 |#1| (-521)) $) 132)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-521)) 19) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-2816 (($ $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-2459 (($ $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1393 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-337)))) (-1253 (($ $) 162 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3070 (($ (-521) |#2|) 10)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 145 (|has| |#1| (-337)))) (-1749 (($ $) 214 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 219 (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105)))))) (-3797 (($) NIL (-12 (|has| |#2| (-1060)) (|has| |#1| (-337))) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1840 (($ $) NIL (-12 (|has| |#2| (-282)) (|has| |#1| (-337))))) (-2720 ((|#2| $) NIL (-12 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| |#2| (-837)) (|has| |#1| (-337))))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-521)) 126)) (-2261 (((-3 $ "failed") $ $) 116 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) 160 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) |#2|) NIL (-12 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 |#2|)) NIL (-12 (|has| |#2| (-482 (-1084) |#2|)) (|has| |#1| (-337)))) (($ $ (-587 (-269 |#2|))) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-269 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337)))) (($ $ (-587 |#2|) (-587 |#2|)) NIL (-12 (|has| |#2| (-284 |#2|)) (|has| |#1| (-337))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-521)) 91) (($ $ $) 79 (|has| (-521) (-1025))) (($ $ |#2|) NIL (-12 (|has| |#2| (-261 |#2| |#2|)) (|has| |#1| (-337))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 137 (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084)) 140 (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))) (-2259 (($ $) NIL (|has| |#1| (-337)))) (-2818 ((|#2| $) 152 (|has| |#1| (-337)))) (-2098 (((-521) $) 12)) (-1787 (($ $) 198 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 174 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 194 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 170 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 190 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 166 (|has| |#1| (-37 (-381 (-521)))))) (-1438 (((-202) $) NIL (-12 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-353) $) NIL (-12 (|has| |#2| (-946)) (|has| |#1| (-337)))) (((-497) $) NIL (-12 (|has| |#2| (-562 (-497))) (|has| |#1| (-337)))) (((-820 (-353)) $) NIL (-12 (|has| |#2| (-562 (-820 (-353)))) (|has| |#1| (-337)))) (((-820 (-521)) $) NIL (-12 (|has| |#2| (-562 (-820 (-521)))) (|has| |#1| (-337))))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837)) (|has| |#1| (-337))))) (-2145 (($ $) 124)) (-2223 (((-791) $) 243) (($ (-521)) 23) (($ |#1|) 21 (|has| |#1| (-157))) (($ |#2|) 20) (($ (-1084)) NIL (-12 (|has| |#2| (-961 (-1084))) (|has| |#1| (-337)))) (($ (-381 (-521))) 155 (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-1499 ((|#1| $ (-521)) 74)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837)) (|has| |#1| (-337))) (-12 (|has| |#2| (-133)) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-1592 (((-707)) 142)) (-1952 ((|#1| $) 90)) (-1281 ((|#2| $) NIL (-12 (|has| |#2| (-506)) (|has| |#1| (-337))))) (-1811 (($ $) 204 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 180 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) 200 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 176 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 208 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 184 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-521)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 210 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 186 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 206 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 182 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 202 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 178 (|has| |#1| (-37 (-381 (-521)))))) (-4012 (($ $) NIL (-12 (|has| |#2| (-756)) (|has| |#1| (-337))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 13 T CONST)) (-3572 (($) 17 T CONST)) (-2244 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-337))) (($ $ (-1 |#2| |#2|) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) NIL (-3703 (-12 (|has| |#2| (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#2| (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))) (-1597 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1579 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1549 (((-108) $ $) 63)) (-1588 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1569 (((-108) $ $) NIL (-12 (|has| |#2| (-783)) (|has| |#1| (-337))))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 149 (|has| |#1| (-337))) (($ |#2| |#2|) 150 (|has| |#1| (-337)))) (-1639 (($ $) 213) (($ $ $) 68)) (-1628 (($ $ $) 66)) (** (($ $ (-849)) NIL) (($ $ (-707)) 73) (($ $ (-521)) 146 (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-337))) (($ |#2| $) 147 (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1128 |#1| |#2|) (-1127 |#1| |#2|) (-970) (-1156 |#1|)) (T -1128))
-NIL
-(-1127 |#1| |#2|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2556 (((-1157 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 10)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1954 (($ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-3795 (((-108) $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-2868 (($ $ (-521)) NIL) (($ $ (-521) (-521)) NIL)) (-3704 (((-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|))) $) NIL)) (-2675 (((-1157 |#1| |#2| |#3|) $) NIL)) (-3068 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL)) (-3060 (((-1157 |#1| |#2| |#3|) $) NIL)) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2578 (((-521) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-2776 (($ (-1065 (-2 (|:| |k| (-521)) (|:| |c| |#1|)))) NIL)) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-1157 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-3 (-381 (-521)) "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-3 (-521) "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-1496 (((-1157 |#1| |#2| |#3|) $) NIL) (((-1084) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (((-381 (-521)) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337)))) (((-521) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))))) (-2274 (($ $) NIL) (($ (-521) $) NIL)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-1157 |#1| |#2| |#3|)) (-627 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 (-1157 |#1| |#2| |#3|))) (|:| |vec| (-1165 (-1157 |#1| |#2| |#3|)))) (-627 $) (-1165 $)) NIL (|has| |#1| (-337))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337)))) (((-627 (-521)) (-627 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-583 (-521))) (|has| |#1| (-337))))) (-2783 (((-3 $ "failed") $) NIL)) (-1977 (((-381 (-880 |#1|)) $ (-521)) NIL (|has| |#1| (-513))) (((-381 (-880 |#1|)) $ (-521) (-521)) NIL (|has| |#1| (-513)))) (-3254 (($) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-2273 (((-108) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2293 (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-814 (-521))) (|has| |#1| (-337)))) (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-814 (-353))) (|has| |#1| (-337))))) (-3490 (((-521) $) NIL) (((-521) $ (-521)) NIL)) (-3637 (((-108) $) NIL)) (-2399 (($ $) NIL (|has| |#1| (-337)))) (-2807 (((-1157 |#1| |#2| |#3|) $) NIL (|has| |#1| (-337)))) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3035 (((-3 $ "failed") $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))))) (-3305 (((-108) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-3381 (($ $ (-849)) NIL)) (-1653 (($ (-1 |#1| (-521)) $) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-521)) 17) (($ $ (-998) (-521)) NIL) (($ $ (-587 (-998)) (-587 (-521))) NIL)) (-2816 (($ $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-2459 (($ $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-337)))) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-3070 (($ (-521) (-1157 |#1| |#2| |#3|)) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-1749 (($ $) 25 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 26 (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-1060)) (|has| |#1| (-337))) CONST)) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1840 (($ $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-282)) (|has| |#1| (-337))))) (-2720 (((-1157 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-521)) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-521))))) (($ $ (-1084) (-1157 |#1| |#2| |#3|)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-482 (-1084) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1084)) (-587 (-1157 |#1| |#2| |#3|))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-482 (-1084) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-269 (-1157 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-269 (-1157 |#1| |#2| |#3|))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337)))) (($ $ (-587 (-1157 |#1| |#2| |#3|)) (-587 (-1157 |#1| |#2| |#3|))) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-284 (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-521)) NIL) (($ $ $) NIL (|has| (-521) (-1025))) (($ $ (-1157 |#1| |#2| |#3|)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-261 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) (|has| |#1| (-337))))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-1161 |#2|)) 24) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) 23 (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))) (-2259 (($ $) NIL (|has| |#1| (-337)))) (-2818 (((-1157 |#1| |#2| |#3|) $) NIL (|has| |#1| (-337)))) (-2098 (((-521) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1438 (((-497) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-562 (-497))) (|has| |#1| (-337)))) (((-353) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-202) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-946)) (|has| |#1| (-337)))) (((-820 (-353)) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-562 (-820 (-353)))) (|has| |#1| (-337)))) (((-820 (-521)) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-562 (-820 (-521)))) (|has| |#1| (-337))))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1157 |#1| |#2| |#3|)) NIL) (($ (-1161 |#2|)) 22) (($ (-1084)) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-1084))) (|has| |#1| (-337)))) (($ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513)))) (($ (-381 (-521))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-961 (-521))) (|has| |#1| (-337))) (|has| |#1| (-37 (-381 (-521))))))) (-1499 ((|#1| $ (-521)) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-133)) (|has| |#1| (-337))) (|has| |#1| (-133))))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 11)) (-1281 (((-1157 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-506)) (|has| |#1| (-337))))) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-837)) (|has| |#1| (-337))) (|has| |#1| (-513))))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-521)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-521)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-4012 (($ $) NIL (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 19 T CONST)) (-3572 (($) 15 T CONST)) (-2244 (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|))) NIL (|has| |#1| (-337))) (($ $ (-1 (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) (-707)) NIL (|has| |#1| (-337))) (($ $ (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-210)) (|has| |#1| (-337))) (|has| |#1| (-15 * (|#1| (-521) |#1|))))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084) (-707)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-587 (-1084))) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084)))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-828 (-1084))) (|has| |#1| (-337))) (-12 (|has| |#1| (-15 * (|#1| (-521) |#1|))) (|has| |#1| (-828 (-1084))))))) (-1597 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1579 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1569 (((-108) $ $) NIL (-3703 (-12 (|has| (-1157 |#1| |#2| |#3|) (-756)) (|has| |#1| (-337))) (-12 (|has| (-1157 |#1| |#2| |#3|) (-783)) (|has| |#1| (-337)))))) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337))) (($ (-1157 |#1| |#2| |#3|) (-1157 |#1| |#2| |#3|)) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 20)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1157 |#1| |#2| |#3|)) NIL (|has| |#1| (-337))) (($ (-1157 |#1| |#2| |#3|) $) NIL (|has| |#1| (-337))) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1129 |#1| |#2| |#3|) (-13 (-1127 |#1| (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1129))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1127 |#1| (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-2699 (((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108)) 10)) (-3307 (((-392 |#1|) |#1|) 21)) (-1974 (((-392 |#1|) |#1|) 20)))
-(((-1130 |#1|) (-10 -7 (-15 -1974 ((-392 |#1|) |#1|)) (-15 -3307 ((-392 |#1|) |#1|)) (-15 -2699 ((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108)))) (-1141 (-521))) (T -1130))
-((-2699 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521))))))) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))) (-3307 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))) (-1974 (*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
-(-10 -7 (-15 -1974 ((-392 |#1|) |#1|)) (-15 -3307 ((-392 |#1|) |#1|)) (-15 -2699 ((-2 (|:| |contp| (-521)) (|:| -3655 (-587 (-2 (|:| |irr| |#1|) (|:| -3083 (-521)))))) |#1| (-108))))
-((-1393 (((-1065 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 23 (|has| |#1| (-781))) (((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 17)))
-(((-1131 |#1| |#2|) (-10 -7 (-15 -1393 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (IF (|has| |#1| (-781)) (-15 -1393 ((-1065 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) |%noBranch|)) (-1119) (-1119)) (T -1131))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-781)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1065 *6)) (-5 *1 (-1131 *5 *6)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1132 *6)) (-5 *1 (-1131 *5 *6)))))
-(-10 -7 (-15 -1393 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (IF (|has| |#1| (-781)) (-15 -1393 ((-1065 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) |%noBranch|))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1558 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1393 (((-1065 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-781)))) (-2948 ((|#1| $) 14)) (-1460 ((|#1| $) 10)) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1470 (((-521) $) 18)) (-4164 ((|#1| $) 17)) (-1482 ((|#1| $) 11)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-1782 (((-108) $) 16)) (-1631 (((-1065 |#1|) $) 38 (|has| |#1| (-781))) (((-1065 |#1|) (-587 $)) 37 (|has| |#1| (-781)))) (-1438 (($ |#1|) 25)) (-2223 (($ (-1008 |#1|)) 24) (((-791) $) 34 (|has| |#1| (-1013)))) (-1713 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1346 (($ $ (-521)) 13)) (-1549 (((-108) $ $) 27 (|has| |#1| (-1013)))))
-(((-1132 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -1713 ($ |#1|)) (-15 -1558 ($ |#1|)) (-15 -2223 ($ (-1008 |#1|))) (-15 -1782 ((-108) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1009 |#1| (-1065 |#1|))) |%noBranch|))) (-1119)) (T -1132))
-((-1713 (*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))) (-1558 (*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1008 *3)) (-4 *3 (-1119)) (-5 *1 (-1132 *3)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1132 *3)) (-4 *3 (-1119)))))
-(-13 (-1007 |#1|) (-10 -8 (-15 -1713 ($ |#1|)) (-15 -1558 ($ |#1|)) (-15 -2223 ($ (-1008 |#1|))) (-15 -1782 ((-108) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-781)) (-6 (-1009 |#1| (-1065 |#1|))) |%noBranch|)))
-((-1393 (((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|)) 15)))
-(((-1133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 ((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|)))) (-1084) (-970) (-1084) (-970)) (T -1133))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1138 *5 *6)) (-14 *5 (-1084)) (-4 *6 (-970)) (-4 *8 (-970)) (-5 *2 (-1138 *7 *8)) (-5 *1 (-1133 *5 *6 *7 *8)) (-14 *7 (-1084)))))
-(-10 -7 (-15 -1393 ((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|))))
-((-1590 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1748 ((|#1| |#3|) 13)) (-1213 ((|#3| |#3|) 19)))
-(((-1134 |#1| |#2| |#3|) (-10 -7 (-15 -1748 (|#1| |#3|)) (-15 -1213 (|#3| |#3|)) (-15 -1590 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-513) (-918 |#1|) (-1141 |#2|)) (T -1134))
-((-1590 (*1 *2 *3) (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1134 *4 *5 *3)) (-4 *3 (-1141 *5)))) (-1213 (*1 *2 *2) (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-1134 *3 *4 *2)) (-4 *2 (-1141 *4)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-1134 *2 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -1748 (|#1| |#3|)) (-15 -1213 (|#3| |#3|)) (-15 -1590 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2543 (((-3 |#2| "failed") |#2| (-707) |#1|) 29)) (-2996 (((-3 |#2| "failed") |#2| (-707)) 30)) (-1263 (((-3 (-2 (|:| -1970 |#2|) (|:| -1981 |#2|)) "failed") |#2|) 43)) (-1516 (((-587 |#2|) |#2|) 45)) (-2767 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1135 |#1| |#2|) (-10 -7 (-15 -2996 ((-3 |#2| "failed") |#2| (-707))) (-15 -2543 ((-3 |#2| "failed") |#2| (-707) |#1|)) (-15 -2767 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1263 ((-3 (-2 (|:| -1970 |#2|) (|:| -1981 |#2|)) "failed") |#2|)) (-15 -1516 ((-587 |#2|) |#2|))) (-13 (-513) (-135)) (-1141 |#1|)) (T -1135))
-((-1516 (*1 *2 *3) (-12 (-4 *4 (-13 (-513) (-135))) (-5 *2 (-587 *3)) (-5 *1 (-1135 *4 *3)) (-4 *3 (-1141 *4)))) (-1263 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-513) (-135))) (-5 *2 (-2 (|:| -1970 *3) (|:| -1981 *3))) (-5 *1 (-1135 *4 *3)) (-4 *3 (-1141 *4)))) (-2767 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1135 *3 *2)) (-4 *2 (-1141 *3)))) (-2543 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))) (-2996 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))))
-(-10 -7 (-15 -2996 ((-3 |#2| "failed") |#2| (-707))) (-15 -2543 ((-3 |#2| "failed") |#2| (-707) |#1|)) (-15 -2767 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1263 ((-3 (-2 (|:| -1970 |#2|) (|:| -1981 |#2|)) "failed") |#2|)) (-15 -1516 ((-587 |#2|) |#2|)))
-((-2348 (((-3 (-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1136 |#1| |#2|) (-10 -7 (-15 -2348 ((-3 (-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) "failed") |#2| |#2|))) (-513) (-1141 |#1|)) (T -1136))
-((-2348 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1141 *4)))))
-(-10 -7 (-15 -2348 ((-3 (-2 (|:| -3852 |#2|) (|:| -2334 |#2|)) "failed") |#2| |#2|)))
-((-1552 ((|#2| |#2| |#2|) 19)) (-1903 ((|#2| |#2| |#2|) 30)) (-1755 ((|#2| |#2| |#2| (-707) (-707)) 36)))
-(((-1137 |#1| |#2|) (-10 -7 (-15 -1552 (|#2| |#2| |#2|)) (-15 -1903 (|#2| |#2| |#2|)) (-15 -1755 (|#2| |#2| |#2| (-707) (-707)))) (-970) (-1141 |#1|)) (T -1137))
-((-1755 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-1137 *4 *2)) (-4 *2 (-1141 *4)))) (-1903 (*1 *2 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))) (-1552 (*1 *2 *2 *2) (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))))
-(-10 -7 (-15 -1552 (|#2| |#2| |#2|)) (-15 -1903 (|#2| |#2| |#2|)) (-15 -1755 (|#2| |#2| |#2| (-707) (-707))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2794 (((-1165 |#2|) $ (-707)) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-3800 (($ (-1080 |#2|)) NIL)) (-1280 (((-1080 $) $ (-998)) NIL) (((-1080 |#2|) $) NIL)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#2| (-513)))) (-1954 (($ $) NIL (|has| |#2| (-513)))) (-3795 (((-108) $) NIL (|has| |#2| (-513)))) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-998))) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-4127 (($ $ $) NIL (|has| |#2| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2694 (($ $) NIL (|has| |#2| (-425)))) (-2337 (((-392 $) $) NIL (|has| |#2| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-2165 (((-108) $ $) NIL (|has| |#2| (-337)))) (-4176 (($ $ (-707)) NIL)) (-1587 (($ $ (-707)) NIL)) (-4046 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-425)))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL) (((-3 (-381 (-521)) "failed") $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) NIL (|has| |#2| (-961 (-521)))) (((-3 (-998) "failed") $) NIL)) (-1496 ((|#2| $) NIL) (((-381 (-521)) $) NIL (|has| |#2| (-961 (-381 (-521))))) (((-521) $) NIL (|has| |#2| (-961 (-521)))) (((-998) $) NIL)) (-3052 (($ $ $ (-998)) NIL (|has| |#2| (-157))) ((|#2| $ $) NIL (|has| |#2| (-157)))) (-2302 (($ $ $) NIL (|has| |#2| (-337)))) (-3157 (($ $) NIL)) (-1961 (((-627 (-521)) (-627 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) NIL (|has| |#2| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#2|)) (|:| |vec| (-1165 |#2|))) (-627 $) (-1165 $)) NIL) (((-627 |#2|) (-627 $)) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2282 (($ $ $) NIL (|has| |#2| (-337)))) (-2924 (($ $ $) NIL)) (-2317 (($ $ $) NIL (|has| |#2| (-513)))) (-2483 (((-2 (|:| -2979 |#2|) (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#2| (-337)))) (-1563 (($ $) NIL (|has| |#2| (-425))) (($ $ (-998)) NIL (|has| |#2| (-425)))) (-3149 (((-587 $) $) NIL)) (-2100 (((-108) $) NIL (|has| |#2| (-837)))) (-1709 (($ $ |#2| (-707) $) NIL)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) NIL (-12 (|has| (-998) (-814 (-353))) (|has| |#2| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) NIL (-12 (|has| (-998) (-814 (-521))) (|has| |#2| (-814 (-521)))))) (-3490 (((-707) $ $) NIL (|has| |#2| (-513)))) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#2| (-1060)))) (-4068 (($ (-1080 |#2|) (-998)) NIL) (($ (-1080 $) (-998)) NIL)) (-3381 (($ $ (-707)) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-4044 (($ |#2| (-707)) 17) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-998)) NIL) (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL)) (-2401 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-2816 (($ $ $) NIL (|has| |#2| (-783)))) (-2459 (($ $ $) NIL (|has| |#2| (-783)))) (-2310 (($ (-1 (-707) (-707)) $) NIL)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-1810 (((-1080 |#2|) $) NIL)) (-2913 (((-3 (-998) "failed") $) NIL)) (-3130 (($ $) NIL)) (-3140 ((|#2| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-4024 (((-1067) $) NIL)) (-3241 (((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707)) NIL)) (-3722 (((-3 (-587 $) "failed") $) NIL)) (-4141 (((-3 (-587 $) "failed") $) NIL)) (-3262 (((-3 (-2 (|:| |var| (-998)) (|:| -2246 (-707))) "failed") $) NIL)) (-1749 (($ $) NIL (|has| |#2| (-37 (-381 (-521)))))) (-3797 (($) NIL (|has| |#2| (-1060)) CONST)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 ((|#2| $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#2| (-425)))) (-2286 (($ (-587 $)) NIL (|has| |#2| (-425))) (($ $ $) NIL (|has| |#2| (-425)))) (-3925 (($ $ (-707) |#2| $) NIL)) (-1822 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) NIL (|has| |#2| (-837)))) (-1974 (((-392 $) $) NIL (|has| |#2| (-837)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#2| (-337)))) (-2261 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-513))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#2| (-337)))) (-2313 (($ $ (-587 (-269 $))) NIL) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#2|) NIL) (($ $ (-587 (-998)) (-587 |#2|)) NIL) (($ $ (-998) $) NIL) (($ $ (-587 (-998)) (-587 $)) NIL)) (-3794 (((-707) $) NIL (|has| |#2| (-337)))) (-2550 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) NIL (|has| |#2| (-513))) ((|#2| (-381 $) |#2|) NIL (|has| |#2| (-337))) (((-381 $) $ (-381 $)) NIL (|has| |#2| (-513)))) (-2297 (((-3 $ "failed") $ (-707)) NIL)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#2| (-337)))) (-3011 (($ $ (-998)) NIL (|has| |#2| (-157))) ((|#2| $) NIL (|has| |#2| (-157)))) (-2193 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2098 (((-707) $) NIL) (((-707) $ (-998)) NIL) (((-587 (-707)) $ (-587 (-998))) NIL)) (-1438 (((-820 (-353)) $) NIL (-12 (|has| (-998) (-562 (-820 (-353)))) (|has| |#2| (-562 (-820 (-353)))))) (((-820 (-521)) $) NIL (-12 (|has| (-998) (-562 (-820 (-521)))) (|has| |#2| (-562 (-820 (-521)))))) (((-497) $) NIL (-12 (|has| (-998) (-562 (-497))) (|has| |#2| (-562 (-497)))))) (-1391 ((|#2| $) NIL (|has| |#2| (-425))) (($ $ (-998)) NIL (|has| |#2| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-837))))) (-1288 (((-3 $ "failed") $ $) NIL (|has| |#2| (-513))) (((-3 (-381 $) "failed") (-381 $) $) NIL (|has| |#2| (-513)))) (-2223 (((-791) $) 13) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-998)) NIL) (($ (-1161 |#1|)) 19) (($ (-381 (-521))) NIL (-3703 (|has| |#2| (-37 (-381 (-521)))) (|has| |#2| (-961 (-381 (-521)))))) (($ $) NIL (|has| |#2| (-513)))) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-707)) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2446 (((-3 $ "failed") $) NIL (-3703 (-12 (|has| $ (-133)) (|has| |#2| (-837))) (|has| |#2| (-133))))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| |#2| (-157)))) (-1842 (((-108) $ $) NIL (|has| |#2| (-513)))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3572 (($) 14 T CONST)) (-2244 (($ $ (-998)) NIL) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) NIL) (($ $ (-1084)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1084) (-707)) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) NIL (|has| |#2| (-828 (-1084)))) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1597 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1549 (((-108) $ $) NIL)) (-1588 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#2| (-783)))) (-1648 (($ $ |#2|) NIL (|has| |#2| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-381 (-521))) NIL (|has| |#2| (-37 (-381 (-521))))) (($ (-381 (-521)) $) NIL (|has| |#2| (-37 (-381 (-521))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1138 |#1| |#2|) (-13 (-1141 |#2|) (-10 -8 (-15 -2223 ($ (-1161 |#1|))) (-15 -3925 ($ $ (-707) |#2| $)))) (-1084) (-970)) (T -1138))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-1138 *3 *4)) (-4 *4 (-970)))) (-3925 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1138 *4 *3)) (-14 *4 (-1084)) (-4 *3 (-970)))))
-(-13 (-1141 |#2|) (-10 -8 (-15 -2223 ($ (-1161 |#1|))) (-15 -3925 ($ $ (-707) |#2| $))))
-((-1393 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|))) (-970) (-1141 |#1|) (-970) (-1141 |#3|)) (T -1139))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-4 *2 (-1141 *6)) (-5 *1 (-1139 *5 *4 *6 *2)) (-4 *4 (-1141 *5)))))
-(-10 -7 (-15 -1393 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2794 (((-1165 |#2|) $ (-707)) 113)) (-4085 (((-587 (-998)) $) 15)) (-3800 (($ (-1080 |#2|)) 66)) (-2197 (((-707) $) NIL) (((-707) $ (-587 (-998))) 18)) (-2150 (((-392 (-1080 $)) (-1080 $)) 184)) (-2694 (($ $) 174)) (-2337 (((-392 $) $) 172)) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 81)) (-4176 (($ $ (-707)) 70)) (-1587 (($ $ (-707)) 72)) (-4046 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1296 (((-3 |#2| "failed") $) 116) (((-3 (-381 (-521)) "failed") $) NIL) (((-3 (-521) "failed") $) NIL) (((-3 (-998) "failed") $) NIL)) (-1496 ((|#2| $) 114) (((-381 (-521)) $) NIL) (((-521) $) NIL) (((-998) $) NIL)) (-2317 (($ $ $) 150)) (-2483 (((-2 (|:| -2979 |#2|) (|:| -3852 $) (|:| -2334 $)) $ $) 152)) (-3490 (((-707) $ $) 169)) (-3035 (((-3 $ "failed") $) 122)) (-4044 (($ |#2| (-707)) NIL) (($ $ (-998) (-707)) 46) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-2401 (((-707) $) NIL) (((-707) $ (-998)) 41) (((-587 (-707)) $ (-587 (-998))) 42)) (-1810 (((-1080 |#2|) $) 58)) (-2913 (((-3 (-998) "failed") $) 39)) (-3241 (((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707)) 69)) (-1749 (($ $) 195)) (-3797 (($) 118)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 181)) (-1822 (((-392 (-1080 $)) (-1080 $)) 87)) (-1336 (((-392 (-1080 $)) (-1080 $)) 85)) (-1974 (((-392 $) $) 105)) (-2313 (($ $ (-587 (-269 $))) 38) (($ $ (-269 $)) NIL) (($ $ $ $) NIL) (($ $ (-587 $) (-587 $)) NIL) (($ $ (-998) |#2|) 31) (($ $ (-587 (-998)) (-587 |#2|)) 28) (($ $ (-998) $) 25) (($ $ (-587 (-998)) (-587 $)) 23)) (-3794 (((-707) $) 187)) (-2550 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-381 $) (-381 $) (-381 $)) 146) ((|#2| (-381 $) |#2|) 186) (((-381 $) $ (-381 $)) 168)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 190)) (-2193 (($ $ (-998)) 139) (($ $ (-587 (-998))) NIL) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL) (($ $ (-707)) NIL) (($ $) 137) (($ $ (-1084)) NIL) (($ $ (-587 (-1084))) NIL) (($ $ (-1084) (-707)) NIL) (($ $ (-587 (-1084)) (-587 (-707))) NIL) (($ $ (-1 |#2| |#2|) (-707)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2098 (((-707) $) NIL) (((-707) $ (-998)) 16) (((-587 (-707)) $ (-587 (-998))) 20)) (-1391 ((|#2| $) NIL) (($ $ (-998)) 124)) (-1288 (((-3 $ "failed") $ $) 160) (((-3 (-381 $) "failed") (-381 $) $) 156)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#2|) NIL) (($ (-998)) 50) (($ (-381 (-521))) NIL) (($ $) NIL)))
-(((-1140 |#1| |#2|) (-10 -8 (-15 -2223 (|#1| |#1|)) (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -2550 ((-381 |#1|) |#1| (-381 |#1|))) (-15 -3794 ((-707) |#1|)) (-15 -1904 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -2550 (|#2| (-381 |#1|) |#2|)) (-15 -4046 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2483 ((-2 (|:| -2979 |#2|) (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -2317 (|#1| |#1| |#1|)) (-15 -1288 ((-3 (-381 |#1|) "failed") (-381 |#1|) |#1|)) (-15 -1288 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3490 ((-707) |#1| |#1|)) (-15 -2550 ((-381 |#1|) (-381 |#1|) (-381 |#1|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1587 (|#1| |#1| (-707))) (-15 -4176 (|#1| |#1| (-707))) (-15 -3241 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| (-707))) (-15 -3800 (|#1| (-1080 |#2|))) (-15 -1810 ((-1080 |#2|) |#1|)) (-15 -2794 ((-1165 |#2|) |#1| (-707))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2550 (|#1| |#1| |#1|)) (-15 -2550 (|#2| |#1| |#2|)) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2150 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1336 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1822 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -1391 (|#1| |#1| (-998))) (-15 -4085 ((-587 (-998)) |#1|)) (-15 -2197 ((-707) |#1| (-587 (-998)))) (-15 -2197 ((-707) |#1|)) (-15 -4044 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -4044 (|#1| |#1| (-998) (-707))) (-15 -2401 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -2401 ((-707) |#1| (-998))) (-15 -2913 ((-3 (-998) "failed") |#1|)) (-15 -2098 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -2098 ((-707) |#1| (-998))) (-15 -1496 ((-998) |#1|)) (-15 -1296 ((-3 (-998) "failed") |#1|)) (-15 -2223 (|#1| (-998))) (-15 -2313 (|#1| |#1| (-587 (-998)) (-587 |#1|))) (-15 -2313 (|#1| |#1| (-998) |#1|)) (-15 -2313 (|#1| |#1| (-587 (-998)) (-587 |#2|))) (-15 -2313 (|#1| |#1| (-998) |#2|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2098 ((-707) |#1|)) (-15 -4044 (|#1| |#2| (-707))) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -2401 ((-707) |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -2193 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-998) (-707))) (-15 -2193 (|#1| |#1| (-587 (-998)))) (-15 -2193 (|#1| |#1| (-998))) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|))) (-1141 |#2|) (-970)) (T -1140))
-NIL
-(-10 -8 (-15 -2223 (|#1| |#1|)) (-15 -2826 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2337 ((-392 |#1|) |#1|)) (-15 -2694 (|#1| |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -3797 (|#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -2550 ((-381 |#1|) |#1| (-381 |#1|))) (-15 -3794 ((-707) |#1|)) (-15 -1904 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -2550 (|#2| (-381 |#1|) |#2|)) (-15 -4046 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2483 ((-2 (|:| -2979 |#2|) (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| |#1|)) (-15 -2317 (|#1| |#1| |#1|)) (-15 -1288 ((-3 (-381 |#1|) "failed") (-381 |#1|) |#1|)) (-15 -1288 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3490 ((-707) |#1| |#1|)) (-15 -2550 ((-381 |#1|) (-381 |#1|) (-381 |#1|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1587 (|#1| |#1| (-707))) (-15 -4176 (|#1| |#1| (-707))) (-15 -3241 ((-2 (|:| -3852 |#1|) (|:| -2334 |#1|)) |#1| (-707))) (-15 -3800 (|#1| (-1080 |#2|))) (-15 -1810 ((-1080 |#2|) |#1|)) (-15 -2794 ((-1165 |#2|) |#1| (-707))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2193 (|#1| |#1| (-1 |#2| |#2|) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-1084) (-707))) (-15 -2193 (|#1| |#1| (-587 (-1084)))) (-15 -2193 (|#1| |#1| (-1084))) (-15 -2193 (|#1| |#1|)) (-15 -2193 (|#1| |#1| (-707))) (-15 -2550 (|#1| |#1| |#1|)) (-15 -2550 (|#2| |#1| |#2|)) (-15 -1974 ((-392 |#1|) |#1|)) (-15 -2150 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1336 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -1822 ((-392 (-1080 |#1|)) (-1080 |#1|))) (-15 -4050 ((-3 (-587 (-1080 |#1|)) "failed") (-587 (-1080 |#1|)) (-1080 |#1|))) (-15 -1391 (|#1| |#1| (-998))) (-15 -4085 ((-587 (-998)) |#1|)) (-15 -2197 ((-707) |#1| (-587 (-998)))) (-15 -2197 ((-707) |#1|)) (-15 -4044 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -4044 (|#1| |#1| (-998) (-707))) (-15 -2401 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -2401 ((-707) |#1| (-998))) (-15 -2913 ((-3 (-998) "failed") |#1|)) (-15 -2098 ((-587 (-707)) |#1| (-587 (-998)))) (-15 -2098 ((-707) |#1| (-998))) (-15 -1496 ((-998) |#1|)) (-15 -1296 ((-3 (-998) "failed") |#1|)) (-15 -2223 (|#1| (-998))) (-15 -2313 (|#1| |#1| (-587 (-998)) (-587 |#1|))) (-15 -2313 (|#1| |#1| (-998) |#1|)) (-15 -2313 (|#1| |#1| (-587 (-998)) (-587 |#2|))) (-15 -2313 (|#1| |#1| (-998) |#2|)) (-15 -2313 (|#1| |#1| (-587 |#1|) (-587 |#1|))) (-15 -2313 (|#1| |#1| |#1| |#1|)) (-15 -2313 (|#1| |#1| (-269 |#1|))) (-15 -2313 (|#1| |#1| (-587 (-269 |#1|)))) (-15 -2098 ((-707) |#1|)) (-15 -4044 (|#1| |#2| (-707))) (-15 -1496 ((-521) |#1|)) (-15 -1296 ((-3 (-521) "failed") |#1|)) (-15 -1496 ((-381 (-521)) |#1|)) (-15 -1296 ((-3 (-381 (-521)) "failed") |#1|)) (-15 -2223 (|#1| |#2|)) (-15 -1296 ((-3 |#2| "failed") |#1|)) (-15 -1496 (|#2| |#1|)) (-15 -2401 ((-707) |#1|)) (-15 -1391 (|#2| |#1|)) (-15 -2193 (|#1| |#1| (-587 (-998)) (-587 (-707)))) (-15 -2193 (|#1| |#1| (-998) (-707))) (-15 -2193 (|#1| |#1| (-587 (-998)))) (-15 -2193 (|#1| |#1| (-998))) (-15 -2223 (|#1| (-521))) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2794 (((-1165 |#1|) $ (-707)) 238)) (-4085 (((-587 (-998)) $) 110)) (-3800 (($ (-1080 |#1|)) 236)) (-1280 (((-1080 $) $ (-998)) 125) (((-1080 |#1|) $) 124)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 87 (|has| |#1| (-513)))) (-1954 (($ $) 88 (|has| |#1| (-513)))) (-3795 (((-108) $) 90 (|has| |#1| (-513)))) (-2197 (((-707) $) 112) (((-707) $ (-587 (-998))) 111)) (-2057 (((-3 $ "failed") $ $) 19)) (-4127 (($ $ $) 223 (|has| |#1| (-513)))) (-2150 (((-392 (-1080 $)) (-1080 $)) 100 (|has| |#1| (-837)))) (-2694 (($ $) 98 (|has| |#1| (-425)))) (-2337 (((-392 $) $) 97 (|has| |#1| (-425)))) (-4050 (((-3 (-587 (-1080 $)) "failed") (-587 (-1080 $)) (-1080 $)) 103 (|has| |#1| (-837)))) (-2165 (((-108) $ $) 208 (|has| |#1| (-337)))) (-4176 (($ $ (-707)) 231)) (-1587 (($ $ (-707)) 230)) (-4046 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-425)))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 164) (((-3 (-381 (-521)) "failed") $) 162 (|has| |#1| (-961 (-381 (-521))))) (((-3 (-521) "failed") $) 160 (|has| |#1| (-961 (-521)))) (((-3 (-998) "failed") $) 136)) (-1496 ((|#1| $) 165) (((-381 (-521)) $) 161 (|has| |#1| (-961 (-381 (-521))))) (((-521) $) 159 (|has| |#1| (-961 (-521)))) (((-998) $) 135)) (-3052 (($ $ $ (-998)) 108 (|has| |#1| (-157))) ((|#1| $ $) 226 (|has| |#1| (-157)))) (-2302 (($ $ $) 212 (|has| |#1| (-337)))) (-3157 (($ $) 154)) (-1961 (((-627 (-521)) (-627 $)) 134 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 (-521))) (|:| |vec| (-1165 (-521)))) (-627 $) (-1165 $)) 133 (|has| |#1| (-583 (-521)))) (((-2 (|:| -3534 (-627 |#1|)) (|:| |vec| (-1165 |#1|))) (-627 $) (-1165 $)) 132) (((-627 |#1|) (-627 $)) 131)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 211 (|has| |#1| (-337)))) (-2924 (($ $ $) 229)) (-2317 (($ $ $) 220 (|has| |#1| (-513)))) (-2483 (((-2 (|:| -2979 |#1|) (|:| -3852 $) (|:| -2334 $)) $ $) 219 (|has| |#1| (-513)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 206 (|has| |#1| (-337)))) (-1563 (($ $) 176 (|has| |#1| (-425))) (($ $ (-998)) 105 (|has| |#1| (-425)))) (-3149 (((-587 $) $) 109)) (-2100 (((-108) $) 96 (|has| |#1| (-837)))) (-1709 (($ $ |#1| (-707) $) 172)) (-2293 (((-817 (-353) $) $ (-820 (-353)) (-817 (-353) $)) 84 (-12 (|has| (-998) (-814 (-353))) (|has| |#1| (-814 (-353))))) (((-817 (-521) $) $ (-820 (-521)) (-817 (-521) $)) 83 (-12 (|has| (-998) (-814 (-521))) (|has| |#1| (-814 (-521)))))) (-3490 (((-707) $ $) 224 (|has| |#1| (-513)))) (-3637 (((-108) $) 31)) (-2443 (((-707) $) 169)) (-3035 (((-3 $ "failed") $) 204 (|has| |#1| (-1060)))) (-4068 (($ (-1080 |#1|) (-998)) 117) (($ (-1080 $) (-998)) 116)) (-3381 (($ $ (-707)) 235)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 215 (|has| |#1| (-337)))) (-2411 (((-587 $) $) 126)) (-3573 (((-108) $) 152)) (-4044 (($ |#1| (-707)) 153) (($ $ (-998) (-707)) 119) (($ $ (-587 (-998)) (-587 (-707))) 118)) (-2966 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $ (-998)) 120) (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 233)) (-2401 (((-707) $) 170) (((-707) $ (-998)) 122) (((-587 (-707)) $ (-587 (-998))) 121)) (-2816 (($ $ $) 79 (|has| |#1| (-783)))) (-2459 (($ $ $) 78 (|has| |#1| (-783)))) (-2310 (($ (-1 (-707) (-707)) $) 171)) (-1393 (($ (-1 |#1| |#1|) $) 151)) (-1810 (((-1080 |#1|) $) 237)) (-2913 (((-3 (-998) "failed") $) 123)) (-3130 (($ $) 149)) (-3140 ((|#1| $) 148)) (-2254 (($ (-587 $)) 94 (|has| |#1| (-425))) (($ $ $) 93 (|has| |#1| (-425)))) (-4024 (((-1067) $) 9)) (-3241 (((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707)) 232)) (-3722 (((-3 (-587 $) "failed") $) 114)) (-4141 (((-3 (-587 $) "failed") $) 115)) (-3262 (((-3 (-2 (|:| |var| (-998)) (|:| -2246 (-707))) "failed") $) 113)) (-1749 (($ $) 216 (|has| |#1| (-37 (-381 (-521)))))) (-3797 (($) 203 (|has| |#1| (-1060)) CONST)) (-4146 (((-1031) $) 10)) (-3110 (((-108) $) 166)) (-3120 ((|#1| $) 167)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 95 (|has| |#1| (-425)))) (-2286 (($ (-587 $)) 92 (|has| |#1| (-425))) (($ $ $) 91 (|has| |#1| (-425)))) (-1822 (((-392 (-1080 $)) (-1080 $)) 102 (|has| |#1| (-837)))) (-1336 (((-392 (-1080 $)) (-1080 $)) 101 (|has| |#1| (-837)))) (-1974 (((-392 $) $) 99 (|has| |#1| (-837)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 213 (|has| |#1| (-337)))) (-2261 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-513))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 207 (|has| |#1| (-337)))) (-2313 (($ $ (-587 (-269 $))) 145) (($ $ (-269 $)) 144) (($ $ $ $) 143) (($ $ (-587 $) (-587 $)) 142) (($ $ (-998) |#1|) 141) (($ $ (-587 (-998)) (-587 |#1|)) 140) (($ $ (-998) $) 139) (($ $ (-587 (-998)) (-587 $)) 138)) (-3794 (((-707) $) 209 (|has| |#1| (-337)))) (-2550 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-381 $) (-381 $) (-381 $)) 225 (|has| |#1| (-513))) ((|#1| (-381 $) |#1|) 217 (|has| |#1| (-337))) (((-381 $) $ (-381 $)) 205 (|has| |#1| (-513)))) (-2297 (((-3 $ "failed") $ (-707)) 234)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 210 (|has| |#1| (-337)))) (-3011 (($ $ (-998)) 107 (|has| |#1| (-157))) ((|#1| $) 227 (|has| |#1| (-157)))) (-2193 (($ $ (-998)) 42) (($ $ (-587 (-998))) 41) (($ $ (-998) (-707)) 40) (($ $ (-587 (-998)) (-587 (-707))) 39) (($ $ (-707)) 253) (($ $) 251) (($ $ (-1084)) 250 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 249 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 248 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 247 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2098 (((-707) $) 150) (((-707) $ (-998)) 130) (((-587 (-707)) $ (-587 (-998))) 129)) (-1438 (((-820 (-353)) $) 82 (-12 (|has| (-998) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353)))))) (((-820 (-521)) $) 81 (-12 (|has| (-998) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521)))))) (((-497) $) 80 (-12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))))) (-1391 ((|#1| $) 175 (|has| |#1| (-425))) (($ $ (-998)) 106 (|has| |#1| (-425)))) (-2956 (((-3 (-1165 $) "failed") (-627 $)) 104 (-4009 (|has| $ (-133)) (|has| |#1| (-837))))) (-1288 (((-3 $ "failed") $ $) 222 (|has| |#1| (-513))) (((-3 (-381 $) "failed") (-381 $) $) 221 (|has| |#1| (-513)))) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 163) (($ (-998)) 137) (($ (-381 (-521))) 72 (-3703 (|has| |#1| (-961 (-381 (-521)))) (|has| |#1| (-37 (-381 (-521)))))) (($ $) 85 (|has| |#1| (-513)))) (-2730 (((-587 |#1|) $) 168)) (-1499 ((|#1| $ (-707)) 155) (($ $ (-998) (-707)) 128) (($ $ (-587 (-998)) (-587 (-707))) 127)) (-2446 (((-3 $ "failed") $) 73 (-3703 (-4009 (|has| $ (-133)) (|has| |#1| (-837))) (|has| |#1| (-133))))) (-1592 (((-707)) 29)) (-1413 (($ $ $ (-707)) 173 (|has| |#1| (-157)))) (-1842 (((-108) $ $) 89 (|has| |#1| (-513)))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-998)) 38) (($ $ (-587 (-998))) 37) (($ $ (-998) (-707)) 36) (($ $ (-587 (-998)) (-587 (-707))) 35) (($ $ (-707)) 254) (($ $) 252) (($ $ (-1084)) 246 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084))) 245 (|has| |#1| (-828 (-1084)))) (($ $ (-1084) (-707)) 244 (|has| |#1| (-828 (-1084)))) (($ $ (-587 (-1084)) (-587 (-707))) 243 (|has| |#1| (-828 (-1084)))) (($ $ (-1 |#1| |#1|) (-707)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1597 (((-108) $ $) 76 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 75 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 6)) (-1588 (((-108) $ $) 77 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 74 (|has| |#1| (-783)))) (-1648 (($ $ |#1|) 156 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 158 (|has| |#1| (-37 (-381 (-521))))) (($ (-381 (-521)) $) 157 (|has| |#1| (-37 (-381 (-521))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1141 |#1|) (-1196) (-970)) (T -1141))
-((-2794 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-1141 *4)) (-4 *4 (-970)) (-5 *2 (-1165 *4)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-5 *2 (-1080 *3)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-970)) (-4 *1 (-1141 *3)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-2297 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *3 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-1141 *3)))) (-3241 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-1141 *4)))) (-4176 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-1587 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)))) (-2193 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))) (-3052 (*1 *2 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))) (-2550 (*1 *2 *2 *2) (-12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)))) (-3490 (*1 *2 *1 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)) (-5 *2 (-707)))) (-4127 (*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-1288 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-1288 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)))) (-2317 (*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))) (-2483 (*1 *2 *1 *1) (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-5 *2 (-2 (|:| -2979 *3) (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-1141 *3)))) (-4046 (*1 *2 *1 *1) (-12 (-4 *3 (-425)) (-4 *3 (-970)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1141 *3)))) (-2550 (*1 *2 *3 *2) (-12 (-5 *3 (-381 *1)) (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))))
-(-13 (-877 |t#1| (-707) (-998)) (-261 |t#1| |t#1|) (-261 $ $) (-210) (-208 |t#1|) (-10 -8 (-15 -2794 ((-1165 |t#1|) $ (-707))) (-15 -1810 ((-1080 |t#1|) $)) (-15 -3800 ($ (-1080 |t#1|))) (-15 -3381 ($ $ (-707))) (-15 -2297 ((-3 $ "failed") $ (-707))) (-15 -2966 ((-2 (|:| -3852 $) (|:| -2334 $)) $ $)) (-15 -3241 ((-2 (|:| -3852 $) (|:| -2334 $)) $ (-707))) (-15 -4176 ($ $ (-707))) (-15 -1587 ($ $ (-707))) (-15 -2924 ($ $ $)) (-15 -2193 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1060)) (-6 (-1060)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -3011 (|t#1| $)) (-15 -3052 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-513)) (PROGN (-6 (-261 (-381 $) (-381 $))) (-15 -2550 ((-381 $) (-381 $) (-381 $))) (-15 -3490 ((-707) $ $)) (-15 -4127 ($ $ $)) (-15 -1288 ((-3 $ "failed") $ $)) (-15 -1288 ((-3 (-381 $) "failed") (-381 $) $)) (-15 -2317 ($ $ $)) (-15 -2483 ((-2 (|:| -2979 |t#1|) (|:| -3852 $) (|:| -2334 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-425)) (-15 -4046 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-337)) (PROGN (-6 (-282)) (-6 -4229) (-15 -2550 (|t#1| (-381 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (-15 -1749 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-707)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-562 (-497)) -12 (|has| (-998) (-562 (-497))) (|has| |#1| (-562 (-497)))) ((-562 (-820 (-353))) -12 (|has| (-998) (-562 (-820 (-353)))) (|has| |#1| (-562 (-820 (-353))))) ((-562 (-820 (-521))) -12 (|has| (-998) (-562 (-820 (-521)))) (|has| |#1| (-562 (-820 (-521))))) ((-208 |#1|) . T) ((-210) . T) ((-261 (-381 $) (-381 $)) |has| |#1| (-513)) ((-261 |#1| |#1|) . T) ((-261 $ $) . T) ((-265) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-284 $) . T) ((-300 |#1| #0#) . T) ((-351 |#1|) . T) ((-385 |#1|) . T) ((-425) -3703 (|has| |#1| (-837)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-482 #2=(-998) |#1|) . T) ((-482 #2# $) . T) ((-482 $ $) . T) ((-513) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-589 #1#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-583 (-521)) |has| |#1| (-583 (-521))) ((-583 |#1|) . T) ((-654 #1#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337))) ((-663) . T) ((-783) |has| |#1| (-783)) ((-828 #2#) . T) ((-828 (-1084)) |has| |#1| (-828 (-1084))) ((-814 (-353)) -12 (|has| (-998) (-814 (-353))) (|has| |#1| (-814 (-353)))) ((-814 (-521)) -12 (|has| (-998) (-814 (-521))) (|has| |#1| (-814 (-521)))) ((-877 |#1| #0# #2#) . T) ((-837) |has| |#1| (-837)) ((-848) |has| |#1| (-337)) ((-961 (-381 (-521))) |has| |#1| (-961 (-381 (-521)))) ((-961 (-521)) |has| |#1| (-961 (-521))) ((-961 #2#) . T) ((-961 |#1|) . T) ((-976 #1#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-837)) (|has| |#1| (-513)) (|has| |#1| (-425)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1060) |has| |#1| (-1060)) ((-1123) |has| |#1| (-837)))
-((-4085 (((-587 (-998)) $) 28)) (-3157 (($ $) 25)) (-4044 (($ |#2| |#3|) NIL) (($ $ (-998) |#3|) 22) (($ $ (-587 (-998)) (-587 |#3|)) 20)) (-3130 (($ $) 14)) (-3140 ((|#2| $) 12)) (-2098 ((|#3| $) 10)))
-(((-1142 |#1| |#2| |#3|) (-10 -8 (-15 -4085 ((-587 (-998)) |#1|)) (-15 -4044 (|#1| |#1| (-587 (-998)) (-587 |#3|))) (-15 -4044 (|#1| |#1| (-998) |#3|)) (-15 -3157 (|#1| |#1|)) (-15 -4044 (|#1| |#2| |#3|)) (-15 -2098 (|#3| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3140 (|#2| |#1|))) (-1143 |#2| |#3|) (-970) (-728)) (T -1142))
-NIL
-(-10 -8 (-15 -4085 ((-587 (-998)) |#1|)) (-15 -4044 (|#1| |#1| (-587 (-998)) (-587 |#3|))) (-15 -4044 (|#1| |#1| (-998) |#3|)) (-15 -3157 (|#1| |#1|)) (-15 -4044 (|#1| |#2| |#3|)) (-15 -2098 (|#3| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3140 (|#2| |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 (-998)) $) 74)) (-1638 (((-1084) $) 103)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2868 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-3704 (((-1065 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-4193 (((-108) $) 73)) (-3490 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3637 (((-108) $) 31)) (-3381 (($ $ (-849)) 101)) (-3573 (((-108) $) 62)) (-4044 (($ |#1| |#2|) 61) (($ $ (-998) |#2|) 76) (($ $ (-587 (-998)) (-587 |#2|)) 75)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2191 (($ $ |#2|) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-2313 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2550 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1025)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2098 ((|#2| $) 64)) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-1499 ((|#1| $ |#2|) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1952 ((|#1| $) 102)) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-3893 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-1143 |#1| |#2|) (-1196) (-970) (-728)) (T -1143))
-((-3704 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-1065 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (-5 *2 (-1084)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-3490 (*1 *2 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2868 (*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2868 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-3893 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2223 (*2 (-1084)))) (-4 *2 (-970)))) (-2191 (*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))) (-2313 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1065 *3)))))
-(-13 (-899 |t#1| |t#2| (-998)) (-10 -8 (-15 -3704 ((-1065 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2550 (|t#1| $ |t#2|)) (-15 -1638 ((-1084) $)) (-15 -1952 (|t#1| $)) (-15 -3381 ($ $ (-849))) (-15 -3490 (|t#2| $)) (-15 -3490 (|t#2| $ |t#2|)) (-15 -2868 ($ $ |t#2|)) (-15 -2868 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2223 (|t#1| (-1084)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3893 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2191 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-261 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-210)) (IF (|has| |t#1| (-828 (-1084))) (-6 (-828 (-1084))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2313 ((-1065 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-261 $ $) |has| |#2| (-1025)) ((-265) |has| |#1| (-513)) ((-513) |has| |#1| (-513)) ((-589 #0#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-828 (-1084)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-828 (-1084)))) ((-899 |#1| |#2| (-998)) . T) ((-976 #0#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-2694 ((|#2| |#2|) 12)) (-2337 (((-392 |#2|) |#2|) 14)) (-2576 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521)))) 30)))
-(((-1144 |#1| |#2|) (-10 -7 (-15 -2337 ((-392 |#2|) |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -2576 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521)))))) (-513) (-13 (-1141 |#1|) (-513) (-10 -8 (-15 -2286 ($ $ $))))) (T -1144))
-((-2576 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-521)))) (-4 *4 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2286 ($ $ $))))) (-4 *3 (-513)) (-5 *1 (-1144 *3 *4)))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-513)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2286 ($ $ $))))))) (-2337 (*1 *2 *3) (-12 (-4 *4 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-1144 *4 *3)) (-4 *3 (-13 (-1141 *4) (-513) (-10 -8 (-15 -2286 ($ $ $))))))))
-(-10 -7 (-15 -2337 ((-392 |#2|) |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -2576 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-521))))))
-((-1393 (((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|)) 23)))
-(((-1145 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1393 ((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|)))) (-970) (-970) (-1084) (-1084) |#1| |#2|) (T -1145))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5 *7 *9)) (-4 *5 (-970)) (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1150 *6 *8 *10)) (-5 *1 (-1145 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1084)))))
-(-10 -7 (-15 -1393 ((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 (-998)) $) 74)) (-1638 (((-1084) $) 103)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) 98) (($ $ (-381 (-521)) (-381 (-521))) 97)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 105)) (-2910 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 162 (|has| |#1| (-337)))) (-2337 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1984 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2886 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) 172)) (-2932 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) 17 T CONST)) (-2302 (($ $ $) 157 (|has| |#1| (-337)))) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 156 (|has| |#1| (-337)))) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2100 (((-108) $) 164 (|has| |#1| (-337)))) (-4193 (((-108) $) 73)) (-2840 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) 100) (((-381 (-521)) $ (-381 (-521))) 99)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) 101) (($ $ (-381 (-521))) 171)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3573 (((-108) $) 62)) (-4044 (($ |#1| (-381 (-521))) 61) (($ $ (-998) (-381 (-521))) 76) (($ $ (-587 (-998)) (-587 (-381 (-521)))) 75)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-2254 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-4024 (((-1067) $) 9)) (-3100 (($ $) 165 (|has| |#1| (-337)))) (-1749 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-886)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2286 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1974 (((-392 $) $) 161 (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 158 (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3265 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) 154 (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) 104) (($ $ $) 81 (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 155 (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-2098 (((-381 (-521)) $) 64)) (-1787 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1952 ((|#1| $) 102)) (-1811 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1795 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-1146 |#1|) (-1196) (-970)) (T -1146))
-((-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4)))) (-4 *4 (-970)) (-4 *1 (-1146 *4)))) (-3381 (*1 *1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-1146 *3)) (-4 *3 (-970)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))) (-1749 (*1 *1 *1 *2) (-3703 (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970)) (-12 (-4 *3 (-29 (-521))) (-4 *3 (-886)) (-4 *3 (-1105)) (-4 *3 (-37 (-381 (-521)))))) (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970)) (-12 (|has| *3 (-15 -4085 ((-587 *2) *3))) (|has| *3 (-15 -1749 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521)))))))))
-(-13 (-1143 |t#1| (-381 (-521))) (-10 -8 (-15 -2776 ($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |t#1|))))) (-15 -3381 ($ $ (-381 (-521)))) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $)) (IF (|has| |t#1| (-15 -1749 (|t#1| |t#1| (-1084)))) (IF (|has| |t#1| (-15 -4085 ((-587 (-1084)) |t#1|))) (-15 -1749 ($ $ (-1084))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-29 (-521))) (-15 -1749 ($ $ (-1084))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-927)) (-6 (-1105))) |%noBranch|) (IF (|has| |t#1| (-337)) (-6 (-337)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-381 (-521))) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-381 (-521)) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-337) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-828 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-848) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1123) |has| |#1| (-337)) ((-1143 |#1| #0#) . T))
-((-3398 (((-108) $) 12)) (-1296 (((-3 |#3| "failed") $) 17)) (-1496 ((|#3| $) 14)))
-(((-1147 |#1| |#2| |#3|) (-10 -8 (-15 -1496 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -3398 ((-108) |#1|))) (-1148 |#2| |#3|) (-970) (-1125 |#2|)) (T -1147))
-NIL
-(-10 -8 (-15 -1496 (|#3| |#1|)) (-15 -1296 ((-3 |#3| "failed") |#1|)) (-15 -3398 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 (-998)) $) 74)) (-1638 (((-1084) $) 103)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) 98) (($ $ (-381 (-521)) (-381 (-521))) 97)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 105)) (-2910 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 162 (|has| |#1| (-337)))) (-2337 (((-392 $) $) 163 (|has| |#1| (-337)))) (-1984 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) 153 (|has| |#1| (-337)))) (-2886 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) 172)) (-2932 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#2| "failed") $) 183)) (-1496 ((|#2| $) 182)) (-2302 (($ $ $) 157 (|has| |#1| (-337)))) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-1844 (((-381 (-521)) $) 180)) (-2282 (($ $ $) 156 (|has| |#1| (-337)))) (-3080 (($ (-381 (-521)) |#2|) 181)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 151 (|has| |#1| (-337)))) (-2100 (((-108) $) 164 (|has| |#1| (-337)))) (-4193 (((-108) $) 73)) (-2840 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) 100) (((-381 (-521)) $ (-381 (-521))) 99)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) 101) (($ $ (-381 (-521))) 171)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 160 (|has| |#1| (-337)))) (-3573 (((-108) $) 62)) (-4044 (($ |#1| (-381 (-521))) 61) (($ $ (-998) (-381 (-521))) 76) (($ $ (-587 (-998)) (-587 (-381 (-521)))) 75)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-2254 (($ (-587 $)) 149 (|has| |#1| (-337))) (($ $ $) 148 (|has| |#1| (-337)))) (-1805 ((|#2| $) 179)) (-1259 (((-3 |#2| "failed") $) 177)) (-3070 ((|#2| $) 178)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 165 (|has| |#1| (-337)))) (-1749 (($ $) 170 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 169 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-886)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 150 (|has| |#1| (-337)))) (-2286 (($ (-587 $)) 147 (|has| |#1| (-337))) (($ $ $) 146 (|has| |#1| (-337)))) (-1974 (((-392 $) $) 161 (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 158 (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 152 (|has| |#1| (-337)))) (-3265 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) 154 (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) 104) (($ $ $) 81 (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 155 (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-2098 (((-381 (-521)) $) 64)) (-1787 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 184) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1952 ((|#1| $) 102)) (-1811 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1795 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 166 (|has| |#1| (-337)))) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337))) (($ $ $) 168 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 167 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-1148 |#1| |#2|) (-1196) (-970) (-1125 |t#1|)) (T -1148))
-((-2098 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3)) (-5 *2 (-381 (-521))))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *1 (-1148 *3 *2)) (-4 *2 (-1125 *3)))) (-3080 (*1 *1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-4 *4 (-970)) (-4 *1 (-1148 *4 *3)) (-4 *3 (-1125 *4)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3)) (-5 *2 (-381 (-521))))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))) (-1259 (*1 *2 *1) (|partial| -12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))))
-(-13 (-1146 |t#1|) (-961 |t#2|) (-10 -8 (-15 -3080 ($ (-381 (-521)) |t#2|)) (-15 -1844 ((-381 (-521)) $)) (-15 -1805 (|t#2| $)) (-15 -2098 ((-381 (-521)) $)) (-15 -2223 ($ |t#2|)) (-15 -3070 (|t#2| $)) (-15 -1259 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-381 (-521))) . T) ((-25) . T) ((-37 #1=(-381 (-521))) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) ((-220) |has| |#1| (-337)) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-381 (-521)) (-1025)) ((-265) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-282) |has| |#1| (-337)) ((-337) |has| |#1| (-337)) ((-425) |has| |#1| (-337)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-589 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337))) ((-663) . T) ((-828 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-848) |has| |#1| (-337)) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-961 |#2|) . T) ((-976 #1#) -3703 (|has| |#1| (-337)) (|has| |#1| (-37 (-381 (-521))))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-337)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1123) |has| |#1| (-337)) ((-1143 |#1| #0#) . T) ((-1146 |#1|) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 96)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) 106) (($ $ (-381 (-521)) (-381 (-521))) 108)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) 51)) (-2910 (($ $) 179 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 155 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) 175 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 151 (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) 61)) (-2932 (($ $) 183 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 159 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL)) (-1496 ((|#2| $) NIL)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) 79)) (-1844 (((-381 (-521)) $) 12)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-3080 (($ (-381 (-521)) |#2|) 10)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-4193 (((-108) $) 68)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) 103) (((-381 (-521)) $ (-381 (-521))) 104)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) 120) (($ $ (-381 (-521))) 118)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-381 (-521))) 31) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) 115)) (-1253 (($ $) 149 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1805 ((|#2| $) 11)) (-1259 (((-3 |#2| "failed") $) 41)) (-3070 ((|#2| $) 42)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) 93 (|has| |#1| (-337)))) (-1749 (($ $) 135 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 140 (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105)))))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) 112)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) 147 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) 100) (($ $ $) 86 (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) 127 (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-2098 (((-381 (-521)) $) 16)) (-1787 (($ $) 185 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 161 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 181 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 157 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 177 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 153 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 110)) (-2223 (((-791) $) NIL) (($ (-521)) 35) (($ |#1|) 27 (|has| |#1| (-157))) (($ |#2|) 32) (($ (-381 (-521))) 128 (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) 99)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) 117)) (-1952 ((|#1| $) 98)) (-1811 (($ $) 191 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 167 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) 187 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 163 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 195 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 171 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 197 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 173 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 193 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 169 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 189 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 165 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 21 T CONST)) (-3572 (($) 17 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1549 (((-108) $ $) 66)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) 92 (|has| |#1| (-337)))) (-1639 (($ $) 131) (($ $ $) 72)) (-1628 (($ $ $) 70)) (** (($ $ (-849)) NIL) (($ $ (-707)) 76) (($ $ (-521)) 144 (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 145 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1149 |#1| |#2|) (-1148 |#1| |#2|) (-970) (-1125 |#1|)) (T -1149))
-NIL
-(-1148 |#1| |#2|)
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 11)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) NIL (|has| |#1| (-513)))) (-2868 (($ $ (-381 (-521))) NIL) (($ $ (-381 (-521)) (-381 (-521))) NIL)) (-3704 (((-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|))) $) NIL)) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-2694 (($ $) NIL (|has| |#1| (-337)))) (-2337 (((-392 $) $) NIL (|has| |#1| (-337)))) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2165 (((-108) $ $) NIL (|has| |#1| (-337)))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-707) (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#1|)))) NIL)) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-1129 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1157 |#1| |#2| |#3|) "failed") $) 22)) (-1496 (((-1129 |#1| |#2| |#3|) $) NIL) (((-1157 |#1| |#2| |#3|) $) NIL)) (-2302 (($ $ $) NIL (|has| |#1| (-337)))) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1844 (((-381 (-521)) $) 57)) (-2282 (($ $ $) NIL (|has| |#1| (-337)))) (-3080 (($ (-381 (-521)) (-1129 |#1| |#2| |#3|)) NIL)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) NIL (|has| |#1| (-337)))) (-2100 (((-108) $) NIL (|has| |#1| (-337)))) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-381 (-521)) $) NIL) (((-381 (-521)) $ (-381 (-521))) NIL)) (-3637 (((-108) $) NIL)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) NIL) (($ $ (-381 (-521))) NIL)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-381 (-521))) 29) (($ $ (-998) (-381 (-521))) NIL) (($ $ (-587 (-998)) (-587 (-381 (-521)))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-2254 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1805 (((-1129 |#1| |#2| |#3|) $) 60)) (-1259 (((-3 (-1129 |#1| |#2| |#3|) "failed") $) NIL)) (-3070 (((-1129 |#1| |#2| |#3|) $) NIL)) (-4024 (((-1067) $) NIL)) (-3100 (($ $) NIL (|has| |#1| (-337)))) (-1749 (($ $) 38 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) NIL (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 39 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) NIL (|has| |#1| (-337)))) (-2286 (($ (-587 $)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1974 (((-392 $) $) NIL (|has| |#1| (-337)))) (-2283 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-337))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) NIL (|has| |#1| (-337)))) (-2191 (($ $ (-381 (-521))) NIL)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3611 (((-3 (-587 $) "failed") (-587 $) $) NIL (|has| |#1| (-337)))) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))))) (-3794 (((-707) $) NIL (|has| |#1| (-337)))) (-2550 ((|#1| $ (-381 (-521))) NIL) (($ $ $) NIL (|has| (-381 (-521)) (-1025)))) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) NIL (|has| |#1| (-337)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $ (-1161 |#2|)) 37)) (-2098 (((-381 (-521)) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) NIL)) (-2223 (((-791) $) 88) (($ (-521)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1129 |#1| |#2| |#3|)) 16) (($ (-1157 |#1| |#2| |#3|)) 17) (($ (-1161 |#2|)) 35) (($ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513)))) (-1499 ((|#1| $ (-381 (-521))) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 12)) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-381 (-521))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-381 (-521))))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337)))) (-3562 (($) 31 T CONST)) (-3572 (($) 26 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-381 (-521)) |#1|))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 33)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ (-521)) NIL (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1150 |#1| |#2| |#3|) (-13 (-1148 |#1| (-1129 |#1| |#2| |#3|)) (-961 (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1150))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1148 |#1| (-1129 |#1| |#2| |#3|)) (-961 (-1157 |#1| |#2| |#3|)) (-10 -8 (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 32)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL)) (-1954 (($ $) NIL)) (-3795 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 (-521) "failed") $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-521)))) (((-3 (-381 (-521)) "failed") $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-381 (-521))))) (((-3 (-1150 |#2| |#3| |#4|) "failed") $) 20)) (-1496 (((-521) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-521)))) (((-381 (-521)) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-961 (-381 (-521))))) (((-1150 |#2| |#3| |#4|) $) NIL)) (-3157 (($ $) 33)) (-2783 (((-3 $ "failed") $) 25)) (-1563 (($ $) NIL (|has| (-1150 |#2| |#3| |#4|) (-425)))) (-1709 (($ $ (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|) $) NIL)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) 11)) (-3573 (((-108) $) NIL)) (-4044 (($ (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) 23)) (-2401 (((-293 |#2| |#3| |#4|) $) NIL)) (-2310 (($ (-1 (-293 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) $) NIL)) (-1393 (($ (-1 (-1150 |#2| |#3| |#4|) (-1150 |#2| |#3| |#4|)) $) NIL)) (-3522 (((-3 (-776 |#2|) "failed") $) 73)) (-3130 (($ $) NIL)) (-3140 (((-1150 |#2| |#3| |#4|) $) 18)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3110 (((-108) $) NIL)) (-3120 (((-1150 |#2| |#3| |#4|) $) NIL)) (-2261 (((-3 $ "failed") $ (-1150 |#2| |#3| |#4|)) NIL (|has| (-1150 |#2| |#3| |#4|) (-513))) (((-3 $ "failed") $ $) NIL)) (-3930 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-293 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#2|)))))) (|:| |%type| (-1067))) "failed") $) 56)) (-2098 (((-293 |#2| |#3| |#4|) $) 14)) (-1391 (((-1150 |#2| |#3| |#4|) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-425)))) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ (-1150 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-381 (-521))) NIL (-3703 (|has| (-1150 |#2| |#3| |#4|) (-37 (-381 (-521)))) (|has| (-1150 |#2| |#3| |#4|) (-961 (-381 (-521))))))) (-2730 (((-587 (-1150 |#2| |#3| |#4|)) $) NIL)) (-1499 (((-1150 |#2| |#3| |#4|) $ (-293 |#2| |#3| |#4|)) NIL)) (-2446 (((-3 $ "failed") $) NIL (|has| (-1150 |#2| |#3| |#4|) (-133)))) (-1592 (((-707)) NIL)) (-1413 (($ $ $ (-707)) NIL (|has| (-1150 |#2| |#3| |#4|) (-157)))) (-1842 (((-108) $ $) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 61 T CONST)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ (-1150 |#2| |#3| |#4|)) NIL (|has| (-1150 |#2| |#3| |#4|) (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ (-1150 |#2| |#3| |#4|)) NIL) (($ (-1150 |#2| |#3| |#4|) $) NIL) (($ (-381 (-521)) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| (-1150 |#2| |#3| |#4|) (-37 (-381 (-521)))))))
-(((-1151 |#1| |#2| |#3| |#4|) (-13 (-300 (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) (-513) (-10 -8 (-15 -3522 ((-3 (-776 |#2|) "failed") $)) (-15 -3930 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-293 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#2|)))))) (|:| |%type| (-1067))) "failed") $)))) (-13 (-783) (-961 (-521)) (-583 (-521)) (-425)) (-13 (-27) (-1105) (-404 |#1|)) (-1084) |#2|) (T -1151))
-((-3522 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425))) (-5 *2 (-776 *4)) (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4))) (-3930 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 *4 *5 *6)) (|:| |%expon| (-293 *4 *5 *6)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4)))))) (|:| |%type| (-1067)))) (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084)) (-14 *6 *4))))
-(-13 (-300 (-1150 |#2| |#3| |#4|) (-293 |#2| |#3| |#4|)) (-513) (-10 -8 (-15 -3522 ((-3 (-776 |#2|) "failed") $)) (-15 -3930 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-293 |#2| |#3| |#4|)) (|:| |%expTerms| (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| |#2|)))))) (|:| |%type| (-1067))) "failed") $))))
-((-3434 ((|#2| $) 29)) (-2135 ((|#2| $) 18)) (-3830 (($ $) 36)) (-2506 (($ $ (-521)) 64)) (-1269 (((-108) $ (-707)) 33)) (-2603 ((|#2| $ |#2|) 61)) (-1561 ((|#2| $ |#2|) 59)) (-2396 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1871 (($ $ (-587 $)) 60)) (-2124 ((|#2| $) 17)) (-2329 (($ $) NIL) (($ $ (-707)) 42)) (-1671 (((-587 $) $) 26)) (-1368 (((-108) $ $) 50)) (-1513 (((-108) $ (-707)) 32)) (-2859 (((-108) $ (-707)) 31)) (-2426 (((-108) $) 28)) (-1450 ((|#2| $) 24) (($ $ (-707)) 46)) (-2550 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1475 (((-108) $) 22)) (-1290 (($ $) 39)) (-2780 (($ $) 65)) (-1602 (((-707) $) 41)) (-1376 (($ $) 40)) (-4159 (($ $ $) 58) (($ |#2| $) NIL)) (-3165 (((-587 $) $) 27)) (-1549 (((-108) $ $) 48)) (-3478 (((-707) $) 35)))
-(((-1152 |#1| |#2|) (-10 -8 (-15 -2506 (|#1| |#1| (-521))) (-15 -2396 (|#2| |#1| "last" |#2|)) (-15 -1561 (|#2| |#1| |#2|)) (-15 -2396 (|#1| |#1| "rest" |#1|)) (-15 -2396 (|#2| |#1| "first" |#2|)) (-15 -2780 (|#1| |#1|)) (-15 -1290 (|#1| |#1|)) (-15 -1602 ((-707) |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2124 (|#2| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1450 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "last")) (-15 -1450 (|#2| |#1|)) (-15 -2329 (|#1| |#1| (-707))) (-15 -2550 (|#1| |#1| "rest")) (-15 -2329 (|#1| |#1|)) (-15 -2550 (|#2| |#1| "first")) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2603 (|#2| |#1| |#2|)) (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -1871 (|#1| |#1| (-587 |#1|))) (-15 -1368 ((-108) |#1| |#1|)) (-15 -1475 ((-108) |#1|)) (-15 -2550 (|#2| |#1| "value")) (-15 -3434 (|#2| |#1|)) (-15 -2426 ((-108) |#1|)) (-15 -1671 ((-587 |#1|) |#1|)) (-15 -3165 ((-587 |#1|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707)))) (-1153 |#2|) (-1119)) (T -1152))
-NIL
-(-10 -8 (-15 -2506 (|#1| |#1| (-521))) (-15 -2396 (|#2| |#1| "last" |#2|)) (-15 -1561 (|#2| |#1| |#2|)) (-15 -2396 (|#1| |#1| "rest" |#1|)) (-15 -2396 (|#2| |#1| "first" |#2|)) (-15 -2780 (|#1| |#1|)) (-15 -1290 (|#1| |#1|)) (-15 -1602 ((-707) |#1|)) (-15 -1376 (|#1| |#1|)) (-15 -2135 (|#2| |#1|)) (-15 -2124 (|#2| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1450 (|#1| |#1| (-707))) (-15 -2550 (|#2| |#1| "last")) (-15 -1450 (|#2| |#1|)) (-15 -2329 (|#1| |#1| (-707))) (-15 -2550 (|#1| |#1| "rest")) (-15 -2329 (|#1| |#1|)) (-15 -2550 (|#2| |#1| "first")) (-15 -4159 (|#1| |#2| |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -2603 (|#2| |#1| |#2|)) (-15 -2396 (|#2| |#1| "value" |#2|)) (-15 -1871 (|#1| |#1| (-587 |#1|))) (-15 -1368 ((-108) |#1| |#1|)) (-15 -1475 ((-108) |#1|)) (-15 -2550 (|#2| |#1| "value")) (-15 -3434 (|#2| |#1|)) (-15 -2426 ((-108) |#1|)) (-15 -1671 ((-587 |#1|) |#1|)) (-15 -3165 ((-587 |#1|) |#1|)) (-15 -1549 ((-108) |#1| |#1|)) (-15 -3478 ((-707) |#1|)) (-15 -1269 ((-108) |#1| (-707))) (-15 -1513 ((-108) |#1| (-707))) (-15 -2859 ((-108) |#1| (-707))))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3434 ((|#1| $) 48)) (-2135 ((|#1| $) 65)) (-3830 (($ $) 67)) (-2506 (($ $ (-521)) 52 (|has| $ (-6 -4234)))) (-1269 (((-108) $ (-707)) 8)) (-2603 ((|#1| $ |#1|) 39 (|has| $ (-6 -4234)))) (-1471 (($ $ $) 56 (|has| $ (-6 -4234)))) (-1561 ((|#1| $ |#1|) 54 (|has| $ (-6 -4234)))) (-2068 ((|#1| $ |#1|) 58 (|has| $ (-6 -4234)))) (-2396 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4234))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4234))) (($ $ "rest" $) 55 (|has| $ (-6 -4234))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4234)))) (-1871 (($ $ (-587 $)) 41 (|has| $ (-6 -4234)))) (-2124 ((|#1| $) 66)) (-2231 (($) 7 T CONST)) (-2329 (($ $) 73) (($ $ (-707)) 71)) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-1671 (((-587 $) $) 50)) (-1368 (((-108) $ $) 42 (|has| |#1| (-1013)))) (-1513 (((-108) $ (-707)) 9)) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35)) (-2859 (((-108) $ (-707)) 10)) (-1278 (((-587 |#1|) $) 45)) (-2426 (((-108) $) 49)) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1450 ((|#1| $) 70) (($ $ (-707)) 68)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 76) (($ $ (-707)) 74)) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1557 (((-521) $ $) 44)) (-1475 (((-108) $) 46)) (-1290 (($ $) 62)) (-2780 (($ $) 59 (|has| $ (-6 -4234)))) (-1602 (((-707) $) 63)) (-1376 (($ $) 64)) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-2420 (($ $) 13)) (-2240 (($ $ $) 61 (|has| $ (-6 -4234))) (($ $ |#1|) 60 (|has| $ (-6 -4234)))) (-4159 (($ $ $) 78) (($ |#1| $) 77)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-3165 (((-587 $) $) 51)) (-2960 (((-108) $ $) 43 (|has| |#1| (-1013)))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1153 |#1|) (-1196) (-1119)) (T -1153))
-((-4159 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-4159 (*1 *1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2319 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-2329 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2550 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2550 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-1450 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-1602 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))) (-1290 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2240 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2240 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2780 (*1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2068 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2396 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-1471 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2396 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))) (-1561 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2396 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))) (-2506 (*1 *1 *1 *2) (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3)) (-4 *3 (-1119)))))
-(-13 (-935 |t#1|) (-10 -8 (-15 -4159 ($ $ $)) (-15 -4159 ($ |t#1| $)) (-15 -2319 (|t#1| $)) (-15 -2550 (|t#1| $ "first")) (-15 -2319 ($ $ (-707))) (-15 -2329 ($ $)) (-15 -2550 ($ $ "rest")) (-15 -2329 ($ $ (-707))) (-15 -1450 (|t#1| $)) (-15 -2550 (|t#1| $ "last")) (-15 -1450 ($ $ (-707))) (-15 -3830 ($ $)) (-15 -2124 (|t#1| $)) (-15 -2135 (|t#1| $)) (-15 -1376 ($ $)) (-15 -1602 ((-707) $)) (-15 -1290 ($ $)) (IF (|has| $ (-6 -4234)) (PROGN (-15 -2240 ($ $ $)) (-15 -2240 ($ $ |t#1|)) (-15 -2780 ($ $)) (-15 -2068 (|t#1| $ |t#1|)) (-15 -2396 (|t#1| $ "first" |t#1|)) (-15 -1471 ($ $ $)) (-15 -2396 ($ $ "rest" $)) (-15 -1561 (|t#1| $ |t#1|)) (-15 -2396 (|t#1| $ "last" |t#1|)) (-15 -2506 ($ $ (-521)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1013)) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-561 (-791)))) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-460 |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-935 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1119) . T))
-((-1393 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1154 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1393 (|#4| (-1 |#2| |#1|) |#3|))) (-970) (-970) (-1156 |#1|) (-1156 |#2|)) (T -1154))
-((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970)) (-4 *2 (-1156 *6)) (-5 *1 (-1154 *5 *6 *4 *2)) (-4 *4 (-1156 *5)))))
-(-10 -7 (-15 -1393 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3398 (((-108) $) 15)) (-2910 (($ $) 91)) (-2775 (($ $) 67)) (-2886 (($ $) 87)) (-2752 (($ $) 63)) (-2932 (($ $) 95)) (-2796 (($ $) 71)) (-1253 (($ $) 61)) (-3265 (($ $) 59)) (-1787 (($ $) 97)) (-2806 (($ $) 73)) (-2921 (($ $) 93)) (-2786 (($ $) 69)) (-2898 (($ $) 89)) (-2764 (($ $) 65)) (-2223 (((-791) $) 47) (($ (-521)) NIL) (($ (-381 (-521))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1811 (($ $) 103)) (-2838 (($ $) 79)) (-1795 (($ $) 99)) (-2817 (($ $) 75)) (-1830 (($ $) 107)) (-2862 (($ $) 83)) (-3919 (($ $) 109)) (-2874 (($ $) 85)) (-1821 (($ $) 105)) (-2850 (($ $) 81)) (-1803 (($ $) 101)) (-2827 (($ $) 77)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-381 (-521))) 57)))
-(((-1155 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -2775 (|#1| |#1|)) (-15 -2752 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -2764 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)) (-15 -2850 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2838 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-849))) (-15 -3398 ((-108) |#1|)) (-15 -2223 ((-791) |#1|))) (-1156 |#2|) (-970)) (T -1155))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-381 (-521)))) (-15 -2775 (|#1| |#1|)) (-15 -2752 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -2764 (|#1| |#1|)) (-15 -2827 (|#1| |#1|)) (-15 -2850 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -2817 (|#1| |#1|)) (-15 -2838 (|#1| |#1|)) (-15 -2898 (|#1| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -2932 (|#1| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -1821 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -1795 (|#1| |#1|)) (-15 -1811 (|#1| |#1|)) (-15 -1253 (|#1| |#1|)) (-15 -3265 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2223 (|#1| |#2|)) (-15 -2223 (|#1| |#1|)) (-15 -2223 (|#1| (-381 (-521)))) (-15 -2223 (|#1| (-521))) (-15 ** (|#1| |#1| (-707))) (-15 ** (|#1| |#1| (-849))) (-15 -3398 ((-108) |#1|)) (-15 -2223 ((-791) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4085 (((-587 (-998)) $) 74)) (-1638 (((-1084) $) 103)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 51 (|has| |#1| (-513)))) (-1954 (($ $) 52 (|has| |#1| (-513)))) (-3795 (((-108) $) 54 (|has| |#1| (-513)))) (-2868 (($ $ (-707)) 98) (($ $ (-707) (-707)) 97)) (-3704 (((-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|))) $) 105)) (-2910 (($ $) 135 (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) 118 (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) 19)) (-1984 (($ $) 117 (|has| |#1| (-37 (-381 (-521)))))) (-2886 (($ $) 134 (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) 119 (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|)))) 155) (($ (-1065 |#1|)) 153)) (-2932 (($ $) 133 (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) 120 (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) 17 T CONST)) (-3157 (($ $) 60)) (-2783 (((-3 $ "failed") $) 34)) (-2513 (($ $) 152)) (-2232 (((-880 |#1|) $ (-707)) 150) (((-880 |#1|) $ (-707) (-707)) 149)) (-4193 (((-108) $) 73)) (-2840 (($) 145 (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-707) $) 100) (((-707) $ (-707)) 99)) (-3637 (((-108) $) 31)) (-3743 (($ $ (-521)) 116 (|has| |#1| (-37 (-381 (-521)))))) (-3381 (($ $ (-849)) 101)) (-1653 (($ (-1 |#1| (-521)) $) 151)) (-3573 (((-108) $) 62)) (-4044 (($ |#1| (-707)) 61) (($ $ (-998) (-707)) 76) (($ $ (-587 (-998)) (-587 (-707))) 75)) (-1393 (($ (-1 |#1| |#1|) $) 63)) (-1253 (($ $) 142 (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) 65)) (-3140 ((|#1| $) 66)) (-4024 (((-1067) $) 9)) (-1749 (($ $) 147 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 146 (-3703 (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-886)) (|has| |#1| (-1105)) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-37 (-381 (-521)))))))) (-4146 (((-1031) $) 10)) (-2191 (($ $ (-707)) 95)) (-2261 (((-3 $ "failed") $ $) 50 (|has| |#1| (-513)))) (-3265 (($ $) 143 (|has| |#1| (-37 (-381 (-521)))))) (-2313 (((-1065 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-707)))))) (-2550 ((|#1| $ (-707)) 104) (($ $ $) 81 (|has| (-707) (-1025)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) 89 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084) (-707)) 88 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-587 (-1084))) 87 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084)) 86 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-707)) 84 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-2098 (((-707) $) 64)) (-1787 (($ $) 132 (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) 121 (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) 131 (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) 122 (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) 130 (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) 123 (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 72)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ (-381 (-521))) 57 (|has| |#1| (-37 (-381 (-521))))) (($ $) 49 (|has| |#1| (-513))) (($ |#1|) 47 (|has| |#1| (-157)))) (-2730 (((-1065 |#1|) $) 154)) (-1499 ((|#1| $ (-707)) 59)) (-2446 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-1592 (((-707)) 29)) (-1952 ((|#1| $) 102)) (-1811 (($ $) 141 (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) 129 (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) 53 (|has| |#1| (-513)))) (-1795 (($ $) 140 (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) 128 (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) 139 (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) 127 (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-707)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-707)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) 138 (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) 126 (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) 137 (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) 125 (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) 136 (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) 124 (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) 93 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084) (-707)) 92 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-587 (-1084))) 91 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-1084)) 90 (-12 (|has| |#1| (-828 (-1084))) (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (($ $ (-707)) 85 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 58 (|has| |#1| (-337)))) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ |#1|) 148 (|has| |#1| (-337))) (($ $ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 115 (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-381 (-521)) $) 56 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) 55 (|has| |#1| (-37 (-381 (-521)))))))
-(((-1156 |#1|) (-1196) (-970)) (T -1156))
-((-2776 (*1 *1 *2) (-12 (-5 *2 (-1065 (-2 (|:| |k| (-707)) (|:| |c| *3)))) (-4 *3 (-970)) (-4 *1 (-1156 *3)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-5 *2 (-1065 *3)))) (-2776 (*1 *1 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-4 *1 (-1156 *3)))) (-2513 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)))) (-1653 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1156 *3)) (-4 *3 (-970)))) (-2232 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970)) (-5 *2 (-880 *4)))) (-2232 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970)) (-5 *2 (-880 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-337)))) (-1749 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521)))))) (-1749 (*1 *1 *1 *2) (-3703 (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-12 (-4 *3 (-29 (-521))) (-4 *3 (-886)) (-4 *3 (-1105)) (-4 *3 (-37 (-381 (-521)))))) (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-12 (|has| *3 (-15 -4085 ((-587 *2) *3))) (|has| *3 (-15 -1749 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521)))))))))
-(-13 (-1143 |t#1| (-707)) (-10 -8 (-15 -2776 ($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |t#1|))))) (-15 -2730 ((-1065 |t#1|) $)) (-15 -2776 ($ (-1065 |t#1|))) (-15 -2513 ($ $)) (-15 -1653 ($ (-1 |t#1| (-521)) $)) (-15 -2232 ((-880 |t#1|) $ (-707))) (-15 -2232 ((-880 |t#1|) $ (-707) (-707))) (IF (|has| |t#1| (-337)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-381 (-521)))) (PROGN (-15 -1749 ($ $)) (IF (|has| |t#1| (-15 -1749 (|t#1| |t#1| (-1084)))) (IF (|has| |t#1| (-15 -4085 ((-587 (-1084)) |t#1|))) (-15 -1749 ($ $ (-1084))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-29 (-521))) (-15 -1749 ($ $ (-1084))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-927)) (-6 (-1105))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-707)) . T) ((-25) . T) ((-37 #1=(-381 (-521))) |has| |#1| (-37 (-381 (-521)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-513)) ((-34) |has| |#1| (-37 (-381 (-521)))) ((-91) |has| |#1| (-37 (-381 (-521)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-381 (-521)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-707) |#1|))) ((-259) |has| |#1| (-37 (-381 (-521)))) ((-261 $ $) |has| (-707) (-1025)) ((-265) |has| |#1| (-513)) ((-462) |has| |#1| (-37 (-381 (-521)))) ((-513) |has| |#1| (-513)) ((-589 #1#) |has| |#1| (-37 (-381 (-521)))) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #1#) |has| |#1| (-37 (-381 (-521)))) ((-654 |#1|) |has| |#1| (-157)) ((-654 $) |has| |#1| (-513)) ((-663) . T) ((-828 (-1084)) -12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084)))) ((-899 |#1| #0# (-998)) . T) ((-927) |has| |#1| (-37 (-381 (-521)))) ((-976 #1#) |has| |#1| (-37 (-381 (-521)))) ((-976 |#1|) . T) ((-976 $) -3703 (|has| |#1| (-513)) (|has| |#1| (-157))) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1105) |has| |#1| (-37 (-381 (-521)))) ((-1108) |has| |#1| (-37 (-381 (-521)))) ((-1143 |#1| #0#) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4085 (((-587 (-998)) $) NIL)) (-1638 (((-1084) $) 87)) (-4042 (((-1138 |#2| |#1|) $ (-707)) 73)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) NIL (|has| |#1| (-513)))) (-1954 (($ $) NIL (|has| |#1| (-513)))) (-3795 (((-108) $) 136 (|has| |#1| (-513)))) (-2868 (($ $ (-707)) 121) (($ $ (-707) (-707)) 123)) (-3704 (((-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|))) $) 42)) (-2910 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2775 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2057 (((-3 $ "failed") $ $) NIL)) (-1984 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2886 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2752 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2776 (($ (-1065 (-2 (|:| |k| (-707)) (|:| |c| |#1|)))) 53) (($ (-1065 |#1|)) NIL)) (-2932 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2796 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2231 (($) NIL T CONST)) (-1750 (($ $) 127)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-2513 (($ $) 134)) (-2232 (((-880 |#1|) $ (-707)) 63) (((-880 |#1|) $ (-707) (-707)) 65)) (-4193 (((-108) $) NIL)) (-2840 (($) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3490 (((-707) $) NIL) (((-707) $ (-707)) NIL)) (-3637 (((-108) $) NIL)) (-3169 (($ $) 111)) (-3743 (($ $ (-521)) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2022 (($ (-521) (-521) $) 129)) (-3381 (($ $ (-849)) 133)) (-1653 (($ (-1 |#1| (-521)) $) 105)) (-3573 (((-108) $) NIL)) (-4044 (($ |#1| (-707)) 15) (($ $ (-998) (-707)) NIL) (($ $ (-587 (-998)) (-587 (-707))) NIL)) (-1393 (($ (-1 |#1| |#1|) $) 93)) (-1253 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3130 (($ $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-2761 (($ $) 109)) (-1596 (($ $) 107)) (-3371 (($ (-521) (-521) $) 131)) (-1749 (($ $) 144 (|has| |#1| (-37 (-381 (-521))))) (($ $ (-1084)) 150 (-3703 (-12 (|has| |#1| (-15 -1749 (|#1| |#1| (-1084)))) (|has| |#1| (-15 -4085 ((-587 (-1084)) |#1|))) (|has| |#1| (-37 (-381 (-521))))) (-12 (|has| |#1| (-29 (-521))) (|has| |#1| (-37 (-381 (-521)))) (|has| |#1| (-886)) (|has| |#1| (-1105))))) (($ $ (-1161 |#2|)) 145 (|has| |#1| (-37 (-381 (-521)))))) (-4146 (((-1031) $) NIL)) (-2064 (($ $ (-521) (-521)) 115)) (-2191 (($ $ (-707)) 117)) (-2261 (((-3 $ "failed") $ $) NIL (|has| |#1| (-513)))) (-3265 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3796 (($ $) 113)) (-2313 (((-1065 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-707)))))) (-2550 ((|#1| $ (-707)) 90) (($ $ $) 125 (|has| (-707) (-1025)))) (-2193 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) 102 (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $ (-1161 |#2|)) 98)) (-2098 (((-707) $) NIL)) (-1787 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2806 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2921 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2786 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2898 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2764 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2145 (($ $) 119)) (-2223 (((-791) $) NIL) (($ (-521)) 24) (($ (-381 (-521))) 142 (|has| |#1| (-37 (-381 (-521))))) (($ $) NIL (|has| |#1| (-513))) (($ |#1|) 23 (|has| |#1| (-157))) (($ (-1138 |#2| |#1|)) 80) (($ (-1161 |#2|)) 20)) (-2730 (((-1065 |#1|) $) NIL)) (-1499 ((|#1| $ (-707)) 89)) (-2446 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-1592 (((-707)) NIL)) (-1952 ((|#1| $) 88)) (-1811 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2838 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1842 (((-108) $ $) NIL (|has| |#1| (-513)))) (-1795 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2817 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1830 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2862 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3893 ((|#1| $ (-707)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-707)))) (|has| |#1| (-15 -2223 (|#1| (-1084))))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2874 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1821 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2850 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-1803 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-2827 (($ $) NIL (|has| |#1| (-37 (-381 (-521)))))) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 17 T CONST)) (-3572 (($) 13 T CONST)) (-2244 (($ $ (-587 (-1084)) (-587 (-707))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084) (-707)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-587 (-1084))) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-1084)) NIL (-12 (|has| |#1| (-15 * (|#1| (-707) |#1|))) (|has| |#1| (-828 (-1084))))) (($ $ (-707)) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-707) |#1|))))) (-1549 (((-108) $ $) NIL)) (-1648 (($ $ |#1|) NIL (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) 101)) (-1628 (($ $ $) 18)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL) (($ $ |#1|) 139 (|has| |#1| (-337))) (($ $ $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-381 (-521)) $) NIL (|has| |#1| (-37 (-381 (-521))))) (($ $ (-381 (-521))) NIL (|has| |#1| (-37 (-381 (-521)))))))
-(((-1157 |#1| |#2| |#3|) (-13 (-1156 |#1|) (-10 -8 (-15 -2223 ($ (-1138 |#2| |#1|))) (-15 -4042 ((-1138 |#2| |#1|) $ (-707))) (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (-15 -1596 ($ $)) (-15 -2761 ($ $)) (-15 -3169 ($ $)) (-15 -3796 ($ $)) (-15 -2064 ($ $ (-521) (-521))) (-15 -1750 ($ $)) (-15 -2022 ($ (-521) (-521) $)) (-15 -3371 ($ (-521) (-521) $)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|))) (-970) (-1084) |#1|) (T -1157))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-1157 *3 *4 *5)))) (-4042 (*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1157 *4 *5 *6)) (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4))) (-2223 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-2193 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *5 *3))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-2761 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-3169 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-3796 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-2064 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084)) (-14 *4 *2))) (-2022 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3))) (-3371 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084)) (-14 *5 *3))) (-1749 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
-(-13 (-1156 |#1|) (-10 -8 (-15 -2223 ($ (-1138 |#2| |#1|))) (-15 -4042 ((-1138 |#2| |#1|) $ (-707))) (-15 -2223 ($ (-1161 |#2|))) (-15 -2193 ($ $ (-1161 |#2|))) (-15 -1596 ($ $)) (-15 -2761 ($ $)) (-15 -3169 ($ $)) (-15 -3796 ($ $)) (-15 -2064 ($ $ (-521) (-521))) (-15 -1750 ($ $)) (-15 -2022 ($ (-521) (-521) $)) (-15 -3371 ($ (-521) (-521) $)) (IF (|has| |#1| (-37 (-381 (-521)))) (-15 -1749 ($ $ (-1161 |#2|))) |%noBranch|)))
-((-3155 (((-1 (-1065 |#1|) (-587 (-1065 |#1|))) (-1 |#2| (-587 |#2|))) 24)) (-2618 (((-1 (-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3904 (((-1 (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2|)) 13)) (-3602 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3911 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3700 ((|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|)) 54)) (-3182 (((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|)))) 61)) (-2609 ((|#2| |#2| |#2|) 43)))
-(((-1158 |#1| |#2|) (-10 -7 (-15 -3904 ((-1 (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2|))) (-15 -2618 ((-1 (-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3155 ((-1 (-1065 |#1|) (-587 (-1065 |#1|))) (-1 |#2| (-587 |#2|)))) (-15 -2609 (|#2| |#2| |#2|)) (-15 -3911 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3602 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3700 (|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|))) (-15 -3182 ((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|)))))) (-37 (-381 (-521))) (-1156 |#1|)) (T -1158))
-((-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 (-1 *6 (-587 *6)))) (-4 *5 (-37 (-381 (-521)))) (-4 *6 (-1156 *5)) (-5 *2 (-587 *6)) (-5 *1 (-1158 *5 *6)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-587 *2))) (-5 *4 (-587 *5)) (-4 *5 (-37 (-381 (-521)))) (-4 *2 (-1156 *5)) (-5 *1 (-1158 *5 *2)))) (-3602 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2)) (-4 *4 (-37 (-381 (-521)))))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2)) (-4 *4 (-37 (-381 (-521)))))) (-2609 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1158 *3 *2)) (-4 *2 (-1156 *3)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-587 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-587 (-1065 *4)))) (-5 *1 (-1158 *4 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-1065 *4) (-1065 *4))) (-5 *1 (-1158 *4 *5)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-1065 *4))) (-5 *1 (-1158 *4 *5)))))
-(-10 -7 (-15 -3904 ((-1 (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2|))) (-15 -2618 ((-1 (-1065 |#1|) (-1065 |#1|) (-1065 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3155 ((-1 (-1065 |#1|) (-587 (-1065 |#1|))) (-1 |#2| (-587 |#2|)))) (-15 -2609 (|#2| |#2| |#2|)) (-15 -3911 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3602 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3700 (|#2| (-1 |#2| (-587 |#2|)) (-587 |#1|))) (-15 -3182 ((-587 |#2|) (-587 |#1|) (-587 (-1 |#2| (-587 |#2|))))))
-((-3322 ((|#2| |#4| (-707)) 30)) (-3148 ((|#4| |#2|) 25)) (-1642 ((|#4| (-381 |#2|)) 51 (|has| |#1| (-513)))) (-1833 (((-1 |#4| (-587 |#4|)) |#3|) 45)))
-(((-1159 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3148 (|#4| |#2|)) (-15 -3322 (|#2| |#4| (-707))) (-15 -1833 ((-1 |#4| (-587 |#4|)) |#3|)) (IF (|has| |#1| (-513)) (-15 -1642 (|#4| (-381 |#2|))) |%noBranch|)) (-970) (-1141 |#1|) (-597 |#2|) (-1156 |#1|)) (T -1159))
-((-1642 (*1 *2 *3) (-12 (-5 *3 (-381 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-513)) (-4 *4 (-970)) (-4 *2 (-1156 *4)) (-5 *1 (-1159 *4 *5 *6 *2)) (-4 *6 (-597 *5)))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *5 (-1141 *4)) (-5 *2 (-1 *6 (-587 *6))) (-5 *1 (-1159 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-1156 *4)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-1159 *5 *2 *6 *3)) (-4 *6 (-597 *2)) (-4 *3 (-1156 *5)))) (-3148 (*1 *2 *3) (-12 (-4 *4 (-970)) (-4 *3 (-1141 *4)) (-4 *2 (-1156 *4)) (-5 *1 (-1159 *4 *3 *5 *2)) (-4 *5 (-597 *3)))))
-(-10 -7 (-15 -3148 (|#4| |#2|)) (-15 -3322 (|#2| |#4| (-707))) (-15 -1833 ((-1 |#4| (-587 |#4|)) |#3|)) (IF (|has| |#1| (-513)) (-15 -1642 (|#4| (-381 |#2|))) |%noBranch|))
-NIL
-(((-1160) (-1196)) (T -1160))
-NIL
-(-13 (-10 -7 (-6 -2092)))
-((-1422 (((-108) $ $) NIL)) (-1638 (((-1084)) 12)) (-4024 (((-1067) $) 17)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 11) (((-1084) $) 8)) (-1549 (((-108) $ $) 14)))
-(((-1161 |#1|) (-13 (-1013) (-561 (-1084)) (-10 -8 (-15 -2223 ((-1084) $)) (-15 -1638 ((-1084))))) (-1084)) (T -1161))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2))) (-1638 (*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2))))
-(-13 (-1013) (-561 (-1084)) (-10 -8 (-15 -2223 ((-1084) $)) (-15 -1638 ((-1084)))))
-((-3482 (($ (-707)) 16)) (-3951 (((-627 |#2|) $ $) 37)) (-3020 ((|#2| $) 46)) (-2522 ((|#2| $) 45)) (-4103 ((|#2| $ $) 33)) (-3255 (($ $ $) 42)) (-1639 (($ $) 20) (($ $ $) 26)) (-1628 (($ $ $) 13)) (* (($ (-521) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
-(((-1162 |#1| |#2|) (-10 -8 (-15 -3020 (|#2| |#1|)) (-15 -2522 (|#2| |#1|)) (-15 -3255 (|#1| |#1| |#1|)) (-15 -3951 ((-627 |#2|) |#1| |#1|)) (-15 -4103 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -3482 (|#1| (-707))) (-15 -1628 (|#1| |#1| |#1|))) (-1163 |#2|) (-1119)) (T -1162))
-NIL
-(-10 -8 (-15 -3020 (|#2| |#1|)) (-15 -2522 (|#2| |#1|)) (-15 -3255 (|#1| |#1| |#1|)) (-15 -3951 ((-627 |#2|) |#1| |#1|)) (-15 -4103 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-521) |#1|)) (-15 -1639 (|#1| |#1| |#1|)) (-15 -1639 (|#1| |#1|)) (-15 -3482 (|#1| (-707))) (-15 -1628 (|#1| |#1| |#1|)))
-((-1422 (((-108) $ $) 19 (|has| |#1| (-1013)))) (-3482 (($ (-707)) 112 (|has| |#1| (-23)))) (-3933 (((-1170) $ (-521) (-521)) 40 (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4234))) (($ $) 88 (-12 (|has| |#1| (-783)) (|has| $ (-6 -4234))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) 8)) (-2396 ((|#1| $ (-521) |#1|) 52 (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) 58 (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4233)))) (-2231 (($) 7 T CONST)) (-3288 (($ $) 90 (|has| $ (-6 -4234)))) (-1924 (($ $) 100)) (-2354 (($ $) 78 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-1429 (($ |#1| $) 77 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) 53 (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) 51)) (-3236 (((-521) (-1 (-108) |#1|) $) 97) (((-521) |#1| $) 96 (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) 95 (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 30 (|has| $ (-6 -4233)))) (-3951 (((-627 |#1|) $ $) 105 (|has| |#1| (-970)))) (-1869 (($ (-707) |#1|) 69)) (-1513 (((-108) $ (-707)) 9)) (-2658 (((-521) $) 43 (|has| (-521) (-783)))) (-2816 (($ $ $) 87 (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3989 (((-521) $) 44 (|has| (-521) (-783)))) (-2459 (($ $ $) 86 (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3020 ((|#1| $) 102 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-2859 (((-108) $ (-707)) 10)) (-2522 ((|#1| $) 103 (-12 (|has| |#1| (-970)) (|has| |#1| (-927))))) (-4024 (((-1067) $) 22 (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) 60) (($ $ $ (-521)) 59)) (-1223 (((-587 (-521)) $) 46)) (-2131 (((-108) (-521) $) 47)) (-4146 (((-1031) $) 21 (|has| |#1| (-1013)))) (-2319 ((|#1| $) 42 (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2995 (($ $ |#1|) 41 (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) 26 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) 25 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) 23 (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) 14)) (-2174 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) 48)) (-1447 (((-108) $) 11)) (-2280 (($) 12)) (-2550 ((|#1| $ (-521) |#1|) 50) ((|#1| $ (-521)) 49) (($ $ (-1132 (-521))) 63)) (-4103 ((|#1| $ $) 106 (|has| |#1| (-970)))) (-3694 (($ $ (-521)) 62) (($ $ (-1132 (-521))) 61)) (-3255 (($ $ $) 104 (|has| |#1| (-970)))) (-4163 (((-707) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4233))) (((-707) |#1| $) 28 (-12 (|has| |#1| (-1013)) (|has| $ (-6 -4233))))) (-3448 (($ $ $ (-521)) 91 (|has| $ (-6 -4234)))) (-2420 (($ $) 13)) (-1438 (((-497) $) 79 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 70)) (-4159 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-587 $)) 65)) (-2223 (((-791) $) 18 (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) 84 (|has| |#1| (-783)))) (-1579 (((-108) $ $) 83 (|has| |#1| (-783)))) (-1549 (((-108) $ $) 20 (|has| |#1| (-1013)))) (-1588 (((-108) $ $) 85 (|has| |#1| (-783)))) (-1569 (((-108) $ $) 82 (|has| |#1| (-783)))) (-1639 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1628 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-521) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-663))) (($ $ |#1|) 107 (|has| |#1| (-663)))) (-3478 (((-707) $) 6 (|has| $ (-6 -4233)))))
-(((-1163 |#1|) (-1196) (-1119)) (T -1163))
-((-1628 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-25)))) (-3482 (*1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1163 *3)) (-4 *3 (-23)) (-4 *3 (-1119)))) (-1639 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) (-1639 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663)))) (-4103 (*1 *2 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))) (-3951 (*1 *2 *1 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-970)) (-5 *2 (-627 *3)))) (-3255 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927)) (-4 *2 (-970)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927)) (-4 *2 (-970)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1628 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3482 ($ (-707))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1639 ($ $)) (-15 -1639 ($ $ $)) (-15 * ($ (-521) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-970)) (PROGN (-15 -4103 (|t#1| $ $)) (-15 -3951 ((-627 |t#1|) $ $)) (-15 -3255 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-927)) (IF (|has| |t#1| (-970)) (PROGN (-15 -2522 (|t#1| $)) (-15 -3020 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-97) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-561 (-791)) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783)) (|has| |#1| (-561 (-791)))) ((-139 |#1|) . T) ((-562 (-497)) |has| |#1| (-562 (-497))) ((-261 #0=(-521) |#1|) . T) ((-263 #0# |#1|) . T) ((-284 |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-347 |#1|) . T) ((-460 |#1|) . T) ((-554 #0# |#1|) . T) ((-482 |#1| |#1|) -12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))) ((-592 |#1|) . T) ((-19 |#1|) . T) ((-783) |has| |#1| (-783)) ((-1013) -3703 (|has| |#1| (-1013)) (|has| |#1| (-783))) ((-1119) . T))
-((-3184 (((-1165 |#2|) (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|) 13)) (-3859 ((|#2| (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|) 15)) (-1393 (((-3 (-1165 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1165 |#1|)) 28) (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 18)))
-(((-1164 |#1| |#2|) (-10 -7 (-15 -3184 ((-1165 |#2|) (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -1393 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1393 ((-3 (-1165 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1165 |#1|)))) (-1119) (-1119)) (T -1164))
-((-1393 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1165 *6)) (-5 *1 (-1164 *5 *6)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1165 *6)) (-5 *1 (-1164 *5 *6)))) (-3859 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-1164 *5 *2)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1165 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1165 *5)) (-5 *1 (-1164 *6 *5)))))
-(-10 -7 (-15 -3184 ((-1165 |#2|) (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -3859 (|#2| (-1 |#2| |#1| |#2|) (-1165 |#1|) |#2|)) (-15 -1393 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1393 ((-3 (-1165 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1165 |#1|))))
-((-1422 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-3482 (($ (-707)) NIL (|has| |#1| (-23)))) (-2183 (($ (-587 |#1|)) 9)) (-3933 (((-1170) $ (-521) (-521)) NIL (|has| $ (-6 -4234)))) (-2299 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-783)))) (-1216 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4234))) (($ $) NIL (-12 (|has| $ (-6 -4234)) (|has| |#1| (-783))))) (-3215 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-783)))) (-1269 (((-108) $ (-707)) NIL)) (-2396 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234))) ((|#1| $ (-1132 (-521)) |#1|) NIL (|has| $ (-6 -4234)))) (-1658 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2231 (($) NIL T CONST)) (-3288 (($ $) NIL (|has| $ (-6 -4234)))) (-1924 (($ $) NIL)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-1429 (($ |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-3859 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4233))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4233)))) (-3849 ((|#1| $ (-521) |#1|) NIL (|has| $ (-6 -4234)))) (-3626 ((|#1| $ (-521)) NIL)) (-3236 (((-521) (-1 (-108) |#1|) $) NIL) (((-521) |#1| $) NIL (|has| |#1| (-1013))) (((-521) |#1| $ (-521)) NIL (|has| |#1| (-1013)))) (-3831 (((-587 |#1|) $) 15 (|has| $ (-6 -4233)))) (-3951 (((-627 |#1|) $ $) NIL (|has| |#1| (-970)))) (-1869 (($ (-707) |#1|) NIL)) (-1513 (((-108) $ (-707)) NIL)) (-2658 (((-521) $) NIL (|has| (-521) (-783)))) (-2816 (($ $ $) NIL (|has| |#1| (-783)))) (-3389 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-783)))) (-3568 (((-587 |#1|) $) NIL (|has| $ (-6 -4233)))) (-1785 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3989 (((-521) $) NIL (|has| (-521) (-783)))) (-2459 (($ $ $) NIL (|has| |#1| (-783)))) (-3833 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3020 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-2859 (((-108) $ (-707)) NIL)) (-2522 ((|#1| $) NIL (-12 (|has| |#1| (-927)) (|has| |#1| (-970))))) (-4024 (((-1067) $) NIL (|has| |#1| (-1013)))) (-1696 (($ |#1| $ (-521)) NIL) (($ $ $ (-521)) NIL)) (-1223 (((-587 (-521)) $) NIL)) (-2131 (((-108) (-521) $) NIL)) (-4146 (((-1031) $) NIL (|has| |#1| (-1013)))) (-2319 ((|#1| $) NIL (|has| (-521) (-783)))) (-3733 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2995 (($ $ |#1|) NIL (|has| $ (-6 -4234)))) (-1936 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 (-269 |#1|))) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-269 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013)))) (($ $ (-587 |#1|) (-587 |#1|)) NIL (-12 (|has| |#1| (-284 |#1|)) (|has| |#1| (-1013))))) (-3133 (((-108) $ $) NIL)) (-2174 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-2481 (((-587 |#1|) $) NIL)) (-1447 (((-108) $) NIL)) (-2280 (($) NIL)) (-2550 ((|#1| $ (-521) |#1|) NIL) ((|#1| $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-4103 ((|#1| $ $) NIL (|has| |#1| (-970)))) (-3694 (($ $ (-521)) NIL) (($ $ (-1132 (-521))) NIL)) (-3255 (($ $ $) NIL (|has| |#1| (-970)))) (-4163 (((-707) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233))) (((-707) |#1| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#1| (-1013))))) (-3448 (($ $ $ (-521)) NIL (|has| $ (-6 -4234)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) 19 (|has| |#1| (-562 (-497))))) (-2234 (($ (-587 |#1|)) 8)) (-4159 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-587 $)) NIL)) (-2223 (((-791) $) NIL (|has| |#1| (-561 (-791))))) (-2006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4233)))) (-1597 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1579 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-1013)))) (-1588 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1569 (((-108) $ $) NIL (|has| |#1| (-783)))) (-1639 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1628 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-521) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-663))) (($ $ |#1|) NIL (|has| |#1| (-663)))) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1165 |#1|) (-13 (-1163 |#1|) (-10 -8 (-15 -2183 ($ (-587 |#1|))))) (-1119)) (T -1165))
-((-2183 (*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1165 *3)))))
-(-13 (-1163 |#1|) (-10 -8 (-15 -2183 ($ (-587 |#1|)))))
-((-1422 (((-108) $ $) NIL)) (-3964 (((-1067) $ (-1067)) 87) (((-1067) $ (-1067) (-1067)) 85) (((-1067) $ (-1067) (-587 (-1067))) 84)) (-2104 (($) 56)) (-3183 (((-1170) $ (-441) (-849)) 42)) (-2021 (((-1170) $ (-849) (-1067)) 70) (((-1170) $ (-849) (-802)) 71)) (-2477 (((-1170) $ (-849) (-353) (-353)) 45)) (-2957 (((-1170) $ (-1067)) 66)) (-1906 (((-1170) $ (-849) (-1067)) 75)) (-2714 (((-1170) $ (-849) (-353) (-353)) 46)) (-3118 (((-1170) $ (-849) (-849)) 43)) (-3937 (((-1170) $) 67)) (-3566 (((-1170) $ (-849) (-1067)) 74)) (-3350 (((-1170) $ (-441) (-849)) 30)) (-2625 (((-1170) $ (-849) (-1067)) 73)) (-2542 (((-587 (-239)) $) 22) (($ $ (-587 (-239))) 23)) (-2382 (((-1170) $ (-707) (-707)) 40)) (-3128 (($ $) 57) (($ (-441) (-587 (-239))) 58)) (-4024 (((-1067) $) NIL)) (-2535 (((-521) $) 37)) (-4146 (((-1031) $) NIL)) (-1466 (((-1165 (-3 (-441) "undefined")) $) 36)) (-2228 (((-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -2625 (-521)) (|:| -2791 (-521)) (|:| |spline| (-521)) (|:| -2499 (-521)) (|:| |axesColor| (-802)) (|:| -2021 (-521)) (|:| |unitsColor| (-802)) (|:| |showing| (-521)))) $) 35)) (-3089 (((-1170) $ (-849) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-802) (-521) (-802) (-521)) 65)) (-3431 (((-587 (-871 (-202))) $) NIL)) (-2210 (((-441) $ (-849)) 32)) (-1741 (((-1170) $ (-707) (-707) (-849) (-849)) 39)) (-4149 (((-1170) $ (-1067)) 76)) (-2791 (((-1170) $ (-849) (-1067)) 72)) (-2223 (((-791) $) 82)) (-1684 (((-1170) $) 77)) (-2499 (((-1170) $ (-849) (-1067)) 68) (((-1170) $ (-849) (-802)) 69)) (-1549 (((-108) $ $) NIL)))
-(((-1166) (-13 (-1013) (-10 -8 (-15 -3431 ((-587 (-871 (-202))) $)) (-15 -2104 ($)) (-15 -3128 ($ $)) (-15 -2542 ((-587 (-239)) $)) (-15 -2542 ($ $ (-587 (-239)))) (-15 -3128 ($ (-441) (-587 (-239)))) (-15 -3089 ((-1170) $ (-849) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-802) (-521) (-802) (-521))) (-15 -2228 ((-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -2625 (-521)) (|:| -2791 (-521)) (|:| |spline| (-521)) (|:| -2499 (-521)) (|:| |axesColor| (-802)) (|:| -2021 (-521)) (|:| |unitsColor| (-802)) (|:| |showing| (-521)))) $)) (-15 -1466 ((-1165 (-3 (-441) "undefined")) $)) (-15 -2957 ((-1170) $ (-1067))) (-15 -3350 ((-1170) $ (-441) (-849))) (-15 -2210 ((-441) $ (-849))) (-15 -2499 ((-1170) $ (-849) (-1067))) (-15 -2499 ((-1170) $ (-849) (-802))) (-15 -2021 ((-1170) $ (-849) (-1067))) (-15 -2021 ((-1170) $ (-849) (-802))) (-15 -2625 ((-1170) $ (-849) (-1067))) (-15 -3566 ((-1170) $ (-849) (-1067))) (-15 -2791 ((-1170) $ (-849) (-1067))) (-15 -4149 ((-1170) $ (-1067))) (-15 -1684 ((-1170) $)) (-15 -1741 ((-1170) $ (-707) (-707) (-849) (-849))) (-15 -2714 ((-1170) $ (-849) (-353) (-353))) (-15 -2477 ((-1170) $ (-849) (-353) (-353))) (-15 -1906 ((-1170) $ (-849) (-1067))) (-15 -2382 ((-1170) $ (-707) (-707))) (-15 -3183 ((-1170) $ (-441) (-849))) (-15 -3118 ((-1170) $ (-849) (-849))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -3937 ((-1170) $)) (-15 -2535 ((-521) $)) (-15 -2223 ((-791) $))))) (T -1166))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1166)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-587 (-871 (-202)))) (-5 *1 (-1166)))) (-2104 (*1 *1) (-5 *1 (-1166))) (-3128 (*1 *1 *1) (-5 *1 (-1166))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166)))) (-2542 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166)))) (-3128 (*1 *1 *2 *3) (-12 (-5 *2 (-441)) (-5 *3 (-587 (-239))) (-5 *1 (-1166)))) (-3089 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-849)) (-5 *4 (-202)) (-5 *5 (-521)) (-5 *6 (-802)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -2625 (-521)) (|:| -2791 (-521)) (|:| |spline| (-521)) (|:| -2499 (-521)) (|:| |axesColor| (-802)) (|:| -2021 (-521)) (|:| |unitsColor| (-802)) (|:| |showing| (-521))))) (-5 *1 (-1166)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1165 (-3 (-441) "undefined"))) (-5 *1 (-1166)))) (-2957 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3350 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-441)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2210 (*1 *2 *1 *3) (-12 (-5 *3 (-849)) (-5 *2 (-441)) (-5 *1 (-1166)))) (-2499 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2499 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2021 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2021 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2625 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3566 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2791 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-4149 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1741 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-707)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2714 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2477 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-1906 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3183 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-441)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166)))) (-3964 (*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166)))) (-3964 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166)))) (-3964 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1166)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1166)))))
-(-13 (-1013) (-10 -8 (-15 -3431 ((-587 (-871 (-202))) $)) (-15 -2104 ($)) (-15 -3128 ($ $)) (-15 -2542 ((-587 (-239)) $)) (-15 -2542 ($ $ (-587 (-239)))) (-15 -3128 ($ (-441) (-587 (-239)))) (-15 -3089 ((-1170) $ (-849) (-202) (-202) (-202) (-202) (-521) (-521) (-521) (-521) (-802) (-521) (-802) (-521))) (-15 -2228 ((-1165 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -2625 (-521)) (|:| -2791 (-521)) (|:| |spline| (-521)) (|:| -2499 (-521)) (|:| |axesColor| (-802)) (|:| -2021 (-521)) (|:| |unitsColor| (-802)) (|:| |showing| (-521)))) $)) (-15 -1466 ((-1165 (-3 (-441) "undefined")) $)) (-15 -2957 ((-1170) $ (-1067))) (-15 -3350 ((-1170) $ (-441) (-849))) (-15 -2210 ((-441) $ (-849))) (-15 -2499 ((-1170) $ (-849) (-1067))) (-15 -2499 ((-1170) $ (-849) (-802))) (-15 -2021 ((-1170) $ (-849) (-1067))) (-15 -2021 ((-1170) $ (-849) (-802))) (-15 -2625 ((-1170) $ (-849) (-1067))) (-15 -3566 ((-1170) $ (-849) (-1067))) (-15 -2791 ((-1170) $ (-849) (-1067))) (-15 -4149 ((-1170) $ (-1067))) (-15 -1684 ((-1170) $)) (-15 -1741 ((-1170) $ (-707) (-707) (-849) (-849))) (-15 -2714 ((-1170) $ (-849) (-353) (-353))) (-15 -2477 ((-1170) $ (-849) (-353) (-353))) (-15 -1906 ((-1170) $ (-849) (-1067))) (-15 -2382 ((-1170) $ (-707) (-707))) (-15 -3183 ((-1170) $ (-441) (-849))) (-15 -3118 ((-1170) $ (-849) (-849))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -3937 ((-1170) $)) (-15 -2535 ((-521) $)) (-15 -2223 ((-791) $))))
-((-1422 (((-108) $ $) NIL)) (-2187 (((-1170) $ (-353)) 138) (((-1170) $ (-353) (-353) (-353)) 139)) (-3964 (((-1067) $ (-1067)) 146) (((-1067) $ (-1067) (-1067)) 144) (((-1067) $ (-1067) (-587 (-1067))) 143)) (-3732 (($) 49)) (-3670 (((-1170) $ (-353) (-353) (-353) (-353) (-353)) 114) (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $) 112) (((-1170) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 113) (((-1170) $ (-521) (-521) (-353) (-353) (-353)) 115) (((-1170) $ (-353) (-353)) 116) (((-1170) $ (-353) (-353) (-353)) 123)) (-3952 (((-353)) 96) (((-353) (-353)) 97)) (-3631 (((-353)) 91) (((-353) (-353)) 93)) (-4209 (((-353)) 94) (((-353) (-353)) 95)) (-1655 (((-353)) 100) (((-353) (-353)) 101)) (-1591 (((-353)) 98) (((-353) (-353)) 99)) (-2477 (((-1170) $ (-353) (-353)) 140)) (-2957 (((-1170) $ (-1067)) 124)) (-2795 (((-1044 (-202)) $) 50) (($ $ (-1044 (-202))) 51)) (-1539 (((-1170) $ (-1067)) 152)) (-4147 (((-1170) $ (-1067)) 153)) (-2168 (((-1170) $ (-353) (-353)) 122) (((-1170) $ (-521) (-521)) 137)) (-3118 (((-1170) $ (-849) (-849)) 130)) (-3937 (((-1170) $) 110)) (-2096 (((-1170) $ (-1067)) 151)) (-3076 (((-1170) $ (-1067)) 107)) (-2542 (((-587 (-239)) $) 52) (($ $ (-587 (-239))) 53)) (-2382 (((-1170) $ (-707) (-707)) 129)) (-2195 (((-1170) $ (-707) (-871 (-202))) 158)) (-3331 (($ $) 56) (($ (-1044 (-202)) (-1067)) 57) (($ (-1044 (-202)) (-587 (-239))) 58)) (-2528 (((-1170) $ (-353) (-353) (-353)) 104)) (-4024 (((-1067) $) NIL)) (-2535 (((-521) $) 102)) (-3078 (((-1170) $ (-353)) 141)) (-1861 (((-1170) $ (-353)) 156)) (-4146 (((-1031) $) NIL)) (-1818 (((-1170) $ (-353)) 155)) (-3590 (((-1170) $ (-1067)) 109)) (-1741 (((-1170) $ (-707) (-707) (-849) (-849)) 128)) (-2793 (((-1170) $ (-1067)) 106)) (-4149 (((-1170) $ (-1067)) 108)) (-3058 (((-1170) $ (-143) (-143)) 127)) (-2223 (((-791) $) 135)) (-1684 (((-1170) $) 111)) (-4081 (((-1170) $ (-1067)) 154)) (-2499 (((-1170) $ (-1067)) 105)) (-1549 (((-108) $ $) NIL)))
-(((-1167) (-13 (-1013) (-10 -8 (-15 -3631 ((-353))) (-15 -3631 ((-353) (-353))) (-15 -4209 ((-353))) (-15 -4209 ((-353) (-353))) (-15 -3952 ((-353))) (-15 -3952 ((-353) (-353))) (-15 -1591 ((-353))) (-15 -1591 ((-353) (-353))) (-15 -1655 ((-353))) (-15 -1655 ((-353) (-353))) (-15 -3732 ($)) (-15 -3331 ($ $)) (-15 -3331 ($ (-1044 (-202)) (-1067))) (-15 -3331 ($ (-1044 (-202)) (-587 (-239)))) (-15 -2795 ((-1044 (-202)) $)) (-15 -2795 ($ $ (-1044 (-202)))) (-15 -2195 ((-1170) $ (-707) (-871 (-202)))) (-15 -2542 ((-587 (-239)) $)) (-15 -2542 ($ $ (-587 (-239)))) (-15 -2382 ((-1170) $ (-707) (-707))) (-15 -3118 ((-1170) $ (-849) (-849))) (-15 -2957 ((-1170) $ (-1067))) (-15 -1741 ((-1170) $ (-707) (-707) (-849) (-849))) (-15 -3670 ((-1170) $ (-353) (-353) (-353) (-353) (-353))) (-15 -3670 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -3670 ((-1170) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -3670 ((-1170) $ (-521) (-521) (-353) (-353) (-353))) (-15 -3670 ((-1170) $ (-353) (-353))) (-15 -3670 ((-1170) $ (-353) (-353) (-353))) (-15 -4149 ((-1170) $ (-1067))) (-15 -2499 ((-1170) $ (-1067))) (-15 -2793 ((-1170) $ (-1067))) (-15 -3076 ((-1170) $ (-1067))) (-15 -3590 ((-1170) $ (-1067))) (-15 -2168 ((-1170) $ (-353) (-353))) (-15 -2168 ((-1170) $ (-521) (-521))) (-15 -2187 ((-1170) $ (-353))) (-15 -2187 ((-1170) $ (-353) (-353) (-353))) (-15 -2477 ((-1170) $ (-353) (-353))) (-15 -2096 ((-1170) $ (-1067))) (-15 -1818 ((-1170) $ (-353))) (-15 -1861 ((-1170) $ (-353))) (-15 -1539 ((-1170) $ (-1067))) (-15 -4147 ((-1170) $ (-1067))) (-15 -4081 ((-1170) $ (-1067))) (-15 -2528 ((-1170) $ (-353) (-353) (-353))) (-15 -3078 ((-1170) $ (-353))) (-15 -3937 ((-1170) $)) (-15 -3058 ((-1170) $ (-143) (-143))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -1684 ((-1170) $)) (-15 -2535 ((-521) $))))) (T -1167))
-((-3631 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-4209 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-4209 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3952 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-1591 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-1655 (*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))) (-3732 (*1 *1) (-5 *1 (-1167))) (-3331 (*1 *1 *1) (-5 *1 (-1167))) (-3331 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1067)) (-5 *1 (-1167)))) (-3331 (*1 *1 *2 *3) (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-587 (-239))) (-5 *1 (-1167)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167)))) (-2795 (*1 *1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167)))) (-2195 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-707)) (-5 *4 (-871 (-202))) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167)))) (-2542 (*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167)))) (-2382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2957 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1741 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-707)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3670 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-1167)))) (-3670 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3670 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-521)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3670 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3670 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4149 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2499 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3590 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2168 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2168 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2187 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2187 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2477 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2096 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1861 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-1539 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4147 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-4081 (*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2528 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3078 (*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3058 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-143)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3964 (*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167)))) (-3964 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167)))) (-3964 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1167)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1167)))))
-(-13 (-1013) (-10 -8 (-15 -3631 ((-353))) (-15 -3631 ((-353) (-353))) (-15 -4209 ((-353))) (-15 -4209 ((-353) (-353))) (-15 -3952 ((-353))) (-15 -3952 ((-353) (-353))) (-15 -1591 ((-353))) (-15 -1591 ((-353) (-353))) (-15 -1655 ((-353))) (-15 -1655 ((-353) (-353))) (-15 -3732 ($)) (-15 -3331 ($ $)) (-15 -3331 ($ (-1044 (-202)) (-1067))) (-15 -3331 ($ (-1044 (-202)) (-587 (-239)))) (-15 -2795 ((-1044 (-202)) $)) (-15 -2795 ($ $ (-1044 (-202)))) (-15 -2195 ((-1170) $ (-707) (-871 (-202)))) (-15 -2542 ((-587 (-239)) $)) (-15 -2542 ($ $ (-587 (-239)))) (-15 -2382 ((-1170) $ (-707) (-707))) (-15 -3118 ((-1170) $ (-849) (-849))) (-15 -2957 ((-1170) $ (-1067))) (-15 -1741 ((-1170) $ (-707) (-707) (-849) (-849))) (-15 -3670 ((-1170) $ (-353) (-353) (-353) (-353) (-353))) (-15 -3670 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -3670 ((-1170) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -3670 ((-1170) $ (-521) (-521) (-353) (-353) (-353))) (-15 -3670 ((-1170) $ (-353) (-353))) (-15 -3670 ((-1170) $ (-353) (-353) (-353))) (-15 -4149 ((-1170) $ (-1067))) (-15 -2499 ((-1170) $ (-1067))) (-15 -2793 ((-1170) $ (-1067))) (-15 -3076 ((-1170) $ (-1067))) (-15 -3590 ((-1170) $ (-1067))) (-15 -2168 ((-1170) $ (-353) (-353))) (-15 -2168 ((-1170) $ (-521) (-521))) (-15 -2187 ((-1170) $ (-353))) (-15 -2187 ((-1170) $ (-353) (-353) (-353))) (-15 -2477 ((-1170) $ (-353) (-353))) (-15 -2096 ((-1170) $ (-1067))) (-15 -1818 ((-1170) $ (-353))) (-15 -1861 ((-1170) $ (-353))) (-15 -1539 ((-1170) $ (-1067))) (-15 -4147 ((-1170) $ (-1067))) (-15 -4081 ((-1170) $ (-1067))) (-15 -2528 ((-1170) $ (-353) (-353) (-353))) (-15 -3078 ((-1170) $ (-353))) (-15 -3937 ((-1170) $)) (-15 -3058 ((-1170) $ (-143) (-143))) (-15 -3964 ((-1067) $ (-1067))) (-15 -3964 ((-1067) $ (-1067) (-1067))) (-15 -3964 ((-1067) $ (-1067) (-587 (-1067)))) (-15 -1684 ((-1170) $)) (-15 -2535 ((-521) $))))
-((-1227 (((-587 (-1067)) (-587 (-1067))) 94) (((-587 (-1067))) 89)) (-4197 (((-587 (-1067))) 87)) (-2718 (((-587 (-849)) (-587 (-849))) 62) (((-587 (-849))) 59)) (-2929 (((-587 (-707)) (-587 (-707))) 56) (((-587 (-707))) 52)) (-1683 (((-1170)) 64)) (-3126 (((-849) (-849)) 80) (((-849)) 79)) (-3665 (((-849) (-849)) 78) (((-849)) 77)) (-2857 (((-802) (-802)) 74) (((-802)) 73)) (-2539 (((-202)) 84) (((-202) (-353)) 86)) (-2449 (((-849)) 81) (((-849) (-849)) 82)) (-2471 (((-849) (-849)) 76) (((-849)) 75)) (-1922 (((-802) (-802)) 68) (((-802)) 66)) (-2544 (((-802) (-802)) 70) (((-802)) 69)) (-1978 (((-802) (-802)) 72) (((-802)) 71)))
-(((-1168) (-10 -7 (-15 -1922 ((-802))) (-15 -1922 ((-802) (-802))) (-15 -2544 ((-802))) (-15 -2544 ((-802) (-802))) (-15 -1978 ((-802))) (-15 -1978 ((-802) (-802))) (-15 -2857 ((-802))) (-15 -2857 ((-802) (-802))) (-15 -2471 ((-849))) (-15 -2471 ((-849) (-849))) (-15 -2929 ((-587 (-707)))) (-15 -2929 ((-587 (-707)) (-587 (-707)))) (-15 -2718 ((-587 (-849)))) (-15 -2718 ((-587 (-849)) (-587 (-849)))) (-15 -1683 ((-1170))) (-15 -1227 ((-587 (-1067)))) (-15 -1227 ((-587 (-1067)) (-587 (-1067)))) (-15 -4197 ((-587 (-1067)))) (-15 -3665 ((-849))) (-15 -3126 ((-849))) (-15 -3665 ((-849) (-849))) (-15 -3126 ((-849) (-849))) (-15 -2449 ((-849) (-849))) (-15 -2449 ((-849))) (-15 -2539 ((-202) (-353))) (-15 -2539 ((-202))))) (T -1168))
-((-2539 (*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1168)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-1168)))) (-2449 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-3126 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-3126 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-3665 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-4197 (*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))) (-1227 (*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))) (-1227 (*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))) (-1683 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1168)))) (-2718 (*1 *2 *2) (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1168)))) (-2718 (*1 *2) (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1168)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168)))) (-2929 (*1 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-2471 (*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))) (-2857 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-2857 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-1978 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-2544 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-2544 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))) (-1922 (*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))))
-(-10 -7 (-15 -1922 ((-802))) (-15 -1922 ((-802) (-802))) (-15 -2544 ((-802))) (-15 -2544 ((-802) (-802))) (-15 -1978 ((-802))) (-15 -1978 ((-802) (-802))) (-15 -2857 ((-802))) (-15 -2857 ((-802) (-802))) (-15 -2471 ((-849))) (-15 -2471 ((-849) (-849))) (-15 -2929 ((-587 (-707)))) (-15 -2929 ((-587 (-707)) (-587 (-707)))) (-15 -2718 ((-587 (-849)))) (-15 -2718 ((-587 (-849)) (-587 (-849)))) (-15 -1683 ((-1170))) (-15 -1227 ((-587 (-1067)))) (-15 -1227 ((-587 (-1067)) (-587 (-1067)))) (-15 -4197 ((-587 (-1067)))) (-15 -3665 ((-849))) (-15 -3126 ((-849))) (-15 -3665 ((-849) (-849))) (-15 -3126 ((-849) (-849))) (-15 -2449 ((-849) (-849))) (-15 -2449 ((-849))) (-15 -2539 ((-202) (-353))) (-15 -2539 ((-202))))
-((-1700 (((-441) (-587 (-587 (-871 (-202)))) (-587 (-239))) 17) (((-441) (-587 (-587 (-871 (-202))))) 16) (((-441) (-587 (-587 (-871 (-202)))) (-802) (-802) (-849) (-587 (-239))) 15)) (-2871 (((-1166) (-587 (-587 (-871 (-202)))) (-587 (-239))) 23) (((-1166) (-587 (-587 (-871 (-202)))) (-802) (-802) (-849) (-587 (-239))) 22)) (-2223 (((-1166) (-441)) 34)))
-(((-1169) (-10 -7 (-15 -1700 ((-441) (-587 (-587 (-871 (-202)))) (-802) (-802) (-849) (-587 (-239)))) (-15 -1700 ((-441) (-587 (-587 (-871 (-202)))))) (-15 -1700 ((-441) (-587 (-587 (-871 (-202)))) (-587 (-239)))) (-15 -2871 ((-1166) (-587 (-587 (-871 (-202)))) (-802) (-802) (-849) (-587 (-239)))) (-15 -2871 ((-1166) (-587 (-587 (-871 (-202)))) (-587 (-239)))) (-15 -2223 ((-1166) (-441))))) (T -1169))
-((-2223 (*1 *2 *3) (-12 (-5 *3 (-441)) (-5 *2 (-1166)) (-5 *1 (-1169)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-1169)))) (-2871 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *6 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-1169)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-587 (-239))) (-5 *2 (-441)) (-5 *1 (-1169)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *2 (-441)) (-5 *1 (-1169)))) (-1700 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-802)) (-5 *5 (-849)) (-5 *6 (-587 (-239))) (-5 *2 (-441)) (-5 *1 (-1169)))))
-(-10 -7 (-15 -1700 ((-441) (-587 (-587 (-871 (-202)))) (-802) (-802) (-849) (-587 (-239)))) (-15 -1700 ((-441) (-587 (-587 (-871 (-202)))))) (-15 -1700 ((-441) (-587 (-587 (-871 (-202)))) (-587 (-239)))) (-15 -2871 ((-1166) (-587 (-587 (-871 (-202)))) (-802) (-802) (-849) (-587 (-239)))) (-15 -2871 ((-1166) (-587 (-587 (-871 (-202)))) (-587 (-239)))) (-15 -2223 ((-1166) (-441))))
-((-1366 (($) 7)) (-2223 (((-791) $) 10)))
-(((-1170) (-10 -8 (-15 -1366 ($)) (-15 -2223 ((-791) $)))) (T -1170))
-((-2223 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1170)))) (-1366 (*1 *1) (-5 *1 (-1170))))
-(-10 -8 (-15 -1366 ($)) (-15 -2223 ((-791) $)))
-((-1648 (($ $ |#2|) 10)))
-(((-1171 |#1| |#2|) (-10 -8 (-15 -1648 (|#1| |#1| |#2|))) (-1172 |#2|) (-337)) (T -1171))
-NIL
-(-10 -8 (-15 -1648 (|#1| |#1| |#2|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2043 (((-126)) 28)) (-2223 (((-791) $) 11)) (-3562 (($) 18 T CONST)) (-1549 (((-108) $ $) 6)) (-1648 (($ $ |#1|) 29)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1172 |#1|) (-1196) (-337)) (T -1172))
-((-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-337)))) (-2043 (*1 *2) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-337)) (-5 *2 (-126)))))
-(-13 (-654 |t#1|) (-10 -8 (-15 -1648 ($ $ |t#1|)) (-15 -2043 ((-126)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-654 |#1|) . T) ((-976 |#1|) . T) ((-1013) . T))
-((-2457 (((-587 (-1114 |#1|)) (-1084) (-1114 |#1|)) 78)) (-1226 (((-1065 (-1065 (-880 |#1|))) (-1084) (-1065 (-880 |#1|))) 57)) (-3702 (((-1 (-1065 (-1114 |#1|)) (-1065 (-1114 |#1|))) (-707) (-1114 |#1|) (-1065 (-1114 |#1|))) 68)) (-3393 (((-1 (-1065 (-880 |#1|)) (-1065 (-880 |#1|))) (-707)) 59)) (-2989 (((-1 (-1080 (-880 |#1|)) (-880 |#1|)) (-1084)) 27)) (-3938 (((-1 (-1065 (-880 |#1|)) (-1065 (-880 |#1|))) (-707)) 58)))
-(((-1173 |#1|) (-10 -7 (-15 -3393 ((-1 (-1065 (-880 |#1|)) (-1065 (-880 |#1|))) (-707))) (-15 -3938 ((-1 (-1065 (-880 |#1|)) (-1065 (-880 |#1|))) (-707))) (-15 -1226 ((-1065 (-1065 (-880 |#1|))) (-1084) (-1065 (-880 |#1|)))) (-15 -2989 ((-1 (-1080 (-880 |#1|)) (-880 |#1|)) (-1084))) (-15 -2457 ((-587 (-1114 |#1|)) (-1084) (-1114 |#1|))) (-15 -3702 ((-1 (-1065 (-1114 |#1|)) (-1065 (-1114 |#1|))) (-707) (-1114 |#1|) (-1065 (-1114 |#1|))))) (-337)) (T -1173))
-((-3702 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-707)) (-4 *6 (-337)) (-5 *4 (-1114 *6)) (-5 *2 (-1 (-1065 *4) (-1065 *4))) (-5 *1 (-1173 *6)) (-5 *5 (-1065 *4)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-587 (-1114 *5))) (-5 *1 (-1173 *5)) (-5 *4 (-1114 *5)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1 (-1080 (-880 *4)) (-880 *4))) (-5 *1 (-1173 *4)) (-4 *4 (-337)))) (-1226 (*1 *2 *3 *4) (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-1065 (-1065 (-880 *5)))) (-5 *1 (-1173 *5)) (-5 *4 (-1065 (-880 *5))))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-880 *4)) (-1065 (-880 *4)))) (-5 *1 (-1173 *4)) (-4 *4 (-337)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-880 *4)) (-1065 (-880 *4)))) (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
-(-10 -7 (-15 -3393 ((-1 (-1065 (-880 |#1|)) (-1065 (-880 |#1|))) (-707))) (-15 -3938 ((-1 (-1065 (-880 |#1|)) (-1065 (-880 |#1|))) (-707))) (-15 -1226 ((-1065 (-1065 (-880 |#1|))) (-1084) (-1065 (-880 |#1|)))) (-15 -2989 ((-1 (-1080 (-880 |#1|)) (-880 |#1|)) (-1084))) (-15 -2457 ((-587 (-1114 |#1|)) (-1084) (-1114 |#1|))) (-15 -3702 ((-1 (-1065 (-1114 |#1|)) (-1065 (-1114 |#1|))) (-707) (-1114 |#1|) (-1065 (-1114 |#1|)))))
-((-1635 (((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|) 74)) (-3807 (((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|)))) 73)))
-(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3807 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -1635 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|))) (-323) (-1141 |#1|) (-1141 |#2|) (-383 |#2| |#3|)) (T -1174))
-((-1635 (*1 *2 *3) (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3)) (-5 *2 (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-627 *3)))) (-5 *1 (-1174 *4 *3 *5 *6)) (-4 *6 (-383 *3 *5)))) (-3807 (*1 *2) (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4)) (-5 *2 (-2 (|:| -1245 (-627 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-627 *4)))) (-5 *1 (-1174 *3 *4 *5 *6)) (-4 *6 (-383 *4 *5)))))
-(-10 -7 (-15 -3807 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))))) (-15 -1635 ((-2 (|:| -1245 (-627 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-627 |#2|))) |#2|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 42)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) NIL)) (-3637 (((-108) $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2223 (((-791) $) 63) (($ (-521)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-157)))) (-1592 (((-707)) NIL)) (-3479 (((-1170) (-707)) 16)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 27 T CONST)) (-3572 (($) 66 T CONST)) (-1549 (((-108) $ $) 68)) (-1648 (((-3 $ "failed") $ $) NIL (|has| |#1| (-337)))) (-1639 (($ $) 70) (($ $ $) NIL)) (-1628 (($ $ $) 46)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
-(((-1175 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2223 (|#4| $)) (IF (|has| |#1| (-337)) (-15 -1648 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2223 ($ |#4|)) (-15 -3479 ((-1170) (-707))))) (-970) (-783) (-729) (-877 |#1| |#3| |#2|) (-587 |#2|) (-587 (-707)) (-707)) (T -1175))
-((-2223 (*1 *2 *1) (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-729)) (-14 *6 (-587 *4)) (-14 *7 (-587 (-707))) (-14 *8 (-707)))) (-1648 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-337)) (-4 *2 (-970)) (-4 *3 (-783)) (-4 *4 (-729)) (-14 *6 (-587 *3)) (-5 *1 (-1175 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-877 *2 *4 *3)) (-14 *7 (-587 (-707))) (-14 *8 (-707)))) (-2223 (*1 *1 *2) (-12 (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-729)) (-14 *6 (-587 *4)) (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-877 *3 *5 *4)) (-14 *7 (-587 (-707))) (-14 *8 (-707)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-4 *5 (-783)) (-4 *6 (-729)) (-14 *8 (-587 *5)) (-5 *2 (-1170)) (-5 *1 (-1175 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-877 *4 *6 *5)) (-14 *9 (-587 *3)) (-14 *10 *3))))
-(-13 (-970) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2223 (|#4| $)) (IF (|has| |#1| (-337)) (-15 -1648 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2223 ($ |#4|)) (-15 -3479 ((-1170) (-707)))))
-((-1422 (((-108) $ $) NIL)) (-3960 (((-587 (-2 (|:| -1684 $) (|:| -1564 (-587 |#4|)))) (-587 |#4|)) NIL)) (-4137 (((-587 $) (-587 |#4|)) 88)) (-4085 (((-587 |#3|) $) NIL)) (-2856 (((-108) $) NIL)) (-2750 (((-108) $) NIL (|has| |#1| (-513)))) (-2516 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1613 ((|#4| |#4| $) NIL)) (-3215 (((-2 (|:| |under| $) (|:| -2720 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-108) $ (-707)) NIL)) (-1658 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2231 (($) NIL T CONST)) (-1616 (((-108) $) NIL (|has| |#1| (-513)))) (-3514 (((-108) $ $) NIL (|has| |#1| (-513)))) (-3515 (((-108) $ $) NIL (|has| |#1| (-513)))) (-2512 (((-108) $) NIL (|has| |#1| (-513)))) (-3388 (((-587 |#4|) (-587 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-2122 (((-587 |#4|) (-587 |#4|) $) 25 (|has| |#1| (-513)))) (-3476 (((-587 |#4|) (-587 |#4|) $) NIL (|has| |#1| (-513)))) (-1296 (((-3 $ "failed") (-587 |#4|)) NIL)) (-1496 (($ (-587 |#4|)) NIL)) (-2329 (((-3 $ "failed") $) 70)) (-1910 ((|#4| |#4| $) 75)) (-2354 (($ $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1429 (($ |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2334 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-3369 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-1860 ((|#4| |#4| $) NIL)) (-3859 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4233))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4233))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3066 (((-2 (|:| -1684 (-587 |#4|)) (|:| -1564 (-587 |#4|))) $) NIL)) (-3831 (((-587 |#4|) $) NIL (|has| $ (-6 -4233)))) (-4188 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3131 ((|#3| $) 76)) (-1513 (((-108) $ (-707)) NIL)) (-3568 (((-587 |#4|) $) 29 (|has| $ (-6 -4233)))) (-1785 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013))))) (-1508 (((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-587 |#4|)) 35)) (-3833 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4234)))) (-1393 (($ (-1 |#4| |#4|) $) NIL)) (-2963 (((-587 |#3|) $) NIL)) (-4065 (((-108) |#3| $) NIL)) (-2859 (((-108) $ (-707)) NIL)) (-4024 (((-1067) $) NIL)) (-1450 (((-3 |#4| "failed") $) NIL)) (-2942 (((-587 |#4|) $) 50)) (-2626 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3432 ((|#4| |#4| $) 74)) (-3069 (((-108) $ $) 85)) (-2923 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-513)))) (-2941 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1896 ((|#4| |#4| $) NIL)) (-4146 (((-1031) $) NIL)) (-2319 (((-3 |#4| "failed") $) 69)) (-3733 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-1314 (((-3 $ "failed") $ |#4|) NIL)) (-2191 (($ $ |#4|) NIL)) (-1936 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2313 (($ $ (-587 |#4|) (-587 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-269 |#4|)) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013)))) (($ $ (-587 (-269 |#4|))) NIL (-12 (|has| |#4| (-284 |#4|)) (|has| |#4| (-1013))))) (-3133 (((-108) $ $) NIL)) (-1447 (((-108) $) 67)) (-2280 (($) 42)) (-2098 (((-707) $) NIL)) (-4163 (((-707) |#4| $) NIL (-12 (|has| $ (-6 -4233)) (|has| |#4| (-1013)))) (((-707) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-2420 (($ $) NIL)) (-1438 (((-497) $) NIL (|has| |#4| (-562 (-497))))) (-2234 (($ (-587 |#4|)) NIL)) (-3680 (($ $ |#3|) NIL)) (-2600 (($ $ |#3|) NIL)) (-2404 (($ $) NIL)) (-2222 (($ $ |#3|) NIL)) (-2223 (((-791) $) NIL) (((-587 |#4|) $) 57)) (-2537 (((-707) $) NIL (|has| |#3| (-342)))) (-2769 (((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-587 |#4|)) 41)) (-2433 (((-587 $) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-587 $) (-587 |#4|)) 66)) (-3815 (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1354 (-587 |#4|))) "failed") (-587 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3226 (((-108) $ (-1 (-108) |#4| (-587 |#4|))) NIL)) (-2006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4233)))) (-3408 (((-587 |#3|) $) NIL)) (-2567 (((-108) |#3| $) NIL)) (-1549 (((-108) $ $) NIL)) (-3478 (((-707) $) NIL (|has| $ (-6 -4233)))))
-(((-1176 |#1| |#2| |#3| |#4|) (-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1508 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1508 ((-3 $ "failed") (-587 |#4|))) (-15 -2769 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2769 ((-3 $ "failed") (-587 |#4|))) (-15 -2433 ((-587 $) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2433 ((-587 $) (-587 |#4|))))) (-513) (-729) (-783) (-984 |#1| |#2| |#3|)) (T -1176))
-((-1508 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1176 *5 *6 *7 *8)))) (-1508 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-1176 *3 *4 *5 *6)))) (-2769 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1176 *5 *6 *7 *8)))) (-2769 (*1 *1 *2) (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-1176 *3 *4 *5 *6)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-587 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-783)) (-5 *2 (-587 (-1176 *6 *7 *8 *9))) (-5 *1 (-1176 *6 *7 *8 *9)))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 (-1176 *4 *5 *6 *7))) (-5 *1 (-1176 *4 *5 *6 *7)))))
-(-13 (-1113 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1508 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1508 ((-3 $ "failed") (-587 |#4|))) (-15 -2769 ((-3 $ "failed") (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2769 ((-3 $ "failed") (-587 |#4|))) (-15 -2433 ((-587 $) (-587 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2433 ((-587 $) (-587 |#4|)))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2057 (((-3 $ "failed") $ $) 19)) (-2231 (($) 17 T CONST)) (-2783 (((-3 $ "failed") $) 34)) (-3637 (((-108) $) 31)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#1|) 38)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1177 |#1|) (-1196) (-970)) (T -1177))
-((-2223 (*1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-970)))))
-(-13 (-970) (-107 |t#1| |t#1|) (-10 -8 (-15 -2223 ($ |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 |#1|) |has| |#1| (-157)) ((-663) . T) ((-976 |#1|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 45)) (-3619 (($ $ (-707)) 39)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-707)) 17 (|has| |#2| (-157))) (($ $ $) 18 (|has| |#2| (-157)))) (-2231 (($) NIL T CONST)) (-2301 (($ $ $) 62) (($ $ (-755 |#1|)) 49) (($ $ |#1|) 53)) (-1296 (((-3 (-755 |#1|) "failed") $) NIL)) (-1496 (((-755 |#1|) $) NIL)) (-3157 (($ $) 32)) (-2783 (((-3 $ "failed") $) NIL)) (-1494 (((-108) $) NIL)) (-1297 (($ $) NIL)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-2523 (($ (-755 |#1|) |#2|) 31)) (-2056 (($ $) 33)) (-4087 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) 11)) (-1806 (((-755 |#1|) $) NIL)) (-3874 (((-755 |#1|) $) 34)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2116 (($ $ $) 61) (($ $ (-755 |#1|)) 51) (($ $ |#1|) 55)) (-2102 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3130 (((-755 |#1|) $) 28)) (-3140 ((|#2| $) 30)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2098 (((-707) $) 36)) (-2829 (((-108) $) 40)) (-2682 ((|#2| $) NIL)) (-2223 (((-791) $) NIL) (($ (-755 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-521)) NIL)) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-755 |#1|)) NIL)) (-2979 ((|#2| $ $) 64) ((|#2| $ (-755 |#1|)) NIL)) (-1592 (((-707)) NIL)) (-3509 (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (-3562 (($) 12 T CONST)) (-3572 (($) 14 T CONST)) (-1583 (((-587 (-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1549 (((-108) $ $) 38)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 21)) (** (($ $ (-707)) NIL) (($ $ (-849)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-755 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1178 |#1| |#2|) (-13 (-356 |#2| (-755 |#1|)) (-1184 |#1| |#2|)) (-783) (-970)) (T -1178))
-NIL
-(-13 (-356 |#2| (-755 |#1|)) (-1184 |#1| |#2|))
-((-1253 ((|#3| |#3| (-707)) 23)) (-3265 ((|#3| |#3| (-707)) 28)) (-2346 ((|#3| |#3| |#3| (-707)) 29)))
-(((-1179 |#1| |#2| |#3|) (-10 -7 (-15 -3265 (|#3| |#3| (-707))) (-15 -1253 (|#3| |#3| (-707))) (-15 -2346 (|#3| |#3| |#3| (-707)))) (-13 (-970) (-654 (-381 (-521)))) (-783) (-1184 |#2| |#1|)) (T -1179))
-((-2346 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521))))) (-4 *5 (-783)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))) (-1253 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521))))) (-4 *5 (-783)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))) (-3265 (*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521))))) (-4 *5 (-783)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))))
-(-10 -7 (-15 -3265 (|#3| |#3| (-707))) (-15 -1253 (|#3| |#3| (-707))) (-15 -2346 (|#3| |#3| |#3| (-707))))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4101 (((-587 |#1|) $) 40)) (-2057 (((-3 $ "failed") $ $) 19)) (-3813 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-707)) 42 (|has| |#2| (-157)))) (-2231 (($) 17 T CONST)) (-2301 (($ $ |#1|) 54) (($ $ (-755 |#1|)) 53) (($ $ $) 52)) (-1296 (((-3 (-755 |#1|) "failed") $) 64)) (-1496 (((-755 |#1|) $) 63)) (-2783 (((-3 $ "failed") $) 34)) (-1494 (((-108) $) 45)) (-1297 (($ $) 44)) (-3637 (((-108) $) 31)) (-3573 (((-108) $) 50)) (-2523 (($ (-755 |#1|) |#2|) 51)) (-2056 (($ $) 49)) (-4087 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) 60)) (-1806 (((-755 |#1|) $) 61)) (-1393 (($ (-1 |#2| |#2|) $) 41)) (-2116 (($ $ |#1|) 57) (($ $ (-755 |#1|)) 56) (($ $ $) 55)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2829 (((-108) $) 47)) (-2682 ((|#2| $) 46)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#2|) 68) (($ (-755 |#1|)) 65) (($ |#1|) 48)) (-2979 ((|#2| $ (-755 |#1|)) 59) ((|#2| $ $) 58)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1180 |#1| |#2|) (-1196) (-783) (-970)) (T -1180))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-783)) (-4 *2 (-970)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-755 *3)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-2 (|:| |k| (-755 *3)) (|:| |c| *4))))) (-2979 (*1 *2 *1 *3) (-12 (-5 *3 (-755 *4)) (-4 *1 (-1180 *4 *2)) (-4 *4 (-783)) (-4 *2 (-970)))) (-2979 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-783)) (-4 *2 (-970)))) (-2116 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-2116 (*1 *1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))) (-2116 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-2301 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-2301 (*1 *1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))) (-2301 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-2523 (*1 *1 *2 *3) (-12 (-5 *2 (-755 *4)) (-4 *4 (-783)) (-4 *1 (-1180 *4 *3)) (-4 *3 (-970)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-108)))) (-2056 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-2223 (*1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-108)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-783)) (-4 *2 (-970)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-108)))) (-1297 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)) (-4 *3 (-157)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-4 *4 (-157)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-587 *3)))))
-(-13 (-970) (-1177 |t#2|) (-961 (-755 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1806 ((-755 |t#1|) $)) (-15 -4087 ((-2 (|:| |k| (-755 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2979 (|t#2| $ (-755 |t#1|))) (-15 -2979 (|t#2| $ $)) (-15 -2116 ($ $ |t#1|)) (-15 -2116 ($ $ (-755 |t#1|))) (-15 -2116 ($ $ $)) (-15 -2301 ($ $ |t#1|)) (-15 -2301 ($ $ (-755 |t#1|))) (-15 -2301 ($ $ $)) (-15 -2523 ($ (-755 |t#1|) |t#2|)) (-15 -3573 ((-108) $)) (-15 -2056 ($ $)) (-15 -2223 ($ |t#1|)) (-15 -2829 ((-108) $)) (-15 -2682 (|t#2| $)) (-15 -1494 ((-108) $)) (-15 -1297 ($ $)) (IF (|has| |t#2| (-157)) (PROGN (-15 -3813 ($ $ $)) (-15 -3813 ($ $ (-707)))) |%noBranch|) (-15 -1393 ($ (-1 |t#2| |t#2|) $)) (-15 -4101 ((-587 |t#1|) $)) (IF (|has| |t#2| (-6 -4226)) (-6 -4226) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-654 |#2|) |has| |#2| (-157)) ((-663) . T) ((-961 (-755 |#1|)) . T) ((-976 |#2|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1177 |#2|) . T))
-((-2663 (((-108) $) 14)) (-2567 (((-108) $) 13)) (-2687 (($ $) 18) (($ $ (-707)) 19)))
-(((-1181 |#1| |#2|) (-10 -8 (-15 -2687 (|#1| |#1| (-707))) (-15 -2687 (|#1| |#1|)) (-15 -2663 ((-108) |#1|)) (-15 -2567 ((-108) |#1|))) (-1182 |#2|) (-337)) (T -1181))
-NIL
-(-10 -8 (-15 -2687 (|#1| |#1| (-707))) (-15 -2687 (|#1| |#1|)) (-15 -2663 ((-108) |#1|)) (-15 -2567 ((-108) |#1|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-2919 (((-2 (|:| -1493 $) (|:| -4220 $) (|:| |associate| $)) $) 41)) (-1954 (($ $) 40)) (-3795 (((-108) $) 38)) (-2663 (((-108) $) 94)) (-4010 (((-707)) 90)) (-2057 (((-3 $ "failed") $ $) 19)) (-2694 (($ $) 73)) (-2337 (((-392 $) $) 72)) (-2165 (((-108) $ $) 59)) (-2231 (($) 17 T CONST)) (-1296 (((-3 |#1| "failed") $) 101)) (-1496 ((|#1| $) 100)) (-2302 (($ $ $) 55)) (-2783 (((-3 $ "failed") $) 34)) (-2282 (($ $ $) 56)) (-1313 (((-2 (|:| -2979 (-587 $)) (|:| -1384 $)) (-587 $)) 51)) (-1375 (($ $ (-707)) 87 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342)))) (($ $) 86 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2100 (((-108) $) 71)) (-3490 (((-769 (-849)) $) 84 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-3637 (((-108) $) 31)) (-1509 (((-3 (-587 $) "failed") (-587 $) $) 52)) (-2254 (($ $ $) 46) (($ (-587 $)) 45)) (-4024 (((-1067) $) 9)) (-3100 (($ $) 70)) (-3017 (((-108) $) 93)) (-4146 (((-1031) $) 10)) (-2826 (((-1080 $) (-1080 $) (-1080 $)) 44)) (-2286 (($ $ $) 48) (($ (-587 $)) 47)) (-1974 (((-392 $) $) 74)) (-2239 (((-769 (-849))) 91)) (-2283 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1384 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2261 (((-3 $ "failed") $ $) 42)) (-3611 (((-3 (-587 $) "failed") (-587 $) $) 50)) (-3794 (((-707) $) 58)) (-1904 (((-2 (|:| -3852 $) (|:| -2334 $)) $ $) 57)) (-3660 (((-3 (-707) "failed") $ $) 85 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-2043 (((-126)) 99)) (-2098 (((-769 (-849)) $) 92)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ $) 43) (($ (-381 (-521))) 65) (($ |#1|) 102)) (-2446 (((-3 $ "failed") $) 83 (-3703 (|has| |#1| (-133)) (|has| |#1| (-342))))) (-1592 (((-707)) 29)) (-1842 (((-108) $ $) 39)) (-2567 (((-108) $) 95)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33) (($ $ (-521)) 69)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-2687 (($ $) 89 (|has| |#1| (-342))) (($ $ (-707)) 88 (|has| |#1| (-342)))) (-1549 (((-108) $ $) 6)) (-1648 (($ $ $) 64) (($ $ |#1|) 98)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32) (($ $ (-521)) 68)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ $ (-381 (-521))) 67) (($ (-381 (-521)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1182 |#1|) (-1196) (-337)) (T -1182))
-((-2567 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))) (-2663 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-769 (-849))))) (-2239 (*1 *2) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-769 (-849))))) (-4010 (*1 *2) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-707)))) (-2687 (*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-337)) (-4 *2 (-342)))) (-2687 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-4 *3 (-342)))))
-(-13 (-337) (-961 |t#1|) (-1172 |t#1|) (-10 -8 (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-376)) |%noBranch|) (-15 -2567 ((-108) $)) (-15 -2663 ((-108) $)) (-15 -3017 ((-108) $)) (-15 -2098 ((-769 (-849)) $)) (-15 -2239 ((-769 (-849)))) (-15 -4010 ((-707))) (IF (|has| |t#1| (-342)) (PROGN (-6 (-376)) (-15 -2687 ($ $)) (-15 -2687 ($ $ (-707)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-381 (-521))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-561 (-791)) . T) ((-157) . T) ((-220) . T) ((-265) . T) ((-282) . T) ((-337) . T) ((-376) -3703 (|has| |#1| (-342)) (|has| |#1| (-133))) ((-425) . T) ((-513) . T) ((-589 #0#) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-848) . T) ((-961 |#1|) . T) ((-976 #0#) . T) ((-976 |#1|) . T) ((-976 $) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1123) . T) ((-1172 |#1|) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 85)) (-3619 (($ $ (-707)) 88)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ $) NIL (|has| |#2| (-157))) (($ $ (-707)) NIL (|has| |#2| (-157)))) (-2231 (($) NIL T CONST)) (-2301 (($ $ |#1|) NIL) (($ $ (-755 |#1|)) NIL) (($ $ $) NIL)) (-1296 (((-3 (-755 |#1|) "failed") $) NIL) (((-3 (-821 |#1|) "failed") $) NIL)) (-1496 (((-755 |#1|) $) NIL) (((-821 |#1|) $) NIL)) (-3157 (($ $) 87)) (-2783 (((-3 $ "failed") $) NIL)) (-1494 (((-108) $) 76)) (-1297 (($ $) 80)) (-3854 (($ $ $ (-707)) 89)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-2523 (($ (-755 |#1|) |#2|) NIL) (($ (-821 |#1|) |#2|) 26)) (-2056 (($ $) 102)) (-4087 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1806 (((-755 |#1|) $) NIL)) (-3874 (((-755 |#1|) $) NIL)) (-1393 (($ (-1 |#2| |#2|) $) NIL)) (-2116 (($ $ |#1|) NIL) (($ $ (-755 |#1|)) NIL) (($ $ $) NIL)) (-1253 (($ $ (-707)) 96 (|has| |#2| (-654 (-381 (-521)))))) (-2102 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3130 (((-821 |#1|) $) 70)) (-3140 ((|#2| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-3265 (($ $ (-707)) 93 (|has| |#2| (-654 (-381 (-521)))))) (-2098 (((-707) $) 86)) (-2829 (((-108) $) 71)) (-2682 ((|#2| $) 75)) (-2223 (((-791) $) 57) (($ (-521)) NIL) (($ |#2|) 51) (($ (-755 |#1|)) NIL) (($ |#1|) 59) (($ (-821 |#1|)) NIL) (($ (-605 |#1| |#2|)) 43) (((-1178 |#1| |#2|) $) 64) (((-1187 |#1| |#2|) $) 69)) (-2730 (((-587 |#2|) $) NIL)) (-1499 ((|#2| $ (-821 |#1|)) NIL)) (-2979 ((|#2| $ (-755 |#1|)) NIL) ((|#2| $ $) NIL)) (-1592 (((-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 21 T CONST)) (-3572 (($) 25 T CONST)) (-1583 (((-587 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2835 (((-3 (-605 |#1| |#2|) "failed") $) 101)) (-1549 (((-108) $ $) 65)) (-1639 (($ $) 95) (($ $ $) 94)) (-1628 (($ $ $) 20)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-821 |#1|)) NIL)))
-(((-1183 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-356 |#2| (-821 |#1|)) (-10 -8 (-15 -2223 ($ (-605 |#1| |#2|))) (-15 -2223 ((-1178 |#1| |#2|) $)) (-15 -2223 ((-1187 |#1| |#2|) $)) (-15 -2835 ((-3 (-605 |#1| |#2|) "failed") $)) (-15 -3854 ($ $ $ (-707))) (IF (|has| |#2| (-654 (-381 (-521)))) (PROGN (-15 -3265 ($ $ (-707))) (-15 -1253 ($ $ (-707)))) |%noBranch|))) (-783) (-157)) (T -1183))
-((-2223 (*1 *1 *2) (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)) (-5 *1 (-1183 *3 *4)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-2835 (*1 *2 *1) (|partial| -12 (-5 *2 (-605 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-3854 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157)))) (-3265 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-783)) (-4 *4 (-157)))) (-1253 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-783)) (-4 *4 (-157)))))
-(-13 (-1184 |#1| |#2|) (-356 |#2| (-821 |#1|)) (-10 -8 (-15 -2223 ($ (-605 |#1| |#2|))) (-15 -2223 ((-1178 |#1| |#2|) $)) (-15 -2223 ((-1187 |#1| |#2|) $)) (-15 -2835 ((-3 (-605 |#1| |#2|) "failed") $)) (-15 -3854 ($ $ $ (-707))) (IF (|has| |#2| (-654 (-381 (-521)))) (PROGN (-15 -3265 ($ $ (-707))) (-15 -1253 ($ $ (-707)))) |%noBranch|)))
-((-1422 (((-108) $ $) 7)) (-3398 (((-108) $) 16)) (-4101 (((-587 |#1|) $) 40)) (-3619 (($ $ (-707)) 73)) (-2057 (((-3 $ "failed") $ $) 19)) (-3813 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-707)) 42 (|has| |#2| (-157)))) (-2231 (($) 17 T CONST)) (-2301 (($ $ |#1|) 54) (($ $ (-755 |#1|)) 53) (($ $ $) 52)) (-1296 (((-3 (-755 |#1|) "failed") $) 64)) (-1496 (((-755 |#1|) $) 63)) (-2783 (((-3 $ "failed") $) 34)) (-1494 (((-108) $) 45)) (-1297 (($ $) 44)) (-3637 (((-108) $) 31)) (-3573 (((-108) $) 50)) (-2523 (($ (-755 |#1|) |#2|) 51)) (-2056 (($ $) 49)) (-4087 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) 60)) (-1806 (((-755 |#1|) $) 61)) (-3874 (((-755 |#1|) $) 75)) (-1393 (($ (-1 |#2| |#2|) $) 41)) (-2116 (($ $ |#1|) 57) (($ $ (-755 |#1|)) 56) (($ $ $) 55)) (-4024 (((-1067) $) 9)) (-4146 (((-1031) $) 10)) (-2098 (((-707) $) 74)) (-2829 (((-108) $) 47)) (-2682 ((|#2| $) 46)) (-2223 (((-791) $) 11) (($ (-521)) 28) (($ |#2|) 68) (($ (-755 |#1|)) 65) (($ |#1|) 48)) (-2979 ((|#2| $ (-755 |#1|)) 59) ((|#2| $ $) 58)) (-1592 (((-707)) 29)) (-3509 (($ $ (-849)) 26) (($ $ (-707)) 33)) (-3562 (($) 18 T CONST)) (-3572 (($) 30 T CONST)) (-1549 (((-108) $ $) 6)) (-1639 (($ $) 22) (($ $ $) 21)) (-1628 (($ $ $) 14)) (** (($ $ (-849)) 25) (($ $ (-707)) 32)) (* (($ (-849) $) 13) (($ (-707) $) 15) (($ (-521) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1184 |#1| |#2|) (-1196) (-783) (-970)) (T -1184))
-((-3874 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-755 *3)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *2 (-707)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))))
-(-13 (-1180 |t#1| |t#2|) (-10 -8 (-15 -3874 ((-755 |t#1|) $)) (-15 -2098 ((-707) $)) (-15 -3619 ($ $ (-707)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-561 (-791)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-654 |#2|) |has| |#2| (-157)) ((-663) . T) ((-961 (-755 |#1|)) . T) ((-976 |#2|) . T) ((-970) . T) ((-977) . T) ((-1025) . T) ((-1013) . T) ((-1177 |#2|) . T) ((-1180 |#1| |#2|) . T))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4101 (((-587 (-1084)) $) NIL)) (-4166 (($ (-1178 (-1084) |#1|)) NIL)) (-3619 (($ $ (-707)) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ $) NIL (|has| |#1| (-157))) (($ $ (-707)) NIL (|has| |#1| (-157)))) (-2231 (($) NIL T CONST)) (-2301 (($ $ (-1084)) NIL) (($ $ (-755 (-1084))) NIL) (($ $ $) NIL)) (-1296 (((-3 (-755 (-1084)) "failed") $) NIL)) (-1496 (((-755 (-1084)) $) NIL)) (-2783 (((-3 $ "failed") $) NIL)) (-1494 (((-108) $) NIL)) (-1297 (($ $) NIL)) (-3637 (((-108) $) NIL)) (-3573 (((-108) $) NIL)) (-2523 (($ (-755 (-1084)) |#1|) NIL)) (-2056 (($ $) NIL)) (-4087 (((-2 (|:| |k| (-755 (-1084))) (|:| |c| |#1|)) $) NIL)) (-1806 (((-755 (-1084)) $) NIL)) (-3874 (((-755 (-1084)) $) NIL)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2116 (($ $ (-1084)) NIL) (($ $ (-755 (-1084))) NIL) (($ $ $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1631 (((-1178 (-1084) |#1|) $) NIL)) (-2098 (((-707) $) NIL)) (-2829 (((-108) $) NIL)) (-2682 ((|#1| $) NIL)) (-2223 (((-791) $) NIL) (($ (-521)) NIL) (($ |#1|) NIL) (($ (-755 (-1084))) NIL) (($ (-1084)) NIL)) (-2979 ((|#1| $ (-755 (-1084))) NIL) ((|#1| $ $) NIL)) (-1592 (((-707)) NIL)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) NIL T CONST)) (-3545 (((-587 (-2 (|:| |k| (-1084)) (|:| |c| $))) $) NIL)) (-3572 (($) NIL T CONST)) (-1549 (((-108) $ $) NIL)) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) NIL)) (** (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1084) $) NIL)))
-(((-1185 |#1|) (-13 (-1184 (-1084) |#1|) (-10 -8 (-15 -1631 ((-1178 (-1084) |#1|) $)) (-15 -4166 ($ (-1178 (-1084) |#1|))) (-15 -3545 ((-587 (-2 (|:| |k| (-1084)) (|:| |c| $))) $)))) (-970)) (T -1185))
-((-1631 (*1 *2 *1) (-12 (-5 *2 (-1178 (-1084) *3)) (-5 *1 (-1185 *3)) (-4 *3 (-970)))) (-4166 (*1 *1 *2) (-12 (-5 *2 (-1178 (-1084) *3)) (-4 *3 (-970)) (-5 *1 (-1185 *3)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| (-1084)) (|:| |c| (-1185 *3))))) (-5 *1 (-1185 *3)) (-4 *3 (-970)))))
-(-13 (-1184 (-1084) |#1|) (-10 -8 (-15 -1631 ((-1178 (-1084) |#1|) $)) (-15 -4166 ($ (-1178 (-1084) |#1|))) (-15 -3545 ((-587 (-2 (|:| |k| (-1084)) (|:| |c| $))) $))))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-2057 (((-3 $ "failed") $ $) NIL)) (-2231 (($) NIL T CONST)) (-1296 (((-3 |#2| "failed") $) NIL)) (-1496 ((|#2| $) NIL)) (-3157 (($ $) NIL)) (-2783 (((-3 $ "failed") $) 35)) (-1494 (((-108) $) 30)) (-1297 (($ $) 31)) (-3637 (((-108) $) NIL)) (-2443 (((-707) $) NIL)) (-2411 (((-587 $) $) NIL)) (-3573 (((-108) $) NIL)) (-2523 (($ |#2| |#1|) NIL)) (-1806 ((|#2| $) 19)) (-3874 ((|#2| $) 16)) (-1393 (($ (-1 |#1| |#1|) $) NIL)) (-2102 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3130 ((|#2| $) NIL)) (-3140 ((|#1| $) NIL)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-2829 (((-108) $) 27)) (-2682 ((|#1| $) 28)) (-2223 (((-791) $) 54) (($ (-521)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-2730 (((-587 |#1|) $) NIL)) (-1499 ((|#1| $ |#2|) NIL)) (-2979 ((|#1| $ |#2|) 24)) (-1592 (((-707)) 14)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 25 T CONST)) (-3572 (($) 11 T CONST)) (-1583 (((-587 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1549 (((-108) $ $) 26)) (-1648 (($ $ |#1|) 56 (|has| |#1| (-337)))) (-1639 (($ $) NIL) (($ $ $) NIL)) (-1628 (($ $ $) 43)) (** (($ $ (-849)) NIL) (($ $ (-707)) 45)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3478 (((-707) $) 15)))
-(((-1186 |#1| |#2|) (-13 (-970) (-1177 |#1|) (-356 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3478 ((-707) $)) (-15 -2223 ($ |#2|)) (-15 -3874 (|#2| $)) (-15 -1806 (|#2| $)) (-15 -3157 ($ $)) (-15 -2979 (|#1| $ |#2|)) (-15 -2829 ((-108) $)) (-15 -2682 (|#1| $)) (-15 -1494 ((-108) $)) (-15 -1297 ($ $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-337)) (-15 -1648 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |#1| (-6 -4230)) (-6 -4230) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|))) (-970) (-779)) (T -1186))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-779)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-779)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-1186 *3 *4)) (-4 *4 (-779)))) (-2223 (*1 *1 *2) (-12 (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)) (-4 *2 (-779)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970)) (-4 *4 (-779)))) (-3874 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))) (-1806 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))) (-2979 (*1 *2 *1 *3) (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-779)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970)) (-4 *4 (-779)))) (-2682 (*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-779)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970)) (-4 *4 (-779)))) (-1297 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-779)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-337)) (-4 *2 (-970)) (-4 *3 (-779)))))
-(-13 (-970) (-1177 |#1|) (-356 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3478 ((-707) $)) (-15 -2223 ($ |#2|)) (-15 -3874 (|#2| $)) (-15 -1806 (|#2| $)) (-15 -3157 ($ $)) (-15 -2979 (|#1| $ |#2|)) (-15 -2829 ((-108) $)) (-15 -2682 (|#1| $)) (-15 -1494 ((-108) $)) (-15 -1297 ($ $)) (-15 -1393 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-337)) (-15 -1648 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4226)) (-6 -4226) |%noBranch|) (IF (|has| |#1| (-6 -4230)) (-6 -4230) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) NIL)) (-4101 (((-587 |#1|) $) 120)) (-4166 (($ (-1178 |#1| |#2|)) 44)) (-3619 (($ $ (-707)) 32)) (-2057 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ $) 48 (|has| |#2| (-157))) (($ $ (-707)) 46 (|has| |#2| (-157)))) (-2231 (($) NIL T CONST)) (-2301 (($ $ |#1|) 102) (($ $ (-755 |#1|)) 103) (($ $ $) 25)) (-1296 (((-3 (-755 |#1|) "failed") $) NIL)) (-1496 (((-755 |#1|) $) NIL)) (-2783 (((-3 $ "failed") $) 110)) (-1494 (((-108) $) 105)) (-1297 (($ $) 106)) (-3637 (((-108) $) NIL)) (-3573 (((-108) $) NIL)) (-2523 (($ (-755 |#1|) |#2|) 19)) (-2056 (($ $) NIL)) (-4087 (((-2 (|:| |k| (-755 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1806 (((-755 |#1|) $) 111)) (-3874 (((-755 |#1|) $) 114)) (-1393 (($ (-1 |#2| |#2|) $) 119)) (-2116 (($ $ |#1|) 100) (($ $ (-755 |#1|)) 101) (($ $ $) 56)) (-4024 (((-1067) $) NIL)) (-4146 (((-1031) $) NIL)) (-1631 (((-1178 |#1| |#2|) $) 84)) (-2098 (((-707) $) 117)) (-2829 (((-108) $) 70)) (-2682 ((|#2| $) 28)) (-2223 (((-791) $) 63) (($ (-521)) 77) (($ |#2|) 74) (($ (-755 |#1|)) 17) (($ |#1|) 73)) (-2979 ((|#2| $ (-755 |#1|)) 104) ((|#2| $ $) 27)) (-1592 (((-707)) 108)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 14 T CONST)) (-3545 (((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3572 (($) 29 T CONST)) (-1549 (((-108) $ $) 13)) (-1639 (($ $) 88) (($ $ $) 91)) (-1628 (($ $ $) 55)) (** (($ $ (-849)) NIL) (($ $ (-707)) 49)) (* (($ (-849) $) NIL) (($ (-707) $) 47) (($ (-521) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1187 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -8 (-15 -1631 ((-1178 |#1| |#2|) $)) (-15 -4166 ($ (-1178 |#1| |#2|))) (-15 -3545 ((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-783) (-970)) (T -1187))
-((-1631 (*1 *2 *1) (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))) (-4166 (*1 *1 *2) (-12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)) (-5 *1 (-1187 *3 *4)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-587 (-2 (|:| |k| *3) (|:| |c| (-1187 *3 *4))))) (-5 *1 (-1187 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))))
-(-13 (-1184 |#1| |#2|) (-10 -8 (-15 -1631 ((-1178 |#1| |#2|) $)) (-15 -4166 ($ (-1178 |#1| |#2|))) (-15 -3545 ((-587 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1351 (((-587 (-1065 |#1|)) (-1 (-587 (-1065 |#1|)) (-587 (-1065 |#1|))) (-521)) 15) (((-1065 |#1|) (-1 (-1065 |#1|) (-1065 |#1|))) 11)))
-(((-1188 |#1|) (-10 -7 (-15 -1351 ((-1065 |#1|) (-1 (-1065 |#1|) (-1065 |#1|)))) (-15 -1351 ((-587 (-1065 |#1|)) (-1 (-587 (-1065 |#1|)) (-587 (-1065 |#1|))) (-521)))) (-1119)) (T -1188))
-((-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-587 (-1065 *5)) (-587 (-1065 *5)))) (-5 *4 (-521)) (-5 *2 (-587 (-1065 *5))) (-5 *1 (-1188 *5)) (-4 *5 (-1119)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-1 (-1065 *4) (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1188 *4)) (-4 *4 (-1119)))))
-(-10 -7 (-15 -1351 ((-1065 |#1|) (-1 (-1065 |#1|) (-1065 |#1|)))) (-15 -1351 ((-587 (-1065 |#1|)) (-1 (-587 (-1065 |#1|)) (-587 (-1065 |#1|))) (-521))))
-((-3427 (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|))) 146) (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108)) 145) (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108)) 144) (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108) (-108)) 143) (((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-967 |#1| |#2|)) 128)) (-3129 (((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|))) 71) (((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)) (-108)) 70) (((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)) (-108) (-108)) 69)) (-2337 (((-587 (-1055 |#1| (-493 (-793 |#3|)) (-793 |#3|) (-716 |#1| (-793 |#3|)))) (-967 |#1| |#2|)) 60)) (-1834 (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|))) 113) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108)) 112) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108)) 111) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108) (-108)) 110) (((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|)) 105)) (-3383 (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|))) 118) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108)) 117) (((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108)) 116) (((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|)) 115)) (-1438 (((-587 (-716 |#1| (-793 |#3|))) (-1055 |#1| (-493 (-793 |#3|)) (-793 |#3|) (-716 |#1| (-793 |#3|)))) 97) (((-1080 (-948 (-381 |#1|))) (-1080 |#1|)) 88) (((-880 (-948 (-381 |#1|))) (-716 |#1| (-793 |#3|))) 95) (((-880 (-948 (-381 |#1|))) (-880 |#1|)) 93) (((-716 |#1| (-793 |#3|)) (-716 |#1| (-793 |#2|))) 33)))
-(((-1189 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)) (-108) (-108))) (-15 -3129 ((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)) (-108))) (-15 -3129 ((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-967 |#1| |#2|))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108) (-108))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108) (-108))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)))) (-15 -2337 ((-587 (-1055 |#1| (-493 (-793 |#3|)) (-793 |#3|) (-716 |#1| (-793 |#3|)))) (-967 |#1| |#2|))) (-15 -1438 ((-716 |#1| (-793 |#3|)) (-716 |#1| (-793 |#2|)))) (-15 -1438 ((-880 (-948 (-381 |#1|))) (-880 |#1|))) (-15 -1438 ((-880 (-948 (-381 |#1|))) (-716 |#1| (-793 |#3|)))) (-15 -1438 ((-1080 (-948 (-381 |#1|))) (-1080 |#1|))) (-15 -1438 ((-587 (-716 |#1| (-793 |#3|))) (-1055 |#1| (-493 (-793 |#3|)) (-793 |#3|) (-716 |#1| (-793 |#3|)))))) (-13 (-781) (-282) (-135) (-946)) (-587 (-1084)) (-587 (-1084))) (T -1189))
-((-1438 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 (-493 (-793 *6)) (-793 *6) (-716 *4 (-793 *6)))) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-716 *4 (-793 *6)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-1080 *4)) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-1080 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-716 *4 (-793 *6))) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *6 (-587 (-1084))) (-5 *2 (-880 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-880 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-716 *4 (-793 *5))) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-716 *4 (-793 *6))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-1055 *4 (-493 (-793 *6)) (-793 *6) (-716 *4 (-793 *6))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-1834 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-1834 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *4)) (|:| -1816 (-587 (-880 *4)))))) (-5 *1 (-1189 *4 *5 *6)) (-5 *3 (-587 (-880 *4))) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-3427 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5)))))) (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-880 *5))) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3427 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5)))))) (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-880 *5))) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3427 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5)))))) (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-880 *5))) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-2 (|:| -2990 (-1080 *4)) (|:| -1816 (-587 (-880 *4)))))) (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-967 *4 *5))) (-5 *1 (-1189 *4 *5 *6)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))) (-3129 (*1 *2 *3 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))) (-3129 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946))) (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7)) (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084))))))
-(-10 -7 (-15 -3129 ((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)) (-108) (-108))) (-15 -3129 ((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)) (-108))) (-15 -3129 ((-587 (-967 |#1| |#2|)) (-587 (-880 |#1|)))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-967 |#1| |#2|))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108) (-108))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108) (-108))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)) (-108))) (-15 -3427 ((-587 (-2 (|:| -2990 (-1080 |#1|)) (|:| -1816 (-587 (-880 |#1|))))) (-587 (-880 |#1|)))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108) (-108))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108))) (-15 -1834 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-967 |#1| |#2|))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108) (-108))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)) (-108))) (-15 -3383 ((-587 (-587 (-948 (-381 |#1|)))) (-587 (-880 |#1|)))) (-15 -2337 ((-587 (-1055 |#1| (-493 (-793 |#3|)) (-793 |#3|) (-716 |#1| (-793 |#3|)))) (-967 |#1| |#2|))) (-15 -1438 ((-716 |#1| (-793 |#3|)) (-716 |#1| (-793 |#2|)))) (-15 -1438 ((-880 (-948 (-381 |#1|))) (-880 |#1|))) (-15 -1438 ((-880 (-948 (-381 |#1|))) (-716 |#1| (-793 |#3|)))) (-15 -1438 ((-1080 (-948 (-381 |#1|))) (-1080 |#1|))) (-15 -1438 ((-587 (-716 |#1| (-793 |#3|))) (-1055 |#1| (-493 (-793 |#3|)) (-793 |#3|) (-716 |#1| (-793 |#3|))))))
-((-3445 (((-3 (-1165 (-381 (-521))) "failed") (-1165 |#1|) |#1|) 17)) (-3698 (((-108) (-1165 |#1|)) 11)) (-1824 (((-3 (-1165 (-521)) "failed") (-1165 |#1|)) 14)))
-(((-1190 |#1|) (-10 -7 (-15 -3698 ((-108) (-1165 |#1|))) (-15 -1824 ((-3 (-1165 (-521)) "failed") (-1165 |#1|))) (-15 -3445 ((-3 (-1165 (-381 (-521))) "failed") (-1165 |#1|) |#1|))) (-583 (-521))) (T -1190))
-((-3445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-1165 (-381 (-521)))) (-5 *1 (-1190 *4)))) (-1824 (*1 *2 *3) (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-1165 (-521))) (-5 *1 (-1190 *4)))) (-3698 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-108)) (-5 *1 (-1190 *4)))))
-(-10 -7 (-15 -3698 ((-108) (-1165 |#1|))) (-15 -1824 ((-3 (-1165 (-521)) "failed") (-1165 |#1|))) (-15 -3445 ((-3 (-1165 (-381 (-521))) "failed") (-1165 |#1|) |#1|)))
-((-1422 (((-108) $ $) NIL)) (-3398 (((-108) $) 11)) (-2057 (((-3 $ "failed") $ $) NIL)) (-1659 (((-707)) 8)) (-2231 (($) NIL T CONST)) (-2783 (((-3 $ "failed") $) 43)) (-3254 (($) 36)) (-3637 (((-108) $) NIL)) (-3035 (((-3 $ "failed") $) 29)) (-3999 (((-849) $) 15)) (-4024 (((-1067) $) NIL)) (-3797 (($) 25 T CONST)) (-2723 (($ (-849)) 37)) (-4146 (((-1031) $) NIL)) (-1438 (((-521) $) 13)) (-2223 (((-791) $) 22) (($ (-521)) 19)) (-1592 (((-707)) 9)) (-3509 (($ $ (-849)) NIL) (($ $ (-707)) NIL)) (-3562 (($) 23 T CONST)) (-3572 (($) 24 T CONST)) (-1549 (((-108) $ $) 27)) (-1639 (($ $) 38) (($ $ $) 35)) (-1628 (($ $ $) 26)) (** (($ $ (-849)) NIL) (($ $ (-707)) 40)) (* (($ (-849) $) NIL) (($ (-707) $) NIL) (($ (-521) $) 32) (($ $ $) 31)))
-(((-1191 |#1|) (-13 (-157) (-342) (-562 (-521)) (-1060)) (-849)) (T -1191))
-NIL
-(-13 (-157) (-342) (-562 (-521)) (-1060))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-1196 3136367 3136372 3136377 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3136352 3136357 3136362 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3136337 3136342 3136347 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3136322 3136327 3136332 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3136307 3136312 3136317 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1191 3135437 3136182 3136259 "ZMOD" 3136264 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1190 3134547 3134711 3134920 "ZLINDEP" 3135269 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1189 3123951 3125696 3127648 "ZDSOLVE" 3132696 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1188 3123197 3123338 3123527 "YSTREAM" 3123797 NIL YSTREAM (NIL T) -7 NIL NIL) (-1187 3120965 3122502 3122705 "XRPOLY" 3123040 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1186 3117427 3118756 3119338 "XPR" 3120429 NIL XPR (NIL T T) -8 NIL NIL) (-1185 3115141 3116762 3116965 "XPOLY" 3117258 NIL XPOLY (NIL T) -8 NIL NIL) (-1184 3112954 3114332 3114387 "XPOLYC" 3114672 NIL XPOLYC (NIL T T) -9 NIL 3114785) (-1183 3109326 3111471 3111859 "XPBWPOLY" 3112612 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1182 3105253 3107566 3107609 "XF" 3108230 NIL XF (NIL T) -9 NIL 3108629) (-1181 3104874 3104962 3105131 "XF-" 3105136 NIL XF- (NIL T T) -8 NIL NIL) (-1180 3100253 3101552 3101607 "XFALG" 3103755 NIL XFALG (NIL T T) -9 NIL 3104542) (-1179 3099390 3099494 3099698 "XEXPPKG" 3100145 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1178 3097488 3099241 3099336 "XDPOLY" 3099341 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1177 3096366 3096976 3097019 "XALG" 3097081 NIL XALG (NIL T) -9 NIL 3097200) (-1176 3089842 3094350 3094843 "WUTSET" 3095958 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1175 3087654 3088461 3088812 "WP" 3089624 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1174 3086540 3086738 3087033 "WFFINTBS" 3087451 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1173 3084444 3084871 3085333 "WEIER" 3086112 NIL WEIER (NIL T) -7 NIL NIL) (-1172 3083592 3084016 3084059 "VSPACE" 3084195 NIL VSPACE (NIL T) -9 NIL 3084269) (-1171 3083430 3083457 3083548 "VSPACE-" 3083553 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1170 3083176 3083219 3083290 "VOID" 3083381 T VOID (NIL) -8 NIL NIL) (-1169 3081312 3081671 3082077 "VIEW" 3082792 T VIEW (NIL) -7 NIL NIL) (-1168 3077737 3078375 3079112 "VIEWDEF" 3080597 T VIEWDEF (NIL) -7 NIL NIL) (-1167 3067076 3069285 3071458 "VIEW3D" 3075586 T VIEW3D (NIL) -8 NIL NIL) (-1166 3059358 3060987 3062566 "VIEW2D" 3065519 T VIEW2D (NIL) -8 NIL NIL) (-1165 3054767 3059128 3059220 "VECTOR" 3059301 NIL VECTOR (NIL T) -8 NIL NIL) (-1164 3053344 3053603 3053921 "VECTOR2" 3054497 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1163 3046883 3051135 3051179 "VECTCAT" 3052167 NIL VECTCAT (NIL T) -9 NIL 3052751) (-1162 3045897 3046151 3046541 "VECTCAT-" 3046546 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1161 3045378 3045548 3045668 "VARIABLE" 3045812 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1160 3045310 3045315 3045346 "UTYPE" 3045351 T UTYPE (NIL) -9 NIL NIL) (-1159 3044145 3044299 3044560 "UTSODETL" 3045136 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1158 3041585 3042045 3042569 "UTSODE" 3043686 NIL UTSODE (NIL T T) -7 NIL NIL) (-1157 3033432 3039225 3039713 "UTS" 3041154 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1156 3024780 3030142 3030185 "UTSCAT" 3031286 NIL UTSCAT (NIL T) -9 NIL 3032043) (-1155 3022136 3022851 3023839 "UTSCAT-" 3023844 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1154 3021767 3021810 3021941 "UTS2" 3022087 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1153 3016042 3018607 3018651 "URAGG" 3020721 NIL URAGG (NIL T) -9 NIL 3021443) (-1152 3012981 3013844 3014967 "URAGG-" 3014972 NIL URAGG- (NIL T T) -8 NIL NIL) (-1151 3008667 3011598 3012069 "UPXSSING" 3012645 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1150 3000561 3007788 3008068 "UPXS" 3008444 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1149 2993593 3000466 3000537 "UPXSCONS" 3000542 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1148 2983885 2990712 2990774 "UPXSCCA" 2991423 NIL UPXSCCA (NIL T T) -9 NIL 2991664) (-1147 2983524 2983609 2983782 "UPXSCCA-" 2983787 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1146 2973738 2980338 2980381 "UPXSCAT" 2981024 NIL UPXSCAT (NIL T) -9 NIL 2981632) (-1145 2973172 2973251 2973428 "UPXS2" 2973653 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1144 2971826 2972079 2972430 "UPSQFREE" 2972915 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1143 2965721 2968773 2968828 "UPSCAT" 2969977 NIL UPSCAT (NIL T T) -9 NIL 2970750) (-1142 2964935 2965139 2965462 "UPSCAT-" 2965467 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1141 2951067 2959064 2959107 "UPOLYC" 2961185 NIL UPOLYC (NIL T) -9 NIL 2962405) (-1140 2942460 2944864 2947989 "UPOLYC-" 2947994 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1139 2942091 2942134 2942265 "UPOLYC2" 2942411 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1138 2933550 2941660 2941797 "UP" 2942001 NIL UP (NIL NIL T) -8 NIL NIL) (-1137 2932893 2933000 2933163 "UPMP" 2933439 NIL UPMP (NIL T T) -7 NIL NIL) (-1136 2932446 2932527 2932666 "UPDIVP" 2932806 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1135 2931014 2931263 2931579 "UPDECOMP" 2932195 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1134 2930249 2930361 2930546 "UPCDEN" 2930898 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1133 2929772 2929841 2929988 "UP2" 2930174 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1132 2928289 2928976 2929253 "UNISEG" 2929530 NIL UNISEG (NIL T) -8 NIL NIL) (-1131 2927504 2927631 2927836 "UNISEG2" 2928132 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1130 2926564 2926744 2926970 "UNIFACT" 2927320 NIL UNIFACT (NIL T) -7 NIL NIL) (-1129 2910463 2925745 2925995 "ULS" 2926371 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1128 2898431 2910368 2910439 "ULSCONS" 2910444 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1127 2881184 2893194 2893256 "ULSCCAT" 2893968 NIL ULSCCAT (NIL T T) -9 NIL 2894264) (-1126 2880235 2880480 2880867 "ULSCCAT-" 2880872 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1125 2870228 2876742 2876785 "ULSCAT" 2877641 NIL ULSCAT (NIL T) -9 NIL 2878371) (-1124 2869662 2869741 2869918 "ULS2" 2870143 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1123 2868059 2869026 2869057 "UFD" 2869269 T UFD (NIL) -9 NIL 2869383) (-1122 2867853 2867899 2867994 "UFD-" 2867999 NIL UFD- (NIL T) -8 NIL NIL) (-1121 2866935 2867118 2867334 "UDVO" 2867659 T UDVO (NIL) -7 NIL NIL) (-1120 2864751 2865160 2865631 "UDPO" 2866499 NIL UDPO (NIL T) -7 NIL NIL) (-1119 2864683 2864688 2864719 "TYPE" 2864724 T TYPE (NIL) -9 NIL NIL) (-1118 2863654 2863856 2864096 "TWOFACT" 2864477 NIL TWOFACT (NIL T) -7 NIL NIL) (-1117 2862592 2862929 2863192 "TUPLE" 2863426 NIL TUPLE (NIL T) -8 NIL NIL) (-1116 2860283 2860802 2861341 "TUBETOOL" 2862075 T TUBETOOL (NIL) -7 NIL NIL) (-1115 2859132 2859337 2859578 "TUBE" 2860076 NIL TUBE (NIL T) -8 NIL NIL) (-1114 2853856 2858110 2858392 "TS" 2858884 NIL TS (NIL T) -8 NIL NIL) (-1113 2842559 2846651 2846748 "TSETCAT" 2851982 NIL TSETCAT (NIL T T T T) -9 NIL 2853513) (-1112 2837294 2838892 2840782 "TSETCAT-" 2840787 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1111 2831557 2832403 2833345 "TRMANIP" 2836430 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1110 2830998 2831061 2831224 "TRIMAT" 2831489 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1109 2828804 2829041 2829404 "TRIGMNIP" 2830747 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1108 2828323 2828436 2828467 "TRIGCAT" 2828680 T TRIGCAT (NIL) -9 NIL NIL) (-1107 2827992 2828071 2828212 "TRIGCAT-" 2828217 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1106 2824891 2826852 2827132 "TREE" 2827747 NIL TREE (NIL T) -8 NIL NIL) (-1105 2824164 2824692 2824723 "TRANFUN" 2824758 T TRANFUN (NIL) -9 NIL 2824824) (-1104 2823443 2823634 2823914 "TRANFUN-" 2823919 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1103 2823247 2823279 2823340 "TOPSP" 2823404 T TOPSP (NIL) -7 NIL NIL) (-1102 2822599 2822714 2822867 "TOOLSIGN" 2823128 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1101 2821260 2821776 2822015 "TEXTFILE" 2822382 T TEXTFILE (NIL) -8 NIL NIL) (-1100 2819125 2819639 2820077 "TEX" 2820844 T TEX (NIL) -8 NIL NIL) (-1099 2818906 2818937 2819009 "TEX1" 2819088 NIL TEX1 (NIL T) -7 NIL NIL) (-1098 2818554 2818617 2818707 "TEMUTL" 2818838 T TEMUTL (NIL) -7 NIL NIL) (-1097 2816708 2816988 2817313 "TBCMPPK" 2818277 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1096 2808596 2814868 2814925 "TBAGG" 2815325 NIL TBAGG (NIL T T) -9 NIL 2815536) (-1095 2803666 2805154 2806908 "TBAGG-" 2806913 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1094 2803050 2803157 2803302 "TANEXP" 2803555 NIL TANEXP (NIL T) -7 NIL NIL) (-1093 2796551 2802907 2803000 "TABLE" 2803005 NIL TABLE (NIL T T) -8 NIL NIL) (-1092 2795964 2796062 2796200 "TABLEAU" 2796448 NIL TABLEAU (NIL T) -8 NIL NIL) (-1091 2790572 2791792 2793040 "TABLBUMP" 2794750 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1090 2787035 2787730 2788513 "SYSSOLP" 2789823 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1089 2783419 2784022 2784762 "SYNTAX" 2786317 T SYNTAX (NIL) -8 NIL NIL) (-1088 2780553 2781161 2781799 "SYMTAB" 2782803 T SYMTAB (NIL) -8 NIL NIL) (-1087 2775802 2776704 2777687 "SYMS" 2779592 T SYMS (NIL) -8 NIL NIL) (-1086 2773035 2775262 2775491 "SYMPOLY" 2775607 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1085 2772555 2772630 2772752 "SYMFUNC" 2772947 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1084 2768533 2769792 2770614 "SYMBOL" 2771755 T SYMBOL (NIL) -8 NIL NIL) (-1083 2762072 2763761 2765481 "SWITCH" 2766835 T SWITCH (NIL) -8 NIL NIL) (-1082 2755305 2760899 2761201 "SUTS" 2761827 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1081 2747198 2754426 2754706 "SUPXS" 2755082 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1080 2738730 2746819 2746944 "SUP" 2747107 NIL SUP (NIL T) -8 NIL NIL) (-1079 2737889 2738016 2738233 "SUPFRACF" 2738598 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1078 2737514 2737573 2737684 "SUP2" 2737824 NIL SUP2 (NIL T T) -7 NIL NIL) (-1077 2735932 2736206 2736568 "SUMRF" 2737213 NIL SUMRF (NIL T) -7 NIL NIL) (-1076 2735249 2735315 2735513 "SUMFS" 2735853 NIL SUMFS (NIL T T) -7 NIL NIL) (-1075 2719188 2734430 2734680 "SULS" 2735056 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1074 2718510 2718713 2718853 "SUCH" 2719096 NIL SUCH (NIL T T) -8 NIL NIL) (-1073 2712437 2713449 2714407 "SUBSPACE" 2717598 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1072 2711867 2711957 2712121 "SUBRESP" 2712325 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1071 2705236 2706532 2707843 "STTF" 2710603 NIL STTF (NIL T) -7 NIL NIL) (-1070 2699409 2700529 2701676 "STTFNC" 2704136 NIL STTFNC (NIL T) -7 NIL NIL) (-1069 2690760 2692627 2694420 "STTAYLOR" 2697650 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1068 2684004 2690624 2690707 "STRTBL" 2690712 NIL STRTBL (NIL T) -8 NIL NIL) (-1067 2679395 2683959 2683990 "STRING" 2683995 T STRING (NIL) -8 NIL NIL) (-1066 2674283 2678768 2678799 "STRICAT" 2678858 T STRICAT (NIL) -9 NIL 2678920) (-1065 2666999 2671806 2672426 "STREAM" 2673698 NIL STREAM (NIL T) -8 NIL NIL) (-1064 2666509 2666586 2666730 "STREAM3" 2666916 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1063 2665491 2665674 2665909 "STREAM2" 2666322 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1062 2665179 2665231 2665324 "STREAM1" 2665433 NIL STREAM1 (NIL T) -7 NIL NIL) (-1061 2664195 2664376 2664607 "STINPROD" 2664995 NIL STINPROD (NIL T) -7 NIL NIL) (-1060 2663773 2663957 2663988 "STEP" 2664068 T STEP (NIL) -9 NIL 2664146) (-1059 2657316 2663672 2663749 "STBL" 2663754 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1058 2652491 2656538 2656582 "STAGG" 2656735 NIL STAGG (NIL T) -9 NIL 2656824) (-1057 2650193 2650795 2651667 "STAGG-" 2651672 NIL STAGG- (NIL T T) -8 NIL NIL) (-1056 2648388 2649963 2650055 "STACK" 2650136 NIL STACK (NIL T) -8 NIL NIL) (-1055 2641119 2646535 2646990 "SREGSET" 2648018 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1054 2633559 2634927 2636439 "SRDCMPK" 2639725 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1053 2626526 2630999 2631030 "SRAGG" 2632333 T SRAGG (NIL) -9 NIL 2632941) (-1052 2625543 2625798 2626177 "SRAGG-" 2626182 NIL SRAGG- (NIL T) -8 NIL NIL) (-1051 2619992 2624462 2624889 "SQMATRIX" 2625162 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1050 2613744 2616712 2617438 "SPLTREE" 2619338 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1049 2609734 2610400 2611046 "SPLNODE" 2613170 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1048 2608780 2609013 2609044 "SPFCAT" 2609488 T SPFCAT (NIL) -9 NIL NIL) (-1047 2607517 2607727 2607991 "SPECOUT" 2608538 T SPECOUT (NIL) -7 NIL NIL) (-1046 2607278 2607318 2607387 "SPADPRSR" 2607470 T SPADPRSR (NIL) -7 NIL NIL) (-1045 2599300 2601047 2601090 "SPACEC" 2605413 NIL SPACEC (NIL T) -9 NIL 2607229) (-1044 2597472 2599233 2599281 "SPACE3" 2599286 NIL SPACE3 (NIL T) -8 NIL NIL) (-1043 2596224 2596395 2596686 "SORTPAK" 2597277 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1042 2594280 2594583 2595001 "SOLVETRA" 2595888 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1041 2593291 2593513 2593787 "SOLVESER" 2594053 NIL SOLVESER (NIL T) -7 NIL NIL) (-1040 2588511 2589392 2590394 "SOLVERAD" 2592343 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1039 2584326 2584935 2585664 "SOLVEFOR" 2587878 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1038 2578625 2583677 2583774 "SNTSCAT" 2583779 NIL SNTSCAT (NIL T T T T) -9 NIL 2583849) (-1037 2572730 2576956 2577346 "SMTS" 2578315 NIL SMTS (NIL T T T) -8 NIL NIL) (-1036 2567141 2572619 2572695 "SMP" 2572700 NIL SMP (NIL T T) -8 NIL NIL) (-1035 2565300 2565601 2565999 "SMITH" 2566838 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1034 2558264 2562460 2562563 "SMATCAT" 2563903 NIL SMATCAT (NIL NIL T T T) -9 NIL 2564452) (-1033 2555205 2556028 2557205 "SMATCAT-" 2557210 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1032 2552918 2554441 2554485 "SKAGG" 2554746 NIL SKAGG (NIL T) -9 NIL 2554881) (-1031 2548976 2552022 2552300 "SINT" 2552662 T SINT (NIL) -8 NIL NIL) (-1030 2548748 2548786 2548852 "SIMPAN" 2548932 T SIMPAN (NIL) -7 NIL NIL) (-1029 2547586 2547807 2548082 "SIGNRF" 2548507 NIL SIGNRF (NIL T) -7 NIL NIL) (-1028 2546395 2546546 2546836 "SIGNEF" 2547415 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1027 2544085 2544539 2545045 "SHP" 2545936 NIL SHP (NIL T NIL) -7 NIL NIL) (-1026 2537938 2543986 2544062 "SHDP" 2544067 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1025 2537427 2537619 2537650 "SGROUP" 2537802 T SGROUP (NIL) -9 NIL 2537889) (-1024 2537197 2537249 2537353 "SGROUP-" 2537358 NIL SGROUP- (NIL T) -8 NIL NIL) (-1023 2534033 2534730 2535453 "SGCF" 2536496 T SGCF (NIL) -7 NIL NIL) (-1022 2528431 2533483 2533580 "SFRTCAT" 2533585 NIL SFRTCAT (NIL T T T T) -9 NIL 2533623) (-1021 2521891 2522906 2524040 "SFRGCD" 2527414 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1020 2515057 2516128 2517312 "SFQCMPK" 2520824 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1019 2514679 2514768 2514878 "SFORT" 2514998 NIL SFORT (NIL T T) -8 NIL NIL) (-1018 2513824 2514519 2514640 "SEXOF" 2514645 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1017 2512958 2513705 2513773 "SEX" 2513778 T SEX (NIL) -8 NIL NIL) (-1016 2507734 2508423 2508519 "SEXCAT" 2512290 NIL SEXCAT (NIL T T T T T) -9 NIL 2512909) (-1015 2504914 2507668 2507716 "SET" 2507721 NIL SET (NIL T) -8 NIL NIL) (-1014 2503165 2503627 2503932 "SETMN" 2504655 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1013 2502772 2502898 2502929 "SETCAT" 2503046 T SETCAT (NIL) -9 NIL 2503130) (-1012 2502552 2502604 2502703 "SETCAT-" 2502708 NIL SETCAT- (NIL T) -8 NIL NIL) (-1011 2498939 2501013 2501057 "SETAGG" 2501927 NIL SETAGG (NIL T) -9 NIL 2502267) (-1010 2498397 2498513 2498750 "SETAGG-" 2498755 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1009 2497600 2497893 2497955 "SEGXCAT" 2498241 NIL SEGXCAT (NIL T T) -9 NIL 2498361) (-1008 2496656 2497266 2497448 "SEG" 2497453 NIL SEG (NIL T) -8 NIL NIL) (-1007 2495562 2495775 2495819 "SEGCAT" 2496401 NIL SEGCAT (NIL T) -9 NIL 2496639) (-1006 2494611 2494941 2495141 "SEGBIND" 2495397 NIL SEGBIND (NIL T) -8 NIL NIL) (-1005 2494232 2494291 2494404 "SEGBIND2" 2494546 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1004 2493451 2493577 2493781 "SEG2" 2494076 NIL SEG2 (NIL T T) -7 NIL NIL) (-1003 2492888 2493386 2493433 "SDVAR" 2493438 NIL SDVAR (NIL T) -8 NIL NIL) (-1002 2485140 2492661 2492789 "SDPOL" 2492794 NIL SDPOL (NIL T) -8 NIL NIL) (-1001 2483733 2483999 2484318 "SCPKG" 2484855 NIL SCPKG (NIL T) -7 NIL NIL) (-1000 2482870 2483049 2483249 "SCOPE" 2483555 T SCOPE (NIL) -8 NIL NIL) (-999 2482097 2482230 2482407 "SCACHE" 2482725 NIL SCACHE (NIL T) -7 NIL NIL) (-998 2481540 2481861 2481944 "SAOS" 2482034 T SAOS (NIL) -8 NIL NIL) (-997 2481108 2481143 2481314 "SAERFFC" 2481499 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-996 2475004 2481007 2481085 "SAE" 2481090 NIL SAE (NIL T T NIL) -8 NIL NIL) (-995 2474600 2474635 2474792 "SAEFACT" 2474963 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-994 2472926 2473240 2473639 "RURPK" 2474266 NIL RURPK (NIL T NIL) -7 NIL NIL) (-993 2471579 2471856 2472163 "RULESET" 2472762 NIL RULESET (NIL T T T) -8 NIL NIL) (-992 2468787 2469290 2469751 "RULE" 2471261 NIL RULE (NIL T T T) -8 NIL NIL) (-991 2468429 2468584 2468665 "RULECOLD" 2468739 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-990 2463321 2464115 2465031 "RSETGCD" 2467628 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-989 2452635 2457687 2457782 "RSETCAT" 2461847 NIL RSETCAT (NIL T T T T) -9 NIL 2462944) (-988 2450566 2451105 2451925 "RSETCAT-" 2451930 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-987 2442996 2444371 2445887 "RSDCMPK" 2449165 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-986 2441013 2441454 2441527 "RRCC" 2442603 NIL RRCC (NIL T T) -9 NIL 2442947) (-985 2440367 2440541 2440817 "RRCC-" 2440822 NIL RRCC- (NIL T T T) -8 NIL NIL) (-984 2414733 2424358 2424423 "RPOLCAT" 2434925 NIL RPOLCAT (NIL T T T) -9 NIL 2438083) (-983 2406237 2408575 2411693 "RPOLCAT-" 2411698 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-982 2397303 2404467 2404947 "ROUTINE" 2405777 T ROUTINE (NIL) -8 NIL NIL) (-981 2394008 2396859 2397006 "ROMAN" 2397176 T ROMAN (NIL) -8 NIL NIL) (-980 2392294 2392879 2393136 "ROIRC" 2393814 NIL ROIRC (NIL T T) -8 NIL NIL) (-979 2388698 2391002 2391031 "RNS" 2391327 T RNS (NIL) -9 NIL 2391597) (-978 2387212 2387595 2388126 "RNS-" 2388199 NIL RNS- (NIL T) -8 NIL NIL) (-977 2386637 2387045 2387074 "RNG" 2387079 T RNG (NIL) -9 NIL 2387100) (-976 2386034 2386396 2386437 "RMODULE" 2386497 NIL RMODULE (NIL T) -9 NIL 2386539) (-975 2384886 2384980 2385310 "RMCAT2" 2385935 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-974 2381600 2384069 2384390 "RMATRIX" 2384621 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-973 2374596 2376830 2376943 "RMATCAT" 2380252 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2381234) (-972 2373975 2374122 2374425 "RMATCAT-" 2374430 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-971 2373545 2373620 2373746 "RINTERP" 2373894 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-970 2372595 2373159 2373188 "RING" 2373298 T RING (NIL) -9 NIL 2373392) (-969 2372390 2372434 2372528 "RING-" 2372533 NIL RING- (NIL T) -8 NIL NIL) (-968 2371238 2371475 2371731 "RIDIST" 2372154 T RIDIST (NIL) -7 NIL NIL) (-967 2362560 2370712 2370915 "RGCHAIN" 2371087 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-966 2359565 2360179 2360847 "RF" 2361924 NIL RF (NIL T) -7 NIL NIL) (-965 2359214 2359277 2359378 "RFFACTOR" 2359496 NIL RFFACTOR (NIL T) -7 NIL NIL) (-964 2358942 2358977 2359072 "RFFACT" 2359173 NIL RFFACT (NIL T) -7 NIL NIL) (-963 2357072 2357436 2357816 "RFDIST" 2358582 T RFDIST (NIL) -7 NIL NIL) (-962 2356530 2356622 2356782 "RETSOL" 2356974 NIL RETSOL (NIL T T) -7 NIL NIL) (-961 2356122 2356202 2356244 "RETRACT" 2356434 NIL RETRACT (NIL T) -9 NIL NIL) (-960 2355974 2355999 2356083 "RETRACT-" 2356088 NIL RETRACT- (NIL T T) -8 NIL NIL) (-959 2348832 2355631 2355756 "RESULT" 2355869 T RESULT (NIL) -8 NIL NIL) (-958 2347417 2348106 2348303 "RESRING" 2348735 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-957 2347057 2347106 2347202 "RESLATC" 2347354 NIL RESLATC (NIL T) -7 NIL NIL) (-956 2346766 2346800 2346905 "REPSQ" 2347016 NIL REPSQ (NIL T) -7 NIL NIL) (-955 2344197 2344777 2345377 "REP" 2346186 T REP (NIL) -7 NIL NIL) (-954 2343898 2343932 2344041 "REPDB" 2344156 NIL REPDB (NIL T) -7 NIL NIL) (-953 2337843 2339222 2340442 "REP2" 2342710 NIL REP2 (NIL T) -7 NIL NIL) (-952 2334249 2334930 2335735 "REP1" 2337070 NIL REP1 (NIL T) -7 NIL NIL) (-951 2326995 2332410 2332862 "REGSET" 2333880 NIL REGSET (NIL T T T T) -8 NIL NIL) (-950 2325816 2326151 2326399 "REF" 2326780 NIL REF (NIL T) -8 NIL NIL) (-949 2325197 2325300 2325465 "REDORDER" 2325700 NIL REDORDER (NIL T T) -7 NIL NIL) (-948 2321166 2324431 2324652 "RECLOS" 2325028 NIL RECLOS (NIL T) -8 NIL NIL) (-947 2320223 2320404 2320617 "REALSOLV" 2320973 T REALSOLV (NIL) -7 NIL NIL) (-946 2320070 2320111 2320140 "REAL" 2320145 T REAL (NIL) -9 NIL 2320180) (-945 2316561 2317363 2318245 "REAL0Q" 2319235 NIL REAL0Q (NIL T) -7 NIL NIL) (-944 2312172 2313160 2314219 "REAL0" 2315542 NIL REAL0 (NIL T) -7 NIL NIL) (-943 2311580 2311652 2311857 "RDIV" 2312094 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-942 2310653 2310827 2311038 "RDIST" 2311402 NIL RDIST (NIL T) -7 NIL NIL) (-941 2309257 2309544 2309913 "RDETRS" 2310361 NIL RDETRS (NIL T T) -7 NIL NIL) (-940 2307078 2307532 2308067 "RDETR" 2308799 NIL RDETR (NIL T T) -7 NIL NIL) (-939 2305694 2305972 2306373 "RDEEFS" 2306794 NIL RDEEFS (NIL T T) -7 NIL NIL) (-938 2304194 2304500 2304929 "RDEEF" 2305382 NIL RDEEF (NIL T T) -7 NIL NIL) (-937 2298478 2301410 2301439 "RCFIELD" 2302716 T RCFIELD (NIL) -9 NIL 2303446) (-936 2296547 2297051 2297744 "RCFIELD-" 2297817 NIL RCFIELD- (NIL T) -8 NIL NIL) (-935 2292878 2294663 2294705 "RCAGG" 2295776 NIL RCAGG (NIL T) -9 NIL 2296241) (-934 2292509 2292603 2292763 "RCAGG-" 2292768 NIL RCAGG- (NIL T T) -8 NIL NIL) (-933 2291854 2291965 2292127 "RATRET" 2292393 NIL RATRET (NIL T) -7 NIL NIL) (-932 2291411 2291478 2291597 "RATFACT" 2291782 NIL RATFACT (NIL T) -7 NIL NIL) (-931 2290726 2290846 2290996 "RANDSRC" 2291281 T RANDSRC (NIL) -7 NIL NIL) (-930 2290463 2290507 2290578 "RADUTIL" 2290675 T RADUTIL (NIL) -7 NIL NIL) (-929 2283470 2289206 2289523 "RADIX" 2290178 NIL RADIX (NIL NIL) -8 NIL NIL) (-928 2275040 2283314 2283442 "RADFF" 2283447 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-927 2274691 2274766 2274795 "RADCAT" 2274952 T RADCAT (NIL) -9 NIL NIL) (-926 2274476 2274524 2274621 "RADCAT-" 2274626 NIL RADCAT- (NIL T) -8 NIL NIL) (-925 2272627 2274251 2274340 "QUEUE" 2274420 NIL QUEUE (NIL T) -8 NIL NIL) (-924 2269124 2272564 2272609 "QUAT" 2272614 NIL QUAT (NIL T) -8 NIL NIL) (-923 2268762 2268805 2268932 "QUATCT2" 2269075 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-922 2262555 2265935 2265976 "QUATCAT" 2266755 NIL QUATCAT (NIL T) -9 NIL 2267520) (-921 2258699 2259736 2261123 "QUATCAT-" 2261217 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-920 2256219 2257783 2257825 "QUAGG" 2258200 NIL QUAGG (NIL T) -9 NIL 2258375) (-919 2255144 2255617 2255789 "QFORM" 2256091 NIL QFORM (NIL NIL T) -8 NIL NIL) (-918 2246440 2251698 2251739 "QFCAT" 2252397 NIL QFCAT (NIL T) -9 NIL 2253390) (-917 2242012 2243213 2244804 "QFCAT-" 2244898 NIL QFCAT- (NIL T T) -8 NIL NIL) (-916 2241650 2241693 2241820 "QFCAT2" 2241963 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-915 2241110 2241220 2241350 "QEQUAT" 2241540 T QEQUAT (NIL) -8 NIL NIL) (-914 2234296 2235367 2236549 "QCMPACK" 2240043 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-913 2231872 2232293 2232721 "QALGSET" 2233951 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-912 2231117 2231291 2231523 "QALGSET2" 2231692 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-911 2229808 2230031 2230348 "PWFFINTB" 2230890 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-910 2227996 2228164 2228517 "PUSHVAR" 2229622 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-909 2223913 2224967 2225009 "PTRANFN" 2226893 NIL PTRANFN (NIL T) -9 NIL NIL) (-908 2222325 2222616 2222937 "PTPACK" 2223624 NIL PTPACK (NIL T) -7 NIL NIL) (-907 2221961 2222018 2222125 "PTFUNC2" 2222262 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-906 2216437 2220778 2220819 "PTCAT" 2221187 NIL PTCAT (NIL T) -9 NIL 2221349) (-905 2216095 2216130 2216254 "PSQFR" 2216396 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-904 2214690 2214988 2215322 "PSEUDLIN" 2215793 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-903 2201498 2203862 2206185 "PSETPK" 2212450 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-902 2194584 2197298 2197393 "PSETCAT" 2200374 NIL PSETCAT (NIL T T T T) -9 NIL 2201188) (-901 2192422 2193056 2193875 "PSETCAT-" 2193880 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-900 2191770 2191935 2191964 "PSCURVE" 2192232 T PSCURVE (NIL) -9 NIL 2192399) (-899 2188221 2189747 2189812 "PSCAT" 2190648 NIL PSCAT (NIL T T T) -9 NIL 2190888) (-898 2187285 2187501 2187900 "PSCAT-" 2187905 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-897 2185938 2186570 2186784 "PRTITION" 2187091 T PRTITION (NIL) -8 NIL NIL) (-896 2175036 2177242 2179430 "PRS" 2183800 NIL PRS (NIL T T) -7 NIL NIL) (-895 2172894 2174386 2174427 "PRQAGG" 2174610 NIL PRQAGG (NIL T) -9 NIL 2174712) (-894 2172464 2172566 2172595 "PROPLOG" 2172780 T PROPLOG (NIL) -9 NIL NIL) (-893 2169587 2170152 2170679 "PROPFRML" 2171969 NIL PROPFRML (NIL T) -8 NIL NIL) (-892 2169047 2169157 2169287 "PROPERTY" 2169477 T PROPERTY (NIL) -8 NIL NIL) (-891 2162821 2167213 2168033 "PRODUCT" 2168273 NIL PRODUCT (NIL T T) -8 NIL NIL) (-890 2160097 2162281 2162514 "PR" 2162632 NIL PR (NIL T T) -8 NIL NIL) (-889 2159893 2159925 2159984 "PRINT" 2160058 T PRINT (NIL) -7 NIL NIL) (-888 2159233 2159350 2159502 "PRIMES" 2159773 NIL PRIMES (NIL T) -7 NIL NIL) (-887 2157298 2157699 2158165 "PRIMELT" 2158812 NIL PRIMELT (NIL T) -7 NIL NIL) (-886 2157026 2157075 2157104 "PRIMCAT" 2157228 T PRIMCAT (NIL) -9 NIL NIL) (-885 2153187 2156964 2157009 "PRIMARR" 2157014 NIL PRIMARR (NIL T) -8 NIL NIL) (-884 2152194 2152372 2152600 "PRIMARR2" 2153005 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-883 2151837 2151893 2152004 "PREASSOC" 2152132 NIL PREASSOC (NIL T T) -7 NIL NIL) (-882 2151311 2151444 2151473 "PPCURVE" 2151678 T PPCURVE (NIL) -9 NIL 2151814) (-881 2148670 2149069 2149661 "POLYROOT" 2150892 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-880 2142576 2148276 2148435 "POLY" 2148543 NIL POLY (NIL T) -8 NIL NIL) (-879 2141961 2142019 2142252 "POLYLIFT" 2142512 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-878 2138246 2138695 2139323 "POLYCATQ" 2141506 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-877 2125286 2130683 2130748 "POLYCAT" 2134233 NIL POLYCAT (NIL T T T) -9 NIL 2136160) (-876 2118737 2120598 2122981 "POLYCAT-" 2122986 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-875 2118326 2118394 2118513 "POLY2UP" 2118663 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-874 2117962 2118019 2118126 "POLY2" 2118263 NIL POLY2 (NIL T T) -7 NIL NIL) (-873 2116647 2116886 2117162 "POLUTIL" 2117736 NIL POLUTIL (NIL T T) -7 NIL NIL) (-872 2115009 2115286 2115616 "POLTOPOL" 2116369 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-871 2110532 2114946 2114991 "POINT" 2114996 NIL POINT (NIL T) -8 NIL NIL) (-870 2108719 2109076 2109451 "PNTHEORY" 2110177 T PNTHEORY (NIL) -7 NIL NIL) (-869 2107147 2107444 2107853 "PMTOOLS" 2108417 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-868 2106740 2106818 2106935 "PMSYM" 2107063 NIL PMSYM (NIL T) -7 NIL NIL) (-867 2106250 2106319 2106493 "PMQFCAT" 2106665 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-866 2105605 2105715 2105871 "PMPRED" 2106127 NIL PMPRED (NIL T) -7 NIL NIL) (-865 2105001 2105087 2105248 "PMPREDFS" 2105506 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-864 2103647 2103855 2104239 "PMPLCAT" 2104763 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-863 2103179 2103258 2103410 "PMLSAGG" 2103562 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-862 2102656 2102732 2102912 "PMKERNEL" 2103097 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-861 2102273 2102348 2102461 "PMINS" 2102575 NIL PMINS (NIL T) -7 NIL NIL) (-860 2101703 2101772 2101987 "PMFS" 2102198 NIL PMFS (NIL T T T) -7 NIL NIL) (-859 2100934 2101052 2101256 "PMDOWN" 2101580 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-858 2100097 2100256 2100438 "PMASS" 2100772 T PMASS (NIL) -7 NIL NIL) (-857 2099371 2099482 2099645 "PMASSFS" 2099983 NIL PMASSFS (NIL T T) -7 NIL NIL) (-856 2099026 2099094 2099188 "PLOTTOOL" 2099297 T PLOTTOOL (NIL) -7 NIL NIL) (-855 2093648 2094837 2095985 "PLOT" 2097898 T PLOT (NIL) -8 NIL NIL) (-854 2089462 2090496 2091417 "PLOT3D" 2092747 T PLOT3D (NIL) -8 NIL NIL) (-853 2088374 2088551 2088786 "PLOT1" 2089266 NIL PLOT1 (NIL T) -7 NIL NIL) (-852 2063769 2068440 2073291 "PLEQN" 2083640 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-851 2063087 2063209 2063389 "PINTERP" 2063634 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-850 2062780 2062827 2062930 "PINTERPA" 2063034 NIL PINTERPA (NIL T T) -7 NIL NIL) (-849 2062007 2062574 2062667 "PI" 2062707 T PI (NIL) -8 NIL NIL) (-848 2060398 2061383 2061412 "PID" 2061594 T PID (NIL) -9 NIL 2061728) (-847 2060123 2060160 2060248 "PICOERCE" 2060355 NIL PICOERCE (NIL T) -7 NIL NIL) (-846 2059444 2059582 2059758 "PGROEB" 2059979 NIL PGROEB (NIL T) -7 NIL NIL) (-845 2055031 2055845 2056750 "PGE" 2058559 T PGE (NIL) -7 NIL NIL) (-844 2053155 2053401 2053767 "PGCD" 2054748 NIL PGCD (NIL T T T T) -7 NIL NIL) (-843 2052493 2052596 2052757 "PFRPAC" 2053039 NIL PFRPAC (NIL T) -7 NIL NIL) (-842 2049108 2051041 2051394 "PFR" 2052172 NIL PFR (NIL T) -8 NIL NIL) (-841 2047497 2047741 2048066 "PFOTOOLS" 2048855 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-840 2046030 2046269 2046620 "PFOQ" 2047254 NIL PFOQ (NIL T T T) -7 NIL NIL) (-839 2044507 2044719 2045081 "PFO" 2045814 NIL PFO (NIL T T T T T) -7 NIL NIL) (-838 2041030 2044396 2044465 "PF" 2044470 NIL PF (NIL NIL) -8 NIL NIL) (-837 2038458 2039739 2039768 "PFECAT" 2040353 T PFECAT (NIL) -9 NIL 2040737) (-836 2037903 2038057 2038271 "PFECAT-" 2038276 NIL PFECAT- (NIL T) -8 NIL NIL) (-835 2036507 2036758 2037059 "PFBRU" 2037652 NIL PFBRU (NIL T T) -7 NIL NIL) (-834 2034374 2034725 2035157 "PFBR" 2036158 NIL PFBR (NIL T T T T) -7 NIL NIL) (-833 2030226 2031750 2032426 "PERM" 2033731 NIL PERM (NIL T) -8 NIL NIL) (-832 2025492 2026433 2027303 "PERMGRP" 2029389 NIL PERMGRP (NIL T) -8 NIL NIL) (-831 2023562 2024555 2024597 "PERMCAT" 2025043 NIL PERMCAT (NIL T) -9 NIL 2025348) (-830 2023217 2023258 2023381 "PERMAN" 2023515 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-829 2020657 2022786 2022917 "PENDTREE" 2023119 NIL PENDTREE (NIL T) -8 NIL NIL) (-828 2018729 2019507 2019549 "PDRING" 2020206 NIL PDRING (NIL T) -9 NIL 2020491) (-827 2017832 2018050 2018412 "PDRING-" 2018417 NIL PDRING- (NIL T T) -8 NIL NIL) (-826 2014974 2015724 2016415 "PDEPROB" 2017161 T PDEPROB (NIL) -8 NIL NIL) (-825 2012545 2013041 2013590 "PDEPACK" 2014445 T PDEPACK (NIL) -7 NIL NIL) (-824 2011457 2011647 2011898 "PDECOMP" 2012344 NIL PDECOMP (NIL T T) -7 NIL NIL) (-823 2009068 2009883 2009912 "PDECAT" 2010697 T PDECAT (NIL) -9 NIL 2011408) (-822 2008821 2008854 2008943 "PCOMP" 2009029 NIL PCOMP (NIL T T) -7 NIL NIL) (-821 2007028 2007624 2007920 "PBWLB" 2008551 NIL PBWLB (NIL T) -8 NIL NIL) (-820 1999537 2001105 2002441 "PATTERN" 2005713 NIL PATTERN (NIL T) -8 NIL NIL) (-819 1999169 1999226 1999335 "PATTERN2" 1999474 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-818 1996926 1997314 1997771 "PATTERN1" 1998758 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-817 1994321 1994875 1995356 "PATRES" 1996491 NIL PATRES (NIL T T) -8 NIL NIL) (-816 1993885 1993952 1994084 "PATRES2" 1994248 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-815 1991782 1992182 1992587 "PATMATCH" 1993554 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-814 1991318 1991501 1991543 "PATMAB" 1991650 NIL PATMAB (NIL T) -9 NIL 1991733) (-813 1989863 1990172 1990430 "PATLRES" 1991123 NIL PATLRES (NIL T T T) -8 NIL NIL) (-812 1989408 1989531 1989573 "PATAB" 1989578 NIL PATAB (NIL T) -9 NIL 1989750) (-811 1986889 1987421 1987994 "PARTPERM" 1988855 T PARTPERM (NIL) -7 NIL NIL) (-810 1986510 1986573 1986675 "PARSURF" 1986820 NIL PARSURF (NIL T) -8 NIL NIL) (-809 1986142 1986199 1986308 "PARSU2" 1986447 NIL PARSU2 (NIL T T) -7 NIL NIL) (-808 1985906 1985946 1986013 "PARSER" 1986095 T PARSER (NIL) -7 NIL NIL) (-807 1985527 1985590 1985692 "PARSCURV" 1985837 NIL PARSCURV (NIL T) -8 NIL NIL) (-806 1985159 1985216 1985325 "PARSC2" 1985464 NIL PARSC2 (NIL T T) -7 NIL NIL) (-805 1984798 1984856 1984953 "PARPCURV" 1985095 NIL PARPCURV (NIL T) -8 NIL NIL) (-804 1984430 1984487 1984596 "PARPC2" 1984735 NIL PARPC2 (NIL T T) -7 NIL NIL) (-803 1983950 1984036 1984155 "PAN2EXPR" 1984331 T PAN2EXPR (NIL) -7 NIL NIL) (-802 1982756 1983071 1983299 "PALETTE" 1983742 T PALETTE (NIL) -8 NIL NIL) (-801 1981224 1981761 1982121 "PAIR" 1982442 NIL PAIR (NIL T T) -8 NIL NIL) (-800 1975074 1980483 1980677 "PADICRC" 1981079 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-799 1968282 1974420 1974604 "PADICRAT" 1974922 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-798 1966586 1968219 1968264 "PADIC" 1968269 NIL PADIC (NIL NIL) -8 NIL NIL) (-797 1963790 1965364 1965405 "PADICCT" 1965986 NIL PADICCT (NIL NIL) -9 NIL 1966268) (-796 1962747 1962947 1963215 "PADEPAC" 1963577 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-795 1961959 1962092 1962298 "PADE" 1962609 NIL PADE (NIL T T T) -7 NIL NIL) (-794 1959970 1960802 1961117 "OWP" 1961727 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-793 1959079 1959575 1959747 "OVAR" 1959838 NIL OVAR (NIL NIL) -8 NIL NIL) (-792 1958343 1958464 1958625 "OUT" 1958938 T OUT (NIL) -7 NIL NIL) (-791 1947389 1949568 1951738 "OUTFORM" 1956193 T OUTFORM (NIL) -8 NIL NIL) (-790 1946797 1947118 1947207 "OSI" 1947320 T OSI (NIL) -8 NIL NIL) (-789 1945542 1945769 1946054 "ORTHPOL" 1946544 NIL ORTHPOL (NIL T) -7 NIL NIL) (-788 1942913 1945203 1945341 "OREUP" 1945485 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-787 1940309 1942606 1942732 "ORESUP" 1942855 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-786 1937844 1938344 1938904 "OREPCTO" 1939798 NIL OREPCTO (NIL T T) -7 NIL NIL) (-785 1931753 1933959 1934000 "OREPCAT" 1936321 NIL OREPCAT (NIL T) -9 NIL 1937424) (-784 1928901 1929683 1930740 "OREPCAT-" 1930745 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-783 1928078 1928350 1928379 "ORDSET" 1928688 T ORDSET (NIL) -9 NIL 1928852) (-782 1927597 1927719 1927912 "ORDSET-" 1927917 NIL ORDSET- (NIL T) -8 NIL NIL) (-781 1926210 1927011 1927040 "ORDRING" 1927242 T ORDRING (NIL) -9 NIL 1927366) (-780 1925855 1925949 1926093 "ORDRING-" 1926098 NIL ORDRING- (NIL T) -8 NIL NIL) (-779 1925230 1925711 1925740 "ORDMON" 1925745 T ORDMON (NIL) -9 NIL 1925766) (-778 1924392 1924539 1924734 "ORDFUNS" 1925079 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-777 1923903 1924262 1924291 "ORDFIN" 1924296 T ORDFIN (NIL) -9 NIL 1924317) (-776 1920415 1922489 1922898 "ORDCOMP" 1923527 NIL ORDCOMP (NIL T) -8 NIL NIL) (-775 1919681 1919808 1919994 "ORDCOMP2" 1920275 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-774 1916189 1917071 1917908 "OPTPROB" 1918864 T OPTPROB (NIL) -8 NIL NIL) (-773 1913031 1913660 1914354 "OPTPACK" 1915515 T OPTPACK (NIL) -7 NIL NIL) (-772 1910756 1911492 1911521 "OPTCAT" 1912336 T OPTCAT (NIL) -9 NIL 1912982) (-771 1910524 1910563 1910629 "OPQUERY" 1910710 T OPQUERY (NIL) -7 NIL NIL) (-770 1907660 1908851 1909351 "OP" 1910056 NIL OP (NIL T) -8 NIL NIL) (-769 1904425 1906457 1906826 "ONECOMP" 1907324 NIL ONECOMP (NIL T) -8 NIL NIL) (-768 1903730 1903845 1904019 "ONECOMP2" 1904297 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-767 1903149 1903255 1903385 "OMSERVER" 1903620 T OMSERVER (NIL) -7 NIL NIL) (-766 1900037 1902589 1902630 "OMSAGG" 1902691 NIL OMSAGG (NIL T) -9 NIL 1902755) (-765 1898660 1898923 1899205 "OMPKG" 1899775 T OMPKG (NIL) -7 NIL NIL) (-764 1898089 1898192 1898221 "OM" 1898520 T OM (NIL) -9 NIL NIL) (-763 1896628 1897641 1897809 "OMLO" 1897970 NIL OMLO (NIL T T) -8 NIL NIL) (-762 1895558 1895705 1895931 "OMEXPR" 1896454 NIL OMEXPR (NIL T) -7 NIL NIL) (-761 1894876 1895104 1895240 "OMERR" 1895442 T OMERR (NIL) -8 NIL NIL) (-760 1894054 1894297 1894457 "OMERRK" 1894736 T OMERRK (NIL) -8 NIL NIL) (-759 1893532 1893731 1893839 "OMENC" 1893966 T OMENC (NIL) -8 NIL NIL) (-758 1887427 1888612 1889783 "OMDEV" 1892381 T OMDEV (NIL) -8 NIL NIL) (-757 1886496 1886667 1886861 "OMCONN" 1887253 T OMCONN (NIL) -8 NIL NIL) (-756 1885111 1886097 1886126 "OINTDOM" 1886131 T OINTDOM (NIL) -9 NIL 1886152) (-755 1880873 1882103 1882818 "OFMONOID" 1884428 NIL OFMONOID (NIL T) -8 NIL NIL) (-754 1880311 1880810 1880855 "ODVAR" 1880860 NIL ODVAR (NIL T) -8 NIL NIL) (-753 1877436 1879808 1879993 "ODR" 1880186 NIL ODR (NIL T T NIL) -8 NIL NIL) (-752 1869742 1877215 1877339 "ODPOL" 1877344 NIL ODPOL (NIL T) -8 NIL NIL) (-751 1863565 1869614 1869719 "ODP" 1869724 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-750 1862331 1862546 1862821 "ODETOOLS" 1863339 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-749 1859300 1859956 1860672 "ODESYS" 1861664 NIL ODESYS (NIL T T) -7 NIL NIL) (-748 1854204 1855112 1856135 "ODERTRIC" 1858375 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-747 1853630 1853712 1853906 "ODERED" 1854116 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-746 1850532 1851080 1851755 "ODERAT" 1853053 NIL ODERAT (NIL T T) -7 NIL NIL) (-745 1847500 1847964 1848560 "ODEPRRIC" 1850061 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-744 1845371 1845938 1846447 "ODEPROB" 1847011 T ODEPROB (NIL) -8 NIL NIL) (-743 1841903 1842386 1843032 "ODEPRIM" 1844850 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-742 1841156 1841258 1841516 "ODEPAL" 1841795 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-741 1837358 1838139 1838993 "ODEPACK" 1840322 T ODEPACK (NIL) -7 NIL NIL) (-740 1836395 1836502 1836730 "ODEINT" 1837247 NIL ODEINT (NIL T T) -7 NIL NIL) (-739 1830496 1831921 1833368 "ODEIFTBL" 1834968 T ODEIFTBL (NIL) -8 NIL NIL) (-738 1825840 1826626 1827584 "ODEEF" 1829655 NIL ODEEF (NIL T T) -7 NIL NIL) (-737 1825177 1825266 1825495 "ODECONST" 1825745 NIL ODECONST (NIL T T T) -7 NIL NIL) (-736 1823334 1823967 1823996 "ODECAT" 1824599 T ODECAT (NIL) -9 NIL 1825128) (-735 1820206 1823046 1823165 "OCT" 1823247 NIL OCT (NIL T) -8 NIL NIL) (-734 1819844 1819887 1820014 "OCTCT2" 1820157 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-733 1814677 1817115 1817156 "OC" 1818252 NIL OC (NIL T) -9 NIL 1819109) (-732 1811904 1812652 1813642 "OC-" 1813736 NIL OC- (NIL T T) -8 NIL NIL) (-731 1811282 1811724 1811753 "OCAMON" 1811758 T OCAMON (NIL) -9 NIL 1811779) (-730 1810735 1811142 1811171 "OASGP" 1811176 T OASGP (NIL) -9 NIL 1811196) (-729 1810022 1810485 1810514 "OAMONS" 1810554 T OAMONS (NIL) -9 NIL 1810597) (-728 1809462 1809869 1809898 "OAMON" 1809903 T OAMON (NIL) -9 NIL 1809923) (-727 1808766 1809258 1809287 "OAGROUP" 1809292 T OAGROUP (NIL) -9 NIL 1809312) (-726 1808456 1808506 1808594 "NUMTUBE" 1808710 NIL NUMTUBE (NIL T) -7 NIL NIL) (-725 1802029 1803547 1805083 "NUMQUAD" 1806940 T NUMQUAD (NIL) -7 NIL NIL) (-724 1797785 1798773 1799798 "NUMODE" 1801024 T NUMODE (NIL) -7 NIL NIL) (-723 1795188 1796034 1796063 "NUMINT" 1796980 T NUMINT (NIL) -9 NIL 1797736) (-722 1794136 1794333 1794551 "NUMFMT" 1794990 T NUMFMT (NIL) -7 NIL NIL) (-721 1780518 1783452 1785982 "NUMERIC" 1791645 NIL NUMERIC (NIL T) -7 NIL NIL) (-720 1774918 1779970 1780065 "NTSCAT" 1780070 NIL NTSCAT (NIL T T T T) -9 NIL 1780108) (-719 1774112 1774277 1774470 "NTPOLFN" 1774757 NIL NTPOLFN (NIL T) -7 NIL NIL) (-718 1761968 1770954 1771764 "NSUP" 1773334 NIL NSUP (NIL T) -8 NIL NIL) (-717 1761604 1761661 1761768 "NSUP2" 1761905 NIL NSUP2 (NIL T T) -7 NIL NIL) (-716 1751566 1761383 1761513 "NSMP" 1761518 NIL NSMP (NIL T T) -8 NIL NIL) (-715 1749998 1750299 1750656 "NREP" 1751254 NIL NREP (NIL T) -7 NIL NIL) (-714 1748589 1748841 1749199 "NPCOEF" 1749741 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-713 1747655 1747770 1747986 "NORMRETR" 1748470 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-712 1745708 1745998 1746405 "NORMPK" 1747363 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-711 1745393 1745421 1745545 "NORMMA" 1745674 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-710 1745220 1745350 1745379 "NONE" 1745384 T NONE (NIL) -8 NIL NIL) (-709 1745009 1745038 1745107 "NONE1" 1745184 NIL NONE1 (NIL T) -7 NIL NIL) (-708 1744494 1744556 1744741 "NODE1" 1744941 NIL NODE1 (NIL T T) -7 NIL NIL) (-707 1742787 1743657 1743912 "NNI" 1744259 T NNI (NIL) -8 NIL NIL) (-706 1741207 1741520 1741884 "NLINSOL" 1742455 NIL NLINSOL (NIL T) -7 NIL NIL) (-705 1737375 1738342 1739264 "NIPROB" 1740305 T NIPROB (NIL) -8 NIL NIL) (-704 1736132 1736366 1736668 "NFINTBAS" 1737137 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-703 1734840 1735071 1735352 "NCODIV" 1735900 NIL NCODIV (NIL T T) -7 NIL NIL) (-702 1734602 1734639 1734714 "NCNTFRAC" 1734797 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-701 1732782 1733146 1733566 "NCEP" 1734227 NIL NCEP (NIL T) -7 NIL NIL) (-700 1731693 1732432 1732461 "NASRING" 1732571 T NASRING (NIL) -9 NIL 1732645) (-699 1731488 1731532 1731626 "NASRING-" 1731631 NIL NASRING- (NIL T) -8 NIL NIL) (-698 1730641 1731140 1731169 "NARNG" 1731286 T NARNG (NIL) -9 NIL 1731377) (-697 1730333 1730400 1730534 "NARNG-" 1730539 NIL NARNG- (NIL T) -8 NIL NIL) (-696 1729212 1729419 1729654 "NAGSP" 1730118 T NAGSP (NIL) -7 NIL NIL) (-695 1720636 1722282 1723917 "NAGS" 1727597 T NAGS (NIL) -7 NIL NIL) (-694 1719200 1719504 1719831 "NAGF07" 1720329 T NAGF07 (NIL) -7 NIL NIL) (-693 1713782 1715062 1716358 "NAGF04" 1717924 T NAGF04 (NIL) -7 NIL NIL) (-692 1706814 1708412 1710029 "NAGF02" 1712185 T NAGF02 (NIL) -7 NIL NIL) (-691 1702078 1703168 1704275 "NAGF01" 1705727 T NAGF01 (NIL) -7 NIL NIL) (-690 1695738 1697296 1698873 "NAGE04" 1700521 T NAGE04 (NIL) -7 NIL NIL) (-689 1686979 1689082 1691194 "NAGE02" 1693646 T NAGE02 (NIL) -7 NIL NIL) (-688 1682972 1683909 1684863 "NAGE01" 1686045 T NAGE01 (NIL) -7 NIL NIL) (-687 1680779 1681310 1681865 "NAGD03" 1682437 T NAGD03 (NIL) -7 NIL NIL) (-686 1672565 1674484 1676429 "NAGD02" 1678854 T NAGD02 (NIL) -7 NIL NIL) (-685 1666424 1667837 1669265 "NAGD01" 1671157 T NAGD01 (NIL) -7 NIL NIL) (-684 1662681 1663491 1664316 "NAGC06" 1665619 T NAGC06 (NIL) -7 NIL NIL) (-683 1661158 1661487 1661840 "NAGC05" 1662348 T NAGC05 (NIL) -7 NIL NIL) (-682 1660542 1660659 1660801 "NAGC02" 1661036 T NAGC02 (NIL) -7 NIL NIL) (-681 1659603 1660160 1660201 "NAALG" 1660280 NIL NAALG (NIL T) -9 NIL 1660341) (-680 1659438 1659467 1659557 "NAALG-" 1659562 NIL NAALG- (NIL T T) -8 NIL NIL) (-679 1653388 1654496 1655683 "MULTSQFR" 1658334 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-678 1652707 1652782 1652966 "MULTFACT" 1653300 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-677 1645900 1649811 1649864 "MTSCAT" 1650924 NIL MTSCAT (NIL T T) -9 NIL 1651438) (-676 1645612 1645666 1645758 "MTHING" 1645840 NIL MTHING (NIL T) -7 NIL NIL) (-675 1645404 1645437 1645497 "MSYSCMD" 1645572 T MSYSCMD (NIL) -7 NIL NIL) (-674 1641516 1644159 1644479 "MSET" 1645117 NIL MSET (NIL T) -8 NIL NIL) (-673 1638611 1641077 1641119 "MSETAGG" 1641124 NIL MSETAGG (NIL T) -9 NIL 1641158) (-672 1634467 1636009 1636750 "MRING" 1637914 NIL MRING (NIL T T) -8 NIL NIL) (-671 1634037 1634104 1634233 "MRF2" 1634394 NIL MRF2 (NIL T T T) -7 NIL NIL) (-670 1633655 1633690 1633834 "MRATFAC" 1633996 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-669 1631267 1631562 1631993 "MPRFF" 1633360 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-668 1625287 1631122 1631218 "MPOLY" 1631223 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-667 1624777 1624812 1625020 "MPCPF" 1625246 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-666 1624293 1624336 1624519 "MPC3" 1624728 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-665 1623494 1623575 1623794 "MPC2" 1624208 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-664 1621795 1622132 1622522 "MONOTOOL" 1623154 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-663 1620919 1621254 1621283 "MONOID" 1621560 T MONOID (NIL) -9 NIL 1621732) (-662 1620297 1620460 1620703 "MONOID-" 1620708 NIL MONOID- (NIL T) -8 NIL NIL) (-661 1611277 1617263 1617323 "MONOGEN" 1617997 NIL MONOGEN (NIL T T) -9 NIL 1618453) (-660 1608495 1609230 1610230 "MONOGEN-" 1610349 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-659 1607354 1607774 1607803 "MONADWU" 1608195 T MONADWU (NIL) -9 NIL 1608433) (-658 1606726 1606885 1607133 "MONADWU-" 1607138 NIL MONADWU- (NIL T) -8 NIL NIL) (-657 1606111 1606329 1606358 "MONAD" 1606565 T MONAD (NIL) -9 NIL 1606677) (-656 1605796 1605874 1606006 "MONAD-" 1606011 NIL MONAD- (NIL T) -8 NIL NIL) (-655 1604047 1604709 1604988 "MOEBIUS" 1605549 NIL MOEBIUS (NIL T) -8 NIL NIL) (-654 1603440 1603818 1603859 "MODULE" 1603864 NIL MODULE (NIL T) -9 NIL 1603890) (-653 1603008 1603104 1603294 "MODULE-" 1603299 NIL MODULE- (NIL T T) -8 NIL NIL) (-652 1600679 1601374 1601700 "MODRING" 1602833 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-651 1597635 1598800 1599317 "MODOP" 1600211 NIL MODOP (NIL T T) -8 NIL NIL) (-650 1595822 1596274 1596615 "MODMONOM" 1597434 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-649 1585540 1594026 1594448 "MODMON" 1595450 NIL MODMON (NIL T T) -8 NIL NIL) (-648 1582666 1584384 1584660 "MODFIELD" 1585415 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1582192 1582235 1582414 "MMAP" 1582617 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-646 1580428 1581205 1581246 "MLO" 1581663 NIL MLO (NIL T) -9 NIL 1581904) (-645 1577795 1578310 1578912 "MLIFT" 1579909 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-644 1577186 1577270 1577424 "MKUCFUNC" 1577706 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-643 1576785 1576855 1576978 "MKRECORD" 1577109 NIL MKRECORD (NIL T T) -7 NIL NIL) (-642 1575833 1575994 1576222 "MKFUNC" 1576596 NIL MKFUNC (NIL T) -7 NIL NIL) (-641 1575221 1575325 1575481 "MKFLCFN" 1575716 NIL MKFLCFN (NIL T) -7 NIL NIL) (-640 1574647 1575014 1575103 "MKCHSET" 1575165 NIL MKCHSET (NIL T) -8 NIL NIL) (-639 1573924 1574026 1574211 "MKBCFUNC" 1574540 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-638 1570608 1573478 1573614 "MINT" 1573808 T MINT (NIL) -8 NIL NIL) (-637 1569420 1569663 1569940 "MHROWRED" 1570363 NIL MHROWRED (NIL T) -7 NIL NIL) (-636 1564691 1567865 1568289 "MFLOAT" 1569016 T MFLOAT (NIL) -8 NIL NIL) (-635 1564048 1564124 1564295 "MFINFACT" 1564603 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-634 1560363 1561211 1562095 "MESH" 1563184 T MESH (NIL) -7 NIL NIL) (-633 1558753 1559065 1559418 "MDDFACT" 1560050 NIL MDDFACT (NIL T) -7 NIL NIL) (-632 1555595 1557912 1557954 "MDAGG" 1558209 NIL MDAGG (NIL T) -9 NIL 1558352) (-631 1545293 1554888 1555095 "MCMPLX" 1555408 T MCMPLX (NIL) -8 NIL NIL) (-630 1544434 1544580 1544780 "MCDEN" 1545142 NIL MCDEN (NIL T T) -7 NIL NIL) (-629 1542324 1542594 1542974 "MCALCFN" 1544164 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-628 1539946 1540469 1541030 "MATSTOR" 1541795 NIL MATSTOR (NIL T) -7 NIL NIL) (-627 1535954 1539321 1539568 "MATRIX" 1539731 NIL MATRIX (NIL T) -8 NIL NIL) (-626 1531724 1532427 1533163 "MATLIN" 1535311 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-625 1521921 1525059 1525136 "MATCAT" 1529974 NIL MATCAT (NIL T T T) -9 NIL 1531391) (-624 1518286 1519299 1520654 "MATCAT-" 1520659 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-623 1516888 1517041 1517372 "MATCAT2" 1518121 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-622 1515000 1515324 1515708 "MAPPKG3" 1516563 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-621 1513981 1514154 1514376 "MAPPKG2" 1514824 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-620 1512480 1512764 1513091 "MAPPKG1" 1513687 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-619 1512091 1512149 1512272 "MAPHACK3" 1512416 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-618 1511683 1511744 1511858 "MAPHACK2" 1512023 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-617 1511121 1511224 1511366 "MAPHACK1" 1511574 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-616 1509229 1509823 1510126 "MAGMA" 1510850 NIL MAGMA (NIL T) -8 NIL NIL) (-615 1505703 1507473 1507933 "M3D" 1508802 NIL M3D (NIL T) -8 NIL NIL) (-614 1499858 1504073 1504115 "LZSTAGG" 1504897 NIL LZSTAGG (NIL T) -9 NIL 1505192) (-613 1495831 1496989 1498446 "LZSTAGG-" 1498451 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-612 1492947 1493724 1494210 "LWORD" 1495377 NIL LWORD (NIL T) -8 NIL NIL) (-611 1486107 1492718 1492852 "LSQM" 1492857 NIL LSQM (NIL NIL T) -8 NIL NIL) (-610 1485331 1485470 1485698 "LSPP" 1485962 NIL LSPP (NIL T T T T) -7 NIL NIL) (-609 1483143 1483444 1483900 "LSMP" 1485020 NIL LSMP (NIL T T T T) -7 NIL NIL) (-608 1479922 1480596 1481326 "LSMP1" 1482445 NIL LSMP1 (NIL T) -7 NIL NIL) (-607 1473848 1479090 1479132 "LSAGG" 1479194 NIL LSAGG (NIL T) -9 NIL 1479272) (-606 1470543 1471467 1472680 "LSAGG-" 1472685 NIL LSAGG- (NIL T T) -8 NIL NIL) (-605 1468169 1469687 1469936 "LPOLY" 1470338 NIL LPOLY (NIL T T) -8 NIL NIL) (-604 1467751 1467836 1467959 "LPEFRAC" 1468078 NIL LPEFRAC (NIL T) -7 NIL NIL) (-603 1466098 1466845 1467098 "LO" 1467583 NIL LO (NIL T T T) -8 NIL NIL) (-602 1465751 1465863 1465892 "LOGIC" 1466003 T LOGIC (NIL) -9 NIL 1466083) (-601 1465613 1465636 1465707 "LOGIC-" 1465712 NIL LOGIC- (NIL T) -8 NIL NIL) (-600 1464806 1464946 1465139 "LODOOPS" 1465469 NIL LODOOPS (NIL T T) -7 NIL NIL) (-599 1462224 1464723 1464788 "LODO" 1464793 NIL LODO (NIL T NIL) -8 NIL NIL) (-598 1460770 1461005 1461356 "LODOF" 1461971 NIL LODOF (NIL T T) -7 NIL NIL) (-597 1457189 1459625 1459666 "LODOCAT" 1460098 NIL LODOCAT (NIL T) -9 NIL 1460309) (-596 1456923 1456981 1457107 "LODOCAT-" 1457112 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-595 1454237 1456764 1456882 "LODO2" 1456887 NIL LODO2 (NIL T T) -8 NIL NIL) (-594 1451666 1454174 1454219 "LODO1" 1454224 NIL LODO1 (NIL T) -8 NIL NIL) (-593 1450529 1450694 1451005 "LODEEF" 1451489 NIL LODEEF (NIL T T T) -7 NIL NIL) (-592 1445815 1448659 1448701 "LNAGG" 1449648 NIL LNAGG (NIL T) -9 NIL 1450092) (-591 1444962 1445176 1445518 "LNAGG-" 1445523 NIL LNAGG- (NIL T T) -8 NIL NIL) (-590 1441127 1441889 1442527 "LMOPS" 1444378 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-589 1440524 1440886 1440927 "LMODULE" 1440987 NIL LMODULE (NIL T) -9 NIL 1441029) (-588 1437770 1440169 1440292 "LMDICT" 1440434 NIL LMDICT (NIL T) -8 NIL NIL) (-587 1430997 1436716 1437014 "LIST" 1437505 NIL LIST (NIL T) -8 NIL NIL) (-586 1430522 1430596 1430735 "LIST3" 1430917 NIL LIST3 (NIL T T T) -7 NIL NIL) (-585 1429529 1429707 1429935 "LIST2" 1430340 NIL LIST2 (NIL T T) -7 NIL NIL) (-584 1427663 1427975 1428374 "LIST2MAP" 1429176 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-583 1426375 1427055 1427096 "LINEXP" 1427349 NIL LINEXP (NIL T) -9 NIL 1427497) (-582 1425022 1425282 1425579 "LINDEP" 1426127 NIL LINDEP (NIL T T) -7 NIL NIL) (-581 1421789 1422508 1423285 "LIMITRF" 1424277 NIL LIMITRF (NIL T) -7 NIL NIL) (-580 1420069 1420364 1420779 "LIMITPS" 1421484 NIL LIMITPS (NIL T T) -7 NIL NIL) (-579 1414524 1419580 1419808 "LIE" 1419890 NIL LIE (NIL T T) -8 NIL NIL) (-578 1413574 1414017 1414058 "LIECAT" 1414198 NIL LIECAT (NIL T) -9 NIL 1414349) (-577 1413415 1413442 1413530 "LIECAT-" 1413535 NIL LIECAT- (NIL T T) -8 NIL NIL) (-576 1406027 1412864 1413029 "LIB" 1413270 T LIB (NIL) -8 NIL NIL) (-575 1401664 1402545 1403480 "LGROBP" 1405144 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-574 1399530 1399804 1400166 "LF" 1401385 NIL LF (NIL T T) -7 NIL NIL) (-573 1398369 1399061 1399090 "LFCAT" 1399297 T LFCAT (NIL) -9 NIL 1399436) (-572 1395281 1395907 1396593 "LEXTRIPK" 1397735 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-571 1391987 1392851 1393354 "LEXP" 1394861 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-570 1390385 1390698 1391099 "LEADCDET" 1391669 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-569 1389581 1389655 1389882 "LAZM3PK" 1390306 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-568 1384497 1387660 1388197 "LAUPOL" 1389094 NIL LAUPOL (NIL T T) -8 NIL NIL) (-567 1384064 1384108 1384275 "LAPLACE" 1384447 NIL LAPLACE (NIL T T) -7 NIL NIL) (-566 1381992 1383165 1383416 "LA" 1383897 NIL LA (NIL T T T) -8 NIL NIL) (-565 1381054 1381648 1381689 "LALG" 1381750 NIL LALG (NIL T) -9 NIL 1381808) (-564 1380769 1380828 1380963 "LALG-" 1380968 NIL LALG- (NIL T T) -8 NIL NIL) (-563 1379679 1379866 1380163 "KOVACIC" 1380569 NIL KOVACIC (NIL T T) -7 NIL NIL) (-562 1379513 1379537 1379579 "KONVERT" 1379641 NIL KONVERT (NIL T) -9 NIL NIL) (-561 1379347 1379371 1379413 "KOERCE" 1379475 NIL KOERCE (NIL T) -9 NIL NIL) (-560 1377081 1377841 1378234 "KERNEL" 1378986 NIL KERNEL (NIL T) -8 NIL NIL) (-559 1376583 1376664 1376794 "KERNEL2" 1376995 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-558 1370434 1375122 1375177 "KDAGG" 1375554 NIL KDAGG (NIL T T) -9 NIL 1375760) (-557 1369963 1370087 1370292 "KDAGG-" 1370297 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-556 1363138 1369624 1369779 "KAFILE" 1369841 NIL KAFILE (NIL T) -8 NIL NIL) (-555 1357593 1362649 1362877 "JORDAN" 1362959 NIL JORDAN (NIL T T) -8 NIL NIL) (-554 1353892 1355798 1355853 "IXAGG" 1356782 NIL IXAGG (NIL T T) -9 NIL 1357241) (-553 1352811 1353117 1353536 "IXAGG-" 1353541 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-552 1348396 1352733 1352792 "IVECTOR" 1352797 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-551 1347162 1347399 1347665 "ITUPLE" 1348163 NIL ITUPLE (NIL T) -8 NIL NIL) (-550 1345598 1345775 1346081 "ITRIGMNP" 1346984 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-549 1344343 1344547 1344830 "ITFUN3" 1345374 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-548 1343975 1344032 1344141 "ITFUN2" 1344280 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-547 1341777 1342848 1343145 "ITAYLOR" 1343710 NIL ITAYLOR (NIL T) -8 NIL NIL) (-546 1330768 1335963 1337122 "ISUPS" 1340650 NIL ISUPS (NIL T) -8 NIL NIL) (-545 1329872 1330012 1330248 "ISUMP" 1330615 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-544 1325136 1329673 1329752 "ISTRING" 1329825 NIL ISTRING (NIL NIL) -8 NIL NIL) (-543 1324349 1324430 1324645 "IRURPK" 1325050 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-542 1323285 1323486 1323726 "IRSN" 1324129 T IRSN (NIL) -7 NIL NIL) (-541 1321320 1321675 1322110 "IRRF2F" 1322923 NIL IRRF2F (NIL T) -7 NIL NIL) (-540 1321067 1321105 1321181 "IRREDFFX" 1321276 NIL IRREDFFX (NIL T) -7 NIL NIL) (-539 1319682 1319941 1320240 "IROOT" 1320800 NIL IROOT (NIL T) -7 NIL NIL) (-538 1316320 1317371 1318061 "IR" 1319024 NIL IR (NIL T) -8 NIL NIL) (-537 1313933 1314428 1314994 "IR2" 1315798 NIL IR2 (NIL T T) -7 NIL NIL) (-536 1313009 1313122 1313342 "IR2F" 1313816 NIL IR2F (NIL T T) -7 NIL NIL) (-535 1312800 1312834 1312894 "IPRNTPK" 1312969 T IPRNTPK (NIL) -7 NIL NIL) (-534 1309354 1312689 1312758 "IPF" 1312763 NIL IPF (NIL NIL) -8 NIL NIL) (-533 1307671 1309279 1309336 "IPADIC" 1309341 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-532 1307170 1307228 1307417 "INVLAPLA" 1307607 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-531 1296819 1299172 1301558 "INTTR" 1304834 NIL INTTR (NIL T T) -7 NIL NIL) (-530 1293167 1293908 1294771 "INTTOOLS" 1296005 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-529 1292753 1292844 1292961 "INTSLPE" 1293070 T INTSLPE (NIL) -7 NIL NIL) (-528 1290703 1292676 1292735 "INTRVL" 1292740 NIL INTRVL (NIL T) -8 NIL NIL) (-527 1288310 1288822 1289396 "INTRF" 1290188 NIL INTRF (NIL T) -7 NIL NIL) (-526 1287725 1287822 1287963 "INTRET" 1288208 NIL INTRET (NIL T) -7 NIL NIL) (-525 1285727 1286116 1286585 "INTRAT" 1287333 NIL INTRAT (NIL T T) -7 NIL NIL) (-524 1282960 1283543 1284168 "INTPM" 1285212 NIL INTPM (NIL T T) -7 NIL NIL) (-523 1279669 1280268 1281012 "INTPAF" 1282346 NIL INTPAF (NIL T T T) -7 NIL NIL) (-522 1274912 1275858 1276893 "INTPACK" 1278654 T INTPACK (NIL) -7 NIL NIL) (-521 1271766 1274641 1274768 "INT" 1274805 T INT (NIL) -8 NIL NIL) (-520 1271018 1271170 1271378 "INTHERTR" 1271608 NIL INTHERTR (NIL T T) -7 NIL NIL) (-519 1270457 1270537 1270725 "INTHERAL" 1270932 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-518 1268303 1268746 1269203 "INTHEORY" 1270020 T INTHEORY (NIL) -7 NIL NIL) (-517 1259626 1261246 1263024 "INTG0" 1266655 NIL INTG0 (NIL T T T) -7 NIL NIL) (-516 1240199 1244989 1249799 "INTFTBL" 1254836 T INTFTBL (NIL) -8 NIL NIL) (-515 1239448 1239586 1239759 "INTFACT" 1240058 NIL INTFACT (NIL T) -7 NIL NIL) (-514 1236839 1237285 1237848 "INTEF" 1239002 NIL INTEF (NIL T T) -7 NIL NIL) (-513 1235300 1236049 1236078 "INTDOM" 1236379 T INTDOM (NIL) -9 NIL 1236586) (-512 1234669 1234843 1235085 "INTDOM-" 1235090 NIL INTDOM- (NIL T) -8 NIL NIL) (-511 1231161 1233093 1233148 "INTCAT" 1233947 NIL INTCAT (NIL T) -9 NIL 1234266) (-510 1230634 1230736 1230864 "INTBIT" 1231053 T INTBIT (NIL) -7 NIL NIL) (-509 1229309 1229463 1229776 "INTALG" 1230479 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-508 1228766 1228856 1229026 "INTAF" 1229213 NIL INTAF (NIL T T) -7 NIL NIL) (-507 1222220 1228576 1228716 "INTABL" 1228721 NIL INTABL (NIL T T T) -8 NIL NIL) (-506 1217170 1219899 1219928 "INS" 1220896 T INS (NIL) -9 NIL 1221577) (-505 1214410 1215181 1216155 "INS-" 1216228 NIL INS- (NIL T) -8 NIL NIL) (-504 1213189 1213416 1213713 "INPSIGN" 1214163 NIL INPSIGN (NIL T T) -7 NIL NIL) (-503 1212307 1212424 1212621 "INPRODPF" 1213069 NIL INPRODPF (NIL T T) -7 NIL NIL) (-502 1211201 1211318 1211555 "INPRODFF" 1212187 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-501 1210201 1210353 1210613 "INNMFACT" 1211037 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-500 1209398 1209495 1209683 "INMODGCD" 1210100 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-499 1207907 1208151 1208475 "INFSP" 1209143 NIL INFSP (NIL T T T) -7 NIL NIL) (-498 1207091 1207208 1207391 "INFPROD0" 1207787 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-497 1204101 1205260 1205751 "INFORM" 1206608 T INFORM (NIL) -8 NIL NIL) (-496 1203711 1203771 1203869 "INFORM1" 1204036 NIL INFORM1 (NIL T) -7 NIL NIL) (-495 1203234 1203323 1203437 "INFINITY" 1203617 T INFINITY (NIL) -7 NIL NIL) (-494 1201852 1202100 1202421 "INEP" 1202982 NIL INEP (NIL T T T) -7 NIL NIL) (-493 1201128 1201749 1201814 "INDE" 1201819 NIL INDE (NIL T) -8 NIL NIL) (-492 1200692 1200760 1200877 "INCRMAPS" 1201055 NIL INCRMAPS (NIL T) -7 NIL NIL) (-491 1196003 1196928 1197872 "INBFF" 1199780 NIL INBFF (NIL T) -7 NIL NIL) (-490 1192498 1195848 1195951 "IMATRIX" 1195956 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-489 1191210 1191333 1191648 "IMATQF" 1192354 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-488 1189430 1189657 1189994 "IMATLIN" 1190966 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-487 1184056 1189354 1189412 "ILIST" 1189417 NIL ILIST (NIL T NIL) -8 NIL NIL) (-486 1182009 1183916 1184029 "IIARRAY2" 1184034 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-485 1177377 1181920 1181984 "IFF" 1181989 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-484 1172420 1176669 1176857 "IFARRAY" 1177234 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-483 1171627 1172324 1172397 "IFAMON" 1172402 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-482 1171210 1171275 1171330 "IEVALAB" 1171537 NIL IEVALAB (NIL T T) -9 NIL NIL) (-481 1170885 1170953 1171113 "IEVALAB-" 1171118 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-480 1170543 1170799 1170862 "IDPO" 1170867 NIL IDPO (NIL T T) -8 NIL NIL) (-479 1169820 1170432 1170507 "IDPOAMS" 1170512 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-478 1169154 1169709 1169784 "IDPOAM" 1169789 NIL IDPOAM (NIL T T) -8 NIL NIL) (-477 1168239 1168489 1168543 "IDPC" 1168956 NIL IDPC (NIL T T) -9 NIL 1169105) (-476 1167735 1168131 1168204 "IDPAM" 1168209 NIL IDPAM (NIL T T) -8 NIL NIL) (-475 1167138 1167627 1167700 "IDPAG" 1167705 NIL IDPAG (NIL T T) -8 NIL NIL) (-474 1163393 1164241 1165136 "IDECOMP" 1166295 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-473 1156267 1157316 1158363 "IDEAL" 1162429 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-472 1155431 1155543 1155742 "ICDEN" 1156151 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-471 1154530 1154911 1155058 "ICARD" 1155304 T ICARD (NIL) -8 NIL NIL) (-470 1152602 1152915 1153318 "IBPTOOLS" 1154207 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-469 1148216 1152222 1152335 "IBITS" 1152521 NIL IBITS (NIL NIL) -8 NIL NIL) (-468 1144939 1145515 1146210 "IBATOOL" 1147633 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-467 1142719 1143180 1143713 "IBACHIN" 1144474 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-466 1140596 1142565 1142668 "IARRAY2" 1142673 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-465 1136749 1140522 1140579 "IARRAY1" 1140584 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-464 1130688 1135167 1135645 "IAN" 1136291 T IAN (NIL) -8 NIL NIL) (-463 1130199 1130256 1130429 "IALGFACT" 1130625 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-462 1129726 1129839 1129868 "HYPCAT" 1130075 T HYPCAT (NIL) -9 NIL NIL) (-461 1129264 1129381 1129567 "HYPCAT-" 1129572 NIL HYPCAT- (NIL T) -8 NIL NIL) (-460 1125943 1127274 1127316 "HOAGG" 1128297 NIL HOAGG (NIL T) -9 NIL 1128976) (-459 1124537 1124936 1125462 "HOAGG-" 1125467 NIL HOAGG- (NIL T T) -8 NIL NIL) (-458 1118368 1123978 1124144 "HEXADEC" 1124391 T HEXADEC (NIL) -8 NIL NIL) (-457 1117116 1117338 1117601 "HEUGCD" 1118145 NIL HEUGCD (NIL T) -7 NIL NIL) (-456 1116219 1116953 1117083 "HELLFDIV" 1117088 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-455 1114447 1115996 1116084 "HEAP" 1116163 NIL HEAP (NIL T) -8 NIL NIL) (-454 1108314 1114362 1114424 "HDP" 1114429 NIL HDP (NIL NIL T) -8 NIL NIL) (-453 1102026 1107951 1108102 "HDMP" 1108215 NIL HDMP (NIL NIL T) -8 NIL NIL) (-452 1101351 1101490 1101654 "HB" 1101882 T HB (NIL) -7 NIL NIL) (-451 1094848 1101197 1101301 "HASHTBL" 1101306 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-450 1092601 1094476 1094655 "HACKPI" 1094689 T HACKPI (NIL) -8 NIL NIL) (-449 1088297 1092455 1092567 "GTSET" 1092572 NIL GTSET (NIL T T T T) -8 NIL NIL) (-448 1081823 1088175 1088273 "GSTBL" 1088278 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-447 1074059 1080859 1081123 "GSERIES" 1081614 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-446 1073081 1073534 1073563 "GROUP" 1073824 T GROUP (NIL) -9 NIL 1073983) (-445 1072197 1072420 1072764 "GROUP-" 1072769 NIL GROUP- (NIL T) -8 NIL NIL) (-444 1070566 1070885 1071272 "GROEBSOL" 1071874 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-443 1069506 1069768 1069820 "GRMOD" 1070349 NIL GRMOD (NIL T T) -9 NIL 1070517) (-442 1069274 1069310 1069438 "GRMOD-" 1069443 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-441 1064602 1065628 1066628 "GRIMAGE" 1068294 T GRIMAGE (NIL) -8 NIL NIL) (-440 1063069 1063329 1063653 "GRDEF" 1064298 T GRDEF (NIL) -7 NIL NIL) (-439 1062513 1062629 1062770 "GRAY" 1062948 T GRAY (NIL) -7 NIL NIL) (-438 1061746 1062126 1062178 "GRALG" 1062331 NIL GRALG (NIL T T) -9 NIL 1062423) (-437 1061407 1061480 1061643 "GRALG-" 1061648 NIL GRALG- (NIL T T T) -8 NIL NIL) (-436 1058215 1060996 1061172 "GPOLSET" 1061314 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-435 1057571 1057628 1057885 "GOSPER" 1058152 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-434 1053330 1054009 1054535 "GMODPOL" 1057270 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-433 1052335 1052519 1052757 "GHENSEL" 1053142 NIL GHENSEL (NIL T T) -7 NIL NIL) (-432 1046401 1047244 1048270 "GENUPS" 1051419 NIL GENUPS (NIL T T) -7 NIL NIL) (-431 1046098 1046149 1046238 "GENUFACT" 1046344 NIL GENUFACT (NIL T) -7 NIL NIL) (-430 1045510 1045587 1045752 "GENPGCD" 1046016 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-429 1044984 1045019 1045232 "GENMFACT" 1045469 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-428 1043552 1043807 1044114 "GENEEZ" 1044727 NIL GENEEZ (NIL T T) -7 NIL NIL) (-427 1037426 1043165 1043326 "GDMP" 1043475 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-426 1026808 1031197 1032303 "GCNAALG" 1036409 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-425 1025229 1026101 1026130 "GCDDOM" 1026385 T GCDDOM (NIL) -9 NIL 1026542) (-424 1024699 1024826 1025041 "GCDDOM-" 1025046 NIL GCDDOM- (NIL T) -8 NIL NIL) (-423 1023371 1023556 1023860 "GB" 1024478 NIL GB (NIL T T T T) -7 NIL NIL) (-422 1011991 1014317 1016709 "GBINTERN" 1021062 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-421 1009828 1010120 1010541 "GBF" 1011666 NIL GBF (NIL T T T T) -7 NIL NIL) (-420 1008609 1008774 1009041 "GBEUCLID" 1009644 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-419 1007958 1008083 1008232 "GAUSSFAC" 1008480 T GAUSSFAC (NIL) -7 NIL NIL) (-418 1006335 1006637 1006950 "GALUTIL" 1007677 NIL GALUTIL (NIL T) -7 NIL NIL) (-417 1004652 1004926 1005249 "GALPOLYU" 1006062 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-416 1002041 1002331 1002736 "GALFACTU" 1004349 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-415 993847 995346 996954 "GALFACT" 1000473 NIL GALFACT (NIL T) -7 NIL NIL) (-414 991234 991892 991921 "FVFUN" 993077 T FVFUN (NIL) -9 NIL 993797) (-413 990499 990681 990710 "FVC" 991001 T FVC (NIL) -9 NIL 991184) (-412 990141 990296 990377 "FUNCTION" 990451 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-411 987811 988362 988851 "FT" 989672 T FT (NIL) -8 NIL NIL) (-410 986629 987112 987315 "FTEM" 987628 T FTEM (NIL) -8 NIL NIL) (-409 984894 985182 985584 "FSUPFACT" 986321 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-408 983291 983580 983912 "FST" 984582 T FST (NIL) -8 NIL NIL) (-407 982466 982572 982766 "FSRED" 983173 NIL FSRED (NIL T T) -7 NIL NIL) (-406 981145 981400 981754 "FSPRMELT" 982181 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-405 978230 978668 979167 "FSPECF" 980708 NIL FSPECF (NIL T T) -7 NIL NIL) (-404 960603 969160 969201 "FS" 973039 NIL FS (NIL T) -9 NIL 975321) (-403 949253 952243 956299 "FS-" 956596 NIL FS- (NIL T T) -8 NIL NIL) (-402 948769 948823 948999 "FSINT" 949194 NIL FSINT (NIL T T) -7 NIL NIL) (-401 947050 947762 948065 "FSERIES" 948548 NIL FSERIES (NIL T T) -8 NIL NIL) (-400 946068 946184 946414 "FSCINT" 946930 NIL FSCINT (NIL T T) -7 NIL NIL) (-399 942302 945012 945054 "FSAGG" 945424 NIL FSAGG (NIL T) -9 NIL 945683) (-398 940064 940665 941461 "FSAGG-" 941556 NIL FSAGG- (NIL T T) -8 NIL NIL) (-397 939106 939249 939476 "FSAGG2" 939917 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-396 936765 937044 937597 "FS2UPS" 938824 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-395 936351 936394 936547 "FS2" 936716 NIL FS2 (NIL T T T T) -7 NIL NIL) (-394 935211 935382 935690 "FS2EXPXP" 936176 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-393 934637 934752 934904 "FRUTIL" 935091 NIL FRUTIL (NIL T) -7 NIL NIL) (-392 926058 930136 931492 "FR" 933313 NIL FR (NIL T) -8 NIL NIL) (-391 921134 923777 923818 "FRNAALG" 925214 NIL FRNAALG (NIL T) -9 NIL 925821) (-390 916813 917883 919158 "FRNAALG-" 919908 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-389 916451 916494 916621 "FRNAAF2" 916764 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-388 914816 915308 915602 "FRMOD" 916264 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-387 912539 913207 913523 "FRIDEAL" 914607 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-386 911738 911825 912112 "FRIDEAL2" 912446 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-385 910995 911403 911445 "FRETRCT" 911450 NIL FRETRCT (NIL T) -9 NIL 911621) (-384 910107 910338 910689 "FRETRCT-" 910694 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-383 907316 908536 908596 "FRAMALG" 909478 NIL FRAMALG (NIL T T) -9 NIL 909770) (-382 905449 905905 906535 "FRAMALG-" 906758 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-381 899351 904924 905200 "FRAC" 905205 NIL FRAC (NIL T) -8 NIL NIL) (-380 898987 899044 899151 "FRAC2" 899288 NIL FRAC2 (NIL T T) -7 NIL NIL) (-379 898623 898680 898787 "FR2" 898924 NIL FR2 (NIL T T) -7 NIL NIL) (-378 893296 896209 896238 "FPS" 897357 T FPS (NIL) -9 NIL 897913) (-377 892745 892854 893018 "FPS-" 893164 NIL FPS- (NIL T) -8 NIL NIL) (-376 890193 891890 891919 "FPC" 892144 T FPC (NIL) -9 NIL 892286) (-375 889986 890026 890123 "FPC-" 890128 NIL FPC- (NIL T) -8 NIL NIL) (-374 888864 889474 889516 "FPATMAB" 889521 NIL FPATMAB (NIL T) -9 NIL 889673) (-373 886564 887040 887466 "FPARFRAC" 888501 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-372 881959 882456 883138 "FORTRAN" 885996 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-371 879675 880175 880714 "FORT" 881440 T FORT (NIL) -7 NIL NIL) (-370 877350 877912 877941 "FORTFN" 879001 T FORTFN (NIL) -9 NIL 879625) (-369 877113 877163 877192 "FORTCAT" 877251 T FORTCAT (NIL) -9 NIL 877313) (-368 875173 875656 876055 "FORMULA" 876734 T FORMULA (NIL) -8 NIL NIL) (-367 874961 874991 875060 "FORMULA1" 875137 NIL FORMULA1 (NIL T) -7 NIL NIL) (-366 874484 874536 874709 "FORDER" 874903 NIL FORDER (NIL T T T T) -7 NIL NIL) (-365 873580 873744 873937 "FOP" 874311 T FOP (NIL) -7 NIL NIL) (-364 872188 872860 873034 "FNLA" 873462 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-363 870856 871245 871274 "FNCAT" 871846 T FNCAT (NIL) -9 NIL 872139) (-362 870422 870815 870843 "FNAME" 870848 T FNAME (NIL) -8 NIL NIL) (-361 869081 870054 870083 "FMTC" 870088 T FMTC (NIL) -9 NIL 870123) (-360 865399 866606 867234 "FMONOID" 868486 NIL FMONOID (NIL T) -8 NIL NIL) (-359 864619 865142 865290 "FM" 865295 NIL FM (NIL T T) -8 NIL NIL) (-358 862042 862688 862717 "FMFUN" 863861 T FMFUN (NIL) -9 NIL 864569) (-357 861310 861491 861520 "FMC" 861810 T FMC (NIL) -9 NIL 861992) (-356 858539 859373 859427 "FMCAT" 860609 NIL FMCAT (NIL T T) -9 NIL 861103) (-355 857434 858307 858406 "FM1" 858484 NIL FM1 (NIL T T) -8 NIL NIL) (-354 855208 855624 856118 "FLOATRP" 856985 NIL FLOATRP (NIL T) -7 NIL NIL) (-353 848694 852864 853494 "FLOAT" 854598 T FLOAT (NIL) -8 NIL NIL) (-352 846132 846632 847210 "FLOATCP" 848161 NIL FLOATCP (NIL T) -7 NIL NIL) (-351 844920 845768 845809 "FLINEXP" 845814 NIL FLINEXP (NIL T) -9 NIL 845907) (-350 844075 844310 844637 "FLINEXP-" 844642 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-349 843151 843295 843519 "FLASORT" 843927 NIL FLASORT (NIL T T) -7 NIL NIL) (-348 840369 841211 841264 "FLALG" 842491 NIL FLALG (NIL T T) -9 NIL 842958) (-347 834153 837855 837897 "FLAGG" 839159 NIL FLAGG (NIL T) -9 NIL 839811) (-346 832879 833218 833708 "FLAGG-" 833713 NIL FLAGG- (NIL T T) -8 NIL NIL) (-345 831921 832064 832291 "FLAGG2" 832732 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-344 828893 829911 829971 "FINRALG" 831099 NIL FINRALG (NIL T T) -9 NIL 831607) (-343 828053 828282 828621 "FINRALG-" 828626 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-342 827459 827672 827701 "FINITE" 827897 T FINITE (NIL) -9 NIL 828004) (-341 819918 822079 822120 "FINAALG" 825787 NIL FINAALG (NIL T) -9 NIL 827240) (-340 815259 816300 817444 "FINAALG-" 818823 NIL FINAALG- (NIL T T) -8 NIL NIL) (-339 814654 815014 815117 "FILE" 815189 NIL FILE (NIL T) -8 NIL NIL) (-338 813338 813650 813705 "FILECAT" 814389 NIL FILECAT (NIL T T) -9 NIL 814605) (-337 811200 812756 812785 "FIELD" 812825 T FIELD (NIL) -9 NIL 812905) (-336 809820 810205 810716 "FIELD-" 810721 NIL FIELD- (NIL T) -8 NIL NIL) (-335 807635 808457 808803 "FGROUP" 809507 NIL FGROUP (NIL T) -8 NIL NIL) (-334 806725 806889 807109 "FGLMICPK" 807467 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-333 802527 806650 806707 "FFX" 806712 NIL FFX (NIL T NIL) -8 NIL NIL) (-332 802128 802189 802324 "FFSLPE" 802460 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-331 798123 798900 799696 "FFPOLY" 801364 NIL FFPOLY (NIL T) -7 NIL NIL) (-330 797627 797663 797872 "FFPOLY2" 798081 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-329 793449 797546 797609 "FFP" 797614 NIL FFP (NIL T NIL) -8 NIL NIL) (-328 788817 793360 793424 "FF" 793429 NIL FF (NIL NIL NIL) -8 NIL NIL) (-327 783913 788160 788350 "FFNBX" 788671 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-326 778823 783048 783306 "FFNBP" 783767 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-325 773426 778107 778318 "FFNB" 778656 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-324 772258 772456 772771 "FFINTBAS" 773223 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-323 768481 770721 770750 "FFIELDC" 771370 T FFIELDC (NIL) -9 NIL 771746) (-322 767144 767514 768011 "FFIELDC-" 768016 NIL FFIELDC- (NIL T) -8 NIL NIL) (-321 766714 766759 766883 "FFHOM" 767086 NIL FFHOM (NIL T T T) -7 NIL NIL) (-320 764412 764896 765413 "FFF" 766229 NIL FFF (NIL T) -7 NIL NIL) (-319 760000 764154 764255 "FFCGX" 764355 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-318 755602 759732 759839 "FFCGP" 759943 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-317 750755 755329 755437 "FFCG" 755538 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-316 732700 741823 741910 "FFCAT" 747075 NIL FFCAT (NIL T T T) -9 NIL 748562) (-315 727898 728945 730259 "FFCAT-" 731489 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-314 727309 727352 727587 "FFCAT2" 727849 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-313 716509 720299 721516 "FEXPR" 726164 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-312 715508 715943 715985 "FEVALAB" 716069 NIL FEVALAB (NIL T) -9 NIL 716330) (-311 714667 714877 715215 "FEVALAB-" 715220 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-310 713260 714050 714253 "FDIV" 714566 NIL FDIV (NIL T T T T) -8 NIL NIL) (-309 710326 711041 711157 "FDIVCAT" 712725 NIL FDIVCAT (NIL T T T T) -9 NIL 713162) (-308 710088 710115 710285 "FDIVCAT-" 710290 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-307 709308 709395 709672 "FDIV2" 709995 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-306 707994 708253 708542 "FCPAK1" 709039 T FCPAK1 (NIL) -7 NIL NIL) (-305 707122 707494 707635 "FCOMP" 707885 NIL FCOMP (NIL T) -8 NIL NIL) (-304 690750 694165 697728 "FC" 703579 T FC (NIL) -8 NIL NIL) (-303 683345 687391 687432 "FAXF" 689234 NIL FAXF (NIL T) -9 NIL 689925) (-302 680624 681279 682104 "FAXF-" 682569 NIL FAXF- (NIL T T) -8 NIL NIL) (-301 675724 680000 680176 "FARRAY" 680481 NIL FARRAY (NIL T) -8 NIL NIL) (-300 671114 673185 673238 "FAMR" 674250 NIL FAMR (NIL T T) -9 NIL 674710) (-299 670005 670307 670741 "FAMR-" 670746 NIL FAMR- (NIL T T T) -8 NIL NIL) (-298 669201 669927 669980 "FAMONOID" 669985 NIL FAMONOID (NIL T) -8 NIL NIL) (-297 667033 667717 667771 "FAMONC" 668712 NIL FAMONC (NIL T T) -9 NIL 669097) (-296 665725 666787 666924 "FAGROUP" 666929 NIL FAGROUP (NIL T) -8 NIL NIL) (-295 663528 663847 664249 "FACUTIL" 665406 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-294 662627 662812 663034 "FACTFUNC" 663338 NIL FACTFUNC (NIL T) -7 NIL NIL) (-293 654950 661878 662090 "EXPUPXS" 662483 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-292 652433 652973 653559 "EXPRTUBE" 654384 T EXPRTUBE (NIL) -7 NIL NIL) (-291 648627 649219 649956 "EXPRODE" 651772 NIL EXPRODE (NIL T T) -7 NIL NIL) (-290 633786 647286 647712 "EXPR" 648233 NIL EXPR (NIL T) -8 NIL NIL) (-289 628214 628801 629613 "EXPR2UPS" 633084 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-288 627850 627907 628014 "EXPR2" 628151 NIL EXPR2 (NIL T T) -7 NIL NIL) (-287 619204 626987 627282 "EXPEXPAN" 627688 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-286 619031 619161 619190 "EXIT" 619195 T EXIT (NIL) -8 NIL NIL) (-285 618658 618720 618833 "EVALCYC" 618963 NIL EVALCYC (NIL T) -7 NIL NIL) (-284 618198 618316 618358 "EVALAB" 618528 NIL EVALAB (NIL T) -9 NIL 618632) (-283 617679 617801 618022 "EVALAB-" 618027 NIL EVALAB- (NIL T T) -8 NIL NIL) (-282 615141 616453 616482 "EUCDOM" 617037 T EUCDOM (NIL) -9 NIL 617387) (-281 613546 613988 614578 "EUCDOM-" 614583 NIL EUCDOM- (NIL T) -8 NIL NIL) (-280 601124 603872 606612 "ESTOOLS" 610826 T ESTOOLS (NIL) -7 NIL NIL) (-279 600760 600817 600924 "ESTOOLS2" 601061 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-278 600511 600553 600633 "ESTOOLS1" 600712 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-277 594448 596172 596201 "ES" 598965 T ES (NIL) -9 NIL 600371) (-276 589396 590682 592499 "ES-" 592663 NIL ES- (NIL T) -8 NIL NIL) (-275 585771 586531 587311 "ESCONT" 588636 T ESCONT (NIL) -7 NIL NIL) (-274 585516 585548 585630 "ESCONT1" 585733 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-273 585191 585241 585341 "ES2" 585460 NIL ES2 (NIL T T) -7 NIL NIL) (-272 584821 584879 584988 "ES1" 585127 NIL ES1 (NIL T T) -7 NIL NIL) (-271 584037 584166 584342 "ERROR" 584665 T ERROR (NIL) -7 NIL NIL) (-270 577540 583896 583987 "EQTBL" 583992 NIL EQTBL (NIL T T) -8 NIL NIL) (-269 569977 572858 574305 "EQ" 576126 NIL -3087 (NIL T) -8 NIL NIL) (-268 569609 569666 569775 "EQ2" 569914 NIL EQ2 (NIL T T) -7 NIL NIL) (-267 564901 565947 567040 "EP" 568548 NIL EP (NIL T) -7 NIL NIL) (-266 563484 563784 564101 "ENV" 564604 T ENV (NIL) -8 NIL NIL) (-265 562643 563207 563236 "ENTIRER" 563241 T ENTIRER (NIL) -9 NIL 563286) (-264 559099 560598 560968 "EMR" 562442 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-263 558242 558427 558482 "ELTAGG" 558862 NIL ELTAGG (NIL T T) -9 NIL 559073) (-262 557961 558023 558164 "ELTAGG-" 558169 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-261 557749 557778 557833 "ELTAB" 557917 NIL ELTAB (NIL T T) -9 NIL NIL) (-260 556875 557021 557220 "ELFUTS" 557600 NIL ELFUTS (NIL T T) -7 NIL NIL) (-259 556616 556672 556701 "ELEMFUN" 556806 T ELEMFUN (NIL) -9 NIL NIL) (-258 556486 556507 556575 "ELEMFUN-" 556580 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-257 551377 554586 554628 "ELAGG" 555568 NIL ELAGG (NIL T) -9 NIL 556031) (-256 549662 550096 550759 "ELAGG-" 550764 NIL ELAGG- (NIL T T) -8 NIL NIL) (-255 542530 544329 545156 "EFUPXS" 548938 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-254 535980 537781 538591 "EFULS" 541806 NIL EFULS (NIL T T T) -8 NIL NIL) (-253 533411 533769 534247 "EFSTRUC" 535612 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-252 522483 524048 525608 "EF" 531926 NIL EF (NIL T T) -7 NIL NIL) (-251 521584 521968 522117 "EAB" 522354 T EAB (NIL) -8 NIL NIL) (-250 520797 521543 521571 "E04UCFA" 521576 T E04UCFA (NIL) -8 NIL NIL) (-249 520010 520756 520784 "E04NAFA" 520789 T E04NAFA (NIL) -8 NIL NIL) (-248 519223 519969 519997 "E04MBFA" 520002 T E04MBFA (NIL) -8 NIL NIL) (-247 518436 519182 519210 "E04JAFA" 519215 T E04JAFA (NIL) -8 NIL NIL) (-246 517651 518395 518423 "E04GCFA" 518428 T E04GCFA (NIL) -8 NIL NIL) (-245 516866 517610 517638 "E04FDFA" 517643 T E04FDFA (NIL) -8 NIL NIL) (-244 516079 516825 516853 "E04DGFA" 516858 T E04DGFA (NIL) -8 NIL NIL) (-243 510264 511609 512971 "E04AGNT" 514737 T E04AGNT (NIL) -7 NIL NIL) (-242 508990 509470 509511 "DVARCAT" 509986 NIL DVARCAT (NIL T) -9 NIL 510184) (-241 508194 508406 508720 "DVARCAT-" 508725 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-240 501056 507996 508123 "DSMP" 508128 NIL DSMP (NIL T T T) -8 NIL NIL) (-239 495866 497001 498069 "DROPT" 500008 T DROPT (NIL) -8 NIL NIL) (-238 495531 495590 495688 "DROPT1" 495801 NIL DROPT1 (NIL T) -7 NIL NIL) (-237 490646 491772 492909 "DROPT0" 494414 T DROPT0 (NIL) -7 NIL NIL) (-236 488991 489316 489702 "DRAWPT" 490280 T DRAWPT (NIL) -7 NIL NIL) (-235 483578 484501 485580 "DRAW" 487965 NIL DRAW (NIL T) -7 NIL NIL) (-234 483211 483264 483382 "DRAWHACK" 483519 NIL DRAWHACK (NIL T) -7 NIL NIL) (-233 481942 482211 482502 "DRAWCX" 482940 T DRAWCX (NIL) -7 NIL NIL) (-232 481460 481528 481678 "DRAWCURV" 481868 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-231 471932 473890 476005 "DRAWCFUN" 479365 T DRAWCFUN (NIL) -7 NIL NIL) (-230 468745 470627 470669 "DQAGG" 471298 NIL DQAGG (NIL T) -9 NIL 471571) (-229 457251 463989 464072 "DPOLCAT" 465910 NIL DPOLCAT (NIL T T T T) -9 NIL 466454) (-228 452091 453437 455394 "DPOLCAT-" 455399 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-227 446175 451953 452050 "DPMO" 452055 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-226 440162 445956 446122 "DPMM" 446127 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-225 439675 439773 439893 "DOMAIN" 440062 T DOMAIN (NIL) -8 NIL NIL) (-224 433387 439312 439463 "DMP" 439576 NIL DMP (NIL NIL T) -8 NIL NIL) (-223 432987 433043 433187 "DLP" 433325 NIL DLP (NIL T) -7 NIL NIL) (-222 426631 432088 432315 "DLIST" 432792 NIL DLIST (NIL T) -8 NIL NIL) (-221 423477 425486 425528 "DLAGG" 426078 NIL DLAGG (NIL T) -9 NIL 426307) (-220 422186 422878 422907 "DIVRING" 423057 T DIVRING (NIL) -9 NIL 423165) (-219 421174 421427 421820 "DIVRING-" 421825 NIL DIVRING- (NIL T) -8 NIL NIL) (-218 419276 419633 420039 "DISPLAY" 420788 T DISPLAY (NIL) -7 NIL NIL) (-217 413165 419190 419253 "DIRPROD" 419258 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-216 412013 412216 412481 "DIRPROD2" 412958 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-215 401643 407648 407702 "DIRPCAT" 408110 NIL DIRPCAT (NIL NIL T) -9 NIL 408937) (-214 398969 399611 400492 "DIRPCAT-" 400829 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-213 398256 398416 398602 "DIOSP" 398803 T DIOSP (NIL) -7 NIL NIL) (-212 394958 397168 397210 "DIOPS" 397644 NIL DIOPS (NIL T) -9 NIL 397873) (-211 394507 394621 394812 "DIOPS-" 394817 NIL DIOPS- (NIL T T) -8 NIL NIL) (-210 393378 394016 394045 "DIFRING" 394232 T DIFRING (NIL) -9 NIL 394341) (-209 393024 393101 393253 "DIFRING-" 393258 NIL DIFRING- (NIL T) -8 NIL NIL) (-208 390813 392095 392136 "DIFEXT" 392495 NIL DIFEXT (NIL T) -9 NIL 392788) (-207 389099 389527 390192 "DIFEXT-" 390197 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-206 386421 388631 388673 "DIAGG" 388678 NIL DIAGG (NIL T) -9 NIL 388698) (-205 385805 385962 386214 "DIAGG-" 386219 NIL DIAGG- (NIL T T) -8 NIL NIL) (-204 381270 384764 385041 "DHMATRIX" 385574 NIL DHMATRIX (NIL T) -8 NIL NIL) (-203 376882 377791 378801 "DFSFUN" 380280 T DFSFUN (NIL) -7 NIL NIL) (-202 371668 375596 375961 "DFLOAT" 376537 T DFLOAT (NIL) -8 NIL NIL) (-201 369901 370182 370577 "DFINTTLS" 371376 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-200 366934 367936 368334 "DERHAM" 369568 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-199 364783 366709 366798 "DEQUEUE" 366878 NIL DEQUEUE (NIL T) -8 NIL NIL) (-198 364001 364134 364329 "DEGRED" 364645 NIL DEGRED (NIL T T) -7 NIL NIL) (-197 360401 361146 361998 "DEFINTRF" 363229 NIL DEFINTRF (NIL T) -7 NIL NIL) (-196 357932 358401 358999 "DEFINTEF" 359920 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-195 351763 357373 357539 "DECIMAL" 357786 T DECIMAL (NIL) -8 NIL NIL) (-194 349275 349733 350239 "DDFACT" 351307 NIL DDFACT (NIL T T) -7 NIL NIL) (-193 348871 348914 349065 "DBLRESP" 349226 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-192 346581 346915 347284 "DBASE" 348629 NIL DBASE (NIL T) -8 NIL NIL) (-191 345716 346540 346568 "D03FAFA" 346573 T D03FAFA (NIL) -8 NIL NIL) (-190 344852 345675 345703 "D03EEFA" 345708 T D03EEFA (NIL) -8 NIL NIL) (-189 342802 343268 343757 "D03AGNT" 344383 T D03AGNT (NIL) -7 NIL NIL) (-188 342120 342761 342789 "D02EJFA" 342794 T D02EJFA (NIL) -8 NIL NIL) (-187 341438 342079 342107 "D02CJFA" 342112 T D02CJFA (NIL) -8 NIL NIL) (-186 340756 341397 341425 "D02BHFA" 341430 T D02BHFA (NIL) -8 NIL NIL) (-185 340074 340715 340743 "D02BBFA" 340748 T D02BBFA (NIL) -8 NIL NIL) (-184 333272 334860 336466 "D02AGNT" 338488 T D02AGNT (NIL) -7 NIL NIL) (-183 331041 331563 332109 "D01WGTS" 332746 T D01WGTS (NIL) -7 NIL NIL) (-182 330144 331000 331028 "D01TRNS" 331033 T D01TRNS (NIL) -8 NIL NIL) (-181 329247 330103 330131 "D01GBFA" 330136 T D01GBFA (NIL) -8 NIL NIL) (-180 328350 329206 329234 "D01FCFA" 329239 T D01FCFA (NIL) -8 NIL NIL) (-179 327453 328309 328337 "D01ASFA" 328342 T D01ASFA (NIL) -8 NIL NIL) (-178 326556 327412 327440 "D01AQFA" 327445 T D01AQFA (NIL) -8 NIL NIL) (-177 325659 326515 326543 "D01APFA" 326548 T D01APFA (NIL) -8 NIL NIL) (-176 324762 325618 325646 "D01ANFA" 325651 T D01ANFA (NIL) -8 NIL NIL) (-175 323865 324721 324749 "D01AMFA" 324754 T D01AMFA (NIL) -8 NIL NIL) (-174 322968 323824 323852 "D01ALFA" 323857 T D01ALFA (NIL) -8 NIL NIL) (-173 322071 322927 322955 "D01AKFA" 322960 T D01AKFA (NIL) -8 NIL NIL) (-172 321174 322030 322058 "D01AJFA" 322063 T D01AJFA (NIL) -8 NIL NIL) (-171 314478 316027 317586 "D01AGNT" 319635 T D01AGNT (NIL) -7 NIL NIL) (-170 313815 313943 314095 "CYCLOTOM" 314346 T CYCLOTOM (NIL) -7 NIL NIL) (-169 310550 311263 311990 "CYCLES" 313108 T CYCLES (NIL) -7 NIL NIL) (-168 309862 309996 310167 "CVMP" 310411 NIL CVMP (NIL T) -7 NIL NIL) (-167 307644 307901 308276 "CTRIGMNP" 309590 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-166 307249 307332 307437 "CTORCALL" 307559 T CTORCALL (NIL) -8 NIL NIL) (-165 306623 306722 306875 "CSTTOOLS" 307146 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-164 302422 303079 303837 "CRFP" 305935 NIL CRFP (NIL T T) -7 NIL NIL) (-163 301469 301654 301882 "CRAPACK" 302226 NIL CRAPACK (NIL T) -7 NIL NIL) (-162 300853 300954 301158 "CPMATCH" 301345 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-161 300578 300606 300712 "CPIMA" 300819 NIL CPIMA (NIL T T T) -7 NIL NIL) (-160 296942 297614 298332 "COORDSYS" 299913 NIL COORDSYS (NIL T) -7 NIL NIL) (-159 296326 296455 296605 "CONTOUR" 296812 T CONTOUR (NIL) -8 NIL NIL) (-158 292187 294329 294821 "CONTFRAC" 295866 NIL CONTFRAC (NIL T) -8 NIL NIL) (-157 291340 291904 291933 "COMRING" 291938 T COMRING (NIL) -9 NIL 291989) (-156 290421 290698 290882 "COMPPROP" 291176 T COMPPROP (NIL) -8 NIL NIL) (-155 290082 290117 290245 "COMPLPAT" 290380 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-154 280063 289891 290000 "COMPLEX" 290005 NIL COMPLEX (NIL T) -8 NIL NIL) (-153 279699 279756 279863 "COMPLEX2" 280000 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279417 279452 279550 "COMPFACT" 279658 NIL COMPFACT (NIL T T) -7 NIL NIL) (-151 263751 274045 274086 "COMPCAT" 275088 NIL COMPCAT (NIL T) -9 NIL 276481) (-150 253266 256190 259817 "COMPCAT-" 260173 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-149 252997 253025 253127 "COMMUPC" 253232 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-148 252792 252825 252884 "COMMONOP" 252958 T COMMONOP (NIL) -7 NIL NIL) (-147 252375 252543 252630 "COMM" 252725 T COMM (NIL) -8 NIL NIL) (-146 251623 251817 251846 "COMBOPC" 252184 T COMBOPC (NIL) -9 NIL 252359) (-145 250519 250729 250971 "COMBINAT" 251413 NIL COMBINAT (NIL T) -7 NIL NIL) (-144 246717 247290 247930 "COMBF" 249941 NIL COMBF (NIL T T) -7 NIL NIL) (-143 245503 245833 246068 "COLOR" 246502 T COLOR (NIL) -8 NIL NIL) (-142 245143 245190 245315 "CMPLXRT" 245450 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-141 240645 241673 242753 "CLIP" 244083 T CLIP (NIL) -7 NIL NIL) (-140 238983 239753 239991 "CLIF" 240473 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-139 235205 237129 237171 "CLAGG" 238100 NIL CLAGG (NIL T) -9 NIL 238636) (-138 233627 234084 234667 "CLAGG-" 234672 NIL CLAGG- (NIL T T) -8 NIL NIL) (-137 233171 233256 233396 "CINTSLPE" 233536 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-136 230672 231143 231691 "CHVAR" 232699 NIL CHVAR (NIL T T T) -7 NIL NIL) (-135 229894 230458 230487 "CHARZ" 230492 T CHARZ (NIL) -9 NIL 230506) (-134 229648 229688 229766 "CHARPOL" 229848 NIL CHARPOL (NIL T) -7 NIL NIL) (-133 228754 229351 229380 "CHARNZ" 229427 T CHARNZ (NIL) -9 NIL 229482) (-132 226777 227444 227779 "CHAR" 228439 T CHAR (NIL) -8 NIL NIL) (-131 226502 226563 226592 "CFCAT" 226703 T CFCAT (NIL) -9 NIL NIL) (-130 225747 225858 226040 "CDEN" 226386 NIL CDEN (NIL T T T) -7 NIL NIL) (-129 221739 224900 225180 "CCLASS" 225487 T CCLASS (NIL) -8 NIL NIL) (-128 216792 217768 218521 "CARTEN" 221042 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 215900 216048 216269 "CARTEN2" 216639 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214197 215052 215308 "CARD" 215664 T CARD (NIL) -8 NIL NIL) (-125 213569 213897 213926 "CACHSET" 214058 T CACHSET (NIL) -9 NIL 214135) (-124 213065 213361 213390 "CABMON" 213440 T CABMON (NIL) -9 NIL 213496) (-123 210622 212757 212864 "BTREE" 212991 NIL BTREE (NIL T) -8 NIL NIL) (-122 208120 210270 210392 "BTOURN" 210532 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205538 207591 207633 "BTCAT" 207701 NIL BTCAT (NIL T) -9 NIL 207778) (-120 205205 205285 205434 "BTCAT-" 205439 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200425 204296 204325 "BTAGG" 204581 T BTAGG (NIL) -9 NIL 204760) (-118 199848 199992 200222 "BTAGG-" 200227 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 196892 199126 199341 "BSTREE" 199665 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196030 196156 196340 "BRILL" 196748 NIL BRILL (NIL T) -7 NIL NIL) (-115 192731 194758 194800 "BRAGG" 195449 NIL BRAGG (NIL T) -9 NIL 195706) (-114 191260 191666 192221 "BRAGG-" 192226 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184468 190606 190790 "BPADICRT" 191108 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 182772 184405 184450 "BPADIC" 184455 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182472 182502 182615 "BOUNDZRO" 182736 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 177987 179078 179945 "BOP" 181625 T BOP (NIL) -8 NIL NIL) (-109 175608 176052 176572 "BOP1" 177500 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174227 174938 175161 "BOOLEAN" 175405 T BOOLEAN (NIL) -8 NIL NIL) (-107 173593 173971 174024 "BMODULE" 174029 NIL BMODULE (NIL T T) -9 NIL 174093) (-106 169403 173391 173464 "BITS" 173540 T BITS (NIL) -8 NIL NIL) (-105 168500 168935 169087 "BINFILE" 169271 T BINFILE (NIL) -8 NIL NIL) (-104 167912 168034 168176 "BINDING" 168378 T BINDING (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-3356 (((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 37)) (-3124 (((-522) (-1139 |#2| |#1|)) 68 (|has| |#1| (-426)))) (-1589 (((-522) (-1139 |#2| |#1|)) 54)) (-3104 (((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 45)) (-3661 (((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 56 (|has| |#1| (-426)))) (-1418 (((-588 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 48)) (-2092 (((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|)) 53)))
+(((-1028 |#1| |#2|) (-10 -7 (-15 -3356 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3104 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -1418 ((-588 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -2092 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -1589 ((-522) (-1139 |#2| |#1|))) (IF (|has| |#1| (-426)) (PROGN (-15 -3661 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3124 ((-522) (-1139 |#2| |#1|)))) |%noBranch|)) (-757) (-1085)) (T -1028))
+((-3124 (*1 *2 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-3661 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-1589 (*1 *2 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-2092 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))) (-1418 (*1 *2 *3 *3) (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 *4)) (-5 *1 (-1028 *4 *5)))) (-3104 (*1 *2 *3 *3) (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4)))))
+(-10 -7 (-15 -3356 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3104 ((-588 (-1139 |#2| |#1|)) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -1418 ((-588 |#1|) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -2092 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -1589 ((-522) (-1139 |#2| |#1|))) (IF (|has| |#1| (-426)) (PROGN (-15 -3661 ((-522) (-1139 |#2| |#1|) (-1139 |#2| |#1|))) (-15 -3124 ((-522) (-1139 |#2| |#1|)))) |%noBranch|))
+((-1341 (((-3 (-522) "failed") |#2| (-1085) |#2| (-1068)) 16) (((-3 (-522) "failed") |#2| (-1085) (-777 |#2|)) 14) (((-3 (-522) "failed") |#2|) 51)))
+(((-1029 |#1| |#2|) (-10 -7 (-15 -1341 ((-3 (-522) "failed") |#2|)) (-15 -1341 ((-3 (-522) "failed") |#2| (-1085) (-777 |#2|))) (-15 -1341 ((-3 (-522) "failed") |#2| (-1085) |#2| (-1068)))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522)) (-426)) (-13 (-27) (-1106) (-405 |#1|))) (T -1029))
+((-1341 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-1068)) (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) (-5 *2 (-522)) (-5 *1 (-1029 *6 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))))) (-1341 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6))) (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) (-5 *2 (-522)) (-5 *1 (-1029 *6 *3)))) (-1341 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426))) (-5 *2 (-522)) (-5 *1 (-1029 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))))
+(-10 -7 (-15 -1341 ((-3 (-522) "failed") |#2|)) (-15 -1341 ((-3 (-522) "failed") |#2| (-1085) (-777 |#2|))) (-15 -1341 ((-3 (-522) "failed") |#2| (-1085) |#2| (-1068))))
+((-1341 (((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)) (-1068)) 34) (((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-777 (-382 (-881 |#1|)))) 29) (((-3 (-522) "failed") (-382 (-881 |#1|))) 12)))
+(((-1030 |#1|) (-10 -7 (-15 -1341 ((-3 (-522) "failed") (-382 (-881 |#1|)))) (-15 -1341 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-777 (-382 (-881 |#1|))))) (-15 -1341 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)) (-1068)))) (-426)) (T -1030))
+((-1341 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1085)) (-5 *5 (-1068)) (-4 *6 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *6)))) (-1341 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 (-382 (-881 *6)))) (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *6)))) (-1341 (*1 *2 *3) (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *4)))))
+(-10 -7 (-15 -1341 ((-3 (-522) "failed") (-382 (-881 |#1|)))) (-15 -1341 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-777 (-382 (-881 |#1|))))) (-15 -1341 ((-3 (-522) "failed") (-382 (-881 |#1|)) (-1085) (-382 (-881 |#1|)) (-1068))))
+((-3245 (((-291 (-522)) (-47)) 11)))
+(((-1031) (-10 -7 (-15 -3245 ((-291 (-522)) (-47))))) (T -1031))
+((-3245 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-291 (-522))) (-5 *1 (-1031)))))
+(-10 -7 (-15 -3245 ((-291 (-522)) (-47))))
+((-1416 (((-108) $ $) NIL)) (-1501 (($ $) 41)) (-2250 (((-108) $) 65)) (-3349 (($ $ $) 48)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 84)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-3871 (($ $ $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3481 (($ $ $ $) 74)) (-3119 (($ $) NIL)) (-3450 (((-393 $) $) NIL)) (-1687 (((-108) $ $) NIL)) (-1341 (((-522) $) NIL)) (-1662 (($ $ $) 71)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL)) (-1484 (((-522) $) NIL)) (-2277 (($ $ $) 59)) (-2096 (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 78) (((-628 (-522)) (-628 $)) 28)) (-2682 (((-3 $ "failed") $) NIL)) (-1664 (((-3 (-382 (-522)) "failed") $) NIL)) (-1770 (((-108) $) NIL)) (-1492 (((-382 (-522)) $) NIL)) (-3255 (($) 81) (($ $) 82)) (-2254 (($ $ $) 58)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL)) (-2813 (((-108) $) NIL)) (-2676 (($ $ $ $) NIL)) (-2339 (($ $ $) 79)) (-3687 (((-108) $) NIL)) (-3219 (($ $ $) NIL)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL)) (-2782 (((-108) $) 66)) (-2591 (((-108) $) 64)) (-2401 (($ $) 42)) (-3004 (((-3 $ "failed") $) NIL)) (-2556 (((-108) $) 75)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1335 (($ $ $ $) 72)) (-2814 (($ $ $) 68) (($) 39)) (-2446 (($ $ $) 67) (($) 38)) (-3893 (($ $) NIL)) (-2517 (($ $) 70)) (-2224 (($ $ $) NIL) (($ (-588 $)) NIL)) (-2385 (((-1068) $) NIL)) (-2341 (($ $ $) NIL)) (-3802 (($) NIL T CONST)) (-2957 (($ $) 50)) (-4151 (((-1032) $) NIL) (($ $) 69)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL)) (-2259 (($ $ $) 62) (($ (-588 $)) NIL)) (-2868 (($ $) NIL)) (-1916 (((-393 $) $) NIL)) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL)) (-2232 (((-3 $ "failed") $ $) NIL)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL)) (-1263 (((-108) $) NIL)) (-3730 (((-708) $) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 61)) (-2157 (($ $ (-708)) NIL) (($ $) NIL)) (-3056 (($ $) 51)) (-2404 (($ $) NIL)) (-1431 (((-522) $) 32) (((-498) $) NIL) (((-821 (-522)) $) NIL) (((-354) $) NIL) (((-202) $) NIL)) (-2190 (((-792) $) 31) (($ (-522)) 80) (($ $) NIL) (($ (-522)) 80)) (-2323 (((-708)) NIL)) (-3558 (((-108) $ $) NIL)) (-1480 (($ $ $) NIL)) (-3355 (($) 37)) (-3958 (((-108) $ $) NIL)) (-4004 (($ $ $ $) 73)) (-2241 (($ $) 63)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-2767 (($ $ $) 44)) (-3566 (($) 35 T CONST)) (-3506 (($ $ $) 47)) (-3577 (($) 36 T CONST)) (-4149 (((-1068) $) 21) (((-1068) $ (-108)) 23) (((-1171) (-759) $) 24) (((-1171) (-759) $ (-108)) 25)) (-3517 (($ $) 45)) (-2213 (($ $ (-708)) NIL) (($ $) NIL)) (-3498 (($ $ $) 46)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 40)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 49)) (-2324 (($ $ $) 43)) (-1612 (($ $) 52) (($ $ $) 54)) (-1602 (($ $ $) 53)) (** (($ $ (-850)) NIL) (($ $ (-708)) 57)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 34) (($ $ $) 55)))
+(((-1032) (-13 (-507) (-603) (-765) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -2446 ($)) (-15 -2814 ($)) (-15 -2401 ($ $)) (-15 -1501 ($ $)) (-15 -2324 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -3517 ($ $)) (-15 -3498 ($ $ $)) (-15 -3506 ($ $ $))))) (T -1032))
+((-2767 (*1 *1 *1 *1) (-5 *1 (-1032))) (-2324 (*1 *1 *1 *1) (-5 *1 (-1032))) (-1501 (*1 *1 *1) (-5 *1 (-1032))) (-2446 (*1 *1) (-5 *1 (-1032))) (-2814 (*1 *1) (-5 *1 (-1032))) (-2401 (*1 *1 *1) (-5 *1 (-1032))) (-3349 (*1 *1 *1 *1) (-5 *1 (-1032))) (-3517 (*1 *1 *1) (-5 *1 (-1032))) (-3498 (*1 *1 *1 *1) (-5 *1 (-1032))) (-3506 (*1 *1 *1 *1) (-5 *1 (-1032))))
+(-13 (-507) (-603) (-765) (-10 -8 (-6 -4225) (-6 -4230) (-6 -4226) (-15 -2446 ($)) (-15 -2814 ($)) (-15 -2401 ($ $)) (-15 -1501 ($ $)) (-15 -2324 ($ $ $)) (-15 -2767 ($ $ $)) (-15 -3349 ($ $ $)) (-15 -3517 ($ $)) (-15 -3498 ($ $ $)) (-15 -3506 ($ $ $))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-1355 ((|#1| $) 44)) (-4141 (((-108) $ (-708)) 8)) (-3175 (($) 7 T CONST)) (-3218 ((|#1| |#1| $) 46)) (-2327 ((|#1| $) 45)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-2116 ((|#1| $) 39)) (-4095 (($ |#1| $) 40)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-4087 ((|#1| $) 41)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-1253 (((-708) $) 43)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) 42)) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1033 |#1|) (-1197) (-1120)) (T -1033))
+((-3218 (*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))) (-1253 (*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4238) (-15 -3218 (|t#1| |t#1| $)) (-15 -2327 (|t#1| $)) (-15 -1355 (|t#1| $)) (-15 -1253 ((-708) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1865 ((|#3| $) 76)) (-1297 (((-3 (-522) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1484 (((-522) $) NIL) (((-382 (-522)) $) NIL) ((|#3| $) 37)) (-2096 (((-628 (-522)) (-628 $)) NIL) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL) (((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 $) (-1166 $)) 73) (((-628 |#3|) (-628 $)) 65)) (-2157 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085)) NIL) (($ $ (-708)) NIL) (($ $) NIL)) (-1708 ((|#3| $) 78)) (-3263 ((|#4| $) 32)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ |#3|) 16)) (** (($ $ (-850)) NIL) (($ $ (-708)) 15) (($ $ (-522)) 82)))
+(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-522))) (-15 -1708 (|#3| |#1|)) (-15 -1865 (|#3| |#1|)) (-15 -3263 (|#4| |#1|)) (-15 -2096 ((-628 |#3|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -1484 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2190 (|#1| |#3|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2190 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2190 ((-792) |#1|))) (-1035 |#2| |#3| |#4| |#5|) (-708) (-971) (-215 |#2| |#3|) (-215 |#2| |#3|)) (T -1034))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-522))) (-15 -1708 (|#3| |#1|)) (-15 -1865 (|#3| |#1|)) (-15 -3263 (|#4| |#1|)) (-15 -2096 ((-628 |#3|) (-628 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 |#3|)) (|:| |vec| (-1166 |#3|))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 |#1|) (-1166 |#1|))) (-15 -2096 ((-628 (-522)) (-628 |#1|))) (-15 -1484 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2190 (|#1| |#3|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-522) |#1|)) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|) (-708))) (-15 -2157 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2190 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1865 ((|#2| $) 72)) (-2727 (((-108) $) 112)) (-1233 (((-3 $ "failed") $ $) 19)) (-2527 (((-108) $) 110)) (-4141 (((-108) $ (-708)) 102)) (-3022 (($ |#2|) 75)) (-3175 (($) 17 T CONST)) (-2264 (($ $) 129 (|has| |#2| (-283)))) (-1860 ((|#3| $ (-522)) 124)) (-1297 (((-3 (-522) "failed") $) 86 (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) 84 (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) 81)) (-1484 (((-522) $) 87 (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) 85 (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) 80)) (-2096 (((-628 (-522)) (-628 $)) 79 (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 78 (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 77) (((-628 |#2|) (-628 $)) 76)) (-2682 (((-3 $ "failed") $) 34)) (-3166 (((-708) $) 130 (|has| |#2| (-514)))) (-3631 ((|#2| $ (-522) (-522)) 122)) (-3837 (((-588 |#2|) $) 95 (|has| $ (-6 -4238)))) (-2782 (((-108) $) 31)) (-3799 (((-708) $) 131 (|has| |#2| (-514)))) (-2064 (((-588 |#4|) $) 132 (|has| |#2| (-514)))) (-1411 (((-708) $) 118)) (-1422 (((-708) $) 119)) (-3352 (((-108) $ (-708)) 103)) (-3081 ((|#2| $) 67 (|has| |#2| (-6 (-4240 "*"))))) (-2575 (((-522) $) 114)) (-1885 (((-522) $) 116)) (-3308 (((-588 |#2|) $) 94 (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-3886 (((-522) $) 115)) (-4132 (((-522) $) 117)) (-1366 (($ (-588 (-588 |#2|))) 109)) (-3838 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3237 (((-588 (-588 |#2|)) $) 120)) (-2720 (((-108) $ (-708)) 104)) (-2385 (((-1068) $) 9)) (-2147 (((-3 $ "failed") $) 66 (|has| |#2| (-338)))) (-4151 (((-1032) $) 10)) (-2232 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-514)))) (-3053 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) 91 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 90 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 88 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) 108)) (-3985 (((-108) $) 105)) (-3775 (($) 106)) (-2545 ((|#2| $ (-522) (-522) |#2|) 123) ((|#2| $ (-522) (-522)) 121)) (-2157 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-708)) 51) (($ $ (-588 (-1085)) (-588 (-708))) 44 (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) 43 (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) 42 (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) 41 (|has| |#2| (-829 (-1085)))) (($ $ (-708)) 39 (|has| |#2| (-210))) (($ $) 37 (|has| |#2| (-210)))) (-1708 ((|#2| $) 71)) (-4077 (($ (-588 |#2|)) 74)) (-1767 (((-108) $) 111)) (-3263 ((|#3| $) 73)) (-3206 ((|#2| $) 68 (|has| |#2| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4238))) (((-708) |#2| $) 93 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 107)) (-3488 ((|#4| $ (-522)) 125)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 83 (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) 82)) (-2323 (((-708)) 29)) (-3648 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4238)))) (-1697 (((-108) $) 113)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-708)) 49) (($ $ (-588 (-1085)) (-588 (-708))) 48 (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) 47 (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) 46 (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) 45 (|has| |#2| (-829 (-1085)))) (($ $ (-708)) 40 (|has| |#2| (-210))) (($ $) 38 (|has| |#2| (-210)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#2|) 128 (|has| |#2| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 65 (|has| |#2| (-338)))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3480 (((-708) $) 101 (|has| $ (-6 -4238)))))
+(((-1035 |#1| |#2| |#3| |#4|) (-1197) (-708) (-971) (-215 |t#1| |t#2|) (-215 |t#1| |t#2|)) (T -1035))
+((-3022 (*1 *1 *2) (-12 (-4 *2 (-971)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-971)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-971)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (-4 *2 (-971)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *2 (-215 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *2 (-215 *3 *4)) (-4 *5 (-215 *3 *4)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2)) (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))) (-2147 (*1 *1 *1) (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-338)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-338)))))
+(-13 (-208 |t#2|) (-107 |t#2| |t#2|) (-974 |t#1| |t#1| |t#2| |t#3| |t#4|) (-386 |t#2|) (-352 |t#2|) (-10 -8 (IF (|has| |t#2| (-157)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3022 ($ |t#2|)) (-15 -4077 ($ (-588 |t#2|))) (-15 -3263 (|t#3| $)) (-15 -1865 (|t#2| $)) (-15 -1708 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4240 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3206 (|t#2| $)) (-15 -3081 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-338)) (PROGN (-15 -2147 ((-3 $ "failed") $)) (-15 ** ($ $ (-522)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4240 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-208 |#2|) . T) ((-210) |has| |#2| (-210)) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-352 |#2|) . T) ((-386 |#2|) . T) ((-461 |#2|) . T) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-590 |#2|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#2| (-584 (-522))) ((-584 |#2|) . T) ((-655 |#2|) -3708 (|has| |#2| (-157)) (|has| |#2| (-6 (-4240 "*")))) ((-664) . T) ((-829 (-1085)) |has| |#2| (-829 (-1085))) ((-974 |#1| |#1| |#2| |#3| |#4|) . T) ((-962 (-382 (-522))) |has| |#2| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#2| (-962 (-522))) ((-962 |#2|) . T) ((-977 |#2|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1120) . T))
+((-3581 ((|#4| |#4|) 68)) (-3261 ((|#4| |#4|) 63)) (-3208 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|))) |#4| |#3|) 76)) (-4029 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 67)) (-2228 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 65)))
+(((-1036 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| |#4|)) (-15 -2228 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3581 (|#4| |#4|)) (-15 -4029 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3208 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|))) |#4| |#3|))) (-283) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -1036))
+((-3208 (*1 *2 *3 *4) (-12 (-4 *5 (-283)) (-4 *6 (-348 *5)) (-4 *4 (-348 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4)))) (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))) (-4029 (*1 *2 *3) (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-2228 (*1 *2 *3) (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))) (-3261 (*1 *2 *2) (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(-10 -7 (-15 -3261 (|#4| |#4|)) (-15 -2228 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3581 (|#4| |#4|)) (-15 -4029 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3208 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3855 (-588 |#3|))) |#4| |#3|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 17)) (-4090 (((-588 |#2|) $) 159)) (-1282 (((-1081 $) $ |#2|) 53) (((-1081 |#1|) $) 42)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 109 (|has| |#1| (-514)))) (-2022 (($ $) 111 (|has| |#1| (-514)))) (-3739 (((-108) $) 113 (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 |#2|)) 193)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) 156) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 |#2| "failed") $) NIL)) (-1484 ((|#1| $) 154) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) ((|#2| $) NIL)) (-1950 (($ $ $ |#2|) NIL (|has| |#1| (-157)))) (-3156 (($ $) 197)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) 81)) (-2071 (($ $) NIL (|has| |#1| (-426))) (($ $ |#2|) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-494 |#2|) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#1| (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#1| (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-2782 (((-108) $) 19)) (-2112 (((-708) $) 26)) (-4073 (($ (-1081 |#1|) |#2|) 47) (($ (-1081 $) |#2|) 63)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) 31)) (-4049 (($ |#1| (-494 |#2|)) 70) (($ $ |#2| (-708)) 51) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ |#2|) NIL)) (-2925 (((-494 |#2|) $) 186) (((-708) $ |#2|) 187) (((-588 (-708)) $ (-588 |#2|)) 188)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-494 |#2|) (-494 |#2|)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) 121)) (-3145 (((-3 |#2| "failed") $) 161)) (-3128 (($ $) 196)) (-3138 ((|#1| $) 36)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| |#2|) (|:| -1400 (-708))) "failed") $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) 32)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 139 (|has| |#1| (-426)))) (-2259 (($ (-588 $)) 144 (|has| |#1| (-426))) (($ $ $) 131 (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#1| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-838)))) (-2232 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ $) 119 (|has| |#1| (-514)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-588 |#2|) (-588 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-588 |#2|) (-588 $)) 176)) (-2769 (($ $ |#2|) NIL (|has| |#1| (-157)))) (-2157 (($ $ |#2|) 195) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2793 (((-494 |#2|) $) 182) (((-708) $ |#2|) 178) (((-588 (-708)) $ (-588 |#2|)) 180)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| |#1| (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| |#1| (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| |#1| (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2255 ((|#1| $) 127 (|has| |#1| (-426))) (($ $ |#2|) 130 (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-2190 (((-792) $) 150) (($ (-522)) 75) (($ |#1|) 76) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-514))) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-3916 (((-588 |#1|) $) 153)) (-3243 ((|#1| $ (-494 |#2|)) 72) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) 78)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) 116 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 101) (($ $ (-708)) 103)) (-3566 (($) 12 T CONST)) (-3577 (($) 14 T CONST)) (-2213 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 96)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 125 (|has| |#1| (-338)))) (-1612 (($ $) 84) (($ $ $) 94)) (-1602 (($ $ $) 48)) (** (($ $ (-850)) 102) (($ $ (-708)) 99)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 87) (($ $ $) 64) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-1037 |#1| |#2|) (-878 |#1| (-494 |#2|) |#2|) (-971) (-784)) (T -1037))
+NIL
+(-878 |#1| (-494 |#2|) |#2|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 |#2|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2908 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2884 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 114 (|has| |#1| (-37 (-382 (-522)))))) (-2930 (($ $) 146 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2199 (((-881 |#1|) $ (-708)) NIL) (((-881 |#1|) $ (-708) (-708)) NIL)) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-708) $ |#2|) NIL) (((-708) $ |#2| (-708)) NIL)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3340 (((-108) $) NIL)) (-4049 (($ $ (-588 |#2|) (-588 (-494 |#2|))) NIL) (($ $ |#2| (-494 |#2|)) NIL) (($ |#1| (-494 |#2|)) NIL) (($ $ |#2| (-708)) 58) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) 112 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-1858 (($ $ |#2|) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ |#2| |#1|) 165 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-2730 (($ (-1 $) |#2| |#1|) 164 (|has| |#1| (-37 (-382 (-522)))))) (-3719 (($ $ (-708)) 15)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3266 (($ $) 110 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (($ $ |#2| $) 96) (($ $ (-588 |#2|) (-588 $)) 89) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL)) (-2157 (($ $ |#2|) 99) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-2793 (((-494 |#2|) $) NIL)) (-1658 (((-1 (-1066 |#3|) |#3|) (-588 |#2|) (-588 (-1066 |#3|))) 79)) (-1738 (($ $) 148 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 144 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 116 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 17)) (-2190 (((-792) $) 180) (($ (-522)) NIL) (($ |#1|) 44 (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-514))) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#2|) 65) (($ |#3|) 63)) (-3243 ((|#1| $ (-494 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL) ((|#3| $ (-708)) 42)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1759 (($ $) 154 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) 150 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 158 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-3924 (($ $) 160 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 156 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 152 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 18 T CONST)) (-3577 (($) 10 T CONST)) (-2213 (($ $ |#2|) NIL) (($ $ (-588 |#2|)) NIL) (($ $ |#2| (-708)) NIL) (($ $ (-588 |#2|) (-588 (-708))) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) 182 (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 61)) (** (($ $ (-850)) NIL) (($ $ (-708)) 70) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 102 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 60) (($ $ (-382 (-522))) 107 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 105 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1038 |#1| |#2| |#3|) (-13 (-678 |#1| |#2|) (-10 -8 (-15 -3243 (|#3| $ (-708))) (-15 -2190 ($ |#2|)) (-15 -2190 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1658 ((-1 (-1066 |#3|) |#3|) (-588 |#2|) (-588 (-1066 |#3|)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $ |#2| |#1|)) (-15 -2730 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-971) (-784) (-878 |#1| (-494 |#2|) |#2|)) (T -1038))
+((-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *2 (-878 *4 (-494 *5) *5)) (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-784)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *2 (-784)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-878 *3 (-494 *2) *2)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-878 *3 (-494 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2)) (-4 *2 (-878 *3 (-494 *4) *4)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1066 *7))) (-4 *6 (-784)) (-4 *7 (-878 *5 (-494 *6) *6)) (-4 *5 (-971)) (-5 *2 (-1 (-1066 *7) *7)) (-5 *1 (-1038 *5 *6 *7)))) (-1858 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-4 *2 (-784)) (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-878 *3 (-494 *2) *2)))) (-2730 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)) (-4 *3 (-784)) (-5 *1 (-1038 *4 *3 *5)) (-4 *5 (-878 *4 (-494 *3) *3)))))
+(-13 (-678 |#1| |#2|) (-10 -8 (-15 -3243 (|#3| $ (-708))) (-15 -2190 ($ |#2|)) (-15 -2190 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1658 ((-1 (-1066 |#3|) |#3|) (-588 |#2|) (-588 (-1066 |#3|)))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $ |#2| |#1|)) (-15 -2730 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-1416 (((-108) $ $) 7)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) 85)) (-4125 (((-588 $) (-588 |#4|)) 86) (((-588 $) (-588 |#4|) (-108)) 111)) (-4090 (((-588 |#3|) $) 33)) (-2690 (((-108) $) 26)) (-4140 (((-108) $) 17 (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) 101) (((-108) $) 97)) (-3607 ((|#4| |#4| $) 92)) (-3119 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| $) 126)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) 27)) (-4141 (((-108) $ (-708)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3175 (($) 45 T CONST)) (-3639 (((-108) $) 22 (|has| |#1| (-514)))) (-3982 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3996 (((-108) $ $) 23 (|has| |#1| (-514)))) (-3538 (((-108) $) 25 (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3050 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 36)) (-1484 (($ (-588 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-2806 ((|#4| |#4| $) 89)) (-2333 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-4164 ((|#4| |#4| $) 87)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) 105)) (-2208 (((-108) |#4| $) 136)) (-3129 (((-108) |#4| $) 133)) (-2198 (((-108) |#4| $) 137) (((-108) $) 134)) (-3837 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) 104) (((-108) $) 103)) (-1521 ((|#3| $) 34)) (-3352 (((-108) $ (-708)) 43)) (-3308 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 47)) (-2458 (((-588 |#3|) $) 32)) (-1606 (((-108) |#3| $) 31)) (-2720 (((-108) $ (-708)) 42)) (-2385 (((-1068) $) 9)) (-3959 (((-3 |#4| (-588 $)) |#4| |#4| $) 128)) (-1331 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-2893 (((-588 $) |#4| $) 129)) (-4190 (((-3 (-108) (-588 $)) |#4| $) 132)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-2416 (((-588 $) |#4| $) 125) (((-588 $) (-588 |#4|) $) 124) (((-588 $) (-588 |#4|) (-588 $)) 123) (((-588 $) |#4| (-588 $)) 122)) (-2135 (($ |#4| $) 117) (($ (-588 |#4|) $) 116)) (-2242 (((-588 |#4|) $) 107)) (-3409 (((-108) |#4| $) 99) (((-108) $) 95)) (-1451 ((|#4| |#4| $) 90)) (-2123 (((-108) $ $) 110)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) 100) (((-108) $) 96)) (-2680 ((|#4| |#4| $) 91)) (-4151 (((-1032) $) 10)) (-2294 (((-3 |#4| "failed") $) 84)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3307 (((-3 $ "failed") $ |#4|) 78)) (-3719 (($ $ |#4|) 77) (((-588 $) |#4| $) 115) (((-588 $) |#4| (-588 $)) 114) (((-588 $) (-588 |#4|) $) 113) (((-588 $) (-588 |#4|) (-588 $)) 112)) (-3053 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) 38)) (-3985 (((-108) $) 41)) (-3775 (($) 40)) (-2793 (((-708) $) 106)) (-4168 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2404 (($ $) 39)) (-1431 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 60)) (-2020 (($ $ |#3|) 28)) (-3606 (($ $ |#3|) 30)) (-3968 (($ $) 88)) (-2463 (($ $ |#3|) 29)) (-2190 (((-792) $) 11) (((-588 |#4|) $) 37)) (-1974 (((-708) $) 76 (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-2188 (((-588 $) |#4| $) 121) (((-588 $) |#4| (-588 $)) 120) (((-588 $) (-588 |#4|) $) 119) (((-588 $) (-588 |#4|) (-588 $)) 118)) (-3648 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) 81)) (-3021 (((-108) |#4| $) 135)) (-2351 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3480 (((-708) $) 46 (|has| $ (-6 -4238)))))
+(((-1039 |#1| |#2| |#3| |#4|) (-1197) (-426) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -1039))
+NIL
+(-13 (-1023 |t#1| |t#2| |t#3| |t#4|) (-721 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-721 |#1| |#2| |#3| |#4|) . T) ((-903 |#1| |#2| |#3| |#4|) . T) ((-990 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1023 |#1| |#2| |#3| |#4|) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1120) . T))
+((-3426 (((-588 |#2|) |#1|) 12)) (-2521 (((-588 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-588 |#2|) |#1|) 47)) (-4079 (((-588 |#2|) |#2| |#2| |#2|) 35) (((-588 |#2|) |#1|) 45)) (-2307 ((|#2| |#1|) 42)) (-1260 (((-2 (|:| |solns| (-588 |#2|)) (|:| |maps| (-588 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2177 (((-588 |#2|) |#2| |#2|) 34) (((-588 |#2|) |#1|) 44)) (-2265 (((-588 |#2|) |#2| |#2| |#2| |#2|) 36) (((-588 |#2|) |#1|) 46)) (-2325 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-4044 ((|#2| |#2| |#2| |#2|) 39)) (-1878 ((|#2| |#2| |#2|) 38)) (-3521 ((|#2| |#2| |#2| |#2| |#2|) 40)))
+(((-1040 |#1| |#2|) (-10 -7 (-15 -3426 ((-588 |#2|) |#1|)) (-15 -2307 (|#2| |#1|)) (-15 -1260 ((-2 (|:| |solns| (-588 |#2|)) (|:| |maps| (-588 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2177 ((-588 |#2|) |#1|)) (-15 -4079 ((-588 |#2|) |#1|)) (-15 -2265 ((-588 |#2|) |#1|)) (-15 -2521 ((-588 |#2|) |#1|)) (-15 -2177 ((-588 |#2|) |#2| |#2|)) (-15 -4079 ((-588 |#2|) |#2| |#2| |#2|)) (-15 -2265 ((-588 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2521 ((-588 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1878 (|#2| |#2| |#2|)) (-15 -4044 (|#2| |#2| |#2| |#2|)) (-15 -3521 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2325 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1142 |#2|) (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (T -1040))
+((-2325 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-3521 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-4044 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-1878 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-2521 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-2265 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-4079 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-2177 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-2265 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-4079 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-2177 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))) (-1260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-2 (|:| |solns| (-588 *5)) (|:| |maps| (-588 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-1142 *5)))) (-2307 (*1 *2 *3) (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522))))))) (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -3426 ((-588 |#2|) |#1|)) (-15 -2307 (|#2| |#1|)) (-15 -1260 ((-2 (|:| |solns| (-588 |#2|)) (|:| |maps| (-588 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2177 ((-588 |#2|) |#1|)) (-15 -4079 ((-588 |#2|) |#1|)) (-15 -2265 ((-588 |#2|) |#1|)) (-15 -2521 ((-588 |#2|) |#1|)) (-15 -2177 ((-588 |#2|) |#2| |#2|)) (-15 -4079 ((-588 |#2|) |#2| |#2| |#2|)) (-15 -2265 ((-588 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2521 ((-588 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1878 (|#2| |#2| |#2|)) (-15 -4044 (|#2| |#2| |#2| |#2|)) (-15 -3521 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2325 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3431 (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|))))) 95) (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085))) 94) (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|)))) 92) (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 90) (((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|)))) 76) (((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))) (-1085)) 77) (((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|))) 71) (((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)) (-1085)) 60)) (-2665 (((-588 (-588 (-291 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 88) (((-588 (-291 |#1|)) (-382 (-881 |#1|)) (-1085)) 43)) (-2496 (((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-382 (-881 |#1|)) (-1085)) 98) (((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085)) 97)))
+(((-1041 |#1|) (-10 -7 (-15 -3431 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -3431 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)))) (-15 -3431 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -3431 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2665 ((-588 (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -2665 ((-588 (-588 (-291 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2496 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -2496 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-382 (-881 |#1|)) (-1085)))) (-13 (-283) (-784) (-135))) (T -1041))
+((-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-2496 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-291 *5)))) (-5 *1 (-1041 *5)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-291 *5))) (-5 *1 (-1041 *5)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-270 (-382 (-881 *5))))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-588 (-382 (-881 *4)))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-270 (-382 (-881 *4)))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1041 *4)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1041 *5)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1041 *4)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1041 *5)))))
+(-10 -7 (-15 -3431 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)) (-1085))) (-15 -3431 ((-588 (-270 (-291 |#1|))) (-382 (-881 |#1|)))) (-15 -3431 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -3431 ((-588 (-270 (-291 |#1|))) (-270 (-382 (-881 |#1|))))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-382 (-881 |#1|))))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -3431 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -2665 ((-588 (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -2665 ((-588 (-588 (-291 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -2496 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -2496 ((-1075 (-588 (-291 |#1|)) (-588 (-270 (-291 |#1|)))) (-382 (-881 |#1|)) (-1085))))
+((-4204 (((-382 (-1081 (-291 |#1|))) (-1166 (-291 |#1|)) (-382 (-1081 (-291 |#1|))) (-522)) 27)) (-2269 (((-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|)))) 39)))
+(((-1042 |#1|) (-10 -7 (-15 -2269 ((-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))))) (-15 -4204 ((-382 (-1081 (-291 |#1|))) (-1166 (-291 |#1|)) (-382 (-1081 (-291 |#1|))) (-522)))) (-13 (-514) (-784))) (T -1042))
+((-4204 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-382 (-1081 (-291 *5)))) (-5 *3 (-1166 (-291 *5))) (-5 *4 (-522)) (-4 *5 (-13 (-514) (-784))) (-5 *1 (-1042 *5)))) (-2269 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-382 (-1081 (-291 *3)))) (-4 *3 (-13 (-514) (-784))) (-5 *1 (-1042 *3)))))
+(-10 -7 (-15 -2269 ((-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))) (-382 (-1081 (-291 |#1|))))) (-15 -4204 ((-382 (-1081 (-291 |#1|))) (-1166 (-291 |#1|)) (-382 (-1081 (-291 |#1|))) (-522))))
+((-3426 (((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-291 |#1|))) (-588 (-1085))) 217) (((-588 (-270 (-291 |#1|))) (-291 |#1|) (-1085)) 20) (((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)) (-1085)) 26) (((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|))) 25) (((-588 (-270 (-291 |#1|))) (-291 |#1|)) 21)))
+(((-1043 |#1|) (-10 -7 (-15 -3426 ((-588 (-270 (-291 |#1|))) (-291 |#1|))) (-15 -3426 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)))) (-15 -3426 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)) (-1085))) (-15 -3426 ((-588 (-270 (-291 |#1|))) (-291 |#1|) (-1085))) (-15 -3426 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-291 |#1|))) (-588 (-1085))))) (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (T -1043))
+((-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1085))) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-588 (-270 (-291 *5)))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-291 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5)) (-5 *3 (-270 (-291 *5))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-270 (-291 *4))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135))) (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4)) (-5 *3 (-291 *4)))))
+(-10 -7 (-15 -3426 ((-588 (-270 (-291 |#1|))) (-291 |#1|))) (-15 -3426 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)))) (-15 -3426 ((-588 (-270 (-291 |#1|))) (-270 (-291 |#1|)) (-1085))) (-15 -3426 ((-588 (-270 (-291 |#1|))) (-291 |#1|) (-1085))) (-15 -3426 ((-588 (-588 (-270 (-291 |#1|)))) (-588 (-270 (-291 |#1|))) (-588 (-1085)))))
+((-1854 ((|#2| |#2|) 20 (|has| |#1| (-784))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)) (-2471 ((|#2| |#2|) 19 (|has| |#1| (-784))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 15)))
+(((-1044 |#1| |#2|) (-10 -7 (-15 -2471 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -1854 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-784)) (PROGN (-15 -2471 (|#2| |#2|)) (-15 -1854 (|#2| |#2|))) |%noBranch|)) (-1120) (-13 (-555 (-522) |#1|) (-10 -7 (-6 -4238) (-6 -4239)))) (T -1044))
+((-1854 (*1 *2 *2) (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239)))))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239)))))) (-1854 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239)))))) (-2471 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2)) (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239)))))))
+(-10 -7 (-15 -2471 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -1854 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-784)) (PROGN (-15 -2471 (|#2| |#2|)) (-15 -1854 (|#2| |#2|))) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-3974 (((-1074 3 |#1|) $) 106)) (-2032 (((-108) $) 72)) (-3527 (($ $ (-588 (-872 |#1|))) 20) (($ $ (-588 (-588 |#1|))) 75) (($ (-588 (-872 |#1|))) 74) (((-588 (-872 |#1|)) $) 73)) (-2564 (((-108) $) 41)) (-2736 (($ $ (-872 |#1|)) 46) (($ $ (-588 |#1|)) 51) (($ $ (-708)) 53) (($ (-872 |#1|)) 47) (((-872 |#1|) $) 45)) (-3345 (((-2 (|:| -3398 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708))) $) 104)) (-1625 (((-708) $) 26)) (-2397 (((-708) $) 25)) (-3756 (($ $ (-708) (-872 |#1|)) 39)) (-2913 (((-108) $) 82)) (-2072 (($ $ (-588 (-588 (-872 |#1|))) (-588 (-156)) (-156)) 89) (($ $ (-588 (-588 (-588 |#1|))) (-588 (-156)) (-156)) 91) (($ $ (-588 (-588 (-872 |#1|))) (-108) (-108)) 85) (($ $ (-588 (-588 (-588 |#1|))) (-108) (-108)) 93) (($ (-588 (-588 (-872 |#1|)))) 86) (($ (-588 (-588 (-872 |#1|))) (-108) (-108)) 87) (((-588 (-588 (-872 |#1|))) $) 84)) (-2160 (($ (-588 $)) 28) (($ $ $) 29)) (-3186 (((-588 (-156)) $) 102)) (-4047 (((-588 (-872 |#1|)) $) 97)) (-3062 (((-588 (-588 (-156))) $) 101)) (-3870 (((-588 (-588 (-588 (-872 |#1|)))) $) NIL)) (-3491 (((-588 (-588 (-588 (-708)))) $) 99)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2303 (((-708) $ (-588 (-872 |#1|))) 37)) (-3258 (((-108) $) 54)) (-2616 (($ $ (-588 (-872 |#1|))) 56) (($ $ (-588 (-588 |#1|))) 62) (($ (-588 (-872 |#1|))) 57) (((-588 (-872 |#1|)) $) 55)) (-2788 (($) 23) (($ (-1074 3 |#1|)) 24)) (-2404 (($ $) 35)) (-2843 (((-588 $) $) 34)) (-3097 (($ (-588 $)) 31)) (-3844 (((-588 $) $) 33)) (-2190 (((-792) $) 110)) (-1775 (((-108) $) 64)) (-3324 (($ $ (-588 (-872 |#1|))) 66) (($ $ (-588 (-588 |#1|))) 69) (($ (-588 (-872 |#1|))) 67) (((-588 (-872 |#1|)) $) 65)) (-2523 (($ $) 105)) (-1531 (((-108) $ $) NIL)))
+(((-1045 |#1|) (-1046 |#1|) (-971)) (T -1045))
+NIL
+(-1046 |#1|)
+((-1416 (((-108) $ $) 7)) (-3974 (((-1074 3 |#1|) $) 13)) (-2032 (((-108) $) 29)) (-3527 (($ $ (-588 (-872 |#1|))) 33) (($ $ (-588 (-588 |#1|))) 32) (($ (-588 (-872 |#1|))) 31) (((-588 (-872 |#1|)) $) 30)) (-2564 (((-108) $) 44)) (-2736 (($ $ (-872 |#1|)) 49) (($ $ (-588 |#1|)) 48) (($ $ (-708)) 47) (($ (-872 |#1|)) 46) (((-872 |#1|) $) 45)) (-3345 (((-2 (|:| -3398 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708))) $) 15)) (-1625 (((-708) $) 58)) (-2397 (((-708) $) 59)) (-3756 (($ $ (-708) (-872 |#1|)) 50)) (-2913 (((-108) $) 21)) (-2072 (($ $ (-588 (-588 (-872 |#1|))) (-588 (-156)) (-156)) 28) (($ $ (-588 (-588 (-588 |#1|))) (-588 (-156)) (-156)) 27) (($ $ (-588 (-588 (-872 |#1|))) (-108) (-108)) 26) (($ $ (-588 (-588 (-588 |#1|))) (-108) (-108)) 25) (($ (-588 (-588 (-872 |#1|)))) 24) (($ (-588 (-588 (-872 |#1|))) (-108) (-108)) 23) (((-588 (-588 (-872 |#1|))) $) 22)) (-2160 (($ (-588 $)) 57) (($ $ $) 56)) (-3186 (((-588 (-156)) $) 16)) (-4047 (((-588 (-872 |#1|)) $) 20)) (-3062 (((-588 (-588 (-156))) $) 17)) (-3870 (((-588 (-588 (-588 (-872 |#1|)))) $) 18)) (-3491 (((-588 (-588 (-588 (-708)))) $) 19)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2303 (((-708) $ (-588 (-872 |#1|))) 51)) (-3258 (((-108) $) 39)) (-2616 (($ $ (-588 (-872 |#1|))) 43) (($ $ (-588 (-588 |#1|))) 42) (($ (-588 (-872 |#1|))) 41) (((-588 (-872 |#1|)) $) 40)) (-2788 (($) 61) (($ (-1074 3 |#1|)) 60)) (-2404 (($ $) 52)) (-2843 (((-588 $) $) 53)) (-3097 (($ (-588 $)) 55)) (-3844 (((-588 $) $) 54)) (-2190 (((-792) $) 11)) (-1775 (((-108) $) 34)) (-3324 (($ $ (-588 (-872 |#1|))) 38) (($ $ (-588 (-588 |#1|))) 37) (($ (-588 (-872 |#1|))) 36) (((-588 (-872 |#1|)) $) 35)) (-2523 (($ $) 14)) (-1531 (((-108) $ $) 6)))
+(((-1046 |#1|) (-1197) (-971)) (T -1046))
+((-2190 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-792)))) (-2788 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-2788 (*1 *1 *2) (-12 (-5 *2 (-1074 3 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2160 (*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-3097 (*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3844 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)))) (-2843 (*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-2303 (*1 *2 *1 *3) (-12 (-5 *3 (-588 (-872 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-971)) (-5 *2 (-708)))) (-3756 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-872 *4)) (-4 *1 (-1046 *4)) (-4 *4 (-971)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2736 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-872 *3)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-2616 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2616 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-2616 (*1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-2072 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-588 (-872 *5)))) (-5 *3 (-588 (-156))) (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971)))) (-2072 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-588 (-156))) (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971)))) (-2072 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) (-4 *1 (-1046 *4)) (-4 *4 (-971)))) (-2072 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-108)) (-4 *1 (-1046 *4)) (-4 *4 (-971)))) (-2072 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 *3)))) (-4 *3 (-971)) (-4 *1 (-1046 *3)))) (-2072 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) (-4 *4 (-971)) (-4 *1 (-1046 *4)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-872 *3)))))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))) (-4047 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-588 (-708))))))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-588 (-872 *3))))))) (-3062 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-156)))))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-156))))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -3398 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708)))))) (-2523 (*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-1074 3 *3)))))
+(-13 (-1014) (-10 -8 (-15 -2788 ($)) (-15 -2788 ($ (-1074 3 |t#1|))) (-15 -2397 ((-708) $)) (-15 -1625 ((-708) $)) (-15 -2160 ($ (-588 $))) (-15 -2160 ($ $ $)) (-15 -3097 ($ (-588 $))) (-15 -3844 ((-588 $) $)) (-15 -2843 ((-588 $) $)) (-15 -2404 ($ $)) (-15 -2303 ((-708) $ (-588 (-872 |t#1|)))) (-15 -3756 ($ $ (-708) (-872 |t#1|))) (-15 -2736 ($ $ (-872 |t#1|))) (-15 -2736 ($ $ (-588 |t#1|))) (-15 -2736 ($ $ (-708))) (-15 -2736 ($ (-872 |t#1|))) (-15 -2736 ((-872 |t#1|) $)) (-15 -2564 ((-108) $)) (-15 -2616 ($ $ (-588 (-872 |t#1|)))) (-15 -2616 ($ $ (-588 (-588 |t#1|)))) (-15 -2616 ($ (-588 (-872 |t#1|)))) (-15 -2616 ((-588 (-872 |t#1|)) $)) (-15 -3258 ((-108) $)) (-15 -3324 ($ $ (-588 (-872 |t#1|)))) (-15 -3324 ($ $ (-588 (-588 |t#1|)))) (-15 -3324 ($ (-588 (-872 |t#1|)))) (-15 -3324 ((-588 (-872 |t#1|)) $)) (-15 -1775 ((-108) $)) (-15 -3527 ($ $ (-588 (-872 |t#1|)))) (-15 -3527 ($ $ (-588 (-588 |t#1|)))) (-15 -3527 ($ (-588 (-872 |t#1|)))) (-15 -3527 ((-588 (-872 |t#1|)) $)) (-15 -2032 ((-108) $)) (-15 -2072 ($ $ (-588 (-588 (-872 |t#1|))) (-588 (-156)) (-156))) (-15 -2072 ($ $ (-588 (-588 (-588 |t#1|))) (-588 (-156)) (-156))) (-15 -2072 ($ $ (-588 (-588 (-872 |t#1|))) (-108) (-108))) (-15 -2072 ($ $ (-588 (-588 (-588 |t#1|))) (-108) (-108))) (-15 -2072 ($ (-588 (-588 (-872 |t#1|))))) (-15 -2072 ($ (-588 (-588 (-872 |t#1|))) (-108) (-108))) (-15 -2072 ((-588 (-588 (-872 |t#1|))) $)) (-15 -2913 ((-108) $)) (-15 -4047 ((-588 (-872 |t#1|)) $)) (-15 -3491 ((-588 (-588 (-588 (-708)))) $)) (-15 -3870 ((-588 (-588 (-588 (-872 |t#1|)))) $)) (-15 -3062 ((-588 (-588 (-156))) $)) (-15 -3186 ((-588 (-156)) $)) (-15 -3345 ((-2 (|:| -3398 (-708)) (|:| |curves| (-708)) (|:| |polygons| (-708)) (|:| |constructs| (-708))) $)) (-15 -2523 ($ $)) (-15 -3974 ((-1074 3 |t#1|) $)) (-15 -2190 ((-792) $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-2580 (((-588 (-1090)) (-1068)) 8)))
+(((-1047) (-10 -7 (-15 -2580 ((-588 (-1090)) (-1068))))) (T -1047))
+((-2580 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-1047)))))
+(-10 -7 (-15 -2580 ((-588 (-1090)) (-1068))))
+((-3651 (((-1171) (-588 (-792))) 23) (((-1171) (-792)) 22)) (-4189 (((-1171) (-588 (-792))) 21) (((-1171) (-792)) 20)) (-2009 (((-1171) (-588 (-792))) 19) (((-1171) (-792)) 11) (((-1171) (-1068) (-792)) 17)))
+(((-1048) (-10 -7 (-15 -2009 ((-1171) (-1068) (-792))) (-15 -2009 ((-1171) (-792))) (-15 -4189 ((-1171) (-792))) (-15 -3651 ((-1171) (-792))) (-15 -2009 ((-1171) (-588 (-792)))) (-15 -4189 ((-1171) (-588 (-792)))) (-15 -3651 ((-1171) (-588 (-792)))))) (T -1048))
+((-3651 (*1 *2 *3) (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048)))))
+(-10 -7 (-15 -2009 ((-1171) (-1068) (-792))) (-15 -2009 ((-1171) (-792))) (-15 -4189 ((-1171) (-792))) (-15 -3651 ((-1171) (-792))) (-15 -2009 ((-1171) (-588 (-792)))) (-15 -4189 ((-1171) (-588 (-792)))) (-15 -3651 ((-1171) (-588 (-792)))))
+((-1967 (($ $ $) 10)) (-3236 (($ $) 9)) (-1829 (($ $ $) 13)) (-2709 (($ $ $) 15)) (-2477 (($ $ $) 12)) (-4205 (($ $ $) 14)) (-1601 (($ $) 17)) (-2607 (($ $) 16)) (-2241 (($ $) 6)) (-2018 (($ $ $) 11) (($ $) 7)) (-2627 (($ $ $) 8)))
+(((-1049) (-1197)) (T -1049))
+((-1601 (*1 *1 *1) (-4 *1 (-1049))) (-2607 (*1 *1 *1) (-4 *1 (-1049))) (-2709 (*1 *1 *1 *1) (-4 *1 (-1049))) (-4205 (*1 *1 *1 *1) (-4 *1 (-1049))) (-1829 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2477 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2018 (*1 *1 *1 *1) (-4 *1 (-1049))) (-1967 (*1 *1 *1 *1) (-4 *1 (-1049))) (-3236 (*1 *1 *1) (-4 *1 (-1049))) (-2627 (*1 *1 *1 *1) (-4 *1 (-1049))) (-2018 (*1 *1 *1) (-4 *1 (-1049))) (-2241 (*1 *1 *1) (-4 *1 (-1049))))
+(-13 (-10 -8 (-15 -2241 ($ $)) (-15 -2018 ($ $)) (-15 -2627 ($ $ $)) (-15 -3236 ($ $)) (-15 -1967 ($ $ $)) (-15 -2018 ($ $ $)) (-15 -2477 ($ $ $)) (-15 -1829 ($ $ $)) (-15 -4205 ($ $ $)) (-15 -2709 ($ $ $)) (-15 -2607 ($ $)) (-15 -1601 ($ $))))
+((-1416 (((-108) $ $) 41)) (-3435 ((|#1| $) 15)) (-3845 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-2831 (((-108) $) 17)) (-3203 (($ $ |#1|) 28)) (-2413 (($ $ (-108)) 30)) (-3006 (($ $) 31)) (-3796 (($ $ |#2|) 29)) (-2385 (((-1068) $) NIL)) (-1700 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-4151 (((-1032) $) NIL)) (-3985 (((-108) $) 14)) (-3775 (($) 10)) (-2404 (($ $) 27)) (-2201 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1886 |#2|))) 21) (((-588 $) (-588 (-2 (|:| |val| |#1|) (|:| -1886 |#2|)))) 24) (((-588 $) |#1| (-588 |#2|)) 26)) (-1667 ((|#2| $) 16)) (-2190 (((-792) $) 50)) (-1531 (((-108) $ $) 39)))
+(((-1050 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3775 ($)) (-15 -3985 ((-108) $)) (-15 -3435 (|#1| $)) (-15 -1667 (|#2| $)) (-15 -2831 ((-108) $)) (-15 -2201 ($ |#1| |#2| (-108))) (-15 -2201 ($ |#1| |#2|)) (-15 -2201 ($ (-2 (|:| |val| |#1|) (|:| -1886 |#2|)))) (-15 -2201 ((-588 $) (-588 (-2 (|:| |val| |#1|) (|:| -1886 |#2|))))) (-15 -2201 ((-588 $) |#1| (-588 |#2|))) (-15 -2404 ($ $)) (-15 -3203 ($ $ |#1|)) (-15 -3796 ($ $ |#2|)) (-15 -2413 ($ $ (-108))) (-15 -3006 ($ $)) (-15 -1700 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3845 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1014) (-33)) (-13 (-1014) (-33))) (T -1050))
+((-3775 (*1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-3435 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *2 *3)) (-4 *3 (-13 (-1014) (-33))))) (-1667 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *3 *2)) (-4 *3 (-13 (-1014) (-33))))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1886 *4))) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1050 *3 *4)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-588 (-2 (|:| |val| *4) (|:| -1886 *5)))) (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-588 (-1050 *4 *5))) (-5 *1 (-1050 *4 *5)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *4 (-588 *5)) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-588 (-1050 *3 *5))) (-5 *1 (-1050 *3 *5)) (-4 *3 (-13 (-1014) (-33))))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-3203 (*1 *1 *1 *2) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-3796 (*1 *1 *1 *2) (-12 (-5 *1 (-1050 *3 *2)) (-4 *3 (-13 (-1014) (-33))) (-4 *2 (-13 (-1014) (-33))))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-3006 (*1 *1 *1) (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-1700 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))) (-3845 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33))))))
+(-13 (-1014) (-10 -8 (-15 -3775 ($)) (-15 -3985 ((-108) $)) (-15 -3435 (|#1| $)) (-15 -1667 (|#2| $)) (-15 -2831 ((-108) $)) (-15 -2201 ($ |#1| |#2| (-108))) (-15 -2201 ($ |#1| |#2|)) (-15 -2201 ($ (-2 (|:| |val| |#1|) (|:| -1886 |#2|)))) (-15 -2201 ((-588 $) (-588 (-2 (|:| |val| |#1|) (|:| -1886 |#2|))))) (-15 -2201 ((-588 $) |#1| (-588 |#2|))) (-15 -2404 ($ $)) (-15 -3203 ($ $ |#1|)) (-15 -3796 ($ $ |#2|)) (-15 -2413 ($ $ (-108))) (-15 -3006 ($ $)) (-15 -1700 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3845 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
+((-1416 (((-108) $ $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-3435 (((-1050 |#1| |#2|) $) 25)) (-2266 (($ $) 76)) (-1964 (((-108) (-1050 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1747 (($ $ $ (-588 (-1050 |#1| |#2|))) 90) (($ $ $ (-588 (-1050 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-4141 (((-108) $ (-708)) NIL)) (-3628 (((-1050 |#1| |#2|) $ (-1050 |#1| |#2|)) 43 (|has| $ (-6 -4239)))) (-2379 (((-1050 |#1| |#2|) $ "value" (-1050 |#1| |#2|)) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-1737 (((-588 (-2 (|:| |val| |#1|) (|:| -1886 |#2|))) $) 80)) (-3859 (($ (-1050 |#1| |#2|) $) 39)) (-1423 (($ (-1050 |#1| |#2|) $) 31)) (-3837 (((-588 (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 51)) (-4208 (((-108) (-1050 |#1| |#2|) $) 82)) (-2030 (((-108) $ $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 (-1050 |#1| |#2|)) $) 55 (|has| $ (-6 -4238)))) (-2246 (((-108) (-1050 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-1050 |#1| |#2|) (-1014))))) (-3838 (($ (-1 (-1050 |#1| |#2|) (-1050 |#1| |#2|)) $) 47 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-1050 |#1| |#2|) (-1050 |#1| |#2|)) $) 46)) (-2720 (((-108) $ (-708)) NIL)) (-1279 (((-588 (-1050 |#1| |#2|)) $) 53)) (-1754 (((-108) $) 42)) (-2385 (((-1068) $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-4151 (((-1032) $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-3800 (((-3 $ "failed") $) 75)) (-3053 (((-108) (-1 (-108) (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-1050 |#1| |#2|)))) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014)))) (($ $ (-270 (-1050 |#1| |#2|))) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014)))) (($ $ (-1050 |#1| |#2|) (-1050 |#1| |#2|)) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014)))) (($ $ (-588 (-1050 |#1| |#2|)) (-588 (-1050 |#1| |#2|))) NIL (-12 (|has| (-1050 |#1| |#2|) (-285 (-1050 |#1| |#2|))) (|has| (-1050 |#1| |#2|) (-1014))))) (-1536 (((-108) $ $) 50)) (-3985 (((-108) $) 22)) (-3775 (($) 24)) (-2545 (((-1050 |#1| |#2|) $ "value") NIL)) (-2011 (((-522) $ $) NIL)) (-3042 (((-108) $) 44)) (-4168 (((-708) (-1 (-108) (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238))) (((-708) (-1050 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-1050 |#1| |#2|) (-1014))))) (-2404 (($ $) 49)) (-2201 (($ (-1050 |#1| |#2|)) 9) (($ |#1| |#2| (-588 $)) 12) (($ |#1| |#2| (-588 (-1050 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-588 |#2|)) 17)) (-4130 (((-588 |#2|) $) 81)) (-2190 (((-792) $) 73 (|has| (-1050 |#1| |#2|) (-562 (-792))))) (-1749 (((-588 $) $) 28)) (-2425 (((-108) $ $) NIL (|has| (-1050 |#1| |#2|) (-1014)))) (-3648 (((-108) (-1 (-108) (-1050 |#1| |#2|)) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 64 (|has| (-1050 |#1| |#2|) (-1014)))) (-3480 (((-708) $) 58 (|has| $ (-6 -4238)))))
+(((-1051 |#1| |#2|) (-13 (-936 (-1050 |#1| |#2|)) (-10 -8 (-6 -4239) (-6 -4238) (-15 -3800 ((-3 $ "failed") $)) (-15 -2266 ($ $)) (-15 -2201 ($ (-1050 |#1| |#2|))) (-15 -2201 ($ |#1| |#2| (-588 $))) (-15 -2201 ($ |#1| |#2| (-588 (-1050 |#1| |#2|)))) (-15 -2201 ($ |#1| |#2| |#1| (-588 |#2|))) (-15 -4130 ((-588 |#2|) $)) (-15 -1737 ((-588 (-2 (|:| |val| |#1|) (|:| -1886 |#2|))) $)) (-15 -4208 ((-108) (-1050 |#1| |#2|) $)) (-15 -1964 ((-108) (-1050 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1423 ($ (-1050 |#1| |#2|) $)) (-15 -3859 ($ (-1050 |#1| |#2|) $)) (-15 -1747 ($ $ $ (-588 (-1050 |#1| |#2|)))) (-15 -1747 ($ $ $ (-588 (-1050 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1014) (-33)) (-13 (-1014) (-33))) (T -1051))
+((-3800 (*1 *1 *1) (|partial| -12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2201 (*1 *1 *2) (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-588 (-1051 *2 *3))) (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))))) (-2201 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-588 (-1050 *2 *3))) (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33))) (-5 *1 (-1051 *2 *3)))) (-2201 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-588 *3)) (-4 *3 (-13 (-1014) (-33))) (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33))))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-588 *4)) (-5 *1 (-1051 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4)))) (-5 *1 (-1051 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))) (-4208 (*1 *2 *3 *1) (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1051 *4 *5)))) (-1964 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1050 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1051 *5 *6)))) (-1423 (*1 *1 *2 *1) (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-3859 (*1 *1 *2 *1) (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-1747 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-588 (-1050 *3 *4))) (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))) (-1747 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-1050 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33))) (-5 *1 (-1051 *4 *5)))))
+(-13 (-936 (-1050 |#1| |#2|)) (-10 -8 (-6 -4239) (-6 -4238) (-15 -3800 ((-3 $ "failed") $)) (-15 -2266 ($ $)) (-15 -2201 ($ (-1050 |#1| |#2|))) (-15 -2201 ($ |#1| |#2| (-588 $))) (-15 -2201 ($ |#1| |#2| (-588 (-1050 |#1| |#2|)))) (-15 -2201 ($ |#1| |#2| |#1| (-588 |#2|))) (-15 -4130 ((-588 |#2|) $)) (-15 -1737 ((-588 (-2 (|:| |val| |#1|) (|:| -1886 |#2|))) $)) (-15 -4208 ((-108) (-1050 |#1| |#2|) $)) (-15 -1964 ((-108) (-1050 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1423 ($ (-1050 |#1| |#2|) $)) (-15 -3859 ($ (-1050 |#1| |#2|) $)) (-15 -1747 ($ $ $ (-588 (-1050 |#1| |#2|)))) (-15 -1747 ($ $ $ (-588 (-1050 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2318 (($ $) NIL)) (-1865 ((|#2| $) NIL)) (-2727 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-2499 (($ (-628 |#2|)) 45)) (-2527 (((-108) $) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-3022 (($ |#2|) 9)) (-3175 (($) NIL T CONST)) (-2264 (($ $) 58 (|has| |#2| (-283)))) (-1860 (((-217 |#1| |#2|) $ (-522)) 31)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 |#2| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) ((|#2| $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) 72)) (-3166 (((-708) $) 60 (|has| |#2| (-514)))) (-3631 ((|#2| $ (-522) (-522)) NIL)) (-3837 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2782 (((-108) $) NIL)) (-3799 (((-708) $) 62 (|has| |#2| (-514)))) (-2064 (((-588 (-217 |#1| |#2|)) $) 66 (|has| |#2| (-514)))) (-1411 (((-708) $) NIL)) (-1422 (((-708) $) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-3081 ((|#2| $) 56 (|has| |#2| (-6 (-4240 "*"))))) (-2575 (((-522) $) NIL)) (-1885 (((-522) $) NIL)) (-3308 (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-3886 (((-522) $) NIL)) (-4132 (((-522) $) NIL)) (-1366 (($ (-588 (-588 |#2|))) 26)) (-3838 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3237 (((-588 (-588 |#2|)) $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-2147 (((-3 $ "failed") $) 69 (|has| |#2| (-338)))) (-4151 (((-1032) $) NIL)) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514)))) (-3053 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ (-522) (-522) |#2|) NIL) ((|#2| $ (-522) (-522)) NIL)) (-2157 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1708 ((|#2| $) NIL)) (-4077 (($ (-588 |#2|)) 40)) (-1767 (((-108) $) NIL)) (-3263 (((-217 |#1| |#2|) $) NIL)) (-3206 ((|#2| $) 54 (|has| |#2| (-6 (-4240 "*"))))) (-4168 (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2404 (($ $) NIL)) (-1431 (((-498) $) 81 (|has| |#2| (-563 (-498))))) (-3488 (((-217 |#1| |#2|) $ (-522)) 33)) (-2190 (((-792) $) 36) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#2| (-962 (-382 (-522))))) (($ |#2|) NIL) (((-628 |#2|) $) 42)) (-2323 (((-708)) 17)) (-3648 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1697 (((-108) $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 11 T CONST)) (-3577 (($) 14 T CONST)) (-2213 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-708)) NIL (|has| |#2| (-210))) (($ $) NIL (|has| |#2| (-210)))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) 52) (($ $ (-522)) 71 (|has| |#2| (-338)))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-217 |#1| |#2|) $ (-217 |#1| |#2|)) 48) (((-217 |#1| |#2|) (-217 |#1| |#2|) $) 50)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1052 |#1| |#2|) (-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-10 -8 (-15 -2318 ($ $)) (-15 -2499 ($ (-628 |#2|))) (-15 -2190 ((-628 |#2|) $)) (IF (|has| |#2| (-6 (-4240 "*"))) (-6 -4227) |%noBranch|) (IF (|has| |#2| (-6 (-4240 "*"))) (IF (|has| |#2| (-6 -4235)) (-6 -4235) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|))) (-708) (-971)) (T -1052))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-628 *4)) (-5 *1 (-1052 *3 *4)) (-14 *3 (-708)) (-4 *4 (-971)))) (-2318 (*1 *1 *1) (-12 (-5 *1 (-1052 *2 *3)) (-14 *2 (-708)) (-4 *3 (-971)))) (-2499 (*1 *1 *2) (-12 (-5 *2 (-628 *4)) (-4 *4 (-971)) (-5 *1 (-1052 *3 *4)) (-14 *3 (-708)))))
+(-13 (-1035 |#1| |#2| (-217 |#1| |#2|) (-217 |#1| |#2|)) (-562 (-628 |#2|)) (-10 -8 (-15 -2318 ($ $)) (-15 -2499 ($ (-628 |#2|))) (-15 -2190 ((-628 |#2|) $)) (IF (|has| |#2| (-6 (-4240 "*"))) (-6 -4227) |%noBranch|) (IF (|has| |#2| (-6 (-4240 "*"))) (IF (|has| |#2| (-6 -4235)) (-6 -4235) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-563 (-498))) (-6 (-563 (-498))) |%noBranch|)))
+((-2084 (($ $) 19)) (-3192 (($ $ (-132)) 10) (($ $ (-129)) 14)) (-3792 (((-108) $ $) 24)) (-2390 (($ $) 17)) (-2545 (((-132) $ (-522) (-132)) NIL) (((-132) $ (-522)) NIL) (($ $ (-1133 (-522))) NIL) (($ $ $) 29)) (-2190 (($ (-132)) 27) (((-792) $) NIL)))
+(((-1053 |#1|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -3192 (|#1| |#1| (-129))) (-15 -3192 (|#1| |#1| (-132))) (-15 -2190 (|#1| (-132))) (-15 -3792 ((-108) |#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -2545 ((-132) |#1| (-522))) (-15 -2545 ((-132) |#1| (-522) (-132)))) (-1054)) (T -1053))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -3192 (|#1| |#1| (-129))) (-15 -3192 (|#1| |#1| (-132))) (-15 -2190 (|#1| (-132))) (-15 -3792 ((-108) |#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -2545 ((-132) |#1| (-522))) (-15 -2545 ((-132) |#1| (-522) (-132))))
+((-1416 (((-108) $ $) 19 (|has| (-132) (-1014)))) (-3539 (($ $) 120)) (-2084 (($ $) 121)) (-3192 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-3768 (((-108) $ $) 118)) (-3744 (((-108) $ $ (-522)) 117)) (-2724 (((-588 $) $ (-132)) 110) (((-588 $) $ (-129)) 109)) (-4187 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-784)))) (-3537 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| (-132) (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-784)))) (-4141 (((-108) $ (-708)) 8)) (-2379 (((-132) $ (-522) (-132)) 52 (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2850 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-3509 (($ $) 90 (|has| $ (-6 -4239)))) (-1862 (($ $) 100)) (-2516 (($ $ (-1133 (-522)) $) 114)) (-2333 (($ $) 78 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ (-132) $) 77 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4238)))) (-3864 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4238)))) (-3854 (((-132) $ (-522) (-132)) 53 (|has| $ (-6 -4239)))) (-3631 (((-132) $ (-522)) 51)) (-3792 (((-108) $ $) 119)) (-3238 (((-522) (-1 (-108) (-132)) $) 97) (((-522) (-132) $) 96 (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) 95 (|has| (-132) (-1014))) (((-522) $ $ (-522)) 113) (((-522) (-129) $ (-522)) 112)) (-3837 (((-588 (-132)) $) 30 (|has| $ (-6 -4238)))) (-1811 (($ (-708) (-132)) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 87 (|has| (-132) (-784)))) (-2160 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-784)))) (-3308 (((-588 (-132)) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 86 (|has| (-132) (-784)))) (-1455 (((-108) $ $ (-132)) 115)) (-4148 (((-708) $ $ (-132)) 116)) (-3838 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1909 (($ $) 122)) (-2390 (($ $) 123)) (-2720 (((-108) $ (-708)) 10)) (-2862 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-2385 (((-1068) $) 22 (|has| (-132) (-1014)))) (-1661 (($ (-132) $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| (-132) (-1014)))) (-2294 (((-132) $) 42 (|has| (-522) (-784)))) (-1414 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-2602 (($ $ (-132)) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-132)))) 26 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) 25 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) 23 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1525 (((-588 (-132)) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 (((-132) $ (-522) (-132)) 50) (((-132) $ (-522)) 49) (($ $ (-1133 (-522))) 63) (($ $ $) 102)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4168 (((-708) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4238))) (((-708) (-132) $) 28 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| (-132) (-563 (-498))))) (-2201 (($ (-588 (-132))) 70)) (-4165 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (($ (-132)) 111) (((-792) $) 18 (|has| (-132) (-562 (-792))))) (-3648 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 84 (|has| (-132) (-784)))) (-1558 (((-108) $ $) 83 (|has| (-132) (-784)))) (-1531 (((-108) $ $) 20 (|has| (-132) (-1014)))) (-1566 (((-108) $ $) 85 (|has| (-132) (-784)))) (-1549 (((-108) $ $) 82 (|has| (-132) (-784)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1054) (-1197)) (T -1054))
+((-2390 (*1 *1 *1) (-4 *1 (-1054))) (-1909 (*1 *1 *1) (-4 *1 (-1054))) (-2084 (*1 *1 *1) (-4 *1 (-1054))) (-3539 (*1 *1 *1) (-4 *1 (-1054))) (-3792 (*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108)))) (-3744 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-522)) (-5 *2 (-108)))) (-4148 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-708)))) (-1455 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-108)))) (-2516 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-1133 (-522))))) (-3238 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)))) (-3238 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)) (-5 *3 (-129)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1054)))) (-2724 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-588 *1)) (-4 *1 (-1054)))) (-2724 (*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-588 *1)) (-4 *1 (-1054)))) (-3192 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))) (-3192 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) (-2850 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))) (-2850 (*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129)))) (-2545 (*1 *1 *1 *1) (-4 *1 (-1054))))
+(-13 (-19 (-132)) (-10 -8 (-15 -2390 ($ $)) (-15 -1909 ($ $)) (-15 -2084 ($ $)) (-15 -3539 ($ $)) (-15 -3792 ((-108) $ $)) (-15 -3768 ((-108) $ $)) (-15 -3744 ((-108) $ $ (-522))) (-15 -4148 ((-708) $ $ (-132))) (-15 -1455 ((-108) $ $ (-132))) (-15 -2516 ($ $ (-1133 (-522)) $)) (-15 -3238 ((-522) $ $ (-522))) (-15 -3238 ((-522) (-129) $ (-522))) (-15 -2190 ($ (-132))) (-15 -2724 ((-588 $) $ (-132))) (-15 -2724 ((-588 $) $ (-129))) (-15 -3192 ($ $ (-132))) (-15 -3192 ($ $ (-129))) (-15 -2862 ($ $ (-132))) (-15 -2862 ($ $ (-129))) (-15 -2850 ($ $ (-132))) (-15 -2850 ($ $ (-129))) (-15 -2545 ($ $ $))))
+(((-33) . T) ((-97) -3708 (|has| (-132) (-1014)) (|has| (-132) (-784))) ((-562 (-792)) -3708 (|has| (-132) (-1014)) (|has| (-132) (-784)) (|has| (-132) (-562 (-792)))) ((-139 #0=(-132)) . T) ((-563 (-498)) |has| (-132) (-563 (-498))) ((-262 #1=(-522) #0#) . T) ((-264 #1# #0#) . T) ((-285 #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-348 #0#) . T) ((-461 #0#) . T) ((-555 #1# #0#) . T) ((-483 #0# #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-593 #0#) . T) ((-19 #0#) . T) ((-784) |has| (-132) (-784)) ((-1014) -3708 (|has| (-132) (-1014)) (|has| (-132) (-784))) ((-1120) . T))
+((-1732 (((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-708)) 94)) (-3499 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708)) 53)) (-1906 (((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-708)) 85)) (-1349 (((-708) (-588 |#4|) (-588 |#5|)) 27)) (-2268 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708)) 55) (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708) (-108)) 57)) (-3496 (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108)) 77)) (-1431 (((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) 80)) (-2971 (((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|) 52)) (-1232 (((-708) (-588 |#4|) (-588 |#5|)) 19)))
+(((-1055 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1232 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -1349 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -2971 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1732 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-708))) (-15 -1431 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -1906 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-708)))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|) (-1023 |#1| |#2| |#3| |#4|)) (T -1055))
+((-1906 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9)))) (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8))) (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-1023 *4 *5 *6 *7)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068)) (-5 *1 (-1055 *4 *5 *6 *7 *8)))) (-1732 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-588 *11)) (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1886 *11)))))) (-5 *6 (-708)) (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1886 *11)))) (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9)) (-4 *11 (-1023 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-5 *1 (-1055 *7 *8 *9 *10 *11)))) (-3496 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-3496 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-2268 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))) (-2268 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3)))) (-2268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730)) (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-1055 *7 *8 *9 *3 *4)) (-4 *4 (-1023 *7 *8 *9 *3)))) (-3499 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))) (-3499 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *3 (-985 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3)))) (-2971 (*1 *2 *3 *4) (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-588 *4)) (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4)))))) (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1232 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -1349 ((-708) (-588 |#4|) (-588 |#5|))) (-15 -2971 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -3499 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708) (-108))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5| (-708))) (-15 -2268 ((-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) |#4| |#5|)) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108))) (-15 -3496 ((-588 |#5|) (-588 |#4|) (-588 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -1732 ((-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-588 |#4|) (-588 |#5|) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-2 (|:| |done| (-588 |#5|)) (|:| |todo| (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))))) (-708))) (-15 -1431 ((-1068) (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|)))) (-15 -1906 ((-1171) (-588 (-2 (|:| |val| (-588 |#4|)) (|:| -1886 |#5|))) (-708))))
+((-1416 (((-108) $ $) NIL)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) NIL)) (-4125 (((-588 $) (-588 |#4|)) 110) (((-588 $) (-588 |#4|) (-108)) 111) (((-588 $) (-588 |#4|) (-108) (-108)) 109) (((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108)) 112)) (-4090 (((-588 |#3|) $) NIL)) (-2690 (((-108) $) NIL)) (-4140 (((-108) $) NIL (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3607 ((|#4| |#4| $) NIL)) (-3119 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| $) 84)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 62)) (-3175 (($) NIL T CONST)) (-3639 (((-108) $) 26 (|has| |#1| (-514)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3538 (((-108) $) NIL (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3050 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1484 (($ (-588 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 39)) (-2806 ((|#4| |#4| $) 65)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) NIL)) (-2208 (((-108) |#4| $) NIL)) (-3129 (((-108) |#4| $) NIL)) (-2198 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2352 (((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108)) 124)) (-3837 (((-588 |#4|) $) 16 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1521 ((|#3| $) 33)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#4|) $) 17 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-3838 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 21)) (-2458 (((-588 |#3|) $) NIL)) (-1606 (((-108) |#3| $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-3959 (((-3 |#4| (-588 $)) |#4| |#4| $) NIL)) (-1331 (((-588 (-2 (|:| |val| |#4|) (|:| -1886 $))) |#4| |#4| $) 103)) (-1442 (((-3 |#4| "failed") $) 37)) (-2893 (((-588 $) |#4| $) 88)) (-4190 (((-3 (-108) (-588 $)) |#4| $) NIL)) (-3878 (((-588 (-2 (|:| |val| (-108)) (|:| -1886 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-2416 (((-588 $) |#4| $) 107) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 108) (((-588 $) |#4| (-588 $)) NIL)) (-1610 (((-588 $) (-588 |#4|) (-108) (-108) (-108)) 119)) (-2135 (($ |#4| $) 75) (($ (-588 |#4|) $) 76) (((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2242 (((-588 |#4|) $) NIL)) (-3409 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1451 ((|#4| |#4| $) NIL)) (-2123 (((-108) $ $) NIL)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2680 ((|#4| |#4| $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-3 |#4| "failed") $) 35)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3307 (((-3 $ "failed") $ |#4|) 48)) (-3719 (($ $ |#4|) NIL) (((-588 $) |#4| $) 90) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) 86)) (-3053 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 15)) (-3775 (($) 13)) (-2793 (((-708) $) NIL)) (-4168 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) 12)) (-1431 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 20)) (-2020 (($ $ |#3|) 42)) (-3606 (($ $ |#3|) 44)) (-3968 (($ $) NIL)) (-2463 (($ $ |#3|) NIL)) (-2190 (((-792) $) 31) (((-588 |#4|) $) 40)) (-1974 (((-708) $) NIL (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-2188 (((-588 $) |#4| $) 54) (((-588 $) |#4| (-588 $)) NIL) (((-588 $) (-588 |#4|) $) NIL) (((-588 $) (-588 |#4|) (-588 $)) NIL)) (-3648 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) NIL)) (-3021 (((-108) |#4| $) NIL)) (-2351 (((-108) |#3| $) 61)) (-1531 (((-108) $ $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1056 |#1| |#2| |#3| |#4|) (-13 (-1023 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2135 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -1610 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -2352 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108))))) (-426) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -1056))
+((-2135 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *3))) (-5 *1 (-1056 *5 *6 *7 *3)) (-4 *3 (-985 *5 *6 *7)))) (-4125 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) (-4125 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) (-1610 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))) (-2352 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-588 *8)) (|:| |towers| (-588 (-1056 *5 *6 *7 *8))))) (-5 *1 (-1056 *5 *6 *7 *8)) (-5 *3 (-588 *8)))))
+(-13 (-1023 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2135 ((-588 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108))) (-15 -4125 ((-588 $) (-588 |#4|) (-108) (-108) (-108) (-108))) (-15 -1610 ((-588 $) (-588 |#4|) (-108) (-108) (-108))) (-15 -2352 ((-2 (|:| |val| (-588 |#4|)) (|:| |towers| (-588 $))) (-588 |#4|) (-108) (-108)))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1355 ((|#1| $) 34)) (-3978 (($ (-588 |#1|)) 39)) (-4141 (((-108) $ (-708)) NIL)) (-3175 (($) NIL T CONST)) (-3218 ((|#1| |#1| $) 36)) (-2327 ((|#1| $) 32)) (-3837 (((-588 |#1|) $) 18 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 22)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-2116 ((|#1| $) 35)) (-4095 (($ |#1| $) 37)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-4087 ((|#1| $) 33)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 31)) (-3775 (($) 38)) (-1253 (((-708) $) 29)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 27)) (-2190 (((-792) $) 14 (|has| |#1| (-562 (-792))))) (-2795 (($ (-588 |#1|)) NIL)) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 17 (|has| |#1| (-1014)))) (-3480 (((-708) $) 30 (|has| $ (-6 -4238)))))
+(((-1057 |#1|) (-13 (-1033 |#1|) (-10 -8 (-15 -3978 ($ (-588 |#1|))))) (-1120)) (T -1057))
+((-3978 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1057 *3)))))
+(-13 (-1033 |#1|) (-10 -8 (-15 -3978 ($ (-588 |#1|)))))
+((-2379 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1133 (-522)) |#2|) 44) ((|#2| $ (-522) |#2|) 41)) (-3069 (((-108) $) 12)) (-3838 (($ (-1 |#2| |#2|) $) 39)) (-2294 ((|#2| $) NIL) (($ $ (-708)) 17)) (-2602 (($ $ |#2|) 40)) (-2855 (((-108) $) 11)) (-2545 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1133 (-522))) 31) ((|#2| $ (-522)) 23) ((|#2| $ (-522) |#2|) NIL)) (-2630 (($ $ $) 47) (($ $ |#2|) NIL)) (-4165 (($ $ $) 33) (($ |#2| $) NIL) (($ (-588 $)) 36) (($ $ |#2|) NIL)))
+(((-1058 |#1| |#2|) (-10 -8 (-15 -3069 ((-108) |#1|)) (-15 -2855 ((-108) |#1|)) (-15 -2379 (|#2| |#1| (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522))) (-15 -2602 (|#1| |#1| |#2|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -4165 (|#1| (-588 |#1|))) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -2379 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -2379 (|#2| |#1| "last" |#2|)) (-15 -2379 (|#1| |#1| "rest" |#1|)) (-15 -2379 (|#2| |#1| "first" |#2|)) (-15 -2630 (|#1| |#1| |#2|)) (-15 -2630 (|#1| |#1| |#1|)) (-15 -2545 (|#2| |#1| "last")) (-15 -2545 (|#1| |#1| "rest")) (-15 -2294 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "first")) (-15 -2294 (|#2| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#1|)) (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -2545 (|#2| |#1| "value")) (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|))) (-1059 |#2|) (-1120)) (T -1058))
+NIL
+(-10 -8 (-15 -3069 ((-108) |#1|)) (-15 -2855 ((-108) |#1|)) (-15 -2379 (|#2| |#1| (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522) |#2|)) (-15 -2545 (|#2| |#1| (-522))) (-15 -2602 (|#1| |#1| |#2|)) (-15 -4165 (|#1| |#1| |#2|)) (-15 -4165 (|#1| (-588 |#1|))) (-15 -2545 (|#1| |#1| (-1133 (-522)))) (-15 -2379 (|#2| |#1| (-1133 (-522)) |#2|)) (-15 -2379 (|#2| |#1| "last" |#2|)) (-15 -2379 (|#1| |#1| "rest" |#1|)) (-15 -2379 (|#2| |#1| "first" |#2|)) (-15 -2630 (|#1| |#1| |#2|)) (-15 -2630 (|#1| |#1| |#1|)) (-15 -2545 (|#2| |#1| "last")) (-15 -2545 (|#1| |#1| "rest")) (-15 -2294 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "first")) (-15 -2294 (|#2| |#1|)) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#1|)) (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -2545 (|#2| |#1| "value")) (-15 -3838 (|#1| (-1 |#2| |#2|) |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-2093 ((|#1| $) 65)) (-3835 (($ $) 67)) (-2679 (((-1171) $ (-522) (-522)) 97 (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1243 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 117 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 86 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4238)))) (-2081 ((|#1| $) 66)) (-3175 (($) 7 T CONST)) (-2306 (($ $) 73) (($ $ (-708)) 71)) (-2333 (($ $) 99 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4238))) (($ |#1| $) 100 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3854 ((|#1| $ (-522) |#1|) 85 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 87)) (-3069 (((-108) $) 83)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-1811 (($ (-708) |#1|) 108)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 95 (|has| (-522) (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 94 (|has| (-522) (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-1661 (($ $ $ (-522)) 116) (($ |#1| $ (-522)) 115)) (-3604 (((-588 (-522)) $) 92)) (-1405 (((-108) (-522) $) 91)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 76) (($ $ (-708)) 74)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2602 (($ $ |#1|) 96 (|has| $ (-6 -4239)))) (-2855 (((-108) $) 84)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 90)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1133 (-522))) 112) ((|#1| $ (-522)) 89) ((|#1| $ (-522) |#1|) 88)) (-2011 (((-522) $ $) 44)) (-3696 (($ $ (-1133 (-522))) 114) (($ $ (-522)) 113)) (-3042 (((-108) $) 46)) (-3107 (($ $) 62)) (-2646 (($ $) 59 (|has| $ (-6 -4239)))) (-2393 (((-708) $) 63)) (-2122 (($ $) 64)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-1431 (((-498) $) 98 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 107)) (-2630 (($ $ $) 61 (|has| $ (-6 -4239))) (($ $ |#1|) 60 (|has| $ (-6 -4239)))) (-4165 (($ $ $) 78) (($ |#1| $) 77) (($ (-588 $)) 110) (($ $ |#1|) 109)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1059 |#1|) (-1197) (-1120)) (T -1059))
+((-2855 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))))
+(-13 (-1154 |t#1|) (-593 |t#1|) (-10 -8 (-15 -2855 ((-108) $)) (-15 -3069 ((-108) $))))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T) ((-1154 |#1|) . T))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#2| $ |#1| |#2|) NIL)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2966 (((-588 |#1|) $) NIL)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3604 (((-588 |#1|) $) NIL)) (-1405 (((-108) |#1| $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1060 |#1| |#2| |#3|) (-1097 |#1| |#2|) (-1014) (-1014) |#2|) (T -1060))
+NIL
+(-1097 |#1| |#2|)
+((-1416 (((-108) $ $) 7)) (-3004 (((-3 $ "failed") $) 13)) (-2385 (((-1068) $) 9)) (-3802 (($) 14 T CONST)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11)) (-1531 (((-108) $ $) 6)))
+(((-1061) (-1197)) (T -1061))
+((-3802 (*1 *1) (-4 *1 (-1061))) (-3004 (*1 *1 *1) (|partial| -4 *1 (-1061))))
+(-13 (-1014) (-10 -8 (-15 -3802 ($) -2677) (-15 -3004 ((-3 $ "failed") $))))
+(((-97) . T) ((-562 (-792)) . T) ((-1014) . T))
+((-3486 (((-1066 |#1|) (-1066 |#1|)) 17)) (-2703 (((-1066 |#1|) (-1066 |#1|)) 13)) (-2927 (((-1066 |#1|) (-1066 |#1|) (-522) (-522)) 20)) (-2312 (((-1066 |#1|) (-1066 |#1|)) 15)))
+(((-1062 |#1|) (-10 -7 (-15 -2703 ((-1066 |#1|) (-1066 |#1|))) (-15 -2312 ((-1066 |#1|) (-1066 |#1|))) (-15 -3486 ((-1066 |#1|) (-1066 |#1|))) (-15 -2927 ((-1066 |#1|) (-1066 |#1|) (-522) (-522)))) (-13 (-514) (-135))) (T -1062))
+((-2927 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-1062 *4)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1062 *3)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1062 *3)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1062 *3)))))
+(-10 -7 (-15 -2703 ((-1066 |#1|) (-1066 |#1|))) (-15 -2312 ((-1066 |#1|) (-1066 |#1|))) (-15 -3486 ((-1066 |#1|) (-1066 |#1|))) (-15 -2927 ((-1066 |#1|) (-1066 |#1|) (-522) (-522))))
+((-4165 (((-1066 |#1|) (-1066 (-1066 |#1|))) 15)))
+(((-1063 |#1|) (-10 -7 (-15 -4165 ((-1066 |#1|) (-1066 (-1066 |#1|))))) (-1120)) (T -1063))
+((-4165 (*1 *2 *3) (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1063 *4)) (-4 *4 (-1120)))))
+(-10 -7 (-15 -4165 ((-1066 |#1|) (-1066 (-1066 |#1|)))))
+((-3690 (((-1066 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)) 25)) (-3864 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)) 26)) (-1391 (((-1066 |#2|) (-1 |#2| |#1|) (-1066 |#1|)) 16)))
+(((-1064 |#1| |#2|) (-10 -7 (-15 -1391 ((-1066 |#2|) (-1 |#2| |#1|) (-1066 |#1|))) (-15 -3690 ((-1066 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|))) (-15 -3864 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|)))) (-1120) (-1120)) (T -1064))
+((-3864 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1066 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-1064 *5 *2)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1066 *6)) (-4 *6 (-1120)) (-4 *3 (-1120)) (-5 *2 (-1066 *3)) (-5 *1 (-1064 *6 *3)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1066 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1066 *6)) (-5 *1 (-1064 *5 *6)))))
+(-10 -7 (-15 -1391 ((-1066 |#2|) (-1 |#2| |#1|) (-1066 |#1|))) (-15 -3690 ((-1066 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|))) (-15 -3864 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1066 |#1|))))
+((-1391 (((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-1066 |#2|)) 21)))
+(((-1065 |#1| |#2| |#3|) (-10 -7 (-15 -1391 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-1066 |#2|)))) (-1120) (-1120) (-1120)) (T -1065))
+((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-1066 *7)) (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8)) (-5 *1 (-1065 *6 *7 *8)))))
+(-10 -7 (-15 -1391 ((-1066 |#3|) (-1 |#3| |#1| |#2|) (-1066 |#1|) (-1066 |#2|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) NIL)) (-2093 ((|#1| $) NIL)) (-3835 (($ $) 49)) (-2679 (((-1171) $ (-522) (-522)) 74 (|has| $ (-6 -4239)))) (-3487 (($ $ (-522)) 108 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2577 (((-792) $) 38 (|has| |#1| (-1014)))) (-1693 (((-108)) 39 (|has| |#1| (-1014)))) (-3628 ((|#1| $ |#1|) NIL (|has| $ (-6 -4239)))) (-1243 (($ $ $) 96 (|has| $ (-6 -4239))) (($ $ (-522) $) 118)) (-2049 ((|#1| $ |#1|) 105 (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) 100 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 102 (|has| $ (-6 -4239))) (($ $ "rest" $) 104 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 107 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 87 (|has| $ (-6 -4239))) ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 56)) (-2081 ((|#1| $) NIL)) (-3175 (($) NIL T CONST)) (-1351 (($ $) 14)) (-2306 (($ $) 29) (($ $ (-708)) 86)) (-1855 (((-108) (-588 |#1|) $) 113 (|has| |#1| (-1014)))) (-4191 (($ (-588 |#1|)) 110)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) 55)) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3069 (((-108) $) NIL)) (-3837 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-1585 (((-1171) (-522) $) 117 (|has| |#1| (-1014)))) (-1808 (((-708) $) 115)) (-4138 (((-588 $) $) NIL)) (-2030 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 71 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2720 (((-108) $ (-708)) NIL)) (-1279 (((-588 |#1|) $) NIL)) (-1754 (((-108) $) NIL)) (-2155 (($ $) 88)) (-2947 (((-108) $) 13)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1442 ((|#1| $) NIL) (($ $ (-708)) NIL)) (-1661 (($ $ $ (-522)) NIL) (($ |#1| $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) 72)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-1578 (($ (-1 |#1|)) 120) (($ (-1 |#1| |#1|) |#1|) 121)) (-2765 ((|#1| $) 10)) (-2294 ((|#1| $) 28) (($ $ (-708)) 47)) (-3972 (((-2 (|:| |cycle?| (-108)) (|:| -3375 (-708)) (|:| |period| (-708))) (-708) $) 25)) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1614 (($ (-1 (-108) |#1|) $) 122)) (-1622 (($ (-1 (-108) |#1|) $) 123)) (-2602 (($ $ |#1|) 66 (|has| $ (-6 -4239)))) (-3719 (($ $ (-522)) 32)) (-2855 (((-108) $) 70)) (-4031 (((-108) $) 12)) (-4010 (((-108) $) 114)) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 20)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) 15)) (-3775 (($) 41)) (-2545 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1133 (-522))) NIL) ((|#1| $ (-522)) 52) ((|#1| $ (-522) |#1|) NIL)) (-2011 (((-522) $ $) 46)) (-3696 (($ $ (-1133 (-522))) NIL) (($ $ (-522)) NIL)) (-2604 (($ (-1 $)) 45)) (-3042 (((-108) $) 67)) (-3107 (($ $) 68)) (-2646 (($ $) 97 (|has| $ (-6 -4239)))) (-2393 (((-708) $) NIL)) (-2122 (($ $) NIL)) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 42)) (-1431 (((-498) $) NIL (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 51)) (-3440 (($ |#1| $) 95)) (-2630 (($ $ $) 98 (|has| $ (-6 -4239))) (($ $ |#1|) 99 (|has| $ (-6 -4239)))) (-4165 (($ $ $) 76) (($ |#1| $) 43) (($ (-588 $)) 81) (($ $ |#1|) 75)) (-1522 (($ $) 48)) (-2190 (($ (-588 |#1|)) 109) (((-792) $) 40 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) NIL)) (-2425 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 112 (|has| |#1| (-1014)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1066 |#1|) (-13 (-615 |#1|) (-10 -8 (-6 -4239) (-15 -2190 ($ (-588 |#1|))) (-15 -4191 ($ (-588 |#1|))) (IF (|has| |#1| (-1014)) (-15 -1855 ((-108) (-588 |#1|) $)) |%noBranch|) (-15 -3972 ((-2 (|:| |cycle?| (-108)) (|:| -3375 (-708)) (|:| |period| (-708))) (-708) $)) (-15 -2604 ($ (-1 $))) (-15 -3440 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1585 ((-1171) (-522) $)) (-15 -2577 ((-792) $)) (-15 -1693 ((-108)))) |%noBranch|) (-15 -1243 ($ $ (-522) $)) (-15 -1578 ($ (-1 |#1|))) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $)))) (-1120)) (T -1066))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-4191 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1855 (*1 *2 *3 *1) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-4 *4 (-1120)) (-5 *2 (-108)) (-5 *1 (-1066 *4)))) (-3972 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3375 (-708)) (|:| |period| (-708)))) (-5 *1 (-1066 *4)) (-4 *4 (-1120)) (-5 *3 (-708)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-1 (-1066 *3))) (-5 *1 (-1066 *3)) (-4 *3 (-1120)))) (-3440 (*1 *1 *2 *1) (-12 (-5 *1 (-1066 *2)) (-4 *2 (-1120)))) (-1585 (*1 *2 *3 *1) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1066 *4)) (-4 *4 (-1014)) (-4 *4 (-1120)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1066 *3)) (-4 *3 (-1014)) (-4 *3 (-1120)))) (-1693 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1066 *3)) (-4 *3 (-1014)) (-4 *3 (-1120)))) (-1243 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1066 *3)) (-4 *3 (-1120)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1578 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))))
+(-13 (-615 |#1|) (-10 -8 (-6 -4239) (-15 -2190 ($ (-588 |#1|))) (-15 -4191 ($ (-588 |#1|))) (IF (|has| |#1| (-1014)) (-15 -1855 ((-108) (-588 |#1|) $)) |%noBranch|) (-15 -3972 ((-2 (|:| |cycle?| (-108)) (|:| -3375 (-708)) (|:| |period| (-708))) (-708) $)) (-15 -2604 ($ (-1 $))) (-15 -3440 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -1585 ((-1171) (-522) $)) (-15 -2577 ((-792) $)) (-15 -1693 ((-108)))) |%noBranch|) (-15 -1243 ($ $ (-522) $)) (-15 -1578 ($ (-1 |#1|))) (-15 -1578 ($ (-1 |#1| |#1|) |#1|)) (-15 -1614 ($ (-1 (-108) |#1|) $)) (-15 -1622 ($ (-1 (-108) |#1|) $))))
+((-1416 (((-108) $ $) 19)) (-3539 (($ $) 120)) (-2084 (($ $) 121)) (-3192 (($ $ (-132)) 108) (($ $ (-129)) 107)) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-3768 (((-108) $ $) 118)) (-3744 (((-108) $ $ (-522)) 117)) (-1507 (($ (-522)) 127)) (-2724 (((-588 $) $ (-132)) 110) (((-588 $) $ (-129)) 109)) (-4187 (((-108) (-1 (-108) (-132) (-132)) $) 98) (((-108) $) 92 (|has| (-132) (-784)))) (-3537 (($ (-1 (-108) (-132) (-132)) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| (-132) (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) (-132) (-132)) $) 99) (($ $) 93 (|has| (-132) (-784)))) (-4141 (((-108) $ (-708)) 8)) (-2379 (((-132) $ (-522) (-132)) 52 (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-132)) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-2850 (($ $ (-132)) 104) (($ $ (-129)) 103)) (-3509 (($ $) 90 (|has| $ (-6 -4239)))) (-1862 (($ $) 100)) (-2516 (($ $ (-1133 (-522)) $) 114)) (-2333 (($ $) 78 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ (-132) $) 77 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-132)) $) 74 (|has| $ (-6 -4238)))) (-3864 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) 76 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) 73 (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) 72 (|has| $ (-6 -4238)))) (-3854 (((-132) $ (-522) (-132)) 53 (|has| $ (-6 -4239)))) (-3631 (((-132) $ (-522)) 51)) (-3792 (((-108) $ $) 119)) (-3238 (((-522) (-1 (-108) (-132)) $) 97) (((-522) (-132) $) 96 (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) 95 (|has| (-132) (-1014))) (((-522) $ $ (-522)) 113) (((-522) (-129) $ (-522)) 112)) (-3837 (((-588 (-132)) $) 30 (|has| $ (-6 -4238)))) (-1811 (($ (-708) (-132)) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 87 (|has| (-132) (-784)))) (-2160 (($ (-1 (-108) (-132) (-132)) $ $) 101) (($ $ $) 94 (|has| (-132) (-784)))) (-3308 (((-588 (-132)) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) (-132) $) 27 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 86 (|has| (-132) (-784)))) (-1455 (((-108) $ $ (-132)) 115)) (-4148 (((-708) $ $ (-132)) 116)) (-3838 (($ (-1 (-132) (-132)) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-132) (-132)) $) 35) (($ (-1 (-132) (-132) (-132)) $ $) 64)) (-1909 (($ $) 122)) (-2390 (($ $) 123)) (-2720 (((-108) $ (-708)) 10)) (-2862 (($ $ (-132)) 106) (($ $ (-129)) 105)) (-2385 (((-1068) $) 22)) (-1661 (($ (-132) $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21)) (-2294 (((-132) $) 42 (|has| (-522) (-784)))) (-1414 (((-3 (-132) "failed") (-1 (-108) (-132)) $) 71)) (-2602 (($ $ (-132)) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-132)) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-132)))) 26 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) 25 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) 24 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) 23 (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) (-132) $) 45 (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1525 (((-588 (-132)) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 (((-132) $ (-522) (-132)) 50) (((-132) $ (-522)) 49) (($ $ (-1133 (-522))) 63) (($ $ $) 102)) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-4168 (((-708) (-1 (-108) (-132)) $) 31 (|has| $ (-6 -4238))) (((-708) (-132) $) 28 (-12 (|has| (-132) (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| (-132) (-563 (-498))))) (-2201 (($ (-588 (-132))) 70)) (-4165 (($ $ (-132)) 68) (($ (-132) $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (($ (-132)) 111) (((-792) $) 18)) (-3648 (((-108) (-1 (-108) (-132)) $) 33 (|has| $ (-6 -4238)))) (-4149 (((-1068) $) 131) (((-1068) $ (-108)) 130) (((-1171) (-759) $) 129) (((-1171) (-759) $ (-108)) 128)) (-1574 (((-108) $ $) 84 (|has| (-132) (-784)))) (-1558 (((-108) $ $) 83 (|has| (-132) (-784)))) (-1531 (((-108) $ $) 20)) (-1566 (((-108) $ $) 85 (|has| (-132) (-784)))) (-1549 (((-108) $ $) 82 (|has| (-132) (-784)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1067) (-1197)) (T -1067))
+((-1507 (*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1067)))))
+(-13 (-1054) (-1014) (-765) (-10 -8 (-15 -1507 ($ (-522)))))
+(((-33) . T) ((-97) . T) ((-562 (-792)) . T) ((-139 #0=(-132)) . T) ((-563 (-498)) |has| (-132) (-563 (-498))) ((-262 #1=(-522) #0#) . T) ((-264 #1# #0#) . T) ((-285 #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-348 #0#) . T) ((-461 #0#) . T) ((-555 #1# #0#) . T) ((-483 #0# #0#) -12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))) ((-593 #0#) . T) ((-19 #0#) . T) ((-765) . T) ((-784) |has| (-132) (-784)) ((-1014) . T) ((-1054) . T) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-3539 (($ $) NIL)) (-2084 (($ $) NIL)) (-3192 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-3768 (((-108) $ $) NIL)) (-3744 (((-108) $ $ (-522)) NIL)) (-1507 (($ (-522)) 7)) (-2724 (((-588 $) $ (-132)) NIL) (((-588 $) $ (-129)) NIL)) (-4187 (((-108) (-1 (-108) (-132) (-132)) $) NIL) (((-108) $) NIL (|has| (-132) (-784)))) (-3537 (($ (-1 (-108) (-132) (-132)) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| (-132) (-784))))) (-3216 (($ (-1 (-108) (-132) (-132)) $) NIL) (($ $) NIL (|has| (-132) (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 (((-132) $ (-522) (-132)) NIL (|has| $ (-6 -4239))) (((-132) $ (-1133 (-522)) (-132)) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-2850 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2516 (($ $ (-1133 (-522)) $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1423 (($ (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (($ (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-132) (-1 (-132) (-132) (-132)) $ (-132) (-132)) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014)))) (((-132) (-1 (-132) (-132) (-132)) $ (-132)) NIL (|has| $ (-6 -4238))) (((-132) (-1 (-132) (-132) (-132)) $) NIL (|has| $ (-6 -4238)))) (-3854 (((-132) $ (-522) (-132)) NIL (|has| $ (-6 -4239)))) (-3631 (((-132) $ (-522)) NIL)) (-3792 (((-108) $ $) NIL)) (-3238 (((-522) (-1 (-108) (-132)) $) NIL) (((-522) (-132) $) NIL (|has| (-132) (-1014))) (((-522) (-132) $ (-522)) NIL (|has| (-132) (-1014))) (((-522) $ $ (-522)) NIL) (((-522) (-129) $ (-522)) NIL)) (-3837 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-1811 (($ (-708) (-132)) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| (-132) (-784)))) (-2160 (($ (-1 (-108) (-132) (-132)) $ $) NIL) (($ $ $) NIL (|has| (-132) (-784)))) (-3308 (((-588 (-132)) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| (-132) (-784)))) (-1455 (((-108) $ $ (-132)) NIL)) (-4148 (((-708) $ $ (-132)) NIL)) (-3838 (($ (-1 (-132) (-132)) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-132) (-132)) $) NIL) (($ (-1 (-132) (-132) (-132)) $ $) NIL)) (-1909 (($ $) NIL)) (-2390 (($ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2862 (($ $ (-132)) NIL) (($ $ (-129)) NIL)) (-2385 (((-1068) $) NIL)) (-1661 (($ (-132) $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-132) $) NIL (|has| (-522) (-784)))) (-1414 (((-3 (-132) "failed") (-1 (-108) (-132)) $) NIL)) (-2602 (($ $ (-132)) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-132)))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-270 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-132) (-132)) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014)))) (($ $ (-588 (-132)) (-588 (-132))) NIL (-12 (|has| (-132) (-285 (-132))) (|has| (-132) (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1525 (((-588 (-132)) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 (((-132) $ (-522) (-132)) NIL) (((-132) $ (-522)) NIL) (($ $ (-1133 (-522))) NIL) (($ $ $) NIL)) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-4168 (((-708) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238))) (((-708) (-132) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-132) (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-132) (-563 (-498))))) (-2201 (($ (-588 (-132))) NIL)) (-4165 (($ $ (-132)) NIL) (($ (-132) $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (($ (-132)) NIL) (((-792) $) NIL)) (-3648 (((-108) (-1 (-108) (-132)) $) NIL (|has| $ (-6 -4238)))) (-4149 (((-1068) $) 18) (((-1068) $ (-108)) 20) (((-1171) (-759) $) 21) (((-1171) (-759) $ (-108)) 22)) (-1574 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1558 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| (-132) (-784)))) (-1549 (((-108) $ $) NIL (|has| (-132) (-784)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1068) (-1067)) (T -1068))
+NIL
+(-1067)
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL)) (-2679 (((-1171) $ (-1068) (-1068)) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-1068) |#1|) NIL)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#1| "failed") (-1068) $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#1| "failed") (-1068) $) NIL)) (-1423 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-1068) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-1068)) NIL)) (-3837 (((-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-1068) $) NIL (|has| (-1068) (-784)))) (-3308 (((-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-1068) $) NIL (|has| (-1068) (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-2966 (((-588 (-1068)) $) NIL)) (-1231 (((-108) (-1068) $) NIL)) (-2116 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL)) (-3604 (((-588 (-1068)) $) NIL)) (-1405 (((-108) (-1068) $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-2294 ((|#1| $) NIL (|has| (-1068) (-784)))) (-1414 (((-3 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) "failed") (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL (-12 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-285 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-1068)) NIL) ((|#1| $ (-1068) |#1|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-562 (-792))) (|has| |#1| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 (-1068)) (|:| -3048 |#1|)) (-1014)) (|has| |#1| (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1069 |#1|) (-13 (-1097 (-1068) |#1|) (-10 -7 (-6 -4238))) (-1014)) (T -1069))
+NIL
+(-13 (-1097 (-1068) |#1|) (-10 -7 (-6 -4238)))
+((-1867 (((-1066 |#1|) (-1066 |#1|)) 77)) (-2682 (((-3 (-1066 |#1|) "failed") (-1066 |#1|)) 37)) (-1342 (((-1066 |#1|) (-382 (-522)) (-1066 |#1|)) 117 (|has| |#1| (-37 (-382 (-522)))))) (-4042 (((-1066 |#1|) |#1| (-1066 |#1|)) 121 (|has| |#1| (-338)))) (-1773 (((-1066 |#1|) (-1066 |#1|)) 90)) (-2876 (((-1066 (-522)) (-522)) 57)) (-2115 (((-1066 |#1|) (-1066 (-1066 |#1|))) 108 (|has| |#1| (-37 (-382 (-522)))))) (-3814 (((-1066 |#1|) (-522) (-522) (-1066 |#1|)) 95)) (-2518 (((-1066 |#1|) |#1| (-522)) 45)) (-3555 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 60)) (-2006 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 119 (|has| |#1| (-338)))) (-3737 (((-1066 |#1|) |#1| (-1 (-1066 |#1|))) 107 (|has| |#1| (-37 (-382 (-522)))))) (-3127 (((-1066 |#1|) (-1 |#1| (-522)) |#1| (-1 (-1066 |#1|))) 120 (|has| |#1| (-338)))) (-1511 (((-1066 |#1|) (-1066 |#1|)) 89)) (-2358 (((-1066 |#1|) (-1066 |#1|)) 76)) (-1958 (((-1066 |#1|) (-522) (-522) (-1066 |#1|)) 96)) (-1858 (((-1066 |#1|) |#1| (-1066 |#1|)) 105 (|has| |#1| (-37 (-382 (-522)))))) (-1262 (((-1066 (-522)) (-522)) 56)) (-3622 (((-1066 |#1|) |#1|) 59)) (-1310 (((-1066 |#1|) (-1066 |#1|) (-522) (-522)) 92)) (-3281 (((-1066 |#1|) (-1 |#1| (-522)) (-1066 |#1|)) 66)) (-2232 (((-3 (-1066 |#1|) "failed") (-1066 |#1|) (-1066 |#1|)) 35)) (-3755 (((-1066 |#1|) (-1066 |#1|)) 91)) (-2289 (((-1066 |#1|) (-1066 |#1|) |#1|) 71)) (-4013 (((-1066 |#1|) (-1066 |#1|)) 62)) (-1830 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 72)) (-2190 (((-1066 |#1|) |#1|) 67)) (-2005 (((-1066 |#1|) (-1066 (-1066 |#1|))) 82)) (-1620 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 36)) (-1612 (((-1066 |#1|) (-1066 |#1|)) 21) (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 23)) (-1602 (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 17)) (* (((-1066 |#1|) (-1066 |#1|) |#1|) 29) (((-1066 |#1|) |#1| (-1066 |#1|)) 26) (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 27)))
+(((-1070 |#1|) (-10 -7 (-15 -1602 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1612 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1612 ((-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -2232 ((-3 (-1066 |#1|) "failed") (-1066 |#1|) (-1066 |#1|))) (-15 -1620 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2682 ((-3 (-1066 |#1|) "failed") (-1066 |#1|))) (-15 -2518 ((-1066 |#1|) |#1| (-522))) (-15 -1262 ((-1066 (-522)) (-522))) (-15 -2876 ((-1066 (-522)) (-522))) (-15 -3622 ((-1066 |#1|) |#1|)) (-15 -3555 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -4013 ((-1066 |#1|) (-1066 |#1|))) (-15 -3281 ((-1066 |#1|) (-1 |#1| (-522)) (-1066 |#1|))) (-15 -2190 ((-1066 |#1|) |#1|)) (-15 -2289 ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -1830 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2358 ((-1066 |#1|) (-1066 |#1|))) (-15 -1867 ((-1066 |#1|) (-1066 |#1|))) (-15 -2005 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -1511 ((-1066 |#1|) (-1066 |#1|))) (-15 -1773 ((-1066 |#1|) (-1066 |#1|))) (-15 -3755 ((-1066 |#1|) (-1066 |#1|))) (-15 -1310 ((-1066 |#1|) (-1066 |#1|) (-522) (-522))) (-15 -3814 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (-15 -1958 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 -3737 ((-1066 |#1|) |#1| (-1 (-1066 |#1|)))) (-15 -2115 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -1342 ((-1066 |#1|) (-382 (-522)) (-1066 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2006 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3127 ((-1066 |#1|) (-1 |#1| (-522)) |#1| (-1 (-1066 |#1|)))) (-15 -4042 ((-1066 |#1|) |#1| (-1066 |#1|)))) |%noBranch|)) (-971)) (T -1070))
+((-4042 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-522))) (-5 *5 (-1 (-1066 *4))) (-4 *4 (-338)) (-4 *4 (-971)) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)))) (-2006 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1342 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *4)) (-4 *4 (-37 *3)) (-4 *4 (-971)) (-5 *3 (-382 (-522))) (-5 *1 (-1070 *4)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)))) (-3737 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1066 *3))) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)))) (-1858 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1958 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-3814 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-1310 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-3755 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-971)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1830 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2289 (*1 *2 *2 *3) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2190 (*1 *2 *3) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) (-3281 (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *4)) (-5 *3 (-1 *4 (-522))) (-4 *4 (-971)) (-5 *1 (-1070 *4)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3555 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-3622 (*1 *2 *3) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) (-2876 (*1 *2 *3) (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971)) (-5 *3 (-522)))) (-1262 (*1 *2 *3) (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971)) (-5 *3 (-522)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))) (-2682 (*1 *2 *2) (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1620 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-2232 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1612 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1612 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))))
+(-10 -7 (-15 -1602 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1612 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -1612 ((-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 * ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 * ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -2232 ((-3 (-1066 |#1|) "failed") (-1066 |#1|) (-1066 |#1|))) (-15 -1620 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2682 ((-3 (-1066 |#1|) "failed") (-1066 |#1|))) (-15 -2518 ((-1066 |#1|) |#1| (-522))) (-15 -1262 ((-1066 (-522)) (-522))) (-15 -2876 ((-1066 (-522)) (-522))) (-15 -3622 ((-1066 |#1|) |#1|)) (-15 -3555 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -4013 ((-1066 |#1|) (-1066 |#1|))) (-15 -3281 ((-1066 |#1|) (-1 |#1| (-522)) (-1066 |#1|))) (-15 -2190 ((-1066 |#1|) |#1|)) (-15 -2289 ((-1066 |#1|) (-1066 |#1|) |#1|)) (-15 -1830 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2358 ((-1066 |#1|) (-1066 |#1|))) (-15 -1867 ((-1066 |#1|) (-1066 |#1|))) (-15 -2005 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -1511 ((-1066 |#1|) (-1066 |#1|))) (-15 -1773 ((-1066 |#1|) (-1066 |#1|))) (-15 -3755 ((-1066 |#1|) (-1066 |#1|))) (-15 -1310 ((-1066 |#1|) (-1066 |#1|) (-522) (-522))) (-15 -3814 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (-15 -1958 ((-1066 |#1|) (-522) (-522) (-1066 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ((-1066 |#1|) |#1| (-1066 |#1|))) (-15 -3737 ((-1066 |#1|) |#1| (-1 (-1066 |#1|)))) (-15 -2115 ((-1066 |#1|) (-1066 (-1066 |#1|)))) (-15 -1342 ((-1066 |#1|) (-382 (-522)) (-1066 |#1|)))) |%noBranch|) (IF (|has| |#1| (-338)) (PROGN (-15 -2006 ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3127 ((-1066 |#1|) (-1 |#1| (-522)) |#1| (-1 (-1066 |#1|)))) (-15 -4042 ((-1066 |#1|) |#1| (-1066 |#1|)))) |%noBranch|))
+((-2908 (((-1066 |#1|) (-1066 |#1|)) 57)) (-2772 (((-1066 |#1|) (-1066 |#1|)) 39)) (-2884 (((-1066 |#1|) (-1066 |#1|)) 53)) (-2748 (((-1066 |#1|) (-1066 |#1|)) 35)) (-2930 (((-1066 |#1|) (-1066 |#1|)) 60)) (-2794 (((-1066 |#1|) (-1066 |#1|)) 42)) (-1254 (((-1066 |#1|) (-1066 |#1|)) 31)) (-3266 (((-1066 |#1|) (-1066 |#1|)) 27)) (-1738 (((-1066 |#1|) (-1066 |#1|)) 61)) (-2804 (((-1066 |#1|) (-1066 |#1|)) 43)) (-2919 (((-1066 |#1|) (-1066 |#1|)) 58)) (-2784 (((-1066 |#1|) (-1066 |#1|)) 40)) (-2896 (((-1066 |#1|) (-1066 |#1|)) 55)) (-2761 (((-1066 |#1|) (-1066 |#1|)) 37)) (-1759 (((-1066 |#1|) (-1066 |#1|)) 65)) (-2836 (((-1066 |#1|) (-1066 |#1|)) 47)) (-1745 (((-1066 |#1|) (-1066 |#1|)) 63)) (-2815 (((-1066 |#1|) (-1066 |#1|)) 45)) (-1776 (((-1066 |#1|) (-1066 |#1|)) 68)) (-2860 (((-1066 |#1|) (-1066 |#1|)) 50)) (-3924 (((-1066 |#1|) (-1066 |#1|)) 69)) (-2872 (((-1066 |#1|) (-1066 |#1|)) 51)) (-1768 (((-1066 |#1|) (-1066 |#1|)) 67)) (-2848 (((-1066 |#1|) (-1066 |#1|)) 49)) (-1752 (((-1066 |#1|) (-1066 |#1|)) 66)) (-2825 (((-1066 |#1|) (-1066 |#1|)) 48)) (** (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 33)))
+(((-1071 |#1|) (-10 -7 (-15 -3266 ((-1066 |#1|) (-1066 |#1|))) (-15 -1254 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2748 ((-1066 |#1|) (-1066 |#1|))) (-15 -2761 ((-1066 |#1|) (-1066 |#1|))) (-15 -2772 ((-1066 |#1|) (-1066 |#1|))) (-15 -2784 ((-1066 |#1|) (-1066 |#1|))) (-15 -2794 ((-1066 |#1|) (-1066 |#1|))) (-15 -2804 ((-1066 |#1|) (-1066 |#1|))) (-15 -2815 ((-1066 |#1|) (-1066 |#1|))) (-15 -2825 ((-1066 |#1|) (-1066 |#1|))) (-15 -2836 ((-1066 |#1|) (-1066 |#1|))) (-15 -2848 ((-1066 |#1|) (-1066 |#1|))) (-15 -2860 ((-1066 |#1|) (-1066 |#1|))) (-15 -2872 ((-1066 |#1|) (-1066 |#1|))) (-15 -2884 ((-1066 |#1|) (-1066 |#1|))) (-15 -2896 ((-1066 |#1|) (-1066 |#1|))) (-15 -2908 ((-1066 |#1|) (-1066 |#1|))) (-15 -2919 ((-1066 |#1|) (-1066 |#1|))) (-15 -2930 ((-1066 |#1|) (-1066 |#1|))) (-15 -1738 ((-1066 |#1|) (-1066 |#1|))) (-15 -1745 ((-1066 |#1|) (-1066 |#1|))) (-15 -1752 ((-1066 |#1|) (-1066 |#1|))) (-15 -1759 ((-1066 |#1|) (-1066 |#1|))) (-15 -1768 ((-1066 |#1|) (-1066 |#1|))) (-15 -1776 ((-1066 |#1|) (-1066 |#1|))) (-15 -3924 ((-1066 |#1|) (-1066 |#1|)))) (-37 (-382 (-522)))) (T -1071))
+((-3924 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2908 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2884 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2848 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-1254 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1071 *3)))))
+(-10 -7 (-15 -3266 ((-1066 |#1|) (-1066 |#1|))) (-15 -1254 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -2748 ((-1066 |#1|) (-1066 |#1|))) (-15 -2761 ((-1066 |#1|) (-1066 |#1|))) (-15 -2772 ((-1066 |#1|) (-1066 |#1|))) (-15 -2784 ((-1066 |#1|) (-1066 |#1|))) (-15 -2794 ((-1066 |#1|) (-1066 |#1|))) (-15 -2804 ((-1066 |#1|) (-1066 |#1|))) (-15 -2815 ((-1066 |#1|) (-1066 |#1|))) (-15 -2825 ((-1066 |#1|) (-1066 |#1|))) (-15 -2836 ((-1066 |#1|) (-1066 |#1|))) (-15 -2848 ((-1066 |#1|) (-1066 |#1|))) (-15 -2860 ((-1066 |#1|) (-1066 |#1|))) (-15 -2872 ((-1066 |#1|) (-1066 |#1|))) (-15 -2884 ((-1066 |#1|) (-1066 |#1|))) (-15 -2896 ((-1066 |#1|) (-1066 |#1|))) (-15 -2908 ((-1066 |#1|) (-1066 |#1|))) (-15 -2919 ((-1066 |#1|) (-1066 |#1|))) (-15 -2930 ((-1066 |#1|) (-1066 |#1|))) (-15 -1738 ((-1066 |#1|) (-1066 |#1|))) (-15 -1745 ((-1066 |#1|) (-1066 |#1|))) (-15 -1752 ((-1066 |#1|) (-1066 |#1|))) (-15 -1759 ((-1066 |#1|) (-1066 |#1|))) (-15 -1768 ((-1066 |#1|) (-1066 |#1|))) (-15 -1776 ((-1066 |#1|) (-1066 |#1|))) (-15 -3924 ((-1066 |#1|) (-1066 |#1|))))
+((-2908 (((-1066 |#1|) (-1066 |#1|)) 100)) (-2772 (((-1066 |#1|) (-1066 |#1|)) 64)) (-2932 (((-2 (|:| -2884 (-1066 |#1|)) (|:| -2896 (-1066 |#1|))) (-1066 |#1|)) 96)) (-2884 (((-1066 |#1|) (-1066 |#1|)) 97)) (-3442 (((-2 (|:| -2748 (-1066 |#1|)) (|:| -2761 (-1066 |#1|))) (-1066 |#1|)) 53)) (-2748 (((-1066 |#1|) (-1066 |#1|)) 54)) (-2930 (((-1066 |#1|) (-1066 |#1|)) 102)) (-2794 (((-1066 |#1|) (-1066 |#1|)) 71)) (-1254 (((-1066 |#1|) (-1066 |#1|)) 39)) (-3266 (((-1066 |#1|) (-1066 |#1|)) 36)) (-1738 (((-1066 |#1|) (-1066 |#1|)) 103)) (-2804 (((-1066 |#1|) (-1066 |#1|)) 72)) (-2919 (((-1066 |#1|) (-1066 |#1|)) 101)) (-2784 (((-1066 |#1|) (-1066 |#1|)) 67)) (-2896 (((-1066 |#1|) (-1066 |#1|)) 98)) (-2761 (((-1066 |#1|) (-1066 |#1|)) 55)) (-1759 (((-1066 |#1|) (-1066 |#1|)) 111)) (-2836 (((-1066 |#1|) (-1066 |#1|)) 86)) (-1745 (((-1066 |#1|) (-1066 |#1|)) 105)) (-2815 (((-1066 |#1|) (-1066 |#1|)) 82)) (-1776 (((-1066 |#1|) (-1066 |#1|)) 115)) (-2860 (((-1066 |#1|) (-1066 |#1|)) 90)) (-3924 (((-1066 |#1|) (-1066 |#1|)) 117)) (-2872 (((-1066 |#1|) (-1066 |#1|)) 92)) (-1768 (((-1066 |#1|) (-1066 |#1|)) 113)) (-2848 (((-1066 |#1|) (-1066 |#1|)) 88)) (-1752 (((-1066 |#1|) (-1066 |#1|)) 107)) (-2825 (((-1066 |#1|) (-1066 |#1|)) 84)) (** (((-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) 40)))
+(((-1072 |#1|) (-10 -7 (-15 -3266 ((-1066 |#1|) (-1066 |#1|))) (-15 -1254 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3442 ((-2 (|:| -2748 (-1066 |#1|)) (|:| -2761 (-1066 |#1|))) (-1066 |#1|))) (-15 -2748 ((-1066 |#1|) (-1066 |#1|))) (-15 -2761 ((-1066 |#1|) (-1066 |#1|))) (-15 -2772 ((-1066 |#1|) (-1066 |#1|))) (-15 -2784 ((-1066 |#1|) (-1066 |#1|))) (-15 -2794 ((-1066 |#1|) (-1066 |#1|))) (-15 -2804 ((-1066 |#1|) (-1066 |#1|))) (-15 -2815 ((-1066 |#1|) (-1066 |#1|))) (-15 -2825 ((-1066 |#1|) (-1066 |#1|))) (-15 -2836 ((-1066 |#1|) (-1066 |#1|))) (-15 -2848 ((-1066 |#1|) (-1066 |#1|))) (-15 -2860 ((-1066 |#1|) (-1066 |#1|))) (-15 -2872 ((-1066 |#1|) (-1066 |#1|))) (-15 -2932 ((-2 (|:| -2884 (-1066 |#1|)) (|:| -2896 (-1066 |#1|))) (-1066 |#1|))) (-15 -2884 ((-1066 |#1|) (-1066 |#1|))) (-15 -2896 ((-1066 |#1|) (-1066 |#1|))) (-15 -2908 ((-1066 |#1|) (-1066 |#1|))) (-15 -2919 ((-1066 |#1|) (-1066 |#1|))) (-15 -2930 ((-1066 |#1|) (-1066 |#1|))) (-15 -1738 ((-1066 |#1|) (-1066 |#1|))) (-15 -1745 ((-1066 |#1|) (-1066 |#1|))) (-15 -1752 ((-1066 |#1|) (-1066 |#1|))) (-15 -1759 ((-1066 |#1|) (-1066 |#1|))) (-15 -1768 ((-1066 |#1|) (-1066 |#1|))) (-15 -1776 ((-1066 |#1|) (-1066 |#1|))) (-15 -3924 ((-1066 |#1|) (-1066 |#1|)))) (-37 (-382 (-522)))) (T -1072))
+((-3924 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1776 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1738 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2908 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2884 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-2 (|:| -2884 (-1066 *4)) (|:| -2896 (-1066 *4)))) (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2848 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2836 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2794 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-2 (|:| -2748 (-1066 *4)) (|:| -2761 (-1066 *4)))) (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-1254 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1072 *3)))))
+(-10 -7 (-15 -3266 ((-1066 |#1|) (-1066 |#1|))) (-15 -1254 ((-1066 |#1|) (-1066 |#1|))) (-15 ** ((-1066 |#1|) (-1066 |#1|) (-1066 |#1|))) (-15 -3442 ((-2 (|:| -2748 (-1066 |#1|)) (|:| -2761 (-1066 |#1|))) (-1066 |#1|))) (-15 -2748 ((-1066 |#1|) (-1066 |#1|))) (-15 -2761 ((-1066 |#1|) (-1066 |#1|))) (-15 -2772 ((-1066 |#1|) (-1066 |#1|))) (-15 -2784 ((-1066 |#1|) (-1066 |#1|))) (-15 -2794 ((-1066 |#1|) (-1066 |#1|))) (-15 -2804 ((-1066 |#1|) (-1066 |#1|))) (-15 -2815 ((-1066 |#1|) (-1066 |#1|))) (-15 -2825 ((-1066 |#1|) (-1066 |#1|))) (-15 -2836 ((-1066 |#1|) (-1066 |#1|))) (-15 -2848 ((-1066 |#1|) (-1066 |#1|))) (-15 -2860 ((-1066 |#1|) (-1066 |#1|))) (-15 -2872 ((-1066 |#1|) (-1066 |#1|))) (-15 -2932 ((-2 (|:| -2884 (-1066 |#1|)) (|:| -2896 (-1066 |#1|))) (-1066 |#1|))) (-15 -2884 ((-1066 |#1|) (-1066 |#1|))) (-15 -2896 ((-1066 |#1|) (-1066 |#1|))) (-15 -2908 ((-1066 |#1|) (-1066 |#1|))) (-15 -2919 ((-1066 |#1|) (-1066 |#1|))) (-15 -2930 ((-1066 |#1|) (-1066 |#1|))) (-15 -1738 ((-1066 |#1|) (-1066 |#1|))) (-15 -1745 ((-1066 |#1|) (-1066 |#1|))) (-15 -1752 ((-1066 |#1|) (-1066 |#1|))) (-15 -1759 ((-1066 |#1|) (-1066 |#1|))) (-15 -1768 ((-1066 |#1|) (-1066 |#1|))) (-15 -1776 ((-1066 |#1|) (-1066 |#1|))) (-15 -3924 ((-1066 |#1|) (-1066 |#1|))))
+((-3016 (((-886 |#2|) |#2| |#2|) 36)) (-2071 ((|#2| |#2| |#1|) 19 (|has| |#1| (-283)))))
+(((-1073 |#1| |#2|) (-10 -7 (-15 -3016 ((-886 |#2|) |#2| |#2|)) (IF (|has| |#1| (-283)) (-15 -2071 (|#2| |#2| |#1|)) |%noBranch|)) (-514) (-1142 |#1|)) (T -1073))
+((-2071 (*1 *2 *2 *3) (-12 (-4 *3 (-283)) (-4 *3 (-514)) (-5 *1 (-1073 *3 *2)) (-4 *2 (-1142 *3)))) (-3016 (*1 *2 *3 *3) (-12 (-4 *4 (-514)) (-5 *2 (-886 *3)) (-5 *1 (-1073 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -3016 ((-886 |#2|) |#2| |#2|)) (IF (|has| |#1| (-283)) (-15 -2071 (|#2| |#2| |#1|)) |%noBranch|))
+((-1416 (((-108) $ $) NIL)) (-2172 (($ $ (-588 (-708))) 67)) (-3974 (($) 26)) (-4218 (($ $) 42)) (-1441 (((-588 $) $) 51)) (-2662 (((-108) $) 16)) (-4163 (((-588 (-872 |#2|)) $) 74)) (-4147 (($ $) 68)) (-1386 (((-708) $) 37)) (-1811 (($) 25)) (-2332 (($ $ (-588 (-708)) (-872 |#2|)) 60) (($ $ (-588 (-708)) (-708)) 61) (($ $ (-708) (-872 |#2|)) 63)) (-2160 (($ $ $) 48) (($ (-588 $)) 50)) (-1554 (((-708) $) 75)) (-1754 (((-108) $) 15)) (-2385 (((-1068) $) NIL)) (-3418 (((-108) $) 18)) (-4151 (((-1032) $) NIL)) (-3155 (((-156) $) 73)) (-3693 (((-872 |#2|) $) 69)) (-1394 (((-708) $) 70)) (-2253 (((-108) $) 72)) (-1340 (($ $ (-588 (-708)) (-156)) 66)) (-1925 (($ $) 43)) (-2190 (((-792) $) 85)) (-3008 (($ $ (-588 (-708)) (-108)) 65)) (-1749 (((-588 $) $) 11)) (-3254 (($ $ (-708)) 36)) (-1904 (($ $) 32)) (-3979 (($ $ $ (-872 |#2|) (-708)) 56)) (-2090 (($ $ (-872 |#2|)) 55)) (-2608 (($ $ (-588 (-708)) (-872 |#2|)) 54) (($ $ (-588 (-708)) (-708)) 58) (((-708) $ (-872 |#2|)) 59)) (-1531 (((-108) $ $) 79)))
+(((-1074 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -1754 ((-108) $)) (-15 -2662 ((-108) $)) (-15 -3418 ((-108) $)) (-15 -1811 ($)) (-15 -3974 ($)) (-15 -1904 ($ $)) (-15 -3254 ($ $ (-708))) (-15 -1749 ((-588 $) $)) (-15 -1386 ((-708) $)) (-15 -4218 ($ $)) (-15 -1925 ($ $)) (-15 -2160 ($ $ $)) (-15 -2160 ($ (-588 $))) (-15 -1441 ((-588 $) $)) (-15 -2608 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -2090 ($ $ (-872 |#2|))) (-15 -3979 ($ $ $ (-872 |#2|) (-708))) (-15 -2332 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -2608 ($ $ (-588 (-708)) (-708))) (-15 -2332 ($ $ (-588 (-708)) (-708))) (-15 -2608 ((-708) $ (-872 |#2|))) (-15 -2332 ($ $ (-708) (-872 |#2|))) (-15 -3008 ($ $ (-588 (-708)) (-108))) (-15 -1340 ($ $ (-588 (-708)) (-156))) (-15 -2172 ($ $ (-588 (-708)))) (-15 -3693 ((-872 |#2|) $)) (-15 -1394 ((-708) $)) (-15 -2253 ((-108) $)) (-15 -3155 ((-156) $)) (-15 -1554 ((-708) $)) (-15 -4147 ($ $)) (-15 -4163 ((-588 (-872 |#2|)) $)))) (-850) (-971)) (T -1074))
+((-1754 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1811 (*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-3974 (*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-1904 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-3254 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-4218 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-1925 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-2160 (*1 *1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-2160 (*1 *1 *2) (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2608 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-2090 (*1 *1 *1 *2) (-12 (-5 *2 (-872 *4)) (-4 *4 (-971)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)))) (-3979 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-872 *5)) (-5 *3 (-708)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-2332 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-2608 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-2332 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-2608 (*1 *2 *1 *3) (-12 (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *2 (-708)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-2332 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))) (-3008 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-108)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-1340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-588 (-708))) (-5 *3 (-156)) (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)) (-4 *5 (-971)))) (-2172 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-872 *4)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-2253 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-156)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))) (-4147 (*1 *1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-588 (-872 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850)) (-4 *4 (-971)))))
+(-13 (-1014) (-10 -8 (-15 -1754 ((-108) $)) (-15 -2662 ((-108) $)) (-15 -3418 ((-108) $)) (-15 -1811 ($)) (-15 -3974 ($)) (-15 -1904 ($ $)) (-15 -3254 ($ $ (-708))) (-15 -1749 ((-588 $) $)) (-15 -1386 ((-708) $)) (-15 -4218 ($ $)) (-15 -1925 ($ $)) (-15 -2160 ($ $ $)) (-15 -2160 ($ (-588 $))) (-15 -1441 ((-588 $) $)) (-15 -2608 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -2090 ($ $ (-872 |#2|))) (-15 -3979 ($ $ $ (-872 |#2|) (-708))) (-15 -2332 ($ $ (-588 (-708)) (-872 |#2|))) (-15 -2608 ($ $ (-588 (-708)) (-708))) (-15 -2332 ($ $ (-588 (-708)) (-708))) (-15 -2608 ((-708) $ (-872 |#2|))) (-15 -2332 ($ $ (-708) (-872 |#2|))) (-15 -3008 ($ $ (-588 (-708)) (-108))) (-15 -1340 ($ $ (-588 (-708)) (-156))) (-15 -2172 ($ $ (-588 (-708)))) (-15 -3693 ((-872 |#2|) $)) (-15 -1394 ((-708) $)) (-15 -2253 ((-108) $)) (-15 -3155 ((-156) $)) (-15 -1554 ((-708) $)) (-15 -4147 ($ $)) (-15 -4163 ((-588 (-872 |#2|)) $))))
+((-1416 (((-108) $ $) NIL)) (-3602 ((|#2| $) 11)) (-3593 ((|#1| $) 10)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2201 (($ |#1| |#2|) 9)) (-2190 (((-792) $) 16)) (-1531 (((-108) $ $) NIL)))
+(((-1075 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2201 ($ |#1| |#2|)) (-15 -3593 (|#1| $)) (-15 -3602 (|#2| $)))) (-1014) (-1014)) (T -1075))
+((-2201 (*1 *1 *2 *3) (-12 (-5 *1 (-1075 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3593 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1014)))) (-3602 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *3 *2)) (-4 *3 (-1014)))))
+(-13 (-1014) (-10 -8 (-15 -2201 ($ |#1| |#2|)) (-15 -3593 (|#1| $)) (-15 -3602 (|#2| $))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-1083 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 11)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2022 (($ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3739 (((-108) $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2789 (($ $ (-522)) NIL) (($ $ (-522) (-522)) 66)) (-2258 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) NIL)) (-3321 (((-1083 |#1| |#2| |#3|) $) 36)) (-2114 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 29)) (-3058 (((-1083 |#1| |#2| |#3|) $) 30)) (-2908 (($ $) 107 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 83 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) 103 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 79 (|has| |#1| (-37 (-382 (-522)))))) (-1341 (((-522) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-2773 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) NIL)) (-2930 (($ $) 111 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 87 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1085) "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-522) "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-1484 (((-1083 |#1| |#2| |#3|) $) 131) (((-1085) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-382 (-522)) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-522) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-3701 (($ $) 34) (($ (-522) $) 35)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-1083 |#1| |#2| |#3|)) (-628 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 (-1083 |#1| |#2| |#3|))) (|:| |vec| (-1166 (-1083 |#1| |#2| |#3|)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338))))) (-2682 (((-3 $ "failed") $) 48)) (-2240 (((-382 (-881 |#1|)) $ (-522)) 65 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 67 (|has| |#1| (-514)))) (-3255 (($) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3687 (((-108) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3390 (((-108) $) 25)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-815 (-522))) (|has| |#1| (-338)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-815 (-354))) (|has| |#1| (-338))))) (-3714 (((-522) $) NIL) (((-522) $ (-522)) 24)) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL (|has| |#1| (-338)))) (-2805 (((-1083 |#1| |#2| |#3|) $) 38 (|has| |#1| (-338)))) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3004 (((-3 $ "failed") $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))))) (-2556 (((-108) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-2073 (($ $ (-850)) NIL)) (-3950 (($ (-1 |#1| (-522)) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-522)) 18) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-2814 (($ $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-2446 (($ $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-338)))) (-1254 (($ $) 72 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3068 (($ (-522) (-1083 |#1| |#2| |#3|)) 33)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-1858 (($ $) 70 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 71 (|has| |#1| (-37 (-382 (-522)))))) (-3802 (($) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3933 (($ $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-3686 (((-1083 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-522)) 145)) (-2232 (((-3 $ "failed") $ $) 49 (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) 73 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) (-1083 |#1| |#2| |#3|)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-483 (-1085) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-1083 |#1| |#2| |#3|))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-483 (-1085) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-270 (-1083 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-270 (-1083 |#1| |#2| |#3|))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1083 |#1| |#2| |#3|)) (-588 (-1083 |#1| |#2| |#3|))) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-285 (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-522)) NIL) (($ $ $) 54 (|has| (-522) (-1026))) (($ $ (-1083 |#1| |#2| |#3|)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-262 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1162 |#2|)) 51) (($ $ (-708)) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 50 (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-3533 (($ $) NIL (|has| |#1| (-338)))) (-2816 (((-1083 |#1| |#2| |#3|) $) 41 (|has| |#1| (-338)))) (-2793 (((-522) $) 37)) (-1738 (($ $) 113 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 89 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 109 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 85 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 105 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 81 (|has| |#1| (-37 (-382 (-522)))))) (-1431 (((-498) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-563 (-498))) (|has| |#1| (-338)))) (((-354) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-202) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-821 (-354)) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) 149) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1083 |#1| |#2| |#3|)) 27) (($ (-1162 |#2|)) 23) (($ (-1085)) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (($ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514)))) (($ (-382 (-522))) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))) (|has| |#1| (-37 (-382 (-522))))))) (-3243 ((|#1| $ (-522)) 68)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 12)) (-3025 (((-1083 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-1759 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 95 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-1745 (($ $) 115 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 91 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 99 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-522)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 101 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 97 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 93 (|has| |#1| (-37 (-382 (-522)))))) (-2241 (($ $) NIL (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 20 T CONST)) (-3577 (($) 16 T CONST)) (-2213 (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-1574 (((-108) $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1558 (((-108) $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1549 (((-108) $ $) NIL (-3708 (-12 (|has| (-1083 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1083 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 44 (|has| |#1| (-338))) (($ (-1083 |#1| |#2| |#3|) (-1083 |#1| |#2| |#3|)) 45 (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 21)) (** (($ $ (-850)) NIL) (($ $ (-708)) 53) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) 74 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 128 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1083 |#1| |#2| |#3|)) 43 (|has| |#1| (-338))) (($ (-1083 |#1| |#2| |#3|) $) 42 (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1076 |#1| |#2| |#3|) (-13 (-1128 |#1| (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1076))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1128 |#1| (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-3518 ((|#2| |#2| (-1007 |#2|)) 26) ((|#2| |#2| (-1085)) 28)))
+(((-1077 |#1| |#2|) (-10 -7 (-15 -3518 (|#2| |#2| (-1085))) (-15 -3518 (|#2| |#2| (-1007 |#2|)))) (-13 (-514) (-784) (-962 (-522)) (-584 (-522))) (-13 (-405 |#1|) (-146) (-27) (-1106))) (T -1077))
+((-3518 (*1 *2 *2 *3) (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106))) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1077 *4 *2)))) (-3518 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1077 *4 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106))))))
+(-10 -7 (-15 -3518 (|#2| |#2| (-1085))) (-15 -3518 (|#2| |#2| (-1007 |#2|))))
+((-3518 (((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1007 (-382 (-881 |#1|)))) 30) (((-382 (-881 |#1|)) (-881 |#1|) (-1007 (-881 |#1|))) 44) (((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1085)) 32) (((-382 (-881 |#1|)) (-881 |#1|) (-1085)) 36)))
+(((-1078 |#1|) (-10 -7 (-15 -3518 ((-382 (-881 |#1|)) (-881 |#1|) (-1085))) (-15 -3518 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -3518 ((-382 (-881 |#1|)) (-881 |#1|) (-1007 (-881 |#1|)))) (-15 -3518 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1007 (-382 (-881 |#1|)))))) (-13 (-514) (-784) (-962 (-522)))) (T -1078))
+((-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5))) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-3 *3 (-291 *5))) (-5 *1 (-1078 *5)))) (-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-1007 (-881 *5))) (-5 *3 (-881 *5)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-382 *3)) (-5 *1 (-1078 *5)))) (-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-3 (-382 (-881 *5)) (-291 *5))) (-5 *1 (-1078 *5)) (-5 *3 (-382 (-881 *5))))) (-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-382 (-881 *5))) (-5 *1 (-1078 *5)) (-5 *3 (-881 *5)))))
+(-10 -7 (-15 -3518 ((-382 (-881 |#1|)) (-881 |#1|) (-1085))) (-15 -3518 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1085))) (-15 -3518 ((-382 (-881 |#1|)) (-881 |#1|) (-1007 (-881 |#1|)))) (-15 -3518 ((-3 (-382 (-881 |#1|)) (-291 |#1|)) (-382 (-881 |#1|)) (-1007 (-382 (-881 |#1|))))))
+((-1391 (((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)) 13)))
+(((-1079 |#1| |#2|) (-10 -7 (-15 -1391 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|)))) (-971) (-971)) (T -1079))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-5 *2 (-1081 *6)) (-5 *1 (-1079 *5 *6)))))
+(-10 -7 (-15 -1391 ((-1081 |#2|) (-1 |#2| |#1|) (-1081 |#1|))))
+((-3450 (((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))) 50)) (-1916 (((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))) 51)))
+(((-1080 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|)))) (-15 -3450 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|))))) (-730) (-784) (-426) (-878 |#3| |#1| |#2|)) (T -1080))
+((-3450 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7)))) (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426)) (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7)))) (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7))))))
+(-10 -7 (-15 -1916 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|)))) (-15 -3450 ((-393 (-1081 (-382 |#4|))) (-1081 (-382 |#4|)))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 30)) (-3960 (((-1166 |#1|) $ (-708)) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-3793 (($ (-1081 |#1|)) NIL)) (-1282 (((-1081 $) $ (-999)) 59) (((-1081 |#1|) $) 48)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) 133 (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) 127 (|has| |#1| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) 72 (|has| |#1| (-838)))) (-3119 (($ $) NIL (|has| |#1| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 92 (|has| |#1| (-838)))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-3242 (($ $ (-708)) 42)) (-2272 (($ $ (-708)) 43)) (-1441 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-426)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#1| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) NIL)) (-1484 ((|#1| $) NIL) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-999) $) NIL)) (-1950 (($ $ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $ $) 129 (|has| |#1| (-157)))) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) 57)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) NIL) (((-628 |#1|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-2052 (($ $ $) 105)) (-4152 (($ $ $) NIL (|has| |#1| (-514)))) (-1541 (((-2 (|:| -2977 |#1|) (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2071 (($ $) 134 (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-708) $) 46)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3445 (((-792) $ (-792)) 118)) (-3714 (((-708) $ $) NIL (|has| |#1| (-514)))) (-2782 (((-108) $) 32)) (-2112 (((-708) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| |#1| (-1061)))) (-4073 (($ (-1081 |#1|) (-999)) 50) (($ (-1081 $) (-999)) 66)) (-2073 (($ $ (-708)) 34)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) 64) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-999)) NIL) (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 122)) (-2925 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3861 (($ (-1 (-708) (-708)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3624 (((-1081 |#1|) $) NIL)) (-3145 (((-3 (-999) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) 53)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) NIL (|has| |#1| (-426)))) (-2385 (((-1068) $) NIL)) (-3114 (((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708)) 41)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-999)) (|:| -1400 (-708))) "failed") $) NIL)) (-1858 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3802 (($) NIL (|has| |#1| (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) 33)) (-3118 ((|#1| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 80 (|has| |#1| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-426))) (($ $ $) 136 (|has| |#1| (-426)))) (-2600 (($ $ (-708) |#1| $) 100)) (-3729 (((-393 (-1081 $)) (-1081 $)) 78 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 77 (|has| |#1| (-838)))) (-1916 (((-393 $) $) 85 (|has| |#1| (-838)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ |#1|) 132 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#1|) NIL) (($ $ (-588 (-999)) (-588 |#1|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ |#1|) 120) (($ $ $) 121) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) NIL (|has| |#1| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#1| (-514)))) (-4158 (((-3 $ "failed") $ (-708)) 37)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 139 (|has| |#1| (-338)))) (-2769 (($ $ (-999)) NIL (|has| |#1| (-157))) ((|#1| $) 125 (|has| |#1| (-157)))) (-2157 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2793 (((-708) $) 55) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) 131 (|has| |#1| (-426))) (($ $ (-999)) NIL (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#1| (-838))))) (-3097 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#1| (-514)))) (-2190 (((-792) $) 119) (($ (-522)) NIL) (($ |#1|) 54) (($ (-999)) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) 28 (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 15) (($ $ (-708)) 16)) (-3566 (($) 17 T CONST)) (-3577 (($) 18 T CONST)) (-2213 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) 97)) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 140 (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 67)) (** (($ $ (-850)) 14) (($ $ (-708)) 12)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 27) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 103) (($ $ |#1|) NIL)))
+(((-1081 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -3445 ((-792) $ (-792))) (-15 -2600 ($ $ (-708) |#1| $)))) (-971)) (T -1081))
+((-3445 (*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1081 *3)) (-4 *3 (-971)))) (-2600 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1081 *3)) (-4 *3 (-971)))))
+(-13 (-1142 |#1|) (-10 -8 (-15 -3445 ((-792) $ (-792))) (-15 -2600 ($ $ (-708) |#1| $))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 11)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) NIL)) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-1076 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1083 |#1| |#2| |#3|) "failed") $) 35)) (-1484 (((-1076 |#1| |#2| |#3|) $) NIL) (((-1083 |#1| |#2| |#3|) $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3987 (((-382 (-522)) $) 55)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3079 (($ (-382 (-522)) (-1076 |#1| |#2| |#3|)) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) NIL)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-382 (-522))) 19) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2440 (((-1076 |#1| |#2| |#3|) $) 40)) (-4020 (((-3 (-1076 |#1| |#2| |#3|) "failed") $) NIL)) (-3068 (((-1076 |#1| |#2| |#3|) $) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-1858 (($ $) 38 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 39 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) NIL)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $ (-1162 |#2|)) 37)) (-2793 (((-382 (-522)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) 58) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1076 |#1| |#2| |#3|)) 29) (($ (-1083 |#1| |#2| |#3|)) 30) (($ (-1162 |#2|)) 25) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 12)) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 21 T CONST)) (-3577 (($) 16 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 23)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1082 |#1| |#2| |#3|) (-13 (-1149 |#1| (-1076 |#1| |#2| |#3|)) (-962 (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1082))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1149 |#1| (-1076 |#1| |#2| |#3|)) (-962 (-1083 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 125)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 116)) (-2549 (((-1139 |#2| |#1|) $ (-708)) 63)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-708)) 79) (($ $ (-708) (-708)) 76)) (-2258 (((-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|))) $) 102)) (-2908 (($ $) 169 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 145 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2884 (($ $) 165 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|)))) 115) (($ (-1066 |#1|)) 110)) (-2930 (($ $) 173 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 149 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) 23)) (-3546 (($ $) 26)) (-2199 (((-881 |#1|) $ (-708)) 75) (((-881 |#1|) $ (-708) (-708)) 77)) (-3390 (((-108) $) 120)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-708) $) 122) (((-708) $ (-708)) 124)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) NIL)) (-3950 (($ (-1 |#1| (-522)) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) 13) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-1858 (($ $) 129 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 130 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-3719 (($ $ (-708)) 15)) (-2232 (((-3 $ "failed") $ $) 24 (|has| |#1| (-514)))) (-3266 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-708)))))) (-2545 ((|#1| $ (-708)) 119) (($ $ $) 128 (|has| (-708) (-1026)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $ (-1162 |#2|)) 29)) (-2793 (((-708) $) NIL)) (-1738 (($ $) 175 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 151 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 171 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 147 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 167 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) 201) (($ (-522)) NIL) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 126 (|has| |#1| (-157))) (($ (-1139 |#2| |#1|)) 51) (($ (-1162 |#2|)) 32)) (-3916 (((-1066 |#1|) $) 98)) (-3243 ((|#1| $ (-708)) 118)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 54)) (-1759 (($ $) 181 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 157 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) 177 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 153 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 185 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 161 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-708)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-708)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 187 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 163 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 183 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 159 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 179 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 155 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 17 T CONST)) (-3577 (($) 19 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) 194)) (-1602 (($ $ $) 31)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ |#1|) 198 (|has| |#1| (-338))) (($ $ $) 134 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 137 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1083 |#1| |#2| |#3|) (-13 (-1157 |#1|) (-10 -8 (-15 -2190 ($ (-1139 |#2| |#1|))) (-15 -2549 ((-1139 |#2| |#1|) $ (-708))) (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1083))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-1083 *3 *4 *5)))) (-2549 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1083 *4 *5 *6)) (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1157 |#1|) (-10 -8 (-15 -2190 ($ (-1139 |#2| |#1|))) (-15 -2549 ((-1139 |#2| |#1|) $ (-708))) (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-2190 (((-792) $) 22) (($ (-1085)) 24)) (-3708 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 35)) (-3695 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 28) (($ $) 29)) (-3179 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 30)) (-3169 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 32)) (-3159 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 31)) (-3150 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 33)) (-3087 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $))) 34)))
+(((-1084) (-13 (-562 (-792)) (-10 -8 (-15 -2190 ($ (-1085))) (-15 -3179 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3159 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3169 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3708 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3087 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3695 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3695 ($ $))))) (T -1084))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1084)))) (-3179 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3159 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3169 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3150 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3708 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3087 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084)))) (-5 *1 (-1084)))) (-3695 (*1 *1 *1) (-5 *1 (-1084))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2190 ($ (-1085))) (-15 -3179 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3159 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3169 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3150 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3708 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3087 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)) (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3695 ($ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354))) (|:| CF (-291 (-154 (-354)))) (|:| |switch| $)))) (-15 -3695 ($ $))))
+((-1416 (((-108) $ $) NIL)) (-3929 (($ $ (-588 (-792))) 58)) (-1237 (($ $ (-588 (-792))) 56)) (-1507 (((-1068) $) 82)) (-2526 (((-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792)))) $) 85)) (-3106 (((-108) $) 21)) (-1581 (($ $ (-588 (-588 (-792)))) 54) (($ $ (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792))))) 80)) (-3175 (($) 123 T CONST)) (-2787 (((-1171)) 104)) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 65) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 71)) (-1811 (($) 93) (($ $) 99)) (-2888 (($ $) 81)) (-2814 (($ $ $) NIL)) (-2446 (($ $ $) NIL)) (-1580 (((-588 $) $) 105)) (-2385 (((-1068) $) 88)) (-4151 (((-1032) $) NIL)) (-2545 (($ $ (-588 (-792))) 57)) (-1431 (((-498) $) 45) (((-1085) $) 46) (((-821 (-522)) $) 75) (((-821 (-354)) $) 73)) (-2190 (((-792) $) 52) (($ (-1068)) 47)) (-2320 (($ $ (-588 (-792))) 59)) (-4149 (((-1068) $) 33) (((-1068) $ (-108)) 34) (((-1171) (-759) $) 35) (((-1171) (-759) $ (-108)) 36)) (-1574 (((-108) $ $) NIL)) (-1558 (((-108) $ $) NIL)) (-1531 (((-108) $ $) 48)) (-1566 (((-108) $ $) NIL)) (-1549 (((-108) $ $) 49)))
+(((-1085) (-13 (-784) (-563 (-498)) (-765) (-563 (-1085)) (-563 (-821 (-522))) (-563 (-821 (-354))) (-815 (-522)) (-815 (-354)) (-10 -8 (-15 -1811 ($)) (-15 -1811 ($ $)) (-15 -2787 ((-1171))) (-15 -2190 ($ (-1068))) (-15 -2888 ($ $)) (-15 -3106 ((-108) $)) (-15 -2526 ((-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792)))) $)) (-15 -1581 ($ $ (-588 (-588 (-792))))) (-15 -1581 ($ $ (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792)))))) (-15 -1237 ($ $ (-588 (-792)))) (-15 -3929 ($ $ (-588 (-792)))) (-15 -2320 ($ $ (-588 (-792)))) (-15 -2545 ($ $ (-588 (-792)))) (-15 -1507 ((-1068) $)) (-15 -1580 ((-588 $) $)) (-15 -3175 ($) -2677)))) (T -1085))
+((-1811 (*1 *1) (-5 *1 (-1085))) (-1811 (*1 *1 *1) (-5 *1 (-1085))) (-2787 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1085)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1085)))) (-2888 (*1 *1 *1) (-5 *1 (-1085))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1085)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792))))) (-5 *1 (-1085)))) (-1581 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-1085)))) (-1581 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792))))) (-5 *1 (-1085)))) (-1237 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-2320 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1085)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1085)))) (-3175 (*1 *1) (-5 *1 (-1085))))
+(-13 (-784) (-563 (-498)) (-765) (-563 (-1085)) (-563 (-821 (-522))) (-563 (-821 (-354))) (-815 (-522)) (-815 (-354)) (-10 -8 (-15 -1811 ($)) (-15 -1811 ($ $)) (-15 -2787 ((-1171))) (-15 -2190 ($ (-1068))) (-15 -2888 ($ $)) (-15 -3106 ((-108) $)) (-15 -2526 ((-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792)))) $)) (-15 -1581 ($ $ (-588 (-588 (-792))))) (-15 -1581 ($ $ (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792))) (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792))) (|:| |args| (-588 (-792)))))) (-15 -1237 ($ $ (-588 (-792)))) (-15 -3929 ($ $ (-588 (-792)))) (-15 -2320 ($ $ (-588 (-792)))) (-15 -2545 ($ $ (-588 (-792)))) (-15 -1507 ((-1068) $)) (-15 -1580 ((-588 $) $)) (-15 -3175 ($) -2677)))
+((-4070 (((-1166 |#1|) |#1| (-850)) 16) (((-1166 |#1|) (-588 |#1|)) 20)))
+(((-1086 |#1|) (-10 -7 (-15 -4070 ((-1166 |#1|) (-588 |#1|))) (-15 -4070 ((-1166 |#1|) |#1| (-850)))) (-971)) (T -1086))
+((-4070 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-1166 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-971)))) (-4070 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-971)) (-5 *2 (-1166 *4)) (-5 *1 (-1086 *4)))))
+(-10 -7 (-15 -4070 ((-1166 |#1|) (-588 |#1|))) (-15 -4070 ((-1166 |#1|) |#1| (-850))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| |#1| (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#1| (-962 (-382 (-522))))) (((-3 |#1| "failed") $) NIL)) (-1484 (((-522) $) NIL (|has| |#1| (-962 (-522)))) (((-382 (-522)) $) NIL (|has| |#1| (-962 (-382 (-522))))) ((|#1| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2071 (($ $) NIL (|has| |#1| (-426)))) (-2671 (($ $ |#1| (-898) $) NIL)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-898)) NIL)) (-2925 (((-898) $) NIL)) (-3861 (($ (-1 (-898) (-898)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#1| $) NIL)) (-2600 (($ $ (-898) |#1| $) NIL (-12 (|has| (-898) (-124)) (|has| |#1| (-514))))) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-514)))) (-2793 (((-898) $) NIL)) (-2255 ((|#1| $) NIL (|has| |#1| (-426)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) NIL) (($ (-382 (-522))) NIL (-3708 (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-962 (-382 (-522))))))) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ (-898)) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#1| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 9 T CONST)) (-3577 (($) 14 T CONST)) (-1531 (((-108) $ $) 16)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 19)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1087 |#1|) (-13 (-301 |#1| (-898)) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| (-898) (-124)) (-15 -2600 ($ $ (-898) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) (-971)) (T -1087))
+((-2600 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-898)) (-4 *2 (-124)) (-5 *1 (-1087 *3)) (-4 *3 (-514)) (-4 *3 (-971)))))
+(-13 (-301 |#1| (-898)) (-10 -8 (IF (|has| |#1| (-514)) (IF (|has| (-898) (-124)) (-15 -2600 ($ $ (-898) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|)))
+((-1429 (((-1089) (-1085) $) 24)) (-2280 (($) 28)) (-1218 (((-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-1085) $) 21)) (-4167 (((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void")) $) 40) (((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) 41) (((-1171) (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) 42)) (-3528 (((-1171) (-1085)) 57)) (-1900 (((-1171) (-1085) $) 54) (((-1171) (-1085)) 55) (((-1171)) 56)) (-3009 (((-1171) (-1085)) 36)) (-3615 (((-1085)) 35)) (-3775 (($) 33)) (-3425 (((-412) (-1085) (-412) (-1085) $) 44) (((-412) (-588 (-1085)) (-412) (-1085) $) 48) (((-412) (-1085) (-412)) 45) (((-412) (-1085) (-412) (-1085)) 49)) (-2994 (((-1085)) 34)) (-2190 (((-792) $) 27)) (-2515 (((-1171)) 29) (((-1171) (-1085)) 32)) (-3033 (((-588 (-1085)) (-1085) $) 23)) (-1512 (((-1171) (-1085) (-588 (-1085)) $) 37) (((-1171) (-1085) (-588 (-1085))) 38) (((-1171) (-588 (-1085))) 39)))
+(((-1088) (-13 (-562 (-792)) (-10 -8 (-15 -2280 ($)) (-15 -2515 ((-1171))) (-15 -2515 ((-1171) (-1085))) (-15 -3425 ((-412) (-1085) (-412) (-1085) $)) (-15 -3425 ((-412) (-588 (-1085)) (-412) (-1085) $)) (-15 -3425 ((-412) (-1085) (-412))) (-15 -3425 ((-412) (-1085) (-412) (-1085))) (-15 -3009 ((-1171) (-1085))) (-15 -2994 ((-1085))) (-15 -3615 ((-1085))) (-15 -1512 ((-1171) (-1085) (-588 (-1085)) $)) (-15 -1512 ((-1171) (-1085) (-588 (-1085)))) (-15 -1512 ((-1171) (-588 (-1085)))) (-15 -4167 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void")) $)) (-15 -4167 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void")))) (-15 -4167 ((-1171) (-3 (|:| |fst| (-409)) (|:| -1367 "void")))) (-15 -1900 ((-1171) (-1085) $)) (-15 -1900 ((-1171) (-1085))) (-15 -1900 ((-1171))) (-15 -3528 ((-1171) (-1085))) (-15 -3775 ($)) (-15 -1218 ((-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-1085) $)) (-15 -3033 ((-588 (-1085)) (-1085) $)) (-15 -1429 ((-1089) (-1085) $))))) (T -1088))
+((-2280 (*1 *1) (-5 *1 (-1088))) (-2515 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-3425 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) (-3425 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *4 (-1085)) (-5 *1 (-1088)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) (-3425 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-2994 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088)))) (-3615 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088)))) (-1512 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4167 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1085)) (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1900 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-1900 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))) (-3775 (*1 *1) (-5 *1 (-1088))) (-1218 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *1 (-1088)))) (-3033 (*1 *2 *3 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1088)) (-5 *3 (-1085)))) (-1429 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1089)) (-5 *1 (-1088)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2280 ($)) (-15 -2515 ((-1171))) (-15 -2515 ((-1171) (-1085))) (-15 -3425 ((-412) (-1085) (-412) (-1085) $)) (-15 -3425 ((-412) (-588 (-1085)) (-412) (-1085) $)) (-15 -3425 ((-412) (-1085) (-412))) (-15 -3425 ((-412) (-1085) (-412) (-1085))) (-15 -3009 ((-1171) (-1085))) (-15 -2994 ((-1085))) (-15 -3615 ((-1085))) (-15 -1512 ((-1171) (-1085) (-588 (-1085)) $)) (-15 -1512 ((-1171) (-1085) (-588 (-1085)))) (-15 -1512 ((-1171) (-588 (-1085)))) (-15 -4167 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void")) $)) (-15 -4167 ((-1171) (-1085) (-3 (|:| |fst| (-409)) (|:| -1367 "void")))) (-15 -4167 ((-1171) (-3 (|:| |fst| (-409)) (|:| -1367 "void")))) (-15 -1900 ((-1171) (-1085) $)) (-15 -1900 ((-1171) (-1085))) (-15 -1900 ((-1171))) (-15 -3528 ((-1171) (-1085))) (-15 -3775 ($)) (-15 -1218 ((-3 (|:| |fst| (-409)) (|:| -1367 "void")) (-1085) $)) (-15 -3033 ((-588 (-1085)) (-1085) $)) (-15 -1429 ((-1089) (-1085) $))))
+((-2263 (((-588 (-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) $) 57)) (-4053 (((-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))) (-409) $) 40)) (-1954 (($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-412))))) 15)) (-3528 (((-1171) $) 65)) (-2713 (((-588 (-1085)) $) 20)) (-2833 (((-1018) $) 53)) (-2698 (((-412) (-1085) $) 27)) (-1559 (((-588 (-1085)) $) 30)) (-3775 (($) 17)) (-3425 (((-412) (-588 (-1085)) (-412) $) 25) (((-412) (-1085) (-412) $) 24)) (-2190 (((-792) $) 9) (((-1094 (-1085) (-412)) $) 11)))
+(((-1089) (-13 (-562 (-792)) (-10 -8 (-15 -2190 ((-1094 (-1085) (-412)) $)) (-15 -3775 ($)) (-15 -3425 ((-412) (-588 (-1085)) (-412) $)) (-15 -3425 ((-412) (-1085) (-412) $)) (-15 -2698 ((-412) (-1085) $)) (-15 -2713 ((-588 (-1085)) $)) (-15 -4053 ((-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))) (-409) $)) (-15 -1559 ((-588 (-1085)) $)) (-15 -2263 ((-588 (-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) $)) (-15 -2833 ((-1018) $)) (-15 -3528 ((-1171) $)) (-15 -1954 ($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-412))))))))) (T -1089))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1094 (-1085) (-412))) (-5 *1 (-1089)))) (-3775 (*1 *1) (-5 *1 (-1089))) (-3425 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *1 (-1089)))) (-3425 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1089)))) (-2698 (*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-412)) (-5 *1 (-1089)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089)))) (-4053 (*1 *2 *3 *1) (-12 (-5 *3 (-409)) (-5 *2 (-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) (-5 *1 (-1089)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))))) (-5 *1 (-1089)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1089)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1089)))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-412))))) (-5 *1 (-1089)))))
+(-13 (-562 (-792)) (-10 -8 (-15 -2190 ((-1094 (-1085) (-412)) $)) (-15 -3775 ($)) (-15 -3425 ((-412) (-588 (-1085)) (-412) $)) (-15 -3425 ((-412) (-1085) (-412) $)) (-15 -2698 ((-412) (-1085) $)) (-15 -2713 ((-588 (-1085)) $)) (-15 -4053 ((-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))) (-409) $)) (-15 -1559 ((-588 (-1085)) $)) (-15 -2263 ((-588 (-588 (-3 (|:| -2888 (-1085)) (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))) $)) (-15 -2833 ((-1018) $)) (-15 -3528 ((-1171) $)) (-15 -1954 ($ (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-412))))))))
+((-1416 (((-108) $ $) NIL)) (-3939 (((-108) $) 42)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2494 (((-3 (-522) (-202) (-1085) (-1068) $) $) 50)) (-3323 (((-588 $) $) 55)) (-1431 (((-1018) $) 20) (($ (-1018)) 21)) (-4023 (((-108) $) 52)) (-2190 (((-792) $) NIL) (($ (-522)) 23) (((-522) $) 25) (($ (-202)) 27) (((-202) $) 29) (($ (-1085)) 31) (((-1085) $) 33) (($ (-1068)) 35) (((-1068) $) 37)) (-2176 (((-108) $ (|[\|\|]| (-522))) 10) (((-108) $ (|[\|\|]| (-202))) 13) (((-108) $ (|[\|\|]| (-1085))) 19) (((-108) $ (|[\|\|]| (-1068))) 16)) (-3573 (($ (-1085) (-588 $)) 39) (($ $ (-588 $)) 40)) (-2442 (((-522) $) 24) (((-202) $) 28) (((-1085) $) 32) (((-1068) $) 36)) (-1531 (((-108) $ $) 7)))
+(((-1090) (-13 (-1161) (-1014) (-10 -8 (-15 -1431 ((-1018) $)) (-15 -1431 ($ (-1018))) (-15 -2190 ($ (-522))) (-15 -2190 ((-522) $)) (-15 -2442 ((-522) $)) (-15 -2190 ($ (-202))) (-15 -2190 ((-202) $)) (-15 -2442 ((-202) $)) (-15 -2190 ($ (-1085))) (-15 -2190 ((-1085) $)) (-15 -2442 ((-1085) $)) (-15 -2190 ($ (-1068))) (-15 -2190 ((-1068) $)) (-15 -2442 ((-1068) $)) (-15 -3573 ($ (-1085) (-588 $))) (-15 -3573 ($ $ (-588 $))) (-15 -3939 ((-108) $)) (-15 -2494 ((-3 (-522) (-202) (-1085) (-1068) $) $)) (-15 -3323 ((-588 $) $)) (-15 -4023 ((-108) $)) (-15 -2176 ((-108) $ (|[\|\|]| (-522)))) (-15 -2176 ((-108) $ (|[\|\|]| (-202)))) (-15 -2176 ((-108) $ (|[\|\|]| (-1085)))) (-15 -2176 ((-108) $ (|[\|\|]| (-1068))))))) (T -1090))
+((-1431 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1090)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-1090)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-1090))) (-5 *1 (-1090)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-3 (-522) (-202) (-1085) (-1068) (-1090))) (-5 *1 (-1090)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-108)) (-5 *1 (-1090)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1090)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-108)) (-5 *1 (-1090)))) (-2176 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-108)) (-5 *1 (-1090)))))
+(-13 (-1161) (-1014) (-10 -8 (-15 -1431 ((-1018) $)) (-15 -1431 ($ (-1018))) (-15 -2190 ($ (-522))) (-15 -2190 ((-522) $)) (-15 -2442 ((-522) $)) (-15 -2190 ($ (-202))) (-15 -2190 ((-202) $)) (-15 -2442 ((-202) $)) (-15 -2190 ($ (-1085))) (-15 -2190 ((-1085) $)) (-15 -2442 ((-1085) $)) (-15 -2190 ($ (-1068))) (-15 -2190 ((-1068) $)) (-15 -2442 ((-1068) $)) (-15 -3573 ($ (-1085) (-588 $))) (-15 -3573 ($ $ (-588 $))) (-15 -3939 ((-108) $)) (-15 -2494 ((-3 (-522) (-202) (-1085) (-1068) $) $)) (-15 -3323 ((-588 $) $)) (-15 -4023 ((-108) $)) (-15 -2176 ((-108) $ (|[\|\|]| (-522)))) (-15 -2176 ((-108) $ (|[\|\|]| (-202)))) (-15 -2176 ((-108) $ (|[\|\|]| (-1085)))) (-15 -2176 ((-108) $ (|[\|\|]| (-1068))))))
+((-2711 (((-588 (-588 (-881 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 55)) (-3426 (((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|)))) 67) (((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|))) 63) (((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085)) 68) (((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085)) 62) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|))))) 92) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|)))) 91) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085))) 93) (((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))) (-588 (-1085))) 90)))
+(((-1091 |#1|) (-10 -7 (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))))) (-15 -2711 ((-588 (-588 (-881 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085))))) (-514)) (T -1091))
+((-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-881 *5)))) (-5 *1 (-1091 *5)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4))))) (-5 *1 (-1091 *4)) (-5 *3 (-270 (-382 (-881 *4)))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4))))) (-5 *1 (-1091 *4)) (-5 *3 (-382 (-881 *4))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5)) (-5 *3 (-270 (-382 (-881 *5)))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1085)) (-4 *5 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5)) (-5 *3 (-382 (-881 *5))))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-1091 *4)) (-5 *3 (-588 (-270 (-382 (-881 *4))))))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-588 (-382 (-881 *4)))) (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-1091 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-1091 *5)) (-5 *3 (-588 (-270 (-382 (-881 *5))))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085))) (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-1091 *5)))))
+(-10 -7 (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))) (-588 (-1085)))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-382 (-881 |#1|))))) (-15 -3426 ((-588 (-588 (-270 (-382 (-881 |#1|))))) (-588 (-270 (-382 (-881 |#1|)))))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)) (-1085))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))) (-1085))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-382 (-881 |#1|)))) (-15 -3426 ((-588 (-270 (-382 (-881 |#1|)))) (-270 (-382 (-881 |#1|))))) (-15 -2711 ((-588 (-588 (-881 |#1|))) (-588 (-382 (-881 |#1|))) (-588 (-1085)))))
+((-4000 (((-588 (-588 |#1|)) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|)))) 38)) (-1206 (((-588 (-588 (-588 |#1|))) (-588 (-588 |#1|))) 24)) (-1530 (((-1093 (-588 |#1|)) (-588 |#1|)) 34)) (-3224 (((-588 (-588 |#1|)) (-588 |#1|)) 30)) (-3923 (((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 (-588 (-588 |#1|)))) 37)) (-2278 (((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 |#1|) (-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|)))) 36)) (-3309 (((-588 (-588 |#1|)) (-588 (-588 |#1|))) 28)) (-2147 (((-588 |#1|) (-588 |#1|)) 31)) (-2162 (((-588 (-588 (-588 |#1|))) (-588 |#1|) (-588 (-588 (-588 |#1|)))) 18)) (-1519 (((-588 (-588 (-588 |#1|))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 (-588 |#1|)))) 15)) (-3598 (((-2 (|:| |fs| (-108)) (|:| |sd| (-588 |#1|)) (|:| |td| (-588 (-588 |#1|)))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 |#1|))) 13)) (-1976 (((-588 (-588 |#1|)) (-588 (-588 (-588 |#1|)))) 39)) (-1946 (((-588 (-588 |#1|)) (-1093 (-588 |#1|))) 41)))
+(((-1092 |#1|) (-10 -7 (-15 -3598 ((-2 (|:| |fs| (-108)) (|:| |sd| (-588 |#1|)) (|:| |td| (-588 (-588 |#1|)))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 |#1|)))) (-15 -1519 ((-588 (-588 (-588 |#1|))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -2162 ((-588 (-588 (-588 |#1|))) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -4000 ((-588 (-588 |#1|)) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -1976 ((-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -1946 ((-588 (-588 |#1|)) (-1093 (-588 |#1|)))) (-15 -1206 ((-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)))) (-15 -1530 ((-1093 (-588 |#1|)) (-588 |#1|))) (-15 -3309 ((-588 (-588 |#1|)) (-588 (-588 |#1|)))) (-15 -3224 ((-588 (-588 |#1|)) (-588 |#1|))) (-15 -2147 ((-588 |#1|) (-588 |#1|))) (-15 -2278 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 |#1|) (-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))))) (-15 -3923 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 (-588 (-588 |#1|)))))) (-784)) (T -1092))
+((-3923 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-2 (|:| |f1| (-588 *4)) (|:| |f2| (-588 (-588 (-588 *4)))) (|:| |f3| (-588 (-588 *4))) (|:| |f4| (-588 (-588 (-588 *4)))))) (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 (-588 *4)))))) (-2278 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-784)) (-5 *3 (-588 *6)) (-5 *5 (-588 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-588 *5)) (|:| |f3| *5) (|:| |f4| (-588 *5)))) (-5 *1 (-1092 *6)) (-5 *4 (-588 *5)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-1092 *3)))) (-3224 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)) (-5 *3 (-588 *4)))) (-3309 (*1 *2 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-784)) (-5 *1 (-1092 *3)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-1093 (-588 *4))) (-5 *1 (-1092 *4)) (-5 *3 (-588 *4)))) (-1206 (*1 *2 *3) (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 (-588 *4)))) (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 *4))))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1093 (-588 *4))) (-4 *4 (-784)) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)) (-4 *4 (-784)))) (-4000 (*1 *2 *2 *3) (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4))) (-4 *4 (-784)) (-5 *1 (-1092 *4)))) (-2162 (*1 *2 *3 *2) (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-588 *4)) (-4 *4 (-784)) (-5 *1 (-1092 *4)))) (-1519 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-588 *5)) (-4 *5 (-784)) (-5 *1 (-1092 *5)))) (-3598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-784)) (-5 *4 (-588 *6)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-588 *4)))) (-5 *1 (-1092 *6)) (-5 *5 (-588 *4)))))
+(-10 -7 (-15 -3598 ((-2 (|:| |fs| (-108)) (|:| |sd| (-588 |#1|)) (|:| |td| (-588 (-588 |#1|)))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 |#1|)))) (-15 -1519 ((-588 (-588 (-588 |#1|))) (-1 (-108) |#1| |#1|) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -2162 ((-588 (-588 (-588 |#1|))) (-588 |#1|) (-588 (-588 (-588 |#1|))))) (-15 -4000 ((-588 (-588 |#1|)) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -1976 ((-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))))) (-15 -1946 ((-588 (-588 |#1|)) (-1093 (-588 |#1|)))) (-15 -1206 ((-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)))) (-15 -1530 ((-1093 (-588 |#1|)) (-588 |#1|))) (-15 -3309 ((-588 (-588 |#1|)) (-588 (-588 |#1|)))) (-15 -3224 ((-588 (-588 |#1|)) (-588 |#1|))) (-15 -2147 ((-588 |#1|) (-588 |#1|))) (-15 -2278 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 |#1|) (-588 (-588 (-588 |#1|))) (-588 (-588 |#1|)) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))) (-588 (-588 (-588 |#1|))))) (-15 -3923 ((-2 (|:| |f1| (-588 |#1|)) (|:| |f2| (-588 (-588 (-588 |#1|)))) (|:| |f3| (-588 (-588 |#1|))) (|:| |f4| (-588 (-588 (-588 |#1|))))) (-588 (-588 (-588 |#1|))))))
+((-2299 (($ (-588 (-588 |#1|))) 9)) (-3237 (((-588 (-588 |#1|)) $) 10)) (-2190 (((-792) $) 25)))
+(((-1093 |#1|) (-10 -8 (-15 -2299 ($ (-588 (-588 |#1|)))) (-15 -3237 ((-588 (-588 |#1|)) $)) (-15 -2190 ((-792) $))) (-1014)) (T -1093))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1093 *3)) (-4 *3 (-1014)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 *3))) (-5 *1 (-1093 *3)) (-4 *3 (-1014)))) (-2299 (*1 *1 *2) (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-1093 *3)))))
+(-10 -8 (-15 -2299 ($ (-588 (-588 |#1|)))) (-15 -3237 ((-588 (-588 |#1|)) $)) (-15 -2190 ((-792) $)))
+((-1416 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-1800 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2679 (((-1171) $ |#1| |#1|) NIL (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#2| $ |#1| |#2|) NIL)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) NIL)) (-3175 (($) NIL T CONST)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) NIL)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) NIL)) (-1359 ((|#1| $) NIL (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-588 |#2|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-2014 ((|#1| $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2966 (((-588 |#1|) $) NIL)) (-1231 (((-108) |#1| $) NIL)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3604 (((-588 |#1|) $) NIL)) (-1405 (((-108) |#1| $) NIL)) (-4151 (((-1032) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-2294 ((|#2| $) NIL (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL)) (-2602 (($ $ |#2|) NIL (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3990 (($) NIL) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) NIL (-12 (|has| $ (-6 -4238)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (((-708) |#2| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014)))) (((-708) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-2190 (((-792) $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792))) (|has| |#2| (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) NIL)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) NIL (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) NIL (-3708 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| |#2| (-1014))))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1094 |#1| |#2|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238))) (-1014) (-1014)) (T -1094))
+NIL
+(-13 (-1097 |#1| |#2|) (-10 -7 (-6 -4238)))
+((-3292 ((|#1| (-588 |#1|)) 32)) (-3616 ((|#1| |#1| (-522)) 18)) (-1686 (((-1081 |#1|) |#1| (-850)) 15)))
+(((-1095 |#1|) (-10 -7 (-15 -3292 (|#1| (-588 |#1|))) (-15 -1686 ((-1081 |#1|) |#1| (-850))) (-15 -3616 (|#1| |#1| (-522)))) (-338)) (T -1095))
+((-3616 (*1 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-1095 *2)) (-4 *2 (-338)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-850)) (-5 *2 (-1081 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-338)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-1095 *2)) (-4 *2 (-338)))))
+(-10 -7 (-15 -3292 (|#1| (-588 |#1|))) (-15 -1686 ((-1081 |#1|) |#1| (-850))) (-15 -3616 (|#1| |#1| (-522))))
+((-1800 (($) 10) (($ (-588 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)))) 14)) (-3859 (($ (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) $) 60) (($ (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3837 (((-588 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) 39) (((-588 |#3|) $) 41)) (-3838 (($ (-1 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1391 (($ (-1 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2116 (((-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) $) 53)) (-4095 (($ (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) $) 16)) (-3604 (((-588 |#2|) $) 19)) (-1405 (((-108) |#2| $) 58)) (-1414 (((-3 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) "failed") (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) 57)) (-4087 (((-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) $) 62)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 66)) (-1525 (((-588 |#3|) $) 43)) (-2545 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) NIL) (((-708) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) $) NIL) (((-708) |#3| $) NIL) (((-708) (-1 (-108) |#3|) $) 67)) (-2190 (((-792) $) 27)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 64)) (-1531 (((-108) $ $) 48)))
+(((-1096 |#1| |#2| |#3|) (-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -1391 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1800 (|#1| (-588 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))))) (-15 -1800 (|#1|)) (-15 -1391 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3838 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4168 ((-708) (-1 (-108) |#3|) |#1|)) (-15 -3837 ((-588 |#3|) |#1|)) (-15 -4168 ((-708) |#3| |#1|)) (-15 -2545 (|#3| |#1| |#2| |#3|)) (-15 -2545 (|#3| |#1| |#2|)) (-15 -1525 ((-588 |#3|) |#1|)) (-15 -1405 ((-108) |#2| |#1|)) (-15 -3604 ((-588 |#2|) |#1|)) (-15 -3859 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3859 (|#1| (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3859 (|#1| (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -1414 ((-3 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) "failed") (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -2116 ((-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -4095 (|#1| (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -4087 ((-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -4168 ((-708) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -3837 ((-588 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -4168 ((-708) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3053 ((-108) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3648 ((-108) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3838 (|#1| (-1 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -1391 (|#1| (-1 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|))) (-1097 |#2| |#3|) (-1014) (-1014)) (T -1096))
+NIL
+(-10 -8 (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -1391 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1800 (|#1| (-588 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))))) (-15 -1800 (|#1|)) (-15 -1391 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3838 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3648 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3053 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -4168 ((-708) (-1 (-108) |#3|) |#1|)) (-15 -3837 ((-588 |#3|) |#1|)) (-15 -4168 ((-708) |#3| |#1|)) (-15 -2545 (|#3| |#1| |#2| |#3|)) (-15 -2545 (|#3| |#1| |#2|)) (-15 -1525 ((-588 |#3|) |#1|)) (-15 -1405 ((-108) |#2| |#1|)) (-15 -3604 ((-588 |#2|) |#1|)) (-15 -3859 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3859 (|#1| (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3859 (|#1| (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -1414 ((-3 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) "failed") (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -2116 ((-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -4095 (|#1| (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -4087 ((-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -4168 ((-708) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) |#1|)) (-15 -3837 ((-588 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -4168 ((-708) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3053 ((-108) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3648 ((-108) (-1 (-108) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -3838 (|#1| (-1 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)) (-15 -1391 (|#1| (-1 (-2 (|:| -2530 |#2|) (|:| -3048 |#3|)) (-2 (|:| -2530 |#2|) (|:| -3048 |#3|))) |#1|)))
+((-1416 (((-108) $ $) 19 (-3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-1800 (($) 72) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 71)) (-2679 (((-1171) $ |#1| |#1|) 99 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#2| $ |#1| |#2|) 73)) (-2790 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 45 (|has| $ (-6 -4238)))) (-1628 (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 55 (|has| $ (-6 -4238)))) (-2750 (((-3 |#2| "failed") |#1| $) 61)) (-3175 (($) 7 T CONST)) (-2333 (($ $) 58 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238))))) (-3859 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 47 (|has| $ (-6 -4238))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 46 (|has| $ (-6 -4238))) (((-3 |#2| "failed") |#1| $) 62)) (-1423 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 54 (|has| $ (-6 -4238)))) (-3864 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 56 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 53 (|has| $ (-6 -4238))) (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 52 (|has| $ (-6 -4238)))) (-3854 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4239)))) (-3631 ((|#2| $ |#1|) 88)) (-3837 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 30 (|has| $ (-6 -4238))) (((-588 |#2|) $) 79 (|has| $ (-6 -4238)))) (-3352 (((-108) $ (-708)) 9)) (-1359 ((|#1| $) 96 (|has| |#1| (-784)))) (-3308 (((-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 29 (|has| $ (-6 -4238))) (((-588 |#2|) $) 80 (|has| $ (-6 -4238)))) (-2246 (((-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238))))) (-2014 ((|#1| $) 95 (|has| |#1| (-784)))) (-3838 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 34 (|has| $ (-6 -4239))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4239)))) (-1391 (($ (-1 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2720 (((-108) $ (-708)) 10)) (-2385 (((-1068) $) 22 (-3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-2966 (((-588 |#1|) $) 63)) (-1231 (((-108) |#1| $) 64)) (-2116 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 39)) (-4095 (($ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 40)) (-3604 (((-588 |#1|) $) 93)) (-1405 (((-108) |#1| $) 92)) (-4151 (((-1032) $) 21 (-3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-2294 ((|#2| $) 97 (|has| |#1| (-784)))) (-1414 (((-3 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) "failed") (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 51)) (-2602 (($ $ |#2|) 98 (|has| $ (-6 -4239)))) (-4087 (((-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 41)) (-3053 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 32 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))))) 26 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-270 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 25 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) 24 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 23 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)))) (($ $ (-588 |#2|) (-588 |#2|)) 86 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-270 |#2|)) 84 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014)))) (($ $ (-588 (-270 |#2|))) 83 (-12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4238)) (|has| |#2| (-1014))))) (-1525 (((-588 |#2|) $) 91)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3990 (($) 49) (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 48)) (-4168 (((-708) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 31 (|has| $ (-6 -4238))) (((-708) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| $ (-6 -4238)))) (((-708) |#2| $) 81 (-12 (|has| |#2| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4238)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 59 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))))) (-2201 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 50)) (-2190 (((-792) $) 18 (-3708 (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792)))))) (-2795 (($ (-588 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) 42)) (-3648 (((-108) (-1 (-108) (-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) $) 33 (|has| $ (-6 -4238))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (-3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1097 |#1| |#2|) (-1197) (-1014) (-1014)) (T -1097))
+((-2379 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1800 (*1 *1) (-12 (-4 *1 (-1097 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-588 (-2 (|:| -2530 *3) (|:| -3048 *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1097 *3 *4)))) (-1391 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1097 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+(-13 (-559 |t#1| |t#2|) (-555 |t#1| |t#2|) (-10 -8 (-15 -2379 (|t#2| $ |t#1| |t#2|)) (-15 -1800 ($)) (-15 -1800 ($ (-588 (-2 (|:| -2530 |t#1|) (|:| -3048 |t#2|))))) (-15 -1391 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -2530 |#1|) (|:| -3048 |#2|))) . T) ((-97) -3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-562 (-792)) -3708 (|has| |#2| (-1014)) (|has| |#2| (-562 (-792))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-562 (-792)))) ((-139 #0#) . T) ((-563 (-498)) |has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-563 (-498))) ((-206 #0#) . T) ((-212 #0#) . T) ((-262 |#1| |#2|) . T) ((-264 |#1| |#2|) . T) ((-285 #0#) -12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-285 |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-461 #0#) . T) ((-461 |#2|) . T) ((-555 |#1| |#2|) . T) ((-483 #0# #0#) -12 (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-285 (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)))) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-483 |#2| |#2|) -12 (|has| |#2| (-285 |#2|)) (|has| |#2| (-1014))) ((-559 |#1| |#2|) . T) ((-1014) -3708 (|has| |#2| (-1014)) (|has| (-2 (|:| -2530 |#1|) (|:| -3048 |#2|)) (-1014))) ((-1120) . T))
+((-2869 (((-108)) 24)) (-1397 (((-1171) (-1068)) 26)) (-3769 (((-108)) 36)) (-3334 (((-1171)) 34)) (-2083 (((-1171) (-1068) (-1068)) 25)) (-1940 (((-108)) 37)) (-4095 (((-1171) |#1| |#2|) 44)) (-2625 (((-1171)) 20)) (-2651 (((-3 |#2| "failed") |#1|) 42)) (-3571 (((-1171)) 35)))
+(((-1098 |#1| |#2|) (-10 -7 (-15 -2625 ((-1171))) (-15 -2083 ((-1171) (-1068) (-1068))) (-15 -1397 ((-1171) (-1068))) (-15 -3334 ((-1171))) (-15 -3571 ((-1171))) (-15 -2869 ((-108))) (-15 -3769 ((-108))) (-15 -1940 ((-108))) (-15 -2651 ((-3 |#2| "failed") |#1|)) (-15 -4095 ((-1171) |#1| |#2|))) (-1014) (-1014)) (T -1098))
+((-4095 (*1 *2 *3 *4) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2651 (*1 *2 *3) (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1098 *3 *2)) (-4 *3 (-1014)))) (-1940 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3769 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2869 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3571 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3334 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-2083 (*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-2625 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+(-10 -7 (-15 -2625 ((-1171))) (-15 -2083 ((-1171) (-1068) (-1068))) (-15 -1397 ((-1171) (-1068))) (-15 -3334 ((-1171))) (-15 -3571 ((-1171))) (-15 -2869 ((-108))) (-15 -3769 ((-108))) (-15 -1940 ((-108))) (-15 -2651 ((-3 |#2| "failed") |#1|)) (-15 -4095 ((-1171) |#1| |#2|)))
+((-4024 (((-1068) (-1068)) 18)) (-3312 (((-51) (-1068)) 21)))
+(((-1099) (-10 -7 (-15 -3312 ((-51) (-1068))) (-15 -4024 ((-1068) (-1068))))) (T -1099))
+((-4024 (*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1099)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-1099)))))
+(-10 -7 (-15 -3312 ((-51) (-1068))) (-15 -4024 ((-1068) (-1068))))
+((-2190 (((-1101) |#1|) 11)))
+(((-1100 |#1|) (-10 -7 (-15 -2190 ((-1101) |#1|))) (-1014)) (T -1100))
+((-2190 (*1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *1 (-1100 *3)) (-4 *3 (-1014)))))
+(-10 -7 (-15 -2190 ((-1101) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-1632 (((-588 (-1068)) $) 33)) (-2021 (((-588 (-1068)) $ (-588 (-1068))) 36)) (-2301 (((-588 (-1068)) $ (-588 (-1068))) 35)) (-3900 (((-588 (-1068)) $ (-588 (-1068))) 37)) (-2536 (((-588 (-1068)) $) 32)) (-1811 (($) 22)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2185 (((-588 (-1068)) $) 34)) (-1678 (((-1171) $ (-522)) 29) (((-1171) $) 30)) (-1431 (($ (-792) (-522)) 26) (($ (-792) (-522) (-792)) NIL)) (-2190 (((-792) $) 39) (($ (-792)) 24)) (-1531 (((-108) $ $) NIL)))
+(((-1101) (-13 (-1014) (-10 -8 (-15 -2190 ($ (-792))) (-15 -1431 ($ (-792) (-522))) (-15 -1431 ($ (-792) (-522) (-792))) (-15 -1678 ((-1171) $ (-522))) (-15 -1678 ((-1171) $)) (-15 -2185 ((-588 (-1068)) $)) (-15 -1632 ((-588 (-1068)) $)) (-15 -1811 ($)) (-15 -2536 ((-588 (-1068)) $)) (-15 -3900 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2021 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2301 ((-588 (-1068)) $ (-588 (-1068))))))) (T -1101))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1101)))) (-1431 (*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101)))) (-1431 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101)))) (-1678 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1101)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1101)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-1811 (*1 *1) (-5 *1 (-1101))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-3900 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-2021 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))) (-2301 (*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
+(-13 (-1014) (-10 -8 (-15 -2190 ($ (-792))) (-15 -1431 ($ (-792) (-522))) (-15 -1431 ($ (-792) (-522) (-792))) (-15 -1678 ((-1171) $ (-522))) (-15 -1678 ((-1171) $)) (-15 -2185 ((-588 (-1068)) $)) (-15 -1632 ((-588 (-1068)) $)) (-15 -1811 ($)) (-15 -2536 ((-588 (-1068)) $)) (-15 -3900 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2021 ((-588 (-1068)) $ (-588 (-1068)))) (-15 -2301 ((-588 (-1068)) $ (-588 (-1068))))))
+((-1416 (((-108) $ $) NIL)) (-2829 (((-1068) $ (-1068)) 15) (((-1068) $) 14)) (-1270 (((-1068) $ (-1068)) 13)) (-2563 (($ $ (-1068)) NIL)) (-1284 (((-3 (-1068) "failed") $) 11)) (-3519 (((-1068) $) 8)) (-1789 (((-3 (-1068) "failed") $) 12)) (-4045 (((-1068) $) 9)) (-1544 (($ (-363)) NIL) (($ (-363) (-1068)) NIL)) (-2888 (((-363) $) NIL)) (-2385 (((-1068) $) NIL)) (-3469 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2668 (((-108) $) 17)) (-2190 (((-792) $) NIL)) (-2152 (($ $) NIL)) (-1531 (((-108) $ $) NIL)))
+(((-1102) (-13 (-339 (-363) (-1068)) (-10 -8 (-15 -2829 ((-1068) $ (-1068))) (-15 -2829 ((-1068) $)) (-15 -3519 ((-1068) $)) (-15 -1284 ((-3 (-1068) "failed") $)) (-15 -1789 ((-3 (-1068) "failed") $)) (-15 -2668 ((-108) $))))) (T -1102))
+((-2829 (*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-1284 (*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-1789 (*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1102)))))
+(-13 (-339 (-363) (-1068)) (-10 -8 (-15 -2829 ((-1068) $ (-1068))) (-15 -2829 ((-1068) $)) (-15 -3519 ((-1068) $)) (-15 -1284 ((-3 (-1068) "failed") $)) (-15 -1789 ((-3 (-1068) "failed") $)) (-15 -2668 ((-108) $))))
+((-1341 (((-3 (-522) "failed") |#1|) 19)) (-1315 (((-3 (-522) "failed") |#1|) 13)) (-2287 (((-522) (-1068)) 28)))
+(((-1103 |#1|) (-10 -7 (-15 -1341 ((-3 (-522) "failed") |#1|)) (-15 -1315 ((-3 (-522) "failed") |#1|)) (-15 -2287 ((-522) (-1068)))) (-971)) (T -1103))
+((-2287 (*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-1103 *4)) (-4 *4 (-971)))) (-1315 (*1 *2 *3) (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971)))) (-1341 (*1 *2 *3) (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971)))))
+(-10 -7 (-15 -1341 ((-3 (-522) "failed") |#1|)) (-15 -1315 ((-3 (-522) "failed") |#1|)) (-15 -2287 ((-522) (-1068))))
+((-2452 (((-1045 (-202))) 8)))
+(((-1104) (-10 -7 (-15 -2452 ((-1045 (-202)))))) (T -1104))
+((-2452 (*1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1104)))))
+(-10 -7 (-15 -2452 ((-1045 (-202)))))
+((-2838 (($) 11)) (-1759 (($ $) 35)) (-1745 (($ $) 33)) (-2815 (($ $) 25)) (-1776 (($ $) 17)) (-3924 (($ $) 15)) (-1768 (($ $) 19)) (-2848 (($ $) 30)) (-1752 (($ $) 34)) (-2825 (($ $) 29)))
+(((-1105 |#1|) (-10 -8 (-15 -2838 (|#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2848 (|#1| |#1|)) (-15 -2825 (|#1| |#1|))) (-1106)) (T -1105))
+NIL
+(-10 -8 (-15 -2838 (|#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2848 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)))
+((-2908 (($ $) 26)) (-2772 (($ $) 11)) (-2884 (($ $) 27)) (-2748 (($ $) 10)) (-2930 (($ $) 28)) (-2794 (($ $) 9)) (-2838 (($) 16)) (-1254 (($ $) 19)) (-3266 (($ $) 18)) (-1738 (($ $) 29)) (-2804 (($ $) 8)) (-2919 (($ $) 30)) (-2784 (($ $) 7)) (-2896 (($ $) 31)) (-2761 (($ $) 6)) (-1759 (($ $) 20)) (-2836 (($ $) 32)) (-1745 (($ $) 21)) (-2815 (($ $) 33)) (-1776 (($ $) 22)) (-2860 (($ $) 34)) (-3924 (($ $) 23)) (-2872 (($ $) 35)) (-1768 (($ $) 24)) (-2848 (($ $) 36)) (-1752 (($ $) 25)) (-2825 (($ $) 37)) (** (($ $ $) 17)))
+(((-1106) (-1197)) (T -1106))
+((-2838 (*1 *1) (-4 *1 (-1106))))
+(-13 (-1109) (-91) (-463) (-34) (-260) (-10 -8 (-15 -2838 ($))))
+(((-34) . T) ((-91) . T) ((-260) . T) ((-463) . T) ((-1109) . T))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3435 ((|#1| $) 17)) (-3474 (($ |#1| (-588 $)) 23) (($ (-588 |#1|)) 27) (($ |#1|) 25)) (-4141 (((-108) $ (-708)) 47)) (-3628 ((|#1| $ |#1|) 14 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 13 (|has| $ (-6 -4239)))) (-3175 (($) NIL T CONST)) (-3837 (((-588 |#1|) $) 51 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 42)) (-2030 (((-108) $ $) 33 (|has| |#1| (-1014)))) (-3352 (((-108) $ (-708)) 40)) (-3308 (((-588 |#1|) $) 52 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 50 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-3838 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 22)) (-2720 (((-108) $ (-708)) 39)) (-1279 (((-588 |#1|) $) 37)) (-1754 (((-108) $) 36)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-3053 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 74)) (-3985 (((-108) $) 9)) (-3775 (($) 10)) (-2545 ((|#1| $ "value") NIL)) (-2011 (((-522) $ $) 32)) (-3264 (((-588 $) $) 58)) (-3423 (((-108) $ $) 76)) (-3433 (((-588 $) $) 71)) (-3645 (($ $) 72)) (-3042 (((-108) $) 55)) (-4168 (((-708) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4238))) (((-708) |#1| $) 16 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2404 (($ $) 57)) (-2190 (((-792) $) 60 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 12)) (-2425 (((-108) $ $) 29 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 48 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 28 (|has| |#1| (-1014)))) (-3480 (((-708) $) 38 (|has| $ (-6 -4238)))))
+(((-1107 |#1|) (-13 (-936 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3474 ($ |#1| (-588 $))) (-15 -3474 ($ (-588 |#1|))) (-15 -3474 ($ |#1|)) (-15 -3042 ((-108) $)) (-15 -3645 ($ $)) (-15 -3433 ((-588 $) $)) (-15 -3423 ((-108) $ $)) (-15 -3264 ((-588 $) $)))) (-1014)) (T -1107))
+((-3042 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))) (-3474 (*1 *1 *2 *3) (-12 (-5 *3 (-588 (-1107 *2))) (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-1107 *3)))) (-3474 (*1 *1 *2) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))) (-3423 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))))
+(-13 (-936 |#1|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -3474 ($ |#1| (-588 $))) (-15 -3474 ($ (-588 |#1|))) (-15 -3474 ($ |#1|)) (-15 -3042 ((-108) $)) (-15 -3645 ($ $)) (-15 -3433 ((-588 $) $)) (-15 -3423 ((-108) $ $)) (-15 -3264 ((-588 $) $))))
+((-2772 (($ $) 15)) (-2794 (($ $) 12)) (-2804 (($ $) 10)) (-2784 (($ $) 17)))
+(((-1108 |#1|) (-10 -8 (-15 -2784 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -2772 (|#1| |#1|))) (-1109)) (T -1108))
+NIL
+(-10 -8 (-15 -2784 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -2772 (|#1| |#1|)))
+((-2772 (($ $) 11)) (-2748 (($ $) 10)) (-2794 (($ $) 9)) (-2804 (($ $) 8)) (-2784 (($ $) 7)) (-2761 (($ $) 6)))
+(((-1109) (-1197)) (T -1109))
+((-2772 (*1 *1 *1) (-4 *1 (-1109))) (-2748 (*1 *1 *1) (-4 *1 (-1109))) (-2794 (*1 *1 *1) (-4 *1 (-1109))) (-2804 (*1 *1 *1) (-4 *1 (-1109))) (-2784 (*1 *1 *1) (-4 *1 (-1109))) (-2761 (*1 *1 *1) (-4 *1 (-1109))))
+(-13 (-10 -8 (-15 -2761 ($ $)) (-15 -2784 ($ $)) (-15 -2804 ($ $)) (-15 -2794 ($ $)) (-15 -2748 ($ $)) (-15 -2772 ($ $))))
+((-3874 ((|#2| |#2|) 85)) (-2405 (((-108) |#2|) 25)) (-1937 ((|#2| |#2|) 29)) (-1948 ((|#2| |#2|) 31)) (-3846 ((|#2| |#2| (-1085)) 79) ((|#2| |#2|) 80)) (-4162 (((-154 |#2|) |#2|) 27)) (-2377 ((|#2| |#2| (-1085)) 81) ((|#2| |#2|) 82)))
+(((-1110 |#1| |#2|) (-10 -7 (-15 -3846 (|#2| |#2|)) (-15 -3846 (|#2| |#2| (-1085))) (-15 -2377 (|#2| |#2|)) (-15 -2377 (|#2| |#2| (-1085))) (-15 -3874 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2405 ((-108) |#2|)) (-15 -4162 ((-154 |#2|) |#2|))) (-13 (-426) (-784) (-962 (-522)) (-584 (-522))) (-13 (-27) (-1106) (-405 |#1|))) (T -1110))
+((-4162 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-154 *3)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-2405 (*1 *2 *3) (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *2 (-108)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *4))))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-2377 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-2377 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))) (-3846 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522)))) (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))))
+(-10 -7 (-15 -3846 (|#2| |#2|)) (-15 -3846 (|#2| |#2| (-1085))) (-15 -2377 (|#2| |#2|)) (-15 -2377 (|#2| |#2| (-1085))) (-15 -3874 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2405 ((-108) |#2|)) (-15 -4162 ((-154 |#2|) |#2|)))
+((-3718 ((|#4| |#4| |#1|) 27)) (-2980 ((|#4| |#4| |#1|) 28)))
+(((-1111 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3718 (|#4| |#4| |#1|)) (-15 -2980 (|#4| |#4| |#1|))) (-514) (-348 |#1|) (-348 |#1|) (-626 |#1| |#2| |#3|)) (T -1111))
+((-2980 (*1 *2 *2 *3) (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))) (-3718 (*1 *2 *2 *3) (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(-10 -7 (-15 -3718 (|#4| |#4| |#1|)) (-15 -2980 (|#4| |#4| |#1|)))
+((-3652 ((|#2| |#2|) 132)) (-2036 ((|#2| |#2|) 129)) (-1641 ((|#2| |#2|) 120)) (-3078 ((|#2| |#2|) 117)) (-3646 ((|#2| |#2|) 125)) (-4102 ((|#2| |#2|) 113)) (-4206 ((|#2| |#2|) 42)) (-2982 ((|#2| |#2|) 93)) (-3245 ((|#2| |#2|) 73)) (-1439 ((|#2| |#2|) 127)) (-2734 ((|#2| |#2|) 115)) (-1992 ((|#2| |#2|) 137)) (-1608 ((|#2| |#2|) 135)) (-3649 ((|#2| |#2|) 136)) (-1785 ((|#2| |#2|) 134)) (-1399 ((|#2| |#2|) 146)) (-3273 ((|#2| |#2|) 30 (-12 (|has| |#2| (-563 (-821 |#1|))) (|has| |#2| (-815 |#1|)) (|has| |#1| (-563 (-821 |#1|))) (|has| |#1| (-815 |#1|))))) (-1303 ((|#2| |#2|) 74)) (-3605 ((|#2| |#2|) 138)) (-1604 ((|#2| |#2|) 139)) (-1751 ((|#2| |#2|) 126)) (-1626 ((|#2| |#2|) 114)) (-2179 ((|#2| |#2|) 133)) (-3953 ((|#2| |#2|) 131)) (-2781 ((|#2| |#2|) 121)) (-3311 ((|#2| |#2|) 119)) (-3371 ((|#2| |#2|) 123)) (-2532 ((|#2| |#2|) 111)))
+(((-1112 |#1| |#2|) (-10 -7 (-15 -1604 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -2982 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -2781 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -2036 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -3953 (|#2| |#2|)) (-15 -1785 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (IF (|has| |#1| (-815 |#1|)) (IF (|has| |#1| (-563 (-821 |#1|))) (IF (|has| |#2| (-563 (-821 |#1|))) (IF (|has| |#2| (-815 |#1|)) (-15 -3273 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-784) (-426)) (-13 (-405 |#1|) (-1106))) (T -1112))
+((-3273 (*1 *2 *2) (-12 (-4 *3 (-563 (-821 *3))) (-4 *3 (-815 *3)) (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-563 (-821 *3))) (-4 *2 (-815 *3)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1785 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3311 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2036 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1439 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1626 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2781 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3371 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1303 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-2982 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1399 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-3245 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2)) (-4 *2 (-13 (-405 *3) (-1106))))))
+(-10 -7 (-15 -1604 (|#2| |#2|)) (-15 -3245 (|#2| |#2|)) (-15 -1399 (|#2| |#2|)) (-15 -2982 (|#2| |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -3605 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -3371 (|#2| |#2|)) (-15 -2781 (|#2| |#2|)) (-15 -2179 (|#2| |#2|)) (-15 -1626 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -1439 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -2036 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -3953 (|#2| |#2|)) (-15 -1785 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (IF (|has| |#1| (-815 |#1|)) (IF (|has| |#1| (-563 (-821 |#1|))) (IF (|has| |#2| (-563 (-821 |#1|))) (IF (|has| |#2| (-815 |#1|)) (-15 -3273 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3575 (((-108) |#5| $) 60) (((-108) $) 102)) (-3607 ((|#5| |#5| $) 75)) (-1628 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2149 (((-588 |#5|) (-588 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1297 (((-3 $ "failed") (-588 |#5|)) 126)) (-2306 (((-3 $ "failed") $) 112)) (-2806 ((|#5| |#5| $) 94)) (-1934 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-4164 ((|#5| |#5| $) 98)) (-3864 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2091 (((-2 (|:| -1650 (-588 |#5|)) (|:| -1544 (-588 |#5|))) $) 55)) (-3341 (((-108) |#5| $) 58) (((-108) $) 103)) (-1521 ((|#4| $) 108)) (-1442 (((-3 |#5| "failed") $) 110)) (-2242 (((-588 |#5|) $) 49)) (-3409 (((-108) |#5| $) 67) (((-108) $) 107)) (-1451 ((|#5| |#5| $) 81)) (-2123 (((-108) $ $) 27)) (-2230 (((-108) |#5| $) 63) (((-108) $) 105)) (-2680 ((|#5| |#5| $) 78)) (-2294 (((-3 |#5| "failed") $) 109)) (-3719 (($ $ |#5|) 127)) (-2793 (((-708) $) 52)) (-2201 (($ (-588 |#5|)) 124)) (-2020 (($ $ |#4|) 122)) (-3606 (($ $ |#4|) 121)) (-3968 (($ $) 120)) (-2190 (((-792) $) NIL) (((-588 |#5|) $) 113)) (-1974 (((-708) $) 130)) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-4212 (((-108) $ (-1 (-108) |#5| (-588 |#5|))) 100)) (-2360 (((-588 |#4|) $) 115)) (-2351 (((-108) |#4| $) 118)) (-1531 (((-108) $ $) 19)))
+(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1974 ((-708) |#1|)) (-15 -3719 (|#1| |#1| |#5|)) (-15 -1628 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2351 ((-108) |#4| |#1|)) (-15 -2360 ((-588 |#4|) |#1|)) (-15 -2306 ((-3 |#1| "failed") |#1|)) (-15 -1442 ((-3 |#5| "failed") |#1|)) (-15 -2294 ((-3 |#5| "failed") |#1|)) (-15 -4164 (|#5| |#5| |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -2806 (|#5| |#5| |#1|)) (-15 -1451 (|#5| |#5| |#1|)) (-15 -2680 (|#5| |#5| |#1|)) (-15 -3607 (|#5| |#5| |#1|)) (-15 -2149 ((-588 |#5|) (-588 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3864 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3409 ((-108) |#1|)) (-15 -2230 ((-108) |#1|)) (-15 -3575 ((-108) |#1|)) (-15 -4212 ((-108) |#1| (-1 (-108) |#5| (-588 |#5|)))) (-15 -3409 ((-108) |#5| |#1|)) (-15 -2230 ((-108) |#5| |#1|)) (-15 -3575 ((-108) |#5| |#1|)) (-15 -1934 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3341 ((-108) |#1|)) (-15 -3341 ((-108) |#5| |#1|)) (-15 -2091 ((-2 (|:| -1650 (-588 |#5|)) (|:| -1544 (-588 |#5|))) |#1|)) (-15 -2793 ((-708) |#1|)) (-15 -2242 ((-588 |#5|) |#1|)) (-15 -3989 ((-3 (-2 (|:| |bas| |#1|) (|:| -1355 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3989 ((-3 (-2 (|:| |bas| |#1|) (|:| -1355 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2123 ((-108) |#1| |#1|)) (-15 -2020 (|#1| |#1| |#4|)) (-15 -3606 (|#1| |#1| |#4|)) (-15 -1521 (|#4| |#1|)) (-15 -1297 ((-3 |#1| "failed") (-588 |#5|))) (-15 -2190 ((-588 |#5|) |#1|)) (-15 -2201 (|#1| (-588 |#5|))) (-15 -3864 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3864 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1628 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3864 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|))) (-1114 |#2| |#3| |#4| |#5|) (-514) (-730) (-784) (-985 |#2| |#3| |#4|)) (T -1113))
+NIL
+(-10 -8 (-15 -1974 ((-708) |#1|)) (-15 -3719 (|#1| |#1| |#5|)) (-15 -1628 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2351 ((-108) |#4| |#1|)) (-15 -2360 ((-588 |#4|) |#1|)) (-15 -2306 ((-3 |#1| "failed") |#1|)) (-15 -1442 ((-3 |#5| "failed") |#1|)) (-15 -2294 ((-3 |#5| "failed") |#1|)) (-15 -4164 (|#5| |#5| |#1|)) (-15 -3968 (|#1| |#1|)) (-15 -2806 (|#5| |#5| |#1|)) (-15 -1451 (|#5| |#5| |#1|)) (-15 -2680 (|#5| |#5| |#1|)) (-15 -3607 (|#5| |#5| |#1|)) (-15 -2149 ((-588 |#5|) (-588 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3864 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3409 ((-108) |#1|)) (-15 -2230 ((-108) |#1|)) (-15 -3575 ((-108) |#1|)) (-15 -4212 ((-108) |#1| (-1 (-108) |#5| (-588 |#5|)))) (-15 -3409 ((-108) |#5| |#1|)) (-15 -2230 ((-108) |#5| |#1|)) (-15 -3575 ((-108) |#5| |#1|)) (-15 -1934 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -3341 ((-108) |#1|)) (-15 -3341 ((-108) |#5| |#1|)) (-15 -2091 ((-2 (|:| -1650 (-588 |#5|)) (|:| -1544 (-588 |#5|))) |#1|)) (-15 -2793 ((-708) |#1|)) (-15 -2242 ((-588 |#5|) |#1|)) (-15 -3989 ((-3 (-2 (|:| |bas| |#1|) (|:| -1355 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3989 ((-3 (-2 (|:| |bas| |#1|) (|:| -1355 (-588 |#5|))) "failed") (-588 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2123 ((-108) |#1| |#1|)) (-15 -2020 (|#1| |#1| |#4|)) (-15 -3606 (|#1| |#1| |#4|)) (-15 -1521 (|#4| |#1|)) (-15 -1297 ((-3 |#1| "failed") (-588 |#5|))) (-15 -2190 ((-588 |#5|) |#1|)) (-15 -2201 (|#1| (-588 |#5|))) (-15 -3864 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3864 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1628 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3864 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2190 ((-792) |#1|)) (-15 -1531 ((-108) |#1| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) 85)) (-4125 (((-588 $) (-588 |#4|)) 86)) (-4090 (((-588 |#3|) $) 33)) (-2690 (((-108) $) 26)) (-4140 (((-108) $) 17 (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) 101) (((-108) $) 97)) (-3607 ((|#4| |#4| $) 92)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) 27)) (-4141 (((-108) $ (-708)) 44)) (-1628 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) 79)) (-3175 (($) 45 T CONST)) (-3639 (((-108) $) 22 (|has| |#1| (-514)))) (-3982 (((-108) $ $) 24 (|has| |#1| (-514)))) (-3996 (((-108) $ $) 23 (|has| |#1| (-514)))) (-3538 (((-108) $) 25 (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3050 (((-588 |#4|) (-588 |#4|) $) 18 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) 19 (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) 36)) (-1484 (($ (-588 |#4|)) 35)) (-2306 (((-3 $ "failed") $) 82)) (-2806 ((|#4| |#4| $) 89)) (-2333 (($ $) 68 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#4| $) 67 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-4164 ((|#4| |#4| $) 87)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) 105)) (-3837 (((-588 |#4|) $) 52 (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) 104) (((-108) $) 103)) (-1521 ((|#3| $) 34)) (-3352 (((-108) $ (-708)) 43)) (-3308 (((-588 |#4|) $) 53 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) 47)) (-2458 (((-588 |#3|) $) 32)) (-1606 (((-108) |#3| $) 31)) (-2720 (((-108) $ (-708)) 42)) (-2385 (((-1068) $) 9)) (-1442 (((-3 |#4| "failed") $) 83)) (-2242 (((-588 |#4|) $) 107)) (-3409 (((-108) |#4| $) 99) (((-108) $) 95)) (-1451 ((|#4| |#4| $) 90)) (-2123 (((-108) $ $) 110)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) 100) (((-108) $) 96)) (-2680 ((|#4| |#4| $) 91)) (-4151 (((-1032) $) 10)) (-2294 (((-3 |#4| "failed") $) 84)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3307 (((-3 $ "failed") $ |#4|) 78)) (-3719 (($ $ |#4|) 77)) (-3053 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) 59 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) 57 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) 56 (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) 38)) (-3985 (((-108) $) 41)) (-3775 (($) 40)) (-2793 (((-708) $) 106)) (-4168 (((-708) |#4| $) 54 (-12 (|has| |#4| (-1014)) (|has| $ (-6 -4238)))) (((-708) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4238)))) (-2404 (($ $) 39)) (-1431 (((-498) $) 69 (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) 60)) (-2020 (($ $ |#3|) 28)) (-3606 (($ $ |#3|) 30)) (-3968 (($ $) 88)) (-2463 (($ $ |#3|) 29)) (-2190 (((-792) $) 11) (((-588 |#4|) $) 37)) (-1974 (((-708) $) 76 (|has| |#3| (-343)))) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) 98)) (-3648 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) 81)) (-2351 (((-108) |#3| $) 80)) (-1531 (((-108) $ $) 6)) (-3480 (((-708) $) 46 (|has| $ (-6 -4238)))))
+(((-1114 |#1| |#2| |#3| |#4|) (-1197) (-514) (-730) (-784) (-985 |t#1| |t#2| |t#3|)) (T -1114))
+((-2123 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3989 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1355 (-588 *8)))) (-5 *3 (-588 *8)) (-4 *1 (-1114 *5 *6 *7 *8)))) (-3989 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1355 (-588 *9)))) (-5 *3 (-588 *9)) (-4 *1 (-1114 *6 *7 *8 *9)))) (-2242 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *6)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-708)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-2 (|:| -1650 (-588 *6)) (|:| -1544 (-588 *6)))))) (-3341 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-1934 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1114 *5 *6 *7 *3)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)))) (-3575 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-2230 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-3409 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-4212 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-588 *7))) (-4 *1 (-1114 *4 *5 *6 *7)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))) (-3864 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1114 *5 *6 *7 *2)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *2 (-985 *5 *6 *7)))) (-2149 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1114 *5 *6 *7 *8)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)))) (-3607 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2680 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-1451 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2806 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-3968 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4)))) (-4164 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1)) (-4 *1 (-1114 *4 *5 *6 *7)))) (-2950 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-588 (-2 (|:| -1650 *1) (|:| -1544 (-588 *7))))) (-5 *3 (-588 *7)) (-4 *1 (-1114 *4 *5 *6 *7)))) (-2294 (*1 *2 *1) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-2306 (*1 *1 *1) (|partial| -12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4)))) (-2360 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))) (-2351 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *3 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108)))) (-1628 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1114 *4 *5 *3 *2)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *3 (-784)) (-4 *2 (-985 *4 *5 *3)))) (-3307 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-3719 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *5 (-343)) (-5 *2 (-708)))))
+(-13 (-903 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4238) (-6 -4239) (-15 -2123 ((-108) $ $)) (-15 -3989 ((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |t#4|))) "failed") (-588 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3989 ((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |t#4|))) "failed") (-588 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2242 ((-588 |t#4|) $)) (-15 -2793 ((-708) $)) (-15 -2091 ((-2 (|:| -1650 (-588 |t#4|)) (|:| -1544 (-588 |t#4|))) $)) (-15 -3341 ((-108) |t#4| $)) (-15 -3341 ((-108) $)) (-15 -1934 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -3575 ((-108) |t#4| $)) (-15 -2230 ((-108) |t#4| $)) (-15 -3409 ((-108) |t#4| $)) (-15 -4212 ((-108) $ (-1 (-108) |t#4| (-588 |t#4|)))) (-15 -3575 ((-108) $)) (-15 -2230 ((-108) $)) (-15 -3409 ((-108) $)) (-15 -3864 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2149 ((-588 |t#4|) (-588 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3607 (|t#4| |t#4| $)) (-15 -2680 (|t#4| |t#4| $)) (-15 -1451 (|t#4| |t#4| $)) (-15 -2806 (|t#4| |t#4| $)) (-15 -3968 ($ $)) (-15 -4164 (|t#4| |t#4| $)) (-15 -4125 ((-588 $) (-588 |t#4|))) (-15 -2950 ((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |t#4|)))) (-588 |t#4|))) (-15 -2294 ((-3 |t#4| "failed") $)) (-15 -1442 ((-3 |t#4| "failed") $)) (-15 -2306 ((-3 $ "failed") $)) (-15 -2360 ((-588 |t#3|) $)) (-15 -2351 ((-108) |t#3| $)) (-15 -1628 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3307 ((-3 $ "failed") $ |t#4|)) (-15 -3719 ($ $ |t#4|)) (IF (|has| |t#3| (-343)) (-15 -1974 ((-708) $)) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-562 (-588 |#4|)) . T) ((-562 (-792)) . T) ((-139 |#4|) . T) ((-563 (-498)) |has| |#4| (-563 (-498))) ((-285 |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-461 |#4|) . T) ((-483 |#4| |#4|) -12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))) ((-903 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1120) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-1085)) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2199 (((-881 |#1|) $ (-708)) 17) (((-881 |#1|) $ (-708) (-708)) NIL)) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-708) $ (-1085)) NIL) (((-708) $ (-1085) (-708)) NIL)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3340 (((-108) $) NIL)) (-4049 (($ $ (-588 (-1085)) (-588 (-494 (-1085)))) NIL) (($ $ (-1085) (-494 (-1085))) NIL) (($ |#1| (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-1858 (($ $ (-1085)) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085) |#1|) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-2730 (($ (-1 $) (-1085) |#1|) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3719 (($ $ (-708)) NIL)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2289 (($ $ (-1085) $) NIL) (($ $ (-588 (-1085)) (-588 $)) NIL) (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL)) (-2157 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-2793 (((-494 (-1085)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ $) NIL (|has| |#1| (-514))) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-1085)) NIL) (($ (-881 |#1|)) NIL)) (-3243 ((|#1| $ (-494 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (((-881 |#1|) $ (-708)) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) NIL T CONST)) (-2213 (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1115 |#1|) (-13 (-678 |#1| (-1085)) (-10 -8 (-15 -3243 ((-881 |#1|) $ (-708))) (-15 -2190 ($ (-1085))) (-15 -2190 ($ (-881 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $ (-1085) |#1|)) (-15 -2730 ($ (-1 $) (-1085) |#1|))) |%noBranch|))) (-971)) (T -1115))
+((-3243 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-881 *4)) (-5 *1 (-1115 *4)) (-4 *4 (-971)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-971)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-1115 *3)))) (-1858 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)))) (-2730 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1115 *4))) (-5 *3 (-1085)) (-5 *1 (-1115 *4)) (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)))))
+(-13 (-678 |#1| (-1085)) (-10 -8 (-15 -3243 ((-881 |#1|) $ (-708))) (-15 -2190 ($ (-1085))) (-15 -2190 ($ (-881 |#1|))) (IF (|has| |#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $ (-1085) |#1|)) (-15 -2730 ($ (-1 $) (-1085) |#1|))) |%noBranch|)))
+((-2124 (($ |#1| (-588 (-588 (-872 (-202)))) (-108)) 16)) (-2883 (((-108) $ (-108)) 15)) (-2364 (((-108) $) 14)) (-2654 (((-588 (-588 (-872 (-202)))) $) 10)) (-1510 ((|#1| $) 8)) (-3888 (((-108) $) 12)))
+(((-1116 |#1|) (-10 -8 (-15 -1510 (|#1| $)) (-15 -2654 ((-588 (-588 (-872 (-202)))) $)) (-15 -3888 ((-108) $)) (-15 -2364 ((-108) $)) (-15 -2883 ((-108) $ (-108))) (-15 -2124 ($ |#1| (-588 (-588 (-872 (-202)))) (-108)))) (-901)) (T -1116))
+((-2124 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-108)) (-5 *1 (-1116 *2)) (-4 *2 (-901)))) (-2883 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-1116 *3)) (-4 *3 (-901)))) (-1510 (*1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-901)))))
+(-10 -8 (-15 -1510 (|#1| $)) (-15 -2654 ((-588 (-588 (-872 (-202)))) $)) (-15 -3888 ((-108) $)) (-15 -2364 ((-108) $)) (-15 -2883 ((-108) $ (-108))) (-15 -2124 ($ |#1| (-588 (-588 (-872 (-202)))) (-108))))
+((-2468 (((-872 (-202)) (-872 (-202))) 25)) (-2736 (((-872 (-202)) (-202) (-202) (-202) (-202)) 10)) (-3751 (((-588 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-588 (-588 (-202)))) 37)) (-1883 (((-202) (-872 (-202)) (-872 (-202))) 21)) (-3230 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 22)) (-2981 (((-588 (-588 (-202))) (-522)) 31)) (-1612 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 20)) (-1602 (((-872 (-202)) (-872 (-202)) (-872 (-202))) 19)) (* (((-872 (-202)) (-202) (-872 (-202))) 18)))
+(((-1117) (-10 -7 (-15 -2736 ((-872 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-872 (-202)) (-202) (-872 (-202)))) (-15 -1602 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1612 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1883 ((-202) (-872 (-202)) (-872 (-202)))) (-15 -3230 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -2468 ((-872 (-202)) (-872 (-202)))) (-15 -2981 ((-588 (-588 (-202))) (-522))) (-15 -3751 ((-588 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-588 (-588 (-202))))))) (T -1117))
+((-3751 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-588 (-588 (-202)))) (-5 *4 (-202)) (-5 *2 (-588 (-872 *4))) (-5 *1 (-1117)) (-5 *3 (-872 *4)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-522)) (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-1117)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (-3230 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (-1883 (*1 *2 *3 *3) (-12 (-5 *3 (-872 (-202))) (-5 *2 (-202)) (-5 *1 (-1117)))) (-1612 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-872 (-202))) (-5 *3 (-202)) (-5 *1 (-1117)))) (-2736 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)) (-5 *3 (-202)))))
+(-10 -7 (-15 -2736 ((-872 (-202)) (-202) (-202) (-202) (-202))) (-15 * ((-872 (-202)) (-202) (-872 (-202)))) (-15 -1602 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1612 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -1883 ((-202) (-872 (-202)) (-872 (-202)))) (-15 -3230 ((-872 (-202)) (-872 (-202)) (-872 (-202)))) (-15 -2468 ((-872 (-202)) (-872 (-202)))) (-15 -2981 ((-588 (-588 (-202))) (-522))) (-15 -3751 ((-588 (-872 (-202))) (-872 (-202)) (-872 (-202)) (-872 (-202)) (-202) (-588 (-588 (-202))))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1628 ((|#1| $ (-708)) 13)) (-2517 (((-708) $) 12)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2190 (((-886 |#1|) $) 10) (($ (-886 |#1|)) 9) (((-792) $) 23 (|has| |#1| (-562 (-792))))) (-1531 (((-108) $ $) 16 (|has| |#1| (-1014)))))
+(((-1118 |#1|) (-13 (-562 (-886 |#1|)) (-10 -8 (-15 -2190 ($ (-886 |#1|))) (-15 -1628 (|#1| $ (-708))) (-15 -2517 ((-708) $)) (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1120)) (T -1118))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-1120)) (-5 *1 (-1118 *3)))) (-1628 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-1118 *2)) (-4 *2 (-1120)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1118 *3)) (-4 *3 (-1120)))))
+(-13 (-562 (-886 |#1|)) (-10 -8 (-15 -2190 ($ (-886 |#1|))) (-15 -1628 (|#1| $ (-708))) (-15 -2517 ((-708) $)) (IF (|has| |#1| (-562 (-792))) (-6 (-562 (-792))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|)))
+((-4065 (((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)) (-522)) 79)) (-3394 (((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|))) 73)) (-3658 (((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|))) 58)))
+(((-1119 |#1|) (-10 -7 (-15 -3394 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -3658 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -4065 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)) (-522)))) (-324)) (T -1119))
+((-4065 (*1 *2 *3 *4) (-12 (-5 *4 (-522)) (-4 *5 (-324)) (-5 *2 (-393 (-1081 (-1081 *5)))) (-5 *1 (-1119 *5)) (-5 *3 (-1081 (-1081 *5))))) (-3658 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4))))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4)))) (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4))))))
+(-10 -7 (-15 -3394 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -3658 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)))) (-15 -4065 ((-393 (-1081 (-1081 |#1|))) (-1081 (-1081 |#1|)) (-522))))
+NIL
+(((-1120) (-1197)) (T -1120))
+NIL
+(-13 (-10 -7 (-6 -2047)))
+((-1278 (((-108)) 15)) (-2728 (((-1171) (-588 |#1|) (-588 |#1|)) 19) (((-1171) (-588 |#1|)) 20)) (-3352 (((-108) |#1| |#1|) 31 (|has| |#1| (-784)))) (-2720 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-3860 ((|#1| (-588 |#1|)) 32 (|has| |#1| (-784))) ((|#1| (-588 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-2085 (((-2 (|:| -2314 (-588 |#1|)) (|:| -1376 (-588 |#1|)))) 17)))
+(((-1121 |#1|) (-10 -7 (-15 -2728 ((-1171) (-588 |#1|))) (-15 -2728 ((-1171) (-588 |#1|) (-588 |#1|))) (-15 -2085 ((-2 (|:| -2314 (-588 |#1|)) (|:| -1376 (-588 |#1|))))) (-15 -2720 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2720 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3860 (|#1| (-588 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1278 ((-108))) (IF (|has| |#1| (-784)) (PROGN (-15 -3860 (|#1| (-588 |#1|))) (-15 -3352 ((-108) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1121))
+((-3352 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-784)) (-4 *3 (-1014)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-784)) (-5 *1 (-1121 *2)))) (-1278 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1121 *2)) (-4 *2 (-1014)))) (-2720 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-108)) (-5 *1 (-1121 *3)))) (-2720 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) (-2085 (*1 *2) (-12 (-5 *2 (-2 (|:| -2314 (-588 *3)) (|:| -1376 (-588 *3)))) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))) (-2728 (*1 *2 *3 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171)) (-5 *1 (-1121 *4)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171)) (-5 *1 (-1121 *4)))))
+(-10 -7 (-15 -2728 ((-1171) (-588 |#1|))) (-15 -2728 ((-1171) (-588 |#1|) (-588 |#1|))) (-15 -2085 ((-2 (|:| -2314 (-588 |#1|)) (|:| -1376 (-588 |#1|))))) (-15 -2720 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2720 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -3860 (|#1| (-588 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1278 ((-108))) (IF (|has| |#1| (-784)) (PROGN (-15 -3860 (|#1| (-588 |#1|))) (-15 -3352 ((-108) |#1| |#1|))) |%noBranch|))
+((-2573 (((-1171) (-588 (-1085)) (-588 (-1085))) 12) (((-1171) (-588 (-1085))) 10)) (-1493 (((-1171)) 13)) (-2503 (((-2 (|:| -1376 (-588 (-1085))) (|:| -2314 (-588 (-1085))))) 17)))
+(((-1122) (-10 -7 (-15 -2573 ((-1171) (-588 (-1085)))) (-15 -2573 ((-1171) (-588 (-1085)) (-588 (-1085)))) (-15 -2503 ((-2 (|:| -1376 (-588 (-1085))) (|:| -2314 (-588 (-1085)))))) (-15 -1493 ((-1171))))) (T -1122))
+((-1493 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1122)))) (-2503 (*1 *2) (-12 (-5 *2 (-2 (|:| -1376 (-588 (-1085))) (|:| -2314 (-588 (-1085))))) (-5 *1 (-1122)))) (-2573 (*1 *2 *3 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122)))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122)))))
+(-10 -7 (-15 -2573 ((-1171) (-588 (-1085)))) (-15 -2573 ((-1171) (-588 (-1085)) (-588 (-1085)))) (-15 -2503 ((-2 (|:| -1376 (-588 (-1085))) (|:| -2314 (-588 (-1085)))))) (-15 -1493 ((-1171))))
+((-3119 (($ $) 16)) (-2813 (((-108) $) 23)))
+(((-1123 |#1|) (-10 -8 (-15 -3119 (|#1| |#1|)) (-15 -2813 ((-108) |#1|))) (-1124)) (T -1123))
+NIL
+(-10 -8 (-15 -3119 (|#1| |#1|)) (-15 -2813 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 51)) (-3450 (((-393 $) $) 52)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2813 (((-108) $) 53)) (-2782 (((-108) $) 31)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-1916 (((-393 $) $) 50)) (-2232 (((-3 $ "failed") $ $) 42)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43)) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24)))
+(((-1124) (-1197)) (T -1124))
+((-2813 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-108)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124)))) (-3119 (*1 *1 *1) (-4 *1 (-1124))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124)))))
+(-13 (-426) (-10 -8 (-15 -2813 ((-108) $)) (-15 -3450 ((-393 $) $)) (-15 -3119 ($ $)) (-15 -1916 ((-393 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-124) . T) ((-562 (-792)) . T) ((-157) . T) ((-266) . T) ((-426) . T) ((-514) . T) ((-590 $) . T) ((-655 $) . T) ((-664) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1391 (((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)) 23)))
+(((-1125 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1391 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) (-971) (-971) (-1085) (-1085) |#1| |#2|) (T -1125))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-971)) (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1125 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1085)))))
+(-10 -7 (-15 -1391 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 (-999)) $) 74)) (-1611 (((-1085) $) 103)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-2789 (($ $ (-522)) 98) (($ $ (-522) (-522)) 97)) (-2258 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 105)) (-2908 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 162 (|has| |#1| (-338)))) (-3450 (((-393 $) $) 163 (|has| |#1| (-338)))) (-1929 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) 153 (|has| |#1| (-338)))) (-2884 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 174)) (-2930 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) 17 T CONST)) (-2277 (($ $ $) 157 (|has| |#1| (-338)))) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-2240 (((-382 (-881 |#1|)) $ (-522)) 172 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 171 (|has| |#1| (-514)))) (-2254 (($ $ $) 156 (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2813 (((-108) $) 164 (|has| |#1| (-338)))) (-3390 (((-108) $) 73)) (-2838 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-522) $) 100) (((-522) $ (-522)) 99)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) 101)) (-3950 (($ (-1 |#1| (-522)) $) 173)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-3340 (((-108) $) 62)) (-4049 (($ |#1| (-522)) 61) (($ $ (-999) (-522)) 76) (($ $ (-588 (-999)) (-588 (-522))) 75)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2224 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-2385 (((-1068) $) 9)) (-3098 (($ $) 165 (|has| |#1| (-338)))) (-1858 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3708 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2259 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-1916 (((-393 $) $) 161 (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-338)))) (-3719 (($ $ (-522)) 95)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3266 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-522)))))) (-3730 (((-708) $) 154 (|has| |#1| (-338)))) (-2545 ((|#1| $ (-522)) 104) (($ $ $) 81 (|has| (-522) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 155 (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-2793 (((-522) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-3243 ((|#1| $ (-522)) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-522)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-522) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-1126 |#1|) (-1197) (-971)) (T -1126))
+((-2773 (*1 *1 *2) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3)))) (-4 *3 (-971)) (-4 *1 (-1126 *3)))) (-3950 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1126 *3)) (-4 *3 (-971)))) (-2240 (*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514)) (-5 *2 (-382 (-881 *4))))) (-2240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514)) (-5 *2 (-382 (-881 *4))))) (-1858 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) (-1858 (*1 *1 *1 *2) (-3708 (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971)) (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) (-4 *3 (-37 (-382 (-522)))))) (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971)) (-12 (|has| *3 (-15 -4090 ((-588 *2) *3))) (|has| *3 (-15 -1858 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522)))))))))
+(-13 (-1144 |t#1| (-522)) (-10 -8 (-15 -2773 ($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |t#1|))))) (-15 -3950 ($ (-1 |t#1| (-522)) $)) (IF (|has| |t#1| (-514)) (PROGN (-15 -2240 ((-382 (-881 |t#1|)) $ (-522))) (-15 -2240 ((-382 (-881 |t#1|)) $ (-522) (-522)))) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $)) (IF (|has| |t#1| (-15 -1858 (|t#1| |t#1| (-1085)))) (IF (|has| |t#1| (-15 -4090 ((-588 (-1085)) |t#1|))) (-15 -1858 ($ $ (-1085))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-522))) (-15 -1858 ($ $ (-1085))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-928)) (-6 (-1106))) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-522)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-522) |#1|))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-522) (-1026)) ((-266) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-338) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1124) |has| |#1| (-338)) ((-1144 |#1| #0#) . T))
+((-2250 (((-108) $) 12)) (-1297 (((-3 |#3| "failed") $) 17) (((-3 (-1085) "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL)) (-1484 ((|#3| $) 14) (((-1085) $) NIL) (((-382 (-522)) $) NIL) (((-522) $) NIL)))
+(((-1127 |#1| |#2| |#3|) (-10 -8 (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-1085) |#1|)) (-15 -1297 ((-3 (-1085) "failed") |#1|)) (-15 -1484 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2250 ((-108) |#1|))) (-1128 |#2| |#3|) (-971) (-1157 |#2|)) (T -1127))
+NIL
+(-10 -8 (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -1484 ((-1085) |#1|)) (-15 -1297 ((-3 (-1085) "failed") |#1|)) (-15 -1484 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2250 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2229 ((|#2| $) 231 (-4015 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-4090 (((-588 (-999)) $) 74)) (-1611 (((-1085) $) 103)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-2789 (($ $ (-522)) 98) (($ $ (-522) (-522)) 97)) (-2258 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 105)) (-3321 ((|#2| $) 267)) (-2114 (((-3 |#2| "failed") $) 263)) (-3058 ((|#2| $) 264)) (-2908 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) 19)) (-1565 (((-393 (-1081 $)) (-1081 $)) 240 (-4015 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-3119 (($ $) 162 (|has| |#1| (-338)))) (-3450 (((-393 $) $) 163 (|has| |#1| (-338)))) (-1929 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 237 (-4015 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-1687 (((-108) $ $) 153 (|has| |#1| (-338)))) (-2884 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-1341 (((-522) $) 249 (-4015 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-2773 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 174)) (-2930 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#2| "failed") $) 270) (((-3 (-522) "failed") $) 259 (-4015 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) 257 (-4015 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-1085) "failed") $) 242 (-4015 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-1484 ((|#2| $) 269) (((-522) $) 260 (-4015 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-382 (-522)) $) 258 (-4015 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-1085) $) 243 (-4015 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-3701 (($ $) 266) (($ (-522) $) 265)) (-2277 (($ $ $) 157 (|has| |#1| (-338)))) (-3156 (($ $) 60)) (-2096 (((-628 |#2|) (-628 $)) 221 (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) 220 (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 219 (-4015 (|has| |#2| (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) 218 (-4015 (|has| |#2| (-584 (-522))) (|has| |#1| (-338))))) (-2682 (((-3 $ "failed") $) 34)) (-2240 (((-382 (-881 |#1|)) $ (-522)) 172 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 171 (|has| |#1| (-514)))) (-3255 (($) 233 (-4015 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-2254 (($ $ $) 156 (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2813 (((-108) $) 164 (|has| |#1| (-338)))) (-3687 (((-108) $) 247 (-4015 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3390 (((-108) $) 73)) (-2838 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 225 (-4015 (|has| |#2| (-815 (-354))) (|has| |#1| (-338)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 224 (-4015 (|has| |#2| (-815 (-522))) (|has| |#1| (-338))))) (-3714 (((-522) $) 100) (((-522) $ (-522)) 99)) (-2782 (((-108) $) 31)) (-2902 (($ $) 229 (|has| |#1| (-338)))) (-2805 ((|#2| $) 227 (|has| |#1| (-338)))) (-1504 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-3004 (((-3 $ "failed") $) 261 (-4015 (|has| |#2| (-1061)) (|has| |#1| (-338))))) (-2556 (((-108) $) 248 (-4015 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-2073 (($ $ (-850)) 101)) (-3950 (($ (-1 |#1| (-522)) $) 173)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-3340 (((-108) $) 62)) (-4049 (($ |#1| (-522)) 61) (($ $ (-999) (-522)) 76) (($ $ (-588 (-999)) (-588 (-522))) 75)) (-2814 (($ $ $) 251 (-4015 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-2446 (($ $ $) 252 (-4015 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1391 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-338)))) (-1254 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2224 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-3068 (($ (-522) |#2|) 268)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 165 (|has| |#1| (-338)))) (-1858 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3708 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-3802 (($) 262 (-4015 (|has| |#2| (-1061)) (|has| |#1| (-338))) CONST)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2259 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-3933 (($ $) 232 (-4015 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-3686 ((|#2| $) 235 (-4015 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-3729 (((-393 (-1081 $)) (-1081 $)) 238 (-4015 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-3495 (((-393 (-1081 $)) (-1081 $)) 239 (-4015 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-1916 (((-393 $) $) 161 (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-338)))) (-3719 (($ $ (-522)) 95)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3266 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) |#2|) 212 (-4015 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 |#2|)) 211 (-4015 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-270 |#2|))) 210 (-4015 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-270 |#2|)) 209 (-4015 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ |#2| |#2|) 208 (-4015 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-588 |#2|) (-588 |#2|)) 207 (-4015 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338))))) (-3730 (((-708) $) 154 (|has| |#1| (-338)))) (-2545 ((|#1| $ (-522)) 104) (($ $ $) 81 (|has| (-522) (-1026))) (($ $ |#2|) 206 (-4015 (|has| |#2| (-262 |#2| |#2|)) (|has| |#1| (-338))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 155 (|has| |#1| (-338)))) (-2157 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) 216 (|has| |#1| (-338))) (($ $ (-708)) 84 (-3708 (-4015 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 82 (-3708 (-4015 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) 89 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085) (-708)) 88 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-588 (-1085))) 87 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085)) 86 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))))) (-3533 (($ $) 230 (|has| |#1| (-338)))) (-2816 ((|#2| $) 228 (|has| |#1| (-338)))) (-2793 (((-522) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1431 (((-202) $) 246 (-4015 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-354) $) 245 (-4015 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-498) $) 244 (-4015 (|has| |#2| (-563 (-498))) (|has| |#1| (-338)))) (((-821 (-354)) $) 223 (-4015 (|has| |#2| (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) 222 (-4015 (|has| |#2| (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 236 (-4015 (-4015 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#1| (-338))))) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 271) (($ (-1085)) 241 (-4015 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338)))) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-3243 ((|#1| $ (-522)) 59)) (-2143 (((-3 $ "failed") $) 48 (-3708 (-4015 (-3708 (|has| |#2| (-133)) (-4015 (|has| $ (-133)) (|has| |#2| (-838)))) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2323 (((-708)) 29)) (-1893 ((|#1| $) 102)) (-3025 ((|#2| $) 234 (-4015 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-1759 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-522)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-2241 (($ $) 250 (-4015 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) 214 (|has| |#1| (-338))) (($ $ (-708)) 85 (-3708 (-4015 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 83 (-3708 (-4015 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) 93 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085) (-708)) 92 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-588 (-1085))) 91 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))))) (($ $ (-1085)) 90 (-3708 (-4015 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))))) (-1574 (((-108) $ $) 254 (-4015 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1558 (((-108) $ $) 255 (-4015 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 253 (-4015 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1549 (((-108) $ $) 256 (-4015 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338))) (($ |#2| |#2|) 226 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-338))) (($ |#2| $) 204 (|has| |#1| (-338))) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-1128 |#1| |#2|) (-1197) (-971) (-1157 |t#1|)) (T -1128))
+((-2793 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1157 *3)) (-5 *2 (-522)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-1128 *3 *2)) (-4 *2 (-1157 *3)))) (-3068 (*1 *1 *2 *3) (-12 (-5 *2 (-522)) (-4 *4 (-971)) (-4 *1 (-1128 *4 *3)) (-4 *3 (-1157 *4)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))) (-3701 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1157 *2)))) (-3701 (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1157 *3)))) (-3058 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))) (-2114 (*1 *2 *1) (|partial| -12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))))
+(-13 (-1126 |t#1|) (-962 |t#2|) (-10 -8 (-15 -3068 ($ (-522) |t#2|)) (-15 -2793 ((-522) $)) (-15 -3321 (|t#2| $)) (-15 -3701 ($ $)) (-15 -3701 ($ (-522) $)) (-15 -2190 ($ |t#2|)) (-15 -3058 (|t#2| $)) (-15 -2114 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-338)) (-6 (-919 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-522)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 |#2|) |has| |#1| (-338)) ((-37 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-338)) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) -3708 (-12 (|has| |#1| (-338)) (|has| |#2| (-133))) (|has| |#1| (-133))) ((-135) -3708 (-12 (|has| |#1| (-338)) (|has| |#2| (-135))) (|has| |#1| (-135))) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-563 (-202)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) ((-563 (-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) ((-563 (-498)) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-563 (-821 (-522))))) ((-208 |#2|) |has| |#1| (-338)) ((-210) -3708 (-12 (|has| |#1| (-338)) (|has| |#2| (-210))) (|has| |#1| (-15 * (|#1| (-522) |#1|)))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 |#2| $) -12 (|has| |#1| (-338)) (|has| |#2| (-262 |#2| |#2|))) ((-262 $ $) |has| (-522) (-1026)) ((-266) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-285 |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))) ((-338) |has| |#1| (-338)) ((-313 |#2|) |has| |#1| (-338)) ((-352 |#2|) |has| |#1| (-338)) ((-375 |#2|) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-483 (-1085) |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-483 (-1085) |#2|))) ((-483 |#2| |#2|) -12 (|has| |#1| (-338)) (|has| |#2| (-285 |#2|))) ((-514) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-338)) ((-590 $) . T) ((-584 (-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-584 (-522)))) ((-584 |#2|) |has| |#1| (-338)) ((-655 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 |#2|) |has| |#1| (-338)) ((-655 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-728) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-729) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-731) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-732) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-757) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-782) -12 (|has| |#1| (-338)) (|has| |#2| (-757))) ((-784) -3708 (-12 (|has| |#1| (-338)) (|has| |#2| (-784))) (-12 (|has| |#1| (-338)) (|has| |#2| (-757)))) ((-829 (-1085)) -3708 (-12 (|has| |#1| (-338)) (|has| |#2| (-829 (-1085)))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))) ((-815 (-354)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-354)))) ((-815 (-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-815 (-522)))) ((-813 |#2|) |has| |#1| (-338)) ((-838) -12 (|has| |#1| (-338)) (|has| |#2| (-838))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-919 |#2|) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-947) -12 (|has| |#1| (-338)) (|has| |#2| (-947))) ((-962 (-382 (-522))) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))) ((-962 (-522)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-522)))) ((-962 (-1085)) -12 (|has| |#1| (-338)) (|has| |#2| (-962 (-1085)))) ((-962 |#2|) . T) ((-977 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 |#2|) |has| |#1| (-338)) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) -12 (|has| |#1| (-338)) (|has| |#2| (-1061))) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1120) |has| |#1| (-338)) ((-1124) |has| |#1| (-338)) ((-1126 |#1|) . T) ((-1144 |#1| #0#) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 70)) (-2229 ((|#2| $) NIL (-12 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 88)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-522)) 97) (($ $ (-522) (-522)) 99)) (-2258 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) 47)) (-3321 ((|#2| $) 11)) (-2114 (((-3 |#2| "failed") $) 30)) (-3058 ((|#2| $) 31)) (-2908 (($ $) 192 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 168 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) 188 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 164 (|has| |#1| (-37 (-382 (-522)))))) (-1341 (((-522) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-2773 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) 57)) (-2930 (($ $) 196 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 172 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) 144) (((-3 (-522) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-1085) "failed") $) NIL (-12 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-1484 ((|#2| $) 143) (((-522) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-382 (-522)) $) NIL (-12 (|has| |#2| (-962 (-522))) (|has| |#1| (-338)))) (((-1085) $) NIL (-12 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338))))) (-3701 (($ $) 61) (($ (-522) $) 24)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2096 (((-628 |#2|) (-628 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| |#2| (-584 (-522))) (|has| |#1| (-338))))) (-2682 (((-3 $ "failed") $) 77)) (-2240 (((-382 (-881 |#1|)) $ (-522)) 112 (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) 114 (|has| |#1| (-514)))) (-3255 (($) NIL (-12 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3687 (((-108) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3390 (((-108) $) 64)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| |#2| (-815 (-354))) (|has| |#1| (-338)))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| |#2| (-815 (-522))) (|has| |#1| (-338))))) (-3714 (((-522) $) 93) (((-522) $ (-522)) 95)) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL (|has| |#1| (-338)))) (-2805 ((|#2| $) 151 (|has| |#1| (-338)))) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3004 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1061)) (|has| |#1| (-338))))) (-2556 (((-108) $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-2073 (($ $ (-850)) 136)) (-3950 (($ (-1 |#1| (-522)) $) 132)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-522)) 19) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-2814 (($ $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-2446 (($ $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1391 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-338)))) (-1254 (($ $) 162 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3068 (($ (-522) |#2|) 10)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 145 (|has| |#1| (-338)))) (-1858 (($ $) 214 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 219 (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106)))))) (-3802 (($) NIL (-12 (|has| |#2| (-1061)) (|has| |#1| (-338))) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3933 (($ $) NIL (-12 (|has| |#2| (-283)) (|has| |#1| (-338))))) (-3686 ((|#2| $) NIL (-12 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| |#2| (-838)) (|has| |#1| (-338))))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-522)) 126)) (-2232 (((-3 $ "failed") $ $) 116 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) 160 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) |#2|) NIL (-12 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 |#2|)) NIL (-12 (|has| |#2| (-483 (-1085) |#2|)) (|has| |#1| (-338)))) (($ $ (-588 (-270 |#2|))) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-270 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338)))) (($ $ (-588 |#2|) (-588 |#2|)) NIL (-12 (|has| |#2| (-285 |#2|)) (|has| |#1| (-338))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-522)) 91) (($ $ $) 79 (|has| (-522) (-1026))) (($ $ |#2|) NIL (-12 (|has| |#2| (-262 |#2| |#2|)) (|has| |#1| (-338))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3708 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 137 (-3708 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) 140 (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-3533 (($ $) NIL (|has| |#1| (-338)))) (-2816 ((|#2| $) 152 (|has| |#1| (-338)))) (-2793 (((-522) $) 12)) (-1738 (($ $) 198 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 174 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 194 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 170 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 190 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 166 (|has| |#1| (-37 (-382 (-522)))))) (-1431 (((-202) $) NIL (-12 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-354) $) NIL (-12 (|has| |#2| (-947)) (|has| |#1| (-338)))) (((-498) $) NIL (-12 (|has| |#2| (-563 (-498))) (|has| |#1| (-338)))) (((-821 (-354)) $) NIL (-12 (|has| |#2| (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) NIL (-12 (|has| |#2| (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838)) (|has| |#1| (-338))))) (-1522 (($ $) 124)) (-2190 (((-792) $) 243) (($ (-522)) 23) (($ |#1|) 21 (|has| |#1| (-157))) (($ |#2|) 20) (($ (-1085)) NIL (-12 (|has| |#2| (-962 (-1085))) (|has| |#1| (-338)))) (($ (-382 (-522))) 155 (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-3243 ((|#1| $ (-522)) 74)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838)) (|has| |#1| (-338))) (-12 (|has| |#2| (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2323 (((-708)) 142)) (-1893 ((|#1| $) 90)) (-3025 ((|#2| $) NIL (-12 (|has| |#2| (-507)) (|has| |#1| (-338))))) (-1759 (($ $) 204 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 180 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) 200 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 176 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 208 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 184 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-522)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 210 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 186 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 206 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 182 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 202 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 178 (|has| |#1| (-37 (-382 (-522)))))) (-2241 (($ $) NIL (-12 (|has| |#2| (-757)) (|has| |#1| (-338))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 13 T CONST)) (-3577 (($) 17 T CONST)) (-2213 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-338))) (($ $ (-1 |#2| |#2|) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3708 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) NIL (-3708 (-12 (|has| |#2| (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#2| (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-1574 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1558 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1531 (((-108) $ $) 63)) (-1566 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1549 (((-108) $ $) NIL (-12 (|has| |#2| (-784)) (|has| |#1| (-338))))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 149 (|has| |#1| (-338))) (($ |#2| |#2|) 150 (|has| |#1| (-338)))) (-1612 (($ $) 213) (($ $ $) 68)) (-1602 (($ $ $) 66)) (** (($ $ (-850)) NIL) (($ $ (-708)) 73) (($ $ (-522)) 146 (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-338))) (($ |#2| $) 147 (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1129 |#1| |#2|) (-1128 |#1| |#2|) (-971) (-1157 |#1|)) (T -1129))
+NIL
+(-1128 |#1| |#2|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-2229 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 10)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2022 (($ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-3739 (((-108) $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2789 (($ $ (-522)) NIL) (($ $ (-522) (-522)) NIL)) (-2258 (((-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|))) $) NIL)) (-3321 (((-1158 |#1| |#2| |#3|) $) NIL)) (-2114 (((-3 (-1158 |#1| |#2| |#3|) "failed") $) NIL)) (-3058 (((-1158 |#1| |#2| |#3|) $) NIL)) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1341 (((-522) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-2773 (($ (-1066 (-2 (|:| |k| (-522)) (|:| |c| |#1|)))) NIL)) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-1158 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1085) "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-3 (-382 (-522)) "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-3 (-522) "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-1484 (((-1158 |#1| |#2| |#3|) $) NIL) (((-1085) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (((-382 (-522)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338)))) (((-522) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))))) (-3701 (($ $) NIL) (($ (-522) $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-1158 |#1| |#2| |#3|)) (-628 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 (-1158 |#1| |#2| |#3|))) (|:| |vec| (-1166 (-1158 |#1| |#2| |#3|)))) (-628 $) (-1166 $)) NIL (|has| |#1| (-338))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338)))) (((-628 (-522)) (-628 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-584 (-522))) (|has| |#1| (-338))))) (-2682 (((-3 $ "failed") $) NIL)) (-2240 (((-382 (-881 |#1|)) $ (-522)) NIL (|has| |#1| (-514))) (((-382 (-881 |#1|)) $ (-522) (-522)) NIL (|has| |#1| (-514)))) (-3255 (($) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3687 (((-108) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-4011 (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-815 (-522))) (|has| |#1| (-338)))) (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-815 (-354))) (|has| |#1| (-338))))) (-3714 (((-522) $) NIL) (((-522) $ (-522)) NIL)) (-2782 (((-108) $) NIL)) (-2902 (($ $) NIL (|has| |#1| (-338)))) (-2805 (((-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-338)))) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3004 (((-3 $ "failed") $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))))) (-2556 (((-108) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-2073 (($ $ (-850)) NIL)) (-3950 (($ (-1 |#1| (-522)) $) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-522)) 17) (($ $ (-999) (-522)) NIL) (($ $ (-588 (-999)) (-588 (-522))) NIL)) (-2814 (($ $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-2446 (($ $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-338)))) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3068 (($ (-522) (-1158 |#1| |#2| |#3|)) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-1858 (($ $) 25 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 26 (|has| |#1| (-37 (-382 (-522)))))) (-3802 (($) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-1061)) (|has| |#1| (-338))) CONST)) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-3933 (($ $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-283)) (|has| |#1| (-338))))) (-3686 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-522)) NIL)) (-2232 (((-3 $ "failed") $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-522))))) (($ $ (-1085) (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-483 (-1085) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1085)) (-588 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-483 (-1085) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-270 (-1158 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-270 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338)))) (($ $ (-588 (-1158 |#1| |#2| |#3|)) (-588 (-1158 |#1| |#2| |#3|))) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-285 (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-522)) NIL) (($ $ $) NIL (|has| (-522) (-1026))) (($ $ (-1158 |#1| |#2| |#3|)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-262 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) (|has| |#1| (-338))))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-1162 |#2|)) 24) (($ $ (-708)) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) 23 (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-3533 (($ $) NIL (|has| |#1| (-338)))) (-2816 (((-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-338)))) (-2793 (((-522) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1431 (((-498) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-563 (-498))) (|has| |#1| (-338)))) (((-354) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-202) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-947)) (|has| |#1| (-338)))) (((-821 (-354)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-563 (-821 (-354)))) (|has| |#1| (-338)))) (((-821 (-522)) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-563 (-821 (-522)))) (|has| |#1| (-338))))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1158 |#1| |#2| |#3|)) NIL) (($ (-1162 |#2|)) 22) (($ (-1085)) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-1085))) (|has| |#1| (-338)))) (($ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514)))) (($ (-382 (-522))) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-962 (-522))) (|has| |#1| (-338))) (|has| |#1| (-37 (-382 (-522))))))) (-3243 ((|#1| $ (-522)) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-133)) (|has| |#1| (-338))) (|has| |#1| (-133))))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 11)) (-3025 (((-1158 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-507)) (|has| |#1| (-338))))) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-838)) (|has| |#1| (-338))) (|has| |#1| (-514))))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-522)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-522)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2241 (($ $) NIL (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 19 T CONST)) (-3577 (($) 15 T CONST)) (-2213 (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|))) NIL (|has| |#1| (-338))) (($ $ (-1 (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) (-708)) NIL (|has| |#1| (-338))) (($ $ (-708)) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-210)) (|has| |#1| (-338))) (|has| |#1| (-15 * (|#1| (-522) |#1|))))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085) (-708)) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-588 (-1085))) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085)))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-829 (-1085))) (|has| |#1| (-338))) (-12 (|has| |#1| (-15 * (|#1| (-522) |#1|))) (|has| |#1| (-829 (-1085))))))) (-1574 (((-108) $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1558 (((-108) $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1549 (((-108) $ $) NIL (-3708 (-12 (|has| (-1158 |#1| |#2| |#3|) (-757)) (|has| |#1| (-338))) (-12 (|has| (-1158 |#1| |#2| |#3|) (-784)) (|has| |#1| (-338)))))) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338))) (($ (-1158 |#1| |#2| |#3|) (-1158 |#1| |#2| |#3|)) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1158 |#1| |#2| |#3|)) NIL (|has| |#1| (-338))) (($ (-1158 |#1| |#2| |#3|) $) NIL (|has| |#1| (-338))) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1130 |#1| |#2| |#3|) (-13 (-1128 |#1| (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1130))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1128 |#1| (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-3168 (((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108)) 10)) (-2571 (((-393 |#1|) |#1|) 21)) (-1916 (((-393 |#1|) |#1|) 20)))
+(((-1131 |#1|) (-10 -7 (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2571 ((-393 |#1|) |#1|)) (-15 -3168 ((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108)))) (-1142 (-522))) (T -1131))
+((-3168 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522))))))) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))) (-2571 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))))
+(-10 -7 (-15 -1916 ((-393 |#1|) |#1|)) (-15 -2571 ((-393 |#1|) |#1|)) (-15 -3168 ((-2 (|:| |contp| (-522)) (|:| -2976 (-588 (-2 (|:| |irr| |#1|) (|:| -2245 (-522)))))) |#1| (-108))))
+((-1391 (((-1066 |#2|) (-1 |#2| |#1|) (-1133 |#1|)) 23 (|has| |#1| (-782))) (((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|)) 17)))
+(((-1132 |#1| |#2|) (-10 -7 (-15 -1391 ((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) (IF (|has| |#1| (-782)) (-15 -1391 ((-1066 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) |%noBranch|)) (-1120) (-1120)) (T -1132))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-782)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1066 *6)) (-5 *1 (-1132 *5 *6)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1133 *6)) (-5 *1 (-1132 *5 *6)))))
+(-10 -7 (-15 -1391 ((-1133 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) (IF (|has| |#1| (-782)) (-15 -1391 ((-1066 |#2|) (-1 |#2| |#1|) (-1133 |#1|))) |%noBranch|))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1539 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1391 (((-1066 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-782)))) (-2314 ((|#1| $) 14)) (-1450 ((|#1| $) 10)) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1461 (((-522) $) 18)) (-1376 ((|#1| $) 17)) (-1471 ((|#1| $) 11)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2211 (((-108) $) 16)) (-1604 (((-1066 |#1|) $) 38 (|has| |#1| (-782))) (((-1066 |#1|) (-588 $)) 37 (|has| |#1| (-782)))) (-1431 (($ |#1|) 25)) (-2190 (($ (-1009 |#1|)) 24) (((-792) $) 34 (|has| |#1| (-1014)))) (-1673 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1345 (($ $ (-522)) 13)) (-1531 (((-108) $ $) 27 (|has| |#1| (-1014)))))
+(((-1133 |#1|) (-13 (-1008 |#1|) (-10 -8 (-15 -1673 ($ |#1|)) (-15 -1539 ($ |#1|)) (-15 -2190 ($ (-1009 |#1|))) (-15 -2211 ((-108) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-1066 |#1|))) |%noBranch|))) (-1120)) (T -1133))
+((-1673 (*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120)))) (-1539 (*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120)))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1009 *3)) (-4 *3 (-1120)) (-5 *1 (-1133 *3)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1133 *3)) (-4 *3 (-1120)))))
+(-13 (-1008 |#1|) (-10 -8 (-15 -1673 ($ |#1|)) (-15 -1539 ($ |#1|)) (-15 -2190 ($ (-1009 |#1|))) (-15 -2211 ((-108) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-782)) (-6 (-1010 |#1| (-1066 |#1|))) |%noBranch|)))
+((-1391 (((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)) 15)))
+(((-1134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 ((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|)))) (-1085) (-971) (-1085) (-971)) (T -1134))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1139 *5 *6)) (-14 *5 (-1085)) (-4 *6 (-971)) (-4 *8 (-971)) (-5 *2 (-1139 *7 *8)) (-5 *1 (-1134 *5 *6 *7 *8)) (-14 *7 (-1085)))))
+(-10 -7 (-15 -1391 ((-1139 |#3| |#4|) (-1 |#4| |#2|) (-1139 |#1| |#2|))))
+((-2297 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1847 ((|#1| |#3|) 13)) (-3513 ((|#3| |#3|) 19)))
+(((-1135 |#1| |#2| |#3|) (-10 -7 (-15 -1847 (|#1| |#3|)) (-15 -3513 (|#3| |#3|)) (-15 -2297 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-514) (-919 |#1|) (-1142 |#2|)) (T -1135))
+((-2297 (*1 *2 *3) (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1135 *4 *5 *3)) (-4 *3 (-1142 *5)))) (-3513 (*1 *2 *2) (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-1142 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-1135 *2 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -1847 (|#1| |#3|)) (-15 -3513 (|#3| |#3|)) (-15 -2297 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2040 (((-3 |#2| "failed") |#2| (-708) |#1|) 29)) (-2611 (((-3 |#2| "failed") |#2| (-708)) 30)) (-4074 (((-3 (-2 (|:| -1913 |#2|) (|:| -1924 |#2|)) "failed") |#2|) 43)) (-3372 (((-588 |#2|) |#2|) 45)) (-1552 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1136 |#1| |#2|) (-10 -7 (-15 -2611 ((-3 |#2| "failed") |#2| (-708))) (-15 -2040 ((-3 |#2| "failed") |#2| (-708) |#1|)) (-15 -1552 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4074 ((-3 (-2 (|:| -1913 |#2|) (|:| -1924 |#2|)) "failed") |#2|)) (-15 -3372 ((-588 |#2|) |#2|))) (-13 (-514) (-135)) (-1142 |#1|)) (T -1136))
+((-3372 (*1 *2 *3) (-12 (-4 *4 (-13 (-514) (-135))) (-5 *2 (-588 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1142 *4)))) (-4074 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-514) (-135))) (-5 *2 (-2 (|:| -1913 *3) (|:| -1924 *3))) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1142 *4)))) (-1552 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1142 *3)))) (-2040 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4)))) (-2611 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4)))))
+(-10 -7 (-15 -2611 ((-3 |#2| "failed") |#2| (-708))) (-15 -2040 ((-3 |#2| "failed") |#2| (-708) |#1|)) (-15 -1552 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4074 ((-3 (-2 (|:| -1913 |#2|) (|:| -1924 |#2|)) "failed") |#2|)) (-15 -3372 ((-588 |#2|) |#2|)))
+((-3162 (((-3 (-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1137 |#1| |#2|) (-10 -7 (-15 -3162 ((-3 (-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) "failed") |#2| |#2|))) (-514) (-1142 |#1|)) (T -1137))
+((-3162 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-1137 *4 *3)) (-4 *3 (-1142 *4)))))
+(-10 -7 (-15 -3162 ((-3 (-2 (|:| -1353 |#2|) (|:| -3421 |#2|)) "failed") |#2| |#2|)))
+((-1942 ((|#2| |#2| |#2|) 19)) (-2739 ((|#2| |#2| |#2|) 30)) (-1917 ((|#2| |#2| |#2| (-708) (-708)) 36)))
+(((-1138 |#1| |#2|) (-10 -7 (-15 -1942 (|#2| |#2| |#2|)) (-15 -2739 (|#2| |#2| |#2|)) (-15 -1917 (|#2| |#2| |#2| (-708) (-708)))) (-971) (-1142 |#1|)) (T -1138))
+((-1917 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1142 *4)))) (-2739 (*1 *2 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3)))) (-1942 (*1 *2 *2 *2) (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3)))))
+(-10 -7 (-15 -1942 (|#2| |#2| |#2|)) (-15 -2739 (|#2| |#2| |#2|)) (-15 -1917 (|#2| |#2| |#2| (-708) (-708))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-3960 (((-1166 |#2|) $ (-708)) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-3793 (($ (-1081 |#2|)) NIL)) (-1282 (((-1081 $) $ (-999)) NIL) (((-1081 |#2|) $) NIL)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#2| (-514)))) (-2022 (($ $) NIL (|has| |#2| (-514)))) (-3739 (((-108) $) NIL (|has| |#2| (-514)))) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-999))) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3984 (($ $ $) NIL (|has| |#2| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3119 (($ $) NIL (|has| |#2| (-426)))) (-3450 (((-393 $) $) NIL (|has| |#2| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1687 (((-108) $ $) NIL (|has| |#2| (-338)))) (-3242 (($ $ (-708)) NIL)) (-2272 (($ $ (-708)) NIL)) (-1441 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-426)))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL) (((-3 (-382 (-522)) "failed") $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) NIL (|has| |#2| (-962 (-522)))) (((-3 (-999) "failed") $) NIL)) (-1484 ((|#2| $) NIL) (((-382 (-522)) $) NIL (|has| |#2| (-962 (-382 (-522))))) (((-522) $) NIL (|has| |#2| (-962 (-522)))) (((-999) $) NIL)) (-1950 (($ $ $ (-999)) NIL (|has| |#2| (-157))) ((|#2| $ $) NIL (|has| |#2| (-157)))) (-2277 (($ $ $) NIL (|has| |#2| (-338)))) (-3156 (($ $) NIL)) (-2096 (((-628 (-522)) (-628 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) NIL (|has| |#2| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#2|)) (|:| |vec| (-1166 |#2|))) (-628 $) (-1166 $)) NIL) (((-628 |#2|) (-628 $)) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-2254 (($ $ $) NIL (|has| |#2| (-338)))) (-2052 (($ $ $) NIL)) (-4152 (($ $ $) NIL (|has| |#2| (-514)))) (-1541 (((-2 (|:| -2977 |#2|) (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#2| (-338)))) (-2071 (($ $) NIL (|has| |#2| (-426))) (($ $ (-999)) NIL (|has| |#2| (-426)))) (-3147 (((-588 $) $) NIL)) (-2813 (((-108) $) NIL (|has| |#2| (-838)))) (-2671 (($ $ |#2| (-708) $) NIL)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) NIL (-12 (|has| (-999) (-815 (-354))) (|has| |#2| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) NIL (-12 (|has| (-999) (-815 (-522))) (|has| |#2| (-815 (-522)))))) (-3714 (((-708) $ $) NIL (|has| |#2| (-514)))) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-3004 (((-3 $ "failed") $) NIL (|has| |#2| (-1061)))) (-4073 (($ (-1081 |#2|) (-999)) NIL) (($ (-1081 $) (-999)) NIL)) (-2073 (($ $ (-708)) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-4049 (($ |#2| (-708)) 17) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-999)) NIL) (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL)) (-2925 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-2814 (($ $ $) NIL (|has| |#2| (-784)))) (-2446 (($ $ $) NIL (|has| |#2| (-784)))) (-3861 (($ (-1 (-708) (-708)) $) NIL)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-3624 (((-1081 |#2|) $) NIL)) (-3145 (((-3 (-999) "failed") $) NIL)) (-3128 (($ $) NIL)) (-3138 ((|#2| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2385 (((-1068) $) NIL)) (-3114 (((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708)) NIL)) (-2462 (((-3 (-588 $) "failed") $) NIL)) (-4193 (((-3 (-588 $) "failed") $) NIL)) (-3285 (((-3 (-2 (|:| |var| (-999)) (|:| -1400 (-708))) "failed") $) NIL)) (-1858 (($ $) NIL (|has| |#2| (-37 (-382 (-522)))))) (-3802 (($) NIL (|has| |#2| (-1061)) CONST)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 ((|#2| $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#2| (-426)))) (-2259 (($ (-588 $)) NIL (|has| |#2| (-426))) (($ $ $) NIL (|has| |#2| (-426)))) (-2600 (($ $ (-708) |#2| $) NIL)) (-3729 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) NIL (|has| |#2| (-838)))) (-1916 (((-393 $) $) NIL (|has| |#2| (-838)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#2| (-338)))) (-2232 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-514))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#2| (-338)))) (-2289 (($ $ (-588 (-270 $))) NIL) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#2|) NIL) (($ $ (-588 (-999)) (-588 |#2|)) NIL) (($ $ (-999) $) NIL) (($ $ (-588 (-999)) (-588 $)) NIL)) (-3730 (((-708) $) NIL (|has| |#2| (-338)))) (-2545 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) NIL (|has| |#2| (-514))) ((|#2| (-382 $) |#2|) NIL (|has| |#2| (-338))) (((-382 $) $ (-382 $)) NIL (|has| |#2| (-514)))) (-4158 (((-3 $ "failed") $ (-708)) NIL)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#2| (-338)))) (-2769 (($ $ (-999)) NIL (|has| |#2| (-157))) ((|#2| $) NIL (|has| |#2| (-157)))) (-2157 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2793 (((-708) $) NIL) (((-708) $ (-999)) NIL) (((-588 (-708)) $ (-588 (-999))) NIL)) (-1431 (((-821 (-354)) $) NIL (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#2| (-563 (-821 (-354)))))) (((-821 (-522)) $) NIL (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#2| (-563 (-821 (-522)))))) (((-498) $) NIL (-12 (|has| (-999) (-563 (-498))) (|has| |#2| (-563 (-498)))))) (-2255 ((|#2| $) NIL (|has| |#2| (-426))) (($ $ (-999)) NIL (|has| |#2| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) NIL (-12 (|has| $ (-133)) (|has| |#2| (-838))))) (-3097 (((-3 $ "failed") $ $) NIL (|has| |#2| (-514))) (((-3 (-382 $) "failed") (-382 $) $) NIL (|has| |#2| (-514)))) (-2190 (((-792) $) 13) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-999)) NIL) (($ (-1162 |#1|)) 19) (($ (-382 (-522))) NIL (-3708 (|has| |#2| (-37 (-382 (-522)))) (|has| |#2| (-962 (-382 (-522)))))) (($ $) NIL (|has| |#2| (-514)))) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-708)) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2143 (((-3 $ "failed") $) NIL (-3708 (-12 (|has| $ (-133)) (|has| |#2| (-838))) (|has| |#2| (-133))))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| |#2| (-157)))) (-3958 (((-108) $ $) NIL (|has| |#2| (-514)))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-3577 (($) 14 T CONST)) (-2213 (($ $ (-999)) NIL) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) NIL) (($ $ (-1085)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1085) (-708)) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) NIL (|has| |#2| (-829 (-1085)))) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1574 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1531 (((-108) $ $) NIL)) (-1566 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#2| (-784)))) (-1620 (($ $ |#2|) NIL (|has| |#2| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-382 (-522))) NIL (|has| |#2| (-37 (-382 (-522))))) (($ (-382 (-522)) $) NIL (|has| |#2| (-37 (-382 (-522))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1139 |#1| |#2|) (-13 (-1142 |#2|) (-10 -8 (-15 -2190 ($ (-1162 |#1|))) (-15 -2600 ($ $ (-708) |#2| $)))) (-1085) (-971)) (T -1139))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-1139 *3 *4)) (-4 *4 (-971)))) (-2600 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1139 *4 *3)) (-14 *4 (-1085)) (-4 *3 (-971)))))
+(-13 (-1142 |#2|) (-10 -8 (-15 -2190 ($ (-1162 |#1|))) (-15 -2600 ($ $ (-708) |#2| $))))
+((-1391 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|))) (-971) (-1142 |#1|) (-971) (-1142 |#3|)) (T -1140))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *4 *6 *2)) (-4 *4 (-1142 *5)))))
+(-10 -7 (-15 -1391 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3960 (((-1166 |#2|) $ (-708)) 113)) (-4090 (((-588 (-999)) $) 15)) (-3793 (($ (-1081 |#2|)) 66)) (-3781 (((-708) $) NIL) (((-708) $ (-588 (-999))) 18)) (-1565 (((-393 (-1081 $)) (-1081 $)) 184)) (-3119 (($ $) 174)) (-3450 (((-393 $) $) 172)) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 81)) (-3242 (($ $ (-708)) 70)) (-2272 (($ $ (-708)) 72)) (-1441 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1297 (((-3 |#2| "failed") $) 116) (((-3 (-382 (-522)) "failed") $) NIL) (((-3 (-522) "failed") $) NIL) (((-3 (-999) "failed") $) NIL)) (-1484 ((|#2| $) 114) (((-382 (-522)) $) NIL) (((-522) $) NIL) (((-999) $) NIL)) (-4152 (($ $ $) 150)) (-1541 (((-2 (|:| -2977 |#2|) (|:| -1353 $) (|:| -3421 $)) $ $) 152)) (-3714 (((-708) $ $) 169)) (-3004 (((-3 $ "failed") $) 122)) (-4049 (($ |#2| (-708)) NIL) (($ $ (-999) (-708)) 46) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-2925 (((-708) $) NIL) (((-708) $ (-999)) 41) (((-588 (-708)) $ (-588 (-999))) 42)) (-3624 (((-1081 |#2|) $) 58)) (-3145 (((-3 (-999) "failed") $) 39)) (-3114 (((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708)) 69)) (-1858 (($ $) 195)) (-3802 (($) 118)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 181)) (-3729 (((-393 (-1081 $)) (-1081 $)) 87)) (-3495 (((-393 (-1081 $)) (-1081 $)) 85)) (-1916 (((-393 $) $) 105)) (-2289 (($ $ (-588 (-270 $))) 38) (($ $ (-270 $)) NIL) (($ $ $ $) NIL) (($ $ (-588 $) (-588 $)) NIL) (($ $ (-999) |#2|) 31) (($ $ (-588 (-999)) (-588 |#2|)) 28) (($ $ (-999) $) 25) (($ $ (-588 (-999)) (-588 $)) 23)) (-3730 (((-708) $) 187)) (-2545 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-382 $) (-382 $) (-382 $)) 146) ((|#2| (-382 $) |#2|) 186) (((-382 $) $ (-382 $)) 168)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 190)) (-2157 (($ $ (-999)) 139) (($ $ (-588 (-999))) NIL) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL) (($ $ (-708)) NIL) (($ $) 137) (($ $ (-1085)) NIL) (($ $ (-588 (-1085))) NIL) (($ $ (-1085) (-708)) NIL) (($ $ (-588 (-1085)) (-588 (-708))) NIL) (($ $ (-1 |#2| |#2|) (-708)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-2793 (((-708) $) NIL) (((-708) $ (-999)) 16) (((-588 (-708)) $ (-588 (-999))) 20)) (-2255 ((|#2| $) NIL) (($ $ (-999)) 124)) (-3097 (((-3 $ "failed") $ $) 160) (((-3 (-382 $) "failed") (-382 $) $) 156)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#2|) NIL) (($ (-999)) 50) (($ (-382 (-522))) NIL) (($ $) NIL)))
+(((-1141 |#1| |#2|) (-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -2545 ((-382 |#1|) |#1| (-382 |#1|))) (-15 -3730 ((-708) |#1|)) (-15 -2752 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -2545 (|#2| (-382 |#1|) |#2|)) (-15 -1441 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1541 ((-2 (|:| -2977 |#2|) (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -4152 (|#1| |#1| |#1|)) (-15 -3097 ((-3 (-382 |#1|) "failed") (-382 |#1|) |#1|)) (-15 -3097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3714 ((-708) |#1| |#1|)) (-15 -2545 ((-382 |#1|) (-382 |#1|) (-382 |#1|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2272 (|#1| |#1| (-708))) (-15 -3242 (|#1| |#1| (-708))) (-15 -3114 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| (-708))) (-15 -3793 (|#1| (-1081 |#2|))) (-15 -3624 ((-1081 |#2|) |#1|)) (-15 -3960 ((-1166 |#2|) |#1| (-708))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2545 (|#2| |#1| |#2|)) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -1565 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3495 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3729 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2255 (|#1| |#1| (-999))) (-15 -4090 ((-588 (-999)) |#1|)) (-15 -3781 ((-708) |#1| (-588 (-999)))) (-15 -3781 ((-708) |#1|)) (-15 -4049 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -4049 (|#1| |#1| (-999) (-708))) (-15 -2925 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -2925 ((-708) |#1| (-999))) (-15 -3145 ((-3 (-999) "failed") |#1|)) (-15 -2793 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -2793 ((-708) |#1| (-999))) (-15 -1484 ((-999) |#1|)) (-15 -1297 ((-3 (-999) "failed") |#1|)) (-15 -2190 (|#1| (-999))) (-15 -2289 (|#1| |#1| (-588 (-999)) (-588 |#1|))) (-15 -2289 (|#1| |#1| (-999) |#1|)) (-15 -2289 (|#1| |#1| (-588 (-999)) (-588 |#2|))) (-15 -2289 (|#1| |#1| (-999) |#2|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2793 ((-708) |#1|)) (-15 -4049 (|#1| |#2| (-708))) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -2925 ((-708) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2157 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-999) (-708))) (-15 -2157 (|#1| |#1| (-588 (-999)))) (-15 -2157 (|#1| |#1| (-999))) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|))) (-1142 |#2|) (-971)) (T -1141))
+NIL
+(-10 -8 (-15 -2190 (|#1| |#1|)) (-15 -1307 ((-1081 |#1|) (-1081 |#1|) (-1081 |#1|))) (-15 -3450 ((-393 |#1|) |#1|)) (-15 -3119 (|#1| |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -3802 (|#1|)) (-15 -3004 ((-3 |#1| "failed") |#1|)) (-15 -2545 ((-382 |#1|) |#1| (-382 |#1|))) (-15 -3730 ((-708) |#1|)) (-15 -2752 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -2545 (|#2| (-382 |#1|) |#2|)) (-15 -1441 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1541 ((-2 (|:| -2977 |#2|) (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| |#1|)) (-15 -4152 (|#1| |#1| |#1|)) (-15 -3097 ((-3 (-382 |#1|) "failed") (-382 |#1|) |#1|)) (-15 -3097 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3714 ((-708) |#1| |#1|)) (-15 -2545 ((-382 |#1|) (-382 |#1|) (-382 |#1|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2272 (|#1| |#1| (-708))) (-15 -3242 (|#1| |#1| (-708))) (-15 -3114 ((-2 (|:| -1353 |#1|) (|:| -3421 |#1|)) |#1| (-708))) (-15 -3793 (|#1| (-1081 |#2|))) (-15 -3624 ((-1081 |#2|) |#1|)) (-15 -3960 ((-1166 |#2|) |#1| (-708))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2157 (|#1| |#1| (-1 |#2| |#2|) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-1085) (-708))) (-15 -2157 (|#1| |#1| (-588 (-1085)))) (-15 -2157 (|#1| |#1| (-1085))) (-15 -2157 (|#1| |#1|)) (-15 -2157 (|#1| |#1| (-708))) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2545 (|#2| |#1| |#2|)) (-15 -1916 ((-393 |#1|) |#1|)) (-15 -1565 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3495 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -3729 ((-393 (-1081 |#1|)) (-1081 |#1|))) (-15 -1473 ((-3 (-588 (-1081 |#1|)) "failed") (-588 (-1081 |#1|)) (-1081 |#1|))) (-15 -2255 (|#1| |#1| (-999))) (-15 -4090 ((-588 (-999)) |#1|)) (-15 -3781 ((-708) |#1| (-588 (-999)))) (-15 -3781 ((-708) |#1|)) (-15 -4049 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -4049 (|#1| |#1| (-999) (-708))) (-15 -2925 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -2925 ((-708) |#1| (-999))) (-15 -3145 ((-3 (-999) "failed") |#1|)) (-15 -2793 ((-588 (-708)) |#1| (-588 (-999)))) (-15 -2793 ((-708) |#1| (-999))) (-15 -1484 ((-999) |#1|)) (-15 -1297 ((-3 (-999) "failed") |#1|)) (-15 -2190 (|#1| (-999))) (-15 -2289 (|#1| |#1| (-588 (-999)) (-588 |#1|))) (-15 -2289 (|#1| |#1| (-999) |#1|)) (-15 -2289 (|#1| |#1| (-588 (-999)) (-588 |#2|))) (-15 -2289 (|#1| |#1| (-999) |#2|)) (-15 -2289 (|#1| |#1| (-588 |#1|) (-588 |#1|))) (-15 -2289 (|#1| |#1| |#1| |#1|)) (-15 -2289 (|#1| |#1| (-270 |#1|))) (-15 -2289 (|#1| |#1| (-588 (-270 |#1|)))) (-15 -2793 ((-708) |#1|)) (-15 -4049 (|#1| |#2| (-708))) (-15 -1484 ((-522) |#1|)) (-15 -1297 ((-3 (-522) "failed") |#1|)) (-15 -1484 ((-382 (-522)) |#1|)) (-15 -1297 ((-3 (-382 (-522)) "failed") |#1|)) (-15 -2190 (|#1| |#2|)) (-15 -1297 ((-3 |#2| "failed") |#1|)) (-15 -1484 (|#2| |#1|)) (-15 -2925 ((-708) |#1|)) (-15 -2255 (|#2| |#1|)) (-15 -2157 (|#1| |#1| (-588 (-999)) (-588 (-708)))) (-15 -2157 (|#1| |#1| (-999) (-708))) (-15 -2157 (|#1| |#1| (-588 (-999)))) (-15 -2157 (|#1| |#1| (-999))) (-15 -2190 (|#1| (-522))) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-3960 (((-1166 |#1|) $ (-708)) 238)) (-4090 (((-588 (-999)) $) 110)) (-3793 (($ (-1081 |#1|)) 236)) (-1282 (((-1081 $) $ (-999)) 125) (((-1081 |#1|) $) 124)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 87 (|has| |#1| (-514)))) (-2022 (($ $) 88 (|has| |#1| (-514)))) (-3739 (((-108) $) 90 (|has| |#1| (-514)))) (-3781 (((-708) $) 112) (((-708) $ (-588 (-999))) 111)) (-1233 (((-3 $ "failed") $ $) 19)) (-3984 (($ $ $) 223 (|has| |#1| (-514)))) (-1565 (((-393 (-1081 $)) (-1081 $)) 100 (|has| |#1| (-838)))) (-3119 (($ $) 98 (|has| |#1| (-426)))) (-3450 (((-393 $) $) 97 (|has| |#1| (-426)))) (-1473 (((-3 (-588 (-1081 $)) "failed") (-588 (-1081 $)) (-1081 $)) 103 (|has| |#1| (-838)))) (-1687 (((-108) $ $) 208 (|has| |#1| (-338)))) (-3242 (($ $ (-708)) 231)) (-2272 (($ $ (-708)) 230)) (-1441 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-426)))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 164) (((-3 (-382 (-522)) "failed") $) 162 (|has| |#1| (-962 (-382 (-522))))) (((-3 (-522) "failed") $) 160 (|has| |#1| (-962 (-522)))) (((-3 (-999) "failed") $) 136)) (-1484 ((|#1| $) 165) (((-382 (-522)) $) 161 (|has| |#1| (-962 (-382 (-522))))) (((-522) $) 159 (|has| |#1| (-962 (-522)))) (((-999) $) 135)) (-1950 (($ $ $ (-999)) 108 (|has| |#1| (-157))) ((|#1| $ $) 226 (|has| |#1| (-157)))) (-2277 (($ $ $) 212 (|has| |#1| (-338)))) (-3156 (($ $) 154)) (-2096 (((-628 (-522)) (-628 $)) 134 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 (-522))) (|:| |vec| (-1166 (-522)))) (-628 $) (-1166 $)) 133 (|has| |#1| (-584 (-522)))) (((-2 (|:| -1222 (-628 |#1|)) (|:| |vec| (-1166 |#1|))) (-628 $) (-1166 $)) 132) (((-628 |#1|) (-628 $)) 131)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 211 (|has| |#1| (-338)))) (-2052 (($ $ $) 229)) (-4152 (($ $ $) 220 (|has| |#1| (-514)))) (-1541 (((-2 (|:| -2977 |#1|) (|:| -1353 $) (|:| -3421 $)) $ $) 219 (|has| |#1| (-514)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 206 (|has| |#1| (-338)))) (-2071 (($ $) 176 (|has| |#1| (-426))) (($ $ (-999)) 105 (|has| |#1| (-426)))) (-3147 (((-588 $) $) 109)) (-2813 (((-108) $) 96 (|has| |#1| (-838)))) (-2671 (($ $ |#1| (-708) $) 172)) (-4011 (((-818 (-354) $) $ (-821 (-354)) (-818 (-354) $)) 84 (-12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354))))) (((-818 (-522) $) $ (-821 (-522)) (-818 (-522) $)) 83 (-12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))))) (-3714 (((-708) $ $) 224 (|has| |#1| (-514)))) (-2782 (((-108) $) 31)) (-2112 (((-708) $) 169)) (-3004 (((-3 $ "failed") $) 204 (|has| |#1| (-1061)))) (-4073 (($ (-1081 |#1|) (-999)) 117) (($ (-1081 $) (-999)) 116)) (-2073 (($ $ (-708)) 235)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 215 (|has| |#1| (-338)))) (-4052 (((-588 $) $) 126)) (-3340 (((-108) $) 152)) (-4049 (($ |#1| (-708)) 153) (($ $ (-999) (-708)) 119) (($ $ (-588 (-999)) (-588 (-708))) 118)) (-2478 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $ (-999)) 120) (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 233)) (-2925 (((-708) $) 170) (((-708) $ (-999)) 122) (((-588 (-708)) $ (-588 (-999))) 121)) (-2814 (($ $ $) 79 (|has| |#1| (-784)))) (-2446 (($ $ $) 78 (|has| |#1| (-784)))) (-3861 (($ (-1 (-708) (-708)) $) 171)) (-1391 (($ (-1 |#1| |#1|) $) 151)) (-3624 (((-1081 |#1|) $) 237)) (-3145 (((-3 (-999) "failed") $) 123)) (-3128 (($ $) 149)) (-3138 ((|#1| $) 148)) (-2224 (($ (-588 $)) 94 (|has| |#1| (-426))) (($ $ $) 93 (|has| |#1| (-426)))) (-2385 (((-1068) $) 9)) (-3114 (((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708)) 232)) (-2462 (((-3 (-588 $) "failed") $) 114)) (-4193 (((-3 (-588 $) "failed") $) 115)) (-3285 (((-3 (-2 (|:| |var| (-999)) (|:| -1400 (-708))) "failed") $) 113)) (-1858 (($ $) 216 (|has| |#1| (-37 (-382 (-522)))))) (-3802 (($) 203 (|has| |#1| (-1061)) CONST)) (-4151 (((-1032) $) 10)) (-3108 (((-108) $) 166)) (-3118 ((|#1| $) 167)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 95 (|has| |#1| (-426)))) (-2259 (($ (-588 $)) 92 (|has| |#1| (-426))) (($ $ $) 91 (|has| |#1| (-426)))) (-3729 (((-393 (-1081 $)) (-1081 $)) 102 (|has| |#1| (-838)))) (-3495 (((-393 (-1081 $)) (-1081 $)) 101 (|has| |#1| (-838)))) (-1916 (((-393 $) $) 99 (|has| |#1| (-838)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 213 (|has| |#1| (-338)))) (-2232 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-514))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 207 (|has| |#1| (-338)))) (-2289 (($ $ (-588 (-270 $))) 145) (($ $ (-270 $)) 144) (($ $ $ $) 143) (($ $ (-588 $) (-588 $)) 142) (($ $ (-999) |#1|) 141) (($ $ (-588 (-999)) (-588 |#1|)) 140) (($ $ (-999) $) 139) (($ $ (-588 (-999)) (-588 $)) 138)) (-3730 (((-708) $) 209 (|has| |#1| (-338)))) (-2545 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-382 $) (-382 $) (-382 $)) 225 (|has| |#1| (-514))) ((|#1| (-382 $) |#1|) 217 (|has| |#1| (-338))) (((-382 $) $ (-382 $)) 205 (|has| |#1| (-514)))) (-4158 (((-3 $ "failed") $ (-708)) 234)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 210 (|has| |#1| (-338)))) (-2769 (($ $ (-999)) 107 (|has| |#1| (-157))) ((|#1| $) 227 (|has| |#1| (-157)))) (-2157 (($ $ (-999)) 42) (($ $ (-588 (-999))) 41) (($ $ (-999) (-708)) 40) (($ $ (-588 (-999)) (-588 (-708))) 39) (($ $ (-708)) 253) (($ $) 251) (($ $ (-1085)) 250 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 249 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 248 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 247 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2793 (((-708) $) 150) (((-708) $ (-999)) 130) (((-588 (-708)) $ (-588 (-999))) 129)) (-1431 (((-821 (-354)) $) 82 (-12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354)))))) (((-821 (-522)) $) 81 (-12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522)))))) (((-498) $) 80 (-12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))))) (-2255 ((|#1| $) 175 (|has| |#1| (-426))) (($ $ (-999)) 106 (|has| |#1| (-426)))) (-2412 (((-3 (-1166 $) "failed") (-628 $)) 104 (-4015 (|has| $ (-133)) (|has| |#1| (-838))))) (-3097 (((-3 $ "failed") $ $) 222 (|has| |#1| (-514))) (((-3 (-382 $) "failed") (-382 $) $) 221 (|has| |#1| (-514)))) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 163) (($ (-999)) 137) (($ (-382 (-522))) 72 (-3708 (|has| |#1| (-962 (-382 (-522)))) (|has| |#1| (-37 (-382 (-522)))))) (($ $) 85 (|has| |#1| (-514)))) (-3916 (((-588 |#1|) $) 168)) (-3243 ((|#1| $ (-708)) 155) (($ $ (-999) (-708)) 128) (($ $ (-588 (-999)) (-588 (-708))) 127)) (-2143 (((-3 $ "failed") $) 73 (-3708 (-4015 (|has| $ (-133)) (|has| |#1| (-838))) (|has| |#1| (-133))))) (-2323 (((-708)) 29)) (-3632 (($ $ $ (-708)) 173 (|has| |#1| (-157)))) (-3958 (((-108) $ $) 89 (|has| |#1| (-514)))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-999)) 38) (($ $ (-588 (-999))) 37) (($ $ (-999) (-708)) 36) (($ $ (-588 (-999)) (-588 (-708))) 35) (($ $ (-708)) 254) (($ $) 252) (($ $ (-1085)) 246 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085))) 245 (|has| |#1| (-829 (-1085)))) (($ $ (-1085) (-708)) 244 (|has| |#1| (-829 (-1085)))) (($ $ (-588 (-1085)) (-588 (-708))) 243 (|has| |#1| (-829 (-1085)))) (($ $ (-1 |#1| |#1|) (-708)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1574 (((-108) $ $) 76 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 75 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 6)) (-1566 (((-108) $ $) 77 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 74 (|has| |#1| (-784)))) (-1620 (($ $ |#1|) 156 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 158 (|has| |#1| (-37 (-382 (-522))))) (($ (-382 (-522)) $) 157 (|has| |#1| (-37 (-382 (-522))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1142 |#1|) (-1197) (-971)) (T -1142))
+((-3960 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-1142 *4)) (-4 *4 (-971)) (-5 *2 (-1166 *4)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-5 *2 (-1081 *3)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-971)) (-4 *1 (-1142 *3)))) (-2073 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-4158 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2478 (*1 *2 *1 *1) (-12 (-4 *3 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-1142 *3)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-1142 *4)))) (-3242 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2272 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2052 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)))) (-2157 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))) (-2769 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157)))) (-1950 (*1 *2 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157)))) (-2545 (*1 *2 *2 *2) (-12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)))) (-3714 (*1 *2 *1 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)) (-5 *2 (-708)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-3097 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-3097 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)))) (-4152 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))) (-1541 (*1 *2 *1 *1) (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-5 *2 (-2 (|:| -2977 *3) (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-1142 *3)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *3 (-426)) (-4 *3 (-971)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1142 *3)))) (-2545 (*1 *2 *3 *2) (-12 (-5 *3 (-382 *1)) (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1858 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))))
+(-13 (-878 |t#1| (-708) (-999)) (-262 |t#1| |t#1|) (-262 $ $) (-210) (-208 |t#1|) (-10 -8 (-15 -3960 ((-1166 |t#1|) $ (-708))) (-15 -3624 ((-1081 |t#1|) $)) (-15 -3793 ($ (-1081 |t#1|))) (-15 -2073 ($ $ (-708))) (-15 -4158 ((-3 $ "failed") $ (-708))) (-15 -2478 ((-2 (|:| -1353 $) (|:| -3421 $)) $ $)) (-15 -3114 ((-2 (|:| -1353 $) (|:| -3421 $)) $ (-708))) (-15 -3242 ($ $ (-708))) (-15 -2272 ($ $ (-708))) (-15 -2052 ($ $ $)) (-15 -2157 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1061)) (-6 (-1061)) |%noBranch|) (IF (|has| |t#1| (-157)) (PROGN (-15 -2769 (|t#1| $)) (-15 -1950 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-514)) (PROGN (-6 (-262 (-382 $) (-382 $))) (-15 -2545 ((-382 $) (-382 $) (-382 $))) (-15 -3714 ((-708) $ $)) (-15 -3984 ($ $ $)) (-15 -3097 ((-3 $ "failed") $ $)) (-15 -3097 ((-3 (-382 $) "failed") (-382 $) $)) (-15 -4152 ($ $ $)) (-15 -1541 ((-2 (|:| -2977 |t#1|) (|:| -1353 $) (|:| -3421 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-426)) (-15 -1441 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-338)) (PROGN (-6 (-283)) (-6 -4234) (-15 -2545 (|t#1| (-382 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (-15 -1858 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-708)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-563 (-498)) -12 (|has| (-999) (-563 (-498))) (|has| |#1| (-563 (-498)))) ((-563 (-821 (-354))) -12 (|has| (-999) (-563 (-821 (-354)))) (|has| |#1| (-563 (-821 (-354))))) ((-563 (-821 (-522))) -12 (|has| (-999) (-563 (-821 (-522)))) (|has| |#1| (-563 (-821 (-522))))) ((-208 |#1|) . T) ((-210) . T) ((-262 (-382 $) (-382 $)) |has| |#1| (-514)) ((-262 |#1| |#1|) . T) ((-262 $ $) . T) ((-266) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-285 $) . T) ((-301 |#1| #0#) . T) ((-352 |#1|) . T) ((-386 |#1|) . T) ((-426) -3708 (|has| |#1| (-838)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-483 #2=(-999) |#1|) . T) ((-483 #2# $) . T) ((-483 $ $) . T) ((-514) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-590 #1#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-584 (-522)) |has| |#1| (-584 (-522))) ((-584 |#1|) . T) ((-655 #1#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338))) ((-664) . T) ((-784) |has| |#1| (-784)) ((-829 #2#) . T) ((-829 (-1085)) |has| |#1| (-829 (-1085))) ((-815 (-354)) -12 (|has| (-999) (-815 (-354))) (|has| |#1| (-815 (-354)))) ((-815 (-522)) -12 (|has| (-999) (-815 (-522))) (|has| |#1| (-815 (-522)))) ((-878 |#1| #0# #2#) . T) ((-838) |has| |#1| (-838)) ((-849) |has| |#1| (-338)) ((-962 (-382 (-522))) |has| |#1| (-962 (-382 (-522)))) ((-962 (-522)) |has| |#1| (-962 (-522))) ((-962 #2#) . T) ((-962 |#1|) . T) ((-977 #1#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-838)) (|has| |#1| (-514)) (|has| |#1| (-426)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1061) |has| |#1| (-1061)) ((-1124) |has| |#1| (-838)))
+((-4090 (((-588 (-999)) $) 28)) (-3156 (($ $) 25)) (-4049 (($ |#2| |#3|) NIL) (($ $ (-999) |#3|) 22) (($ $ (-588 (-999)) (-588 |#3|)) 20)) (-3128 (($ $) 14)) (-3138 ((|#2| $) 12)) (-2793 ((|#3| $) 10)))
+(((-1143 |#1| |#2| |#3|) (-10 -8 (-15 -4090 ((-588 (-999)) |#1|)) (-15 -4049 (|#1| |#1| (-588 (-999)) (-588 |#3|))) (-15 -4049 (|#1| |#1| (-999) |#3|)) (-15 -3156 (|#1| |#1|)) (-15 -4049 (|#1| |#2| |#3|)) (-15 -2793 (|#3| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3138 (|#2| |#1|))) (-1144 |#2| |#3|) (-971) (-729)) (T -1143))
+NIL
+(-10 -8 (-15 -4090 ((-588 (-999)) |#1|)) (-15 -4049 (|#1| |#1| (-588 (-999)) (-588 |#3|))) (-15 -4049 (|#1| |#1| (-999) |#3|)) (-15 -3156 (|#1| |#1|)) (-15 -4049 (|#1| |#2| |#3|)) (-15 -2793 (|#3| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -3138 (|#2| |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 (-999)) $) 74)) (-1611 (((-1085) $) 103)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-2789 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2258 (((-1066 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-3390 (((-108) $) 73)) (-3714 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2782 (((-108) $) 31)) (-2073 (($ $ (-850)) 101)) (-3340 (((-108) $) 62)) (-4049 (($ |#1| |#2|) 61) (($ $ (-999) |#2|) 76) (($ $ (-588 (-999)) (-588 |#2|)) 75)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-3719 (($ $ |#2|) 95)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2289 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2545 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1026)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2793 ((|#2| $) 64)) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3243 ((|#1| $ |#2|) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-1893 ((|#1| $) 102)) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-3898 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-1144 |#1| |#2|) (-1197) (-971) (-729)) (T -1144))
+((-2258 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-1066 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2545 (*1 *2 *1 *3) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (-5 *2 (-1085)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))) (-2073 (*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3714 (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-2789 (*1 *1 *1 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-2789 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-3898 (*1 *2 *1 *3) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2190 (*2 (-1085)))) (-4 *2 (-971)))) (-3719 (*1 *1 *1 *2) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))) (-2289 (*1 *2 *1 *3) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1066 *3)))))
+(-13 (-900 |t#1| |t#2| (-999)) (-10 -8 (-15 -2258 ((-1066 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2545 (|t#1| $ |t#2|)) (-15 -1611 ((-1085) $)) (-15 -1893 (|t#1| $)) (-15 -2073 ($ $ (-850))) (-15 -3714 (|t#2| $)) (-15 -3714 (|t#2| $ |t#2|)) (-15 -2789 ($ $ |t#2|)) (-15 -2789 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2190 (|t#1| (-1085)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3898 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3719 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-262 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-210)) (IF (|has| |t#1| (-829 (-1085))) (-6 (-829 (-1085))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2289 ((-1066 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-262 $ $) |has| |#2| (-1026)) ((-266) |has| |#1| (-514)) ((-514) |has| |#1| (-514)) ((-590 #0#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| |#2| (-999)) . T) ((-977 #0#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-3119 ((|#2| |#2|) 12)) (-3450 (((-393 |#2|) |#2|) 14)) (-1324 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522)))) 30)))
+(((-1145 |#1| |#2|) (-10 -7 (-15 -3450 ((-393 |#2|) |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -1324 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522)))))) (-514) (-13 (-1142 |#1|) (-514) (-10 -8 (-15 -2259 ($ $ $))))) (T -1145))
+((-1324 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-522)))) (-4 *4 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2259 ($ $ $))))) (-4 *3 (-514)) (-5 *1 (-1145 *3 *4)))) (-3119 (*1 *2 *2) (-12 (-4 *3 (-514)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2259 ($ $ $))))))) (-3450 (*1 *2 *3) (-12 (-4 *4 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-1145 *4 *3)) (-4 *3 (-13 (-1142 *4) (-514) (-10 -8 (-15 -2259 ($ $ $))))))))
+(-10 -7 (-15 -3450 ((-393 |#2|) |#2|)) (-15 -3119 (|#2| |#2|)) (-15 -1324 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-522))))))
+((-1391 (((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)) 23)))
+(((-1146 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1391 ((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|)))) (-971) (-971) (-1085) (-1085) |#1| |#2|) (T -1146))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5 *7 *9)) (-4 *5 (-971)) (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1151 *6 *8 *10)) (-5 *1 (-1146 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1085)))))
+(-10 -7 (-15 -1391 ((-1151 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1151 |#1| |#3| |#5|))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 (-999)) $) 74)) (-1611 (((-1085) $) 103)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) 98) (($ $ (-382 (-522)) (-382 (-522))) 97)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 105)) (-2908 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 162 (|has| |#1| (-338)))) (-3450 (((-393 $) $) 163 (|has| |#1| (-338)))) (-1929 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) 153 (|has| |#1| (-338)))) (-2884 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) 172)) (-2930 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) 17 T CONST)) (-2277 (($ $ $) 157 (|has| |#1| (-338)))) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 156 (|has| |#1| (-338)))) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2813 (((-108) $) 164 (|has| |#1| (-338)))) (-3390 (((-108) $) 73)) (-2838 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) 100) (((-382 (-522)) $ (-382 (-522))) 99)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) 101) (($ $ (-382 (-522))) 171)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-3340 (((-108) $) 62)) (-4049 (($ |#1| (-382 (-522))) 61) (($ $ (-999) (-382 (-522))) 76) (($ $ (-588 (-999)) (-588 (-382 (-522)))) 75)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2224 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-2385 (((-1068) $) 9)) (-3098 (($ $) 165 (|has| |#1| (-338)))) (-1858 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3708 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2259 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-1916 (((-393 $) $) 161 (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) 95)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3266 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) 154 (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) 104) (($ $ $) 81 (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 155 (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2793 (((-382 (-522)) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-1147 |#1|) (-1197) (-971)) (T -1147))
+((-2773 (*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4)))) (-4 *4 (-971)) (-4 *1 (-1147 *4)))) (-2073 (*1 *1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-1147 *3)) (-4 *3 (-971)))) (-1858 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) (-1858 (*1 *1 *1 *2) (-3708 (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971)) (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) (-4 *3 (-37 (-382 (-522)))))) (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971)) (-12 (|has| *3 (-15 -4090 ((-588 *2) *3))) (|has| *3 (-15 -1858 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522)))))))))
+(-13 (-1144 |t#1| (-382 (-522))) (-10 -8 (-15 -2773 ($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |t#1|))))) (-15 -2073 ($ $ (-382 (-522)))) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $)) (IF (|has| |t#1| (-15 -1858 (|t#1| |t#1| (-1085)))) (IF (|has| |t#1| (-15 -4090 ((-588 (-1085)) |t#1|))) (-15 -1858 ($ $ (-1085))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-522))) (-15 -1858 ($ $ (-1085))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-928)) (-6 (-1106))) |%noBranch|) (IF (|has| |t#1| (-338)) (-6 (-338)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-382 (-522))) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-382 (-522)) (-1026)) ((-266) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-338) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1124) |has| |#1| (-338)) ((-1144 |#1| #0#) . T))
+((-2250 (((-108) $) 12)) (-1297 (((-3 |#3| "failed") $) 17)) (-1484 ((|#3| $) 14)))
+(((-1148 |#1| |#2| |#3|) (-10 -8 (-15 -1484 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2250 ((-108) |#1|))) (-1149 |#2| |#3|) (-971) (-1126 |#2|)) (T -1148))
+NIL
+(-10 -8 (-15 -1484 (|#3| |#1|)) (-15 -1297 ((-3 |#3| "failed") |#1|)) (-15 -2250 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 (-999)) $) 74)) (-1611 (((-1085) $) 103)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) 98) (($ $ (-382 (-522)) (-382 (-522))) 97)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 105)) (-2908 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 162 (|has| |#1| (-338)))) (-3450 (((-393 $) $) 163 (|has| |#1| (-338)))) (-1929 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) 153 (|has| |#1| (-338)))) (-2884 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) 172)) (-2930 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#2| "failed") $) 183)) (-1484 ((|#2| $) 182)) (-2277 (($ $ $) 157 (|has| |#1| (-338)))) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-3987 (((-382 (-522)) $) 180)) (-2254 (($ $ $) 156 (|has| |#1| (-338)))) (-3079 (($ (-382 (-522)) |#2|) 181)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 151 (|has| |#1| (-338)))) (-2813 (((-108) $) 164 (|has| |#1| (-338)))) (-3390 (((-108) $) 73)) (-2838 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) 100) (((-382 (-522)) $ (-382 (-522))) 99)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) 101) (($ $ (-382 (-522))) 171)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 160 (|has| |#1| (-338)))) (-3340 (((-108) $) 62)) (-4049 (($ |#1| (-382 (-522))) 61) (($ $ (-999) (-382 (-522))) 76) (($ $ (-588 (-999)) (-588 (-382 (-522)))) 75)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2224 (($ (-588 $)) 149 (|has| |#1| (-338))) (($ $ $) 148 (|has| |#1| (-338)))) (-2440 ((|#2| $) 179)) (-4020 (((-3 |#2| "failed") $) 177)) (-3068 ((|#2| $) 178)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 165 (|has| |#1| (-338)))) (-1858 (($ $) 170 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 169 (-3708 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 150 (|has| |#1| (-338)))) (-2259 (($ (-588 $)) 147 (|has| |#1| (-338))) (($ $ $) 146 (|has| |#1| (-338)))) (-1916 (((-393 $) $) 161 (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 158 (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) 95)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 152 (|has| |#1| (-338)))) (-3266 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) 154 (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) 104) (($ $ $) 81 (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 155 (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2793 (((-382 (-522)) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 47 (|has| |#1| (-157))) (($ |#2|) 184) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 166 (|has| |#1| (-338)))) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338))) (($ $ $) 168 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 167 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-1149 |#1| |#2|) (-1197) (-971) (-1126 |t#1|)) (T -1149))
+((-2793 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3)) (-5 *2 (-382 (-522))))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *1 (-1149 *3 *2)) (-4 *2 (-1126 *3)))) (-3079 (*1 *1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-4 *4 (-971)) (-4 *1 (-1149 *4 *3)) (-4 *3 (-1126 *4)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3)) (-5 *2 (-382 (-522))))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))) (-4020 (*1 *2 *1) (|partial| -12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))))
+(-13 (-1147 |t#1|) (-962 |t#2|) (-10 -8 (-15 -3079 ($ (-382 (-522)) |t#2|)) (-15 -3987 ((-382 (-522)) $)) (-15 -2440 (|t#2| $)) (-15 -2793 ((-382 (-522)) $)) (-15 -2190 ($ |t#2|)) (-15 -3068 (|t#2| $)) (-15 -4020 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-382 (-522))) . T) ((-25) . T) ((-37 #1=(-382 (-522))) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) ((-220) |has| |#1| (-338)) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-382 (-522)) (-1026)) ((-266) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-283) |has| |#1| (-338)) ((-338) |has| |#1| (-338)) ((-426) |has| |#1| (-338)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-590 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338))) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-849) |has| |#1| (-338)) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-962 |#2|) . T) ((-977 #1#) -3708 (|has| |#1| (-338)) (|has| |#1| (-37 (-382 (-522))))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-338)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1124) |has| |#1| (-338)) ((-1144 |#1| #0#) . T) ((-1147 |#1|) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 96)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) 106) (($ $ (-382 (-522)) (-382 (-522))) 108)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) 51)) (-2908 (($ $) 179 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 155 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) 175 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 151 (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) 61)) (-2930 (($ $) 183 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 159 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL)) (-1484 ((|#2| $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) 79)) (-3987 (((-382 (-522)) $) 12)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3079 (($ (-382 (-522)) |#2|) 10)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3390 (((-108) $) 68)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) 103) (((-382 (-522)) $ (-382 (-522))) 104)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) 120) (($ $ (-382 (-522))) 118)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-382 (-522))) 31) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) 115)) (-1254 (($ $) 149 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2440 ((|#2| $) 11)) (-4020 (((-3 |#2| "failed") $) 41)) (-3068 ((|#2| $) 42)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) 93 (|has| |#1| (-338)))) (-1858 (($ $) 135 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 140 (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106)))))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) 112)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) 147 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) 100) (($ $ $) 86 (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) 127 (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-2793 (((-382 (-522)) $) 16)) (-1738 (($ $) 185 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 161 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 181 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 157 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 177 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 153 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 110)) (-2190 (((-792) $) NIL) (($ (-522)) 35) (($ |#1|) 27 (|has| |#1| (-157))) (($ |#2|) 32) (($ (-382 (-522))) 128 (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) 99)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) 117)) (-1893 ((|#1| $) 98)) (-1759 (($ $) 191 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 167 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) 187 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 163 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 195 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 171 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 197 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 173 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 193 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 169 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 189 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 165 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 21 T CONST)) (-3577 (($) 17 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1531 (((-108) $ $) 66)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) 92 (|has| |#1| (-338)))) (-1612 (($ $) 131) (($ $ $) 72)) (-1602 (($ $ $) 70)) (** (($ $ (-850)) NIL) (($ $ (-708)) 76) (($ $ (-522)) 144 (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 145 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1150 |#1| |#2|) (-1149 |#1| |#2|) (-971) (-1126 |#1|)) (T -1150))
+NIL
+(-1149 |#1| |#2|)
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 11)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) NIL (|has| |#1| (-514)))) (-2789 (($ $ (-382 (-522))) NIL) (($ $ (-382 (-522)) (-382 (-522))) NIL)) (-2258 (((-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|))) $) NIL)) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-3119 (($ $) NIL (|has| |#1| (-338)))) (-3450 (((-393 $) $) NIL (|has| |#1| (-338)))) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1687 (((-108) $ $) NIL (|has| |#1| (-338)))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-708) (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#1|)))) NIL)) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-1130 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1158 |#1| |#2| |#3|) "failed") $) 22)) (-1484 (((-1130 |#1| |#2| |#3|) $) NIL) (((-1158 |#1| |#2| |#3|) $) NIL)) (-2277 (($ $ $) NIL (|has| |#1| (-338)))) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3987 (((-382 (-522)) $) 57)) (-2254 (($ $ $) NIL (|has| |#1| (-338)))) (-3079 (($ (-382 (-522)) (-1130 |#1| |#2| |#3|)) NIL)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) NIL (|has| |#1| (-338)))) (-2813 (((-108) $) NIL (|has| |#1| (-338)))) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-382 (-522)) $) NIL) (((-382 (-522)) $ (-382 (-522))) NIL)) (-2782 (((-108) $) NIL)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) NIL) (($ $ (-382 (-522))) NIL)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-382 (-522))) 29) (($ $ (-999) (-382 (-522))) NIL) (($ $ (-588 (-999)) (-588 (-382 (-522)))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2224 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-2440 (((-1130 |#1| |#2| |#3|) $) 60)) (-4020 (((-3 (-1130 |#1| |#2| |#3|) "failed") $) NIL)) (-3068 (((-1130 |#1| |#2| |#3|) $) NIL)) (-2385 (((-1068) $) NIL)) (-3098 (($ $) NIL (|has| |#1| (-338)))) (-1858 (($ $) 38 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) NIL (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 39 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) NIL (|has| |#1| (-338)))) (-2259 (($ (-588 $)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1916 (((-393 $) $) NIL (|has| |#1| (-338)))) (-3885 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-338))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) NIL (|has| |#1| (-338)))) (-3719 (($ $ (-382 (-522))) NIL)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-2553 (((-3 (-588 $) "failed") (-588 $) $) NIL (|has| |#1| (-338)))) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))))) (-3730 (((-708) $) NIL (|has| |#1| (-338)))) (-2545 ((|#1| $ (-382 (-522))) NIL) (($ $ $) NIL (|has| (-382 (-522)) (-1026)))) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) NIL (|has| |#1| (-338)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $ (-1162 |#2|)) 37)) (-2793 (((-382 (-522)) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) NIL)) (-2190 (((-792) $) 88) (($ (-522)) NIL) (($ |#1|) NIL (|has| |#1| (-157))) (($ (-1130 |#1| |#2| |#3|)) 16) (($ (-1158 |#1| |#2| |#3|)) 17) (($ (-1162 |#2|)) 35) (($ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514)))) (-3243 ((|#1| $ (-382 (-522))) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 12)) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-382 (-522))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-382 (-522))))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338)))) (-3566 (($) 31 T CONST)) (-3577 (($) 26 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-382 (-522)) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 33)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ (-522)) NIL (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1151 |#1| |#2| |#3|) (-13 (-1149 |#1| (-1130 |#1| |#2| |#3|)) (-962 (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1151))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1149 |#1| (-1130 |#1| |#2| |#3|)) (-962 (-1158 |#1| |#2| |#3|)) (-10 -8 (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 32)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL)) (-2022 (($ $) NIL)) (-3739 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 (-522) "failed") $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-522)))) (((-3 (-382 (-522)) "failed") $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-382 (-522))))) (((-3 (-1151 |#2| |#3| |#4|) "failed") $) 20)) (-1484 (((-522) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-522)))) (((-382 (-522)) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-962 (-382 (-522))))) (((-1151 |#2| |#3| |#4|) $) NIL)) (-3156 (($ $) 33)) (-2682 (((-3 $ "failed") $) 25)) (-2071 (($ $) NIL (|has| (-1151 |#2| |#3| |#4|) (-426)))) (-2671 (($ $ (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|) $) NIL)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) 11)) (-3340 (((-108) $) NIL)) (-4049 (($ (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) 23)) (-2925 (((-294 |#2| |#3| |#4|) $) NIL)) (-3861 (($ (-1 (-294 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) $) NIL)) (-1391 (($ (-1 (-1151 |#2| |#3| |#4|) (-1151 |#2| |#3| |#4|)) $) NIL)) (-4064 (((-3 (-777 |#2|) "failed") $) 73)) (-3128 (($ $) NIL)) (-3138 (((-1151 |#2| |#3| |#4|) $) 18)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3108 (((-108) $) NIL)) (-3118 (((-1151 |#2| |#3| |#4|) $) NIL)) (-2232 (((-3 $ "failed") $ (-1151 |#2| |#3| |#4|)) NIL (|has| (-1151 |#2| |#3| |#4|) (-514))) (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-294 |#2| |#3| |#4|)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#2|)))))) (|:| |%type| (-1068))) "failed") $) 56)) (-2793 (((-294 |#2| |#3| |#4|) $) 14)) (-2255 (((-1151 |#2| |#3| |#4|) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-426)))) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ (-1151 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-382 (-522))) NIL (-3708 (|has| (-1151 |#2| |#3| |#4|) (-37 (-382 (-522)))) (|has| (-1151 |#2| |#3| |#4|) (-962 (-382 (-522))))))) (-3916 (((-588 (-1151 |#2| |#3| |#4|)) $) NIL)) (-3243 (((-1151 |#2| |#3| |#4|) $ (-294 |#2| |#3| |#4|)) NIL)) (-2143 (((-3 $ "failed") $) NIL (|has| (-1151 |#2| |#3| |#4|) (-133)))) (-2323 (((-708)) NIL)) (-3632 (($ $ $ (-708)) NIL (|has| (-1151 |#2| |#3| |#4|) (-157)))) (-3958 (((-108) $ $) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 61 T CONST)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ (-1151 |#2| |#3| |#4|)) NIL (|has| (-1151 |#2| |#3| |#4|) (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ (-1151 |#2| |#3| |#4|)) NIL) (($ (-1151 |#2| |#3| |#4|) $) NIL) (($ (-382 (-522)) $) NIL (|has| (-1151 |#2| |#3| |#4|) (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| (-1151 |#2| |#3| |#4|) (-37 (-382 (-522)))))))
+(((-1152 |#1| |#2| |#3| |#4|) (-13 (-301 (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) (-514) (-10 -8 (-15 -4064 ((-3 (-777 |#2|) "failed") $)) (-15 -2648 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-294 |#2| |#3| |#4|)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#2|)))))) (|:| |%type| (-1068))) "failed") $)))) (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)) (-13 (-27) (-1106) (-405 |#1|)) (-1085) |#2|) (T -1152))
+((-4064 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *2 (-777 *4)) (-5 *1 (-1152 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4))) (-2648 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 *4 *5 *6)) (|:| |%expon| (-294 *4 *5 *6)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4)))))) (|:| |%type| (-1068)))) (-5 *1 (-1152 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085)) (-14 *6 *4))))
+(-13 (-301 (-1151 |#2| |#3| |#4|) (-294 |#2| |#3| |#4|)) (-514) (-10 -8 (-15 -4064 ((-3 (-777 |#2|) "failed") $)) (-15 -2648 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1151 |#2| |#3| |#4|)) (|:| |%expon| (-294 |#2| |#3| |#4|)) (|:| |%expTerms| (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| |#2|)))))) (|:| |%type| (-1068))) "failed") $))))
+((-3435 ((|#2| $) 29)) (-2093 ((|#2| $) 18)) (-3835 (($ $) 36)) (-3487 (($ $ (-522)) 64)) (-4141 (((-108) $ (-708)) 33)) (-3628 ((|#2| $ |#2|) 61)) (-2049 ((|#2| $ |#2|) 59)) (-2379 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1268 (($ $ (-588 $)) 60)) (-2081 ((|#2| $) 17)) (-2306 (($ $) NIL) (($ $ (-708)) 42)) (-4138 (((-588 $) $) 26)) (-2030 (((-108) $ $) 50)) (-3352 (((-108) $ (-708)) 32)) (-2720 (((-108) $ (-708)) 31)) (-1754 (((-108) $) 28)) (-1442 ((|#2| $) 24) (($ $ (-708)) 46)) (-2545 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3042 (((-108) $) 22)) (-3107 (($ $) 39)) (-2646 (($ $) 65)) (-2393 (((-708) $) 41)) (-2122 (($ $) 40)) (-4165 (($ $ $) 58) (($ |#2| $) NIL)) (-1749 (((-588 $) $) 27)) (-1531 (((-108) $ $) 48)) (-3480 (((-708) $) 35)))
+(((-1153 |#1| |#2|) (-10 -8 (-15 -3487 (|#1| |#1| (-522))) (-15 -2379 (|#2| |#1| "last" |#2|)) (-15 -2049 (|#2| |#1| |#2|)) (-15 -2379 (|#1| |#1| "rest" |#1|)) (-15 -2379 (|#2| |#1| "first" |#2|)) (-15 -2646 (|#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2393 ((-708) |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2093 (|#2| |#1|)) (-15 -2081 (|#2| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-708))) (-15 -2545 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2545 (|#2| |#1| "first")) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#1|)) (-15 -3628 (|#2| |#1| |#2|)) (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -1268 (|#1| |#1| (-588 |#1|))) (-15 -2030 ((-108) |#1| |#1|)) (-15 -3042 ((-108) |#1|)) (-15 -2545 (|#2| |#1| "value")) (-15 -3435 (|#2| |#1|)) (-15 -1754 ((-108) |#1|)) (-15 -4138 ((-588 |#1|) |#1|)) (-15 -1749 ((-588 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708)))) (-1154 |#2|) (-1120)) (T -1153))
+NIL
+(-10 -8 (-15 -3487 (|#1| |#1| (-522))) (-15 -2379 (|#2| |#1| "last" |#2|)) (-15 -2049 (|#2| |#1| |#2|)) (-15 -2379 (|#1| |#1| "rest" |#1|)) (-15 -2379 (|#2| |#1| "first" |#2|)) (-15 -2646 (|#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2393 ((-708) |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2093 (|#2| |#1|)) (-15 -2081 (|#2| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-708))) (-15 -2545 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -2306 (|#1| |#1| (-708))) (-15 -2545 (|#1| |#1| "rest")) (-15 -2306 (|#1| |#1|)) (-15 -2545 (|#2| |#1| "first")) (-15 -4165 (|#1| |#2| |#1|)) (-15 -4165 (|#1| |#1| |#1|)) (-15 -3628 (|#2| |#1| |#2|)) (-15 -2379 (|#2| |#1| "value" |#2|)) (-15 -1268 (|#1| |#1| (-588 |#1|))) (-15 -2030 ((-108) |#1| |#1|)) (-15 -3042 ((-108) |#1|)) (-15 -2545 (|#2| |#1| "value")) (-15 -3435 (|#2| |#1|)) (-15 -1754 ((-108) |#1|)) (-15 -4138 ((-588 |#1|) |#1|)) (-15 -1749 ((-588 |#1|) |#1|)) (-15 -1531 ((-108) |#1| |#1|)) (-15 -3480 ((-708) |#1|)) (-15 -4141 ((-108) |#1| (-708))) (-15 -3352 ((-108) |#1| (-708))) (-15 -2720 ((-108) |#1| (-708))))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3435 ((|#1| $) 48)) (-2093 ((|#1| $) 65)) (-3835 (($ $) 67)) (-3487 (($ $ (-522)) 52 (|has| $ (-6 -4239)))) (-4141 (((-108) $ (-708)) 8)) (-3628 ((|#1| $ |#1|) 39 (|has| $ (-6 -4239)))) (-1243 (($ $ $) 56 (|has| $ (-6 -4239)))) (-2049 ((|#1| $ |#1|) 54 (|has| $ (-6 -4239)))) (-1346 ((|#1| $ |#1|) 58 (|has| $ (-6 -4239)))) (-2379 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4239))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4239))) (($ $ "rest" $) 55 (|has| $ (-6 -4239))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4239)))) (-1268 (($ $ (-588 $)) 41 (|has| $ (-6 -4239)))) (-2081 ((|#1| $) 66)) (-3175 (($) 7 T CONST)) (-2306 (($ $) 73) (($ $ (-708)) 71)) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-4138 (((-588 $) $) 50)) (-2030 (((-108) $ $) 42 (|has| |#1| (-1014)))) (-3352 (((-108) $ (-708)) 9)) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35)) (-2720 (((-108) $ (-708)) 10)) (-1279 (((-588 |#1|) $) 45)) (-1754 (((-108) $) 49)) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1442 ((|#1| $) 70) (($ $ (-708)) 68)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 76) (($ $ (-708)) 74)) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2011 (((-522) $ $) 44)) (-3042 (((-108) $) 46)) (-3107 (($ $) 62)) (-2646 (($ $) 59 (|has| $ (-6 -4239)))) (-2393 (((-708) $) 63)) (-2122 (($ $) 64)) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2404 (($ $) 13)) (-2630 (($ $ $) 61 (|has| $ (-6 -4239))) (($ $ |#1|) 60 (|has| $ (-6 -4239)))) (-4165 (($ $ $) 78) (($ |#1| $) 77)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-1749 (((-588 $) $) 51)) (-2425 (((-108) $ $) 43 (|has| |#1| (-1014)))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1154 |#1|) (-1197) (-1120)) (T -1154))
+((-4165 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-4165 (*1 *1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2294 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2545 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1442 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-3835 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2093 (*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2122 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2393 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))) (-3107 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2630 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2630 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2646 (*1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1346 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2379 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-1243 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2379 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))) (-2049 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-2379 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))) (-3487 (*1 *1 *1 *2) (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3)) (-4 *3 (-1120)))))
+(-13 (-936 |t#1|) (-10 -8 (-15 -4165 ($ $ $)) (-15 -4165 ($ |t#1| $)) (-15 -2294 (|t#1| $)) (-15 -2545 (|t#1| $ "first")) (-15 -2294 ($ $ (-708))) (-15 -2306 ($ $)) (-15 -2545 ($ $ "rest")) (-15 -2306 ($ $ (-708))) (-15 -1442 (|t#1| $)) (-15 -2545 (|t#1| $ "last")) (-15 -1442 ($ $ (-708))) (-15 -3835 ($ $)) (-15 -2081 (|t#1| $)) (-15 -2093 (|t#1| $)) (-15 -2122 ($ $)) (-15 -2393 ((-708) $)) (-15 -3107 ($ $)) (IF (|has| $ (-6 -4239)) (PROGN (-15 -2630 ($ $ $)) (-15 -2630 ($ $ |t#1|)) (-15 -2646 ($ $)) (-15 -1346 (|t#1| $ |t#1|)) (-15 -2379 (|t#1| $ "first" |t#1|)) (-15 -1243 ($ $ $)) (-15 -2379 ($ $ "rest" $)) (-15 -2049 (|t#1| $ |t#1|)) (-15 -2379 (|t#1| $ "last" |t#1|)) (-15 -3487 ($ $ (-522)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1014)) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-562 (-792)))) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-461 |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-936 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1120) . T))
+((-1391 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1391 (|#4| (-1 |#2| |#1|) |#3|))) (-971) (-971) (-1157 |#1|) (-1157 |#2|)) (T -1155))
+((-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971)) (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6 *4 *2)) (-4 *4 (-1157 *5)))))
+(-10 -7 (-15 -1391 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2250 (((-108) $) 15)) (-2908 (($ $) 91)) (-2772 (($ $) 67)) (-2884 (($ $) 87)) (-2748 (($ $) 63)) (-2930 (($ $) 95)) (-2794 (($ $) 71)) (-1254 (($ $) 61)) (-3266 (($ $) 59)) (-1738 (($ $) 97)) (-2804 (($ $) 73)) (-2919 (($ $) 93)) (-2784 (($ $) 69)) (-2896 (($ $) 89)) (-2761 (($ $) 65)) (-2190 (((-792) $) 47) (($ (-522)) NIL) (($ (-382 (-522))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1759 (($ $) 103)) (-2836 (($ $) 79)) (-1745 (($ $) 99)) (-2815 (($ $) 75)) (-1776 (($ $) 107)) (-2860 (($ $) 83)) (-3924 (($ $) 109)) (-2872 (($ $) 85)) (-1768 (($ $) 105)) (-2848 (($ $) 81)) (-1752 (($ $) 101)) (-2825 (($ $) 77)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ |#2|) 51) (($ $ $) 54) (($ $ (-382 (-522))) 57)))
+(((-1156 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -2772 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2848 (|#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -2860 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2919 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3266 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2250 ((-108) |#1|)) (-15 -2190 ((-792) |#1|))) (-1157 |#2|) (-971)) (T -1156))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-382 (-522)))) (-15 -2772 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2794 (|#1| |#1|)) (-15 -2804 (|#1| |#1|)) (-15 -2784 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2848 (|#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -2860 (|#1| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -2919 (|#1| |#1|)) (-15 -1738 (|#1| |#1|)) (-15 -2930 (|#1| |#1|)) (-15 -2884 (|#1| |#1|)) (-15 -2908 (|#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -1768 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -1776 (|#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -1759 (|#1| |#1|)) (-15 -1254 (|#1| |#1|)) (-15 -3266 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2190 (|#1| |#2|)) (-15 -2190 (|#1| |#1|)) (-15 -2190 (|#1| (-382 (-522)))) (-15 -2190 (|#1| (-522))) (-15 ** (|#1| |#1| (-708))) (-15 ** (|#1| |#1| (-850))) (-15 -2250 ((-108) |#1|)) (-15 -2190 ((-792) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4090 (((-588 (-999)) $) 74)) (-1611 (((-1085) $) 103)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 51 (|has| |#1| (-514)))) (-2022 (($ $) 52 (|has| |#1| (-514)))) (-3739 (((-108) $) 54 (|has| |#1| (-514)))) (-2789 (($ $ (-708)) 98) (($ $ (-708) (-708)) 97)) (-2258 (((-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|))) $) 105)) (-2908 (($ $) 135 (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) 118 (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) 19)) (-1929 (($ $) 117 (|has| |#1| (-37 (-382 (-522)))))) (-2884 (($ $) 134 (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) 119 (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|)))) 155) (($ (-1066 |#1|)) 153)) (-2930 (($ $) 133 (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) 120 (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) 17 T CONST)) (-3156 (($ $) 60)) (-2682 (((-3 $ "failed") $) 34)) (-3546 (($ $) 152)) (-2199 (((-881 |#1|) $ (-708)) 150) (((-881 |#1|) $ (-708) (-708)) 149)) (-3390 (((-108) $) 73)) (-2838 (($) 145 (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-708) $) 100) (((-708) $ (-708)) 99)) (-2782 (((-108) $) 31)) (-1504 (($ $ (-522)) 116 (|has| |#1| (-37 (-382 (-522)))))) (-2073 (($ $ (-850)) 101)) (-3950 (($ (-1 |#1| (-522)) $) 151)) (-3340 (((-108) $) 62)) (-4049 (($ |#1| (-708)) 61) (($ $ (-999) (-708)) 76) (($ $ (-588 (-999)) (-588 (-708))) 75)) (-1391 (($ (-1 |#1| |#1|) $) 63)) (-1254 (($ $) 142 (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) 65)) (-3138 ((|#1| $) 66)) (-2385 (((-1068) $) 9)) (-1858 (($ $) 147 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 146 (-3708 (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-887)) (|has| |#1| (-1106)) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-37 (-382 (-522)))))))) (-4151 (((-1032) $) 10)) (-3719 (($ $ (-708)) 95)) (-2232 (((-3 $ "failed") $ $) 50 (|has| |#1| (-514)))) (-3266 (($ $) 143 (|has| |#1| (-37 (-382 (-522)))))) (-2289 (((-1066 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-708)))))) (-2545 ((|#1| $ (-708)) 104) (($ $ $) 81 (|has| (-708) (-1026)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) 89 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085) (-708)) 88 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-588 (-1085))) 87 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085)) 86 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-708)) 84 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-2793 (((-708) $) 64)) (-1738 (($ $) 132 (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) 121 (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) 131 (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) 122 (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) 130 (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) 123 (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 72)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ (-382 (-522))) 57 (|has| |#1| (-37 (-382 (-522))))) (($ $) 49 (|has| |#1| (-514))) (($ |#1|) 47 (|has| |#1| (-157)))) (-3916 (((-1066 |#1|) $) 154)) (-3243 ((|#1| $ (-708)) 59)) (-2143 (((-3 $ "failed") $) 48 (|has| |#1| (-133)))) (-2323 (((-708)) 29)) (-1893 ((|#1| $) 102)) (-1759 (($ $) 141 (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) 129 (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) 53 (|has| |#1| (-514)))) (-1745 (($ $) 140 (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) 128 (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) 139 (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) 127 (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-708)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-708)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) 138 (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) 126 (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) 137 (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) 125 (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) 136 (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) 124 (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) 93 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085) (-708)) 92 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-588 (-1085))) 91 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-1085)) 90 (-12 (|has| |#1| (-829 (-1085))) (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (($ $ (-708)) 85 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 58 (|has| |#1| (-338)))) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ |#1|) 148 (|has| |#1| (-338))) (($ $ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 115 (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-382 (-522)) $) 56 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) 55 (|has| |#1| (-37 (-382 (-522)))))))
+(((-1157 |#1|) (-1197) (-971)) (T -1157))
+((-2773 (*1 *1 *2) (-12 (-5 *2 (-1066 (-2 (|:| |k| (-708)) (|:| |c| *3)))) (-4 *3 (-971)) (-4 *1 (-1157 *3)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-5 *2 (-1066 *3)))) (-2773 (*1 *1 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-4 *1 (-1157 *3)))) (-3546 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)))) (-3950 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1157 *3)) (-4 *3 (-971)))) (-2199 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971)) (-5 *2 (-881 *4)))) (-2199 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971)) (-5 *2 (-881 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-338)))) (-1858 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522)))))) (-1858 (*1 *1 *1 *2) (-3708 (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106)) (-4 *3 (-37 (-382 (-522)))))) (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-12 (|has| *3 (-15 -4090 ((-588 *2) *3))) (|has| *3 (-15 -1858 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522)))))))))
+(-13 (-1144 |t#1| (-708)) (-10 -8 (-15 -2773 ($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |t#1|))))) (-15 -3916 ((-1066 |t#1|) $)) (-15 -2773 ($ (-1066 |t#1|))) (-15 -3546 ($ $)) (-15 -3950 ($ (-1 |t#1| (-522)) $)) (-15 -2199 ((-881 |t#1|) $ (-708))) (-15 -2199 ((-881 |t#1|) $ (-708) (-708))) (IF (|has| |t#1| (-338)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-382 (-522)))) (PROGN (-15 -1858 ($ $)) (IF (|has| |t#1| (-15 -1858 (|t#1| |t#1| (-1085)))) (IF (|has| |t#1| (-15 -4090 ((-588 (-1085)) |t#1|))) (-15 -1858 ($ $ (-1085))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1106)) (IF (|has| |t#1| (-887)) (IF (|has| |t#1| (-29 (-522))) (-15 -1858 ($ $ (-1085))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-928)) (-6 (-1106))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-708)) . T) ((-25) . T) ((-37 #1=(-382 (-522))) |has| |#1| (-37 (-382 (-522)))) ((-37 |#1|) |has| |#1| (-157)) ((-37 $) |has| |#1| (-514)) ((-34) |has| |#1| (-37 (-382 (-522)))) ((-91) |has| |#1| (-37 (-382 (-522)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-382 (-522)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-124) . T) ((-133) |has| |#1| (-133)) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-210) |has| |#1| (-15 * (|#1| (-708) |#1|))) ((-260) |has| |#1| (-37 (-382 (-522)))) ((-262 $ $) |has| (-708) (-1026)) ((-266) |has| |#1| (-514)) ((-463) |has| |#1| (-37 (-382 (-522)))) ((-514) |has| |#1| (-514)) ((-590 #1#) |has| |#1| (-37 (-382 (-522)))) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #1#) |has| |#1| (-37 (-382 (-522)))) ((-655 |#1|) |has| |#1| (-157)) ((-655 $) |has| |#1| (-514)) ((-664) . T) ((-829 (-1085)) -12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085)))) ((-900 |#1| #0# (-999)) . T) ((-928) |has| |#1| (-37 (-382 (-522)))) ((-977 #1#) |has| |#1| (-37 (-382 (-522)))) ((-977 |#1|) . T) ((-977 $) -3708 (|has| |#1| (-514)) (|has| |#1| (-157))) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1106) |has| |#1| (-37 (-382 (-522)))) ((-1109) |has| |#1| (-37 (-382 (-522)))) ((-1144 |#1| #0#) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4090 (((-588 (-999)) $) NIL)) (-1611 (((-1085) $) 87)) (-2549 (((-1139 |#2| |#1|) $ (-708)) 73)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) NIL (|has| |#1| (-514)))) (-2022 (($ $) NIL (|has| |#1| (-514)))) (-3739 (((-108) $) 136 (|has| |#1| (-514)))) (-2789 (($ $ (-708)) 121) (($ $ (-708) (-708)) 123)) (-2258 (((-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|))) $) 42)) (-2908 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2772 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1233 (((-3 $ "failed") $ $) NIL)) (-1929 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2884 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2748 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2773 (($ (-1066 (-2 (|:| |k| (-708)) (|:| |c| |#1|)))) 53) (($ (-1066 |#1|)) NIL)) (-2930 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2794 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3175 (($) NIL T CONST)) (-1867 (($ $) 127)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3546 (($ $) 134)) (-2199 (((-881 |#1|) $ (-708)) 63) (((-881 |#1|) $ (-708) (-708)) 65)) (-3390 (((-108) $) NIL)) (-2838 (($) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3714 (((-708) $) NIL) (((-708) $ (-708)) NIL)) (-2782 (((-108) $) NIL)) (-1773 (($ $) 111)) (-1504 (($ $ (-522)) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3814 (($ (-522) (-522) $) 129)) (-2073 (($ $ (-850)) 133)) (-3950 (($ (-1 |#1| (-522)) $) 105)) (-3340 (((-108) $) NIL)) (-4049 (($ |#1| (-708)) 15) (($ $ (-999) (-708)) NIL) (($ $ (-588 (-999)) (-588 (-708))) NIL)) (-1391 (($ (-1 |#1| |#1|) $) 93)) (-1254 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3128 (($ $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-1511 (($ $) 109)) (-2358 (($ $) 107)) (-1958 (($ (-522) (-522) $) 131)) (-1858 (($ $) 144 (|has| |#1| (-37 (-382 (-522))))) (($ $ (-1085)) 150 (-3708 (-12 (|has| |#1| (-15 -1858 (|#1| |#1| (-1085)))) (|has| |#1| (-15 -4090 ((-588 (-1085)) |#1|))) (|has| |#1| (-37 (-382 (-522))))) (-12 (|has| |#1| (-29 (-522))) (|has| |#1| (-37 (-382 (-522)))) (|has| |#1| (-887)) (|has| |#1| (-1106))))) (($ $ (-1162 |#2|)) 145 (|has| |#1| (-37 (-382 (-522)))))) (-4151 (((-1032) $) NIL)) (-1310 (($ $ (-522) (-522)) 115)) (-3719 (($ $ (-708)) 117)) (-2232 (((-3 $ "failed") $ $) NIL (|has| |#1| (-514)))) (-3266 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3755 (($ $) 113)) (-2289 (((-1066 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-708)))))) (-2545 ((|#1| $ (-708)) 90) (($ $ $) 125 (|has| (-708) (-1026)))) (-2157 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) 102 (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) 97 (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $ (-1162 |#2|)) 98)) (-2793 (((-708) $) NIL)) (-1738 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2804 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2919 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2784 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2896 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2761 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1522 (($ $) 119)) (-2190 (((-792) $) NIL) (($ (-522)) 24) (($ (-382 (-522))) 142 (|has| |#1| (-37 (-382 (-522))))) (($ $) NIL (|has| |#1| (-514))) (($ |#1|) 23 (|has| |#1| (-157))) (($ (-1139 |#2| |#1|)) 80) (($ (-1162 |#2|)) 20)) (-3916 (((-1066 |#1|) $) NIL)) (-3243 ((|#1| $ (-708)) 89)) (-2143 (((-3 $ "failed") $) NIL (|has| |#1| (-133)))) (-2323 (((-708)) NIL)) (-1893 ((|#1| $) 88)) (-1759 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2836 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3958 (((-108) $ $) NIL (|has| |#1| (-514)))) (-1745 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2815 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1776 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2860 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3898 ((|#1| $ (-708)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-708)))) (|has| |#1| (-15 -2190 (|#1| (-1085))))))) (-3924 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2872 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1768 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2848 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-1752 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-2825 (($ $) NIL (|has| |#1| (-37 (-382 (-522)))))) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 17 T CONST)) (-3577 (($) 13 T CONST)) (-2213 (($ $ (-588 (-1085)) (-588 (-708))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085) (-708)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-588 (-1085))) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-1085)) NIL (-12 (|has| |#1| (-15 * (|#1| (-708) |#1|))) (|has| |#1| (-829 (-1085))))) (($ $ (-708)) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-708) |#1|))))) (-1531 (((-108) $ $) NIL)) (-1620 (($ $ |#1|) NIL (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) 101)) (-1602 (($ $ $) 18)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL) (($ $ |#1|) 139 (|has| |#1| (-338))) (($ $ $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 100) (($ (-382 (-522)) $) NIL (|has| |#1| (-37 (-382 (-522))))) (($ $ (-382 (-522))) NIL (|has| |#1| (-37 (-382 (-522)))))))
+(((-1158 |#1| |#2| |#3|) (-13 (-1157 |#1|) (-10 -8 (-15 -2190 ($ (-1139 |#2| |#1|))) (-15 -2549 ((-1139 |#2| |#1|) $ (-708))) (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (-15 -2358 ($ $)) (-15 -1511 ($ $)) (-15 -1773 ($ $)) (-15 -3755 ($ $)) (-15 -1310 ($ $ (-522) (-522))) (-15 -1867 ($ $)) (-15 -3814 ($ (-522) (-522) $)) (-15 -1958 ($ (-522) (-522) $)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|))) (-971) (-1085) |#1|) (T -1158))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-1158 *3 *4 *5)))) (-2549 (*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1158 *4 *5 *6)) (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *5 *3))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-1511 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-1773 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-3755 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-1310 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085)) (-14 *4 *2))) (-3814 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3))) (-1958 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085)) (-14 *5 *3))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
+(-13 (-1157 |#1|) (-10 -8 (-15 -2190 ($ (-1139 |#2| |#1|))) (-15 -2549 ((-1139 |#2| |#1|) $ (-708))) (-15 -2190 ($ (-1162 |#2|))) (-15 -2157 ($ $ (-1162 |#2|))) (-15 -2358 ($ $)) (-15 -1511 ($ $)) (-15 -1773 ($ $)) (-15 -3755 ($ $)) (-15 -1310 ($ $ (-522) (-522))) (-15 -1867 ($ $)) (-15 -3814 ($ (-522) (-522) $)) (-15 -1958 ($ (-522) (-522) $)) (IF (|has| |#1| (-37 (-382 (-522)))) (-15 -1858 ($ $ (-1162 |#2|))) |%noBranch|)))
+((-1688 (((-1 (-1066 |#1|) (-588 (-1066 |#1|))) (-1 |#2| (-588 |#2|))) 24)) (-3339 (((-1 (-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3529 (((-1 (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2|)) 13)) (-3567 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3583 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2223 ((|#2| (-1 |#2| (-588 |#2|)) (-588 |#1|)) 54)) (-3678 (((-588 |#2|) (-588 |#1|) (-588 (-1 |#2| (-588 |#2|)))) 61)) (-1951 ((|#2| |#2| |#2|) 43)))
+(((-1159 |#1| |#2|) (-10 -7 (-15 -3529 ((-1 (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2|))) (-15 -3339 ((-1 (-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1688 ((-1 (-1066 |#1|) (-588 (-1066 |#1|))) (-1 |#2| (-588 |#2|)))) (-15 -1951 (|#2| |#2| |#2|)) (-15 -3583 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3567 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2223 (|#2| (-1 |#2| (-588 |#2|)) (-588 |#1|))) (-15 -3678 ((-588 |#2|) (-588 |#1|) (-588 (-1 |#2| (-588 |#2|)))))) (-37 (-382 (-522))) (-1157 |#1|)) (T -1159))
+((-3678 (*1 *2 *3 *4) (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 (-1 *6 (-588 *6)))) (-4 *5 (-37 (-382 (-522)))) (-4 *6 (-1157 *5)) (-5 *2 (-588 *6)) (-5 *1 (-1159 *5 *6)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-588 *2))) (-5 *4 (-588 *5)) (-4 *5 (-37 (-382 (-522)))) (-4 *2 (-1157 *5)) (-5 *1 (-1159 *5 *2)))) (-3567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2)) (-4 *4 (-37 (-382 (-522)))))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2)) (-4 *4 (-37 (-382 (-522)))))) (-1951 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1159 *3 *2)) (-4 *2 (-1157 *3)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-588 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-588 (-1066 *4)))) (-5 *1 (-1159 *4 *5)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-1066 *4) (-1066 *4))) (-5 *1 (-1159 *4 *5)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-1066 *4))) (-5 *1 (-1159 *4 *5)))))
+(-10 -7 (-15 -3529 ((-1 (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2|))) (-15 -3339 ((-1 (-1066 |#1|) (-1066 |#1|) (-1066 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1688 ((-1 (-1066 |#1|) (-588 (-1066 |#1|))) (-1 |#2| (-588 |#2|)))) (-15 -1951 (|#2| |#2| |#2|)) (-15 -3583 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3567 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2223 (|#2| (-1 |#2| (-588 |#2|)) (-588 |#1|))) (-15 -3678 ((-588 |#2|) (-588 |#1|) (-588 (-1 |#2| (-588 |#2|))))))
+((-2719 ((|#2| |#4| (-708)) 30)) (-1645 ((|#4| |#2|) 25)) (-3842 ((|#4| (-382 |#2|)) 51 (|has| |#1| (-514)))) (-3851 (((-1 |#4| (-588 |#4|)) |#3|) 45)))
+(((-1160 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1645 (|#4| |#2|)) (-15 -2719 (|#2| |#4| (-708))) (-15 -3851 ((-1 |#4| (-588 |#4|)) |#3|)) (IF (|has| |#1| (-514)) (-15 -3842 (|#4| (-382 |#2|))) |%noBranch|)) (-971) (-1142 |#1|) (-598 |#2|) (-1157 |#1|)) (T -1160))
+((-3842 (*1 *2 *3) (-12 (-5 *3 (-382 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-514)) (-4 *4 (-971)) (-4 *2 (-1157 *4)) (-5 *1 (-1160 *4 *5 *6 *2)) (-4 *6 (-598 *5)))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *5 (-1142 *4)) (-5 *2 (-1 *6 (-588 *6))) (-5 *1 (-1160 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-1157 *4)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-1160 *5 *2 *6 *3)) (-4 *6 (-598 *2)) (-4 *3 (-1157 *5)))) (-1645 (*1 *2 *3) (-12 (-4 *4 (-971)) (-4 *3 (-1142 *4)) (-4 *2 (-1157 *4)) (-5 *1 (-1160 *4 *3 *5 *2)) (-4 *5 (-598 *3)))))
+(-10 -7 (-15 -1645 (|#4| |#2|)) (-15 -2719 (|#2| |#4| (-708))) (-15 -3851 ((-1 |#4| (-588 |#4|)) |#3|)) (IF (|has| |#1| (-514)) (-15 -3842 (|#4| (-382 |#2|))) |%noBranch|))
+NIL
+(((-1161) (-1197)) (T -1161))
+NIL
+(-13 (-10 -7 (-6 -2047)))
+((-1416 (((-108) $ $) NIL)) (-1611 (((-1085)) 12)) (-2385 (((-1068) $) 17)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 11) (((-1085) $) 8)) (-1531 (((-108) $ $) 14)))
+(((-1162 |#1|) (-13 (-1014) (-562 (-1085)) (-10 -8 (-15 -2190 ((-1085) $)) (-15 -1611 ((-1085))))) (-1085)) (T -1162))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2))) (-1611 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2))))
+(-13 (-1014) (-562 (-1085)) (-10 -8 (-15 -2190 ((-1085) $)) (-15 -1611 ((-1085)))))
+((-3483 (($ (-708)) 16)) (-3957 (((-628 |#2|) $ $) 37)) (-2845 ((|#2| $) 46)) (-2517 ((|#2| $) 45)) (-1883 ((|#2| $ $) 33)) (-3230 (($ $ $) 42)) (-1612 (($ $) 20) (($ $ $) 26)) (-1602 (($ $ $) 13)) (* (($ (-522) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
+(((-1163 |#1| |#2|) (-10 -8 (-15 -2845 (|#2| |#1|)) (-15 -2517 (|#2| |#1|)) (-15 -3230 (|#1| |#1| |#1|)) (-15 -3957 ((-628 |#2|) |#1| |#1|)) (-15 -1883 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -3483 (|#1| (-708))) (-15 -1602 (|#1| |#1| |#1|))) (-1164 |#2|) (-1120)) (T -1163))
+NIL
+(-10 -8 (-15 -2845 (|#2| |#1|)) (-15 -2517 (|#2| |#1|)) (-15 -3230 (|#1| |#1| |#1|)) (-15 -3957 ((-628 |#2|) |#1| |#1|)) (-15 -1883 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-522) |#1|)) (-15 -1612 (|#1| |#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -3483 (|#1| (-708))) (-15 -1602 (|#1| |#1| |#1|)))
+((-1416 (((-108) $ $) 19 (|has| |#1| (-1014)))) (-3483 (($ (-708)) 112 (|has| |#1| (-23)))) (-2679 (((-1171) $ (-522) (-522)) 40 (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4239))) (($ $) 88 (-12 (|has| |#1| (-784)) (|has| $ (-6 -4239))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) 8)) (-2379 ((|#1| $ (-522) |#1|) 52 (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) 58 (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4238)))) (-3175 (($) 7 T CONST)) (-3509 (($ $) 90 (|has| $ (-6 -4239)))) (-1862 (($ $) 100)) (-2333 (($ $) 78 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1423 (($ |#1| $) 77 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) 53 (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) 51)) (-3238 (((-522) (-1 (-108) |#1|) $) 97) (((-522) |#1| $) 96 (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) 95 (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) 30 (|has| $ (-6 -4238)))) (-3957 (((-628 |#1|) $ $) 105 (|has| |#1| (-971)))) (-1811 (($ (-708) |#1|) 69)) (-3352 (((-108) $ (-708)) 9)) (-1359 (((-522) $) 43 (|has| (-522) (-784)))) (-2814 (($ $ $) 87 (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-2014 (((-522) $) 44 (|has| (-522) (-784)))) (-2446 (($ $ $) 86 (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2845 ((|#1| $) 102 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-2720 (((-108) $ (-708)) 10)) (-2517 ((|#1| $) 103 (-12 (|has| |#1| (-971)) (|has| |#1| (-928))))) (-2385 (((-1068) $) 22 (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) 60) (($ $ $ (-522)) 59)) (-3604 (((-588 (-522)) $) 46)) (-1405 (((-108) (-522) $) 47)) (-4151 (((-1032) $) 21 (|has| |#1| (-1014)))) (-2294 ((|#1| $) 42 (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2602 (($ $ |#1|) 41 (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) 26 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) 25 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) 23 (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) 14)) (-1758 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) 48)) (-3985 (((-108) $) 11)) (-3775 (($) 12)) (-2545 ((|#1| $ (-522) |#1|) 50) ((|#1| $ (-522)) 49) (($ $ (-1133 (-522))) 63)) (-1883 ((|#1| $ $) 106 (|has| |#1| (-971)))) (-3696 (($ $ (-522)) 62) (($ $ (-1133 (-522))) 61)) (-3230 (($ $ $) 104 (|has| |#1| (-971)))) (-4168 (((-708) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4238))) (((-708) |#1| $) 28 (-12 (|has| |#1| (-1014)) (|has| $ (-6 -4238))))) (-1577 (($ $ $ (-522)) 91 (|has| $ (-6 -4239)))) (-2404 (($ $) 13)) (-1431 (((-498) $) 79 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 70)) (-4165 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-588 $)) 65)) (-2190 (((-792) $) 18 (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) 84 (|has| |#1| (-784)))) (-1558 (((-108) $ $) 83 (|has| |#1| (-784)))) (-1531 (((-108) $ $) 20 (|has| |#1| (-1014)))) (-1566 (((-108) $ $) 85 (|has| |#1| (-784)))) (-1549 (((-108) $ $) 82 (|has| |#1| (-784)))) (-1612 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1602 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-522) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-664))) (($ $ |#1|) 107 (|has| |#1| (-664)))) (-3480 (((-708) $) 6 (|has| $ (-6 -4238)))))
+(((-1164 |#1|) (-1197) (-1120)) (T -1164))
+((-1602 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-25)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1164 *3)) (-4 *3 (-23)) (-4 *3 (-1120)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) (-1612 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664)))) (-1883 (*1 *2 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) (-3957 (*1 *2 *1 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-971)) (-5 *2 (-628 *3)))) (-3230 (*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928)) (-4 *2 (-971)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928)) (-4 *2 (-971)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1602 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3483 ($ (-708))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1612 ($ $)) (-15 -1612 ($ $ $)) (-15 * ($ (-522) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-971)) (PROGN (-15 -1883 (|t#1| $ $)) (-15 -3957 ((-628 |t#1|) $ $)) (-15 -3230 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-971)) (PROGN (-15 -2517 (|t#1| $)) (-15 -2845 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-97) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-562 (-792)) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784)) (|has| |#1| (-562 (-792)))) ((-139 |#1|) . T) ((-563 (-498)) |has| |#1| (-563 (-498))) ((-262 #0=(-522) |#1|) . T) ((-264 #0# |#1|) . T) ((-285 |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-348 |#1|) . T) ((-461 |#1|) . T) ((-555 #0# |#1|) . T) ((-483 |#1| |#1|) -12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-784) |has| |#1| (-784)) ((-1014) -3708 (|has| |#1| (-1014)) (|has| |#1| (-784))) ((-1120) . T))
+((-3690 (((-1166 |#2|) (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|) 13)) (-3864 ((|#2| (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|) 15)) (-1391 (((-3 (-1166 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1166 |#1|)) 28) (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 18)))
+(((-1165 |#1| |#2|) (-10 -7 (-15 -3690 ((-1166 |#2|) (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -1391 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -1391 ((-3 (-1166 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1166 |#1|)))) (-1120) (-1120)) (T -1165))
+((-1391 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1166 *6)) (-5 *1 (-1165 *5 *6)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1166 *6)) (-5 *1 (-1165 *5 *6)))) (-3864 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1120)) (-4 *2 (-1120)) (-5 *1 (-1165 *5 *2)))) (-3690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1166 *6)) (-4 *6 (-1120)) (-4 *5 (-1120)) (-5 *2 (-1166 *5)) (-5 *1 (-1165 *6 *5)))))
+(-10 -7 (-15 -3690 ((-1166 |#2|) (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -3864 (|#2| (-1 |#2| |#1| |#2|) (-1166 |#1|) |#2|)) (-15 -1391 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -1391 ((-3 (-1166 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1166 |#1|))))
+((-1416 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-3483 (($ (-708)) NIL (|has| |#1| (-23)))) (-2146 (($ (-588 |#1|)) 9)) (-2679 (((-1171) $ (-522) (-522)) NIL (|has| $ (-6 -4239)))) (-4187 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-784)))) (-3537 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4239))) (($ $) NIL (-12 (|has| $ (-6 -4239)) (|has| |#1| (-784))))) (-3216 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-784)))) (-4141 (((-108) $ (-708)) NIL)) (-2379 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239))) ((|#1| $ (-1133 (-522)) |#1|) NIL (|has| $ (-6 -4239)))) (-1628 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3175 (($) NIL T CONST)) (-3509 (($ $) NIL (|has| $ (-6 -4239)))) (-1862 (($ $) NIL)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1423 (($ |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-3864 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4238))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4238)))) (-3854 ((|#1| $ (-522) |#1|) NIL (|has| $ (-6 -4239)))) (-3631 ((|#1| $ (-522)) NIL)) (-3238 (((-522) (-1 (-108) |#1|) $) NIL) (((-522) |#1| $) NIL (|has| |#1| (-1014))) (((-522) |#1| $ (-522)) NIL (|has| |#1| (-1014)))) (-3837 (((-588 |#1|) $) 15 (|has| $ (-6 -4238)))) (-3957 (((-628 |#1|) $ $) NIL (|has| |#1| (-971)))) (-1811 (($ (-708) |#1|) NIL)) (-3352 (((-108) $ (-708)) NIL)) (-1359 (((-522) $) NIL (|has| (-522) (-784)))) (-2814 (($ $ $) NIL (|has| |#1| (-784)))) (-2160 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-784)))) (-3308 (((-588 |#1|) $) NIL (|has| $ (-6 -4238)))) (-2246 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-2014 (((-522) $) NIL (|has| (-522) (-784)))) (-2446 (($ $ $) NIL (|has| |#1| (-784)))) (-3838 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2845 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2720 (((-108) $ (-708)) NIL)) (-2517 ((|#1| $) NIL (-12 (|has| |#1| (-928)) (|has| |#1| (-971))))) (-2385 (((-1068) $) NIL (|has| |#1| (-1014)))) (-1661 (($ |#1| $ (-522)) NIL) (($ $ $ (-522)) NIL)) (-3604 (((-588 (-522)) $) NIL)) (-1405 (((-108) (-522) $) NIL)) (-4151 (((-1032) $) NIL (|has| |#1| (-1014)))) (-2294 ((|#1| $) NIL (|has| (-522) (-784)))) (-1414 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2602 (($ $ |#1|) NIL (|has| $ (-6 -4239)))) (-3053 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 (-270 |#1|))) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-270 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014)))) (($ $ (-588 |#1|) (-588 |#1|)) NIL (-12 (|has| |#1| (-285 |#1|)) (|has| |#1| (-1014))))) (-1536 (((-108) $ $) NIL)) (-1758 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1525 (((-588 |#1|) $) NIL)) (-3985 (((-108) $) NIL)) (-3775 (($) NIL)) (-2545 ((|#1| $ (-522) |#1|) NIL) ((|#1| $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-1883 ((|#1| $ $) NIL (|has| |#1| (-971)))) (-3696 (($ $ (-522)) NIL) (($ $ (-1133 (-522))) NIL)) (-3230 (($ $ $) NIL (|has| |#1| (-971)))) (-4168 (((-708) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238))) (((-708) |#1| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#1| (-1014))))) (-1577 (($ $ $ (-522)) NIL (|has| $ (-6 -4239)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) 19 (|has| |#1| (-563 (-498))))) (-2201 (($ (-588 |#1|)) 8)) (-4165 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-588 $)) NIL)) (-2190 (((-792) $) NIL (|has| |#1| (-562 (-792))))) (-3648 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4238)))) (-1574 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1558 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1531 (((-108) $ $) NIL (|has| |#1| (-1014)))) (-1566 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1549 (((-108) $ $) NIL (|has| |#1| (-784)))) (-1612 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1602 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-522) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-664))) (($ $ |#1|) NIL (|has| |#1| (-664)))) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1166 |#1|) (-13 (-1164 |#1|) (-10 -8 (-15 -2146 ($ (-588 |#1|))))) (-1120)) (T -1166))
+((-2146 (*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1166 *3)))))
+(-13 (-1164 |#1|) (-10 -8 (-15 -2146 ($ (-588 |#1|)))))
+((-1416 (((-108) $ $) NIL)) (-3969 (((-1068) $ (-1068)) 87) (((-1068) $ (-1068) (-1068)) 85) (((-1068) $ (-1068) (-588 (-1068))) 84)) (-2859 (($) 56)) (-3183 (((-1171) $ (-442) (-850)) 42)) (-1968 (((-1171) $ (-850) (-1068)) 70) (((-1171) $ (-850) (-803)) 71)) (-2469 (((-1171) $ (-850) (-354) (-354)) 45)) (-2955 (((-1171) $ (-1068)) 66)) (-1845 (((-1171) $ (-850) (-1068)) 75)) (-3091 (((-1171) $ (-850) (-354) (-354)) 46)) (-1434 (((-1171) $ (-850) (-850)) 43)) (-3943 (((-1171) $) 67)) (-3290 (((-1171) $ (-850) (-1068)) 74)) (-2979 (((-1171) $ (-442) (-850)) 30)) (-3398 (((-1171) $ (-850) (-1068)) 73)) (-2537 (((-588 (-239)) $) 22) (($ $ (-588 (-239))) 23)) (-2799 (((-1171) $ (-708) (-708)) 40)) (-1502 (($ $) 57) (($ (-442) (-588 (-239))) 58)) (-2385 (((-1068) $) NIL)) (-2530 (((-522) $) 37)) (-4151 (((-1032) $) NIL)) (-4210 (((-1166 (-3 (-442) "undefined")) $) 36)) (-1520 (((-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3398 (-522)) (|:| -1235 (-522)) (|:| |spline| (-522)) (|:| -2640 (-522)) (|:| |axesColor| (-803)) (|:| -1968 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522)))) $) 35)) (-2293 (((-1171) $ (-850) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-803) (-522) (-803) (-522)) 65)) (-1440 (((-588 (-872 (-202))) $) NIL)) (-2997 (((-442) $ (-850)) 32)) (-2985 (((-1171) $ (-708) (-708) (-850) (-850)) 39)) (-1256 (((-1171) $ (-1068)) 76)) (-1235 (((-1171) $ (-850) (-1068)) 72)) (-2190 (((-792) $) 82)) (-1650 (((-1171) $) 77)) (-2640 (((-1171) $ (-850) (-1068)) 68) (((-1171) $ (-850) (-803)) 69)) (-1531 (((-108) $ $) NIL)))
+(((-1167) (-13 (-1014) (-10 -8 (-15 -1440 ((-588 (-872 (-202))) $)) (-15 -2859 ($)) (-15 -1502 ($ $)) (-15 -2537 ((-588 (-239)) $)) (-15 -2537 ($ $ (-588 (-239)))) (-15 -1502 ($ (-442) (-588 (-239)))) (-15 -2293 ((-1171) $ (-850) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-803) (-522) (-803) (-522))) (-15 -1520 ((-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3398 (-522)) (|:| -1235 (-522)) (|:| |spline| (-522)) (|:| -2640 (-522)) (|:| |axesColor| (-803)) (|:| -1968 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522)))) $)) (-15 -4210 ((-1166 (-3 (-442) "undefined")) $)) (-15 -2955 ((-1171) $ (-1068))) (-15 -2979 ((-1171) $ (-442) (-850))) (-15 -2997 ((-442) $ (-850))) (-15 -2640 ((-1171) $ (-850) (-1068))) (-15 -2640 ((-1171) $ (-850) (-803))) (-15 -1968 ((-1171) $ (-850) (-1068))) (-15 -1968 ((-1171) $ (-850) (-803))) (-15 -3398 ((-1171) $ (-850) (-1068))) (-15 -3290 ((-1171) $ (-850) (-1068))) (-15 -1235 ((-1171) $ (-850) (-1068))) (-15 -1256 ((-1171) $ (-1068))) (-15 -1650 ((-1171) $)) (-15 -2985 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -3091 ((-1171) $ (-850) (-354) (-354))) (-15 -2469 ((-1171) $ (-850) (-354) (-354))) (-15 -1845 ((-1171) $ (-850) (-1068))) (-15 -2799 ((-1171) $ (-708) (-708))) (-15 -3183 ((-1171) $ (-442) (-850))) (-15 -1434 ((-1171) $ (-850) (-850))) (-15 -3969 ((-1068) $ (-1068))) (-15 -3969 ((-1068) $ (-1068) (-1068))) (-15 -3969 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -3943 ((-1171) $)) (-15 -2530 ((-522) $)) (-15 -2190 ((-792) $))))) (T -1167))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1167)))) (-1440 (*1 *2 *1) (-12 (-5 *2 (-588 (-872 (-202)))) (-5 *1 (-1167)))) (-2859 (*1 *1) (-5 *1 (-1167))) (-1502 (*1 *1 *1) (-5 *1 (-1167))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167)))) (-2537 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167)))) (-1502 (*1 *1 *2 *3) (-12 (-5 *2 (-442)) (-5 *3 (-588 (-239))) (-5 *1 (-1167)))) (-2293 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-850)) (-5 *4 (-202)) (-5 *5 (-522)) (-5 *6 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1520 (*1 *2 *1) (-12 (-5 *2 (-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3398 (-522)) (|:| -1235 (-522)) (|:| |spline| (-522)) (|:| -2640 (-522)) (|:| |axesColor| (-803)) (|:| -1968 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522))))) (-5 *1 (-1167)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-1166 (-3 (-442) "undefined"))) (-5 *1 (-1167)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2979 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2997 (*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-5 *2 (-442)) (-5 *1 (-1167)))) (-2640 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2640 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1968 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1968 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3398 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3290 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1256 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2985 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3091 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2469 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1845 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3183 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-1434 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))) (-3969 (*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167)))) (-3969 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167)))) (-3969 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1167)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1167)))))
+(-13 (-1014) (-10 -8 (-15 -1440 ((-588 (-872 (-202))) $)) (-15 -2859 ($)) (-15 -1502 ($ $)) (-15 -2537 ((-588 (-239)) $)) (-15 -2537 ($ $ (-588 (-239)))) (-15 -1502 ($ (-442) (-588 (-239)))) (-15 -2293 ((-1171) $ (-850) (-202) (-202) (-202) (-202) (-522) (-522) (-522) (-522) (-803) (-522) (-803) (-522))) (-15 -1520 ((-1166 (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3398 (-522)) (|:| -1235 (-522)) (|:| |spline| (-522)) (|:| -2640 (-522)) (|:| |axesColor| (-803)) (|:| -1968 (-522)) (|:| |unitsColor| (-803)) (|:| |showing| (-522)))) $)) (-15 -4210 ((-1166 (-3 (-442) "undefined")) $)) (-15 -2955 ((-1171) $ (-1068))) (-15 -2979 ((-1171) $ (-442) (-850))) (-15 -2997 ((-442) $ (-850))) (-15 -2640 ((-1171) $ (-850) (-1068))) (-15 -2640 ((-1171) $ (-850) (-803))) (-15 -1968 ((-1171) $ (-850) (-1068))) (-15 -1968 ((-1171) $ (-850) (-803))) (-15 -3398 ((-1171) $ (-850) (-1068))) (-15 -3290 ((-1171) $ (-850) (-1068))) (-15 -1235 ((-1171) $ (-850) (-1068))) (-15 -1256 ((-1171) $ (-1068))) (-15 -1650 ((-1171) $)) (-15 -2985 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -3091 ((-1171) $ (-850) (-354) (-354))) (-15 -2469 ((-1171) $ (-850) (-354) (-354))) (-15 -1845 ((-1171) $ (-850) (-1068))) (-15 -2799 ((-1171) $ (-708) (-708))) (-15 -3183 ((-1171) $ (-442) (-850))) (-15 -1434 ((-1171) $ (-850) (-850))) (-15 -3969 ((-1068) $ (-1068))) (-15 -3969 ((-1068) $ (-1068) (-1068))) (-15 -3969 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -3943 ((-1171) $)) (-15 -2530 ((-522) $)) (-15 -2190 ((-792) $))))
+((-1416 (((-108) $ $) NIL)) (-1879 (((-1171) $ (-354)) 138) (((-1171) $ (-354) (-354) (-354)) 139)) (-3969 (((-1068) $ (-1068)) 146) (((-1068) $ (-1068) (-1068)) 144) (((-1068) $ (-1068) (-588 (-1068))) 143)) (-1406 (($) 49)) (-1908 (((-1171) $ (-354) (-354) (-354) (-354) (-354)) 114) (((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $) 112) (((-1171) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) 113) (((-1171) $ (-522) (-522) (-354) (-354) (-354)) 115) (((-1171) $ (-354) (-354)) 116) (((-1171) $ (-354) (-354) (-354)) 123)) (-2866 (((-354)) 96) (((-354) (-354)) 97)) (-2725 (((-354)) 91) (((-354) (-354)) 93)) (-3534 (((-354)) 94) (((-354) (-354)) 95)) (-3980 (((-354)) 100) (((-354) (-354)) 101)) (-2310 (((-354)) 98) (((-354) (-354)) 99)) (-2469 (((-1171) $ (-354) (-354)) 140)) (-2955 (((-1171) $ (-1068)) 124)) (-3974 (((-1045 (-202)) $) 50) (($ $ (-1045 (-202))) 51)) (-1816 (((-1171) $ (-1068)) 152)) (-1227 (((-1171) $ (-1068)) 153)) (-1713 (((-1171) $ (-354) (-354)) 122) (((-1171) $ (-522) (-522)) 137)) (-1434 (((-1171) $ (-850) (-850)) 130)) (-3943 (((-1171) $) 110)) (-2771 (((-1171) $ (-1068)) 151)) (-2178 (((-1171) $ (-1068)) 107)) (-2537 (((-588 (-239)) $) 52) (($ $ (-588 (-239))) 53)) (-2799 (((-1171) $ (-708) (-708)) 129)) (-3756 (((-1171) $ (-708) (-872 (-202))) 158)) (-2807 (($ $) 56) (($ (-1045 (-202)) (-1068)) 57) (($ (-1045 (-202)) (-588 (-239))) 58)) (-3670 (((-1171) $ (-354) (-354) (-354)) 104)) (-2385 (((-1068) $) NIL)) (-2530 (((-522) $) 102)) (-2200 (((-1171) $ (-354)) 141)) (-4181 (((-1171) $ (-354)) 156)) (-4151 (((-1032) $) NIL)) (-3691 (((-1171) $ (-354)) 155)) (-3472 (((-1171) $ (-1068)) 109)) (-2985 (((-1171) $ (-708) (-708) (-850) (-850)) 128)) (-3948 (((-1171) $ (-1068)) 106)) (-1256 (((-1171) $ (-1068)) 108)) (-2019 (((-1171) $ (-143) (-143)) 127)) (-2190 (((-792) $) 135)) (-1650 (((-1171) $) 111)) (-1709 (((-1171) $ (-1068)) 154)) (-2640 (((-1171) $ (-1068)) 105)) (-1531 (((-108) $ $) NIL)))
+(((-1168) (-13 (-1014) (-10 -8 (-15 -2725 ((-354))) (-15 -2725 ((-354) (-354))) (-15 -3534 ((-354))) (-15 -3534 ((-354) (-354))) (-15 -2866 ((-354))) (-15 -2866 ((-354) (-354))) (-15 -2310 ((-354))) (-15 -2310 ((-354) (-354))) (-15 -3980 ((-354))) (-15 -3980 ((-354) (-354))) (-15 -1406 ($)) (-15 -2807 ($ $)) (-15 -2807 ($ (-1045 (-202)) (-1068))) (-15 -2807 ($ (-1045 (-202)) (-588 (-239)))) (-15 -3974 ((-1045 (-202)) $)) (-15 -3974 ($ $ (-1045 (-202)))) (-15 -3756 ((-1171) $ (-708) (-872 (-202)))) (-15 -2537 ((-588 (-239)) $)) (-15 -2537 ($ $ (-588 (-239)))) (-15 -2799 ((-1171) $ (-708) (-708))) (-15 -1434 ((-1171) $ (-850) (-850))) (-15 -2955 ((-1171) $ (-1068))) (-15 -2985 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -1908 ((-1171) $ (-354) (-354) (-354) (-354) (-354))) (-15 -1908 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -1908 ((-1171) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -1908 ((-1171) $ (-522) (-522) (-354) (-354) (-354))) (-15 -1908 ((-1171) $ (-354) (-354))) (-15 -1908 ((-1171) $ (-354) (-354) (-354))) (-15 -1256 ((-1171) $ (-1068))) (-15 -2640 ((-1171) $ (-1068))) (-15 -3948 ((-1171) $ (-1068))) (-15 -2178 ((-1171) $ (-1068))) (-15 -3472 ((-1171) $ (-1068))) (-15 -1713 ((-1171) $ (-354) (-354))) (-15 -1713 ((-1171) $ (-522) (-522))) (-15 -1879 ((-1171) $ (-354))) (-15 -1879 ((-1171) $ (-354) (-354) (-354))) (-15 -2469 ((-1171) $ (-354) (-354))) (-15 -2771 ((-1171) $ (-1068))) (-15 -3691 ((-1171) $ (-354))) (-15 -4181 ((-1171) $ (-354))) (-15 -1816 ((-1171) $ (-1068))) (-15 -1227 ((-1171) $ (-1068))) (-15 -1709 ((-1171) $ (-1068))) (-15 -3670 ((-1171) $ (-354) (-354) (-354))) (-15 -2200 ((-1171) $ (-354))) (-15 -3943 ((-1171) $)) (-15 -2019 ((-1171) $ (-143) (-143))) (-15 -3969 ((-1068) $ (-1068))) (-15 -3969 ((-1068) $ (-1068) (-1068))) (-15 -3969 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -1650 ((-1171) $)) (-15 -2530 ((-522) $))))) (T -1168))
+((-2725 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-3534 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-3534 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2866 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2866 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2310 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-2310 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-3980 (*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-3980 (*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))) (-1406 (*1 *1) (-5 *1 (-1168))) (-2807 (*1 *1 *1) (-5 *1 (-1168))) (-2807 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1068)) (-5 *1 (-1168)))) (-2807 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-588 (-239))) (-5 *1 (-1168)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168)))) (-3974 (*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168)))) (-3756 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-708)) (-5 *4 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168)))) (-2537 (*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168)))) (-2799 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1434 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2955 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2985 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1908 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *1 (-1168)))) (-1908 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202)))) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1908 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-522)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1908 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1908 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1256 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3948 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1713 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1713 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1879 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1879 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2469 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2771 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-4181 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1227 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-1709 (*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3670 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2200 (*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2019 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-143)) (-5 *2 (-1171)) (-5 *1 (-1168)))) (-3969 (*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168)))) (-3969 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168)))) (-3969 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1168)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1168)))))
+(-13 (-1014) (-10 -8 (-15 -2725 ((-354))) (-15 -2725 ((-354) (-354))) (-15 -3534 ((-354))) (-15 -3534 ((-354) (-354))) (-15 -2866 ((-354))) (-15 -2866 ((-354) (-354))) (-15 -2310 ((-354))) (-15 -2310 ((-354) (-354))) (-15 -3980 ((-354))) (-15 -3980 ((-354) (-354))) (-15 -1406 ($)) (-15 -2807 ($ $)) (-15 -2807 ($ (-1045 (-202)) (-1068))) (-15 -2807 ($ (-1045 (-202)) (-588 (-239)))) (-15 -3974 ((-1045 (-202)) $)) (-15 -3974 ($ $ (-1045 (-202)))) (-15 -3756 ((-1171) $ (-708) (-872 (-202)))) (-15 -2537 ((-588 (-239)) $)) (-15 -2537 ($ $ (-588 (-239)))) (-15 -2799 ((-1171) $ (-708) (-708))) (-15 -1434 ((-1171) $ (-850) (-850))) (-15 -2955 ((-1171) $ (-1068))) (-15 -2985 ((-1171) $ (-708) (-708) (-850) (-850))) (-15 -1908 ((-1171) $ (-354) (-354) (-354) (-354) (-354))) (-15 -1908 ((-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))) $)) (-15 -1908 ((-1171) $ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202)) (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202)) (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))) (-15 -1908 ((-1171) $ (-522) (-522) (-354) (-354) (-354))) (-15 -1908 ((-1171) $ (-354) (-354))) (-15 -1908 ((-1171) $ (-354) (-354) (-354))) (-15 -1256 ((-1171) $ (-1068))) (-15 -2640 ((-1171) $ (-1068))) (-15 -3948 ((-1171) $ (-1068))) (-15 -2178 ((-1171) $ (-1068))) (-15 -3472 ((-1171) $ (-1068))) (-15 -1713 ((-1171) $ (-354) (-354))) (-15 -1713 ((-1171) $ (-522) (-522))) (-15 -1879 ((-1171) $ (-354))) (-15 -1879 ((-1171) $ (-354) (-354) (-354))) (-15 -2469 ((-1171) $ (-354) (-354))) (-15 -2771 ((-1171) $ (-1068))) (-15 -3691 ((-1171) $ (-354))) (-15 -4181 ((-1171) $ (-354))) (-15 -1816 ((-1171) $ (-1068))) (-15 -1227 ((-1171) $ (-1068))) (-15 -1709 ((-1171) $ (-1068))) (-15 -3670 ((-1171) $ (-354) (-354) (-354))) (-15 -2200 ((-1171) $ (-354))) (-15 -3943 ((-1171) $)) (-15 -2019 ((-1171) $ (-143) (-143))) (-15 -3969 ((-1068) $ (-1068))) (-15 -3969 ((-1068) $ (-1068) (-1068))) (-15 -3969 ((-1068) $ (-1068) (-588 (-1068)))) (-15 -1650 ((-1171) $)) (-15 -2530 ((-522) $))))
+((-3647 (((-588 (-1068)) (-588 (-1068))) 94) (((-588 (-1068))) 89)) (-3432 (((-588 (-1068))) 87)) (-3662 (((-588 (-850)) (-588 (-850))) 62) (((-588 (-850))) 59)) (-2110 (((-588 (-708)) (-588 (-708))) 56) (((-588 (-708))) 52)) (-1287 (((-1171)) 64)) (-1485 (((-850) (-850)) 80) (((-850)) 79)) (-3070 (((-850) (-850)) 78) (((-850)) 77)) (-2701 (((-803) (-803)) 74) (((-803)) 73)) (-2001 (((-202)) 84) (((-202) (-354)) 86)) (-3994 (((-850)) 81) (((-850) (-850)) 82)) (-1298 (((-850) (-850)) 76) (((-850)) 75)) (-2940 (((-803) (-803)) 68) (((-803)) 66)) (-2053 (((-803) (-803)) 70) (((-803)) 69)) (-2251 (((-803) (-803)) 72) (((-803)) 71)))
+(((-1169) (-10 -7 (-15 -2940 ((-803))) (-15 -2940 ((-803) (-803))) (-15 -2053 ((-803))) (-15 -2053 ((-803) (-803))) (-15 -2251 ((-803))) (-15 -2251 ((-803) (-803))) (-15 -2701 ((-803))) (-15 -2701 ((-803) (-803))) (-15 -1298 ((-850))) (-15 -1298 ((-850) (-850))) (-15 -2110 ((-588 (-708)))) (-15 -2110 ((-588 (-708)) (-588 (-708)))) (-15 -3662 ((-588 (-850)))) (-15 -3662 ((-588 (-850)) (-588 (-850)))) (-15 -1287 ((-1171))) (-15 -3647 ((-588 (-1068)))) (-15 -3647 ((-588 (-1068)) (-588 (-1068)))) (-15 -3432 ((-588 (-1068)))) (-15 -3070 ((-850))) (-15 -1485 ((-850))) (-15 -3070 ((-850) (-850))) (-15 -1485 ((-850) (-850))) (-15 -3994 ((-850) (-850))) (-15 -3994 ((-850))) (-15 -2001 ((-202) (-354))) (-15 -2001 ((-202))))) (T -1169))
+((-2001 (*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1169)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-1169)))) (-3994 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-1485 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3070 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-3432 (*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) (-3647 (*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) (-3647 (*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))) (-1287 (*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1169)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169)))) (-3662 (*1 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169)))) (-2110 (*1 *2 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169)))) (-2110 (*1 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169)))) (-1298 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-1298 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2701 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2251 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2053 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))) (-2940 (*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))))
+(-10 -7 (-15 -2940 ((-803))) (-15 -2940 ((-803) (-803))) (-15 -2053 ((-803))) (-15 -2053 ((-803) (-803))) (-15 -2251 ((-803))) (-15 -2251 ((-803) (-803))) (-15 -2701 ((-803))) (-15 -2701 ((-803) (-803))) (-15 -1298 ((-850))) (-15 -1298 ((-850) (-850))) (-15 -2110 ((-588 (-708)))) (-15 -2110 ((-588 (-708)) (-588 (-708)))) (-15 -3662 ((-588 (-850)))) (-15 -3662 ((-588 (-850)) (-588 (-850)))) (-15 -1287 ((-1171))) (-15 -3647 ((-588 (-1068)))) (-15 -3647 ((-588 (-1068)) (-588 (-1068)))) (-15 -3432 ((-588 (-1068)))) (-15 -3070 ((-850))) (-15 -1485 ((-850))) (-15 -3070 ((-850) (-850))) (-15 -1485 ((-850) (-850))) (-15 -3994 ((-850) (-850))) (-15 -3994 ((-850))) (-15 -2001 ((-202) (-354))) (-15 -2001 ((-202))))
+((-2593 (((-442) (-588 (-588 (-872 (-202)))) (-588 (-239))) 17) (((-442) (-588 (-588 (-872 (-202))))) 16) (((-442) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239))) 15)) (-2820 (((-1167) (-588 (-588 (-872 (-202)))) (-588 (-239))) 23) (((-1167) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239))) 22)) (-2190 (((-1167) (-442)) 34)))
+(((-1170) (-10 -7 (-15 -2593 ((-442) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -2593 ((-442) (-588 (-588 (-872 (-202)))))) (-15 -2593 ((-442) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2820 ((-1167) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -2820 ((-1167) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2190 ((-1167) (-442))))) (T -1170))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-442)) (-5 *2 (-1167)) (-5 *1 (-1170)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-1170)))) (-2820 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-1170)))) (-2593 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239))) (-5 *2 (-442)) (-5 *1 (-1170)))) (-2593 (*1 *2 *3) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-442)) (-5 *1 (-1170)))) (-2593 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803)) (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-442)) (-5 *1 (-1170)))))
+(-10 -7 (-15 -2593 ((-442) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -2593 ((-442) (-588 (-588 (-872 (-202)))))) (-15 -2593 ((-442) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2820 ((-1167) (-588 (-588 (-872 (-202)))) (-803) (-803) (-850) (-588 (-239)))) (-15 -2820 ((-1167) (-588 (-588 (-872 (-202)))) (-588 (-239)))) (-15 -2190 ((-1167) (-442))))
+((-1367 (($) 7)) (-2190 (((-792) $) 10)))
+(((-1171) (-10 -8 (-15 -1367 ($)) (-15 -2190 ((-792) $)))) (T -1171))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1171)))) (-1367 (*1 *1) (-5 *1 (-1171))))
+(-10 -8 (-15 -1367 ($)) (-15 -2190 ((-792) $)))
+((-1620 (($ $ |#2|) 10)))
+(((-1172 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1| |#2|))) (-1173 |#2|) (-338)) (T -1172))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1| |#2|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-4078 (((-126)) 28)) (-2190 (((-792) $) 11)) (-3566 (($) 18 T CONST)) (-1531 (((-108) $ $) 6)) (-1620 (($ $ |#1|) 29)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1173 |#1|) (-1197) (-338)) (T -1173))
+((-1620 (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-338)))) (-4078 (*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-338)) (-5 *2 (-126)))))
+(-13 (-655 |t#1|) (-10 -8 (-15 -1620 ($ $ |t#1|)) (-15 -4078 ((-126)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-655 |#1|) . T) ((-977 |#1|) . T) ((-1014) . T))
+((-4154 (((-588 (-1115 |#1|)) (-1085) (-1115 |#1|)) 78)) (-3638 (((-1066 (-1066 (-881 |#1|))) (-1085) (-1066 (-881 |#1|))) 57)) (-2247 (((-1 (-1066 (-1115 |#1|)) (-1066 (-1115 |#1|))) (-708) (-1115 |#1|) (-1066 (-1115 |#1|))) 68)) (-2194 (((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708)) 59)) (-2551 (((-1 (-1081 (-881 |#1|)) (-881 |#1|)) (-1085)) 27)) (-2721 (((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708)) 58)))
+(((-1174 |#1|) (-10 -7 (-15 -2194 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -2721 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -3638 ((-1066 (-1066 (-881 |#1|))) (-1085) (-1066 (-881 |#1|)))) (-15 -2551 ((-1 (-1081 (-881 |#1|)) (-881 |#1|)) (-1085))) (-15 -4154 ((-588 (-1115 |#1|)) (-1085) (-1115 |#1|))) (-15 -2247 ((-1 (-1066 (-1115 |#1|)) (-1066 (-1115 |#1|))) (-708) (-1115 |#1|) (-1066 (-1115 |#1|))))) (-338)) (T -1174))
+((-2247 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708)) (-4 *6 (-338)) (-5 *4 (-1115 *6)) (-5 *2 (-1 (-1066 *4) (-1066 *4))) (-5 *1 (-1174 *6)) (-5 *5 (-1066 *4)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-588 (-1115 *5))) (-5 *1 (-1174 *5)) (-5 *4 (-1115 *5)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1 (-1081 (-881 *4)) (-881 *4))) (-5 *1 (-1174 *4)) (-4 *4 (-338)))) (-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-1066 (-1066 (-881 *5)))) (-5 *1 (-1174 *5)) (-5 *4 (-1066 (-881 *5))))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4)))) (-5 *1 (-1174 *4)) (-4 *4 (-338)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4)))) (-5 *1 (-1174 *4)) (-4 *4 (-338)))))
+(-10 -7 (-15 -2194 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -2721 ((-1 (-1066 (-881 |#1|)) (-1066 (-881 |#1|))) (-708))) (-15 -3638 ((-1066 (-1066 (-881 |#1|))) (-1085) (-1066 (-881 |#1|)))) (-15 -2551 ((-1 (-1081 (-881 |#1|)) (-881 |#1|)) (-1085))) (-15 -4154 ((-588 (-1115 |#1|)) (-1085) (-1115 |#1|))) (-15 -2247 ((-1 (-1066 (-1115 |#1|)) (-1066 (-1115 |#1|))) (-708) (-1115 |#1|) (-1066 (-1115 |#1|)))))
+((-3784 (((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|) 74)) (-3882 (((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|)))) 73)))
+(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3882 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3784 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|))) (-324) (-1142 |#1|) (-1142 |#2|) (-384 |#2| |#3|)) (T -1175))
+((-3784 (*1 *2 *3) (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3)) (-5 *2 (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-628 *3)))) (-5 *1 (-1175 *4 *3 *5 *6)) (-4 *6 (-384 *3 *5)))) (-3882 (*1 *2) (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4)) (-5 *2 (-2 (|:| -3855 (-628 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-628 *4)))) (-5 *1 (-1175 *3 *4 *5 *6)) (-4 *6 (-384 *4 *5)))))
+(-10 -7 (-15 -3882 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))))) (-15 -3784 ((-2 (|:| -3855 (-628 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-628 |#2|))) |#2|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 42)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) NIL)) (-2782 (((-108) $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2190 (((-792) $) 63) (($ (-522)) NIL) ((|#4| $) 53) (($ |#4|) 48) (($ |#1|) NIL (|has| |#1| (-157)))) (-2323 (((-708)) NIL)) (-1809 (((-1171) (-708)) 16)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 27 T CONST)) (-3577 (($) 66 T CONST)) (-1531 (((-108) $ $) 68)) (-1620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-338)))) (-1612 (($ $) 70) (($ $ $) NIL)) (-1602 (($ $ $) 46)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 72) (($ |#1| $) NIL (|has| |#1| (-157))) (($ $ |#1|) NIL (|has| |#1| (-157)))))
+(((-1176 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2190 (|#4| $)) (IF (|has| |#1| (-338)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2190 ($ |#4|)) (-15 -1809 ((-1171) (-708))))) (-971) (-784) (-730) (-878 |#1| |#3| |#2|) (-588 |#2|) (-588 (-708)) (-708)) (T -1176))
+((-2190 (*1 *2 *1) (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4)) (-14 *7 (-588 (-708))) (-14 *8 (-708)))) (-1620 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-338)) (-4 *2 (-971)) (-4 *3 (-784)) (-4 *4 (-730)) (-14 *6 (-588 *3)) (-5 *1 (-1176 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-878 *2 *4 *3)) (-14 *7 (-588 (-708))) (-14 *8 (-708)))) (-2190 (*1 *1 *2) (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4)) (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-878 *3 *5 *4)) (-14 *7 (-588 (-708))) (-14 *8 (-708)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-4 *5 (-784)) (-4 *6 (-730)) (-14 *8 (-588 *5)) (-5 *2 (-1171)) (-5 *1 (-1176 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-878 *4 *6 *5)) (-14 *9 (-588 *3)) (-14 *10 *3))))
+(-13 (-971) (-10 -8 (IF (|has| |#1| (-157)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2190 (|#4| $)) (IF (|has| |#1| (-338)) (-15 -1620 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2190 ($ |#4|)) (-15 -1809 ((-1171) (-708)))))
+((-1416 (((-108) $ $) NIL)) (-2950 (((-588 (-2 (|:| -1650 $) (|:| -1544 (-588 |#4|)))) (-588 |#4|)) NIL)) (-4125 (((-588 $) (-588 |#4|)) 88)) (-4090 (((-588 |#3|) $) NIL)) (-2690 (((-108) $) NIL)) (-4140 (((-108) $) NIL (|has| |#1| (-514)))) (-3575 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3607 ((|#4| |#4| $) NIL)) (-3216 (((-2 (|:| |under| $) (|:| -3686 $) (|:| |upper| $)) $ |#3|) NIL)) (-4141 (((-108) $ (-708)) NIL)) (-1628 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3175 (($) NIL T CONST)) (-3639 (((-108) $) NIL (|has| |#1| (-514)))) (-3982 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3996 (((-108) $ $) NIL (|has| |#1| (-514)))) (-3538 (((-108) $) NIL (|has| |#1| (-514)))) (-2149 (((-588 |#4|) (-588 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3050 (((-588 |#4|) (-588 |#4|) $) 25 (|has| |#1| (-514)))) (-1787 (((-588 |#4|) (-588 |#4|) $) NIL (|has| |#1| (-514)))) (-1297 (((-3 $ "failed") (-588 |#4|)) NIL)) (-1484 (($ (-588 |#4|)) NIL)) (-2306 (((-3 $ "failed") $) 70)) (-2806 ((|#4| |#4| $) 75)) (-2333 (($ $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-1423 (($ |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-3421 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-1934 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-4164 ((|#4| |#4| $) NIL)) (-3864 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4238))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4238))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2091 (((-2 (|:| -1650 (-588 |#4|)) (|:| -1544 (-588 |#4|))) $) NIL)) (-3837 (((-588 |#4|) $) NIL (|has| $ (-6 -4238)))) (-3341 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1521 ((|#3| $) 76)) (-3352 (((-108) $ (-708)) NIL)) (-3308 (((-588 |#4|) $) 29 (|has| $ (-6 -4238)))) (-2246 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014))))) (-3310 (((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-588 |#4|)) 35)) (-3838 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4239)))) (-1391 (($ (-1 |#4| |#4|) $) NIL)) (-2458 (((-588 |#3|) $) NIL)) (-1606 (((-108) |#3| $) NIL)) (-2720 (((-108) $ (-708)) NIL)) (-2385 (((-1068) $) NIL)) (-1442 (((-3 |#4| "failed") $) NIL)) (-2242 (((-588 |#4|) $) 50)) (-3409 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1451 ((|#4| |#4| $) 74)) (-2123 (((-108) $ $) 85)) (-2039 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-514)))) (-2230 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2680 ((|#4| |#4| $) NIL)) (-4151 (((-1032) $) NIL)) (-2294 (((-3 |#4| "failed") $) 69)) (-1414 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3307 (((-3 $ "failed") $ |#4|) NIL)) (-3719 (($ $ |#4|) NIL)) (-3053 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2289 (($ $ (-588 |#4|) (-588 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-270 |#4|)) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014)))) (($ $ (-588 (-270 |#4|))) NIL (-12 (|has| |#4| (-285 |#4|)) (|has| |#4| (-1014))))) (-1536 (((-108) $ $) NIL)) (-3985 (((-108) $) 67)) (-3775 (($) 42)) (-2793 (((-708) $) NIL)) (-4168 (((-708) |#4| $) NIL (-12 (|has| $ (-6 -4238)) (|has| |#4| (-1014)))) (((-708) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2404 (($ $) NIL)) (-1431 (((-498) $) NIL (|has| |#4| (-563 (-498))))) (-2201 (($ (-588 |#4|)) NIL)) (-2020 (($ $ |#3|) NIL)) (-3606 (($ $ |#3|) NIL)) (-3968 (($ $) NIL)) (-2463 (($ $ |#3|) NIL)) (-2190 (((-792) $) NIL) (((-588 |#4|) $) 57)) (-1974 (((-708) $) NIL (|has| |#3| (-343)))) (-1569 (((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-588 |#4|)) 41)) (-1820 (((-588 $) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-588 $) (-588 |#4|)) 66)) (-3989 (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1355 (-588 |#4|))) "failed") (-588 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4212 (((-108) $ (-1 (-108) |#4| (-588 |#4|))) NIL)) (-3648 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4238)))) (-2360 (((-588 |#3|) $) NIL)) (-2351 (((-108) |#3| $) NIL)) (-1531 (((-108) $ $) NIL)) (-3480 (((-708) $) NIL (|has| $ (-6 -4238)))))
+(((-1177 |#1| |#2| |#3| |#4|) (-13 (-1114 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3310 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3310 ((-3 $ "failed") (-588 |#4|))) (-15 -1569 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1569 ((-3 $ "failed") (-588 |#4|))) (-15 -1820 ((-588 $) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1820 ((-588 $) (-588 |#4|))))) (-514) (-730) (-784) (-985 |#1| |#2| |#3|)) (T -1177))
+((-3310 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8)))) (-3310 (*1 *1 *2) (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1177 *3 *4 *5 *6)))) (-1569 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8)))) (-1569 (*1 *1 *2) (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1177 *3 *4 *5 *6)))) (-1820 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-588 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-588 (-1177 *6 *7 *8 *9))) (-5 *1 (-1177 *6 *7 *8 *9)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-1177 *4 *5 *6 *7))) (-5 *1 (-1177 *4 *5 *6 *7)))))
+(-13 (-1114 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3310 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3310 ((-3 $ "failed") (-588 |#4|))) (-15 -1569 ((-3 $ "failed") (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1569 ((-3 $ "failed") (-588 |#4|))) (-15 -1820 ((-588 $) (-588 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1820 ((-588 $) (-588 |#4|)))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-1233 (((-3 $ "failed") $ $) 19)) (-3175 (($) 17 T CONST)) (-2682 (((-3 $ "failed") $) 34)) (-2782 (((-108) $) 31)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#1|) 38)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1178 |#1|) (-1197) (-971)) (T -1178))
+((-2190 (*1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-971)))))
+(-13 (-971) (-107 |t#1| |t#1|) (-10 -8 (-15 -2190 ($ |t#1|)) (IF (|has| |t#1| (-157)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-157)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 |#1|) |has| |#1| (-157)) ((-664) . T) ((-977 |#1|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4106 (((-588 |#1|) $) 45)) (-2613 (($ $ (-708)) 39)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3961 (($ $ (-708)) 17 (|has| |#2| (-157))) (($ $ $) 18 (|has| |#2| (-157)))) (-3175 (($) NIL T CONST)) (-1200 (($ $ $) 62) (($ $ (-756 |#1|)) 49) (($ $ |#1|) 53)) (-1297 (((-3 (-756 |#1|) "failed") $) NIL)) (-1484 (((-756 |#1|) $) NIL)) (-3156 (($ $) 32)) (-2682 (((-3 $ "failed") $) NIL)) (-3221 (((-108) $) NIL)) (-3154 (($ $) NIL)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-2518 (($ (-756 |#1|) |#2|) 31)) (-1225 (($ $) 33)) (-1748 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 11)) (-2451 (((-756 |#1|) $) NIL)) (-3295 (((-756 |#1|) $) 34)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-2987 (($ $ $) 61) (($ $ (-756 |#1|)) 51) (($ $ |#1|) 55)) (-2834 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3128 (((-756 |#1|) $) 28)) (-3138 ((|#2| $) 30)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-2793 (((-708) $) 36)) (-1328 (((-108) $) 40)) (-2677 ((|#2| $) NIL)) (-2190 (((-792) $) NIL) (($ (-756 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-522)) NIL)) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-756 |#1|)) NIL)) (-2977 ((|#2| $ $) 64) ((|#2| $ (-756 |#1|)) NIL)) (-2323 (((-708)) NIL)) (-3510 (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (-3566 (($) 12 T CONST)) (-3577 (($) 14 T CONST)) (-2238 (((-588 (-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1531 (((-108) $ $) 38)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 21)) (** (($ $ (-708)) NIL) (($ $ (-850)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 60) (($ |#2| (-756 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1179 |#1| |#2|) (-13 (-357 |#2| (-756 |#1|)) (-1185 |#1| |#2|)) (-784) (-971)) (T -1179))
+NIL
+(-13 (-357 |#2| (-756 |#1|)) (-1185 |#1| |#2|))
+((-1254 ((|#3| |#3| (-708)) 23)) (-3266 ((|#3| |#3| (-708)) 28)) (-3143 ((|#3| |#3| |#3| (-708)) 29)))
+(((-1180 |#1| |#2| |#3|) (-10 -7 (-15 -3266 (|#3| |#3| (-708))) (-15 -1254 (|#3| |#3| (-708))) (-15 -3143 (|#3| |#3| |#3| (-708)))) (-13 (-971) (-655 (-382 (-522)))) (-784) (-1185 |#2| |#1|)) (T -1180))
+((-3143 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))) (-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))) (-3266 (*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522))))) (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))))
+(-10 -7 (-15 -3266 (|#3| |#3| (-708))) (-15 -1254 (|#3| |#3| (-708))) (-15 -3143 (|#3| |#3| |#3| (-708))))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4106 (((-588 |#1|) $) 40)) (-1233 (((-3 $ "failed") $ $) 19)) (-3961 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-708)) 42 (|has| |#2| (-157)))) (-3175 (($) 17 T CONST)) (-1200 (($ $ |#1|) 54) (($ $ (-756 |#1|)) 53) (($ $ $) 52)) (-1297 (((-3 (-756 |#1|) "failed") $) 64)) (-1484 (((-756 |#1|) $) 63)) (-2682 (((-3 $ "failed") $) 34)) (-3221 (((-108) $) 45)) (-3154 (($ $) 44)) (-2782 (((-108) $) 31)) (-3340 (((-108) $) 50)) (-2518 (($ (-756 |#1|) |#2|) 51)) (-1225 (($ $) 49)) (-1748 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 60)) (-2451 (((-756 |#1|) $) 61)) (-1391 (($ (-1 |#2| |#2|) $) 41)) (-2987 (($ $ |#1|) 57) (($ $ (-756 |#1|)) 56) (($ $ $) 55)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-1328 (((-108) $) 47)) (-2677 ((|#2| $) 46)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#2|) 68) (($ (-756 |#1|)) 65) (($ |#1|) 48)) (-2977 ((|#2| $ (-756 |#1|)) 59) ((|#2| $ $) 58)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1181 |#1| |#2|) (-1197) (-784) (-971)) (T -1181))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-756 *3)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-2 (|:| |k| (-756 *3)) (|:| |c| *4))))) (-2977 (*1 *2 *1 *3) (-12 (-5 *3 (-756 *4)) (-4 *1 (-1181 *4 *2)) (-4 *4 (-784)) (-4 *2 (-971)))) (-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) (-2987 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2987 (*1 *1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-2987 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1200 (*1 *1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1200 (*1 *1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-1200 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2518 (*1 *1 *2 *3) (-12 (-5 *2 (-756 *4)) (-4 *4 (-784)) (-4 *1 (-1181 *4 *3)) (-4 *3 (-971)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-108)))) (-1225 (*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-2190 (*1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-108)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-108)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))) (-3961 (*1 *1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)) (-4 *3 (-157)))) (-3961 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-4 *4 (-157)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-4106 (*1 *2 *1) (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-588 *3)))))
+(-13 (-971) (-1178 |t#2|) (-962 (-756 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2451 ((-756 |t#1|) $)) (-15 -1748 ((-2 (|:| |k| (-756 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2977 (|t#2| $ (-756 |t#1|))) (-15 -2977 (|t#2| $ $)) (-15 -2987 ($ $ |t#1|)) (-15 -2987 ($ $ (-756 |t#1|))) (-15 -2987 ($ $ $)) (-15 -1200 ($ $ |t#1|)) (-15 -1200 ($ $ (-756 |t#1|))) (-15 -1200 ($ $ $)) (-15 -2518 ($ (-756 |t#1|) |t#2|)) (-15 -3340 ((-108) $)) (-15 -1225 ($ $)) (-15 -2190 ($ |t#1|)) (-15 -1328 ((-108) $)) (-15 -2677 (|t#2| $)) (-15 -3221 ((-108) $)) (-15 -3154 ($ $)) (IF (|has| |t#2| (-157)) (PROGN (-15 -3961 ($ $ $)) (-15 -3961 ($ $ (-708)))) |%noBranch|) (-15 -1391 ($ (-1 |t#2| |t#2|) $)) (-15 -4106 ((-588 |t#1|) $)) (IF (|has| |t#2| (-6 -4231)) (-6 -4231) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-655 |#2|) |has| |#2| (-157)) ((-664) . T) ((-962 (-756 |#1|)) . T) ((-977 |#2|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1178 |#2|) . T))
+((-1651 (((-108) $) 14)) (-2351 (((-108) $) 13)) (-3428 (($ $) 18) (($ $ (-708)) 19)))
+(((-1182 |#1| |#2|) (-10 -8 (-15 -3428 (|#1| |#1| (-708))) (-15 -3428 (|#1| |#1|)) (-15 -1651 ((-108) |#1|)) (-15 -2351 ((-108) |#1|))) (-1183 |#2|) (-338)) (T -1182))
+NIL
+(-10 -8 (-15 -3428 (|#1| |#1| (-708))) (-15 -3428 (|#1| |#1|)) (-15 -1651 ((-108) |#1|)) (-15 -2351 ((-108) |#1|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-2013 (((-2 (|:| -3210 $) (|:| -4225 $) (|:| |associate| $)) $) 41)) (-2022 (($ $) 40)) (-3739 (((-108) $) 38)) (-1651 (((-108) $) 94)) (-2219 (((-708)) 90)) (-1233 (((-3 $ "failed") $ $) 19)) (-3119 (($ $) 73)) (-3450 (((-393 $) $) 72)) (-1687 (((-108) $ $) 59)) (-3175 (($) 17 T CONST)) (-1297 (((-3 |#1| "failed") $) 101)) (-1484 ((|#1| $) 100)) (-2277 (($ $ $) 55)) (-2682 (((-3 $ "failed") $) 34)) (-2254 (($ $ $) 56)) (-3297 (((-2 (|:| -2977 (-588 $)) (|:| -1383 $)) (-588 $)) 51)) (-2111 (($ $ (-708)) 87 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343)))) (($ $) 86 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2813 (((-108) $) 71)) (-3714 (((-770 (-850)) $) 84 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2782 (((-108) $) 31)) (-3317 (((-3 (-588 $) "failed") (-588 $) $) 52)) (-2224 (($ $ $) 46) (($ (-588 $)) 45)) (-2385 (((-1068) $) 9)) (-3098 (($ $) 70)) (-2822 (((-108) $) 93)) (-4151 (((-1032) $) 10)) (-1307 (((-1081 $) (-1081 $) (-1081 $)) 44)) (-2259 (($ $ $) 48) (($ (-588 $)) 47)) (-1916 (((-393 $) $) 74)) (-2621 (((-770 (-850))) 91)) (-3885 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1383 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2232 (((-3 $ "failed") $ $) 42)) (-2553 (((-3 (-588 $) "failed") (-588 $) $) 50)) (-3730 (((-708) $) 58)) (-2752 (((-2 (|:| -1353 $) (|:| -3421 $)) $ $) 57)) (-3018 (((-3 (-708) "failed") $ $) 85 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-4078 (((-126)) 99)) (-2793 (((-770 (-850)) $) 92)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ $) 43) (($ (-382 (-522))) 65) (($ |#1|) 102)) (-2143 (((-3 $ "failed") $) 83 (-3708 (|has| |#1| (-133)) (|has| |#1| (-343))))) (-2323 (((-708)) 29)) (-3958 (((-108) $ $) 39)) (-2351 (((-108) $) 95)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33) (($ $ (-522)) 69)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-3428 (($ $) 89 (|has| |#1| (-343))) (($ $ (-708)) 88 (|has| |#1| (-343)))) (-1531 (((-108) $ $) 6)) (-1620 (($ $ $) 64) (($ $ |#1|) 98)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32) (($ $ (-522)) 68)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ $ (-382 (-522))) 67) (($ (-382 (-522)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1183 |#1|) (-1197) (-338)) (T -1183))
+((-2351 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850))))) (-2621 (*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850))))) (-2219 (*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-708)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-338)) (-4 *2 (-343)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-4 *3 (-343)))))
+(-13 (-338) (-962 |t#1|) (-1173 |t#1|) (-10 -8 (IF (|has| |t#1| (-135)) (-6 (-135)) |%noBranch|) (IF (|has| |t#1| (-133)) (-6 (-377)) |%noBranch|) (-15 -2351 ((-108) $)) (-15 -1651 ((-108) $)) (-15 -2822 ((-108) $)) (-15 -2793 ((-770 (-850)) $)) (-15 -2621 ((-770 (-850)))) (-15 -2219 ((-708))) (IF (|has| |t#1| (-343)) (PROGN (-6 (-377)) (-15 -3428 ($ $)) (-15 -3428 ($ $ (-708)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-382 (-522))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-124) . T) ((-133) -3708 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-135) |has| |#1| (-135)) ((-562 (-792)) . T) ((-157) . T) ((-220) . T) ((-266) . T) ((-283) . T) ((-338) . T) ((-377) -3708 (|has| |#1| (-343)) (|has| |#1| (-133))) ((-426) . T) ((-514) . T) ((-590 #0#) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-655 #0#) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-849) . T) ((-962 |#1|) . T) ((-977 #0#) . T) ((-977 |#1|) . T) ((-977 $) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1124) . T) ((-1173 |#1|) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4106 (((-588 |#1|) $) 85)) (-2613 (($ $ (-708)) 88)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3961 (($ $ $) NIL (|has| |#2| (-157))) (($ $ (-708)) NIL (|has| |#2| (-157)))) (-3175 (($) NIL T CONST)) (-1200 (($ $ |#1|) NIL) (($ $ (-756 |#1|)) NIL) (($ $ $) NIL)) (-1297 (((-3 (-756 |#1|) "failed") $) NIL) (((-3 (-822 |#1|) "failed") $) NIL)) (-1484 (((-756 |#1|) $) NIL) (((-822 |#1|) $) NIL)) (-3156 (($ $) 87)) (-2682 (((-3 $ "failed") $) NIL)) (-3221 (((-108) $) 76)) (-3154 (($ $) 80)) (-1372 (($ $ $ (-708)) 89)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-2518 (($ (-756 |#1|) |#2|) NIL) (($ (-822 |#1|) |#2|) 26)) (-1225 (($ $) 102)) (-1748 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2451 (((-756 |#1|) $) NIL)) (-3295 (((-756 |#1|) $) NIL)) (-1391 (($ (-1 |#2| |#2|) $) NIL)) (-2987 (($ $ |#1|) NIL) (($ $ (-756 |#1|)) NIL) (($ $ $) NIL)) (-1254 (($ $ (-708)) 96 (|has| |#2| (-655 (-382 (-522)))))) (-2834 (((-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3128 (((-822 |#1|) $) 70)) (-3138 ((|#2| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-3266 (($ $ (-708)) 93 (|has| |#2| (-655 (-382 (-522)))))) (-2793 (((-708) $) 86)) (-1328 (((-108) $) 71)) (-2677 ((|#2| $) 75)) (-2190 (((-792) $) 57) (($ (-522)) NIL) (($ |#2|) 51) (($ (-756 |#1|)) NIL) (($ |#1|) 59) (($ (-822 |#1|)) NIL) (($ (-606 |#1| |#2|)) 43) (((-1179 |#1| |#2|) $) 64) (((-1188 |#1| |#2|) $) 69)) (-3916 (((-588 |#2|) $) NIL)) (-3243 ((|#2| $ (-822 |#1|)) NIL)) (-2977 ((|#2| $ (-756 |#1|)) NIL) ((|#2| $ $) NIL)) (-2323 (((-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 21 T CONST)) (-3577 (($) 25 T CONST)) (-2238 (((-588 (-2 (|:| |k| (-822 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1373 (((-3 (-606 |#1| |#2|) "failed") $) 101)) (-1531 (((-108) $ $) 65)) (-1612 (($ $) 95) (($ $ $) 94)) (-1602 (($ $ $) 20)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-822 |#1|)) NIL)))
+(((-1184 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-357 |#2| (-822 |#1|)) (-10 -8 (-15 -2190 ($ (-606 |#1| |#2|))) (-15 -2190 ((-1179 |#1| |#2|) $)) (-15 -2190 ((-1188 |#1| |#2|) $)) (-15 -1373 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -1372 ($ $ $ (-708))) (IF (|has| |#2| (-655 (-382 (-522)))) (PROGN (-15 -3266 ($ $ (-708))) (-15 -1254 ($ $ (-708)))) |%noBranch|))) (-784) (-157)) (T -1184))
+((-2190 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)) (-5 *1 (-1184 *3 *4)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1188 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-1373 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-1372 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157)))) (-1254 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157)))))
+(-13 (-1185 |#1| |#2|) (-357 |#2| (-822 |#1|)) (-10 -8 (-15 -2190 ($ (-606 |#1| |#2|))) (-15 -2190 ((-1179 |#1| |#2|) $)) (-15 -2190 ((-1188 |#1| |#2|) $)) (-15 -1373 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -1372 ($ $ $ (-708))) (IF (|has| |#2| (-655 (-382 (-522)))) (PROGN (-15 -3266 ($ $ (-708))) (-15 -1254 ($ $ (-708)))) |%noBranch|)))
+((-1416 (((-108) $ $) 7)) (-2250 (((-108) $) 16)) (-4106 (((-588 |#1|) $) 40)) (-2613 (($ $ (-708)) 73)) (-1233 (((-3 $ "failed") $ $) 19)) (-3961 (($ $ $) 43 (|has| |#2| (-157))) (($ $ (-708)) 42 (|has| |#2| (-157)))) (-3175 (($) 17 T CONST)) (-1200 (($ $ |#1|) 54) (($ $ (-756 |#1|)) 53) (($ $ $) 52)) (-1297 (((-3 (-756 |#1|) "failed") $) 64)) (-1484 (((-756 |#1|) $) 63)) (-2682 (((-3 $ "failed") $) 34)) (-3221 (((-108) $) 45)) (-3154 (($ $) 44)) (-2782 (((-108) $) 31)) (-3340 (((-108) $) 50)) (-2518 (($ (-756 |#1|) |#2|) 51)) (-1225 (($ $) 49)) (-1748 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) 60)) (-2451 (((-756 |#1|) $) 61)) (-3295 (((-756 |#1|) $) 75)) (-1391 (($ (-1 |#2| |#2|) $) 41)) (-2987 (($ $ |#1|) 57) (($ $ (-756 |#1|)) 56) (($ $ $) 55)) (-2385 (((-1068) $) 9)) (-4151 (((-1032) $) 10)) (-2793 (((-708) $) 74)) (-1328 (((-108) $) 47)) (-2677 ((|#2| $) 46)) (-2190 (((-792) $) 11) (($ (-522)) 28) (($ |#2|) 68) (($ (-756 |#1|)) 65) (($ |#1|) 48)) (-2977 ((|#2| $ (-756 |#1|)) 59) ((|#2| $ $) 58)) (-2323 (((-708)) 29)) (-3510 (($ $ (-850)) 26) (($ $ (-708)) 33)) (-3566 (($) 18 T CONST)) (-3577 (($) 30 T CONST)) (-1531 (((-108) $ $) 6)) (-1612 (($ $) 22) (($ $ $) 21)) (-1602 (($ $ $) 14)) (** (($ $ (-850)) 25) (($ $ (-708)) 32)) (* (($ (-850) $) 13) (($ (-708) $) 15) (($ (-522) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1185 |#1| |#2|) (-1197) (-784) (-971)) (T -1185))
+((-3295 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-756 *3)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *2 (-708)))) (-2613 (*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))))
+(-13 (-1181 |t#1| |t#2|) (-10 -8 (-15 -3295 ((-756 |t#1|) $)) (-15 -2793 ((-708) $)) (-15 -2613 ($ $ (-708)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-157)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-124) . T) ((-562 (-792)) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-655 |#2|) |has| |#2| (-157)) ((-664) . T) ((-962 (-756 |#1|)) . T) ((-977 |#2|) . T) ((-971) . T) ((-978) . T) ((-1026) . T) ((-1014) . T) ((-1178 |#2|) . T) ((-1181 |#1| |#2|) . T))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4106 (((-588 (-1085)) $) NIL)) (-1393 (($ (-1179 (-1085) |#1|)) NIL)) (-2613 (($ $ (-708)) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3961 (($ $ $) NIL (|has| |#1| (-157))) (($ $ (-708)) NIL (|has| |#1| (-157)))) (-3175 (($) NIL T CONST)) (-1200 (($ $ (-1085)) NIL) (($ $ (-756 (-1085))) NIL) (($ $ $) NIL)) (-1297 (((-3 (-756 (-1085)) "failed") $) NIL)) (-1484 (((-756 (-1085)) $) NIL)) (-2682 (((-3 $ "failed") $) NIL)) (-3221 (((-108) $) NIL)) (-3154 (($ $) NIL)) (-2782 (((-108) $) NIL)) (-3340 (((-108) $) NIL)) (-2518 (($ (-756 (-1085)) |#1|) NIL)) (-1225 (($ $) NIL)) (-1748 (((-2 (|:| |k| (-756 (-1085))) (|:| |c| |#1|)) $) NIL)) (-2451 (((-756 (-1085)) $) NIL)) (-3295 (((-756 (-1085)) $) NIL)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2987 (($ $ (-1085)) NIL) (($ $ (-756 (-1085))) NIL) (($ $ $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1604 (((-1179 (-1085) |#1|) $) NIL)) (-2793 (((-708) $) NIL)) (-1328 (((-108) $) NIL)) (-2677 ((|#1| $) NIL)) (-2190 (((-792) $) NIL) (($ (-522)) NIL) (($ |#1|) NIL) (($ (-756 (-1085))) NIL) (($ (-1085)) NIL)) (-2977 ((|#1| $ (-756 (-1085))) NIL) ((|#1| $ $) NIL)) (-2323 (((-708)) NIL)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) NIL T CONST)) (-1347 (((-588 (-2 (|:| |k| (-1085)) (|:| |c| $))) $) NIL)) (-3577 (($) NIL T CONST)) (-1531 (((-108) $ $) NIL)) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) NIL)) (** (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1085) $) NIL)))
+(((-1186 |#1|) (-13 (-1185 (-1085) |#1|) (-10 -8 (-15 -1604 ((-1179 (-1085) |#1|) $)) (-15 -1393 ($ (-1179 (-1085) |#1|))) (-15 -1347 ((-588 (-2 (|:| |k| (-1085)) (|:| |c| $))) $)))) (-971)) (T -1186))
+((-1604 (*1 *2 *1) (-12 (-5 *2 (-1179 (-1085) *3)) (-5 *1 (-1186 *3)) (-4 *3 (-971)))) (-1393 (*1 *1 *2) (-12 (-5 *2 (-1179 (-1085) *3)) (-4 *3 (-971)) (-5 *1 (-1186 *3)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| (-1085)) (|:| |c| (-1186 *3))))) (-5 *1 (-1186 *3)) (-4 *3 (-971)))))
+(-13 (-1185 (-1085) |#1|) (-10 -8 (-15 -1604 ((-1179 (-1085) |#1|) $)) (-15 -1393 ($ (-1179 (-1085) |#1|))) (-15 -1347 ((-588 (-2 (|:| |k| (-1085)) (|:| |c| $))) $))))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3175 (($) NIL T CONST)) (-1297 (((-3 |#2| "failed") $) NIL)) (-1484 ((|#2| $) NIL)) (-3156 (($ $) NIL)) (-2682 (((-3 $ "failed") $) 35)) (-3221 (((-108) $) 30)) (-3154 (($ $) 31)) (-2782 (((-108) $) NIL)) (-2112 (((-708) $) NIL)) (-4052 (((-588 $) $) NIL)) (-3340 (((-108) $) NIL)) (-2518 (($ |#2| |#1|) NIL)) (-2451 ((|#2| $) 19)) (-3295 ((|#2| $) 16)) (-1391 (($ (-1 |#1| |#1|) $) NIL)) (-2834 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3128 ((|#2| $) NIL)) (-3138 ((|#1| $) NIL)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1328 (((-108) $) 27)) (-2677 ((|#1| $) 28)) (-2190 (((-792) $) 54) (($ (-522)) 39) (($ |#1|) 34) (($ |#2|) NIL)) (-3916 (((-588 |#1|) $) NIL)) (-3243 ((|#1| $ |#2|) NIL)) (-2977 ((|#1| $ |#2|) 24)) (-2323 (((-708)) 14)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 25 T CONST)) (-3577 (($) 11 T CONST)) (-2238 (((-588 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1531 (((-108) $ $) 26)) (-1620 (($ $ |#1|) 56 (|has| |#1| (-338)))) (-1612 (($ $) NIL) (($ $ $) NIL)) (-1602 (($ $ $) 43)) (** (($ $ (-850)) NIL) (($ $ (-708)) 45)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) NIL) (($ $ $) 44) (($ |#1| $) 40) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3480 (((-708) $) 15)))
+(((-1187 |#1| |#2|) (-13 (-971) (-1178 |#1|) (-357 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3480 ((-708) $)) (-15 -2190 ($ |#2|)) (-15 -3295 (|#2| $)) (-15 -2451 (|#2| $)) (-15 -3156 ($ $)) (-15 -2977 (|#1| $ |#2|)) (-15 -1328 ((-108) $)) (-15 -2677 (|#1| $)) (-15 -3221 ((-108) $)) (-15 -3154 ($ $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-338)) (-15 -1620 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) (IF (|has| |#1| (-6 -4235)) (-6 -4235) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|))) (-971) (-780)) (T -1187))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))) (-3156 (*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))) (-1391 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-1187 *3 *4)) (-4 *4 (-780)))) (-2190 (*1 *1 *2) (-12 (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)) (-4 *2 (-780)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) (-4 *4 (-780)))) (-3295 (*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)))) (-2451 (*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)))) (-2977 (*1 *2 *1 *3) (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) (-4 *4 (-780)))) (-2677 (*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971)) (-4 *4 (-780)))) (-3154 (*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-338)) (-4 *2 (-971)) (-4 *3 (-780)))))
+(-13 (-971) (-1178 |#1|) (-357 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3480 ((-708) $)) (-15 -2190 ($ |#2|)) (-15 -3295 (|#2| $)) (-15 -2451 (|#2| $)) (-15 -3156 ($ $)) (-15 -2977 (|#1| $ |#2|)) (-15 -1328 ((-108) $)) (-15 -2677 (|#1| $)) (-15 -3221 ((-108) $)) (-15 -3154 ($ $)) (-15 -1391 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-338)) (-15 -1620 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4231)) (-6 -4231) |%noBranch|) (IF (|has| |#1| (-6 -4235)) (-6 -4235) |%noBranch|) (IF (|has| |#1| (-6 -4236)) (-6 -4236) |%noBranch|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) NIL)) (-4106 (((-588 |#1|) $) 120)) (-1393 (($ (-1179 |#1| |#2|)) 44)) (-2613 (($ $ (-708)) 32)) (-1233 (((-3 $ "failed") $ $) NIL)) (-3961 (($ $ $) 48 (|has| |#2| (-157))) (($ $ (-708)) 46 (|has| |#2| (-157)))) (-3175 (($) NIL T CONST)) (-1200 (($ $ |#1|) 102) (($ $ (-756 |#1|)) 103) (($ $ $) 25)) (-1297 (((-3 (-756 |#1|) "failed") $) NIL)) (-1484 (((-756 |#1|) $) NIL)) (-2682 (((-3 $ "failed") $) 110)) (-3221 (((-108) $) 105)) (-3154 (($ $) 106)) (-2782 (((-108) $) NIL)) (-3340 (((-108) $) NIL)) (-2518 (($ (-756 |#1|) |#2|) 19)) (-1225 (($ $) NIL)) (-1748 (((-2 (|:| |k| (-756 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2451 (((-756 |#1|) $) 111)) (-3295 (((-756 |#1|) $) 114)) (-1391 (($ (-1 |#2| |#2|) $) 119)) (-2987 (($ $ |#1|) 100) (($ $ (-756 |#1|)) 101) (($ $ $) 56)) (-2385 (((-1068) $) NIL)) (-4151 (((-1032) $) NIL)) (-1604 (((-1179 |#1| |#2|) $) 84)) (-2793 (((-708) $) 117)) (-1328 (((-108) $) 70)) (-2677 ((|#2| $) 28)) (-2190 (((-792) $) 63) (($ (-522)) 77) (($ |#2|) 74) (($ (-756 |#1|)) 17) (($ |#1|) 73)) (-2977 ((|#2| $ (-756 |#1|)) 104) ((|#2| $ $) 27)) (-2323 (((-708)) 108)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 14 T CONST)) (-1347 (((-588 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3577 (($) 29 T CONST)) (-1531 (((-108) $ $) 13)) (-1612 (($ $) 88) (($ $ $) 91)) (-1602 (($ $ $) 55)) (** (($ $ (-850)) NIL) (($ $ (-708)) 49)) (* (($ (-850) $) NIL) (($ (-708) $) 47) (($ (-522) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1188 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -8 (-15 -1604 ((-1179 |#1| |#2|) $)) (-15 -1393 ($ (-1179 |#1| |#2|))) (-15 -1347 ((-588 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-784) (-971)) (T -1188))
+((-1604 (*1 *2 *1) (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))) (-1393 (*1 *1 *2) (-12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)) (-5 *1 (-1188 *3 *4)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-588 (-2 (|:| |k| *3) (|:| |c| (-1188 *3 *4))))) (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))))
+(-13 (-1185 |#1| |#2|) (-10 -8 (-15 -1604 ((-1179 |#1| |#2|) $)) (-15 -1393 ($ (-1179 |#1| |#2|))) (-15 -1347 ((-588 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1352 (((-588 (-1066 |#1|)) (-1 (-588 (-1066 |#1|)) (-588 (-1066 |#1|))) (-522)) 15) (((-1066 |#1|) (-1 (-1066 |#1|) (-1066 |#1|))) 11)))
+(((-1189 |#1|) (-10 -7 (-15 -1352 ((-1066 |#1|) (-1 (-1066 |#1|) (-1066 |#1|)))) (-15 -1352 ((-588 (-1066 |#1|)) (-1 (-588 (-1066 |#1|)) (-588 (-1066 |#1|))) (-522)))) (-1120)) (T -1189))
+((-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-588 (-1066 *5)) (-588 (-1066 *5)))) (-5 *4 (-522)) (-5 *2 (-588 (-1066 *5))) (-5 *1 (-1189 *5)) (-4 *5 (-1120)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-1 (-1066 *4) (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1189 *4)) (-4 *4 (-1120)))))
+(-10 -7 (-15 -1352 ((-1066 |#1|) (-1 (-1066 |#1|) (-1066 |#1|)))) (-15 -1352 ((-588 (-1066 |#1|)) (-1 (-588 (-1066 |#1|)) (-588 (-1066 |#1|))) (-522))))
+((-1402 (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|))) 146) (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108)) 145) (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108)) 144) (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108) (-108)) 143) (((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-968 |#1| |#2|)) 128)) (-1513 (((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|))) 71) (((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108)) 70) (((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108) (-108)) 69)) (-3450 (((-588 (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) (-968 |#1| |#2|)) 60)) (-3866 (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|))) 113) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108)) 112) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108)) 111) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108) (-108)) 110) (((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|)) 105)) (-2098 (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|))) 118) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108)) 117) (((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108)) 116) (((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|)) 115)) (-1431 (((-588 (-717 |#1| (-794 |#3|))) (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) 97) (((-1081 (-949 (-382 |#1|))) (-1081 |#1|)) 88) (((-881 (-949 (-382 |#1|))) (-717 |#1| (-794 |#3|))) 95) (((-881 (-949 (-382 |#1|))) (-881 |#1|)) 93) (((-717 |#1| (-794 |#3|)) (-717 |#1| (-794 |#2|))) 33)))
+(((-1190 |#1| |#2| |#3|) (-10 -7 (-15 -1513 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1513 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108))) (-15 -1513 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-968 |#1| |#2|))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -3450 ((-588 (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) (-968 |#1| |#2|))) (-15 -1431 ((-717 |#1| (-794 |#3|)) (-717 |#1| (-794 |#2|)))) (-15 -1431 ((-881 (-949 (-382 |#1|))) (-881 |#1|))) (-15 -1431 ((-881 (-949 (-382 |#1|))) (-717 |#1| (-794 |#3|)))) (-15 -1431 ((-1081 (-949 (-382 |#1|))) (-1081 |#1|))) (-15 -1431 ((-588 (-717 |#1| (-794 |#3|))) (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))))) (-13 (-782) (-283) (-135) (-947)) (-588 (-1085)) (-588 (-1085))) (T -1190))
+((-1431 (*1 *2 *3) (-12 (-5 *3 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6)))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-717 *4 (-794 *6)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1081 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-1081 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-717 *4 (-794 *6))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085))) (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-717 *4 (-794 *5))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-717 *4 (-794 *6))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-3450 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-2098 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-2098 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-3866 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-3866 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-3866 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-1402 (*1 *2 *3) (-12 (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *4)) (|:| -3677 (-588 (-881 *4)))))) (-5 *1 (-1190 *4 *5 *6)) (-5 *3 (-588 (-881 *4))) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1402 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5)))))) (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1402 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5)))))) (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1402 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5)))))) (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5))) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-2 (|:| -2559 (-1081 *4)) (|:| -3677 (-588 (-881 *4)))))) (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-968 *4 *5))) (-5 *1 (-1190 *4 *5 *6)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))) (-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))) (-1513 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947))) (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7)) (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085))))))
+(-10 -7 (-15 -1513 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1513 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)) (-108))) (-15 -1513 ((-588 (-968 |#1| |#2|)) (-588 (-881 |#1|)))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-968 |#1| |#2|))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)) (-108))) (-15 -1402 ((-588 (-2 (|:| -2559 (-1081 |#1|)) (|:| -3677 (-588 (-881 |#1|))))) (-588 (-881 |#1|)))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108) (-108))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -3866 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-968 |#1| |#2|))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108) (-108))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)) (-108))) (-15 -2098 ((-588 (-588 (-949 (-382 |#1|)))) (-588 (-881 |#1|)))) (-15 -3450 ((-588 (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|)))) (-968 |#1| |#2|))) (-15 -1431 ((-717 |#1| (-794 |#3|)) (-717 |#1| (-794 |#2|)))) (-15 -1431 ((-881 (-949 (-382 |#1|))) (-881 |#1|))) (-15 -1431 ((-881 (-949 (-382 |#1|))) (-717 |#1| (-794 |#3|)))) (-15 -1431 ((-1081 (-949 (-382 |#1|))) (-1081 |#1|))) (-15 -1431 ((-588 (-717 |#1| (-794 |#3|))) (-1056 |#1| (-494 (-794 |#3|)) (-794 |#3|) (-717 |#1| (-794 |#3|))))))
+((-1551 (((-3 (-1166 (-382 (-522))) "failed") (-1166 |#1|) |#1|) 17)) (-2202 (((-108) (-1166 |#1|)) 11)) (-3754 (((-3 (-1166 (-522)) "failed") (-1166 |#1|)) 14)))
+(((-1191 |#1|) (-10 -7 (-15 -2202 ((-108) (-1166 |#1|))) (-15 -3754 ((-3 (-1166 (-522)) "failed") (-1166 |#1|))) (-15 -1551 ((-3 (-1166 (-382 (-522))) "failed") (-1166 |#1|) |#1|))) (-584 (-522))) (T -1191))
+((-1551 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-1166 (-382 (-522)))) (-5 *1 (-1191 *4)))) (-3754 (*1 *2 *3) (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-1166 (-522))) (-5 *1 (-1191 *4)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-108)) (-5 *1 (-1191 *4)))))
+(-10 -7 (-15 -2202 ((-108) (-1166 |#1|))) (-15 -3754 ((-3 (-1166 (-522)) "failed") (-1166 |#1|))) (-15 -1551 ((-3 (-1166 (-382 (-522))) "failed") (-1166 |#1|) |#1|)))
+((-1416 (((-108) $ $) NIL)) (-2250 (((-108) $) 11)) (-1233 (((-3 $ "failed") $ $) NIL)) (-1629 (((-708)) 8)) (-3175 (($) NIL T CONST)) (-2682 (((-3 $ "failed") $) 43)) (-3255 (($) 36)) (-2782 (((-108) $) NIL)) (-3004 (((-3 $ "failed") $) 29)) (-2120 (((-850) $) 15)) (-2385 (((-1068) $) NIL)) (-3802 (($) 25 T CONST)) (-2717 (($ (-850)) 37)) (-4151 (((-1032) $) NIL)) (-1431 (((-522) $) 13)) (-2190 (((-792) $) 22) (($ (-522)) 19)) (-2323 (((-708)) 9)) (-3510 (($ $ (-850)) NIL) (($ $ (-708)) NIL)) (-3566 (($) 23 T CONST)) (-3577 (($) 24 T CONST)) (-1531 (((-108) $ $) 27)) (-1612 (($ $) 38) (($ $ $) 35)) (-1602 (($ $ $) 26)) (** (($ $ (-850)) NIL) (($ $ (-708)) 40)) (* (($ (-850) $) NIL) (($ (-708) $) NIL) (($ (-522) $) 32) (($ $ $) 31)))
+(((-1192 |#1|) (-13 (-157) (-343) (-563 (-522)) (-1061)) (-850)) (T -1192))
+NIL
+(-13 (-157) (-343) (-563 (-522)) (-1061))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-1197 3137810 3137815 3137820 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3137795 3137800 3137805 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3137780 3137785 3137790 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3137765 3137770 3137775 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3137750 3137755 3137760 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1192 3136880 3137625 3137702 "ZMOD" 3137707 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1191 3135990 3136154 3136363 "ZLINDEP" 3136712 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1190 3125394 3127139 3129091 "ZDSOLVE" 3134139 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1189 3124640 3124781 3124970 "YSTREAM" 3125240 NIL YSTREAM (NIL T) -7 NIL NIL) (-1188 3122408 3123945 3124148 "XRPOLY" 3124483 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1187 3118870 3120199 3120781 "XPR" 3121872 NIL XPR (NIL T T) -8 NIL NIL) (-1186 3116584 3118205 3118408 "XPOLY" 3118701 NIL XPOLY (NIL T) -8 NIL NIL) (-1185 3114397 3115775 3115830 "XPOLYC" 3116115 NIL XPOLYC (NIL T T) -9 NIL 3116228) (-1184 3110769 3112914 3113302 "XPBWPOLY" 3114055 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1183 3106696 3109009 3109052 "XF" 3109673 NIL XF (NIL T) -9 NIL 3110072) (-1182 3106317 3106405 3106574 "XF-" 3106579 NIL XF- (NIL T T) -8 NIL NIL) (-1181 3101696 3102995 3103050 "XFALG" 3105198 NIL XFALG (NIL T T) -9 NIL 3105985) (-1180 3100833 3100937 3101141 "XEXPPKG" 3101588 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1179 3098931 3100684 3100779 "XDPOLY" 3100784 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1178 3097809 3098419 3098462 "XALG" 3098524 NIL XALG (NIL T) -9 NIL 3098643) (-1177 3091285 3095793 3096286 "WUTSET" 3097401 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1176 3089097 3089904 3090255 "WP" 3091067 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1175 3087983 3088181 3088476 "WFFINTBS" 3088894 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1174 3085887 3086314 3086776 "WEIER" 3087555 NIL WEIER (NIL T) -7 NIL NIL) (-1173 3085035 3085459 3085502 "VSPACE" 3085638 NIL VSPACE (NIL T) -9 NIL 3085712) (-1172 3084873 3084900 3084991 "VSPACE-" 3084996 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1171 3084619 3084662 3084733 "VOID" 3084824 T VOID (NIL) -8 NIL NIL) (-1170 3082755 3083114 3083520 "VIEW" 3084235 T VIEW (NIL) -7 NIL NIL) (-1169 3079180 3079818 3080555 "VIEWDEF" 3082040 T VIEWDEF (NIL) -7 NIL NIL) (-1168 3068519 3070728 3072901 "VIEW3D" 3077029 T VIEW3D (NIL) -8 NIL NIL) (-1167 3060801 3062430 3064009 "VIEW2D" 3066962 T VIEW2D (NIL) -8 NIL NIL) (-1166 3056210 3060571 3060663 "VECTOR" 3060744 NIL VECTOR (NIL T) -8 NIL NIL) (-1165 3054787 3055046 3055364 "VECTOR2" 3055940 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1164 3048326 3052578 3052622 "VECTCAT" 3053610 NIL VECTCAT (NIL T) -9 NIL 3054194) (-1163 3047340 3047594 3047984 "VECTCAT-" 3047989 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1162 3046821 3046991 3047111 "VARIABLE" 3047255 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1161 3046753 3046758 3046789 "UTYPE" 3046794 T UTYPE (NIL) -9 NIL NIL) (-1160 3045588 3045742 3046003 "UTSODETL" 3046579 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1159 3043028 3043488 3044012 "UTSODE" 3045129 NIL UTSODE (NIL T T) -7 NIL NIL) (-1158 3034875 3040668 3041156 "UTS" 3042597 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1157 3026223 3031585 3031628 "UTSCAT" 3032729 NIL UTSCAT (NIL T) -9 NIL 3033486) (-1156 3023579 3024294 3025282 "UTSCAT-" 3025287 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1155 3023210 3023253 3023384 "UTS2" 3023530 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1154 3017485 3020050 3020094 "URAGG" 3022164 NIL URAGG (NIL T) -9 NIL 3022886) (-1153 3014424 3015287 3016410 "URAGG-" 3016415 NIL URAGG- (NIL T T) -8 NIL NIL) (-1152 3010110 3013041 3013512 "UPXSSING" 3014088 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1151 3002004 3009231 3009511 "UPXS" 3009887 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1150 2995036 3001909 3001980 "UPXSCONS" 3001985 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1149 2985328 2992155 2992217 "UPXSCCA" 2992866 NIL UPXSCCA (NIL T T) -9 NIL 2993107) (-1148 2984967 2985052 2985225 "UPXSCCA-" 2985230 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1147 2975181 2981781 2981824 "UPXSCAT" 2982467 NIL UPXSCAT (NIL T) -9 NIL 2983075) (-1146 2974615 2974694 2974871 "UPXS2" 2975096 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1145 2973269 2973522 2973873 "UPSQFREE" 2974358 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1144 2967164 2970216 2970271 "UPSCAT" 2971420 NIL UPSCAT (NIL T T) -9 NIL 2972193) (-1143 2966378 2966582 2966905 "UPSCAT-" 2966910 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1142 2952510 2960507 2960550 "UPOLYC" 2962628 NIL UPOLYC (NIL T) -9 NIL 2963848) (-1141 2943903 2946307 2949432 "UPOLYC-" 2949437 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1140 2943534 2943577 2943708 "UPOLYC2" 2943854 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1139 2934993 2943103 2943240 "UP" 2943444 NIL UP (NIL NIL T) -8 NIL NIL) (-1138 2934336 2934443 2934606 "UPMP" 2934882 NIL UPMP (NIL T T) -7 NIL NIL) (-1137 2933889 2933970 2934109 "UPDIVP" 2934249 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1136 2932457 2932706 2933022 "UPDECOMP" 2933638 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1135 2931692 2931804 2931989 "UPCDEN" 2932341 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1134 2931215 2931284 2931431 "UP2" 2931617 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1133 2929732 2930419 2930696 "UNISEG" 2930973 NIL UNISEG (NIL T) -8 NIL NIL) (-1132 2928947 2929074 2929279 "UNISEG2" 2929575 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1131 2928007 2928187 2928413 "UNIFACT" 2928763 NIL UNIFACT (NIL T) -7 NIL NIL) (-1130 2911906 2927188 2927438 "ULS" 2927814 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1129 2899874 2911811 2911882 "ULSCONS" 2911887 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1128 2882627 2894637 2894699 "ULSCCAT" 2895411 NIL ULSCCAT (NIL T T) -9 NIL 2895707) (-1127 2881678 2881923 2882310 "ULSCCAT-" 2882315 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1126 2871671 2878185 2878228 "ULSCAT" 2879084 NIL ULSCAT (NIL T) -9 NIL 2879814) (-1125 2871105 2871184 2871361 "ULS2" 2871586 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1124 2869502 2870469 2870500 "UFD" 2870712 T UFD (NIL) -9 NIL 2870826) (-1123 2869296 2869342 2869437 "UFD-" 2869442 NIL UFD- (NIL T) -8 NIL NIL) (-1122 2868378 2868561 2868777 "UDVO" 2869102 T UDVO (NIL) -7 NIL NIL) (-1121 2866194 2866603 2867074 "UDPO" 2867942 NIL UDPO (NIL T) -7 NIL NIL) (-1120 2866126 2866131 2866162 "TYPE" 2866167 T TYPE (NIL) -9 NIL NIL) (-1119 2865097 2865299 2865539 "TWOFACT" 2865920 NIL TWOFACT (NIL T) -7 NIL NIL) (-1118 2864035 2864372 2864635 "TUPLE" 2864869 NIL TUPLE (NIL T) -8 NIL NIL) (-1117 2861726 2862245 2862784 "TUBETOOL" 2863518 T TUBETOOL (NIL) -7 NIL NIL) (-1116 2860575 2860780 2861021 "TUBE" 2861519 NIL TUBE (NIL T) -8 NIL NIL) (-1115 2855299 2859553 2859835 "TS" 2860327 NIL TS (NIL T) -8 NIL NIL) (-1114 2844002 2848094 2848191 "TSETCAT" 2853425 NIL TSETCAT (NIL T T T T) -9 NIL 2854956) (-1113 2838737 2840335 2842225 "TSETCAT-" 2842230 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1112 2833000 2833846 2834788 "TRMANIP" 2837873 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1111 2832441 2832504 2832667 "TRIMAT" 2832932 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1110 2830247 2830484 2830847 "TRIGMNIP" 2832190 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1109 2829766 2829879 2829910 "TRIGCAT" 2830123 T TRIGCAT (NIL) -9 NIL NIL) (-1108 2829435 2829514 2829655 "TRIGCAT-" 2829660 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1107 2826334 2828295 2828575 "TREE" 2829190 NIL TREE (NIL T) -8 NIL NIL) (-1106 2825607 2826135 2826166 "TRANFUN" 2826201 T TRANFUN (NIL) -9 NIL 2826267) (-1105 2824886 2825077 2825357 "TRANFUN-" 2825362 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1104 2824690 2824722 2824783 "TOPSP" 2824847 T TOPSP (NIL) -7 NIL NIL) (-1103 2824042 2824157 2824310 "TOOLSIGN" 2824571 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1102 2822703 2823219 2823458 "TEXTFILE" 2823825 T TEXTFILE (NIL) -8 NIL NIL) (-1101 2820568 2821082 2821520 "TEX" 2822287 T TEX (NIL) -8 NIL NIL) (-1100 2820349 2820380 2820452 "TEX1" 2820531 NIL TEX1 (NIL T) -7 NIL NIL) (-1099 2819997 2820060 2820150 "TEMUTL" 2820281 T TEMUTL (NIL) -7 NIL NIL) (-1098 2818151 2818431 2818756 "TBCMPPK" 2819720 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1097 2810039 2816311 2816368 "TBAGG" 2816768 NIL TBAGG (NIL T T) -9 NIL 2816979) (-1096 2805109 2806597 2808351 "TBAGG-" 2808356 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1095 2804493 2804600 2804745 "TANEXP" 2804998 NIL TANEXP (NIL T) -7 NIL NIL) (-1094 2797994 2804350 2804443 "TABLE" 2804448 NIL TABLE (NIL T T) -8 NIL NIL) (-1093 2797407 2797505 2797643 "TABLEAU" 2797891 NIL TABLEAU (NIL T) -8 NIL NIL) (-1092 2792015 2793235 2794483 "TABLBUMP" 2796193 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1091 2788478 2789173 2789956 "SYSSOLP" 2791266 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1090 2784769 2785477 2786211 "SYNTAX" 2787766 T SYNTAX (NIL) -8 NIL NIL) (-1089 2781903 2782511 2783149 "SYMTAB" 2784153 T SYMTAB (NIL) -8 NIL NIL) (-1088 2777152 2778054 2779037 "SYMS" 2780942 T SYMS (NIL) -8 NIL NIL) (-1087 2774385 2776612 2776841 "SYMPOLY" 2776957 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1086 2773905 2773980 2774102 "SYMFUNC" 2774297 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1085 2769883 2771142 2771964 "SYMBOL" 2773105 T SYMBOL (NIL) -8 NIL NIL) (-1084 2763422 2765111 2766831 "SWITCH" 2768185 T SWITCH (NIL) -8 NIL NIL) (-1083 2756655 2762249 2762551 "SUTS" 2763177 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1082 2748548 2755776 2756056 "SUPXS" 2756432 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1081 2740080 2748169 2748294 "SUP" 2748457 NIL SUP (NIL T) -8 NIL NIL) (-1080 2739239 2739366 2739583 "SUPFRACF" 2739948 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1079 2738864 2738923 2739034 "SUP2" 2739174 NIL SUP2 (NIL T T) -7 NIL NIL) (-1078 2737282 2737556 2737918 "SUMRF" 2738563 NIL SUMRF (NIL T) -7 NIL NIL) (-1077 2736599 2736665 2736863 "SUMFS" 2737203 NIL SUMFS (NIL T T) -7 NIL NIL) (-1076 2720538 2735780 2736030 "SULS" 2736406 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1075 2719860 2720063 2720203 "SUCH" 2720446 NIL SUCH (NIL T T) -8 NIL NIL) (-1074 2713787 2714799 2715757 "SUBSPACE" 2718948 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1073 2713217 2713307 2713471 "SUBRESP" 2713675 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1072 2706586 2707882 2709193 "STTF" 2711953 NIL STTF (NIL T) -7 NIL NIL) (-1071 2700759 2701879 2703026 "STTFNC" 2705486 NIL STTFNC (NIL T) -7 NIL NIL) (-1070 2692110 2693977 2695770 "STTAYLOR" 2699000 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1069 2685354 2691974 2692057 "STRTBL" 2692062 NIL STRTBL (NIL T) -8 NIL NIL) (-1068 2680745 2685309 2685340 "STRING" 2685345 T STRING (NIL) -8 NIL NIL) (-1067 2675633 2680118 2680149 "STRICAT" 2680208 T STRICAT (NIL) -9 NIL 2680270) (-1066 2668349 2673156 2673776 "STREAM" 2675048 NIL STREAM (NIL T) -8 NIL NIL) (-1065 2667859 2667936 2668080 "STREAM3" 2668266 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1064 2666841 2667024 2667259 "STREAM2" 2667672 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1063 2666529 2666581 2666674 "STREAM1" 2666783 NIL STREAM1 (NIL T) -7 NIL NIL) (-1062 2665545 2665726 2665957 "STINPROD" 2666345 NIL STINPROD (NIL T) -7 NIL NIL) (-1061 2665123 2665307 2665338 "STEP" 2665418 T STEP (NIL) -9 NIL 2665496) (-1060 2658666 2665022 2665099 "STBL" 2665104 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1059 2653841 2657888 2657932 "STAGG" 2658085 NIL STAGG (NIL T) -9 NIL 2658174) (-1058 2651543 2652145 2653017 "STAGG-" 2653022 NIL STAGG- (NIL T T) -8 NIL NIL) (-1057 2649738 2651313 2651405 "STACK" 2651486 NIL STACK (NIL T) -8 NIL NIL) (-1056 2642469 2647885 2648340 "SREGSET" 2649368 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1055 2634909 2636277 2637789 "SRDCMPK" 2641075 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1054 2627876 2632349 2632380 "SRAGG" 2633683 T SRAGG (NIL) -9 NIL 2634291) (-1053 2626893 2627148 2627527 "SRAGG-" 2627532 NIL SRAGG- (NIL T) -8 NIL NIL) (-1052 2621342 2625812 2626239 "SQMATRIX" 2626512 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1051 2615094 2618062 2618788 "SPLTREE" 2620688 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1050 2611084 2611750 2612396 "SPLNODE" 2614520 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1049 2610130 2610363 2610394 "SPFCAT" 2610838 T SPFCAT (NIL) -9 NIL NIL) (-1048 2608867 2609077 2609341 "SPECOUT" 2609888 T SPECOUT (NIL) -7 NIL NIL) (-1047 2608628 2608668 2608737 "SPADPRSR" 2608820 T SPADPRSR (NIL) -7 NIL NIL) (-1046 2600650 2602397 2602440 "SPACEC" 2606763 NIL SPACEC (NIL T) -9 NIL 2608579) (-1045 2598822 2600583 2600631 "SPACE3" 2600636 NIL SPACE3 (NIL T) -8 NIL NIL) (-1044 2597574 2597745 2598036 "SORTPAK" 2598627 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1043 2595630 2595933 2596351 "SOLVETRA" 2597238 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1042 2594641 2594863 2595137 "SOLVESER" 2595403 NIL SOLVESER (NIL T) -7 NIL NIL) (-1041 2589861 2590742 2591744 "SOLVERAD" 2593693 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1040 2585676 2586285 2587014 "SOLVEFOR" 2589228 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1039 2579975 2585027 2585124 "SNTSCAT" 2585129 NIL SNTSCAT (NIL T T T T) -9 NIL 2585199) (-1038 2574080 2578306 2578696 "SMTS" 2579665 NIL SMTS (NIL T T T) -8 NIL NIL) (-1037 2568491 2573969 2574045 "SMP" 2574050 NIL SMP (NIL T T) -8 NIL NIL) (-1036 2566650 2566951 2567349 "SMITH" 2568188 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1035 2559614 2563810 2563913 "SMATCAT" 2565253 NIL SMATCAT (NIL NIL T T T) -9 NIL 2565802) (-1034 2556555 2557378 2558555 "SMATCAT-" 2558560 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1033 2554268 2555791 2555835 "SKAGG" 2556096 NIL SKAGG (NIL T) -9 NIL 2556231) (-1032 2550326 2553372 2553650 "SINT" 2554012 T SINT (NIL) -8 NIL NIL) (-1031 2550098 2550136 2550202 "SIMPAN" 2550282 T SIMPAN (NIL) -7 NIL NIL) (-1030 2548936 2549157 2549432 "SIGNRF" 2549857 NIL SIGNRF (NIL T) -7 NIL NIL) (-1029 2547745 2547896 2548186 "SIGNEF" 2548765 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1028 2545435 2545889 2546395 "SHP" 2547286 NIL SHP (NIL T NIL) -7 NIL NIL) (-1027 2539288 2545336 2545412 "SHDP" 2545417 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1026 2538777 2538969 2539000 "SGROUP" 2539152 T SGROUP (NIL) -9 NIL 2539239) (-1025 2538547 2538599 2538703 "SGROUP-" 2538708 NIL SGROUP- (NIL T) -8 NIL NIL) (-1024 2535383 2536080 2536803 "SGCF" 2537846 T SGCF (NIL) -7 NIL NIL) (-1023 2529781 2534833 2534930 "SFRTCAT" 2534935 NIL SFRTCAT (NIL T T T T) -9 NIL 2534973) (-1022 2523241 2524256 2525390 "SFRGCD" 2528764 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1021 2516407 2517478 2518662 "SFQCMPK" 2522174 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1020 2516029 2516118 2516228 "SFORT" 2516348 NIL SFORT (NIL T T) -8 NIL NIL) (-1019 2515174 2515869 2515990 "SEXOF" 2515995 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1018 2514308 2515055 2515123 "SEX" 2515128 T SEX (NIL) -8 NIL NIL) (-1017 2509084 2509773 2509869 "SEXCAT" 2513640 NIL SEXCAT (NIL T T T T T) -9 NIL 2514259) (-1016 2506264 2509018 2509066 "SET" 2509071 NIL SET (NIL T) -8 NIL NIL) (-1015 2504515 2504977 2505282 "SETMN" 2506005 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1014 2504122 2504248 2504279 "SETCAT" 2504396 T SETCAT (NIL) -9 NIL 2504480) (-1013 2503902 2503954 2504053 "SETCAT-" 2504058 NIL SETCAT- (NIL T) -8 NIL NIL) (-1012 2500289 2502363 2502407 "SETAGG" 2503277 NIL SETAGG (NIL T) -9 NIL 2503617) (-1011 2499747 2499863 2500100 "SETAGG-" 2500105 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1010 2498950 2499243 2499305 "SEGXCAT" 2499591 NIL SEGXCAT (NIL T T) -9 NIL 2499711) (-1009 2498006 2498616 2498798 "SEG" 2498803 NIL SEG (NIL T) -8 NIL NIL) (-1008 2496912 2497125 2497169 "SEGCAT" 2497751 NIL SEGCAT (NIL T) -9 NIL 2497989) (-1007 2495961 2496291 2496491 "SEGBIND" 2496747 NIL SEGBIND (NIL T) -8 NIL NIL) (-1006 2495582 2495641 2495754 "SEGBIND2" 2495896 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1005 2494801 2494927 2495131 "SEG2" 2495426 NIL SEG2 (NIL T T) -7 NIL NIL) (-1004 2494238 2494736 2494783 "SDVAR" 2494788 NIL SDVAR (NIL T) -8 NIL NIL) (-1003 2486490 2494011 2494139 "SDPOL" 2494144 NIL SDPOL (NIL T) -8 NIL NIL) (-1002 2485083 2485349 2485668 "SCPKG" 2486205 NIL SCPKG (NIL T) -7 NIL NIL) (-1001 2484220 2484399 2484599 "SCOPE" 2484905 T SCOPE (NIL) -8 NIL NIL) (-1000 2483441 2483574 2483753 "SCACHE" 2484075 NIL SCACHE (NIL T) -7 NIL NIL) (-999 2482884 2483205 2483288 "SAOS" 2483378 T SAOS (NIL) -8 NIL NIL) (-998 2482452 2482487 2482658 "SAERFFC" 2482843 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-997 2476348 2482351 2482429 "SAE" 2482434 NIL SAE (NIL T T NIL) -8 NIL NIL) (-996 2475944 2475979 2476136 "SAEFACT" 2476307 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-995 2474270 2474584 2474983 "RURPK" 2475610 NIL RURPK (NIL T NIL) -7 NIL NIL) (-994 2472923 2473200 2473507 "RULESET" 2474106 NIL RULESET (NIL T T T) -8 NIL NIL) (-993 2470131 2470634 2471095 "RULE" 2472605 NIL RULE (NIL T T T) -8 NIL NIL) (-992 2469773 2469928 2470009 "RULECOLD" 2470083 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-991 2464665 2465459 2466375 "RSETGCD" 2468972 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-990 2453979 2459031 2459126 "RSETCAT" 2463191 NIL RSETCAT (NIL T T T T) -9 NIL 2464288) (-989 2451910 2452449 2453269 "RSETCAT-" 2453274 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-988 2444340 2445715 2447231 "RSDCMPK" 2450509 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-987 2442357 2442798 2442871 "RRCC" 2443947 NIL RRCC (NIL T T) -9 NIL 2444291) (-986 2441711 2441885 2442161 "RRCC-" 2442166 NIL RRCC- (NIL T T T) -8 NIL NIL) (-985 2416077 2425702 2425767 "RPOLCAT" 2436269 NIL RPOLCAT (NIL T T T) -9 NIL 2439427) (-984 2407581 2409919 2413037 "RPOLCAT-" 2413042 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-983 2398647 2405811 2406291 "ROUTINE" 2407121 T ROUTINE (NIL) -8 NIL NIL) (-982 2395352 2398203 2398350 "ROMAN" 2398520 T ROMAN (NIL) -8 NIL NIL) (-981 2393638 2394223 2394480 "ROIRC" 2395158 NIL ROIRC (NIL T T) -8 NIL NIL) (-980 2390042 2392346 2392375 "RNS" 2392671 T RNS (NIL) -9 NIL 2392941) (-979 2388556 2388939 2389470 "RNS-" 2389543 NIL RNS- (NIL T) -8 NIL NIL) (-978 2387981 2388389 2388418 "RNG" 2388423 T RNG (NIL) -9 NIL 2388444) (-977 2387378 2387740 2387781 "RMODULE" 2387841 NIL RMODULE (NIL T) -9 NIL 2387883) (-976 2386230 2386324 2386654 "RMCAT2" 2387279 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-975 2382944 2385413 2385734 "RMATRIX" 2385965 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-974 2375940 2378174 2378287 "RMATCAT" 2381596 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2382578) (-973 2375319 2375466 2375769 "RMATCAT-" 2375774 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-972 2374889 2374964 2375090 "RINTERP" 2375238 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-971 2373939 2374503 2374532 "RING" 2374642 T RING (NIL) -9 NIL 2374736) (-970 2373734 2373778 2373872 "RING-" 2373877 NIL RING- (NIL T) -8 NIL NIL) (-969 2372582 2372819 2373075 "RIDIST" 2373498 T RIDIST (NIL) -7 NIL NIL) (-968 2363904 2372056 2372259 "RGCHAIN" 2372431 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-967 2360909 2361523 2362191 "RF" 2363268 NIL RF (NIL T) -7 NIL NIL) (-966 2360558 2360621 2360722 "RFFACTOR" 2360840 NIL RFFACTOR (NIL T) -7 NIL NIL) (-965 2360286 2360321 2360416 "RFFACT" 2360517 NIL RFFACT (NIL T) -7 NIL NIL) (-964 2358416 2358780 2359160 "RFDIST" 2359926 T RFDIST (NIL) -7 NIL NIL) (-963 2357874 2357966 2358126 "RETSOL" 2358318 NIL RETSOL (NIL T T) -7 NIL NIL) (-962 2357466 2357546 2357588 "RETRACT" 2357778 NIL RETRACT (NIL T) -9 NIL NIL) (-961 2357318 2357343 2357427 "RETRACT-" 2357432 NIL RETRACT- (NIL T T) -8 NIL NIL) (-960 2350176 2356975 2357100 "RESULT" 2357213 T RESULT (NIL) -8 NIL NIL) (-959 2348761 2349450 2349647 "RESRING" 2350079 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-958 2348401 2348450 2348546 "RESLATC" 2348698 NIL RESLATC (NIL T) -7 NIL NIL) (-957 2348110 2348144 2348249 "REPSQ" 2348360 NIL REPSQ (NIL T) -7 NIL NIL) (-956 2345541 2346121 2346721 "REP" 2347530 T REP (NIL) -7 NIL NIL) (-955 2345242 2345276 2345385 "REPDB" 2345500 NIL REPDB (NIL T) -7 NIL NIL) (-954 2339187 2340566 2341786 "REP2" 2344054 NIL REP2 (NIL T) -7 NIL NIL) (-953 2335593 2336274 2337079 "REP1" 2338414 NIL REP1 (NIL T) -7 NIL NIL) (-952 2328339 2333754 2334206 "REGSET" 2335224 NIL REGSET (NIL T T T T) -8 NIL NIL) (-951 2327160 2327495 2327743 "REF" 2328124 NIL REF (NIL T) -8 NIL NIL) (-950 2326541 2326644 2326809 "REDORDER" 2327044 NIL REDORDER (NIL T T) -7 NIL NIL) (-949 2322510 2325775 2325996 "RECLOS" 2326372 NIL RECLOS (NIL T) -8 NIL NIL) (-948 2321567 2321748 2321961 "REALSOLV" 2322317 T REALSOLV (NIL) -7 NIL NIL) (-947 2321414 2321455 2321484 "REAL" 2321489 T REAL (NIL) -9 NIL 2321524) (-946 2317905 2318707 2319589 "REAL0Q" 2320579 NIL REAL0Q (NIL T) -7 NIL NIL) (-945 2313516 2314504 2315563 "REAL0" 2316886 NIL REAL0 (NIL T) -7 NIL NIL) (-944 2312924 2312996 2313201 "RDIV" 2313438 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-943 2311997 2312171 2312382 "RDIST" 2312746 NIL RDIST (NIL T) -7 NIL NIL) (-942 2310601 2310888 2311257 "RDETRS" 2311705 NIL RDETRS (NIL T T) -7 NIL NIL) (-941 2308422 2308876 2309411 "RDETR" 2310143 NIL RDETR (NIL T T) -7 NIL NIL) (-940 2307038 2307316 2307717 "RDEEFS" 2308138 NIL RDEEFS (NIL T T) -7 NIL NIL) (-939 2305538 2305844 2306273 "RDEEF" 2306726 NIL RDEEF (NIL T T) -7 NIL NIL) (-938 2299822 2302754 2302783 "RCFIELD" 2304060 T RCFIELD (NIL) -9 NIL 2304790) (-937 2297891 2298395 2299088 "RCFIELD-" 2299161 NIL RCFIELD- (NIL T) -8 NIL NIL) (-936 2294222 2296007 2296049 "RCAGG" 2297120 NIL RCAGG (NIL T) -9 NIL 2297585) (-935 2293853 2293947 2294107 "RCAGG-" 2294112 NIL RCAGG- (NIL T T) -8 NIL NIL) (-934 2293198 2293309 2293471 "RATRET" 2293737 NIL RATRET (NIL T) -7 NIL NIL) (-933 2292755 2292822 2292941 "RATFACT" 2293126 NIL RATFACT (NIL T) -7 NIL NIL) (-932 2292070 2292190 2292340 "RANDSRC" 2292625 T RANDSRC (NIL) -7 NIL NIL) (-931 2291807 2291851 2291922 "RADUTIL" 2292019 T RADUTIL (NIL) -7 NIL NIL) (-930 2284814 2290550 2290867 "RADIX" 2291522 NIL RADIX (NIL NIL) -8 NIL NIL) (-929 2276384 2284658 2284786 "RADFF" 2284791 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-928 2276035 2276110 2276139 "RADCAT" 2276296 T RADCAT (NIL) -9 NIL NIL) (-927 2275820 2275868 2275965 "RADCAT-" 2275970 NIL RADCAT- (NIL T) -8 NIL NIL) (-926 2273971 2275595 2275684 "QUEUE" 2275764 NIL QUEUE (NIL T) -8 NIL NIL) (-925 2270468 2273908 2273953 "QUAT" 2273958 NIL QUAT (NIL T) -8 NIL NIL) (-924 2270106 2270149 2270276 "QUATCT2" 2270419 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-923 2263899 2267279 2267320 "QUATCAT" 2268099 NIL QUATCAT (NIL T) -9 NIL 2268864) (-922 2260043 2261080 2262467 "QUATCAT-" 2262561 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-921 2257563 2259127 2259169 "QUAGG" 2259544 NIL QUAGG (NIL T) -9 NIL 2259719) (-920 2256488 2256961 2257133 "QFORM" 2257435 NIL QFORM (NIL NIL T) -8 NIL NIL) (-919 2247784 2253042 2253083 "QFCAT" 2253741 NIL QFCAT (NIL T) -9 NIL 2254734) (-918 2243356 2244557 2246148 "QFCAT-" 2246242 NIL QFCAT- (NIL T T) -8 NIL NIL) (-917 2242994 2243037 2243164 "QFCAT2" 2243307 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-916 2242454 2242564 2242694 "QEQUAT" 2242884 T QEQUAT (NIL) -8 NIL NIL) (-915 2235640 2236711 2237893 "QCMPACK" 2241387 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-914 2233216 2233637 2234065 "QALGSET" 2235295 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-913 2232461 2232635 2232867 "QALGSET2" 2233036 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-912 2231152 2231375 2231692 "PWFFINTB" 2232234 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-911 2229340 2229508 2229861 "PUSHVAR" 2230966 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-910 2225257 2226311 2226353 "PTRANFN" 2228237 NIL PTRANFN (NIL T) -9 NIL NIL) (-909 2223669 2223960 2224281 "PTPACK" 2224968 NIL PTPACK (NIL T) -7 NIL NIL) (-908 2223305 2223362 2223469 "PTFUNC2" 2223606 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-907 2217781 2222122 2222163 "PTCAT" 2222531 NIL PTCAT (NIL T) -9 NIL 2222693) (-906 2217439 2217474 2217598 "PSQFR" 2217740 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-905 2216034 2216332 2216666 "PSEUDLIN" 2217137 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-904 2202842 2205206 2207529 "PSETPK" 2213794 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-903 2195928 2198642 2198737 "PSETCAT" 2201718 NIL PSETCAT (NIL T T T T) -9 NIL 2202532) (-902 2193766 2194400 2195219 "PSETCAT-" 2195224 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-901 2193114 2193279 2193308 "PSCURVE" 2193576 T PSCURVE (NIL) -9 NIL 2193743) (-900 2189565 2191091 2191156 "PSCAT" 2191992 NIL PSCAT (NIL T T T) -9 NIL 2192232) (-899 2188629 2188845 2189244 "PSCAT-" 2189249 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-898 2187282 2187914 2188128 "PRTITION" 2188435 T PRTITION (NIL) -8 NIL NIL) (-897 2176380 2178586 2180774 "PRS" 2185144 NIL PRS (NIL T T) -7 NIL NIL) (-896 2174238 2175730 2175771 "PRQAGG" 2175954 NIL PRQAGG (NIL T) -9 NIL 2176056) (-895 2173808 2173910 2173939 "PROPLOG" 2174124 T PROPLOG (NIL) -9 NIL NIL) (-894 2170931 2171496 2172023 "PROPFRML" 2173313 NIL PROPFRML (NIL T) -8 NIL NIL) (-893 2170391 2170501 2170631 "PROPERTY" 2170821 T PROPERTY (NIL) -8 NIL NIL) (-892 2164165 2168557 2169377 "PRODUCT" 2169617 NIL PRODUCT (NIL T T) -8 NIL NIL) (-891 2161441 2163625 2163858 "PR" 2163976 NIL PR (NIL T T) -8 NIL NIL) (-890 2161237 2161269 2161328 "PRINT" 2161402 T PRINT (NIL) -7 NIL NIL) (-889 2160577 2160694 2160846 "PRIMES" 2161117 NIL PRIMES (NIL T) -7 NIL NIL) (-888 2158642 2159043 2159509 "PRIMELT" 2160156 NIL PRIMELT (NIL T) -7 NIL NIL) (-887 2158370 2158419 2158448 "PRIMCAT" 2158572 T PRIMCAT (NIL) -9 NIL NIL) (-886 2154531 2158308 2158353 "PRIMARR" 2158358 NIL PRIMARR (NIL T) -8 NIL NIL) (-885 2153538 2153716 2153944 "PRIMARR2" 2154349 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-884 2153181 2153237 2153348 "PREASSOC" 2153476 NIL PREASSOC (NIL T T) -7 NIL NIL) (-883 2152655 2152788 2152817 "PPCURVE" 2153022 T PPCURVE (NIL) -9 NIL 2153158) (-882 2150014 2150413 2151005 "POLYROOT" 2152236 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-881 2143920 2149620 2149779 "POLY" 2149887 NIL POLY (NIL T) -8 NIL NIL) (-880 2143305 2143363 2143596 "POLYLIFT" 2143856 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-879 2139590 2140039 2140667 "POLYCATQ" 2142850 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-878 2126630 2132027 2132092 "POLYCAT" 2135577 NIL POLYCAT (NIL T T T) -9 NIL 2137504) (-877 2120081 2121942 2124325 "POLYCAT-" 2124330 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-876 2119670 2119738 2119857 "POLY2UP" 2120007 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-875 2119306 2119363 2119470 "POLY2" 2119607 NIL POLY2 (NIL T T) -7 NIL NIL) (-874 2117991 2118230 2118506 "POLUTIL" 2119080 NIL POLUTIL (NIL T T) -7 NIL NIL) (-873 2116353 2116630 2116960 "POLTOPOL" 2117713 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-872 2111876 2116290 2116335 "POINT" 2116340 NIL POINT (NIL T) -8 NIL NIL) (-871 2110063 2110420 2110795 "PNTHEORY" 2111521 T PNTHEORY (NIL) -7 NIL NIL) (-870 2108491 2108788 2109197 "PMTOOLS" 2109761 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-869 2108084 2108162 2108279 "PMSYM" 2108407 NIL PMSYM (NIL T) -7 NIL NIL) (-868 2107594 2107663 2107837 "PMQFCAT" 2108009 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-867 2106949 2107059 2107215 "PMPRED" 2107471 NIL PMPRED (NIL T) -7 NIL NIL) (-866 2106345 2106431 2106592 "PMPREDFS" 2106850 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-865 2104991 2105199 2105583 "PMPLCAT" 2106107 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-864 2104523 2104602 2104754 "PMLSAGG" 2104906 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-863 2104000 2104076 2104256 "PMKERNEL" 2104441 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-862 2103617 2103692 2103805 "PMINS" 2103919 NIL PMINS (NIL T) -7 NIL NIL) (-861 2103047 2103116 2103331 "PMFS" 2103542 NIL PMFS (NIL T T T) -7 NIL NIL) (-860 2102278 2102396 2102600 "PMDOWN" 2102924 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-859 2101441 2101600 2101782 "PMASS" 2102116 T PMASS (NIL) -7 NIL NIL) (-858 2100715 2100826 2100989 "PMASSFS" 2101327 NIL PMASSFS (NIL T T) -7 NIL NIL) (-857 2100370 2100438 2100532 "PLOTTOOL" 2100641 T PLOTTOOL (NIL) -7 NIL NIL) (-856 2094992 2096181 2097329 "PLOT" 2099242 T PLOT (NIL) -8 NIL NIL) (-855 2090806 2091840 2092761 "PLOT3D" 2094091 T PLOT3D (NIL) -8 NIL NIL) (-854 2089718 2089895 2090130 "PLOT1" 2090610 NIL PLOT1 (NIL T) -7 NIL NIL) (-853 2065113 2069784 2074635 "PLEQN" 2084984 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-852 2064431 2064553 2064733 "PINTERP" 2064978 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-851 2064124 2064171 2064274 "PINTERPA" 2064378 NIL PINTERPA (NIL T T) -7 NIL NIL) (-850 2063351 2063918 2064011 "PI" 2064051 T PI (NIL) -8 NIL NIL) (-849 2061742 2062727 2062756 "PID" 2062938 T PID (NIL) -9 NIL 2063072) (-848 2061467 2061504 2061592 "PICOERCE" 2061699 NIL PICOERCE (NIL T) -7 NIL NIL) (-847 2060788 2060926 2061102 "PGROEB" 2061323 NIL PGROEB (NIL T) -7 NIL NIL) (-846 2056375 2057189 2058094 "PGE" 2059903 T PGE (NIL) -7 NIL NIL) (-845 2054499 2054745 2055111 "PGCD" 2056092 NIL PGCD (NIL T T T T) -7 NIL NIL) (-844 2053837 2053940 2054101 "PFRPAC" 2054383 NIL PFRPAC (NIL T) -7 NIL NIL) (-843 2050452 2052385 2052738 "PFR" 2053516 NIL PFR (NIL T) -8 NIL NIL) (-842 2048841 2049085 2049410 "PFOTOOLS" 2050199 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-841 2047374 2047613 2047964 "PFOQ" 2048598 NIL PFOQ (NIL T T T) -7 NIL NIL) (-840 2045851 2046063 2046425 "PFO" 2047158 NIL PFO (NIL T T T T T) -7 NIL NIL) (-839 2042374 2045740 2045809 "PF" 2045814 NIL PF (NIL NIL) -8 NIL NIL) (-838 2039802 2041083 2041112 "PFECAT" 2041697 T PFECAT (NIL) -9 NIL 2042081) (-837 2039247 2039401 2039615 "PFECAT-" 2039620 NIL PFECAT- (NIL T) -8 NIL NIL) (-836 2037851 2038102 2038403 "PFBRU" 2038996 NIL PFBRU (NIL T T) -7 NIL NIL) (-835 2035718 2036069 2036501 "PFBR" 2037502 NIL PFBR (NIL T T T T) -7 NIL NIL) (-834 2031570 2033094 2033770 "PERM" 2035075 NIL PERM (NIL T) -8 NIL NIL) (-833 2026836 2027777 2028647 "PERMGRP" 2030733 NIL PERMGRP (NIL T) -8 NIL NIL) (-832 2024906 2025899 2025941 "PERMCAT" 2026387 NIL PERMCAT (NIL T) -9 NIL 2026692) (-831 2024561 2024602 2024725 "PERMAN" 2024859 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-830 2022001 2024130 2024261 "PENDTREE" 2024463 NIL PENDTREE (NIL T) -8 NIL NIL) (-829 2020073 2020851 2020893 "PDRING" 2021550 NIL PDRING (NIL T) -9 NIL 2021835) (-828 2019176 2019394 2019756 "PDRING-" 2019761 NIL PDRING- (NIL T T) -8 NIL NIL) (-827 2016318 2017068 2017759 "PDEPROB" 2018505 T PDEPROB (NIL) -8 NIL NIL) (-826 2013889 2014385 2014934 "PDEPACK" 2015789 T PDEPACK (NIL) -7 NIL NIL) (-825 2012801 2012991 2013242 "PDECOMP" 2013688 NIL PDECOMP (NIL T T) -7 NIL NIL) (-824 2010412 2011227 2011256 "PDECAT" 2012041 T PDECAT (NIL) -9 NIL 2012752) (-823 2010165 2010198 2010287 "PCOMP" 2010373 NIL PCOMP (NIL T T) -7 NIL NIL) (-822 2008372 2008968 2009264 "PBWLB" 2009895 NIL PBWLB (NIL T) -8 NIL NIL) (-821 2000881 2002449 2003785 "PATTERN" 2007057 NIL PATTERN (NIL T) -8 NIL NIL) (-820 2000513 2000570 2000679 "PATTERN2" 2000818 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-819 1998270 1998658 1999115 "PATTERN1" 2000102 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-818 1995665 1996219 1996700 "PATRES" 1997835 NIL PATRES (NIL T T) -8 NIL NIL) (-817 1995229 1995296 1995428 "PATRES2" 1995592 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-816 1993126 1993526 1993931 "PATMATCH" 1994898 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-815 1992662 1992845 1992887 "PATMAB" 1992994 NIL PATMAB (NIL T) -9 NIL 1993077) (-814 1991207 1991516 1991774 "PATLRES" 1992467 NIL PATLRES (NIL T T T) -8 NIL NIL) (-813 1990752 1990875 1990917 "PATAB" 1990922 NIL PATAB (NIL T) -9 NIL 1991094) (-812 1988233 1988765 1989338 "PARTPERM" 1990199 T PARTPERM (NIL) -7 NIL NIL) (-811 1987854 1987917 1988019 "PARSURF" 1988164 NIL PARSURF (NIL T) -8 NIL NIL) (-810 1987486 1987543 1987652 "PARSU2" 1987791 NIL PARSU2 (NIL T T) -7 NIL NIL) (-809 1987250 1987290 1987357 "PARSER" 1987439 T PARSER (NIL) -7 NIL NIL) (-808 1986871 1986934 1987036 "PARSCURV" 1987181 NIL PARSCURV (NIL T) -8 NIL NIL) (-807 1986503 1986560 1986669 "PARSC2" 1986808 NIL PARSC2 (NIL T T) -7 NIL NIL) (-806 1986142 1986200 1986297 "PARPCURV" 1986439 NIL PARPCURV (NIL T) -8 NIL NIL) (-805 1985774 1985831 1985940 "PARPC2" 1986079 NIL PARPC2 (NIL T T) -7 NIL NIL) (-804 1985294 1985380 1985499 "PAN2EXPR" 1985675 T PAN2EXPR (NIL) -7 NIL NIL) (-803 1984100 1984415 1984643 "PALETTE" 1985086 T PALETTE (NIL) -8 NIL NIL) (-802 1982568 1983105 1983465 "PAIR" 1983786 NIL PAIR (NIL T T) -8 NIL NIL) (-801 1976418 1981827 1982021 "PADICRC" 1982423 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-800 1969626 1975764 1975948 "PADICRAT" 1976266 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-799 1967930 1969563 1969608 "PADIC" 1969613 NIL PADIC (NIL NIL) -8 NIL NIL) (-798 1965134 1966708 1966749 "PADICCT" 1967330 NIL PADICCT (NIL NIL) -9 NIL 1967612) (-797 1964091 1964291 1964559 "PADEPAC" 1964921 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-796 1963303 1963436 1963642 "PADE" 1963953 NIL PADE (NIL T T T) -7 NIL NIL) (-795 1961314 1962146 1962461 "OWP" 1963071 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-794 1960423 1960919 1961091 "OVAR" 1961182 NIL OVAR (NIL NIL) -8 NIL NIL) (-793 1959687 1959808 1959969 "OUT" 1960282 T OUT (NIL) -7 NIL NIL) (-792 1948733 1950912 1953082 "OUTFORM" 1957537 T OUTFORM (NIL) -8 NIL NIL) (-791 1948141 1948462 1948551 "OSI" 1948664 T OSI (NIL) -8 NIL NIL) (-790 1946886 1947113 1947398 "ORTHPOL" 1947888 NIL ORTHPOL (NIL T) -7 NIL NIL) (-789 1944257 1946547 1946685 "OREUP" 1946829 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-788 1941653 1943950 1944076 "ORESUP" 1944199 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-787 1939188 1939688 1940248 "OREPCTO" 1941142 NIL OREPCTO (NIL T T) -7 NIL NIL) (-786 1933097 1935303 1935344 "OREPCAT" 1937665 NIL OREPCAT (NIL T) -9 NIL 1938768) (-785 1930245 1931027 1932084 "OREPCAT-" 1932089 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-784 1929422 1929694 1929723 "ORDSET" 1930032 T ORDSET (NIL) -9 NIL 1930196) (-783 1928941 1929063 1929256 "ORDSET-" 1929261 NIL ORDSET- (NIL T) -8 NIL NIL) (-782 1927554 1928355 1928384 "ORDRING" 1928586 T ORDRING (NIL) -9 NIL 1928710) (-781 1927199 1927293 1927437 "ORDRING-" 1927442 NIL ORDRING- (NIL T) -8 NIL NIL) (-780 1926574 1927055 1927084 "ORDMON" 1927089 T ORDMON (NIL) -9 NIL 1927110) (-779 1925736 1925883 1926078 "ORDFUNS" 1926423 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-778 1925247 1925606 1925635 "ORDFIN" 1925640 T ORDFIN (NIL) -9 NIL 1925661) (-777 1921759 1923833 1924242 "ORDCOMP" 1924871 NIL ORDCOMP (NIL T) -8 NIL NIL) (-776 1921025 1921152 1921338 "ORDCOMP2" 1921619 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-775 1917533 1918415 1919252 "OPTPROB" 1920208 T OPTPROB (NIL) -8 NIL NIL) (-774 1914375 1915004 1915698 "OPTPACK" 1916859 T OPTPACK (NIL) -7 NIL NIL) (-773 1912100 1912836 1912865 "OPTCAT" 1913680 T OPTCAT (NIL) -9 NIL 1914326) (-772 1911868 1911907 1911973 "OPQUERY" 1912054 T OPQUERY (NIL) -7 NIL NIL) (-771 1909004 1910195 1910695 "OP" 1911400 NIL OP (NIL T) -8 NIL NIL) (-770 1905769 1907801 1908170 "ONECOMP" 1908668 NIL ONECOMP (NIL T) -8 NIL NIL) (-769 1905074 1905189 1905363 "ONECOMP2" 1905641 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-768 1904493 1904599 1904729 "OMSERVER" 1904964 T OMSERVER (NIL) -7 NIL NIL) (-767 1901381 1903933 1903974 "OMSAGG" 1904035 NIL OMSAGG (NIL T) -9 NIL 1904099) (-766 1900004 1900267 1900549 "OMPKG" 1901119 T OMPKG (NIL) -7 NIL NIL) (-765 1899433 1899536 1899565 "OM" 1899864 T OM (NIL) -9 NIL NIL) (-764 1897972 1898985 1899153 "OMLO" 1899314 NIL OMLO (NIL T T) -8 NIL NIL) (-763 1896902 1897049 1897275 "OMEXPR" 1897798 NIL OMEXPR (NIL T) -7 NIL NIL) (-762 1896220 1896448 1896584 "OMERR" 1896786 T OMERR (NIL) -8 NIL NIL) (-761 1895398 1895641 1895801 "OMERRK" 1896080 T OMERRK (NIL) -8 NIL NIL) (-760 1894876 1895075 1895183 "OMENC" 1895310 T OMENC (NIL) -8 NIL NIL) (-759 1888771 1889956 1891127 "OMDEV" 1893725 T OMDEV (NIL) -8 NIL NIL) (-758 1887840 1888011 1888205 "OMCONN" 1888597 T OMCONN (NIL) -8 NIL NIL) (-757 1886455 1887441 1887470 "OINTDOM" 1887475 T OINTDOM (NIL) -9 NIL 1887496) (-756 1882217 1883447 1884162 "OFMONOID" 1885772 NIL OFMONOID (NIL T) -8 NIL NIL) (-755 1881655 1882154 1882199 "ODVAR" 1882204 NIL ODVAR (NIL T) -8 NIL NIL) (-754 1878780 1881152 1881337 "ODR" 1881530 NIL ODR (NIL T T NIL) -8 NIL NIL) (-753 1871086 1878559 1878683 "ODPOL" 1878688 NIL ODPOL (NIL T) -8 NIL NIL) (-752 1864909 1870958 1871063 "ODP" 1871068 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-751 1863675 1863890 1864165 "ODETOOLS" 1864683 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-750 1860644 1861300 1862016 "ODESYS" 1863008 NIL ODESYS (NIL T T) -7 NIL NIL) (-749 1855548 1856456 1857479 "ODERTRIC" 1859719 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-748 1854974 1855056 1855250 "ODERED" 1855460 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-747 1851876 1852424 1853099 "ODERAT" 1854397 NIL ODERAT (NIL T T) -7 NIL NIL) (-746 1848844 1849308 1849904 "ODEPRRIC" 1851405 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-745 1846715 1847282 1847791 "ODEPROB" 1848355 T ODEPROB (NIL) -8 NIL NIL) (-744 1843247 1843730 1844376 "ODEPRIM" 1846194 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-743 1842500 1842602 1842860 "ODEPAL" 1843139 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-742 1838702 1839483 1840337 "ODEPACK" 1841666 T ODEPACK (NIL) -7 NIL NIL) (-741 1837739 1837846 1838074 "ODEINT" 1838591 NIL ODEINT (NIL T T) -7 NIL NIL) (-740 1831840 1833265 1834712 "ODEIFTBL" 1836312 T ODEIFTBL (NIL) -8 NIL NIL) (-739 1827184 1827970 1828928 "ODEEF" 1830999 NIL ODEEF (NIL T T) -7 NIL NIL) (-738 1826521 1826610 1826839 "ODECONST" 1827089 NIL ODECONST (NIL T T T) -7 NIL NIL) (-737 1824678 1825311 1825340 "ODECAT" 1825943 T ODECAT (NIL) -9 NIL 1826472) (-736 1821550 1824390 1824509 "OCT" 1824591 NIL OCT (NIL T) -8 NIL NIL) (-735 1821188 1821231 1821358 "OCTCT2" 1821501 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-734 1816021 1818459 1818500 "OC" 1819596 NIL OC (NIL T) -9 NIL 1820453) (-733 1813248 1813996 1814986 "OC-" 1815080 NIL OC- (NIL T T) -8 NIL NIL) (-732 1812626 1813068 1813097 "OCAMON" 1813102 T OCAMON (NIL) -9 NIL 1813123) (-731 1812079 1812486 1812515 "OASGP" 1812520 T OASGP (NIL) -9 NIL 1812540) (-730 1811366 1811829 1811858 "OAMONS" 1811898 T OAMONS (NIL) -9 NIL 1811941) (-729 1810806 1811213 1811242 "OAMON" 1811247 T OAMON (NIL) -9 NIL 1811267) (-728 1810110 1810602 1810631 "OAGROUP" 1810636 T OAGROUP (NIL) -9 NIL 1810656) (-727 1809800 1809850 1809938 "NUMTUBE" 1810054 NIL NUMTUBE (NIL T) -7 NIL NIL) (-726 1803373 1804891 1806427 "NUMQUAD" 1808284 T NUMQUAD (NIL) -7 NIL NIL) (-725 1799129 1800117 1801142 "NUMODE" 1802368 T NUMODE (NIL) -7 NIL NIL) (-724 1796532 1797378 1797407 "NUMINT" 1798324 T NUMINT (NIL) -9 NIL 1799080) (-723 1795480 1795677 1795895 "NUMFMT" 1796334 T NUMFMT (NIL) -7 NIL NIL) (-722 1781862 1784796 1787326 "NUMERIC" 1792989 NIL NUMERIC (NIL T) -7 NIL NIL) (-721 1776262 1781314 1781409 "NTSCAT" 1781414 NIL NTSCAT (NIL T T T T) -9 NIL 1781452) (-720 1775456 1775621 1775814 "NTPOLFN" 1776101 NIL NTPOLFN (NIL T) -7 NIL NIL) (-719 1763312 1772298 1773108 "NSUP" 1774678 NIL NSUP (NIL T) -8 NIL NIL) (-718 1762948 1763005 1763112 "NSUP2" 1763249 NIL NSUP2 (NIL T T) -7 NIL NIL) (-717 1752910 1762727 1762857 "NSMP" 1762862 NIL NSMP (NIL T T) -8 NIL NIL) (-716 1751342 1751643 1752000 "NREP" 1752598 NIL NREP (NIL T) -7 NIL NIL) (-715 1749933 1750185 1750543 "NPCOEF" 1751085 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-714 1748999 1749114 1749330 "NORMRETR" 1749814 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-713 1747052 1747342 1747749 "NORMPK" 1748707 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-712 1746737 1746765 1746889 "NORMMA" 1747018 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-711 1746564 1746694 1746723 "NONE" 1746728 T NONE (NIL) -8 NIL NIL) (-710 1746353 1746382 1746451 "NONE1" 1746528 NIL NONE1 (NIL T) -7 NIL NIL) (-709 1745838 1745900 1746085 "NODE1" 1746285 NIL NODE1 (NIL T T) -7 NIL NIL) (-708 1744131 1745001 1745256 "NNI" 1745603 T NNI (NIL) -8 NIL NIL) (-707 1742551 1742864 1743228 "NLINSOL" 1743799 NIL NLINSOL (NIL T) -7 NIL NIL) (-706 1738719 1739686 1740608 "NIPROB" 1741649 T NIPROB (NIL) -8 NIL NIL) (-705 1737476 1737710 1738012 "NFINTBAS" 1738481 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-704 1736184 1736415 1736696 "NCODIV" 1737244 NIL NCODIV (NIL T T) -7 NIL NIL) (-703 1735946 1735983 1736058 "NCNTFRAC" 1736141 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-702 1734126 1734490 1734910 "NCEP" 1735571 NIL NCEP (NIL T) -7 NIL NIL) (-701 1733037 1733776 1733805 "NASRING" 1733915 T NASRING (NIL) -9 NIL 1733989) (-700 1732832 1732876 1732970 "NASRING-" 1732975 NIL NASRING- (NIL T) -8 NIL NIL) (-699 1731985 1732484 1732513 "NARNG" 1732630 T NARNG (NIL) -9 NIL 1732721) (-698 1731677 1731744 1731878 "NARNG-" 1731883 NIL NARNG- (NIL T) -8 NIL NIL) (-697 1730556 1730763 1730998 "NAGSP" 1731462 T NAGSP (NIL) -7 NIL NIL) (-696 1721980 1723626 1725261 "NAGS" 1728941 T NAGS (NIL) -7 NIL NIL) (-695 1720544 1720848 1721175 "NAGF07" 1721673 T NAGF07 (NIL) -7 NIL NIL) (-694 1715126 1716406 1717702 "NAGF04" 1719268 T NAGF04 (NIL) -7 NIL NIL) (-693 1708158 1709756 1711373 "NAGF02" 1713529 T NAGF02 (NIL) -7 NIL NIL) (-692 1703422 1704512 1705619 "NAGF01" 1707071 T NAGF01 (NIL) -7 NIL NIL) (-691 1697082 1698640 1700217 "NAGE04" 1701865 T NAGE04 (NIL) -7 NIL NIL) (-690 1688323 1690426 1692538 "NAGE02" 1694990 T NAGE02 (NIL) -7 NIL NIL) (-689 1684316 1685253 1686207 "NAGE01" 1687389 T NAGE01 (NIL) -7 NIL NIL) (-688 1682123 1682654 1683209 "NAGD03" 1683781 T NAGD03 (NIL) -7 NIL NIL) (-687 1673909 1675828 1677773 "NAGD02" 1680198 T NAGD02 (NIL) -7 NIL NIL) (-686 1667768 1669181 1670609 "NAGD01" 1672501 T NAGD01 (NIL) -7 NIL NIL) (-685 1664025 1664835 1665660 "NAGC06" 1666963 T NAGC06 (NIL) -7 NIL NIL) (-684 1662502 1662831 1663184 "NAGC05" 1663692 T NAGC05 (NIL) -7 NIL NIL) (-683 1661886 1662003 1662145 "NAGC02" 1662380 T NAGC02 (NIL) -7 NIL NIL) (-682 1660947 1661504 1661545 "NAALG" 1661624 NIL NAALG (NIL T) -9 NIL 1661685) (-681 1660782 1660811 1660901 "NAALG-" 1660906 NIL NAALG- (NIL T T) -8 NIL NIL) (-680 1654732 1655840 1657027 "MULTSQFR" 1659678 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-679 1654051 1654126 1654310 "MULTFACT" 1654644 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-678 1647244 1651155 1651208 "MTSCAT" 1652268 NIL MTSCAT (NIL T T) -9 NIL 1652782) (-677 1646956 1647010 1647102 "MTHING" 1647184 NIL MTHING (NIL T) -7 NIL NIL) (-676 1646748 1646781 1646841 "MSYSCMD" 1646916 T MSYSCMD (NIL) -7 NIL NIL) (-675 1642860 1645503 1645823 "MSET" 1646461 NIL MSET (NIL T) -8 NIL NIL) (-674 1639955 1642421 1642463 "MSETAGG" 1642468 NIL MSETAGG (NIL T) -9 NIL 1642502) (-673 1635811 1637353 1638094 "MRING" 1639258 NIL MRING (NIL T T) -8 NIL NIL) (-672 1635381 1635448 1635577 "MRF2" 1635738 NIL MRF2 (NIL T T T) -7 NIL NIL) (-671 1634999 1635034 1635178 "MRATFAC" 1635340 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-670 1632611 1632906 1633337 "MPRFF" 1634704 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-669 1626631 1632466 1632562 "MPOLY" 1632567 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-668 1626121 1626156 1626364 "MPCPF" 1626590 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-667 1625637 1625680 1625863 "MPC3" 1626072 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-666 1624838 1624919 1625138 "MPC2" 1625552 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-665 1623139 1623476 1623866 "MONOTOOL" 1624498 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-664 1622263 1622598 1622627 "MONOID" 1622904 T MONOID (NIL) -9 NIL 1623076) (-663 1621641 1621804 1622047 "MONOID-" 1622052 NIL MONOID- (NIL T) -8 NIL NIL) (-662 1612621 1618607 1618667 "MONOGEN" 1619341 NIL MONOGEN (NIL T T) -9 NIL 1619797) (-661 1609839 1610574 1611574 "MONOGEN-" 1611693 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-660 1608698 1609118 1609147 "MONADWU" 1609539 T MONADWU (NIL) -9 NIL 1609777) (-659 1608070 1608229 1608477 "MONADWU-" 1608482 NIL MONADWU- (NIL T) -8 NIL NIL) (-658 1607455 1607673 1607702 "MONAD" 1607909 T MONAD (NIL) -9 NIL 1608021) (-657 1607140 1607218 1607350 "MONAD-" 1607355 NIL MONAD- (NIL T) -8 NIL NIL) (-656 1605391 1606053 1606332 "MOEBIUS" 1606893 NIL MOEBIUS (NIL T) -8 NIL NIL) (-655 1604784 1605162 1605203 "MODULE" 1605208 NIL MODULE (NIL T) -9 NIL 1605234) (-654 1604352 1604448 1604638 "MODULE-" 1604643 NIL MODULE- (NIL T T) -8 NIL NIL) (-653 1602023 1602718 1603044 "MODRING" 1604177 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-652 1598979 1600144 1600661 "MODOP" 1601555 NIL MODOP (NIL T T) -8 NIL NIL) (-651 1597166 1597618 1597959 "MODMONOM" 1598778 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-650 1586884 1595370 1595792 "MODMON" 1596794 NIL MODMON (NIL T T) -8 NIL NIL) (-649 1584010 1585728 1586004 "MODFIELD" 1586759 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-648 1583536 1583579 1583758 "MMAP" 1583961 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-647 1581772 1582549 1582590 "MLO" 1583007 NIL MLO (NIL T) -9 NIL 1583248) (-646 1579139 1579654 1580256 "MLIFT" 1581253 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-645 1578530 1578614 1578768 "MKUCFUNC" 1579050 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-644 1578129 1578199 1578322 "MKRECORD" 1578453 NIL MKRECORD (NIL T T) -7 NIL NIL) (-643 1577177 1577338 1577566 "MKFUNC" 1577940 NIL MKFUNC (NIL T) -7 NIL NIL) (-642 1576565 1576669 1576825 "MKFLCFN" 1577060 NIL MKFLCFN (NIL T) -7 NIL NIL) (-641 1575991 1576358 1576447 "MKCHSET" 1576509 NIL MKCHSET (NIL T) -8 NIL NIL) (-640 1575268 1575370 1575555 "MKBCFUNC" 1575884 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-639 1571952 1574822 1574958 "MINT" 1575152 T MINT (NIL) -8 NIL NIL) (-638 1570764 1571007 1571284 "MHROWRED" 1571707 NIL MHROWRED (NIL T) -7 NIL NIL) (-637 1566035 1569209 1569633 "MFLOAT" 1570360 T MFLOAT (NIL) -8 NIL NIL) (-636 1565392 1565468 1565639 "MFINFACT" 1565947 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-635 1561707 1562555 1563439 "MESH" 1564528 T MESH (NIL) -7 NIL NIL) (-634 1560097 1560409 1560762 "MDDFACT" 1561394 NIL MDDFACT (NIL T) -7 NIL NIL) (-633 1556939 1559256 1559298 "MDAGG" 1559553 NIL MDAGG (NIL T) -9 NIL 1559696) (-632 1546637 1556232 1556439 "MCMPLX" 1556752 T MCMPLX (NIL) -8 NIL NIL) (-631 1545778 1545924 1546124 "MCDEN" 1546486 NIL MCDEN (NIL T T) -7 NIL NIL) (-630 1543668 1543938 1544318 "MCALCFN" 1545508 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-629 1541290 1541813 1542374 "MATSTOR" 1543139 NIL MATSTOR (NIL T) -7 NIL NIL) (-628 1537298 1540665 1540912 "MATRIX" 1541075 NIL MATRIX (NIL T) -8 NIL NIL) (-627 1533068 1533771 1534507 "MATLIN" 1536655 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-626 1523265 1526403 1526480 "MATCAT" 1531318 NIL MATCAT (NIL T T T) -9 NIL 1532735) (-625 1519630 1520643 1521998 "MATCAT-" 1522003 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-624 1518232 1518385 1518716 "MATCAT2" 1519465 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-623 1516344 1516668 1517052 "MAPPKG3" 1517907 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-622 1515325 1515498 1515720 "MAPPKG2" 1516168 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-621 1513824 1514108 1514435 "MAPPKG1" 1515031 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-620 1513435 1513493 1513616 "MAPHACK3" 1513760 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-619 1513027 1513088 1513202 "MAPHACK2" 1513367 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-618 1512465 1512568 1512710 "MAPHACK1" 1512918 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-617 1510573 1511167 1511470 "MAGMA" 1512194 NIL MAGMA (NIL T) -8 NIL NIL) (-616 1507047 1508817 1509277 "M3D" 1510146 NIL M3D (NIL T) -8 NIL NIL) (-615 1501202 1505417 1505459 "LZSTAGG" 1506241 NIL LZSTAGG (NIL T) -9 NIL 1506536) (-614 1497175 1498333 1499790 "LZSTAGG-" 1499795 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-613 1494291 1495068 1495554 "LWORD" 1496721 NIL LWORD (NIL T) -8 NIL NIL) (-612 1487451 1494062 1494196 "LSQM" 1494201 NIL LSQM (NIL NIL T) -8 NIL NIL) (-611 1486675 1486814 1487042 "LSPP" 1487306 NIL LSPP (NIL T T T T) -7 NIL NIL) (-610 1484487 1484788 1485244 "LSMP" 1486364 NIL LSMP (NIL T T T T) -7 NIL NIL) (-609 1481266 1481940 1482670 "LSMP1" 1483789 NIL LSMP1 (NIL T) -7 NIL NIL) (-608 1475192 1480434 1480476 "LSAGG" 1480538 NIL LSAGG (NIL T) -9 NIL 1480616) (-607 1471887 1472811 1474024 "LSAGG-" 1474029 NIL LSAGG- (NIL T T) -8 NIL NIL) (-606 1469513 1471031 1471280 "LPOLY" 1471682 NIL LPOLY (NIL T T) -8 NIL NIL) (-605 1469095 1469180 1469303 "LPEFRAC" 1469422 NIL LPEFRAC (NIL T) -7 NIL NIL) (-604 1467442 1468189 1468442 "LO" 1468927 NIL LO (NIL T T T) -8 NIL NIL) (-603 1467095 1467207 1467236 "LOGIC" 1467347 T LOGIC (NIL) -9 NIL 1467427) (-602 1466957 1466980 1467051 "LOGIC-" 1467056 NIL LOGIC- (NIL T) -8 NIL NIL) (-601 1466150 1466290 1466483 "LODOOPS" 1466813 NIL LODOOPS (NIL T T) -7 NIL NIL) (-600 1463568 1466067 1466132 "LODO" 1466137 NIL LODO (NIL T NIL) -8 NIL NIL) (-599 1462114 1462349 1462700 "LODOF" 1463315 NIL LODOF (NIL T T) -7 NIL NIL) (-598 1458533 1460969 1461010 "LODOCAT" 1461442 NIL LODOCAT (NIL T) -9 NIL 1461653) (-597 1458267 1458325 1458451 "LODOCAT-" 1458456 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-596 1455581 1458108 1458226 "LODO2" 1458231 NIL LODO2 (NIL T T) -8 NIL NIL) (-595 1453010 1455518 1455563 "LODO1" 1455568 NIL LODO1 (NIL T) -8 NIL NIL) (-594 1451873 1452038 1452349 "LODEEF" 1452833 NIL LODEEF (NIL T T T) -7 NIL NIL) (-593 1447159 1450003 1450045 "LNAGG" 1450992 NIL LNAGG (NIL T) -9 NIL 1451436) (-592 1446306 1446520 1446862 "LNAGG-" 1446867 NIL LNAGG- (NIL T T) -8 NIL NIL) (-591 1442471 1443233 1443871 "LMOPS" 1445722 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-590 1441868 1442230 1442271 "LMODULE" 1442331 NIL LMODULE (NIL T) -9 NIL 1442373) (-589 1439114 1441513 1441636 "LMDICT" 1441778 NIL LMDICT (NIL T) -8 NIL NIL) (-588 1432341 1438060 1438358 "LIST" 1438849 NIL LIST (NIL T) -8 NIL NIL) (-587 1431866 1431940 1432079 "LIST3" 1432261 NIL LIST3 (NIL T T T) -7 NIL NIL) (-586 1430873 1431051 1431279 "LIST2" 1431684 NIL LIST2 (NIL T T) -7 NIL NIL) (-585 1429007 1429319 1429718 "LIST2MAP" 1430520 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-584 1427719 1428399 1428440 "LINEXP" 1428693 NIL LINEXP (NIL T) -9 NIL 1428841) (-583 1426366 1426626 1426923 "LINDEP" 1427471 NIL LINDEP (NIL T T) -7 NIL NIL) (-582 1423133 1423852 1424629 "LIMITRF" 1425621 NIL LIMITRF (NIL T) -7 NIL NIL) (-581 1421413 1421708 1422123 "LIMITPS" 1422828 NIL LIMITPS (NIL T T) -7 NIL NIL) (-580 1415868 1420924 1421152 "LIE" 1421234 NIL LIE (NIL T T) -8 NIL NIL) (-579 1414918 1415361 1415402 "LIECAT" 1415542 NIL LIECAT (NIL T) -9 NIL 1415693) (-578 1414759 1414786 1414874 "LIECAT-" 1414879 NIL LIECAT- (NIL T T) -8 NIL NIL) (-577 1407371 1414208 1414373 "LIB" 1414614 T LIB (NIL) -8 NIL NIL) (-576 1403008 1403889 1404824 "LGROBP" 1406488 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-575 1400874 1401148 1401510 "LF" 1402729 NIL LF (NIL T T) -7 NIL NIL) (-574 1399713 1400405 1400434 "LFCAT" 1400641 T LFCAT (NIL) -9 NIL 1400780) (-573 1396625 1397251 1397937 "LEXTRIPK" 1399079 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-572 1393331 1394195 1394698 "LEXP" 1396205 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-571 1391729 1392042 1392443 "LEADCDET" 1393013 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-570 1390925 1390999 1391226 "LAZM3PK" 1391650 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-569 1385841 1389004 1389541 "LAUPOL" 1390438 NIL LAUPOL (NIL T T) -8 NIL NIL) (-568 1385408 1385452 1385619 "LAPLACE" 1385791 NIL LAPLACE (NIL T T) -7 NIL NIL) (-567 1383336 1384509 1384760 "LA" 1385241 NIL LA (NIL T T T) -8 NIL NIL) (-566 1382398 1382992 1383033 "LALG" 1383094 NIL LALG (NIL T) -9 NIL 1383152) (-565 1382113 1382172 1382307 "LALG-" 1382312 NIL LALG- (NIL T T) -8 NIL NIL) (-564 1381023 1381210 1381507 "KOVACIC" 1381913 NIL KOVACIC (NIL T T) -7 NIL NIL) (-563 1380857 1380881 1380923 "KONVERT" 1380985 NIL KONVERT (NIL T) -9 NIL NIL) (-562 1380691 1380715 1380757 "KOERCE" 1380819 NIL KOERCE (NIL T) -9 NIL NIL) (-561 1378425 1379185 1379578 "KERNEL" 1380330 NIL KERNEL (NIL T) -8 NIL NIL) (-560 1377927 1378008 1378138 "KERNEL2" 1378339 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-559 1371778 1376466 1376521 "KDAGG" 1376898 NIL KDAGG (NIL T T) -9 NIL 1377104) (-558 1371307 1371431 1371636 "KDAGG-" 1371641 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-557 1364482 1370968 1371123 "KAFILE" 1371185 NIL KAFILE (NIL T) -8 NIL NIL) (-556 1358937 1363993 1364221 "JORDAN" 1364303 NIL JORDAN (NIL T T) -8 NIL NIL) (-555 1355236 1357142 1357197 "IXAGG" 1358126 NIL IXAGG (NIL T T) -9 NIL 1358585) (-554 1354155 1354461 1354880 "IXAGG-" 1354885 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-553 1349740 1354077 1354136 "IVECTOR" 1354141 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-552 1348506 1348743 1349009 "ITUPLE" 1349507 NIL ITUPLE (NIL T) -8 NIL NIL) (-551 1346942 1347119 1347425 "ITRIGMNP" 1348328 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-550 1345687 1345891 1346174 "ITFUN3" 1346718 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-549 1345319 1345376 1345485 "ITFUN2" 1345624 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-548 1343121 1344192 1344489 "ITAYLOR" 1345054 NIL ITAYLOR (NIL T) -8 NIL NIL) (-547 1332112 1337307 1338466 "ISUPS" 1341994 NIL ISUPS (NIL T) -8 NIL NIL) (-546 1331216 1331356 1331592 "ISUMP" 1331959 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-545 1326480 1331017 1331096 "ISTRING" 1331169 NIL ISTRING (NIL NIL) -8 NIL NIL) (-544 1325693 1325774 1325989 "IRURPK" 1326394 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-543 1324629 1324830 1325070 "IRSN" 1325473 T IRSN (NIL) -7 NIL NIL) (-542 1322664 1323019 1323454 "IRRF2F" 1324267 NIL IRRF2F (NIL T) -7 NIL NIL) (-541 1322411 1322449 1322525 "IRREDFFX" 1322620 NIL IRREDFFX (NIL T) -7 NIL NIL) (-540 1321026 1321285 1321584 "IROOT" 1322144 NIL IROOT (NIL T) -7 NIL NIL) (-539 1317664 1318715 1319405 "IR" 1320368 NIL IR (NIL T) -8 NIL NIL) (-538 1315277 1315772 1316338 "IR2" 1317142 NIL IR2 (NIL T T) -7 NIL NIL) (-537 1314353 1314466 1314686 "IR2F" 1315160 NIL IR2F (NIL T T) -7 NIL NIL) (-536 1314144 1314178 1314238 "IPRNTPK" 1314313 T IPRNTPK (NIL) -7 NIL NIL) (-535 1310698 1314033 1314102 "IPF" 1314107 NIL IPF (NIL NIL) -8 NIL NIL) (-534 1309015 1310623 1310680 "IPADIC" 1310685 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-533 1308514 1308572 1308761 "INVLAPLA" 1308951 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-532 1298163 1300516 1302902 "INTTR" 1306178 NIL INTTR (NIL T T) -7 NIL NIL) (-531 1294511 1295252 1296115 "INTTOOLS" 1297349 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-530 1294097 1294188 1294305 "INTSLPE" 1294414 T INTSLPE (NIL) -7 NIL NIL) (-529 1292047 1294020 1294079 "INTRVL" 1294084 NIL INTRVL (NIL T) -8 NIL NIL) (-528 1289654 1290166 1290740 "INTRF" 1291532 NIL INTRF (NIL T) -7 NIL NIL) (-527 1289069 1289166 1289307 "INTRET" 1289552 NIL INTRET (NIL T) -7 NIL NIL) (-526 1287071 1287460 1287929 "INTRAT" 1288677 NIL INTRAT (NIL T T) -7 NIL NIL) (-525 1284304 1284887 1285512 "INTPM" 1286556 NIL INTPM (NIL T T) -7 NIL NIL) (-524 1281013 1281612 1282356 "INTPAF" 1283690 NIL INTPAF (NIL T T T) -7 NIL NIL) (-523 1276256 1277202 1278237 "INTPACK" 1279998 T INTPACK (NIL) -7 NIL NIL) (-522 1273110 1275985 1276112 "INT" 1276149 T INT (NIL) -8 NIL NIL) (-521 1272362 1272514 1272722 "INTHERTR" 1272952 NIL INTHERTR (NIL T T) -7 NIL NIL) (-520 1271801 1271881 1272069 "INTHERAL" 1272276 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-519 1269647 1270090 1270547 "INTHEORY" 1271364 T INTHEORY (NIL) -7 NIL NIL) (-518 1260970 1262590 1264368 "INTG0" 1267999 NIL INTG0 (NIL T T T) -7 NIL NIL) (-517 1241543 1246333 1251143 "INTFTBL" 1256180 T INTFTBL (NIL) -8 NIL NIL) (-516 1240792 1240930 1241103 "INTFACT" 1241402 NIL INTFACT (NIL T) -7 NIL NIL) (-515 1238183 1238629 1239192 "INTEF" 1240346 NIL INTEF (NIL T T) -7 NIL NIL) (-514 1236644 1237393 1237422 "INTDOM" 1237723 T INTDOM (NIL) -9 NIL 1237930) (-513 1236013 1236187 1236429 "INTDOM-" 1236434 NIL INTDOM- (NIL T) -8 NIL NIL) (-512 1232505 1234437 1234492 "INTCAT" 1235291 NIL INTCAT (NIL T) -9 NIL 1235610) (-511 1231978 1232080 1232208 "INTBIT" 1232397 T INTBIT (NIL) -7 NIL NIL) (-510 1230653 1230807 1231120 "INTALG" 1231823 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-509 1230110 1230200 1230370 "INTAF" 1230557 NIL INTAF (NIL T T) -7 NIL NIL) (-508 1223564 1229920 1230060 "INTABL" 1230065 NIL INTABL (NIL T T T) -8 NIL NIL) (-507 1218514 1221243 1221272 "INS" 1222240 T INS (NIL) -9 NIL 1222921) (-506 1215754 1216525 1217499 "INS-" 1217572 NIL INS- (NIL T) -8 NIL NIL) (-505 1214533 1214760 1215057 "INPSIGN" 1215507 NIL INPSIGN (NIL T T) -7 NIL NIL) (-504 1213651 1213768 1213965 "INPRODPF" 1214413 NIL INPRODPF (NIL T T) -7 NIL NIL) (-503 1212545 1212662 1212899 "INPRODFF" 1213531 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-502 1211545 1211697 1211957 "INNMFACT" 1212381 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-501 1210742 1210839 1211027 "INMODGCD" 1211444 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-500 1209251 1209495 1209819 "INFSP" 1210487 NIL INFSP (NIL T T T) -7 NIL NIL) (-499 1208435 1208552 1208735 "INFPROD0" 1209131 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-498 1205445 1206604 1207095 "INFORM" 1207952 T INFORM (NIL) -8 NIL NIL) (-497 1205055 1205115 1205213 "INFORM1" 1205380 NIL INFORM1 (NIL T) -7 NIL NIL) (-496 1204578 1204667 1204781 "INFINITY" 1204961 T INFINITY (NIL) -7 NIL NIL) (-495 1203196 1203444 1203765 "INEP" 1204326 NIL INEP (NIL T T T) -7 NIL NIL) (-494 1202472 1203093 1203158 "INDE" 1203163 NIL INDE (NIL T) -8 NIL NIL) (-493 1202036 1202104 1202221 "INCRMAPS" 1202399 NIL INCRMAPS (NIL T) -7 NIL NIL) (-492 1197347 1198272 1199216 "INBFF" 1201124 NIL INBFF (NIL T) -7 NIL NIL) (-491 1193842 1197192 1197295 "IMATRIX" 1197300 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-490 1192554 1192677 1192992 "IMATQF" 1193698 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-489 1190774 1191001 1191338 "IMATLIN" 1192310 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-488 1185400 1190698 1190756 "ILIST" 1190761 NIL ILIST (NIL T NIL) -8 NIL NIL) (-487 1183353 1185260 1185373 "IIARRAY2" 1185378 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-486 1178721 1183264 1183328 "IFF" 1183333 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-485 1173764 1178013 1178201 "IFARRAY" 1178578 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-484 1172971 1173668 1173741 "IFAMON" 1173746 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-483 1172554 1172619 1172674 "IEVALAB" 1172881 NIL IEVALAB (NIL T T) -9 NIL NIL) (-482 1172229 1172297 1172457 "IEVALAB-" 1172462 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-481 1171887 1172143 1172206 "IDPO" 1172211 NIL IDPO (NIL T T) -8 NIL NIL) (-480 1171164 1171776 1171851 "IDPOAMS" 1171856 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-479 1170498 1171053 1171128 "IDPOAM" 1171133 NIL IDPOAM (NIL T T) -8 NIL NIL) (-478 1169583 1169833 1169887 "IDPC" 1170300 NIL IDPC (NIL T T) -9 NIL 1170449) (-477 1169079 1169475 1169548 "IDPAM" 1169553 NIL IDPAM (NIL T T) -8 NIL NIL) (-476 1168482 1168971 1169044 "IDPAG" 1169049 NIL IDPAG (NIL T T) -8 NIL NIL) (-475 1164737 1165585 1166480 "IDECOMP" 1167639 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-474 1157611 1158660 1159707 "IDEAL" 1163773 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-473 1156775 1156887 1157086 "ICDEN" 1157495 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-472 1155874 1156255 1156402 "ICARD" 1156648 T ICARD (NIL) -8 NIL NIL) (-471 1153946 1154259 1154662 "IBPTOOLS" 1155551 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-470 1149560 1153566 1153679 "IBITS" 1153865 NIL IBITS (NIL NIL) -8 NIL NIL) (-469 1146283 1146859 1147554 "IBATOOL" 1148977 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-468 1144063 1144524 1145057 "IBACHIN" 1145818 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-467 1141940 1143909 1144012 "IARRAY2" 1144017 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-466 1138093 1141866 1141923 "IARRAY1" 1141928 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-465 1132032 1136511 1136989 "IAN" 1137635 T IAN (NIL) -8 NIL NIL) (-464 1131543 1131600 1131773 "IALGFACT" 1131969 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-463 1131070 1131183 1131212 "HYPCAT" 1131419 T HYPCAT (NIL) -9 NIL NIL) (-462 1130608 1130725 1130911 "HYPCAT-" 1130916 NIL HYPCAT- (NIL T) -8 NIL NIL) (-461 1127287 1128618 1128660 "HOAGG" 1129641 NIL HOAGG (NIL T) -9 NIL 1130320) (-460 1125881 1126280 1126806 "HOAGG-" 1126811 NIL HOAGG- (NIL T T) -8 NIL NIL) (-459 1119712 1125322 1125488 "HEXADEC" 1125735 T HEXADEC (NIL) -8 NIL NIL) (-458 1118460 1118682 1118945 "HEUGCD" 1119489 NIL HEUGCD (NIL T) -7 NIL NIL) (-457 1117563 1118297 1118427 "HELLFDIV" 1118432 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-456 1115791 1117340 1117428 "HEAP" 1117507 NIL HEAP (NIL T) -8 NIL NIL) (-455 1109658 1115706 1115768 "HDP" 1115773 NIL HDP (NIL NIL T) -8 NIL NIL) (-454 1103370 1109295 1109446 "HDMP" 1109559 NIL HDMP (NIL NIL T) -8 NIL NIL) (-453 1102695 1102834 1102998 "HB" 1103226 T HB (NIL) -7 NIL NIL) (-452 1096192 1102541 1102645 "HASHTBL" 1102650 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-451 1093945 1095820 1095999 "HACKPI" 1096033 T HACKPI (NIL) -8 NIL NIL) (-450 1089641 1093799 1093911 "GTSET" 1093916 NIL GTSET (NIL T T T T) -8 NIL NIL) (-449 1083167 1089519 1089617 "GSTBL" 1089622 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-448 1075403 1082203 1082467 "GSERIES" 1082958 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-447 1074425 1074878 1074907 "GROUP" 1075168 T GROUP (NIL) -9 NIL 1075327) (-446 1073541 1073764 1074108 "GROUP-" 1074113 NIL GROUP- (NIL T) -8 NIL NIL) (-445 1071910 1072229 1072616 "GROEBSOL" 1073218 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-444 1070850 1071112 1071164 "GRMOD" 1071693 NIL GRMOD (NIL T T) -9 NIL 1071861) (-443 1070618 1070654 1070782 "GRMOD-" 1070787 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-442 1065946 1066972 1067972 "GRIMAGE" 1069638 T GRIMAGE (NIL) -8 NIL NIL) (-441 1064413 1064673 1064997 "GRDEF" 1065642 T GRDEF (NIL) -7 NIL NIL) (-440 1063857 1063973 1064114 "GRAY" 1064292 T GRAY (NIL) -7 NIL NIL) (-439 1063090 1063470 1063522 "GRALG" 1063675 NIL GRALG (NIL T T) -9 NIL 1063767) (-438 1062751 1062824 1062987 "GRALG-" 1062992 NIL GRALG- (NIL T T T) -8 NIL NIL) (-437 1059559 1062340 1062516 "GPOLSET" 1062658 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-436 1058915 1058972 1059229 "GOSPER" 1059496 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-435 1054674 1055353 1055879 "GMODPOL" 1058614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-434 1053679 1053863 1054101 "GHENSEL" 1054486 NIL GHENSEL (NIL T T) -7 NIL NIL) (-433 1047745 1048588 1049614 "GENUPS" 1052763 NIL GENUPS (NIL T T) -7 NIL NIL) (-432 1047442 1047493 1047582 "GENUFACT" 1047688 NIL GENUFACT (NIL T) -7 NIL NIL) (-431 1046854 1046931 1047096 "GENPGCD" 1047360 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-430 1046328 1046363 1046576 "GENMFACT" 1046813 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-429 1044896 1045151 1045458 "GENEEZ" 1046071 NIL GENEEZ (NIL T T) -7 NIL NIL) (-428 1038770 1044509 1044670 "GDMP" 1044819 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-427 1028152 1032541 1033647 "GCNAALG" 1037753 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-426 1026573 1027445 1027474 "GCDDOM" 1027729 T GCDDOM (NIL) -9 NIL 1027886) (-425 1026043 1026170 1026385 "GCDDOM-" 1026390 NIL GCDDOM- (NIL T) -8 NIL NIL) (-424 1024715 1024900 1025204 "GB" 1025822 NIL GB (NIL T T T T) -7 NIL NIL) (-423 1013335 1015661 1018053 "GBINTERN" 1022406 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-422 1011172 1011464 1011885 "GBF" 1013010 NIL GBF (NIL T T T T) -7 NIL NIL) (-421 1009953 1010118 1010385 "GBEUCLID" 1010988 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-420 1009302 1009427 1009576 "GAUSSFAC" 1009824 T GAUSSFAC (NIL) -7 NIL NIL) (-419 1007679 1007981 1008294 "GALUTIL" 1009021 NIL GALUTIL (NIL T) -7 NIL NIL) (-418 1005996 1006270 1006593 "GALPOLYU" 1007406 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-417 1003385 1003675 1004080 "GALFACTU" 1005693 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-416 995191 996690 998298 "GALFACT" 1001817 NIL GALFACT (NIL T) -7 NIL NIL) (-415 992578 993236 993265 "FVFUN" 994421 T FVFUN (NIL) -9 NIL 995141) (-414 991843 992025 992054 "FVC" 992345 T FVC (NIL) -9 NIL 992528) (-413 991485 991640 991721 "FUNCTION" 991795 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-412 989155 989706 990195 "FT" 991016 T FT (NIL) -8 NIL NIL) (-411 987973 988456 988659 "FTEM" 988972 T FTEM (NIL) -8 NIL NIL) (-410 986238 986526 986928 "FSUPFACT" 987665 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-409 984635 984924 985256 "FST" 985926 T FST (NIL) -8 NIL NIL) (-408 983810 983916 984110 "FSRED" 984517 NIL FSRED (NIL T T) -7 NIL NIL) (-407 982489 982744 983098 "FSPRMELT" 983525 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-406 979574 980012 980511 "FSPECF" 982052 NIL FSPECF (NIL T T) -7 NIL NIL) (-405 961947 970504 970545 "FS" 974383 NIL FS (NIL T) -9 NIL 976665) (-404 950597 953587 957643 "FS-" 957940 NIL FS- (NIL T T) -8 NIL NIL) (-403 950113 950167 950343 "FSINT" 950538 NIL FSINT (NIL T T) -7 NIL NIL) (-402 948394 949106 949409 "FSERIES" 949892 NIL FSERIES (NIL T T) -8 NIL NIL) (-401 947412 947528 947758 "FSCINT" 948274 NIL FSCINT (NIL T T) -7 NIL NIL) (-400 943646 946356 946398 "FSAGG" 946768 NIL FSAGG (NIL T) -9 NIL 947027) (-399 941408 942009 942805 "FSAGG-" 942900 NIL FSAGG- (NIL T T) -8 NIL NIL) (-398 940450 940593 940820 "FSAGG2" 941261 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-397 938109 938388 938941 "FS2UPS" 940168 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-396 937695 937738 937891 "FS2" 938060 NIL FS2 (NIL T T T T) -7 NIL NIL) (-395 936555 936726 937034 "FS2EXPXP" 937520 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-394 935981 936096 936248 "FRUTIL" 936435 NIL FRUTIL (NIL T) -7 NIL NIL) (-393 927402 931480 932836 "FR" 934657 NIL FR (NIL T) -8 NIL NIL) (-392 922478 925121 925162 "FRNAALG" 926558 NIL FRNAALG (NIL T) -9 NIL 927165) (-391 918157 919227 920502 "FRNAALG-" 921252 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-390 917795 917838 917965 "FRNAAF2" 918108 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-389 916160 916652 916946 "FRMOD" 917608 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-388 913883 914551 914867 "FRIDEAL" 915951 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-387 913082 913169 913456 "FRIDEAL2" 913790 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-386 912339 912747 912789 "FRETRCT" 912794 NIL FRETRCT (NIL T) -9 NIL 912965) (-385 911451 911682 912033 "FRETRCT-" 912038 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-384 908660 909880 909940 "FRAMALG" 910822 NIL FRAMALG (NIL T T) -9 NIL 911114) (-383 906793 907249 907879 "FRAMALG-" 908102 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-382 900695 906268 906544 "FRAC" 906549 NIL FRAC (NIL T) -8 NIL NIL) (-381 900331 900388 900495 "FRAC2" 900632 NIL FRAC2 (NIL T T) -7 NIL NIL) (-380 899967 900024 900131 "FR2" 900268 NIL FR2 (NIL T T) -7 NIL NIL) (-379 894640 897553 897582 "FPS" 898701 T FPS (NIL) -9 NIL 899257) (-378 894089 894198 894362 "FPS-" 894508 NIL FPS- (NIL T) -8 NIL NIL) (-377 891537 893234 893263 "FPC" 893488 T FPC (NIL) -9 NIL 893630) (-376 891330 891370 891467 "FPC-" 891472 NIL FPC- (NIL T) -8 NIL NIL) (-375 890208 890818 890860 "FPATMAB" 890865 NIL FPATMAB (NIL T) -9 NIL 891017) (-374 887908 888384 888810 "FPARFRAC" 889845 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-373 883303 883800 884482 "FORTRAN" 887340 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-372 881019 881519 882058 "FORT" 882784 T FORT (NIL) -7 NIL NIL) (-371 878694 879256 879285 "FORTFN" 880345 T FORTFN (NIL) -9 NIL 880969) (-370 878457 878507 878536 "FORTCAT" 878595 T FORTCAT (NIL) -9 NIL 878657) (-369 876517 877000 877399 "FORMULA" 878078 T FORMULA (NIL) -8 NIL NIL) (-368 876305 876335 876404 "FORMULA1" 876481 NIL FORMULA1 (NIL T) -7 NIL NIL) (-367 875828 875880 876053 "FORDER" 876247 NIL FORDER (NIL T T T T) -7 NIL NIL) (-366 874924 875088 875281 "FOP" 875655 T FOP (NIL) -7 NIL NIL) (-365 873532 874204 874378 "FNLA" 874806 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-364 872200 872589 872618 "FNCAT" 873190 T FNCAT (NIL) -9 NIL 873483) (-363 871766 872159 872187 "FNAME" 872192 T FNAME (NIL) -8 NIL NIL) (-362 870425 871398 871427 "FMTC" 871432 T FMTC (NIL) -9 NIL 871467) (-361 866743 867950 868578 "FMONOID" 869830 NIL FMONOID (NIL T) -8 NIL NIL) (-360 865963 866486 866634 "FM" 866639 NIL FM (NIL T T) -8 NIL NIL) (-359 863386 864032 864061 "FMFUN" 865205 T FMFUN (NIL) -9 NIL 865913) (-358 862654 862835 862864 "FMC" 863154 T FMC (NIL) -9 NIL 863336) (-357 859883 860717 860771 "FMCAT" 861953 NIL FMCAT (NIL T T) -9 NIL 862447) (-356 858778 859651 859750 "FM1" 859828 NIL FM1 (NIL T T) -8 NIL NIL) (-355 856552 856968 857462 "FLOATRP" 858329 NIL FLOATRP (NIL T) -7 NIL NIL) (-354 850038 854208 854838 "FLOAT" 855942 T FLOAT (NIL) -8 NIL NIL) (-353 847476 847976 848554 "FLOATCP" 849505 NIL FLOATCP (NIL T) -7 NIL NIL) (-352 846264 847112 847153 "FLINEXP" 847158 NIL FLINEXP (NIL T) -9 NIL 847251) (-351 845419 845654 845981 "FLINEXP-" 845986 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-350 844495 844639 844863 "FLASORT" 845271 NIL FLASORT (NIL T T) -7 NIL NIL) (-349 841713 842555 842608 "FLALG" 843835 NIL FLALG (NIL T T) -9 NIL 844302) (-348 835497 839199 839241 "FLAGG" 840503 NIL FLAGG (NIL T) -9 NIL 841155) (-347 834223 834562 835052 "FLAGG-" 835057 NIL FLAGG- (NIL T T) -8 NIL NIL) (-346 833265 833408 833635 "FLAGG2" 834076 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-345 830237 831255 831315 "FINRALG" 832443 NIL FINRALG (NIL T T) -9 NIL 832951) (-344 829397 829626 829965 "FINRALG-" 829970 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-343 828803 829016 829045 "FINITE" 829241 T FINITE (NIL) -9 NIL 829348) (-342 821262 823423 823464 "FINAALG" 827131 NIL FINAALG (NIL T) -9 NIL 828584) (-341 816603 817644 818788 "FINAALG-" 820167 NIL FINAALG- (NIL T T) -8 NIL NIL) (-340 815998 816358 816461 "FILE" 816533 NIL FILE (NIL T) -8 NIL NIL) (-339 814682 814994 815049 "FILECAT" 815733 NIL FILECAT (NIL T T) -9 NIL 815949) (-338 812544 814100 814129 "FIELD" 814169 T FIELD (NIL) -9 NIL 814249) (-337 811164 811549 812060 "FIELD-" 812065 NIL FIELD- (NIL T) -8 NIL NIL) (-336 808979 809801 810147 "FGROUP" 810851 NIL FGROUP (NIL T) -8 NIL NIL) (-335 808069 808233 808453 "FGLMICPK" 808811 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-334 803871 807994 808051 "FFX" 808056 NIL FFX (NIL T NIL) -8 NIL NIL) (-333 803472 803533 803668 "FFSLPE" 803804 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-332 799467 800244 801040 "FFPOLY" 802708 NIL FFPOLY (NIL T) -7 NIL NIL) (-331 798971 799007 799216 "FFPOLY2" 799425 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-330 794793 798890 798953 "FFP" 798958 NIL FFP (NIL T NIL) -8 NIL NIL) (-329 790161 794704 794768 "FF" 794773 NIL FF (NIL NIL NIL) -8 NIL NIL) (-328 785257 789504 789694 "FFNBX" 790015 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-327 780167 784392 784650 "FFNBP" 785111 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-326 774770 779451 779662 "FFNB" 780000 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-325 773602 773800 774115 "FFINTBAS" 774567 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-324 769825 772065 772094 "FFIELDC" 772714 T FFIELDC (NIL) -9 NIL 773090) (-323 768488 768858 769355 "FFIELDC-" 769360 NIL FFIELDC- (NIL T) -8 NIL NIL) (-322 768058 768103 768227 "FFHOM" 768430 NIL FFHOM (NIL T T T) -7 NIL NIL) (-321 765756 766240 766757 "FFF" 767573 NIL FFF (NIL T) -7 NIL NIL) (-320 761344 765498 765599 "FFCGX" 765699 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-319 756946 761076 761183 "FFCGP" 761287 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-318 752099 756673 756781 "FFCG" 756882 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-317 734044 743167 743254 "FFCAT" 748419 NIL FFCAT (NIL T T T) -9 NIL 749906) (-316 729242 730289 731603 "FFCAT-" 732833 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-315 728653 728696 728931 "FFCAT2" 729193 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-314 717853 721643 722860 "FEXPR" 727508 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-313 716852 717287 717329 "FEVALAB" 717413 NIL FEVALAB (NIL T) -9 NIL 717674) (-312 716011 716221 716559 "FEVALAB-" 716564 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-311 714604 715394 715597 "FDIV" 715910 NIL FDIV (NIL T T T T) -8 NIL NIL) (-310 711670 712385 712501 "FDIVCAT" 714069 NIL FDIVCAT (NIL T T T T) -9 NIL 714506) (-309 711432 711459 711629 "FDIVCAT-" 711634 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-308 710652 710739 711016 "FDIV2" 711339 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-307 709338 709597 709886 "FCPAK1" 710383 T FCPAK1 (NIL) -7 NIL NIL) (-306 708466 708838 708979 "FCOMP" 709229 NIL FCOMP (NIL T) -8 NIL NIL) (-305 692094 695509 699072 "FC" 704923 T FC (NIL) -8 NIL NIL) (-304 684689 688735 688776 "FAXF" 690578 NIL FAXF (NIL T) -9 NIL 691269) (-303 681968 682623 683448 "FAXF-" 683913 NIL FAXF- (NIL T T) -8 NIL NIL) (-302 677068 681344 681520 "FARRAY" 681825 NIL FARRAY (NIL T) -8 NIL NIL) (-301 672458 674529 674582 "FAMR" 675594 NIL FAMR (NIL T T) -9 NIL 676054) (-300 671349 671651 672085 "FAMR-" 672090 NIL FAMR- (NIL T T T) -8 NIL NIL) (-299 670545 671271 671324 "FAMONOID" 671329 NIL FAMONOID (NIL T) -8 NIL NIL) (-298 668377 669061 669115 "FAMONC" 670056 NIL FAMONC (NIL T T) -9 NIL 670441) (-297 667069 668131 668268 "FAGROUP" 668273 NIL FAGROUP (NIL T) -8 NIL NIL) (-296 664872 665191 665593 "FACUTIL" 666750 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-295 663971 664156 664378 "FACTFUNC" 664682 NIL FACTFUNC (NIL T) -7 NIL NIL) (-294 656294 663222 663434 "EXPUPXS" 663827 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-293 653777 654317 654903 "EXPRTUBE" 655728 T EXPRTUBE (NIL) -7 NIL NIL) (-292 649971 650563 651300 "EXPRODE" 653116 NIL EXPRODE (NIL T T) -7 NIL NIL) (-291 635130 648630 649056 "EXPR" 649577 NIL EXPR (NIL T) -8 NIL NIL) (-290 629558 630145 630957 "EXPR2UPS" 634428 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-289 629194 629251 629358 "EXPR2" 629495 NIL EXPR2 (NIL T T) -7 NIL NIL) (-288 620548 628331 628626 "EXPEXPAN" 629032 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-287 620375 620505 620534 "EXIT" 620539 T EXIT (NIL) -8 NIL NIL) (-286 620002 620064 620177 "EVALCYC" 620307 NIL EVALCYC (NIL T) -7 NIL NIL) (-285 619542 619660 619702 "EVALAB" 619872 NIL EVALAB (NIL T) -9 NIL 619976) (-284 619023 619145 619366 "EVALAB-" 619371 NIL EVALAB- (NIL T T) -8 NIL NIL) (-283 616485 617797 617826 "EUCDOM" 618381 T EUCDOM (NIL) -9 NIL 618731) (-282 614890 615332 615922 "EUCDOM-" 615927 NIL EUCDOM- (NIL T) -8 NIL NIL) (-281 602468 605216 607956 "ESTOOLS" 612170 T ESTOOLS (NIL) -7 NIL NIL) (-280 602104 602161 602268 "ESTOOLS2" 602405 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-279 601855 601897 601977 "ESTOOLS1" 602056 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-278 595792 597516 597545 "ES" 600309 T ES (NIL) -9 NIL 601715) (-277 590740 592026 593843 "ES-" 594007 NIL ES- (NIL T) -8 NIL NIL) (-276 587115 587875 588655 "ESCONT" 589980 T ESCONT (NIL) -7 NIL NIL) (-275 586860 586892 586974 "ESCONT1" 587077 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-274 586535 586585 586685 "ES2" 586804 NIL ES2 (NIL T T) -7 NIL NIL) (-273 586165 586223 586332 "ES1" 586471 NIL ES1 (NIL T T) -7 NIL NIL) (-272 585381 585510 585686 "ERROR" 586009 T ERROR (NIL) -7 NIL NIL) (-271 578884 585240 585331 "EQTBL" 585336 NIL EQTBL (NIL T T) -8 NIL NIL) (-270 571321 574202 575649 "EQ" 577470 NIL -3087 (NIL T) -8 NIL NIL) (-269 570953 571010 571119 "EQ2" 571258 NIL EQ2 (NIL T T) -7 NIL NIL) (-268 566245 567291 568384 "EP" 569892 NIL EP (NIL T) -7 NIL NIL) (-267 564828 565128 565445 "ENV" 565948 T ENV (NIL) -8 NIL NIL) (-266 563987 564551 564580 "ENTIRER" 564585 T ENTIRER (NIL) -9 NIL 564630) (-265 560443 561942 562312 "EMR" 563786 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-264 559586 559771 559826 "ELTAGG" 560206 NIL ELTAGG (NIL T T) -9 NIL 560417) (-263 559305 559367 559508 "ELTAGG-" 559513 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-262 559093 559122 559177 "ELTAB" 559261 NIL ELTAB (NIL T T) -9 NIL NIL) (-261 558219 558365 558564 "ELFUTS" 558944 NIL ELFUTS (NIL T T) -7 NIL NIL) (-260 557960 558016 558045 "ELEMFUN" 558150 T ELEMFUN (NIL) -9 NIL NIL) (-259 557830 557851 557919 "ELEMFUN-" 557924 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-258 552721 555930 555972 "ELAGG" 556912 NIL ELAGG (NIL T) -9 NIL 557375) (-257 551006 551440 552103 "ELAGG-" 552108 NIL ELAGG- (NIL T T) -8 NIL NIL) (-256 549662 549943 550238 "ELABEXPR" 550731 T ELABEXPR (NIL) -8 NIL NIL) (-255 542530 544329 545156 "EFUPXS" 548938 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-254 535980 537781 538591 "EFULS" 541806 NIL EFULS (NIL T T T) -8 NIL NIL) (-253 533411 533769 534247 "EFSTRUC" 535612 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-252 522483 524048 525608 "EF" 531926 NIL EF (NIL T T) -7 NIL NIL) (-251 521584 521968 522117 "EAB" 522354 T EAB (NIL) -8 NIL NIL) (-250 520797 521543 521571 "E04UCFA" 521576 T E04UCFA (NIL) -8 NIL NIL) (-249 520010 520756 520784 "E04NAFA" 520789 T E04NAFA (NIL) -8 NIL NIL) (-248 519223 519969 519997 "E04MBFA" 520002 T E04MBFA (NIL) -8 NIL NIL) (-247 518436 519182 519210 "E04JAFA" 519215 T E04JAFA (NIL) -8 NIL NIL) (-246 517651 518395 518423 "E04GCFA" 518428 T E04GCFA (NIL) -8 NIL NIL) (-245 516866 517610 517638 "E04FDFA" 517643 T E04FDFA (NIL) -8 NIL NIL) (-244 516079 516825 516853 "E04DGFA" 516858 T E04DGFA (NIL) -8 NIL NIL) (-243 510264 511609 512971 "E04AGNT" 514737 T E04AGNT (NIL) -7 NIL NIL) (-242 508990 509470 509511 "DVARCAT" 509986 NIL DVARCAT (NIL T) -9 NIL 510184) (-241 508194 508406 508720 "DVARCAT-" 508725 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-240 501056 507996 508123 "DSMP" 508128 NIL DSMP (NIL T T T) -8 NIL NIL) (-239 495866 497001 498069 "DROPT" 500008 T DROPT (NIL) -8 NIL NIL) (-238 495531 495590 495688 "DROPT1" 495801 NIL DROPT1 (NIL T) -7 NIL NIL) (-237 490646 491772 492909 "DROPT0" 494414 T DROPT0 (NIL) -7 NIL NIL) (-236 488991 489316 489702 "DRAWPT" 490280 T DRAWPT (NIL) -7 NIL NIL) (-235 483578 484501 485580 "DRAW" 487965 NIL DRAW (NIL T) -7 NIL NIL) (-234 483211 483264 483382 "DRAWHACK" 483519 NIL DRAWHACK (NIL T) -7 NIL NIL) (-233 481942 482211 482502 "DRAWCX" 482940 T DRAWCX (NIL) -7 NIL NIL) (-232 481460 481528 481678 "DRAWCURV" 481868 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-231 471932 473890 476005 "DRAWCFUN" 479365 T DRAWCFUN (NIL) -7 NIL NIL) (-230 468745 470627 470669 "DQAGG" 471298 NIL DQAGG (NIL T) -9 NIL 471571) (-229 457251 463989 464072 "DPOLCAT" 465910 NIL DPOLCAT (NIL T T T T) -9 NIL 466454) (-228 452091 453437 455394 "DPOLCAT-" 455399 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-227 446175 451953 452050 "DPMO" 452055 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-226 440162 445956 446122 "DPMM" 446127 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-225 439675 439773 439893 "DOMAIN" 440062 T DOMAIN (NIL) -8 NIL NIL) (-224 433387 439312 439463 "DMP" 439576 NIL DMP (NIL NIL T) -8 NIL NIL) (-223 432987 433043 433187 "DLP" 433325 NIL DLP (NIL T) -7 NIL NIL) (-222 426631 432088 432315 "DLIST" 432792 NIL DLIST (NIL T) -8 NIL NIL) (-221 423477 425486 425528 "DLAGG" 426078 NIL DLAGG (NIL T) -9 NIL 426307) (-220 422186 422878 422907 "DIVRING" 423057 T DIVRING (NIL) -9 NIL 423165) (-219 421174 421427 421820 "DIVRING-" 421825 NIL DIVRING- (NIL T) -8 NIL NIL) (-218 419276 419633 420039 "DISPLAY" 420788 T DISPLAY (NIL) -7 NIL NIL) (-217 413165 419190 419253 "DIRPROD" 419258 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-216 412013 412216 412481 "DIRPROD2" 412958 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-215 401643 407648 407702 "DIRPCAT" 408110 NIL DIRPCAT (NIL NIL T) -9 NIL 408937) (-214 398969 399611 400492 "DIRPCAT-" 400829 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-213 398256 398416 398602 "DIOSP" 398803 T DIOSP (NIL) -7 NIL NIL) (-212 394958 397168 397210 "DIOPS" 397644 NIL DIOPS (NIL T) -9 NIL 397873) (-211 394507 394621 394812 "DIOPS-" 394817 NIL DIOPS- (NIL T T) -8 NIL NIL) (-210 393378 394016 394045 "DIFRING" 394232 T DIFRING (NIL) -9 NIL 394341) (-209 393024 393101 393253 "DIFRING-" 393258 NIL DIFRING- (NIL T) -8 NIL NIL) (-208 390813 392095 392136 "DIFEXT" 392495 NIL DIFEXT (NIL T) -9 NIL 392788) (-207 389099 389527 390192 "DIFEXT-" 390197 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-206 386421 388631 388673 "DIAGG" 388678 NIL DIAGG (NIL T) -9 NIL 388698) (-205 385805 385962 386214 "DIAGG-" 386219 NIL DIAGG- (NIL T T) -8 NIL NIL) (-204 381270 384764 385041 "DHMATRIX" 385574 NIL DHMATRIX (NIL T) -8 NIL NIL) (-203 376882 377791 378801 "DFSFUN" 380280 T DFSFUN (NIL) -7 NIL NIL) (-202 371668 375596 375961 "DFLOAT" 376537 T DFLOAT (NIL) -8 NIL NIL) (-201 369901 370182 370577 "DFINTTLS" 371376 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-200 366934 367936 368334 "DERHAM" 369568 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-199 364783 366709 366798 "DEQUEUE" 366878 NIL DEQUEUE (NIL T) -8 NIL NIL) (-198 364001 364134 364329 "DEGRED" 364645 NIL DEGRED (NIL T T) -7 NIL NIL) (-197 360401 361146 361998 "DEFINTRF" 363229 NIL DEFINTRF (NIL T) -7 NIL NIL) (-196 357932 358401 358999 "DEFINTEF" 359920 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-195 351763 357373 357539 "DECIMAL" 357786 T DECIMAL (NIL) -8 NIL NIL) (-194 349275 349733 350239 "DDFACT" 351307 NIL DDFACT (NIL T T) -7 NIL NIL) (-193 348871 348914 349065 "DBLRESP" 349226 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-192 346581 346915 347284 "DBASE" 348629 NIL DBASE (NIL T) -8 NIL NIL) (-191 345716 346540 346568 "D03FAFA" 346573 T D03FAFA (NIL) -8 NIL NIL) (-190 344852 345675 345703 "D03EEFA" 345708 T D03EEFA (NIL) -8 NIL NIL) (-189 342802 343268 343757 "D03AGNT" 344383 T D03AGNT (NIL) -7 NIL NIL) (-188 342120 342761 342789 "D02EJFA" 342794 T D02EJFA (NIL) -8 NIL NIL) (-187 341438 342079 342107 "D02CJFA" 342112 T D02CJFA (NIL) -8 NIL NIL) (-186 340756 341397 341425 "D02BHFA" 341430 T D02BHFA (NIL) -8 NIL NIL) (-185 340074 340715 340743 "D02BBFA" 340748 T D02BBFA (NIL) -8 NIL NIL) (-184 333272 334860 336466 "D02AGNT" 338488 T D02AGNT (NIL) -7 NIL NIL) (-183 331041 331563 332109 "D01WGTS" 332746 T D01WGTS (NIL) -7 NIL NIL) (-182 330144 331000 331028 "D01TRNS" 331033 T D01TRNS (NIL) -8 NIL NIL) (-181 329247 330103 330131 "D01GBFA" 330136 T D01GBFA (NIL) -8 NIL NIL) (-180 328350 329206 329234 "D01FCFA" 329239 T D01FCFA (NIL) -8 NIL NIL) (-179 327453 328309 328337 "D01ASFA" 328342 T D01ASFA (NIL) -8 NIL NIL) (-178 326556 327412 327440 "D01AQFA" 327445 T D01AQFA (NIL) -8 NIL NIL) (-177 325659 326515 326543 "D01APFA" 326548 T D01APFA (NIL) -8 NIL NIL) (-176 324762 325618 325646 "D01ANFA" 325651 T D01ANFA (NIL) -8 NIL NIL) (-175 323865 324721 324749 "D01AMFA" 324754 T D01AMFA (NIL) -8 NIL NIL) (-174 322968 323824 323852 "D01ALFA" 323857 T D01ALFA (NIL) -8 NIL NIL) (-173 322071 322927 322955 "D01AKFA" 322960 T D01AKFA (NIL) -8 NIL NIL) (-172 321174 322030 322058 "D01AJFA" 322063 T D01AJFA (NIL) -8 NIL NIL) (-171 314478 316027 317586 "D01AGNT" 319635 T D01AGNT (NIL) -7 NIL NIL) (-170 313815 313943 314095 "CYCLOTOM" 314346 T CYCLOTOM (NIL) -7 NIL NIL) (-169 310550 311263 311990 "CYCLES" 313108 T CYCLES (NIL) -7 NIL NIL) (-168 309862 309996 310167 "CVMP" 310411 NIL CVMP (NIL T) -7 NIL NIL) (-167 307644 307901 308276 "CTRIGMNP" 309590 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-166 307249 307332 307437 "CTORCALL" 307559 T CTORCALL (NIL) -8 NIL NIL) (-165 306623 306722 306875 "CSTTOOLS" 307146 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-164 302422 303079 303837 "CRFP" 305935 NIL CRFP (NIL T T) -7 NIL NIL) (-163 301469 301654 301882 "CRAPACK" 302226 NIL CRAPACK (NIL T) -7 NIL NIL) (-162 300853 300954 301158 "CPMATCH" 301345 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-161 300578 300606 300712 "CPIMA" 300819 NIL CPIMA (NIL T T T) -7 NIL NIL) (-160 296942 297614 298332 "COORDSYS" 299913 NIL COORDSYS (NIL T) -7 NIL NIL) (-159 296326 296455 296605 "CONTOUR" 296812 T CONTOUR (NIL) -8 NIL NIL) (-158 292187 294329 294821 "CONTFRAC" 295866 NIL CONTFRAC (NIL T) -8 NIL NIL) (-157 291340 291904 291933 "COMRING" 291938 T COMRING (NIL) -9 NIL 291989) (-156 290421 290698 290882 "COMPPROP" 291176 T COMPPROP (NIL) -8 NIL NIL) (-155 290082 290117 290245 "COMPLPAT" 290380 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-154 280063 289891 290000 "COMPLEX" 290005 NIL COMPLEX (NIL T) -8 NIL NIL) (-153 279699 279756 279863 "COMPLEX2" 280000 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279417 279452 279550 "COMPFACT" 279658 NIL COMPFACT (NIL T T) -7 NIL NIL) (-151 263751 274045 274086 "COMPCAT" 275088 NIL COMPCAT (NIL T) -9 NIL 276481) (-150 253266 256190 259817 "COMPCAT-" 260173 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-149 252997 253025 253127 "COMMUPC" 253232 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-148 252792 252825 252884 "COMMONOP" 252958 T COMMONOP (NIL) -7 NIL NIL) (-147 252375 252543 252630 "COMM" 252725 T COMM (NIL) -8 NIL NIL) (-146 251623 251817 251846 "COMBOPC" 252184 T COMBOPC (NIL) -9 NIL 252359) (-145 250519 250729 250971 "COMBINAT" 251413 NIL COMBINAT (NIL T) -7 NIL NIL) (-144 246717 247290 247930 "COMBF" 249941 NIL COMBF (NIL T T) -7 NIL NIL) (-143 245503 245833 246068 "COLOR" 246502 T COLOR (NIL) -8 NIL NIL) (-142 245143 245190 245315 "CMPLXRT" 245450 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-141 240645 241673 242753 "CLIP" 244083 T CLIP (NIL) -7 NIL NIL) (-140 238983 239753 239991 "CLIF" 240473 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-139 235205 237129 237171 "CLAGG" 238100 NIL CLAGG (NIL T) -9 NIL 238636) (-138 233627 234084 234667 "CLAGG-" 234672 NIL CLAGG- (NIL T T) -8 NIL NIL) (-137 233171 233256 233396 "CINTSLPE" 233536 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-136 230672 231143 231691 "CHVAR" 232699 NIL CHVAR (NIL T T T) -7 NIL NIL) (-135 229894 230458 230487 "CHARZ" 230492 T CHARZ (NIL) -9 NIL 230506) (-134 229648 229688 229766 "CHARPOL" 229848 NIL CHARPOL (NIL T) -7 NIL NIL) (-133 228754 229351 229380 "CHARNZ" 229427 T CHARNZ (NIL) -9 NIL 229482) (-132 226777 227444 227779 "CHAR" 228439 T CHAR (NIL) -8 NIL NIL) (-131 226502 226563 226592 "CFCAT" 226703 T CFCAT (NIL) -9 NIL NIL) (-130 225747 225858 226040 "CDEN" 226386 NIL CDEN (NIL T T T) -7 NIL NIL) (-129 221739 224900 225180 "CCLASS" 225487 T CCLASS (NIL) -8 NIL NIL) (-128 216792 217768 218521 "CARTEN" 221042 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-127 215900 216048 216269 "CARTEN2" 216639 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 214197 215052 215308 "CARD" 215664 T CARD (NIL) -8 NIL NIL) (-125 213569 213897 213926 "CACHSET" 214058 T CACHSET (NIL) -9 NIL 214135) (-124 213065 213361 213390 "CABMON" 213440 T CABMON (NIL) -9 NIL 213496) (-123 210622 212757 212864 "BTREE" 212991 NIL BTREE (NIL T) -8 NIL NIL) (-122 208120 210270 210392 "BTOURN" 210532 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205538 207591 207633 "BTCAT" 207701 NIL BTCAT (NIL T) -9 NIL 207778) (-120 205205 205285 205434 "BTCAT-" 205439 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200425 204296 204325 "BTAGG" 204581 T BTAGG (NIL) -9 NIL 204760) (-118 199848 199992 200222 "BTAGG-" 200227 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 196892 199126 199341 "BSTREE" 199665 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196030 196156 196340 "BRILL" 196748 NIL BRILL (NIL T) -7 NIL NIL) (-115 192731 194758 194800 "BRAGG" 195449 NIL BRAGG (NIL T) -9 NIL 195706) (-114 191260 191666 192221 "BRAGG-" 192226 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184468 190606 190790 "BPADICRT" 191108 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 182772 184405 184450 "BPADIC" 184455 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182472 182502 182615 "BOUNDZRO" 182736 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 177987 179078 179945 "BOP" 181625 T BOP (NIL) -8 NIL NIL) (-109 175608 176052 176572 "BOP1" 177500 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174227 174938 175161 "BOOLEAN" 175405 T BOOLEAN (NIL) -8 NIL NIL) (-107 173593 173971 174024 "BMODULE" 174029 NIL BMODULE (NIL T T) -9 NIL 174093) (-106 169403 173391 173464 "BITS" 173540 T BITS (NIL) -8 NIL NIL) (-105 168500 168935 169087 "BINFILE" 169271 T BINFILE (NIL) -8 NIL NIL) (-104 167912 168034 168176 "BINDING" 168378 T BINDING (NIL) -8 NIL NIL) (-103 161747 167356 167521 "BINARY" 167767 T BINARY (NIL) -8 NIL NIL) (-102 159574 161002 161044 "BGAGG" 161304 NIL BGAGG (NIL T) -9 NIL 161441) (-101 159405 159437 159528 "BGAGG-" 159533 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158503 158789 158994 "BFUNCT" 159220 T BFUNCT (NIL) -8 NIL NIL) (-99 157204 157382 157667 "BEZOUT" 158327 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 153729 156064 156392 "BBTREE" 156907 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153466 153519 153546 "BASTYPE" 153663 T BASTYPE (NIL) -9 NIL NIL) (-96 153321 153350 153420 "BASTYPE-" 153425 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 152759 152835 152985 "BALFACT" 153232 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151581 152178 152363 "AUTOMOR" 152604 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151306 151311 151338 "ATTREG" 151343 T ATTREG (NIL) -9 NIL NIL) (-92 149585 150003 150355 "ATTRBUT" 150972 T ATTRBUT (NIL) -8 NIL NIL) (-91 149120 149233 149260 "ATRIG" 149461 T ATRIG (NIL) -9 NIL NIL) (-90 148929 148970 149057 "ATRIG-" 149062 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147126 148705 148793 "ASTACK" 148872 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145631 145928 146293 "ASSOCEQ" 146808 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144663 145290 145414 "ASP9" 145538 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144427 144611 144650 "ASP8" 144655 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143297 144032 144174 "ASP80" 144316 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142196 142932 143064 "ASP7" 143196 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141152 141873 141991 "ASP78" 142109 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140123 140832 140949 "ASP77" 141066 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139038 139761 139892 "ASP74" 140023 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137939 138673 138805 "ASP73" 138937 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136894 137616 137734 "ASP6" 137852 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135843 136571 136689 "ASP55" 136807 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134793 135517 135636 "ASP50" 135755 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133881 134494 134604 "ASP4" 134714 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132969 133582 133692 "ASP49" 133802 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131754 132508 132676 "ASP42" 132858 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130532 131287 131457 "ASP41" 131641 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129484 130209 130327 "ASP35" 130445 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129249 129432 129471 "ASP34" 129476 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128986 129053 129129 "ASP33" 129204 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127882 128621 128753 "ASP31" 128885 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127647 127830 127869 "ASP30" 127874 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127382 127451 127527 "ASP29" 127602 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127147 127330 127369 "ASP28" 127374 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126912 127095 127134 "ASP27" 127139 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125996 126610 126721 "ASP24" 126832 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124913 125637 125767 "ASP20" 125897 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124001 124614 124724 "ASP1" 124834 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122945 123675 123794 "ASP19" 123913 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122682 122749 122825 "ASP12" 122900 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121535 122281 122425 "ASP10" 122569 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119434 121379 121470 "ARRAY2" 121475 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115250 119082 119196 "ARRAY1" 119351 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114282 114455 114676 "ARRAY12" 115073 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108641 110512 110588 "ARR2CAT" 113218 NIL ARR2CAT (NIL T T T) -9 NIL 113976) (-54 106075 106819 107773 "ARR2CAT-" 107778 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104835 104985 105288 "APPRULE" 105913 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104488 104536 104654 "APPLYORE" 104781 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103462 103753 103948 "ANY" 104311 T ANY (NIL) -8 NIL NIL) (-50 102740 102863 103020 "ANY1" 103336 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100272 101190 101515 "ANTISYM" 102465 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100099 100231 100258 "ANON" 100263 T ANON (NIL) -8 NIL NIL) (-47 94176 98644 99095 "AN" 99666 T AN (NIL) -8 NIL NIL) (-46 90529 91927 91978 "AMR" 92717 NIL AMR (NIL T T) -9 NIL 93316) (-45 89642 89863 90225 "AMR-" 90230 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74192 89559 89620 "ALIST" 89625 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71029 73786 73955 "ALGSC" 74110 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67585 68139 68746 "ALGPKG" 70469 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66862 66963 67147 "ALGMFACT" 67471 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62612 63292 63946 "ALGMANIP" 66386 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53931 62238 62388 "ALGFF" 62545 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53127 53258 53437 "ALGFACT" 53789 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52117 52727 52766 "ALGEBRA" 52826 NIL ALGEBRA (NIL T) -9 NIL 52884) (-36 51835 51894 52026 "ALGEBRA-" 52031 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34095 49838 49891 "ALAGG" 50027 NIL ALAGG (NIL T T) -9 NIL 50188) (-34 33630 33743 33770 "AHYP" 33971 T AHYP (NIL) -9 NIL NIL) (-33 32560 32808 32835 "AGG" 33334 T AGG (NIL) -9 NIL 33613) (-32 31994 32156 32370 "AGG-" 32375 NIL AGG- (NIL T) -8 NIL NIL) (-31 29681 30099 30516 "AF" 31637 NIL AF (NIL T T) -7 NIL NIL) (-30 28950 29208 29364 "ACPLOT" 29543 T ACPLOT (NIL) -8 NIL NIL) (-29 18416 26362 26414 "ACFS" 27125 NIL ACFS (NIL T) -9 NIL 27364) (-28 16430 16920 17695 "ACFS-" 17700 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14653 14680 "ACF" 15559 T ACF (NIL) -9 NIL 15971) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11195 "ABELSG" 11287 T ABELSG (NIL) -9 NIL 11352) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10523 "ABELMON" 10693 T ABELMON (NIL) -9 NIL 10805) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9606 "ABELGRP" 9731 T ABELGRP (NIL) -9 NIL 9813) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8075 "A1AGG" 8080 NIL A1AGG (NIL T) -9 NIL 8120) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 1def6b34..3ff2fc39 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,186 +1,154 @@
-(725028 . 3409817879)
+(725490 . 3409939479)
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-392 (-1080 *7)))
- (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
+ (-12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4)) (-4 *6 (-1142 *5))
+ (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7))
+ (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-108))
+ (-5 *1 (-840 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5)))
- (-5 *1 (-835 *4 *5)) (-5 *3 (-1080 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+ (-12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6))
+ (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4)))
+ (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-108))
+ (-5 *1 (-841 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-539 *3) *3 (-1085)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1085)))
+ (-4 *3 (-260)) (-4 *3 (-574)) (-4 *3 (-962 *4)) (-4 *3 (-405 *7))
+ (-5 *4 (-1085)) (-4 *7 (-563 (-821 (-522)))) (-4 *7 (-426))
+ (-4 *7 (-815 (-522))) (-4 *7 (-784)) (-5 *2 (-539 *3))
+ (-5 *1 (-531 *7 *3)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-849)) (-5 *1 (-415 *2))
- (-4 *2 (-1141 (-521)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-707)) (-5 *1 (-415 *2))
- (-4 *2 (-1141 (-521)))))
+ (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522))))
+ (-4 *2 (-157)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *7 (-588 *7))) (-4 *1 (-1114 *4 *5 *6 *7))
+ (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1166 (-3 (-442) "undefined"))) (-5 *1 (-1167)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-588 *2) *2 *2 *2)) (-4 *2 (-1014))
+ (-5 *1 (-98 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-98 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33)))
+ (-4 *5 (-13 (-1014) (-33))) (-5 *2 (-108)) (-5 *1 (-1051 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-971)) (-4 *2 (-1142 *4))
+ (-5 *1 (-418 *4 *2))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-587 (-707))) (-5 *1 (-415 *2))
- (-4 *2 (-1141 (-521)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-587 (-707))) (-5 *5 (-707))
- (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-849)) (-5 *4 (-587 (-707))) (-5 *5 (-707))
- (-5 *6 (-108)) (-5 *1 (-415 *2)) (-4 *2 (-1141 (-521)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-392 *2)) (-4 *2 (-1141 *5))
- (-5 *1 (-417 *5 *2)) (-4 *5 (-970)))))
-(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-323)) (-4 *6 (-1141 *5))
+ (-12 (-5 *2 (-382 (-1081 (-291 *5)))) (-5 *3 (-1166 (-291 *5)))
+ (-5 *4 (-522)) (-4 *5 (-13 (-514) (-784))) (-5 *1 (-1042 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-4 *7 (-878 *4 *6 *5))
(-5 *2
- (-587
- (-2 (|:| -1245 (-627 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-627 *6)))))
- (-5 *1 (-467 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1245 (-627 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-627 *6))))
- (-4 *7 (-1141 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-587 (-521))) (-5 *3 (-108)) (-5 *1 (-1023)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5)) (-4 *5 (-337))
- (-4 *5 (-513)) (-5 *2 (-1165 *5)) (-5 *1 (-582 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 *5))
- (-2416 (-4 *5 (-337))) (-4 *5 (-513)) (-5 *2 (-1165 (-381 *5)))
- (-5 *1 (-582 *5 *4)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-831 *3)) (-4 *3 (-1013)) (-5 *2 (-1015 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-587 *4))) (-5 *1 (-832 *4))
- (-5 *3 (-587 *4))))
+ (-2 (|:| |sysok| (-108)) (|:| |z0| (-588 *7)) (|:| |n0| (-588 *7))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1013)) (-5 *2 (-1015 (-1015 *4))) (-5 *1 (-832 *4))
- (-5 *3 (-1015 *4))))
+ (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-202))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1015 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1347 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-337)) (-4 *7 (-1141 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6))
- (-2 (|:| -1347 (-381 *7)) (|:| |coeff| (-381 *7))) "failed"))
- (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-353)) (-5 *1 (-963)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124))
- (-4 *3 (-728)))))
-(((*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-1165 (-290 (-353))))
- (-5 *1 (-280)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-100)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-301 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119)) (-14 *4 *2))))
+ (-12 (-5 *3 (-708)) (-5 *2 (-382 (-522))) (-5 *1 (-354)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
+ (-12 (-4 *3 (-971)) (-4 *4 (-1142 *3)) (-5 *1 (-149 *3 *4 *2))
+ (-4 *2 (-1142 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 (-522)))) (-5 *1 (-440)))))
+(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3)))))
+(((*1 *1) (-5 *1 (-983))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-291 (-202))) (-5 *2 (-382 (-522))) (-5 *1 (-281)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 (-871 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-871 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-783)) (-5 *1 (-1091 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202))
- (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1084))
- (-4 *4 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-532 *4 *2))
- (-4 *2 (-13 (-1105) (-886) (-1048) (-29 *4))))))
-(((*1 *1) (-5 *1 (-1000))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-587 *2)) (-5 *1 (-109 *2))
- (-4 *2 (-1013))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-587 *4))) (-4 *4 (-1013))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013))
- (-5 *1 (-109 *4))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-405 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-587 *4)))
- (-5 *1 (-109 *4)) (-4 *4 (-1013))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970))
- (-5 *1 (-651 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-770 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4))
- (-5 *2 (-2 (|:| |ans| (-381 *5)) (|:| |nosol| (-108))))
- (-5 *1 (-940 *4 *5)) (-5 *3 (-381 *5)))))
+ (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $))
+ (-15 -2816 (*7 $))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-628 (-881 *4))) (-5 *1 (-953 *4))
+ (-4 *4 (-971)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 (-108) (-588 *1)))
+ (-4 *1 (-990 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120))
+ (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1009 (-777 (-202)))) (-5 *1 (-281)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-305)))))
+(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-632))) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-639))) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-637))) (-5 *1 (-305))))
+ ((*1 *1) (-5 *1 (-305))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708)))
+ (-5 *1 (-833 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-324))
+ (-5 *2 (-588 (-2 (|:| -1916 (-522)) (|:| -1400 (-522))))))))
+(((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))))
(((*1 *2 *1)
(-12
(-5 *2
@@ -192,288 +160,428 @@
(|:| |Continue| "continue")
(|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
(|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-304)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-707)) (-5 *2 (-1170)))))
-(((*1 *1)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-154 (-202))) (-5 *6 (-1067))
- (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1178 (-1084) *3)) (-4 *3 (-970)) (-5 *1 (-1185 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *1 (-1187 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
+ (-5 *1 (-305)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-892 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-110)) (-5 *4 (-708)) (-4 *5 (-426)) (-4 *5 (-784))
+ (-4 *5 (-962 (-522))) (-4 *5 (-514)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-405 *5))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *5 (-561 $)) $))
+ (-15 -2816 ((-1037 *5 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *5 (-561 $))))))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6))
+ (-4 *6 (-13 (-27) (-405 *5)))
+ (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7)))
+ (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3))
+ (-4 *3 (-317 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4))
+ (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *5 (-1068))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-960))
+ (-5 *1 (-688)))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
- (-4 *3 (-1013)) (-5 *2 (-707))))
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120))
+ (-4 *3 (-1014)) (-5 *2 (-708))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4))
- (-4 *4 (-1119)) (-5 *2 (-707)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-783))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-783)))))
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4))
+ (-4 *4 (-1120)) (-5 *2 (-708)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-5 *2 (-1171)) (-5 *1 (-1088))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085))
+ (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *2 (-1171))
+ (-5 *1 (-1088))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1085))
+ (-5 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *2 (-1171))
+ (-5 *1 (-1088)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-450 *4 *5 *6 *7)) (|:| -1355 (-588 *7))))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-960)) (-5 *1 (-281))))
+ ((*1 *2 *3) (-12 (-5 *3 (-588 (-960))) (-5 *2 (-960)) (-5 *1 (-281))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *1) (-5 *1 (-983)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1063 *4))
+ (-4 *4 (-1120))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-791)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707))
- (-14 *4 (-707)) (-4 *5 (-157)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
- (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
- (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
- (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
- (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-959)) (-5 *1 (-280))))
- ((*1 *2 *3) (-12 (-5 *3 (-587 (-959))) (-5 *2 (-959)) (-5 *1 (-280))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-592 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1 *1) (-5 *1 (-982)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1062 *4))
- (-4 *4 (-1119))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-707))) (-5 *3 (-156)) (-5 *1 (-1073 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-970)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-855))
- (-5 *1 (-853 *3)) (-4 *3 (-562 (-497)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-855))
- (-5 *1 (-853 *3)) (-4 *3 (-562 (-497)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-854))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-854))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1 (-202) (-202)))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855)))))
+ (-12 (-5 *2 (-588 (-872 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084)))
- (-4 *5 (-425)) (-5 *2 (-587 (-224 *4 *5))) (-5 *1 (-575 *4 *5)))))
+ (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522))))
+ (-5 *2 (-154 (-291 *4))) (-5 *1 (-167 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-154 *3)) (-5 *1 (-1110 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-588 (-110))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $))
- (-15 -2818 ((-1036 *3 (-560 $)) $))
- (-15 -2223 ($ (-1036 *3 (-560 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $))
- (-15 -2818 ((-1036 *3 (-560 $)) $))
- (-15 -2223 ($ (-1036 *3 (-560 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2))
+ (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2))
(-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *4 (-560 $)) $))
- (-15 -2818 ((-1036 *4 (-560 $)) $))
- (-15 -2223 ($ (-1036 *4 (-560 $)))))))
- (-4 *4 (-513)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-560 *2)))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *4 (-560 $)) $))
- (-15 -2818 ((-1036 *4 (-560 $)) $))
- (-15 -2223 ($ (-1036 *4 (-560 $)))))))
- (-4 *4 (-513)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-410)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-587 (-521))) (-5 *3 (-627 (-521))) (-5 *1 (-1023)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1119)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-707))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-970))
- (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
- (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-560 *3)) (-4 *3 (-783))))
- ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $))
+ (-15 -2816 ((-1037 *3 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *3 (-561 $))))))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-849)) (-4 *5 (-783))
- (-5 *2 (-587 (-612 *5))) (-5 *1 (-612 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| -2979 (-521)) (|:| |var| (-560 *1))))
- (-4 *1 (-404 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-202))))
- ((*1 *1 *1) (-4 *1 (-506)))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-544 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1031)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
- (-4 *3 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-914 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1020 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239))))
- ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
+ (-12 (-5 *3 (-628 *8)) (-5 *4 (-708)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085))))
+ (-4 *7 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |det| *8) (|:| |rows| (-588 (-522)))
+ (|:| |cols| (-588 (-522))))))
+ (-5 *1 (-853 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-2 (|:| -3435 *4) (|:| -3152 (-522)))))
+ (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-943 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *3)) (-4 *3 (-1120)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-708))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-971))
+ (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-561 *3)) (-4 *3 (-784))))
+ ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *6)) (-4 *5 (-1013))
- (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-584 *5 *6))))
+ (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-588 (-1115 *5)))
+ (-5 *1 (-1174 *5)) (-5 *4 (-1115 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-202))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-545 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1032)))))
+(((*1 *1 *1 *1) (-4 *1 (-895))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-291 *4)) (-4 *4 (-13 (-765) (-784) (-971)))
+ (-5 *2 (-1068)) (-5 *1 (-763 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-291 *5)) (-5 *4 (-108))
+ (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1068))
+ (-5 *1 (-763 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-759)) (-5 *4 (-291 *5))
+ (-4 *5 (-13 (-765) (-784) (-971))) (-5 *2 (-1171))
+ (-5 *1 (-763 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013))
- (-4 *2 (-1119)) (-5 *1 (-584 *5 *2))))
+ (-12 (-5 *3 (-759)) (-5 *4 (-291 *6)) (-5 *5 (-108))
+ (-4 *6 (-13 (-765) (-784) (-971))) (-5 *2 (-1171))
+ (-5 *1 (-763 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-765)) (-5 *2 (-1068))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-765)) (-5 *3 (-108)) (-5 *2 (-1068))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *2 (-1171))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-765)) (-5 *3 (-759)) (-5 *4 (-108)) (-5 *2 (-1171)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *6)) (-4 *5 (-1014))
+ (-4 *6 (-1120)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 *5)) (-4 *6 (-1013))
- (-4 *5 (-1119)) (-5 *2 (-1 *5 *6)) (-5 *1 (-584 *6 *5))))
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014))
+ (-4 *2 (-1120)) (-5 *1 (-585 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 *5)) (-4 *6 (-1014))
+ (-4 *5 (-1120)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-4 *5 (-1013))
- (-4 *2 (-1119)) (-5 *1 (-584 *5 *2))))
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-4 *5 (-1014))
+ (-4 *2 (-1120)) (-5 *1 (-585 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-587 *5)) (-5 *4 (-587 *6))
- (-4 *5 (-1013)) (-4 *6 (-1119)) (-5 *1 (-584 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-588 *5)) (-5 *4 (-588 *6))
+ (-4 *5 (-1014)) (-4 *6 (-1120)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1013)) (-4 *2 (-1119)) (-5 *1 (-584 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-707)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33)))
- (-4 *5 (-13 (-1013) (-33))) (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)))))
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1014)) (-4 *2 (-1120)) (-5 *1 (-585 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-708)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-730))
+ (-4 *3 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *5 (-514))
+ (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *6))
+ (-4 *6
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2))
+ (-4 *2 (-878 (-881 *4) *5 *6)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-588 (-1085)))
+ (-4 *2 (-13 (-405 (-154 *5)) (-928) (-1106)))
+ (-4 *5 (-13 (-514) (-784))) (-5 *1 (-551 *5 *6 *2))
+ (-4 *6 (-13 (-405 *5) (-928) (-1106))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4))
+ (-5 *2 (-393 *3)) (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-628 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-404 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1013))))
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-708)) (-4 *5 (-514))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *2 (-960)) (-5 *1 (-689)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-522))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-587 *1)) (-4 *1 (-877 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-587 *3))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $))
- (-15 -2818 (*7 $))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-627 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 *4)) (-5 *1 (-1051 *3 *4))
+ (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108))
+ (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-960)) (-5 *1 (-694)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 *10))
- (-5 *1 (-569 *5 *6 *7 *8 *9 *10)) (-4 *9 (-989 *5 *6 *7 *8))
- (-4 *10 (-1022 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *10))
+ (-5 *1 (-570 *5 *6 *7 *8 *9 *10)) (-4 *9 (-990 *5 *6 *7 *8))
+ (-4 *10 (-1023 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
- (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6)))
- (-5 *1 (-572 *5 *6))))
+ (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426))
+ (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6)))
+ (-5 *1 (-573 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
- (-14 *6 (-587 (-1084)))
+ (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426))
+ (-14 *6 (-588 (-1085)))
(-5 *2
- (-587 (-1055 *5 (-493 (-793 *6)) (-793 *6) (-716 *5 (-793 *6)))))
- (-5 *1 (-572 *5 *6))))
+ (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6)))))
+ (-5 *1 (-573 *5 *6))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
- (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6)))
- (-5 *1 (-967 *5 *6))))
+ (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426))
+ (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6)))
+ (-5 *1 (-968 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-1113 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1067))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1105) (-29 *4))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-783))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-1114 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-361 *3)) (|:| |mm| (-361 *3)) (|:| |rm| (-361 *3))))
+ (-5 *1 (-361 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-756 *3)) (|:| |mm| (-756 *3)) (|:| |rm| (-756 *3))))
+ (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3))
+ (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-338)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 (-382 *3)))
+ (-4 *1 (-310 *4 *3 *5 *2)) (-4 *2 (-317 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-522)) (-4 *2 (-338)) (-4 *4 (-1142 *2))
+ (-4 *5 (-1142 (-382 *4))) (-4 *1 (-310 *2 *4 *5 *6))
+ (-4 *6 (-317 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-338)) (-4 *3 (-1142 *2)) (-4 *4 (-1142 (-382 *3)))
+ (-4 *1 (-310 *2 *3 *4 *5)) (-4 *5 (-317 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))
+ (-4 *1 (-310 *3 *4 *5 *2)) (-4 *2 (-317 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-388 *4 (-382 *4) *5 *6)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-4 *3 (-338))
+ (-4 *1 (-310 *3 *4 *5 *6)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-105)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-588 (-270 *4))) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2))
+ (-4 *2 (-1142 *4)))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1068))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-108)) (-5 *1 (-201 *4 *5)) (-4 *5 (-13 (-1106) (-29 *4))))))
+(((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-72 FCN)))) (-5 *2 (-960))
+ (-5 *1 (-684)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-708)) (-5 *2 (-588 (-1085))) (-5 *1 (-189))
+ (-5 *3 (-1085))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-291 (-202))) (-5 *4 (-708)) (-5 *2 (-588 (-1085)))
+ (-5 *1 (-243))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-588 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 *3)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-588 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-588 (-1085))) (-4 *2 (-157))
+ (-4 *3 (-215 (-3480 *4) (-708)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *3))
+ (-2 (|:| -2717 *5) (|:| -1400 *3))))
+ (-5 *1 (-435 *4 *2 *5 *3 *6 *7)) (-4 *5 (-784))
+ (-4 *7 (-878 *2 *3 (-794 *4))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-382 (-881 *6)) (-1075 (-1085) (-881 *6))))
+ (-5 *5 (-708)) (-4 *6 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *6)))))
+ (-5 *1 (-268 *6)) (-5 *4 (-628 (-382 (-881 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5))))
+ (|:| |eigmult| (-708)) (|:| |eigvec| (-588 *4))))
+ (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5)))))
+ (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2))
+ (-4 *2 (-598 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
+ (-5 *1 (-818 *4 *2)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-619 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-784))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-257 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-258 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
(-12
(-5 *2
(-2
- (|:| -2535
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (|:| -2530
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
- (|:| -3050
+ (|:| -3048
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -486,10 +594,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1065 (-202)))
+ (-3 (|:| |str| (-1066 (-202)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1403
+ (|:| -2386
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -497,1714 +605,1599 @@
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-516))))
+ (-5 *1 (-517))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-632 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-633 *2)) (-4 *2 (-1014))))
((*1 *1 *2)
(-12
(-5 *2
(-2
- (|:| -2535
+ (|:| -2530
(-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
(|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (|:| -3050
- (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
- (|:| |expense| (-353)) (|:| |accuracy| (-353))
- (|:| |intermediateResults| (-353))))))
- (-5 *1 (-739))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-521)) (-4 *5 (-323)) (-5 *2 (-392 (-1080 (-1080 *5))))
- (-5 *1 (-1118 *5)) (-5 *3 (-1080 (-1080 *5))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-408))
- (-5 *2
- (-587
- (-3 (|:| -2890 (-1084))
- (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521)))))))))
- (-5 *1 (-1088)))))
-(((*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-506)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 *4)) (-5 *1 (-1050 *3 *4))
- (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
- (-5 *2 (-959)) (-5 *1 (-693)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *5 (-1013)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-337))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-423 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-337))
+ (|:| -3048
+ (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354))
+ (|:| |expense| (-354)) (|:| |accuracy| (-354))
+ (|:| |intermediateResults| (-354))))))
+ (-5 *1 (-740))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-588 (-522)))
+ (|:| |cols| (-588 (-522)))))
+ (-5 *4 (-628 *12)) (-5 *5 (-588 (-382 (-881 *9))))
+ (-5 *6 (-588 (-588 *12))) (-5 *7 (-708)) (-5 *8 (-522))
+ (-4 *9 (-13 (-283) (-135))) (-4 *12 (-878 *9 *11 *10))
+ (-4 *10 (-13 (-784) (-563 (-1085)))) (-4 *11 (-730))
(-5 *2
- (-2 (|:| R (-627 *6)) (|:| A (-627 *6)) (|:| |Ainv| (-627 *6))))
- (-5 *1 (-904 *6)) (-5 *3 (-627 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783)))
- (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105)))
- (-5 *1 (-550 *4 *3 *2)) (-4 *3 (-13 (-404 *4) (-927) (-1105))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-538 *2)) (-4 *2 (-13 (-29 *4) (-1105)))
- (-5 *1 (-536 *4 *2))
- (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-538 (-381 (-880 *4))))
- (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *2 (-290 *4)) (-5 *1 (-541 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1120 *2))
- (-4 *2 (-1013))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-783))
- (-5 *1 (-1120 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521))))
- (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-587 (-290 (-202)))) (-5 *3 (-202)) (-5 *2 (-108))
- (-5 *1 (-189)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3))
- (-4 *3 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3)))
- (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3)))
- (-4 *3 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3)))
- (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))))
-(((*1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-342)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-587 (-587 (-202)))) (-5 *4 (-202))
- (-5 *2 (-587 (-871 *4))) (-5 *1 (-1116)) (-5 *3 (-871 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2286 (-718 *3)) (|:| |coef1| (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2286 *1) (|:| |coef1| *1)))
- (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-392 *3)) (-5 *1 (-842 *3)) (-4 *3 (-282)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970))
- (-4 *6 (-1141 *5)) (-5 *2 (-1080 (-1080 *7)))
- (-5 *1 (-470 *5 *6 *4 *7)) (-4 *4 (-1141 *6)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-627 (-1080 *8))) (-4 *5 (-970)) (-4 *8 (-970))
- (-4 *6 (-1141 *5)) (-5 *2 (-627 *6)) (-5 *1 (-470 *5 *6 *7 *8))
- (-4 *7 (-1141 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-970))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-871 (-202))) (-5 *2 (-202)) (-5 *1 (-1116))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))))
-(((*1 *2)
- (-12 (-4 *3 (-970)) (-5 *2 (-885 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1141 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-707)) (-5 *2 (-587 (-1084))) (-5 *1 (-189))
- (-5 *3 (-1084))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 (-202))) (-5 *4 (-707)) (-5 *2 (-587 (-1084)))
- (-5 *1 (-243))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-587 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 *3)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-612 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-616 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-587 *3)))))
+ (-2 (|:| |eqzro| (-588 *12)) (|:| |neqzro| (-588 *12))
+ (|:| |wcond| (-588 (-881 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *9))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *9)))))))))
+ (-5 *1 (-853 *9 *10 *11 *12)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-4 *4 (-1119)) (-5 *2 (-108))
- (-5 *1 (-1065 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-802)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-822 *2 *3)) (-4 *2 (-1141 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
- (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202)))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-959)) (-5 *1 (-690)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-618 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *3 (-521)) (-4 *1 (-797 *4)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-587 (-560 *6))) (-5 *4 (-1084)) (-5 *2 (-560 *6))
- (-4 *6 (-404 *5)) (-4 *5 (-783)) (-5 *1 (-530 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-627 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4))
- (-4 *3 (-391 *4))))
- ((*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
+ (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426))
+ (-5 *2 (-588 (-588 (-224 *5 *6)))) (-5 *1 (-445 *5 *6 *7))
+ (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-926 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1165 (-587 (-2 (|:| -3434 (-838 *3)) (|:| -2723 (-1031))))))
- (-5 *1 (-325 *3 *4)) (-14 *3 (-849)) (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031))))))
- (-5 *1 (-326 *3 *4)) (-4 *3 (-323)) (-14 *4 (-3 (-1080 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031))))))
- (-5 *1 (-327 *3 *4)) (-4 *3 (-323)) (-14 *4 (-849)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-2 (|:| |k| (-755 *3)) (|:| |c| *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
- (-5 *2 (-587 (-1084))) (-5 *1 (-243))))
+ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))
+ (-5 *2 (-588 (-1085))) (-5 *1 (-243))))
((*1 *2 *3)
- (-12 (-5 *3 (-1080 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-970)) (-5 *2 (-587 *5))
- (-5 *1 (-295 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-588 *5))
+ (-5 *1 (-296 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-313 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-361))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-314 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-362))))
((*1 *2 *1)
- (-12 (-4 *1 (-404 *3)) (-4 *3 (-783)) (-5 *2 (-587 (-1084)))))
+ (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-588 (-1085)))))
((*1 *2 *1)
- (-12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-587 *5))))
+ (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-588 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-587 *5))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *5))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $)))))))
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1015 (-1084))) (-5 *1 (-893 *3)) (-4 *3 (-894))))
+ (-12 (-5 *2 (-1016 (-1085))) (-5 *1 (-894 *3)) (-4 *3 (-895))))
((*1 *2 *1)
- (-12 (-4 *1 (-899 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-728))
- (-4 *5 (-783)) (-5 *2 (-587 *5))))
+ (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-588 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5))))
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-5 *2 (-587 (-1084)))
- (-5 *1 (-966 *4)))))
+ (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-5 *2 (-588 (-1085)))
+ (-5 *1 (-967 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-628 *5)) (-4 *5 (-971)) (-5 *1 (-975 *3 *4 *5))
+ (-14 *3 (-708)) (-14 *4 (-708)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2 (-587 (-202))) (-5 *1 (-183)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-817 *4 *3))
- (-4 *3 (-1013)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1065 *3)) (-4 *3 (-1013))
- (-4 *3 (-1119)))))
+ (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-382 (-522))))
+ (-5 *1 (-281)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-588
+ (-2 (|:| -3166 (-708))
+ (|:| |eqns|
+ (-588
+ (-2 (|:| |det| *7) (|:| |rows| (-588 (-522)))
+ (|:| |cols| (-588 (-522))))))
+ (|:| |fgb| (-588 *7)))))
+ (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135)))
+ (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708))
+ (-5 *1 (-853 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-618 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2))
- (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2))
- (-4 *4 (-625 *2 *5 *6)))))
+ (-12 (-5 *1 (-619 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441))))
+ ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441))))
+ ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-423 *4 *5 *6 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))))
+ (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4)) (-4 *4 (-13 (-784) (-514)))
+ (-5 *2 (-792)) (-5 *1 (-31 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
- (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6))))
+ (-12 (-14 *4 (-708)) (-4 *5 (-1120)) (-5 *2 (-126))
+ (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
- (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-280))))
+ (-12 (-4 *4 (-338)) (-5 *2 (-126)) (-5 *1 (-303 *3 *4))
+ (-4 *3 (-304 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-157))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730))
+ (-5 *2 (-522)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-971)) (-5 *2 (-850))))
+ ((*1 *2) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-338)) (-5 *2 (-126)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 *1)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-628 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 *4)) (-4 *4 (-971)) (-4 *1 (-1035 *3 *4 *5 *6))
+ (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-281))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-820 *3)) (|:| |den| (-820 *3))))
- (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108)))))
+ (-5 *2 (-2 (|:| |num| (-821 *3)) (|:| |den| (-821 *3))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108))
+ (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-514) (-135)))
+ (-5 *2 (-2 (|:| -1913 *3) (|:| -1924 *3))) (-5 *1 (-1136 *4 *3))
+ (-4 *3 (-1142 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1080 (-381 (-1080 *2)))) (-5 *4 (-560 *2))
- (-4 *2 (-13 (-404 *5) (-27) (-1105)))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1013))))
+ (-12 (-5 *3 (-1081 (-382 (-1081 *2)))) (-5 *4 (-561 *2))
+ (-4 *2 (-13 (-405 *5) (-27) (-1106)))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *1 (-518 *5 *2 *6)) (-4 *6 (-1014))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1080 *1)) (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1081 *1)) (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *3 (-784))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1080 *4)) (-4 *4 (-970)) (-4 *1 (-877 *4 *5 *3))
- (-4 *5 (-729)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1081 *4)) (-4 *4 (-971)) (-4 *1 (-878 *4 *5 *3))
+ (-4 *5 (-730)) (-4 *3 (-784))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-1080 *2))) (-4 *5 (-729)) (-4 *4 (-783))
- (-4 *6 (-970))
+ (-12 (-5 *3 (-382 (-1081 *2))) (-4 *5 (-730)) (-4 *4 (-784))
+ (-4 *6 (-971))
(-4 *2
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $)))))
- (-5 *1 (-878 *5 *4 *6 *7 *2)) (-4 *7 (-877 *6 *5 *4))))
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $)))))
+ (-5 *1 (-879 *5 *4 *6 *7 *2)) (-4 *7 (-878 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-1080 (-381 (-880 *5))))) (-5 *4 (-1084))
- (-5 *2 (-381 (-880 *5))) (-5 *1 (-966 *5)) (-4 *5 (-513)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-323)) (-4 *2 (-970)) (-5 *1 (-649 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-902 *4 *5 *3 *6)) (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *3 (-783)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-849)) (-4 *5 (-513)) (-5 *2 (-627 *5))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-597 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1084))
- (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
-(((*1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-342)) (-4 *2 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-464)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 (-560 *5))) (-5 *3 (-1084)) (-4 *5 (-404 *4))
- (-4 *4 (-783)) (-5 *1 (-530 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-381 *6))
- (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337))
- (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5)))
- (-5 *1 (-796 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-707)) (-5 *4 (-1157 *5 *6 *7)) (-4 *5 (-337))
- (-14 *6 (-1084)) (-14 *7 *5) (-5 *2 (-381 (-1138 *6 *5)))
- (-5 *1 (-796 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1080 *7)) (-4 *7 (-877 *6 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-970)) (-5 *2 (-1080 *6))
- (-5 *1 (-295 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-382 (-1081 (-382 (-881 *5))))) (-5 *4 (-1085))
+ (-5 *2 (-382 (-881 *5))) (-5 *1 (-967 *5)) (-4 *5 (-514)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |h| *6)
+ (|:| |c1| (-382 *6)) (|:| |c2| (-382 *6)) (|:| -1639 *6)))
+ (-5 *1 (-942 *5 *6)) (-5 *3 (-382 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-94 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-971)) (-5 *2 (-1166 *4))
+ (-5 *1 (-1086 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-5 *2 (-1166 *3)) (-5 *1 (-1086 *3))
+ (-4 *3 (-971)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-991 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9))))
+ (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8))
+ (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784))
+ (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1886 *9))))
+ (-5 *1 (-991 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-881 (-202))) (-5 *2 (-202)) (-5 *1 (-281)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-1 (-108) *5 *5))
- (-5 *4 (-587 *5)) (-4 *5 (-783)) (-5 *1 (-1091 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-900)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-854)))))
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4)))
+ (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-522)) (-4 *5 (-324)) (-5 *2 (-393 (-1081 (-1081 *5))))
+ (-5 *1 (-1119 *5)) (-5 *3 (-1081 (-1081 *5))))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)))
+ (-5 *2 (-777 *4)) (-5 *1 (-288 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)))
+ (-5 *2 (-777 *4)) (-5 *1 (-1152 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1106) (-405 *3))) (-14 *5 (-1085))
+ (-14 *6 *4))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2776 *4))) (-5 *1 (-897 *4 *3))
+ (-4 *3 (-1142 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1052 *3 *4)) (-14 *3 (-850)) (-4 *4 (-338))
+ (-5 *1 (-920 *3 *4)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-588
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-730)) (-4 *3 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784))
+ (-5 *1 (-423 *4 *5 *6 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-335 (-110))) (-4 *2 (-970)) (-5 *1 (-651 *2 *4))
- (-4 *4 (-589 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-335 (-110))) (-5 *1 (-770 *2)) (-4 *2 (-970)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-79 FCN)))) (-5 *2 (-959))
- (-5 *1 (-683)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5))
- (-4 *5 (-151 *4)) (-4 *4 (-506)) (-5 *1 (-137 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 *3)) (-4 *3 (-1141 *5))
- (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *1 (-332 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-1080 (-521)))) (-5 *3 (-1080 (-521)))
- (-5 *1 (-529))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-1080 *1))) (-5 *3 (-1080 *1))
- (-4 *1 (-837)))))
+ (-12 (-5 *2 (-981 (-949 *4) (-1081 (-949 *4)))) (-5 *3 (-792))
+ (-5 *1 (-949 *4)) (-4 *4 (-13 (-782) (-338) (-947))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-627 *4))
- (-5 *1 (-750 *4 *5)) (-4 *5 (-597 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-337))
- (-5 *2 (-627 *5)) (-5 *1 (-750 *5 *6)) (-4 *6 (-597 *5)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2))
- (-4 *2 (-1141 *4)))))
+ (-12 (-4 *4 (-1142 *2)) (-4 *2 (-1124)) (-5 *1 (-136 *2 *4 *3))
+ (-4 *3 (-1142 (-382 *4))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-337)) (-4 *4 (-513)) (-4 *5 (-1141 *4))
- (-5 *2 (-2 (|:| -1953 (-568 *4 *5)) (|:| -2065 (-381 *5))))
- (-5 *1 (-568 *4 *5)) (-5 *3 (-381 *5))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-514))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426)) (-5 *1 (-335 *3 *4))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-424 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-424 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-424 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784))
+ (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426))
+ (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-409))
+ (-5 *2
+ (-588
+ (-3 (|:| -2888 (-1085))
+ (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522)))))))))
+ (-5 *1 (-1089)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-1014)) (-5 *2 (-588 *1))
+ (-4 *1 (-357 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4))
- (-14 *3 (-849)) (-4 *4 (-970))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-425)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1141 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+ (-12 (-5 *2 (-588 (-673 *3 *4))) (-5 *1 (-673 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-664))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-878 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-693)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-587 (-849))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-849))
- (-4 *2 (-337)) (-14 *5 (-919 *4 *2))))
+ (-12 (-5 *3 (-588 (-850))) (-5 *1 (-140 *4 *2 *5)) (-14 *4 (-850))
+ (-4 *2 (-338)) (-14 *5 (-920 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-783))
- (-4 *6 (-215 (-3478 *4) (-707)))
+ (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-784))
+ (-4 *6 (-215 (-3480 *4) (-708)))
(-14 *7
- (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *6))
- (-2 (|:| -2723 *5) (|:| -2246 *6))))
- (-14 *4 (-587 (-1084))) (-4 *2 (-157))
- (-5 *1 (-434 *4 *2 *5 *6 *7 *8)) (-4 *8 (-877 *2 *6 (-793 *4)))))
+ (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *6))
+ (-2 (|:| -2717 *5) (|:| -1400 *6))))
+ (-14 *4 (-588 (-1085))) (-4 *2 (-157))
+ (-5 *1 (-435 *4 *2 *5 *6 *7 *8)) (-4 *8 (-878 *2 *6 (-794 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-783))))
+ (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4))
- (-4 *4 (-1141 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970))))
+ (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4))
+ (-4 *4 (-1142 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-672 *2 *3)) (-4 *2 (-970)) (-4 *3 (-663))))
+ (-12 (-5 *1 (-673 *2 *3)) (-4 *2 (-971)) (-4 *3 (-664))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5))
- (-4 *4 (-970)) (-4 *5 (-783))))
+ (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5))
+ (-4 *4 (-971)) (-4 *5 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970))
- (-4 *2 (-783))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-785 *2)) (-4 *2 (-970))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971))
+ (-4 *2 (-784))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-877 *4 *5 *6))
- (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783))))
+ (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6))
+ (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *2 (-783))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *2 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 *5)) (-4 *1 (-899 *4 *5 *6))
- (-4 *4 (-970)) (-4 *5 (-728)) (-4 *6 (-783))))
+ (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 *5)) (-4 *1 (-900 *4 *5 *6))
+ (-4 *4 (-971)) (-4 *5 (-729)) (-4 *6 (-784))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-899 *4 *3 *2)) (-4 *4 (-970)) (-4 *3 (-728))
- (-4 *2 (-783)))))
+ (-12 (-4 *1 (-900 *4 *3 *2)) (-4 *4 (-971)) (-4 *3 (-729))
+ (-4 *2 (-784)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-4 *3 (-283)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1142 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-283)) (-5 *1 (-434 *3 *2)) (-4 *2 (-1142 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-283)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-708)))
+ (-5 *1 (-501 *3 *2 *4 *5)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971))
+ (-5 *1 (-1070 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171))
+ (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1082 *4 *5 *6))
- (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1157 *4 *5 *6))
- (-4 *4 (-970)) (-14 *5 (-1084)) (-14 *6 *4))))
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-588 (-708)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 (-708))))))
+(((*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *1 (-956 *2))
- (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-452)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-833 *3)))))
-(((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
+ (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1084))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-4 *4 (-13 (-29 *6) (-1105) (-886)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1245 (-587 *4))))
- (-5 *1 (-737 *6 *4 *3)) (-4 *3 (-597 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *6))) (-5 *4 (-587 (-1084)))
- (-4 *6 (-13 (-513) (-961 *5))) (-4 *5 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *6)))))) (-5 *1 (-962 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-832 *4))
- (-4 *4 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-692)))))
-(((*1 *2 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970))))
- ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-587 (-992 *4 *5 *2))) (-4 *4 (-1013))
- (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4))))
- (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-587 (-992 *5 *6 *2))) (-5 *4 (-849)) (-4 *5 (-1013))
- (-4 *6 (-13 (-970) (-814 *5) (-783) (-562 (-820 *5))))
- (-4 *2 (-13 (-404 *6) (-814 *5) (-562 (-820 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1067)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-381 (-880 (-521)))))
+ (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8)))
+ (-4 *7 (-784)) (-4 *8 (-283)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730))
(-5 *2
- (-587
- (-2 (|:| |radval| (-290 (-521))) (|:| |radmult| (-521))
- (|:| |radvect| (-587 (-627 (-290 (-521))))))))
- (-5 *1 (-955)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-707)) (-5 *1 (-518)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *1 *1) (-4 *1 (-506))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-739)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))))
-(((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-497))) (-5 *1 (-497)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
- (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9))
- (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6))
- (-4 *8 (-347 *7)) (-4 *9 (-347 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2)) (-4 *2 (-282))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
- (-4 *2 (-625 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-973 *2 *3 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-282)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-560 *4)) (-4 *4 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-108)) (-5 *1 (-815 *5 *3 *4))
- (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *6)) (-4 *6 (-814 *5)) (-4 *5 (-1013))
- (-5 *2 (-108)) (-5 *1 (-815 *5 *6 *4)) (-4 *4 (-562 (-820 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-979))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-979))))
- ((*1 *1 *1) (-4 *1 (-781)))
- ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)) (-4 *2 (-979))))
- ((*1 *1 *1) (-4 *1 (-979))) ((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1141 *4)))))
+ (-2 (|:| |upol| (-1081 *8)) (|:| |Lval| (-588 *8))
+ (|:| |Lfact|
+ (-588 (-2 (|:| -1916 (-1081 *8)) (|:| -1400 (-522)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-680 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507)))))
(((*1 *2)
- (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4))
- (-4 *3 (-303 *4))))
- ((*1 *2) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-707)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-4 *1 (-894))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-959)) (-5 *1 (-685)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-587 *4)) (-4 *4 (-783))
- (-5 *1 (-1091 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202)))
- (-5 *2 (-1167)) (-5 *1 (-233)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4))
+ (-5 *2 (-2 (|:| -2977 (-382 *5)) (|:| |poly| *3)))
+ (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514))))))
+(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-818 *4 *5)) (-4 *5 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-342)) (-5 *2 (-849))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-849))
- (-5 *1 (-491 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
- (-5 *2 (-627 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-456 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1085)) (-5 *6 (-588 (-561 *3)))
+ (-5 *5 (-561 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *7)))
+ (-4 *7 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3)))
+ (-5 *1 (-515 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157))
+ (-5 *2 (-1166 (-628 (-881 *4)))) (-5 *1 (-168 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1099)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-761)) (-5 *1 (-762)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1014)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
- (-14 *6
- (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *2))
- (-2 (|:| -2723 *5) (|:| -2246 *2))))
- (-4 *2 (-215 (-3478 *3) (-707))) (-5 *1 (-434 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-783)) (-4 *7 (-877 *4 *2 (-793 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-4 *1 (-894))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4234)) (-4 *4 (-337)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-488 *4 *5 *6 *3))
- (-4 *3 (-625 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4234)) (-4 *4 (-513)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-4 *7 (-918 *4)) (-4 *8 (-347 *7))
- (-4 *9 (-347 *7)) (-5 *2 (-587 *6))
- (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-625 *4 *5 *6))
- (-4 *10 (-625 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-587 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-5 *2 (-587 *6)) (-5 *1 (-626 *4 *5 *6 *3))
- (-4 *3 (-625 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513))
- (-5 *2 (-587 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-419)) (-5 *3 (-521)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-5 *2 (-587 *5))
- (-5 *1 (-818 *4 *5)) (-4 *5 (-1119)))))
-(((*1 *1) (-5 *1 (-759))))
+ (|partial| -12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971))
+ (-4 *2 (-1126 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-719 *3)) (|:| |polden| *3) (|:| -4042 (-708))))
+ (-5 *1 (-719 *3)) (-4 *3 (-971))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4042 (-708))))
+ (-4 *1 (-985 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013))
- (-4 *2 (-783)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783)))
- (-4 *2 (-13 (-404 *4) (-927) (-1105))) (-5 *1 (-550 *4 *2 *3))
- (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))))
-(((*1 *1) (-5 *1 (-266))))
-(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-968)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729))
- (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-877 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))))
-(((*1 *2 *2) (-12 (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
-(((*1 *1) (-5 *1 (-304))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1084)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-526 *3)) (-4 *3 (-961 (-521)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1056 *3)))))
+ (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-895)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441))))
+ ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441))))
+ ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-4 *1 (-895))))
+(((*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2))
+ (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014))
+ (-4 *3 (-151 *6)) (-4 (-881 *6) (-815 *5))
+ (-4 *6 (-13 (-815 *5) (-157))) (-5 *1 (-162 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-818 *4 *1)) (-5 *3 (-821 *4)) (-4 *1 (-815 *4))
+ (-4 *4 (-1014))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014))
+ (-4 *6 (-13 (-1014) (-962 *3))) (-4 *3 (-815 *5))
+ (-5 *1 (-860 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014))
+ (-4 *3 (-13 (-405 *6) (-563 *4) (-815 *5) (-962 (-561 $))))
+ (-5 *4 (-821 *5)) (-4 *6 (-13 (-514) (-784) (-815 *5)))
+ (-5 *1 (-861 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 (-522) *3)) (-5 *4 (-821 (-522))) (-4 *3 (-507))
+ (-5 *1 (-862 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *6)) (-5 *3 (-561 *6)) (-4 *5 (-1014))
+ (-4 *6 (-13 (-784) (-962 (-561 $)) (-563 *4) (-815 *5)))
+ (-5 *4 (-821 *5)) (-5 *1 (-863 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-814 *5 *6 *3)) (-5 *4 (-821 *5)) (-4 *5 (-1014))
+ (-4 *6 (-815 *5)) (-4 *3 (-608 *6)) (-5 *1 (-864 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-818 *6 *3) *8 (-821 *6) (-818 *6 *3)))
+ (-4 *8 (-784)) (-5 *2 (-818 *6 *3)) (-5 *4 (-821 *6))
+ (-4 *6 (-1014)) (-4 *3 (-13 (-878 *9 *7 *8) (-563 *4)))
+ (-4 *7 (-730)) (-4 *9 (-13 (-971) (-784) (-815 *6)))
+ (-5 *1 (-865 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014))
+ (-4 *3 (-13 (-878 *8 *6 *7) (-563 *4))) (-5 *4 (-821 *5))
+ (-4 *7 (-815 *5)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *8 (-13 (-971) (-784) (-815 *5))) (-5 *1 (-865 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-919 *6))
+ (-4 *6 (-13 (-514) (-815 *5) (-563 *4))) (-5 *4 (-821 *5))
+ (-5 *1 (-868 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-818 *5 (-1085))) (-5 *3 (-1085)) (-5 *4 (-821 *5))
+ (-4 *5 (-1014)) (-5 *1 (-869 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-588 (-821 *7))) (-5 *5 (-1 *9 (-588 *9)))
+ (-5 *6 (-1 (-818 *7 *9) *9 (-821 *7) (-818 *7 *9))) (-4 *7 (-1014))
+ (-4 *9 (-13 (-971) (-563 (-821 *7)) (-962 *8))) (-5 *2 (-818 *7 *9))
+ (-5 *3 (-588 *9)) (-4 *8 (-13 (-971) (-784)))
+ (-5 *1 (-870 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283))
+ (-5 *2 (-588 (-708))) (-5 *1 (-715 *3 *4 *5 *6 *7))
+ (-4 *3 (-1142 *6)) (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-819 *4 *5)) (-4 *5 (-1120)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-507))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-239))))
- ((*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-783)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *1 *1 *1) (-4 *1 (-698))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-264 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1141 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-157))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-157))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-218))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-521)) (-5 *1 (-218)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1166))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1166))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-1167))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1167)))))
+ (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))
+ (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-513))
- (-4 *8 (-877 *7 *5 *6))
- (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *3) (|:| |radicand| *3)))
- (-5 *1 (-881 *5 *6 *7 *8 *3)) (-5 *4 (-707))
- (-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2807 (*8 $)) (-15 -2818 (*8 $)) (-15 -2223 ($ *8))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-587 (-2 (|:| -1684 *1) (|:| -1564 (-587 *7)))))
- (-5 *3 (-587 *7)) (-4 *1 (-1113 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4)))
+ (-4 *4 (-784)) (-5 *1 (-1092 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-4 *1 (-895))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *7 (-829 *6))
+ (-5 *2 (-628 *7)) (-5 *1 (-630 *6 *7 *3 *4)) (-4 *3 (-348 *7))
+ (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238)))))))
+(((*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))
- (-5 *2 (-1080 *3))))
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-561 *1)) (-4 *1 (-278)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *1) (-5 *1 (-267))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-212 *3))))
+ ((*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
+ (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730))
+ (-4 *8 (-784)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1355 (-588 *9))))
+ (-5 *3 (-588 *9)) (-4 *1 (-1114 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -1355 (-588 *8))))
+ (-5 *3 (-588 *8)) (-4 *1 (-1114 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3))
+ (-5 *2 (-382 (-522))))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-588 (-1081 *13))) (-5 *3 (-1081 *13))
+ (-5 *4 (-588 *12)) (-5 *5 (-588 *10)) (-5 *6 (-588 *13))
+ (-5 *7 (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| *13)))))
+ (-5 *8 (-588 (-708))) (-5 *9 (-1166 (-588 (-1081 *10))))
+ (-4 *12 (-784)) (-4 *10 (-283)) (-4 *13 (-878 *10 *11 *12))
+ (-4 *11 (-730)) (-5 *1 (-646 *11 *12 *10 *13)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))
- (-5 *2 (-1080 *3)))))
+ (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-108))
+ (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
- (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-831 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
+ (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5))))
+ (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5))))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-970))
- (-5 *2 (-627 *3)))))
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1142 (-382 (-522)))) (-5 *1 (-842 *3 *2))
+ (-4 *2 (-1142 (-382 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-872 *5)) (-5 *3 (-708)) (-4 *5 (-971))
+ (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-587
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-729)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-783))
- (-5 *1 (-422 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-1031)) (-5 *2 (-108)) (-5 *1 (-757)))))
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1057 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| |deg| (-707)) (|:| -2992 *5))))
- (-4 *5 (-1141 *4)) (-4 *4 (-323)) (-5 *2 (-587 *5))
- (-5 *1 (-194 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-2 (|:| -1974 *5) (|:| -2098 (-521)))))
- (-5 *4 (-521)) (-4 *5 (-1141 *4)) (-5 *2 (-587 *5))
- (-5 *1 (-633 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-323))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521)))))))
- (-5 *1 (-194 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
- (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
+ (-12 (-4 *4 (-324)) (-5 *2 (-886 (-1081 *4))) (-5 *1 (-332 *4))
+ (-5 *3 (-1081 *4)))))
+(((*1 *1) (-5 *1 (-305))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-514))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-1074 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1168)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1166 (-708))) (-5 *1 (-616 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
(-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-171)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-381 (-880 (-521))))) (-5 *2 (-587 (-290 (-521))))
- (-5 *1 (-955)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-184))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-353))) (-5 *2 (-353)) (-5 *1 (-184)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1037 *4 *3 *5))) (-4 *4 (-37 (-381 (-521))))
- (-4 *4 (-970)) (-4 *3 (-783)) (-5 *1 (-1037 *4 *3 *5))
- (-4 *5 (-877 *4 (-493 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1114 *4))) (-5 *3 (-1084)) (-5 *1 (-1114 *4))
- (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-880 *4)) (-1065 (-880 *4))))
- (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))))
+ (-2 (|:| |cycle?| (-108)) (|:| -3375 (-708)) (|:| |period| (-708))))
+ (-5 *1 (-1066 *4)) (-4 *4 (-1120)) (-5 *3 (-708)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-949 *3))
+ (-4 *3 (-13 (-782) (-338) (-947)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3))
+ (-4 *3 (-1142 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338)))
+ (-4 *3 (-1142 *2)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1168)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-1022 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9))))
+ (-5 *5 (-108)) (-4 *8 (-985 *6 *7 *4)) (-4 *9 (-990 *6 *7 *4 *8))
+ (-4 *6 (-426)) (-4 *7 (-730)) (-4 *4 (-784))
+ (-5 *2 (-588 (-2 (|:| |val| *8) (|:| -1886 *9))))
+ (-5 *1 (-1022 *6 *7 *4 *8 *9)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-971)) (-4 *4 (-157))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))
+ (-4 *3 (-157)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-708)) (-4 *1 (-1142 *4)) (-4 *4 (-971))
+ (-5 *2 (-1166 *4)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-3 *3 (-588 *1)))
+ (-4 *1 (-990 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-971))
+ (-5 *2 (-628 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-202)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522))
+ (-5 *2 (-960)) (-5 *1 (-694)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084)))
- (-4 *5 (-513)) (-5 *2 (-587 (-587 (-880 *5)))) (-5 *1 (-1090 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-981))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-791)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1119)) (-5 *2 (-1170)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1142 *6))
+ (-4 *6 (-13 (-27) (-405 *5)))
+ (-4 *5 (-13 (-784) (-514) (-962 (-522)))) (-4 *8 (-1142 (-382 *7)))
+ (-5 *2 (-539 *3)) (-5 *1 (-510 *5 *6 *7 *8 *3))
+ (-4 *3 (-317 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-522))) (-4 *3 (-971)) (-5 *1 (-547 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1126 *3)) (-4 *3 (-971))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-522))) (-4 *1 (-1157 *3)) (-4 *3 (-971)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-381 (-880 (-154 (-521))))))
- (-5 *2 (-587 (-587 (-269 (-880 (-154 *4)))))) (-5 *1 (-352 *4))
- (-4 *4 (-13 (-337) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-269 (-381 (-880 (-154 (-521)))))))
- (-5 *2 (-587 (-587 (-269 (-880 (-154 *4)))))) (-5 *1 (-352 *4))
- (-4 *4 (-13 (-337) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 (-154 (-521)))))
- (-5 *2 (-587 (-269 (-880 (-154 *4))))) (-5 *1 (-352 *4))
- (-4 *4 (-13 (-337) (-781)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1052 *4 *2)) (-14 *4 (-850))
+ (-4 *2 (-13 (-971) (-10 -7 (-6 (-4240 "*"))))) (-5 *1 (-831 *4 *2)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-960)) (-5 *1 (-686)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-708))
+ (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1081 *1)) (-5 *3 (-1085)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1085)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-784) (-514)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-784) (-514)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-269 (-381 (-880 (-154 (-521))))))
- (-5 *2 (-587 (-269 (-880 (-154 *4))))) (-5 *1 (-352 *4))
- (-4 *4 (-13 (-337) (-781))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521)))
- (-5 *1 (-169)))))
+ (-12 (-5 *3 (-1081 *2)) (-5 *4 (-1085)) (-4 *2 (-405 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-784) (-514)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-4 *1 (-938))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1081 *1)) (-5 *3 (-850)) (-5 *4 (-792))
+ (-4 *1 (-938))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-850)) (-4 *4 (-13 (-782) (-338)))
+ (-4 *1 (-987 *4 *2)) (-4 *2 (-1142 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-522) (-522))) (-5 *1 (-336 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-708) (-708))) (-5 *1 (-361 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5)))
+ (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-243)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-1166 *4))) (-4 *4 (-971)) (-5 *2 (-628 *4))
+ (-5 *1 (-954 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-98 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1081 *7))
+ (-4 *5 (-971)) (-4 *7 (-971)) (-4 *2 (-1142 *5))
+ (-5 *1 (-471 *5 *2 *6 *7)) (-4 *6 (-1142 *2)))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1150 *4 *5 *6))
- (|:| |%expon| (-293 *4 *5 *6))
- (|:| |%expTerms|
- (-587 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4))))))
- (|:| |%type| (-1067))))
- (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3)))
- (-14 *5 (-1084)) (-14 *6 *4))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-627 *11)) (-5 *4 (-587 (-381 (-880 *8))))
- (-5 *5 (-707)) (-5 *6 (-1067)) (-4 *8 (-13 (-282) (-135)))
- (-4 *11 (-877 *8 *10 *9)) (-4 *9 (-13 (-783) (-562 (-1084))))
- (-4 *10 (-729))
+ (-12 (-5 *2 (-588 (-270 *3))) (-5 *1 (-270 *3)) (-4 *3 (-514))
+ (-4 *3 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459))))
+ ((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))
+ ((*1 *1 *1) (-4 *1 (-980))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *2 *1)
+ (-12
(-5 *2
- (-2
- (|:| |rgl|
- (-587
- (-2 (|:| |eqzro| (-587 *11)) (|:| |neqzro| (-587 *11))
- (|:| |wcond| (-587 (-880 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *8))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *8))))))))))
- (|:| |rgsz| (-521))))
- (-5 *1 (-852 *8 *9 *10 *11)) (-5 *7 (-521)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-404 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *1 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *4))
- (-4 *4 (-404 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-110)) (-5 *1 (-148))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *4))
- (-4 *4 (-13 (-404 *3) (-927)))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-276 *3)) (-4 *3 (-277))))
- ((*1 *2 *2) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *4 (-783)) (-5 *1 (-403 *3 *4))
- (-4 *3 (-404 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *4))
- (-4 *4 (-404 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-560 *3)) (-4 *3 (-783))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *4))
- (-4 *4 (-13 (-404 *3) (-927) (-1105))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
- (-14 *6 (-587 (-1084))) (-5 *2 (-587 (-967 *5 *6)))
- (-5 *1 (-572 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-871 *5)) (-4 *5 (-970)) (-5 *2 (-707))
- (-5 *1 (-1073 *4 *5)) (-14 *4 (-849))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-970))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-707))) (-5 *3 (-871 *5)) (-4 *5 (-970))
- (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-718 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-890 *3 *2)) (-4 *2 (-124)) (-4 *3 (-513))
- (-4 *3 (-970)) (-4 *2 (-728))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-1080 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-897)) (-4 *2 (-124)) (-5 *1 (-1086 *3)) (-4 *3 (-513))
- (-4 *3 (-970))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-1138 *4 *3)) (-14 *4 (-1084))
- (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
-(((*1 *1) (-4 *1 (-323))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1121)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1008 (-202)))
- (-5 *5 (-108)) (-5 *2 (-1167)) (-5 *1 (-233)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323)))))
+ (-588
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-522)))))
+ (-5 *1 (-393 *3)) (-4 *3 (-514))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-708)) (-4 *3 (-324)) (-4 *5 (-1142 *3))
+ (-5 *2 (-588 (-1081 *3))) (-5 *1 (-468 *3 *5 *6))
+ (-4 *6 (-1142 *5)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1856 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-338)) (-4 *7 (-1142 *6))
+ (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6)))
+ (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-783))
+ (-12 (-4 *4 (-784))
(-5 *2
- (-2 (|:| |f1| (-587 *4)) (|:| |f2| (-587 (-587 (-587 *4))))
- (|:| |f3| (-587 (-587 *4))) (|:| |f4| (-587 (-587 (-587 *4))))))
- (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 (-587 *4)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
- (-5 *2 (-2 (|:| -1347 (-381 *6)) (|:| |coeff| (-381 *6))))
- (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))))
-(((*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2))
- (-4 *4 (-37 (-381 (-521)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-1089))) (-5 *1 (-1089)))))
+ (-2 (|:| |f1| (-588 *4)) (|:| |f2| (-588 (-588 (-588 *4))))
+ (|:| |f3| (-588 (-588 *4))) (|:| |f4| (-588 (-588 (-588 *4))))))
+ (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 (-588 *4)))))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1420 (-110)) (|:| |arg| (-588 (-821 *3)))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-821 *4)))
+ (-5 *1 (-821 *4)) (-4 *4 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-13 (-283) (-135)))
+ (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730))
+ (-5 *2 (-588 (-382 (-881 *4)))) (-5 *1 (-853 *4 *5 *6 *7))
+ (-4 *7 (-878 *4 *6 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 (-382 (-881 *6))))
+ (-5 *3 (-382 (-881 *6)))
+ (-4 *6 (-13 (-514) (-962 (-522)) (-135)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-528 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-283))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-421 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *5 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-5 *2 (-588 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014))
+ (-5 *2 (-588 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-548 *3)) (-4 *3 (-971))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 *3)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-588 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1157 *3)) (-4 *3 (-971)) (-5 *2 (-1066 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
+(((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354)))
+ (-5 *2 (-960)) (-5 *1 (-774)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-850)) (-4 *5 (-283)) (-4 *3 (-1142 *5))
+ (-5 *2 (-2 (|:| |plist| (-588 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-434 *5 *3)) (-5 *4 (-588 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-143))))
+ ((*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-803))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-507)) (-5 *1 (-145 *2)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811))
- (-5 *3 (-587 (-521)))))
+ (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8)))
+ (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-915 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8)))
+ (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1893 *5) (|:| -1607 *5))))
+ (-5 *1 (-744 *4 *5 *3 *6)) (-4 *3 (-598 *5))
+ (-4 *6 (-598 (-382 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1893 *4) (|:| -1607 *4))))
+ (-5 *1 (-744 *5 *4 *3 *6)) (-4 *3 (-598 *4))
+ (-4 *6 (-598 (-382 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *5 (-1142 *4)) (-5 *2 (-588 (-2 (|:| -1893 *5) (|:| -1607 *5))))
+ (-5 *1 (-744 *4 *5 *6 *3)) (-4 *6 (-598 *5))
+ (-4 *3 (-598 (-382 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *4 (-1142 *5)) (-5 *2 (-588 (-2 (|:| -1893 *4) (|:| -1607 *4))))
+ (-5 *1 (-744 *5 *4 *6 *3)) (-4 *6 (-598 *4))
+ (-4 *3 (-598 (-382 *4))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-108)) (-5 *5 (-522)) (-4 *6 (-338)) (-4 *6 (-343))
+ (-4 *6 (-971)) (-5 *2 (-588 (-588 (-628 *6)))) (-5 *1 (-954 *6))
+ (-5 *3 (-588 (-628 *6)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811))
- (-5 *3 (-587 (-521))))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970))
- (-5 *1 (-628 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 *4))))
- (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-590 *3 *4 *5)))))
-(((*1 *2 *3)
+ (-12 (-4 *4 (-338)) (-4 *4 (-343)) (-4 *4 (-971))
+ (-5 *2 (-588 (-588 (-628 *4)))) (-5 *1 (-954 *4))
+ (-5 *3 (-588 (-628 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971))
+ (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5))
+ (-5 *3 (-588 (-628 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971))
+ (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5))
+ (-5 *3 (-588 (-628 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3))
+ (-5 *1 (-680 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2 (-353)) (-5 *1 (-184)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4))
- (-4 *4 (-37 (-381 (-521)))) (-5 *2 (-1 (-1065 *4) (-1065 *4)))
- (-5 *1 (-1158 *4 *5)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
- ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
- ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-689)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-688)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2))
- (-4 *2 (-1156 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2))
- (-4 *2 (-1156 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135)))
- (-5 *1 (-1061 *3)))))
+ (-5 *2
+ (-2 (|:| -2259 (-719 *3)) (|:| |coef1| (-719 *3))
+ (|:| |coef2| (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2259 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *4 *5 *6)) (-4 *4 (-338))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-424 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-338))
+ (-5 *2
+ (-2 (|:| R (-628 *6)) (|:| A (-628 *6)) (|:| |Ainv| (-628 *6))))
+ (-5 *1 (-905 *6)) (-5 *3 (-628 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-708)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1085))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-588 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1856 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1106) (-27) (-405 *8)))
+ (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3)))
+ (-5 *3 (-522))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108))))
+ (-5 *1 (-939 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1068)) (-5 *1 (-171))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-736))
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-802))))
- ((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
+ (-12 (-5 *3 (-758)) (-5 *4 (-51)) (-5 *2 (-1171)) (-5 *1 (-768)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-113 *4)) (-14 *4 *3)
- (-5 *3 (-521))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521))))
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-113 *4)) (-14 *4 *3)
+ (-5 *3 (-522))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-799 *4)) (-14 *4 *3)
- (-5 *3 (-521))))
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-800 *4)) (-14 *4 *3)
+ (-5 *3 (-522))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-381 (-521))) (-5 *1 (-800 *4 *5))
- (-5 *3 (-521)) (-4 *5 (-797 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-937)) (-5 *2 (-381 (-521)))))
+ (-12 (-14 *4 *3) (-5 *2 (-382 (-522))) (-5 *1 (-801 *4 *5))
+ (-5 *3 (-522)) (-4 *5 (-798 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-938)) (-5 *2 (-382 (-522)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-781) (-337)))
- (-4 *3 (-1141 *2))))
+ (-12 (-4 *1 (-987 *2 *3)) (-4 *2 (-13 (-782) (-338)))
+ (-4 *3 (-1142 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2223 (*2 (-1084))))
- (-4 *2 (-970)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *1) (-4 *1 (-506))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-1123))
- (-4 *6 (-1141 (-381 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-316 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-1056 (-1067))) (-5 *1 (-365)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-166)))))
-(((*1 *1 *1 *1) (-5 *1 (-147)))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-147)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-913 (-381 (-521)) (-793 *3) (-217 *4 (-707))
- (-224 *3 (-381 (-521)))))
- (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-912 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-982)) (-5 *3 (-1067)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 (-587 *6))) (-4 *6 (-877 *3 *5 *4))
- (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-783) (-562 (-1084))))
- (-4 *5 (-729)) (-5 *1 (-852 *3 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
- (-5 *2 (-959)) (-5 *1 (-691)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-1098)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 *4)) (-4 *4 (-316 *5 *6 *7))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-742 *5 *6 *7 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-755 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
- (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1015 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
+ (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2190 (*2 (-1085))))
+ (-4 *2 (-971)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-124))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-336 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-361 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-591 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 (-224 *4 *5))) (-5 *2 (-224 *4 *5))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-1165 *5)) (-4 *5 (-282))
- (-4 *5 (-970)) (-5 *2 (-627 *5)) (-5 *1 (-953 *5)))))
+ (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1) (-4 *1 (-507))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-676 *3)))))
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4))
+ (-5 *1 (-492 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-270 *2)) (-4 *2 (-664)) (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-166)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4))
- (-5 *3 (-587 *4)))))
+ (-12 (-4 *4 (-13 (-514) (-784)))
+ (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106)))
+ (-5 *1 (-551 *4 *3 *2)) (-4 *3 (-13 (-405 *4) (-928) (-1106))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))))
+(((*1 *2)
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-522))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-283))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1)))
+ (-4 *1 (-283)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-405 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1124)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))
+ (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-628 *3))))
+ (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1142 (-522)))
+ (-5 *2
+ (-2 (|:| -3855 (-628 (-522))) (|:| |basisDen| (-522))
+ (|:| |basisInv| (-628 (-522)))))
+ (-5 *1 (-705 *3 *4)) (-4 *4 (-384 (-522) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-628 *4))))
+ (-5 *1 (-912 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-324)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 *4))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-628 *4))))
+ (-5 *1 (-1175 *3 *4 *5 *6)) (-4 *6 (-384 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-792)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960))
+ (-5 *1 (-694)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-541 *4))
+ (-4 *4 (-324)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6))
+ (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *1))))
+ (-4 *1 (-990 *4 *5 *6 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-539 *2)) (-4 *2 (-13 (-29 *4) (-1106)))
+ (-5 *1 (-537 *4 *2))
+ (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-539 (-382 (-881 *4))))
+ (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *2 (-291 *4)) (-5 *1 (-542 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135))
- (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
+ (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-1081 *4))) (-5 *3 (-1081 *4))
+ (-4 *4 (-838)) (-5 *1 (-605 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-507))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971))
+ (-5 *2 (-588 (-588 (-588 (-872 *3))))))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2))
+ (-4 *2 (-1142 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324))
+ (-5 *1 (-492 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-622 *4 *5 *6)) (-4 *4 (-1013)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-1081 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *4 (-561 $)) $))
+ (-15 -2816 ((-1037 *4 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *4 (-561 $))))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-588 (-1085)))
+ (-5 *2 (-588 (-588 (-354)))) (-5 *1 (-948)) (-5 *5 (-354))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4)))))
+ (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-881 *4)))
+ (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-426))
+ (-5 *2
+ (-588
+ (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4))))
+ (|:| |eigmult| (-708))
+ (|:| |eigvec| (-588 (-628 (-382 (-881 *4))))))))
+ (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4)))))))
(((*1 *1 *1) (-5 *1 (-47)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1119))
- (-4 *2 (-1119)) (-5 *1 (-56 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1120))
+ (-4 *2 (-1120)) (-5 *1 (-56 *5 *2))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (|has| *1 (-6 -4233))
- (-4 *1 (-139 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (|has| *1 (-6 -4238))
+ (-4 *1 (-139 *2)) (-4 *2 (-1120))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2))
- (-4 *2 (-1119))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2))
+ (-4 *2 (-1120))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *2))
- (-4 *2 (-1119))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *2))
+ (-4 *2 (-1120))))
((*1 *2 *3)
- (-12 (-4 *4 (-970))
- (-5 *2 (-2 (|:| -3201 (-1080 *4)) (|:| |deg| (-849))))
- (-5 *1 (-198 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-13 (-513) (-783)))))
+ (-12 (-4 *4 (-971))
+ (-5 *2 (-2 (|:| -3892 (-1081 *4)) (|:| |deg| (-850))))
+ (-5 *1 (-198 *4 *5)) (-5 *3 (-1081 *4)) (-4 *5 (-13 (-514) (-784)))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707))
- (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-216 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708))
+ (-4 *6 (-1120)) (-4 *2 (-1120)) (-5 *1 (-216 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-157)) (-5 *1 (-264 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1141 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-12 (-4 *4 (-157)) (-5 *1 (-265 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1142 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
(-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-290 *2)) (-4 *2 (-513)) (-4 *2 (-783))))
+ ((*1 *1 *1) (-12 (-5 *1 (-291 *2)) (-4 *2 (-514)) (-4 *2 (-784))))
((*1 *1 *1)
- (-12 (-4 *1 (-309 *2 *3 *4 *5)) (-4 *2 (-337)) (-4 *3 (-1141 *2))
- (-4 *4 (-1141 (-381 *3))) (-4 *5 (-316 *2 *3 *4))))
+ (-12 (-4 *1 (-310 *2 *3 *4 *5)) (-4 *2 (-338)) (-4 *3 (-1142 *2))
+ (-4 *4 (-1142 (-382 *3))) (-4 *5 (-317 *2 *3 *4))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119))
- (-5 *1 (-345 *5 *4 *2 *6)) (-4 *4 (-347 *5)) (-4 *6 (-347 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1120)) (-4 *2 (-1120))
+ (-5 *1 (-346 *5 *4 *2 *6)) (-4 *4 (-348 *5)) (-4 *6 (-348 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013))
- (-5 *1 (-397 *5 *4 *2 *6)) (-4 *4 (-399 *5)) (-4 *6 (-399 *2))))
- ((*1 *1 *1) (-5 *1 (-464)))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014))
+ (-5 *1 (-398 *5 *4 *2 *6)) (-4 *4 (-400 *5)) (-4 *6 (-400 *2))))
+ ((*1 *1 *1) (-5 *1 (-465)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-587 *5)) (-4 *5 (-1119))
- (-4 *2 (-1119)) (-5 *1 (-585 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-588 *5)) (-4 *5 (-1120))
+ (-4 *2 (-1120)) (-5 *1 (-586 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-970)) (-4 *2 (-970))
- (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *8 (-347 *2))
- (-4 *9 (-347 *2)) (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-625 *5 *6 *7)) (-4 *10 (-625 *2 *8 *9))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-971)) (-4 *2 (-971))
+ (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *8 (-348 *2))
+ (-4 *9 (-348 *2)) (-5 *1 (-624 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-626 *5 *6 *7)) (-4 *10 (-626 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
+ (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
+ (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-337))
- (-4 *3 (-157)) (-4 *1 (-661 *3 *4))))
+ (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-338))
+ (-4 *3 (-157)) (-4 *1 (-662 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-885 *5)) (-4 *5 (-1119))
- (-4 *2 (-1119)) (-5 *1 (-884 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-886 *5)) (-4 *5 (-1120))
+ (-4 *2 (-1120)) (-5 *1 (-885 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5))
- (-14 *6 (-587 *2))))
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5))
+ (-14 *6 (-588 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-970)) (-4 *2 (-970))
- (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-971)) (-4 *2 (-971))
+ (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7))
(-4 *9 (-215 *5 *7)) (-4 *10 (-215 *6 *2)) (-4 *11 (-215 *5 *2))
- (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *12 (-973 *5 *6 *2 *10 *11))))
+ (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *12 (-974 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1065 *5)) (-4 *5 (-1119))
- (-4 *2 (-1119)) (-5 *1 (-1063 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1066 *5)) (-4 *5 (-1120))
+ (-4 *2 (-1120)) (-5 *1 (-1064 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2))
- (-4 *1 (-1113 *5 *6 *7 *2)) (-4 *5 (-513)) (-4 *6 (-729))
- (-4 *7 (-783)) (-4 *2 (-984 *5 *6 *7))))
+ (-4 *1 (-1114 *5 *6 *7 *2)) (-4 *5 (-514)) (-4 *6 (-730))
+ (-4 *7 (-784)) (-4 *2 (-985 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1119))
- (-4 *2 (-1119)) (-5 *1 (-1164 *5 *2)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2))
- (-4 *2 (-597 *4)))))
-(((*1 *1 *1) (-5 *1 (-497))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1120))
+ (-4 *2 (-1120)) (-5 *1 (-1165 *5 *2)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1) (-5 *1 (-498))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-729)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
- (-4 *4 (-157))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2))
- (-4 *2 (-404 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-783) (-513)))
- (-5 *1 (-144 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3011 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783))
- (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-707))
- (-4 *3 (-13 (-663) (-342) (-10 -7 (-15 ** (*3 *3 (-521))))))
- (-5 *1 (-223 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-337)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1384 *1)))
- (-4 *1 (-785 *3)))))
+ (-12 (-5 *3 (-588 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1121 *2))
+ (-4 *2 (-1014))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-784))
+ (-5 *1 (-1121 *2)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3))
+ (-4 *3 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-212 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014))
+ (-5 *1 (-675 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *1 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-5 *1 (-577))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1166 *4)) (-4 *4 (-392 *3)) (-4 *3 (-283))
+ (-4 *3 (-514)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-4 *4 (-338)) (-5 *2 (-1166 *1))
+ (-4 *1 (-304 *4))))
+ ((*1 *2) (-12 (-4 *3 (-338)) (-5 *2 (-1166 *1)) (-4 *1 (-304 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-157)) (-4 *4 (-1142 *3)) (-5 *2 (-1166 *1))
+ (-4 *1 (-384 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4))
+ (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6))
+ (-4 *6 (-13 (-384 *4 *5) (-962 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4))
+ (-5 *2 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7))
+ (-4 *6 (-384 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-392 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-492 *4))
+ (-4 *4 (-324)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119))
- (-4 *4 (-347 *2)) (-4 *5 (-347 *2))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120))
+ (-4 *4 (-348 *2)) (-4 *5 (-348 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013))
- (-4 *2 (-1119)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-290 *3)) (-4 *3 (-13 (-970) (-783)))
- (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-587 (-1084))) (-4 *2 (-157))
- (-4 *4 (-215 (-3478 *5) (-707)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2723 *3) (|:| -2246 *4))
- (-2 (|:| -2723 *3) (|:| -2246 *4))))
- (-5 *1 (-434 *5 *2 *3 *4 *6 *7)) (-4 *3 (-783))
- (-4 *7 (-877 *2 *4 (-793 *5))))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-521))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-729)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-783))
- (-5 *1 (-422 *5 *6 *7 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014))
+ (-4 *2 (-1120)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730))
+ (-5 *2
+ (-2 (|:| |mval| (-628 *4)) (|:| |invmval| (-628 *4))
+ (|:| |genIdeal| (-474 *4 *5 *6 *7))))
+ (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971)) (-4 *5 (-1142 *4)) (-5 *2 (-1 *6 (-588 *6)))
+ (-5 *1 (-1160 *4 *5 *3 *6)) (-4 *3 (-598 *5)) (-4 *6 (-1157 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-588 (-1085))) (|:| |pred| (-51))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-560 *6)) (-4 *6 (-13 (-404 *5) (-27) (-1105)))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-1080 (-381 (-1080 *6)))) (-5 *1 (-517 *5 *6 *7))
- (-5 *3 (-1080 *6)) (-4 *7 (-1013))))
+ (-12 (-5 *4 (-561 *6)) (-4 *6 (-13 (-405 *5) (-27) (-1106)))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-1081 (-382 (-1081 *6)))) (-5 *1 (-518 *5 *6 *7))
+ (-5 *3 (-1081 *6)) (-4 *7 (-1014))))
((*1 *2 *1)
- (-12 (-4 *2 (-1141 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-970))))
+ (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971))))
((*1 *2 *1)
- (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1080 *11)) (-5 *6 (-587 *10))
- (-5 *7 (-587 (-707))) (-5 *8 (-587 *11)) (-4 *10 (-783))
- (-4 *11 (-282)) (-4 *9 (-729)) (-4 *5 (-877 *11 *9 *10))
- (-5 *2 (-587 (-1080 *5))) (-5 *1 (-679 *9 *10 *11 *5))
- (-5 *3 (-1080 *5))))
+ (|partial| -12 (-5 *4 (-1081 *11)) (-5 *6 (-588 *10))
+ (-5 *7 (-588 (-708))) (-5 *8 (-588 *11)) (-4 *10 (-784))
+ (-4 *11 (-283)) (-4 *9 (-730)) (-4 *5 (-878 *11 *9 *10))
+ (-5 *2 (-588 (-1081 *5))) (-5 *1 (-680 *9 *10 *11 *5))
+ (-5 *3 (-1081 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-877 *3 *4 *5)) (-5 *1 (-958 *3 *4 *5 *2 *6))
- (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-14 *6 (-587 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-729)) (-4 *2 (-877 *4 *5 *6)) (-5 *1 (-422 *4 *5 *6 *2))
- (-4 *4 (-425)) (-4 *6 (-783)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-353)))) (-5 *2 (-1008 (-776 (-202))))
- (-5 *1 (-280)))))
+ (-12 (-4 *2 (-878 *3 *4 *5)) (-5 *1 (-959 *3 *4 *5 *2 *6))
+ (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-14 *6 (-588 *2)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522))))
+ (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1014) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1050 *4 *5)) (-4 *4 (-13 (-1014) (-33))))))
+(((*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-587 (-587 (-521)))) (-5 *1 (-897))
- (-5 *3 (-587 (-521))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-5 *2 (-108)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3))
- (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2))
- (-4 *2 (-625 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-477 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-783)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-521))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-707))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-849))))
+ (-12 (-5 *3 (-382 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-514))
+ (-4 *4 (-971)) (-4 *2 (-1157 *4)) (-5 *1 (-1160 *4 *5 *6 *2))
+ (-4 *6 (-598 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283))
+ (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5))
+ (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-283)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-283))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-421 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-421 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-1068)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-283)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-421 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-522))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-708))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-850))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708))
(-4 *4 (-157))))
((*1 *1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-143))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-143))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-143))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105)))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106)))
(-5 *1 (-204 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
+ (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
+ (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-664))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119))))
+ (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-269 *2)) (-4 *2 (-1025)) (-4 *2 (-1119))))
+ (-12 (-5 *1 (-270 *2)) (-4 *2 (-1026)) (-4 *2 (-1120))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-336 *2)) (-4 *2 (-1014))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-355 *3 *2)) (-4 *3 (-970)) (-4 *2 (-783))))
+ (-12 (-5 *1 (-356 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
- (-4 *6 (-215 (-3478 *3) (-707)))
+ (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157))
+ (-4 *6 (-215 (-3480 *3) (-708)))
(-14 *7
- (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *6))
- (-2 (|:| -2723 *5) (|:| -2246 *6))))
- (-5 *1 (-434 *3 *4 *5 *6 *7 *2)) (-4 *5 (-783))
- (-4 *2 (-877 *4 *6 (-793 *3)))))
+ (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *6))
+ (-2 (|:| -2717 *5) (|:| -1400 *6))))
+ (-5 *1 (-435 *3 *4 *5 *6 *7 *2)) (-4 *5 (-784))
+ (-4 *2 (-878 *4 *6 (-794 *3)))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783))
- (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
+ (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784))
+ (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-497)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-970))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-977))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-622 *5 *6 *7))))
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-498)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-548 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-971))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-590 *2)) (-4 *2 (-978))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-623 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-625 *3 *2 *4)) (-4 *3 (-970)) (-4 *2 (-347 *3))
- (-4 *4 (-347 *3))))
+ (-12 (-4 *1 (-626 *3 *2 *4)) (-4 *3 (-971)) (-4 *2 (-348 *3))
+ (-4 *4 (-348 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-625 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *2 (-347 *3))))
+ (-12 (-4 *1 (-626 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *2 (-348 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-657)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-658)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513))
- (-5 *1 (-896 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-977))))
- ((*1 *1 *1 *1) (-4 *1 (-1025)))
+ (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514))
+ (-5 *1 (-897 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-978))))
+ ((*1 *1 *1 *1) (-4 *1 (-1026)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *2 (-215 *3 *4))
+ (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *2 (-215 *3 *4))
(-4 *5 (-215 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1034 *3 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4))
+ (-12 (-4 *1 (-1035 *3 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4))
(-4 *2 (-215 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-783)) (-5 *1 (-1037 *3 *4 *2))
- (-4 *2 (-877 *3 (-493 *4) *4))))
+ (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2))
+ (-4 *2 (-878 *3 (-494 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-871 (-202))) (-5 *3 (-202)) (-5 *1 (-1116))))
+ (-12 (-5 *2 (-872 (-202))) (-5 *3 (-202)) (-5 *1 (-1117))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-663))))
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-664))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-521)) (-4 *1 (-1163 *3)) (-4 *3 (-1119)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-1164 *3)) (-4 *3 (-1120)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970))))
+ (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-783)) (-4 *2 (-970))))
+ (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-779)))))
+ (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4234)) (-4 *1 (-460 *3))
- (-4 *3 (-1119)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4239)) (-4 *1 (-461 *3))
+ (-4 *3 (-1120)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-587 *3))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-588 *3))))
((*1 *2 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
- (-5 *2 (-587 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119))))
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120))
+ (-5 *2 (-588 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *3 (-108)) (-5 *1 (-106))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379))))
+ ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120))))
((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783))))
- ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-5 *2 (-1170)) (-5 *1 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084))
- (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170))
- (-5 *1 (-1087))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1084))
- (-5 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *2 (-1170))
- (-5 *1 (-1087)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-290 *4)) (-4 *4 (-13 (-764) (-783) (-970)))
- (-5 *2 (-1067)) (-5 *1 (-762 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 *5)) (-5 *4 (-108))
- (-4 *5 (-13 (-764) (-783) (-970))) (-5 *2 (-1067))
- (-5 *1 (-762 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-758)) (-5 *4 (-290 *5))
- (-4 *5 (-13 (-764) (-783) (-970))) (-5 *2 (-1170))
- (-5 *1 (-762 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-758)) (-5 *4 (-290 *6)) (-5 *5 (-108))
- (-4 *6 (-13 (-764) (-783) (-970))) (-5 *2 (-1170))
- (-5 *1 (-762 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-764)) (-5 *2 (-1067))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *3 (-108)) (-5 *2 (-1067))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *2 (-1170))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-764)) (-5 *3 (-758)) (-5 *4 (-108)) (-5 *2 (-1170)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1013)) (-5 *2 (-817 *3 *5)) (-5 *1 (-813 *3 *4 *5))
- (-4 *3 (-1013)) (-4 *5 (-607 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-331 *3)) (-4 *3 (-323)))))
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2))
+ (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-970)) (-5 *2 (-1165 *4))
- (-5 *1 (-1085 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-1165 *3)) (-5 *1 (-1085 *3))
- (-4 *3 (-970)))))
+ (|partial| -12 (-5 *3 (-850))
+ (-5 *2 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032))))))
+ (-5 *1 (-321 *4)) (-4 *4 (-324)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-833 *3))) (-4 *3 (-1013)) (-5 *1 (-832 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-718 *3)) (|:| |polden| *3) (|:| -3214 (-707))))
- (-5 *1 (-718 *3)) (-4 *3 (-970))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3214 (-707))))
- (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
- (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
- (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729))
- (-4 *8 (-783)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *9))))
- (-5 *3 (-587 *9)) (-4 *1 (-1113 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1354 (-587 *8))))
- (-5 *3 (-587 *8)) (-4 *1 (-1113 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1165 (-707))) (-5 *1 (-615 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-970)) (-4 *4 (-157))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970))
- (-4 *3 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1051 *4 *2)) (-14 *4 (-849))
- (-4 *2 (-13 (-970) (-10 -7 (-6 (-4235 "*"))))) (-5 *1 (-830 *4 *2)))))
+ (-12 (-5 *3 (-3 (-382 (-881 *5)) (-1075 (-1085) (-881 *5))))
+ (-4 *5 (-426)) (-5 *2 (-588 (-628 (-382 (-881 *5)))))
+ (-5 *1 (-268 *5)) (-5 *4 (-628 (-382 (-881 *5)))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-269 *3))) (-5 *1 (-269 *3)) (-4 *3 (-513))
- (-4 *3 (-1119)))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *5)) (-5 *1 (-814 *3 *4 *5))
+ (-4 *3 (-1014)) (-4 *5 (-608 *4)))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1426 (-110)) (|:| |arg| (-587 (-820 *3)))))
- (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-820 *4)))
- (-5 *1 (-820 *4)) (-4 *4 (-1013)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8)))
- (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-914 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8)))
- (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-224 *4 *5))) (-5 *2 (-224 *4 *5))
- (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1123)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
- (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3))
- (-5 *2
- (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-627 *3))))
- (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1141 (-521)))
- (-5 *2
- (-2 (|:| -1245 (-627 (-521))) (|:| |basisDen| (-521))
- (|:| |basisInv| (-627 (-521)))))
- (-5 *1 (-704 *3 *4)) (-4 *4 (-383 (-521) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4))
- (-5 *2
- (-2 (|:| -1245 (-627 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-627 *4))))
- (-5 *1 (-911 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-323)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 *4))
- (-5 *2
- (-2 (|:| -1245 (-627 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-627 *4))))
- (-5 *1 (-1174 *3 *4 *5 *6)) (-4 *6 (-383 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323))
- (-5 *1 (-491 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729))
- (-5 *2
- (-2 (|:| |mval| (-627 *4)) (|:| |invmval| (-627 *4))
- (|:| |genIdeal| (-473 *4 *5 *6 *7))))
- (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))))
+ (-12 (-4 *3 (-210)) (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-242 *4))
+ (-4 *6 (-730)) (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-971)) (-4 *3 (-784)) (-4 *5 (-242 *3)) (-4 *6 (-730))
+ (-5 *2 (-1 *1 (-708))) (-4 *1 (-229 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-4 *1 (-242 *2)) (-4 *2 (-784)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
(((*1 *2 *3)
(-12 (-5 *2 (-154 *4)) (-5 *1 (-164 *4 *3))
- (-4 *4 (-13 (-337) (-781))) (-4 *3 (-1141 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1008 (-202)))))
- ((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
+ (-4 *4 (-13 (-338) (-782))) (-4 *3 (-1142 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-628 (-522))) (-5 *5 (-108)) (-5 *7 (-628 (-202)))
+ (-5 *3 (-522)) (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-692)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-561 *3)) (-4 *3 (-784)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324)))))
+(((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-4 *7 (-784))
+ (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730)) (-4 *8 (-283))
+ (-5 *2 (-588 (-708))) (-5 *1 (-680 *6 *7 *8 *9)) (-5 *5 (-708)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -2220,3982 +2213,3981 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1065 (-202)))
+ (-3 (|:| |str| (-1066 (-202)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1403
+ (|:| -2386
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-959)) (-5 *1 (-280)))))
+ (-5 *2 (-960)) (-5 *1 (-281)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202)))
+ (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-298 *4 *2)) (-4 *4 (-1014))
+ (-4 *2 (-124)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-588 (-291 (-202)))) (-5 *3 (-202)) (-5 *2 (-108))
+ (-5 *1 (-189)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971))
+ (-5 *1 (-1070 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971))
+ (-14 *4 (-1085)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-539 *3)) (-4 *3 (-338)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1950 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-694)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514)))))
+(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085)))
+ (-5 *2 (-628 (-291 (-202)))) (-5 *1 (-184))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-4 *6 (-829 *5)) (-5 *2 (-628 *6))
+ (-5 *1 (-630 *5 *6 *3 *4)) (-4 *3 (-348 *6))
+ (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-381 (-880 *4)))) (-4 *4 (-425))
- (-5 *2 (-587 (-3 (-381 (-880 *4)) (-1074 (-1084) (-880 *4)))))
- (-5 *1 (-267 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-970)) (-4 *1 (-1141 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))
- (-14 *4 (-707)) (-4 *5 (-157)))))
+ (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-4 *4 (-426))
+ (-5 *2 (-588 (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4)))))
+ (-5 *1 (-268 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783))))
- ((*1 *1) (-4 *1 (-1060))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-282)) (-5 *2 (-707)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-513)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784))))
+ ((*1 *1) (-4 *1 (-1061))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-871 *4)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1119))
- (-4 *5 (-347 *4)) (-4 *3 (-347 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-1008 (-202)))))
- ((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-1008 (-202))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108))
- (-5 *1 (-778 *4 *5)) (-14 *4 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337))
- (-4 *1 (-661 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1141 *5))
- (-5 *2 (-627 *5)))))
+ (|partial| -12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))
+ (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3))
+ (-4 *3 (-626 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514))
+ (-5 *2 (-708)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-766)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1050 *3 *2)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *2 (-13 (-1014) (-33))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))))
+(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-1009 (-202)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-1009 (-202))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1081 *3)) (-4 *3 (-971)) (-4 *1 (-1142 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514))
+ (-5 *2 (-1166 *4)) (-5 *1 (-583 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-338)) (-4 *2 (-782)) (-5 *1 (-874 *2 *3))
+ (-4 *3 (-1142 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *2 (-381 (-880 *4))) (-5 *1 (-852 *4 *5 *6 *3))
- (-4 *3 (-877 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *2 (-627 (-381 (-880 *4))))
- (-5 *1 (-852 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *2 (-587 (-381 (-880 *4))))
- (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *8)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084))))
- (-4 *7 (-729))
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-627 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3))
+ (-4 *3 (-590 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3))
+ (-4 *3 (-590 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971))))
+ ((*1 *1 *1) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3))
(-5 *2
- (-587
- (-2 (|:| -3167 (-707))
- (|:| |eqns|
- (-587
- (-2 (|:| |det| *8) (|:| |rows| (-587 (-521)))
- (|:| |cols| (-587 (-521))))))
- (|:| |fgb| (-587 *8)))))
- (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-707)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-694)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-108))))
+ (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-628 *3))))
+ (-5 *1 (-325 *3 *4 *5)) (-4 *5 (-384 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-1142 *3))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-628 *3))))
+ (-5 *1 (-705 *4 *5)) (-4 *5 (-384 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-628 *3))))
+ (-5 *1 (-912 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-324)) (-4 *3 (-1142 *4)) (-4 *5 (-1142 *3))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-628 *3))))
+ (-5 *1 (-1175 *4 *3 *5 *6)) (-4 *6 (-384 *3 *5)))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3))
+ (-4 *3 (-1142 (-382 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+ (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-708)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522))
+ (-14 *4 (-708)) (-4 *5 (-157)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-784)) (-4 *5 (-730))
+ (-4 *6 (-514)) (-4 *7 (-878 *6 *5 *3))
+ (-5 *1 (-436 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-962 (-382 (-522))) (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $))
+ (-15 -2816 (*7 $))))))))
(((*1 *2 *2)
- (-12
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3))
+ (-4 *3 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3)))
+ (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3)))
+ (-4 *3 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3)))
+ (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-267)))
+ ((*1 *1) (-5 *1 (-792)))
+ ((*1 *1)
+ (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730))
+ (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1001)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33)))))
+ ((*1 *1) (-5 *1 (-1088))) ((*1 *1) (-5 *1 (-1089))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1139 *4 *5)) (-5 *3 (-588 *5)) (-14 *4 (-1085))
+ (-4 *5 (-338)) (-5 *1 (-852 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *5)) (-4 *5 (-338)) (-5 *2 (-1081 *5))
+ (-5 *1 (-852 *4 *5)) (-14 *4 (-1085))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-708)) (-4 *6 (-338))
+ (-5 *2 (-382 (-881 *6))) (-5 *1 (-972 *5 *6)) (-14 *5 (-1085)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354))
+ (|:| |expense| (-354)) (|:| |accuracy| (-354))
+ (|:| |intermediateResults| (-354))))
+ (-5 *1 (-740)))))
+(((*1 *1) (-5 *1 (-999))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1001)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-5 *1 (-305)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-4 *1 (-304 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124))
+ (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157))
+ (-4 *1 (-342 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-157))
+ (-4 *1 (-345 *4 *5)) (-4 *5 (-1142 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4))
+ (-4 *4 (-1142 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-688)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-324))
+ (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -2574 *3))))
+ (-5 *1 (-194 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-343)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
(-5 *2
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
- (-5 *1 (-243)))))
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-392 *3)) (-4 *3 (-513)) (-5 *1 (-393 *3)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))))
+ (-5 *1 (-184)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-708)) (-5 *3 (-872 *4)) (-4 *1 (-1046 *4))
+ (-4 *4 (-971))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-708)) (-5 *4 (-872 (-202))) (-5 *2 (-1171))
+ (-5 *1 (-1168)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-422 *3 *4 *5 *2)) (-4 *2 (-877 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522)))
+ (-5 *2 (-1166 (-522))) (-5 *1 (-1191 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3))
+ (-4 *3 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-589 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-588 (-588 (-202)))) (-5 *4 (-202))
+ (-5 *2 (-588 (-872 *4))) (-5 *1 (-1117)) (-5 *3 (-872 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-342)) (-4 *4 (-337)) (-5 *2 (-1080 *1))
- (-4 *1 (-303 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *3 (-337))
- (-4 *2 (-1141 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4))
- (-5 *1 (-491 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-521))) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-513)) (-4 *8 (-877 *7 *5 *6))
- (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *9) (|:| |radicand| *9)))
- (-5 *1 (-881 *5 *6 *7 *8 *9)) (-5 *4 (-707))
- (-4 *9
- (-13 (-337)
- (-10 -8 (-15 -2807 (*8 $)) (-15 -2818 (*8 $)) (-15 -2223 ($ *8))))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *3 (-828 *6))
- (-5 *2 (-627 *3)) (-5 *1 (-629 *6 *3 *7 *4)) (-4 *7 (-347 *3))
- (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-341 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506))
- (-5 *2 (-381 (-521)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506))
- (-4 *3 (-513))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-506)) (-5 *2 (-381 (-521)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-506))
- (-5 *2 (-381 (-521)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-769 *3)) (-4 *3 (-506))
- (-4 *3 (-1013))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-776 *3)) (-4 *3 (-506))
- (-4 *3 (-1013))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506))
- (-5 *2 (-381 (-521)))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-298 *2 *4)) (-4 *4 (-124))
+ (-4 *2 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-361 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *2 (-1014)) (-5 *1 (-591 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *1 (-756 *2)) (-4 *2 (-784)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-588
+ (-2
+ (|:| -2530
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3048
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1066 (-202)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2386
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-561 *3)) (-5 *5 (-1 (-1081 *3) (-1081 *3)))
+ (-4 *3 (-13 (-27) (-405 *6))) (-4 *6 (-13 (-784) (-514)))
+ (-5 *2 (-539 *3)) (-5 *1 (-509 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3))
- (-4 *3 (-961 *2)))))
-(((*1 *1 *1) (-4 *1 (-573)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
-(((*1 *1) (-5 *1 (-516))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-425)) (-4 *3 (-783)) (-4 *3 (-961 (-521)))
- (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $))
- (-15 -2818 ((-1036 *3 (-560 $)) $))
- (-15 -2223 ($ (-1036 *3 (-560 $))))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
- (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2))
- (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-951 *5 *6 *7 *8))) (-5 *1 (-951 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-108)) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-1055 *5 *6 *7 *8))) (-5 *1 (-1055 *5 *6 *7 *8)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-684)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-849))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-392 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))))
-(((*1 *1 *1) (-4 *1 (-797 *2))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-124)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-587 *4)) (-4 *4 (-337)) (-5 *2 (-1165 *4))
- (-5 *1 (-750 *4 *3)) (-4 *3 (-597 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
-(((*1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
- (-4 *4 (-157)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-849)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-239)))))
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-395 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))
+ (-14 *4 (-1085)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-4 *2 (-13 (-27) (-1106) (-405 *3) (-10 -8 (-15 -2190 ($ *4)))))
+ (-4 *4 (-782))
+ (-4 *5
+ (-13 (-1144 *2 *4) (-338) (-1106)
+ (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $)))))
+ (-5 *1 (-397 *3 *2 *4 *5 *6 *7)) (-4 *6 (-910 *5)) (-14 *7 (-1085)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-522)) (-5 *2 (-108)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-561 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085)))
+ (-4 *2 (-13 (-405 *5) (-27) (-1106)))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *1 (-524 *5 *2 *6)) (-4 *6 (-1014)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-5 *1 (-914 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1886 *7))))
+ (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-915 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-5 *1 (-1020 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |val| (-588 *6)) (|:| -1886 *7))))
+ (-4 *6 (-985 *3 *4 *5)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-1021 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-338)) (-5 *1 (-825 *2 *3))
+ (-4 *2 (-1142 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *1) (-12 (-4 *1 (-514)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2259 (-719 *3)) (|:| |coef1| (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2259 *1) (|:| |coef1| *1)))
+ (-4 *1 (-985 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-392 *5)) (-4 *5 (-513))
- (-5 *2
- (-2 (|:| -2246 (-707)) (|:| -2979 *5) (|:| |radicand| (-587 *5))))
- (-5 *1 (-294 *5)) (-5 *4 (-707))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-521)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-521)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-521)) (-5 *1 (-1023))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1165 (-521))) (-5 *3 (-587 (-521))) (-5 *4 (-521))
- (-5 *1 (-1023)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-729))
- (-4 *5 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *6 (-513))
- (-5 *2 (-2 (|:| -2303 (-880 *6)) (|:| -2912 (-880 *6))))
- (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-877 (-381 (-880 *6)) *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 (-707))) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1141 *4)))))
+ (-12 (-5 *4 (-1 (-1066 *3))) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-305)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-342)) (-4 *1 (-303 *3))
- (-4 *3 (-337)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2))
- (-4 *2 (-1119)))))
-(((*1 *1) (-5 *1 (-1167))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-337)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3)))
- (-5 *1 (-703 *3 *4)) (-4 *3 (-646 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-337)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970))
- (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-880 *4))) (-5 *1 (-390 *3 *4))
- (-4 *3 (-391 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337))
- (-5 *2 (-1080 (-880 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
+ (|partial| -12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3))
+ (-4 *3 (-13 (-338) (-135) (-962 (-522)))) (-5 *1 (-526 *3 *4)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-588 (-794 *4)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-445 *4 *5 *6))
+ (-4 *6 (-426)))))
+(((*1 *2 *1) (-12 (-4 *1 (-283)) (-5 *2 (-708)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-880 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-880 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
- ((*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-381 (-521)))) (-5 *2 (-587 *1)) (-4 *1 (-937))))
- ((*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-937)) (-5 *2 (-587 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-781) (-337))) (-4 *3 (-1141 *4)) (-5 *2 (-587 *1))
- (-4 *1 (-986 *4 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-404 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1013))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-587 *1)) (-4 *1 (-877 *3 *4 *5))))
+ (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-588 (-154 *4))) (-5 *1 (-142 *3 *4))
+ (-4 *3 (-1142 (-154 (-522)))) (-4 *4 (-13 (-338) (-782)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-587 *3))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $))
- (-15 -2818 (*7 $))))))))
-(((*1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1103)))))
+ (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4)))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-588 (-154 *4)))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-337)) (-5 *2 (-587 (-1065 *4))) (-5 *1 (-260 *4 *5))
- (-5 *3 (-1065 *4)) (-4 *5 (-1156 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
+ (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2))
+ (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2))
+ (-4 *4 (-626 *2 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-932)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-108))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-108)) (-5 *1 (-1109 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4))))))
+ (-12 (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *2 (-588 *3)) (-5 *1 (-904 *4 *5 *6 *3))
+ (-4 *3 (-985 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-759)) (-5 *2 (-51)) (-5 *1 (-766)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202)))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8))
+ (-4 *8 (-878 *5 *7 *6)) (-4 *5 (-13 (-283) (-135)))
+ (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-108))
+ (-5 *1 (-853 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-970))
- (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
- (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *5 (-970))
- (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259)))
- (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5)))))
+ (-12
+ (-5 *3
+ (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4)
+ (-224 *4 (-382 (-522)))))
+ (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108))
+ (-5 *1 (-475 *4 *5)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-587 *9)) (-5 *3 (-1 (-108) *9))
- (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513)) (-4 *7 (-729)) (-4 *8 (-783))
- (-5 *1 (-903 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-791)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-513))
- (-4 *7 (-877 *3 *5 *6))
- (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *8) (|:| |radicand| *8)))
- (-5 *1 (-881 *5 *6 *3 *7 *8)) (-5 *4 (-707))
- (-4 *8
- (-13 (-337)
- (-10 -8 (-15 -2807 (*7 $)) (-15 -2818 (*7 $)) (-15 -2223 ($ *7))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521))))
- (-5 *1 (-169)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1165 *4)) (-5 *3 (-627 *4)) (-4 *4 (-337))
- (-5 *1 (-608 *4))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-158 *3)) (-4 *3 (-283))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-615 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-678 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-784))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *1 (-907 *3)) (-4 *3 (-971))))
((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-337))
- (-4 *5 (-13 (-347 *4) (-10 -7 (-6 -4234))))
- (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234))))
- (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-625 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-587 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-337))
- (-5 *1 (-750 *2 *3)) (-4 *3 (-597 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381 (-521))) (-5 *2 (-202)) (-5 *1 (-280)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-381 (-1080 (-290 *3)))) (-4 *3 (-13 (-513) (-783)))
- (-5 *1 (-1041 *3)))))
+ (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))))
+(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1068)) (-5 *1 (-51)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124))
- (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| -2979 *3) (|:| -2523 *4))))
- (-5 *1 (-672 *3 *4)) (-4 *3 (-970)) (-4 *4 (-663))))
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-850))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-311 *4 *5 *6 *7)) (-4 *4 (-13 (-343) (-338)))
+ (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *7 (-317 *4 *5 *6))
+ (-5 *2 (-708)) (-5 *1 (-367 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-377)) (-5 *2 (-770 (-850)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-548 *3)) (-4 *3 (-971))))
((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
- (-5 *2 (-1065 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+ (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4))
+ (-4 *4 (-1142 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-678 *4 *3)) (-4 *4 (-971))
+ (-4 *3 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-678 *4 *3)) (-4 *4 (-971)) (-4 *3 (-784))
+ (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4))
+ (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6)))
+ (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522))))
+ (-5 *2 (-708)) (-5 *1 (-840 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6))
+ (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4)))
+ (-4 *6 (-317 (-382 (-522)) *4 *5)) (-5 *2 (-708))
+ (-5 *1 (-841 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-311 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-338))
+ (-4 *7 (-1142 *6)) (-4 *4 (-1142 (-382 *7))) (-4 *8 (-317 *6 *7 *4))
+ (-4 *9 (-13 (-343) (-338))) (-5 *2 (-708))
+ (-5 *1 (-944 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-4 *3 (-514)) (-5 *2 (-708))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522))))
+ (-5 *4 (-291 (-154 (-354)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522))))
+ (-5 *4 (-291 (-354))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522))))
+ (-5 *4 (-291 (-522))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-154 (-354)))))
+ (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-354)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-522)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-154 (-354)))))
+ (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-354)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-522)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-154 (-354)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-354))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-522))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522))))
+ (-5 *4 (-291 (-632))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522))))
+ (-5 *4 (-291 (-637))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-881 (-522))))
+ (-5 *4 (-291 (-639))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-632)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-637)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-291 (-639)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-632)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-637)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-291 (-639)))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-632))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-637))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-639))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-632))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-637))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-628 (-639))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-632))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-637))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-291 (-639))) (-5 *1 (-305))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-305))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-92)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-707)) (-4 *6 (-337)) (-5 *4 (-1114 *6))
- (-5 *2 (-1 (-1065 *4) (-1065 *4))) (-5 *1 (-1173 *6))
- (-5 *5 (-1065 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108))
- (-5 *1 (-778 *4 *5)) (-14 *4 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-587 *2))) (-5 *4 (-587 *5))
- (-4 *5 (-37 (-381 (-521)))) (-4 *2 (-1156 *5))
- (-5 *1 (-1158 *5 *2)))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521))) (-5 *2 (-108))
- (-5 *1 (-1190 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -1856 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-338)) (-5 *1 (-532 *4 *2)) (-4 *2 (-1142 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-423 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-951 *5 *6 *7 *3))) (-5 *1 (-951 *5 *6 *7 *3))
- (-4 *3 (-984 *5 *6 *7))))
+ (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-5 *2
+ (-2 (|:| |zeros| (-1066 (-202))) (|:| |ones| (-1066 (-202)))
+ (|:| |singularities| (-1066 (-202)))))
+ (-5 *1 (-100)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-113 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-522))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-800 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-14 *2 (-522))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-587 *6)) (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))))
+ (-12 (-5 *2 (-522)) (-14 *3 *2) (-5 *1 (-801 *3 *4))
+ (-4 *4 (-798 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-522)) (-5 *1 (-801 *2 *3)) (-4 *3 (-798 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-425)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-587 (-1055 *5 *6 *7 *3))) (-5 *1 (-1055 *5 *6 *7 *3))
- (-4 *3 (-984 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-1083)))
- ((*1 *1 *2)
+ (-12 (-5 *2 (-522)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-1157 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1128 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1157 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *4 (-707))
- (-5 *2 (-627 (-202))) (-5 *1 (-243)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4))
- (-4 *4 (-37 (-381 (-521)))) (-4 *4 (-970)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-873 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1084))
- (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-362)) (-5 *1 (-410)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-5 *1 (-914 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 *7)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-5 *1 (-1020 *3 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
- (-5 *2 (-108)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522)))
+ (-5 *4 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522))) (-5 *4 (-382 (-522)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-382 (-522)))
+ (-5 *2 (-588 (-2 (|:| -1913 *5) (|:| -1924 *5)))) (-5 *1 (-945 *3))
+ (-4 *3 (-1142 (-522))) (-5 *4 (-2 (|:| -1913 *5) (|:| -1924 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522))))
+ (-5 *4 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-382 (-522)))
+ (-5 *2 (-588 (-2 (|:| -1913 *4) (|:| -1924 *4)))) (-5 *1 (-946 *3))
+ (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-382 (-522)))
+ (-5 *2 (-588 (-2 (|:| -1913 *5) (|:| -1924 *5)))) (-5 *1 (-946 *3))
+ (-4 *3 (-1142 *5)) (-5 *4 (-2 (|:| -1913 *5) (|:| -1924 *5))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *2 (-587 *3)) (-5 *1 (-852 *4 *5 *6 *3))
- (-4 *3 (-877 *4 *6 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *5 (-984 *3 *4 *2)))))
+ (-12 (-4 *1 (-633 *3)) (-4 *3 (-1014))
+ (-5 *2 (-588 (-2 (|:| -3048 *3) (|:| -4168 (-708))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-622 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-820 *6)))
- (-5 *5 (-1 (-817 *6 *8) *8 (-820 *6) (-817 *6 *8))) (-4 *6 (-1013))
- (-4 *8 (-13 (-970) (-562 (-820 *6)) (-961 *7))) (-5 *2 (-817 *6 *8))
- (-4 *7 (-13 (-970) (-783))) (-5 *1 (-869 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971))
+ (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
- (-5 *2 (-959)) (-5 *1 (-693)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636))))
- ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))))
-(((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202))
- (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
- (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
- (-5 *3 (-587 (-239))) (-5 *1 (-237))))
+ (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120)))))
+(((*1 *1 *1) (-5 *1 (-1084)))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202))
- (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
- (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
- (-5 *1 (-239))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-521)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
- ((*1 *2 *1 *3)
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202))
- (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
- (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
- (-5 *2 (-1170)) (-5 *1 (-1167))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -2714 (-202))
- (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
- (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
- (-5 *1 (-1167))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-560 *3)) (-5 *5 (-1080 *3))
- (-4 *3 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-560 *3)) (-5 *5 (-381 (-1080 *3)))
- (-4 *3 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-538 *3)) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1013)))))
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *2 (-588 (-202))) (-5 *1 (-281)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2))
- (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157))
- (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
- (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1141 *5))
- (-5 *1 (-664 *5 *2)) (-4 *5 (-337)))))
+ (-12 (-5 *2 (-872 *4)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7))))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-707)) (-4 *4 (-282)) (-4 *6 (-1141 *4))
- (-5 *2 (-1165 (-587 *6))) (-5 *1 (-428 *4 *6)) (-5 *5 (-587 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-337))
- (-5 *2 (-587 (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5)))))
- (-5 *1 (-904 *5)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-707))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-376)) (-5 *2 (-707)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-587 (-880 *6))) (-5 *4 (-587 (-1084))) (-4 *6 (-425))
- (-5 *2 (-587 (-587 *7))) (-5 *1 (-499 *6 *7 *5)) (-4 *7 (-337))
- (-4 *5 (-13 (-337) (-781))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1120))
+ (-4 *5 (-1120)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-708))
+ (-4 *7 (-1120)) (-4 *5 (-1120)) (-5 *2 (-217 *6 *5))
+ (-5 *1 (-216 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1120)) (-4 *5 (-1120))
+ (-4 *2 (-348 *5)) (-5 *1 (-346 *6 *4 *5 *2)) (-4 *4 (-348 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014))
+ (-4 *2 (-400 *5)) (-5 *1 (-398 *6 *4 *5 *2)) (-4 *4 (-400 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-588 *6)) (-4 *6 (-1120))
+ (-4 *5 (-1120)) (-5 *2 (-588 *5)) (-5 *1 (-586 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-886 *6)) (-4 *6 (-1120))
+ (-4 *5 (-1120)) (-5 *2 (-886 *5)) (-5 *1 (-885 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1066 *6)) (-4 *6 (-1120))
+ (-4 *3 (-1120)) (-5 *2 (-1066 *3)) (-5 *1 (-1064 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1166 *6)) (-4 *6 (-1120))
+ (-4 *5 (-1120)) (-5 *2 (-1166 *5)) (-5 *1 (-1165 *6 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-837))
- (-5 *1 (-430 *3 *4 *2 *5)) (-4 *5 (-877 *2 *3 *4))))
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971))))
((*1 *2)
- (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *2 (-837))
- (-5 *1 (-834 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-837)) (-5 *1 (-835 *2 *3)) (-4 *3 (-1141 *2)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 (-521)))))
- (-5 *1 (-335 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 (-707)))))
- (-5 *1 (-360 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| -1974 *3) (|:| -2246 (-521)))))
- (-5 *1 (-392 *3)) (-4 *3 (-513))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 (-707)))))
- (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-691)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636))))
- ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-636)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-51)) (-5 *1 (-820 *4))
- (-4 *4 (-1013)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+ (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338)))
+ (-4 *3 (-1142 *4)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507))))
+ ((*1 *1 *1) (-4 *1 (-980))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1067)) (-5 *1 (-722)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-871 (-202))) (-5 *4 (-802)) (-5 *5 (-849))
- (-5 *2 (-1170)) (-5 *1 (-441))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-871 (-202))) (-5 *2 (-1170)) (-5 *1 (-441))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-587 (-871 (-202)))) (-5 *4 (-802)) (-5 *5 (-849))
- (-5 *2 (-1170)) (-5 *1 (-441)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-688)))))
-(((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-781)) (-5 *1 (-278 *3)))))
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426))
+ (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6))
+ (-4 *4 (-426)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-904 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426))
+ (-5 *1 (-847 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-258 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784)))
+ (-14 *4 (-588 (-1085))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-627 *5))) (-4 *5 (-282)) (-4 *5 (-970))
- (-5 *2 (-1165 (-1165 *5))) (-5 *1 (-953 *5)) (-5 *4 (-1165 *5)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-693)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-587 *11)) (-5 *5 (-587 (-1080 *9)))
- (-5 *6 (-587 *9)) (-5 *7 (-587 *12)) (-5 *8 (-587 (-707)))
- (-4 *11 (-783)) (-4 *9 (-282)) (-4 *12 (-877 *9 *10 *11))
- (-4 *10 (-729)) (-5 *2 (-587 (-1080 *12)))
- (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1080 *12)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-337) (-781)))
- (-5 *2 (-587 (-2 (|:| -3655 (-587 *3)) (|:| -2974 *5))))
- (-5 *1 (-164 *5 *3)) (-4 *3 (-1141 (-154 *5)))))
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-588 (-1 *6 (-588 *6))))
+ (-4 *5 (-37 (-382 (-522)))) (-4 *6 (-1157 *5)) (-5 *2 (-588 *6))
+ (-5 *1 (-1159 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-304 *4)) (-4 *4 (-338))
+ (-5 *2 (-628 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1166 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-628 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-1166 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-337) (-781)))
- (-5 *2 (-587 (-2 (|:| -3655 (-587 *3)) (|:| -2974 *4))))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1142 *4)) (-5 *2 (-628 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1142 *4)) (-5 *2 (-1166 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-384 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1142 *4)) (-5 *2 (-628 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3))
+ (-5 *2 (-1166 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-392 *4)) (-4 *4 (-157))
+ (-5 *2 (-628 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-628 *5))) (-5 *3 (-628 *5)) (-4 *5 (-338))
+ (-5 *2 (-1166 *5)) (-5 *1 (-1002 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-880 *5)) (-4 *5 (-970)) (-5 *2 (-224 *4 *5))
- (-5 *1 (-872 *4 *5)) (-14 *4 (-587 (-1084))))))
+ (-12 (-4 *3 (-1142 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-912 *4 *2 *3 *5))
+ (-4 *4 (-324)) (-4 *5 (-662 *2 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))))
+(((*1 *1 *1) (-5 *1 (-983))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-675)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
-(((*1 *2 *1) (-12 (-4 *1 (-882)) (-5 *2 (-587 (-587 (-871 (-202)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-900)) (-5 *2 (-587 (-587 (-871 (-202))))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))))
-(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1820 (-521)) (|:| -3655 (-587 *3))))
- (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513)))))
+ (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3))))
+ (-5 *1 (-547 *3)) (-4 *3 (-971)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-453)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202)))
+ (-5 *5 (-108)) (-5 *2 (-1168)) (-5 *1 (-233)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1016 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4))
+ (-5 *1 (-943 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1009 (-522))) (-5 *2 (-1 (-522))) (-5 *1 (-969)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960))
+ (-5 *1 (-694)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))))
+(((*1 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1169)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513))
+ (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757))
+ (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-708)) (-4 *5 (-514))
(-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-759)) (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2))
- (-4 *5 (-347 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7))
- (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970)))))
+ (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-290 *5)))
- (-5 *1 (-1040 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084)))
- (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-587 (-290 *5))))
- (-5 *1 (-1040 *5)))))
+ (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4))))
+ (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-1115 *3))
- (-4 *3 (-900)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-531 *5 *3)))))
+ (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
+(((*1 *1 *1) (-5 *1 (-983))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-338)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971))
+ (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))))
+(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4))
+ (-4 *4 (-1120)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *1) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-381 (-521)))
- (-5 *1 (-407 *4 *3)) (-4 *3 (-404 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-560 *3)) (-4 *3 (-404 *5))
- (-4 *5 (-13 (-783) (-513) (-961 (-521))))
- (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-407 *5 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-348 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-970)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1065 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-1119)))))
+ (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-886 (-1032)))
+ (-5 *1 (-321 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 (-453 *3 *4))) (-14 *3 (-587 (-1084)))
- (-4 *4 (-425)) (-5 *1 (-575 *3 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
+ (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124))
+ (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522)))))
+ (-4 *2 (-13 (-784) (-21))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-676)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-12 (-5 *3 (-1085)) (-4 *5 (-338)) (-5 *2 (-1066 (-1066 (-881 *5))))
+ (-5 *1 (-1174 *5)) (-5 *4 (-1066 (-881 *5))))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338))
+ (-5 *2 (-2 (|:| -1856 (-382 *6)) (|:| |coeff| (-382 *6))))
+ (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-498)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *3 (-881 (-522)))
+ (-5 *1 (-305))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1007 (-881 (-522)))) (-5 *1 (-305)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-301 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-729)) (-4 *3 (-157)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2))
+ (-4 *5 (-348 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7))
+ (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-791)) (-5 *1 (-1065 *3)) (-4 *3 (-1013))
- (-4 *3 (-1119)))))
-(((*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3052 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-848)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202))
- (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-688)))))
+ (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514))
+ (-5 *2 (-1081 *3)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784))
+ (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-936 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-311 *5 *6 *7 *8)) (-4 *5 (-405 *4))
+ (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6)))
+ (-4 *8 (-317 *5 *6 *7)) (-4 *4 (-13 (-784) (-514) (-962 (-522))))
+ (-5 *2 (-2 (|:| -3714 (-708)) (|:| -2094 *8)))
+ (-5 *1 (-840 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-311 (-382 (-522)) *4 *5 *6))
+ (-4 *4 (-1142 (-382 (-522)))) (-4 *5 (-1142 (-382 *4)))
+ (-4 *6 (-317 (-382 (-522)) *4 *5))
+ (-5 *2 (-2 (|:| -3714 (-708)) (|:| -2094 *6)))
+ (-5 *1 (-841 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-159)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513))
- (-5 *2 (-1080 *3)))))
+ (-12 (-4 *1 (-1142 *3)) (-4 *3 (-971)) (-5 *2 (-1081 *3)))))
+(((*1 *1) (-5 *1 (-740))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-772))
+ (-12 (-4 *1 (-773))
(-5 *3
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
- (-5 *2 (-959))))
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
+ (-5 *2 (-960))))
((*1 *2 *3)
- (-12 (-4 *1 (-772))
+ (-12 (-4 *1 (-773))
(-5 *3
- (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
- (-5 *2 (-959)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-793 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425))
- (-5 *2
- (-2 (|:| |dpolys| (-587 (-224 *5 *6)))
- (|:| |coords| (-587 (-521)))))
- (-5 *1 (-444 *5 *6 *7)) (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-166)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-1158 *4 *2))
- (-4 *4 (-37 (-381 (-521)))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-1053))))
-(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1013))
- (-4 *2 (-13 (-404 *4) (-814 *3) (-562 (-820 *3))))
- (-5 *1 (-992 *3 *4 *2))
- (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *3 *2)) (-4 *3 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1080 *6)) (-4 *6 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-1080 *7)) (-5 *1 (-295 *4 *5 *6 *7))
- (-4 *7 (-877 *6 *4 *5)))))
+ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))
+ (-5 *2 (-960)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-1095 *2)) (-4 *2 (-338)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-290 (-202))))
- (-5 *2
- (-2 (|:| |additions| (-521)) (|:| |multiplications| (-521))
- (|:| |exponentiations| (-521)) (|:| |functionCalls| (-521))))
- (-5 *1 (-280)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783))
- (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5))
- (-5 *2
- (-2 (|:| -1836 (-387 *4 (-381 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -3658 (-381 *6))
- (|:| |special| (-381 *6))))
- (-5 *1 (-664 *5 *6)) (-5 *3 (-381 *6))))
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-405 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-824 *3 *4))
- (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-707)) (-4 *5 (-337))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -1981 *3))) (-5 *1 (-824 *3 *5))
- (-4 *3 (-1141 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
- (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
- (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
- (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1054 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-587 *9)) (-5 *3 (-587 *8)) (-5 *4 (-108))
- (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1013))
- (-4 *2 (-13 (-404 *4) (-814 *3) (-562 (-820 *3))))
- (-5 *1 (-992 *3 *4 *2))
- (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1013)) (-5 *1 (-1074 *2 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 *3)) (-5 *1 (-842 *3)) (-4 *3 (-282)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-619 *5 *6 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-89 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-239))))
- ((*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))))
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108))
+ (-5 *1 (-144 *4 *5)) (-4 *5 (-405 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108))
+ (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-405 *4) (-928)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-277 *4)) (-4 *4 (-278))))
+ ((*1 *2 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-404 *4 *5)) (-4 *4 (-405 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108))
+ (-5 *1 (-406 *4 *5)) (-4 *5 (-405 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108))
+ (-5 *1 (-575 *4 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106))))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-628 *2)) (-5 *4 (-708))
+ (-4 *2 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
+(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-699))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
- (-4 *3 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-166)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135))
- (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4))
- (-4 *4 (-323)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-849)) (-4 *5 (-783))
- (-5 *2 (-57 (-587 (-612 *5)))) (-5 *1 (-612 *5)))))
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
- (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-513)) (-5 *2 (-108)) (-5 *1 (-568 *3 *4))
- (-4 *4 (-1141 *3))))
+ (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120))
+ (-5 *2 (-588 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-663))))
+ (-12 (-4 *3 (-1014))
+ (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))
+ (-5 *1 (-993 *3 *4 *2))
+ (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3))))))
((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-108)))))
-(((*1 *1) (-12 (-4 *1 (-438 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-497))) ((*1 *1) (-4 *1 (-659)))
- ((*1 *1) (-4 *1 (-663)))
- ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013))))
- ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1089))) (-5 *1 (-1089)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-587
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-707)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-729)) (-4 *6 (-877 *4 *3 *5)) (-4 *4 (-425)) (-4 *5 (-783))
- (-5 *1 (-422 *4 *3 *5 *6)))))
+ (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *3 *2)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-588 (-382 *7)))
+ (-4 *7 (-1142 *6)) (-5 *3 (-382 *7)) (-4 *6 (-338))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-532 *6 *7)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
- (-5 *2 (-587 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-707)) (-5 *4 (-1165 *2)) (-4 *5 (-282))
- (-4 *6 (-918 *5)) (-4 *2 (-13 (-383 *6 *7) (-961 *6)))
- (-5 *1 (-387 *5 *6 *7 *2)) (-4 *7 (-1141 *6)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3))
- (-4 *3 (-13 (-1105) (-29 *5))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-108)) (-5 *5 (-1015 (-707))) (-5 *6 (-707))
- (-5 *2
- (-2 (|:| |contp| (-521))
- (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521)))))))
- (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-497)))
- ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1141 *4)) (-5 *1 (-745 *4 *2 *3 *5))
- (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2))
- (-4 *5 (-597 (-381 *2))))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-5 *1 (-412)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-784)) (-5 *4 (-588 *6))
+ (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-588 *4))))
+ (-5 *1 (-1092 *6)) (-5 *5 (-588 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
(-5 *2
- (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-627 *3))))
- (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970))
- (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
- (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))))
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1085))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-588 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1856 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1106) (-27) (-405 *8)))
+ (-4 *8 (-13 (-426) (-784) (-135) (-962 *3) (-584 *3)))
+ (-5 *3 (-522)) (-5 *2 (-588 *4)) (-5 *1 (-940 *8 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-627 (-381 (-880 (-521)))))
- (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955))
- (-5 *3 (-290 (-521))))))
-(((*1 *1 *1 *1) (-4 *1 (-131)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014))
+ (-5 *2 (-1 *5)) (-5 *1 (-622 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))))
+(((*1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1014))
+ (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))
+ (-5 *1 (-993 *3 *4 *2))
+ (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1014)) (-5 *1 (-1075 *2 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -3421 *1)))
+ (-4 *1 (-985 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -3421 *1)))
+ (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-620 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-282)) (-4 *6 (-347 *5)) (-4 *4 (-347 *5))
+ (-12 (-5 *3 (-1081 *5)) (-4 *5 (-338)) (-5 *2 (-588 *6))
+ (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-794 *5))) (-14 *5 (-588 (-1085))) (-4 *6 (-426))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-1035 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))))
+ (-2 (|:| |dpolys| (-588 (-224 *5 *6)))
+ (|:| |coords| (-588 (-522)))))
+ (-5 *1 (-445 *5 *6 *7)) (-5 *3 (-588 (-224 *5 *6))) (-4 *7 (-426)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-282) (-135))) (-4 *4 (-13 (-783) (-562 (-1084))))
- (-4 *5 (-729)) (-5 *1 (-852 *3 *4 *5 *2)) (-4 *2 (-877 *3 *5 *4)))))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-690)))))
+(((*1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031))))))
- (-4 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-491 *4)))))
-(((*1 *1 *1) (-5 *1 (-202)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1 *1) (-5 *1 (-353))) ((*1 *1) (-5 *1 (-353))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2))
+ (-4 *4 (-37 (-382 (-522)))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5))
+ (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6))
+ (-4 *6 (-426))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-454 *5 *6))) (-5 *4 (-794 *5))
+ (-14 *5 (-588 (-1085))) (-5 *2 (-454 *5 *6)) (-5 *1 (-576 *5 *6))
+ (-4 *6 (-426)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-281)))))
+(((*1 *2)
+ (-12 (-5 *2 (-628 (-839 *3))) (-5 *1 (-326 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850))))
((*1 *2)
- (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2)))
- (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5))
- (-4 *3 (-316 *4 *2 *5))))
+ (-12 (-5 *2 (-628 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324))
+ (-14 *4
+ (-3 (-1081 *3)
+ (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032)))))))))
((*1 *2)
- (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123))
- (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
- (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
- (-5 *1 (-724))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
- (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
- (-5 *1 (-724)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-880 (-521))) (-5 *3 (-1084))
- (-5 *4 (-1008 (-381 (-521)))) (-5 *1 (-30)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |k| (-1084)) (|:| |c| (-1185 *3)))))
- (-5 *1 (-1185 *3)) (-4 *3 (-970))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |k| *3) (|:| |c| (-1187 *3 *4)))))
- (-5 *1 (-1187 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *3))
- (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-587 *7) (-587 *7))) (-5 *2 (-587 *7))
- (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-903 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-513)) (-4 *2 (-970))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *1))))
- (-4 *1 (-989 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1119)) (-5 *2 (-707)) (-5 *1 (-165 *4 *3))
- (-4 *3 (-614 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))))
-(((*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337)))))
+ (-12 (-5 *2 (-628 *3)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324))
+ (-14 *4 (-850)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-498))) ((*1 *1) (-4 *1 (-660)))
+ ((*1 *1) (-4 *1 (-664)))
+ ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))
+ ((*1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
- (-14 *4 (-587 (-1084)))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-588 (-454 *4 *5))) (-5 *3 (-794 *4))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-426)) (-5 *1 (-576 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-1090))) (-5 *1 (-1090)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *5) (-27) (-1106)))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-539 *3)) (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-126)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7)))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1119))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783)))
- (-14 *4 (-587 (-1084)))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+ (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5)))
+ (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
- (-5 *2 (-453 *4 *5)) (-5 *1 (-872 *4 *5)))))
+ (-12 (-5 *3 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *4 *5 *6))
+ (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *2))
+ (-4 *4 (-37 (-382 (-522)))))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-498)))
+ ((*1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1016 (-1016 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-536)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1123)) (-4 *5 (-1141 *3)) (-4 *6 (-1141 (-381 *5)))
- (-5 *2 (-108)) (-5 *1 (-315 *4 *3 *5 *6)) (-4 *4 (-316 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-202))) (-5 *4 (-707)) (-5 *2 (-627 (-202)))
- (-5 *1 (-280)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812))
+ (-5 *3 (-588 (-522)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812))
+ (-5 *3 (-588 (-522))))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1141 *4)) (-5 *1 (-743 *4 *2 *3 *5))
- (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2))
- (-4 *5 (-597 (-381 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1141 *4)) (-5 *1 (-743 *4 *2 *5 *3))
- (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-597 *2))
- (-4 *3 (-597 (-381 *2))))))
-(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-110)) (-5 *4 (-707)) (-4 *5 (-425)) (-4 *5 (-783))
- (-4 *5 (-961 (-521))) (-4 *5 (-513)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-404 *5))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *5 (-560 $)) $))
- (-15 -2818 ((-1036 *5 (-560 $)) $))
- (-15 -2223 ($ (-1036 *5 (-560 $))))))))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *8)) (-5 *4 (-707)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084))))
- (-4 *7 (-729))
- (-5 *2
- (-587
- (-2 (|:| |det| *8) (|:| |rows| (-587 (-521)))
- (|:| |cols| (-587 (-521))))))
- (-5 *1 (-852 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1081 *7)) (-4 *5 (-971))
+ (-4 *7 (-971)) (-4 *2 (-1142 *5)) (-5 *1 (-471 *5 *2 *6 *7))
+ (-4 *6 (-1142 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971))
+ (-4 *4 (-1142 *5)) (-5 *2 (-1081 *7)) (-5 *1 (-471 *5 *4 *6 *7))
+ (-4 *6 (-1142 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108)))))
(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-360 *3)) (|:| |mm| (-360 *3)) (|:| |rm| (-360 *3))))
- (-5 *1 (-360 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-755 *3)) (|:| |mm| (-755 *3)) (|:| |rm| (-755 *3))))
- (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-722)))))
+ (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-768)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971))
+ (-5 *1 (-629 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-419 *3)) (-4 *3 (-971)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4))
+ (-4 *3 (-392 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338))
+ (-5 *2 (-1081 (-881 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-793 *5))) (-14 *5 (-587 (-1084))) (-4 *6 (-425))
- (-5 *2 (-587 (-587 (-224 *5 *6)))) (-5 *1 (-444 *5 *6 *7))
- (-5 *3 (-587 (-224 *5 *6))) (-4 *7 (-425)))))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-587 *1)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-627 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 *4)) (-4 *4 (-970)) (-4 *1 (-1034 *3 *4 *5 *6))
- (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 *4))))
+ (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+(((*1 *1 *1) (-4 *1 (-574)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928) (-1106))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-354)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-202) (-202) (-202)))
+ (-5 *4 (-1 (-202) (-202) (-202) (-202)))
+ (-5 *2 (-1 (-872 (-202)) (-202) (-202))) (-5 *1 (-635)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-850)) (-5 *1 (-416 *2))
+ (-4 *2 (-1142 (-522)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-708)) (-5 *1 (-416 *2))
+ (-4 *2 (-1142 (-522)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *1 (-416 *2))
+ (-4 *2 (-1142 (-522)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708))
+ (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-850)) (-5 *4 (-588 (-708))) (-5 *5 (-708))
+ (-5 *6 (-108)) (-5 *1 (-416 *2)) (-4 *2 (-1142 (-522)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-393 *2)) (-4 *2 (-1142 *5))
+ (-5 *1 (-418 *5 *2)) (-4 *5 (-971)))))
+(((*1 *1 *1) (-4 *1 (-1054))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425)))
- (-5 *2 (-776 *4)) (-5 *1 (-287 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425)))
- (-5 *2 (-776 *4)) (-5 *1 (-1151 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1105) (-404 *3))) (-14 *5 (-1084))
- (-14 *6 *4))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1008 *3)) (-4 *3 (-877 *7 *6 *4)) (-4 *6 (-729))
- (-4 *4 (-783)) (-4 *7 (-513))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521))))
- (-5 *1 (-545 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-513))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-521))))
- (-5 *1 (-545 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1076 *4 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-146) (-27) (-1105)))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1076 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-783) (-961 (-521))))
- (-5 *2 (-381 (-880 *5))) (-5 *1 (-1077 *5)) (-5 *3 (-880 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-783) (-961 (-521))))
- (-5 *2 (-3 (-381 (-880 *5)) (-290 *5))) (-5 *1 (-1077 *5))
- (-5 *3 (-381 (-880 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1006 (-880 *5))) (-5 *3 (-880 *5))
- (-4 *5 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-381 *3))
- (-5 *1 (-1077 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1006 (-381 (-880 *5)))) (-5 *3 (-381 (-880 *5)))
- (-4 *5 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-3 *3 (-290 *5)))
- (-5 *1 (-1077 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521))))
- ((*1 *1 *1) (-5 *1 (-1031))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
(-5 *2 (-108)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2)
- (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
- (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -1347 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-337)) (-4 *7 (-1141 *6))
- (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6)))
- (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
-(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-849)))))
-(((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-959)) (-5 *1 (-773))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353)))
- (-5 *2 (-959)) (-5 *1 (-773)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1084))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-587 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1347 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1105) (-27) (-404 *8)))
- (-4 *8 (-13 (-425) (-783) (-135) (-961 *3) (-583 *3)))
- (-5 *3 (-521))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -1981 *4) (|:| |sol?| (-108))))
- (-5 *1 (-938 *8 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-132))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-132)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521))))
- ((*1 *1 *1 *1) (-5 *1 (-1031))))
-(((*1 *2)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120))
+ (-4 *2 (-784))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4239))
+ (-4 *1 (-348 *3)) (-4 *3 (-1120)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-354)) (-5 *1 (-184)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522))
+ (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))))
+(((*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-514))))
+ ((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))))
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-538 *3)) (-4 *3 (-337)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-469 *2)) (-14 *2 (-521))))
- ((*1 *1 *1 *1) (-5 *1 (-1031))))
-(((*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-626 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3))
- (-4 *3 (-589 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3))
- (-4 *3 (-589 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-970))))
- ((*1 *1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-970)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-5 *1 (-304)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-297 *2 *4)) (-4 *4 (-124))
- (-4 *2 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-360 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-1013)) (-5 *1 (-590 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *1 (-755 *2)) (-4 *2 (-783)))))
+ (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)) (-5 *3 (-1068)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1065 *3))) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *2 (-587 *3)) (-5 *1 (-903 *4 *5 *6 *3))
- (-4 *3 (-984 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014))
+ (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *5 *4 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4))
+ (-4 *4 (-37 (-382 (-522)))) (-5 *2 (-1 (-1066 *4) (-1066 *4)))
+ (-5 *1 (-1159 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1089)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783))
- (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-783)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-849))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-310 *4 *5 *6 *7)) (-4 *4 (-13 (-342) (-337)))
- (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *7 (-316 *4 *5 *6))
- (-5 *2 (-707)) (-5 *1 (-366 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-769 (-849)))))
- ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4))
- (-4 *4 (-1141 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-677 *4 *3)) (-4 *4 (-970))
- (-4 *3 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-677 *4 *3)) (-4 *4 (-970)) (-4 *3 (-783))
- (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-832 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4))
- (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6)))
- (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-783) (-513) (-961 (-521))))
- (-5 *2 (-707)) (-5 *1 (-839 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6))
- (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4)))
- (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-707))
- (-5 *1 (-840 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-310 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-337))
- (-4 *7 (-1141 *6)) (-4 *4 (-1141 (-381 *7))) (-4 *8 (-316 *6 *7 *4))
- (-4 *9 (-13 (-342) (-337))) (-5 *2 (-707))
- (-5 *1 (-943 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-4 *3 (-513)) (-5 *2 (-707))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-632 *3)) (-4 *3 (-1013))
- (-5 *2 (-587 (-2 (|:| -3050 *3) (|:| -4163 (-707))))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1141 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-911 *4 *2 *3 *5))
- (-4 *4 (-323)) (-4 *5 (-661 *2 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))))
-(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-791))) (-5 *2 (-1170)) (-5 *1 (-1047)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-513))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-781))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-1141 (-154 *3))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1163 *3)) (-4 *3 (-23)) (-4 *3 (-1119)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1048))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-108)) (-5 *1 (-820 *4))
- (-4 *4 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-794 *4 *5 *6 *7))
- (-4 *4 (-970)) (-14 *5 (-587 (-1084))) (-14 *6 (-587 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-4 *5 (-783)) (-4 *6 (-729))
- (-14 *8 (-587 *5)) (-5 *2 (-1170))
- (-5 *1 (-1175 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-877 *4 *6 *5))
- (-14 *9 (-587 *3)) (-14 *10 *3))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4233)) (-4 *1 (-33)) (-5 *2 (-707))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-521))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-779)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-4 *3 (-513)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1080 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-783) (-513)))
- (-5 *1 (-31 *4 *2)))))
+ (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-708)) (-4 *5 (-324)) (-4 *6 (-1142 *5))
+ (-5 *2
+ (-588
+ (-2 (|:| -3855 (-628 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-628 *6)))))
+ (-5 *1 (-468 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -3855 (-628 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-628 *6))))
+ (-4 *7 (-1142 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081 *6)) (-4 *6 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-1081 *7)) (-5 *1 (-296 *4 *5 *6 *7))
+ (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-758)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1009 *3)) (-4 *3 (-878 *7 *6 *4)) (-4 *6 (-730))
+ (-4 *4 (-784)) (-4 *7 (-514))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522))))
+ (-5 *1 (-546 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-514))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-522))))
+ (-5 *1 (-546 *5 *4 *6 *3)) (-4 *3 (-878 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1077 *4 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-146) (-27) (-1106)))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1077 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522))))
+ (-5 *2 (-382 (-881 *5))) (-5 *1 (-1078 *5)) (-5 *3 (-881 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-784) (-962 (-522))))
+ (-5 *2 (-3 (-382 (-881 *5)) (-291 *5))) (-5 *1 (-1078 *5))
+ (-5 *3 (-382 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1007 (-881 *5))) (-5 *3 (-881 *5))
+ (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-382 *3))
+ (-5 *1 (-1078 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1007 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5)))
+ (-4 *5 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-3 *3 (-291 *5)))
+ (-5 *1 (-1078 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522))))
+ ((*1 *1 *1) (-5 *1 (-1032))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-1106 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-587 (-1106 *2))) (-5 *1 (-1106 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
- (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-587 *3))
- (-5 *1 (-543 *5 *6 *7 *8 *3)) (-4 *3 (-1022 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135)))
+ (-12 (-5 *3 (-1166 (-291 (-202))))
(-5 *2
- (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5))))))
- (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-880 *5)))
- (-14 *6 (-587 (-1084)))))
+ (-2 (|:| |additions| (-522)) (|:| |multiplications| (-522))
+ (|:| |exponentiations| (-522)) (|:| |functionCalls| (-522))))
+ (-5 *1 (-281)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-130 *3 *4 *2))
+ (-4 *2 (-348 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-282) (-135)))
- (-5 *2
- (-587 (-2 (|:| -2990 (-1080 *4)) (|:| -1816 (-587 (-880 *4))))))
- (-5 *1 (-994 *4 *5)) (-5 *3 (-587 (-880 *4)))
- (-14 *5 (-587 (-1084)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135)))
- (-5 *2
- (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5))))))
- (-5 *1 (-994 *5 *6)) (-5 *3 (-587 (-880 *5)))
- (-14 *6 (-587 (-1084))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-184)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-587 *3)) (|:| |image| (-587 *3))))
- (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-587 *11))
- (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1946 *11))))))
- (-5 *6 (-707))
- (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1946 *11))))
- (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9))
- (-4 *11 (-989 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729))
- (-4 *9 (-783)) (-5 *1 (-987 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-587 *11))
- (|:| |todo| (-587 (-2 (|:| |val| *3) (|:| -1946 *11))))))
- (-5 *6 (-707))
- (-5 *2 (-587 (-2 (|:| |val| (-587 *10)) (|:| -1946 *11))))
- (-5 *3 (-587 *10)) (-5 *4 (-587 *11)) (-4 *10 (-984 *7 *8 *9))
- (-4 *11 (-1022 *7 *8 *9 *10)) (-4 *7 (-425)) (-4 *8 (-729))
- (-4 *9 (-783)) (-5 *1 (-1054 *7 *8 *9 *10 *11)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-880 *5)) (-4 *5 (-970)) (-5 *2 (-453 *4 *5))
- (-5 *1 (-872 *4 *5)) (-14 *4 (-587 (-1084))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084)))))
- (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017))
- (-5 *1 (-371))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-587 (-587 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-587 (-3 (|:| |array| (-587 *3)) (|:| |scalar| (-1084)))))
- (-5 *6 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1017))
- (-5 *1 (-371))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-587 (-1084))) (-5 *5 (-1087)) (-5 *3 (-1084))
- (-5 *2 (-1017)) (-5 *1 (-371)))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-919 *4)) (-4 *2 (-348 *4))
+ (-5 *1 (-473 *4 *5 *2 *3)) (-4 *3 (-348 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514))
+ (-5 *2 (-628 *4)) (-5 *1 (-631 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-514)) (-4 *4 (-919 *3)) (-5 *1 (-1135 *3 *4 *2))
+ (-4 *2 (-1142 *4)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441))))
+ ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-441))))
+ ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
+(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850)))))
+(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-348 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-132))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-132)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-711)) (-5 *1 (-110)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522))))
+ ((*1 *1 *1 *1) (-5 *1 (-1032))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3855 (-588 *1))))
+ (-4 *1 (-342 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-427 *3 *4 *5 *6))
+ (|:| -3855 (-588 (-427 *3 *4 *5 *6)))))
+ (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784))
+ (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *2 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-690)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-627 *2)) (-4 *4 (-1141 *2))
- (-4 *2 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-5 *1 (-468 *2 *4 *5)) (-4 *5 (-383 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
- (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3052 *3) (|:| |coef1| (-718 *3)) (|:| |coef2| (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1084))) (-4 *6 (-337))
- (-5 *2 (-587 (-269 (-880 *6)))) (-5 *1 (-499 *5 *6 *7))
- (-4 *5 (-425)) (-4 *7 (-13 (-337) (-781))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 (-880 *6))) (-4 *6 (-513))
- (-4 *2 (-877 (-381 (-880 *6)) *5 *4)) (-5 *1 (-669 *5 *4 *6 *2))
- (-4 *5 (-729))
- (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-277)) (-5 *3 (-1084)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 (-776 *3))) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (-776 *3)
- (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-776 *3) "failed")))
- "failed"))
- (-5 *1 (-580 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-269 *3)) (-5 *5 (-1067))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-776 *3)) (-5 *1 (-580 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 (-776 (-880 *5)))) (-4 *5 (-425))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6))
+ (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
(-5 *2
- (-3 (-776 (-381 (-880 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-776 (-381 (-880 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-776 (-381 (-880 *5))) "failed")))
- "failed"))
- (-5 *1 (-581 *5)) (-5 *3 (-381 (-880 *5)))))
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 (-381 (-880 *5)))) (-5 *3 (-381 (-880 *5)))
- (-4 *5 (-425))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
(-5 *2
- (-3 (-776 *3)
- (-2 (|:| |leftHandLimit| (-3 (-776 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-776 *3) "failed")))
- "failed"))
- (-5 *1 (-581 *5))))
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-269 (-381 (-880 *6)))) (-5 *5 (-1067))
- (-5 *3 (-381 (-880 *6))) (-4 *6 (-425)) (-5 *2 (-776 *3))
- (-5 *1 (-581 *6)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-108))
- (-5 *1 (-239)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4))
+ (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
(-5 *2
- (-3 (|:| |overq| (-1080 (-381 (-521))))
- (|:| |overan| (-1080 (-47))) (|:| -3084 (-108))))
- (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-970)) (-4 *2 (-625 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1141 *4)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-400 *4 *2)) (-4 *2 (-13 (-1105) (-29 *4)))))
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-135))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *2 (-290 *5)) (-5 *1 (-541 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1013)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-347 *3))
- (-4 *3 (-1119)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521)))
- (-5 *2 (-1165 (-381 (-521)))) (-5 *1 (-1190 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-337)) (-4 *2 (-1141 *4))
- (-5 *1 (-850 *4 *2)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-159))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-104)) (-5 *1 (-1000)))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-143)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-587 (-871 (-202)))))
- (-5 *2 (-587 (-1008 (-202)))) (-5 *1 (-856)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-157)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1065 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-715 *4))
- (-4 *4 (-13 (-337) (-781))))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-961 (-521))) (-4 *3 (-13 (-783) (-513)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-404 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1080 *4)) (-5 *1 (-150 *3 *4))
- (-4 *3 (-151 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-970)) (-4 *1 (-277))))
- ((*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1080 *3))))
- ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-781) (-337)))
- (-4 *2 (-1141 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-783)))
- (-14 *3 (-587 (-1084))))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-790))))
- ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-892))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-915))))
- ((*1 *2 *1) (-12 (-4 *1 (-935 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *2 *3))
- (-4 *3 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-871 (-202)) (-871 (-202)))) (-5 *3 (-587 (-239)))
- (-5 *1 (-237))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-871 (-202)) (-871 (-202)))) (-5 *1 (-239))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-453 *5 *6))) (-5 *3 (-453 *5 *6))
- (-14 *5 (-587 (-1084))) (-4 *6 (-425)) (-5 *2 (-1165 *6))
- (-5 *1 (-575 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-871 (-202)))) (-5 *1 (-1166)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *2 (-959)) (-5 *1 (-280))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))
- (-5 *2 (-959)) (-5 *1 (-280)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-627 *2)) (-5 *4 (-521))
- (-4 *2 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-14 *5 (-587 (-1084)))
- (-5 *2
- (-587 (-2 (|:| -2990 (-1080 *4)) (|:| -1816 (-587 (-880 *4))))))
- (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946)))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
(-5 *2
- (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5))))))
- (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-880 *5)))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946)))
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-470 *2)) (-14 *2 (-522))))
+ ((*1 *1 *1 *1) (-5 *1 (-1032))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-588 (-522))) (-5 *3 (-108)) (-5 *1 (-1024)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5))
(-5 *2
- (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5))))))
- (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-880 *5)))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ (-2 (|:| -1781 (-388 *4 (-382 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-781) (-282) (-135) (-946)))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338))
(-5 *2
- (-587 (-2 (|:| -2990 (-1080 *5)) (|:| -1816 (-587 (-880 *5))))))
- (-5 *1 (-1189 *5 *6 *7)) (-5 *3 (-587 (-880 *5)))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
+ (-2 (|:| |poly| *6) (|:| -3663 (-382 *6))
+ (|:| |special| (-382 *6))))
+ (-5 *1 (-665 *5 *6)) (-5 *3 (-382 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2
- (-587 (-2 (|:| -2990 (-1080 *4)) (|:| -1816 (-587 (-880 *4))))))
- (-5 *1 (-1189 *4 *5 *6)) (-5 *3 (-587 (-880 *4)))
- (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
+ (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-825 *3 *4))
+ (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-708)) (-4 *5 (-338))
+ (-5 *2 (-2 (|:| -1913 *3) (|:| -1924 *3))) (-5 *1 (-825 *3 *5))
+ (-4 *3 (-1142 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108))
+ (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108))
+ (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-988 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108))
+ (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-588 *9)) (-5 *3 (-588 *8)) (-5 *4 (-108))
+ (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *2 (-108)) (-5 *1 (-852 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1))
+ (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-13 (-282) (-135)))
- (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-108))
- (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *4 (-1084))
- (-5 *1 (-1087))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1087))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-411)) (-5 *3 (-1084)) (-5 *1 (-1088))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-411)) (-5 *3 (-587 (-1084))) (-5 *1 (-1088)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-224 *5 *6))) (-4 *6 (-425))
- (-5 *2 (-224 *5 *6)) (-14 *5 (-587 (-1084))) (-5 *1 (-575 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-301 *3)) (-4 *3 (-1119))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119))
- (-14 *4 (-521)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729))
- (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3196 (-587 *9)) (|:| -1946 *4) (|:| |ineq| (-587 *9))))
- (-5 *1 (-914 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9))
- (-4 *4 (-989 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729))
- (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3196 (-587 *9)) (|:| -1946 *4) (|:| |ineq| (-587 *9))))
- (-5 *1 (-1020 *6 *7 *8 *9 *4)) (-5 *3 (-587 *9))
- (-4 *4 (-989 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-521)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1119))
- (-4 *3 (-347 *4)) (-4 *5 (-347 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-791)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 (-707))
- (-14 *4 (-707)) (-4 *5 (-157)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-783)) (-4 *5 (-837)) (-4 *6 (-729))
- (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-392 (-1080 *8)))
- (-5 *1 (-834 *5 *6 *7 *8)) (-5 *4 (-1080 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5)))
- (-5 *1 (-835 *4 *5)) (-5 *3 (-1080 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-143))))
- ((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *1) (-5 *1 (-1000))))
-(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+ (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-689)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-304)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971))
+ (-5 *2 (-588 (-588 (-588 (-708))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-723)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1120))
+ (-4 *5 (-348 *4)) (-4 *2 (-348 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *7 *2)) (-4 *6 (-971))
+ (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3))
+ (-4 *3 (-1120)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2))
- (-4 *2 (-1156 *3))))
+ (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1157 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5))))
+ (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2))
- (-4 *2 (-1156 *3))))
+ (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2))
+ (-4 *2 (-1157 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135)))
- (-5 *1 (-1061 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-1092 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-521)) (-5 *1 (-1102 *4))
- (-4 *4 (-970)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *3))
- (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-108))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-587
- (-587
- (-3 (|:| -2890 (-1084))
- (|:| |bounds| (-587 (-3 (|:| S (-1084)) (|:| P (-880 (-521))))))))))
- (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337)))
- (-4 *3 (-1141 *4)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-5 *2 (-392 *3))
- (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1067)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *4 (-984 *6 *7 *8)) (-5 *2 (-1170))
- (-5 *1 (-712 *6 *7 *8 *4 *5)) (-4 *5 (-989 *6 *7 *8 *4)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-587 (-2 (|:| |totdeg| (-707)) (|:| -3201 *3))))
- (-5 *4 (-707)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *6 (-729))
- (-4 *7 (-783)) (-5 *1 (-422 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1 (-1065 (-880 *4)) (-1065 (-880 *4))))
- (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135)))
+ (-5 *1 (-1062 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-522))
+ (-5 *6
+ (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))))
+ (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354)))
+ (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171))
+ (-5 *1 (-725))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-522))
+ (-5 *6
+ (-2 (|:| |try| (-354)) (|:| |did| (-354)) (|:| -3621 (-354))))
+ (-5 *7 (-1 (-1171) (-1166 *5) (-1166 *5) (-354)))
+ (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171))
+ (-5 *1 (-725)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-746 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 (-381 *6))) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-2 (|:| -1245 (-587 (-381 *6))) (|:| -3534 (-627 *5))))
- (-5 *1 (-746 *5 *6)) (-5 *4 (-587 (-381 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-381 *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-746 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6 (-381 *6))) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-2 (|:| -1245 (-587 (-381 *6))) (|:| -3534 (-627 *5))))
- (-5 *1 (-746 *5 *6)) (-5 *4 (-587 (-381 *6))))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4))))
+ (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
- ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-970)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2246 (-521)))) (-4 *1 (-404 *3))))
+ (-12 (-5 *2 (-708)) (-4 *1 (-1164 *3)) (-4 *3 (-23)) (-4 *3 (-1120)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5)) (-4 *5 (-338))
+ (-4 *5 (-514)) (-5 *2 (-1166 *5)) (-5 *1 (-583 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 *5))
+ (-2401 (-4 *5 (-338))) (-4 *5 (-514)) (-5 *2 (-1166 (-382 *5)))
+ (-5 *1 (-583 *5 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-507))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4238)) (-4 *1 (-33)) (-5 *2 (-708))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2246 (-820 *3))))
- (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970))
- (-4 *7 (-877 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -2246 (-521))))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $))
- (-15 -2818 (*7 $))))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-783))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4))
- (-14 *3 (-849)) (-4 *4 (-970))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1113 *5 *6 *7 *8)) (-4 *5 (-513))
- (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-984 *5 *6 *7)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-522))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-780)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-354)) (-5 *3 (-1068)) (-5 *1 (-92)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-706 *5))))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-706 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1245 (-587 *6)))
- *7 *6))
- (-4 *6 (-337)) (-4 *7 (-597 *6))
+ (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1107 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-1107 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-588 (-1107 *2))) (-5 *1 (-1107 *2)) (-4 *2 (-1014)))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-339 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-5 *2 (-1068)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *2 (-960)) (-5 *1 (-689)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1950 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-1016 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-588 *4))) (-5 *1 (-833 *4))
+ (-5 *3 (-588 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1014)) (-5 *2 (-1016 (-1016 *4))) (-5 *1 (-833 *4))
+ (-5 *3 (-1016 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1081 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-983)))))
+(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-737))
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-960)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2259 (-719 *3)) (|:| |coef2| (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -2259 *1) (|:| |coef2| *1)))
+ (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-132)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1856 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-338)) (-4 *7 (-1142 *6))
(-5 *2
- (-2 (|:| |particular| (-3 (-1165 *6) "failed"))
- (|:| -1245 (-587 (-1165 *6)))))
- (-5 *1 (-749 *6 *7)) (-5 *4 (-1165 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-323))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-381 *2)) (-4 *2 (-1141 *5))
- (-5 *1 (-743 *5 *2 *3 *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *3 (-597 *2)) (-4 *6 (-597 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-381 *2))) (-4 *2 (-1141 *5))
- (-5 *1 (-743 *5 *2 *3 *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *3 (-597 *2))
- (-4 *6 (-597 (-381 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4)))))
- (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4)))
- (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2948 (-587 *3)) (|:| -4164 (-587 *3))))
- (-5 *1 (-1120 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-728))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-381 (-521))) (-4 *1 (-1146 *3)) (-4 *3 (-970)))))
-(((*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-627 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-157)) (-4 *2 (-1141 *4)) (-5 *1 (-161 *4 *2 *3))
- (-4 *3 (-661 *4 *2))))
+ (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6))
+ (-2 (|:| -1856 (-382 *7)) (|:| |coeff| (-382 *7))) "failed"))
+ (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-89 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-708)) (-4 *5 (-514))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-803))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-381 (-880 *5)))) (-5 *4 (-1084))
- (-5 *2 (-880 *5)) (-5 *1 (-267 *5)) (-4 *5 (-425))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 (-381 (-880 *4)))) (-5 *2 (-880 *4))
- (-5 *1 (-267 *4)) (-4 *4 (-425))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1141 *3))))
+ (|partial| -12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-627 (-154 (-381 (-521)))))
- (-5 *2 (-880 (-154 (-381 (-521))))) (-5 *1 (-701 *4))
- (-4 *4 (-13 (-337) (-781)))))
+ (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354)))
+ (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *4 (-1084))
- (-5 *2 (-880 (-154 (-381 (-521))))) (-5 *1 (-701 *5))
- (-4 *5 (-13 (-337) (-781)))))
+ (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *2 (-880 (-381 (-521))))
- (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-781)))))
+ (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-381 (-521)))) (-5 *4 (-1084))
- (-5 *2 (-880 (-381 (-521)))) (-5 *1 (-715 *5))
- (-4 *5 (-13 (-337) (-781))))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9))
- (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8))
- (-5 *2
- (-587
- (-2 (|:| -3196 (-587 *9)) (|:| -1946 *10) (|:| |ineq| (-587 *9)))))
- (-5 *1 (-914 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-587 *10)) (-5 *5 (-108)) (-4 *10 (-989 *6 *7 *8 *9))
- (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-984 *6 *7 *8))
- (-5 *2
- (-587
- (-2 (|:| -3196 (-587 *9)) (|:| -1946 *10) (|:| |ineq| (-587 *9)))))
- (-5 *1 (-1020 *6 *7 *8 *9 *10)) (-5 *3 (-587 *9)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-1165 *5))) (-5 *4 (-521)) (-5 *2 (-1165 *5))
- (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970))
- (-5 *1 (-1069 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970))
- (-14 *4 (-1084)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-627 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-627 *4)) (-5 *1 (-390 *3 *4))
- (-4 *3 (-391 *4))))
- ((*1 *2) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1113 *5 *6 *7 *3))
- (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-849)) (-5 *1 (-954 *2))
- (-4 *2 (-13 (-1013) (-10 -8 (-15 -1628 ($ $ $))))))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-513)) (-5 *1 (-896 *3 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
- (-4 *3 (-894)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087))))
- ((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-729)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-783))
- (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))
- (-5 *2 (-1080 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-783)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-108)) (-5 *1 (-757)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849)))) ((*1 *1) (-4 *1 (-506)))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-765)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-171))))
+ (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-275))))
+ (|partial| -12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850))
+ (-4 *5 (-514)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354)))
+ (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-441)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *1) (-5 *1 (-1031))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-269 (-769 *3)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-769 *3)) (-5 *1 (-580 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 (-769 (-880 *5)))) (-4 *5 (-425))
- (-5 *2 (-769 (-381 (-880 *5)))) (-5 *1 (-581 *5))
- (-5 *3 (-381 (-880 *5)))))
+ (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354)))
+ (-5 *1 (-722 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 (-381 (-880 *5)))) (-5 *3 (-381 (-880 *5)))
- (-4 *5 (-425)) (-5 *2 (-769 *3)) (-5 *1 (-581 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3011 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
- (-5 *2
- (-2 (|:| -2625 (-707)) (|:| |curves| (-707))
- (|:| |polygons| (-707)) (|:| |constructs| (-707)))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2)) (-4 *2 (-614 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (|partial| -12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354)))
+ (-5 *1 (-722 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1 *1) (-4 *1 (-894))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-441)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-612 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-892))) (-5 *1 (-104)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-98 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-587 (-239))) (-5 *1 (-1167))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1067)) (-5 *1 (-1167))))
- ((*1 *1 *1) (-5 *1 (-1167))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-392 *3)) (-4 *3 (-513))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522))))
+ (-5 *1 (-1024)))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-354)) (-5 *1 (-964)))))
+(((*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| -1974 *4) (|:| -2098 (-521)))))
- (-4 *4 (-1141 (-521))) (-5 *2 (-707)) (-5 *1 (-415 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2223 ($ *7)))))
- (-4 *7 (-781))
- (-4 *8
- (-13 (-1143 *3 *7) (-337) (-1105)
- (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $)))))
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3))
+ (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 *7)))
+ (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1081 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-426)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-393 *1)) (-4 *1 (-878 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-426)) (-5 *2 (-393 *3))
+ (-5 *1 (-906 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7))))
+ (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-393 *3)) (-5 *1 (-1145 *4 *3))
+ (-4 *3 (-13 (-1142 *4) (-514) (-10 -8 (-15 -2259 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-14 *5 (-588 (-1085)))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))))
- (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8))
- (-14 *10 (-1084)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-222 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170))
- (-5 *1 (-1120 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-1013)) (-5 *2 (-1170))
- (-5 *1 (-1120 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-4 *2 (-1141 *5))
- (-5 *1 (-1159 *5 *2 *6 *3)) (-4 *6 (-597 *2)) (-4 *3 (-1156 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-411)) (-5 *1 (-1088)))))
+ (-588 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6)))))
+ (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085))))))
+(((*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-983)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7))
- (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-837)) (-4 *5 (-729))
- (-4 *6 (-783)) (-5 *1 (-834 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (|has| *4 (-6 (-4240 "*")))
+ (-4 *4 (-971)) (-5 *1 (-953 *4))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-1080 *5))) (-5 *3 (-1080 *5))
- (-4 *5 (-1141 *4)) (-4 *4 (-837)) (-5 *1 (-835 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-589 *3)) (-4 *3 (-970))
- (-5 *1 (-651 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-770 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850))
+ (|has| *4 (-6 (-4240 "*"))) (-4 *4 (-971)) (-5 *1 (-953 *4)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-792) (-792) (-792))) (-5 *4 (-522)) (-5 *2 (-792))
+ (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-792)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-971))
+ (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-792))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-792))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1081 *3)) (-4 *3 (-971)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124))
+ (-4 *3 (-729)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 *4))
- (-5 *2 (-2 (|:| |radicand| (-381 *5)) (|:| |deg| (-707))))
- (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-937)) (-5 *2 (-791)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-377 *3)) (-4 *3 (-378))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-377 *3)) (-4 *3 (-378))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4224)) (-4 *1 (-378))))
- ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-1065 (-521))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-513) (-783) (-961 (-521))))
- (-4 *5 (-404 *4)) (-5 *2 (-392 (-1080 (-381 (-521)))))
- (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
+ (-12 (-4 *4 (-37 (-382 (-522))))
+ (-5 *2 (-2 (|:| -2748 (-1066 *4)) (|:| -2761 (-1066 *4))))
+ (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3))
+ (-4 *3 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1066 *2)) (-4 *2 (-1120)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3))
- (-4 *3 (-1141 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
- (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
- (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3))
- (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
- (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3))
- (-4 *3 (-1141 (-381 (-521))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1067)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
+ (-12 (-5 *4 (-1 (-588 *5) *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5))
+ (-5 *2 (-588 (-2 (|:| -2677 *5) (|:| -3197 *3))))
+ (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6))
+ (-4 *7 (-598 (-382 *6))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-791))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-893))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-916))))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *2 *3))
+ (-4 *3 (-13 (-1014) (-33))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337)))
- (-4 *3 (-1141 *4)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-277)) (-4 *2 (-1119))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-560 *1))) (-5 *3 (-587 *1)) (-4 *1 (-277))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-269 *1))) (-4 *1 (-277))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-269 *1)) (-4 *1 (-277)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-353)) (-5 *1 (-982)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(((*1 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-521))) (-5 *4 (-521)) (-5 *2 (-51))
- (-5 *1 (-930)))))
-(((*1 *2 *1) (-12 (-4 *1 (-323)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108))
- (-5 *1 (-331 *4)))))
+ (-12
+ (-5 *2
+ (-588
+ (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *3))
+ (|:| |logand| (-1081 *3)))))
+ (-5 *1 (-539 *3)) (-4 *3 (-338)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1013))
- (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3))))
- (-5 *2 (-587 (-992 *3 *4 *5))) (-5 *1 (-993 *3 *4 *5))
- (-4 *5 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -2334 *1)))
- (-4 *1 (-984 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -2334 *1)))
- (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
+ (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))))
+(((*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1169)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521))
- (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1088)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-757)))))
-(((*1 *1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6))
- (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-521))
- (-5 *6
- (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))))
- (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
- (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
- (-5 *1 (-724))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-521))
- (-5 *6
- (-2 (|:| |try| (-353)) (|:| |did| (-353)) (|:| -3616 (-353))))
- (-5 *7 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
- (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
- (-5 *1 (-724)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-5 *2 (-1067)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2286 (-718 *3)) (|:| |coef2| (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2286 *1) (|:| |coef2| *1)))
- (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353)))
- (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5))))
+ (-5 *1 (-1041 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1041 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *5))))
+ (-5 *1 (-1041 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-381 (-880 (-154 *4)))) (-4 *4 (-513))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-270 (-382 (-881 *4))))
+ (-4 *4 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-270 (-291 *4))))
+ (-5 *1 (-1041 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-381 (-880 (-154 *5)))) (-5 *4 (-849))
- (-4 *5 (-513)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
- (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085)))
+ (-4 *5 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-588 (-382 (-881 *4))))
+ (-4 *4 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
- (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-588 (-270 (-382 (-881 *5))))) (-5 *4 (-588 (-1085)))
+ (-4 *5 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1041 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-783))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
- (-5 *1 (-721 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-627 *4)) (-5 *3 (-849)) (|has| *4 (-6 (-4235 "*")))
- (-4 *4 (-970)) (-5 *1 (-952 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-849))
- (|has| *4 (-6 (-4235 "*"))) (-4 *4 (-970)) (-5 *1 (-952 *4)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
+ (-12 (-5 *3 (-588 (-270 (-382 (-881 *4)))))
+ (-4 *4 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-588 (-588 (-270 (-291 *4))))) (-5 *1 (-1041 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-324)) (-4 *4 (-304 *3)) (-4 *5 (-1142 *4))
+ (-5 *1 (-714 *3 *4 *5 *2 *6)) (-4 *2 (-1142 *5)) (-14 *6 (-850))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-4 *3 (-343))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-338)) (-4 *2 (-343)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-381 (-880 (-521)))))
- (-5 *2 (-587 (-587 (-269 (-880 *4))))) (-5 *1 (-354 *4))
- (-4 *4 (-13 (-781) (-337)))))
+ (-12 (-5 *3 (-588 (-382 (-881 (-522)))))
+ (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4))
+ (-4 *4 (-13 (-782) (-338)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-269 (-381 (-880 (-521))))))
- (-5 *2 (-587 (-587 (-269 (-880 *4))))) (-5 *1 (-354 *4))
- (-4 *4 (-13 (-781) (-337)))))
+ (-12 (-5 *3 (-588 (-270 (-382 (-881 (-522))))))
+ (-5 *2 (-588 (-588 (-270 (-881 *4))))) (-5 *1 (-355 *4))
+ (-4 *4 (-13 (-782) (-338)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 (-521)))) (-5 *2 (-587 (-269 (-880 *4))))
- (-5 *1 (-354 *4)) (-4 *4 (-13 (-781) (-337)))))
+ (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 (-270 (-881 *4))))
+ (-5 *1 (-355 *4)) (-4 *4 (-13 (-782) (-338)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-269 (-381 (-880 (-521)))))
- (-5 *2 (-587 (-269 (-880 *4)))) (-5 *1 (-354 *4))
- (-4 *4 (-13 (-781) (-337)))))
+ (-12 (-5 *3 (-270 (-382 (-881 (-522)))))
+ (-5 *2 (-588 (-270 (-881 *4)))) (-5 *1 (-355 *4))
+ (-4 *4 (-13 (-782) (-338)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1084))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-4 *4 (-13 (-29 *6) (-1105) (-886)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1245 (-587 *4))))
- (-5 *1 (-593 *6 *4 *3)) (-4 *3 (-597 *4))))
+ (|partial| -12 (-5 *5 (-1085))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-4 *4 (-13 (-29 *6) (-1106) (-887)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3855 (-588 *4))))
+ (-5 *1 (-594 *6 *4 *3)) (-4 *3 (-598 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *2))
- (-4 *2 (-13 (-29 *6) (-1105) (-886)))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *1 (-593 *6 *2 *3)) (-4 *3 (-597 *2))))
+ (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *2))
+ (-4 *2 (-13 (-29 *6) (-1106) (-887)))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *1 (-594 *6 *2 *3)) (-4 *3 (-598 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *5)) (-4 *5 (-337))
+ (-12 (-5 *3 (-628 *5)) (-4 *5 (-338))
(-5 *2
- (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
- (|:| -1245 (-587 (-1165 *5)))))
- (-5 *1 (-608 *5)) (-5 *4 (-1165 *5))))
+ (-2 (|:| |particular| (-3 (-1166 *5) "failed"))
+ (|:| -3855 (-588 (-1166 *5)))))
+ (-5 *1 (-609 *5)) (-5 *4 (-1166 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337))
+ (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338))
(-5 *2
- (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
- (|:| -1245 (-587 (-1165 *5)))))
- (-5 *1 (-608 *5)) (-5 *4 (-1165 *5))))
+ (-2 (|:| |particular| (-3 (-1166 *5) "failed"))
+ (|:| -3855 (-588 (-1166 *5)))))
+ (-5 *1 (-609 *5)) (-5 *4 (-1166 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *5)) (-4 *5 (-337))
+ (-12 (-5 *3 (-628 *5)) (-4 *5 (-338))
(-5 *2
- (-587
- (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
- (|:| -1245 (-587 (-1165 *5))))))
- (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5)))))
+ (-588
+ (-2 (|:| |particular| (-3 (-1166 *5) "failed"))
+ (|:| -3855 (-588 (-1166 *5))))))
+ (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-587 *5))) (-4 *5 (-337))
+ (-12 (-5 *3 (-588 (-588 *5))) (-4 *5 (-338))
(-5 *2
- (-587
- (-2 (|:| |particular| (-3 (-1165 *5) "failed"))
- (|:| -1245 (-587 (-1165 *5))))))
- (-5 *1 (-608 *5)) (-5 *4 (-587 (-1165 *5)))))
+ (-588
+ (-2 (|:| |particular| (-3 (-1166 *5) "failed"))
+ (|:| -3855 (-588 (-1166 *5))))))
+ (-5 *1 (-609 *5)) (-5 *4 (-588 (-1166 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
- (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239))))
+ (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
- (-4 *7 (-13 (-347 *5) (-10 -7 (-6 -4234))))
+ (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239))))
+ (-4 *7 (-13 (-348 *5) (-10 -7 (-6 -4239))))
(-5 *2
- (-587
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1245 (-587 *7)))))
- (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-587 *7))
- (-4 *3 (-625 *5 *6 *7))))
+ (-588
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3855 (-588 *7)))))
+ (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-588 *7))
+ (-4 *3 (-626 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-587 (-1084))) (-4 *5 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-706 *5))))
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-706 *4))))
+ (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1084))
- (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *1 (-708 *5 *2)) (-4 *2 (-13 (-29 *5) (-1105) (-886)))))
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1085))
+ (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *1 (-709 *5 *2)) (-4 *2 (-13 (-29 *5) (-1106) (-887)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-627 *7)) (-5 *5 (-1084))
- (-4 *7 (-13 (-29 *6) (-1105) (-886)))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (|partial| -12 (-5 *3 (-628 *7)) (-5 *5 (-1085))
+ (-4 *7 (-13 (-29 *6) (-1106) (-887)))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
(-5 *2
- (-2 (|:| |particular| (-1165 *7)) (|:| -1245 (-587 (-1165 *7)))))
- (-5 *1 (-738 *6 *7)) (-5 *4 (-1165 *7))))
+ (-2 (|:| |particular| (-1166 *7)) (|:| -3855 (-588 (-1166 *7)))))
+ (-5 *1 (-739 *6 *7)) (-5 *4 (-1166 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-627 *6)) (-5 *4 (-1084))
- (-4 *6 (-13 (-29 *5) (-1105) (-886)))
- (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-587 (-1165 *6))) (-5 *1 (-738 *5 *6))))
+ (|partial| -12 (-5 *3 (-628 *6)) (-5 *4 (-1085))
+ (-4 *6 (-13 (-29 *5) (-1106) (-887)))
+ (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-588 (-1166 *6))) (-5 *1 (-739 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110)))
- (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-886)))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (|partial| -12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110)))
+ (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887)))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
(-5 *2
- (-2 (|:| |particular| (-1165 *7)) (|:| -1245 (-587 (-1165 *7)))))
- (-5 *1 (-738 *6 *7))))
+ (-2 (|:| |particular| (-1166 *7)) (|:| -3855 (-588 (-1166 *7)))))
+ (-5 *1 (-739 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110)))
- (-5 *5 (-1084)) (-4 *7 (-13 (-29 *6) (-1105) (-886)))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (|partial| -12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110)))
+ (-5 *5 (-1085)) (-4 *7 (-13 (-29 *6) (-1106) (-887)))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
(-5 *2
- (-2 (|:| |particular| (-1165 *7)) (|:| -1245 (-587 (-1165 *7)))))
- (-5 *1 (-738 *6 *7))))
+ (-2 (|:| |particular| (-1166 *7)) (|:| -3855 (-588 (-1166 *7)))))
+ (-5 *1 (-739 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-1084))
- (-4 *7 (-13 (-29 *6) (-1105) (-886)))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-1085))
+ (-4 *7 (-13 (-29 *6) (-1106) (-887)))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
(-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1245 (-587 *7))) *7 "failed"))
- (-5 *1 (-738 *6 *7))))
+ (-3 (-2 (|:| |particular| *7) (|:| -3855 (-588 *7))) *7 "failed"))
+ (-5 *1 (-739 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-1084))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
+ (-12 (-5 *4 (-110)) (-5 *5 (-1085))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1245 (-587 *3))) *3 "failed"))
- (-5 *1 (-738 *6 *3)) (-4 *3 (-13 (-29 *6) (-1105) (-886)))))
+ (-3 (-2 (|:| |particular| *3) (|:| -3855 (-588 *3))) *3 "failed"))
+ (-5 *1 (-739 *6 *3)) (-4 *3 (-13 (-29 *6) (-1106) (-887)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-269 *2)) (-5 *4 (-110)) (-5 *5 (-587 *2))
- (-4 *2 (-13 (-29 *6) (-1105) (-886))) (-5 *1 (-738 *6 *2))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))))
+ (|partial| -12 (-5 *3 (-270 *2)) (-5 *4 (-110)) (-5 *5 (-588 *2))
+ (-4 *2 (-13 (-29 *6) (-1106) (-887))) (-5 *1 (-739 *6 *2))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-269 *2)) (-5 *5 (-587 *2))
- (-4 *2 (-13 (-29 *6) (-1105) (-886)))
- (-4 *6 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *1 (-738 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-744)) (-5 *2 (-959)) (-5 *1 (-741))))
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-270 *2)) (-5 *5 (-588 *2))
+ (-4 *2 (-13 (-29 *6) (-1106) (-887)))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *1 (-739 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-745)) (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-744)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-745)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4))
- (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4))
+ (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4))
- (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4))
+ (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353)))
- (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354)))
+ (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1165 (-290 (-353)))) (-5 *4 (-353)) (-5 *5 (-587 *4))
- (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-1166 (-291 (-354)))) (-5 *4 (-354)) (-5 *5 (-588 *4))
+ (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353)))
- (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354)))
+ (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1165 (-290 *4))) (-5 *5 (-587 (-353)))
- (-5 *6 (-290 (-353))) (-5 *4 (-353)) (-5 *2 (-959)) (-5 *1 (-741))))
+ (-12 (-5 *3 (-1166 (-291 *4))) (-5 *5 (-588 (-354)))
+ (-5 *6 (-291 (-354))) (-5 *4 (-354)) (-5 *2 (-960)) (-5 *1 (-742))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
(-1
- (-3 (-2 (|:| |particular| *6) (|:| -1245 (-587 *6))) "failed")
+ (-3 (-2 (|:| |particular| *6) (|:| -3855 (-588 *6))) "failed")
*7 *6))
- (-4 *6 (-337)) (-4 *7 (-597 *6))
- (-5 *2 (-2 (|:| |particular| (-1165 *6)) (|:| -1245 (-627 *6))))
- (-5 *1 (-749 *6 *7)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-959)) (-5 *1 (-825))))
+ (-4 *6 (-338)) (-4 *7 (-598 *6))
+ (-5 *2 (-2 (|:| |particular| (-1166 *6)) (|:| -3855 (-628 *6))))
+ (-5 *1 (-750 *6 *7)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-960)) (-5 *1 (-826))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-826)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-825))))
+ (-12 (-5 *3 (-827)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-826))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067))
- (-5 *8 (-202)) (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353))
- (-5 *2 (-959)) (-5 *1 (-825))))
+ (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068))
+ (-5 *8 (-202)) (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354))
+ (-5 *2 (-960)) (-5 *1 (-826))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-707)) (-5 *6 (-587 (-587 (-290 *3)))) (-5 *7 (-1067))
- (-5 *5 (-587 (-290 (-353)))) (-5 *3 (-353)) (-5 *2 (-959))
- (-5 *1 (-825))))
+ (-12 (-5 *4 (-708)) (-5 *6 (-588 (-588 (-291 *3)))) (-5 *7 (-1068))
+ (-5 *5 (-588 (-291 (-354)))) (-5 *3 (-354)) (-5 *2 (-960))
+ (-5 *1 (-826))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 (-381 (-521)))) (-5 *2 (-587 (-353)))
- (-5 *1 (-947)) (-5 *4 (-353))))
+ (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 (-354)))
+ (-5 *1 (-948)) (-5 *4 (-354))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 (-521))) (-5 *2 (-587 (-353))) (-5 *1 (-947))
- (-5 *4 (-353))))
+ (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 (-354))) (-5 *1 (-948))
+ (-5 *4 (-354))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
+ (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4))
- (-5 *3 (-290 *4))))
+ (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4))
+ (-5 *3 (-291 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1042 *4))
- (-5 *3 (-269 (-290 *4)))))
+ (-12 (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-588 (-270 (-291 *4)))) (-5 *1 (-1043 *4))
+ (-5 *3 (-270 (-291 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5))
- (-5 *3 (-269 (-290 *5)))))
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5))
+ (-5 *3 (-270 (-291 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-587 (-269 (-290 *5)))) (-5 *1 (-1042 *5))
- (-5 *3 (-290 *5))))
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-588 (-270 (-291 *5)))) (-5 *1 (-1043 *5))
+ (-5 *3 (-291 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-1084)))
- (-4 *5 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1042 *5))
- (-5 *3 (-587 (-269 (-290 *5))))))
+ (-12 (-5 *4 (-588 (-1085)))
+ (-4 *5 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-588 (-588 (-270 (-291 *5))))) (-5 *1 (-1043 *5))
+ (-5 *3 (-588 (-270 (-291 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084)))
- (-4 *5 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *5))))))
- (-5 *1 (-1090 *5))))
+ (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085)))
+ (-4 *5 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *5))))))
+ (-5 *1 (-1091 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-1084))) (-4 *5 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *5)))))) (-5 *1 (-1090 *5))
- (-5 *3 (-587 (-269 (-381 (-880 *5)))))))
+ (-12 (-5 *4 (-588 (-1085))) (-4 *5 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-1091 *5))
+ (-5 *3 (-588 (-270 (-382 (-881 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-381 (-880 *4)))) (-4 *4 (-513))
- (-5 *2 (-587 (-587 (-269 (-381 (-880 *4)))))) (-5 *1 (-1090 *4))))
+ (-12 (-5 *3 (-588 (-382 (-881 *4)))) (-4 *4 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-1091 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 (-587 (-269 (-381 (-880 *4))))))
- (-5 *1 (-1090 *4)) (-5 *3 (-587 (-269 (-381 (-880 *4)))))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 (-588 (-270 (-382 (-881 *4))))))
+ (-5 *1 (-1091 *4)) (-5 *3 (-588 (-270 (-382 (-881 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-4 *5 (-513))
- (-5 *2 (-587 (-269 (-381 (-880 *5))))) (-5 *1 (-1090 *5))
- (-5 *3 (-381 (-880 *5)))))
+ (-12 (-5 *4 (-1085)) (-4 *5 (-514))
+ (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5))
+ (-5 *3 (-382 (-881 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-4 *5 (-513))
- (-5 *2 (-587 (-269 (-381 (-880 *5))))) (-5 *1 (-1090 *5))
- (-5 *3 (-269 (-381 (-880 *5))))))
+ (-12 (-5 *4 (-1085)) (-4 *5 (-514))
+ (-5 *2 (-588 (-270 (-382 (-881 *5))))) (-5 *1 (-1091 *5))
+ (-5 *3 (-270 (-382 (-881 *5))))))
((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-880 *4)))))
- (-5 *1 (-1090 *4)) (-5 *3 (-381 (-880 *4)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4)))))
+ (-5 *1 (-1091 *4)) (-5 *3 (-382 (-881 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 (-270 (-382 (-881 *4)))))
+ (-5 *1 (-1091 *4)) (-5 *3 (-270 (-382 (-881 *4)))))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *4 (-1085))
+ (-5 *1 (-1088))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1088))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-412)) (-5 *3 (-1085)) (-5 *1 (-1089))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-412)) (-5 *3 (-588 (-1085))) (-5 *1 (-1089)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *6 (-563 (-1085)))
+ (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *2 (-1075 (-588 (-881 *4)) (-588 (-270 (-881 *4)))))
+ (-5 *1 (-474 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-1166 (-291 (-354))))
+ (-5 *1 (-281)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-522)) (-5 *1 (-458 *4))
+ (-4 *4 (-1142 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338))
+ (-5 *2 (-2 (|:| -3663 (-393 *3)) (|:| |special| (-393 *3))))
+ (-5 *1 (-665 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135))
+ (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-511)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3))
+ (-4 *3 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-1124))
+ (-4 *6 (-1142 (-382 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-317 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218)))))
+(((*1 *1 *1) (-5 *1 (-108))))
+(((*1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-100)))))
+(((*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338))))
((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 (-269 (-381 (-880 *4)))))
- (-5 *1 (-1090 *4)) (-5 *3 (-269 (-381 (-880 *4)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4))
+ (-4 *4 (-324)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-984 *3 *4 *5)))))
+ (-12 (-5 *2 (-1066 (-382 *3))) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-762)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305))
+ (-5 *1 (-307)))))
+(((*1 *2) (-12 (-5 *2 (-1057 (-1068))) (-5 *1 (-366)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4))))
- (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))))
+ (-12 (-4 *4 (-324)) (-5 *2 (-393 (-1081 (-1081 *4))))
+ (-5 *1 (-1119 *4)) (-5 *3 (-1081 (-1081 *4))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-740 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1105) (-886))))))
+ (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971))
+ (-5 *2 (-224 *4 *5)) (-5 *1 (-873 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-548 *3)) (-4 *3 (-971))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-900 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-157)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-5 *1 (-627 *4 *5 *6 *2))
+ (-4 *2 (-626 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426))
+ (-14 *6 (-588 (-1085)))
+ (-5 *2
+ (-588 (-1056 *5 (-494 (-794 *6)) (-794 *6) (-717 *5 (-794 *6)))))
+ (-5 *1 (-573 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))))
+(((*1 *1 *1 *1) (-5 *1 (-147)))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-147)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-741 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1106) (-887))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-522)) (-5 *1 (-354)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-302 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-522)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120)) (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-588 *5) *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *6 (-1142 *5))
+ (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3197 *3))))
+ (-5 *1 (-746 *5 *6 *3 *7)) (-4 *3 (-598 *6))
+ (-4 *7 (-598 (-382 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-588 *5) *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *6 (-1142 *5))
+ (-5 *2 (-588 (-2 (|:| |poly| *6) (|:| -3197 (-596 *6 (-382 *6))))))
+ (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))
+ (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6))
+ (-4 *6 (-317 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-824))
+ (-5 *3
+ (-2 (|:| |pde| (-588 (-291 (-202))))
+ (|:| |constraints|
+ (-588
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-708)) (|:| |boundaryType| (-522))
+ (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202))))))
+ (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068))
+ (|:| |tol| (-202))))
+ (-5 *2 (-960)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-914 (-382 (-522)) (-794 *3) (-217 *4 (-708))
+ (-224 *3 (-382 (-522)))))
+ (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-913 *3 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2286 *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2259 *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-514) (-135))) (-5 *2 (-588 *3))
+ (-5 *1 (-1136 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-850)) (-5 *1 (-955 *2))
+ (-4 *2 (-13 (-1014) (-10 -8 (-15 -1602 ($ $ $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-588 *8))) (-5 *3 (-588 *8))
+ (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-108)) (-5 *1 (-904 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 (-1166 (-522)))) (-5 *3 (-850)) (-5 *1 (-440)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-685)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-983)) (-5 *3 (-1068)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-587
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-707)) (|:| |poli| *6)
+ (-588
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-729)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425)) (-4 *5 (-783))
- (-5 *1 (-422 *3 *4 *5 *6)))))
+ (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784))
+ (-5 *1 (-423 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-354)) (-5 *1 (-171)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1081 *6)) (-5 *3 (-522)) (-4 *6 (-283)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4)))
+ (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4)))))
+(((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850)))) ((*1 *1) (-4 *1 (-507)))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-588 *6))) (-4 *6 (-878 *3 *5 *4))
+ (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085))))
+ (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-337)) (-5 *2 (-587 *3)) (-5 *1 (-873 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-784))
+ (-4 *3 (-1014)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-157))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784))
+ (-5 *2 (-57 (-588 (-613 *5)))) (-5 *1 (-613 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *1) (-5 *1 (-1032))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *2)) (-4 *2 (-877 (-381 (-880 *6)) *5 *4))
- (-5 *1 (-669 *5 *4 *6 *2)) (-4 *5 (-729))
- (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $)))))
- (-4 *6 (-513)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *5 (-338)) (-4 *5 (-514))
+ (-5 *2
+ (-2 (|:| |minor| (-588 (-850))) (|:| -3197 *3)
+ (|:| |minors| (-588 (-588 (-850)))) (|:| |ops| (-588 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-695)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971))
+ (-5 *2
+ (-2 (|:| -3398 (-708)) (|:| |curves| (-708))
+ (|:| |polygons| (-708)) (|:| |constructs| (-708)))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-338)) (-5 *1 (-704 *2 *3)) (-4 *2 (-647 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3))
+ (-4 *3 (-1142 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
- (-14 *4 (-587 (-1084)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *1) (-4 *1 (-259)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014))
+ (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-514)) (-5 *2 (-108)) (-5 *1 (-569 *3 *4))
+ (-4 *4 (-1142 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-664))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1157 *4))
+ (-4 *4 (-37 (-382 (-522))))
+ (-5 *2 (-1 (-1066 *4) (-1066 *4) (-1066 *4))) (-5 *1 (-1159 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-895))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-338)) (-4 *6 (-1142 (-382 *2)))
+ (-4 *2 (-1142 *5)) (-5 *1 (-193 *5 *2 *6 *3))
+ (-4 *3 (-317 *5 *2 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-382 (-881 (-522))))) (-5 *4 (-588 (-1085)))
+ (-5 *2 (-588 (-588 *5))) (-5 *1 (-355 *5))
+ (-4 *5 (-13 (-782) (-338)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-355 *4))
+ (-4 *4 (-13 (-782) (-338))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-980)) (-4 *3 (-1106))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081 *2)) (-4 *2 (-878 (-382 (-881 *6)) *5 *4))
+ (-5 *1 (-670 *5 *4 *6 *2)) (-4 *5 (-730))
+ (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $)))))
+ (-4 *6 (-514)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-5 *1 (-571 *3 *4 *5))
- (-14 *5 (-849))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521)))))
- (-4 *5 (-783)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4))))
+ (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4))
- (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-783)) (-4 *4 (-157)))))
+ (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-588 (-256))) (-5 *1 (-256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-1090))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-708)) (-4 *5 (-157))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-708)) (-4 *5 (-157))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4)
+ (-224 *4 (-382 (-522)))))
+ (-5 *3 (-588 (-794 *4))) (-14 *4 (-588 (-1085))) (-14 *5 (-708))
+ (-5 *1 (-475 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-293 *3 *4 *5))
- (-4 *3 (-13 (-337) (-783))) (-14 *4 (-1084)) (-14 *5 *3))))
+ (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522))
+ (-5 *2 (-960)) (-5 *1 (-692)))))
(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-283)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-588
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-708)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-730)) (-4 *6 (-878 *4 *3 *5)) (-4 *4 (-426)) (-4 *5 (-784))
+ (-5 *1 (-423 *4 *3 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *2 (-1171)) (-5 *1 (-423 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *5 (-1142 *4)) (-5 *2 (-1081 (-382 *5))) (-5 *1 (-564 *4 *5))
+ (-5 *3 (-382 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-135) (-27) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-1081 (-382 *6))) (-5 *1 (-564 *5 *6)) (-5 *3 (-382 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-1099)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5))
+ (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-1177 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-784)) (-5 *1 (-1092 *3)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120))
+ (-5 *2 (-588 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-834 (-522))) (-5 *4 (-522)) (-5 *2 (-628 *4))
+ (-5 *1 (-953 *5)) (-4 *5 (-971))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-953 *4))
+ (-4 *4 (-971))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-834 (-522)))) (-5 *4 (-522))
+ (-5 *2 (-588 (-628 *4))) (-5 *1 (-953 *5)) (-4 *5 (-971))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-588 (-522)))) (-5 *2 (-588 (-628 (-522))))
+ (-5 *1 (-953 *4)) (-4 *4 (-971)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-278)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-561 *1))) (-5 *3 (-588 *1)) (-4 *1 (-278))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-270 *1))) (-4 *1 (-278))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-270 *1)) (-4 *1 (-278)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 *4)) (-4 *4 (-317 *5 *6 *7))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-743 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-294 *3 *4 *5))
+ (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-270 (-881 (-522))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-588 (-1085)))
+ (|:| |inhom| (-3 (-588 (-1166 (-708))) "failed"))
+ (|:| |hom| (-588 (-1166 (-708))))))
+ (-5 *1 (-213)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-689)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1014))
+ (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3))))
+ (-5 *2 (-588 (-993 *3 *4 *5))) (-5 *1 (-994 *3 *4 *5))
+ (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-708)) (-5 *4 (-1166 *2)) (-4 *5 (-283))
+ (-4 *6 (-919 *5)) (-4 *2 (-13 (-384 *6 *7) (-962 *6)))
+ (-5 *1 (-388 *5 *6 *7 *2)) (-4 *7 (-1142 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-849)) (-5 *2 (-2 (|:| -2977 (-588 *1)) (|:| -1383 *1)))
+ (-5 *3 (-588 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-5 *1 (-1095 *2)) (-4 *2 (-338)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202))
+ (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-588 (-1081 *11))) (-5 *3 (-1081 *11))
+ (-5 *4 (-588 *10)) (-5 *5 (-588 *8)) (-5 *6 (-588 (-708)))
+ (-5 *7 (-1166 (-588 (-1081 *8)))) (-4 *10 (-784))
+ (-4 *8 (-283)) (-4 *11 (-878 *8 *9 *10)) (-4 *9 (-730))
+ (-5 *1 (-646 *9 *10 *8 *11)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426))
+ (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1084)) (-4 *4 (-970)) (-4 *4 (-783))
- (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2246 (-521))))
- (-4 *1 (-404 *4))))
+ (|partial| -12 (-5 *3 (-1085)) (-4 *4 (-971)) (-4 *4 (-784))
+ (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -1400 (-522))))
+ (-4 *1 (-405 *4))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *4 (-970)) (-4 *4 (-783))
- (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2246 (-521))))
- (-4 *1 (-404 *4))))
+ (|partial| -12 (-5 *3 (-110)) (-4 *4 (-971)) (-4 *4 (-784))
+ (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -1400 (-522))))
+ (-4 *1 (-405 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| |var| (-560 *1)) (|:| -2246 (-521))))
- (-4 *1 (-404 *3))))
+ (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| |var| (-561 *1)) (|:| -1400 (-522))))
+ (-4 *1 (-405 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-820 *3)) (|:| -2246 (-707))))
- (-5 *1 (-820 *3)) (-4 *3 (-1013))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -1400 (-708))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-2 (|:| |var| *5) (|:| -2246 (-707))))))
+ (|partial| -12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-2 (|:| |var| *5) (|:| -1400 (-708))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970))
- (-4 *7 (-877 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -2246 (-521))))
- (-5 *1 (-878 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971))
+ (-4 *7 (-878 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -1400 (-522))))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
(-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $))
- (-15 -2818 (*7 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))))
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $))
+ (-15 -2816 (*7 $))))))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-382 *6)) (|:| |c| (-382 *6))
+ (|:| -1639 *6)))
+ (-5 *1 (-941 *5 *6)) (-5 *3 (-382 *6)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-533 *4 *2))
+ (-4 *2 (-13 (-1106) (-887) (-1049) (-29 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3))
+ (-4 *3 (-13 (-1106) (-29 *5))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-970))
- (-5 *1 (-953 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-301 *3)) (-4 *3 (-1119))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-484 *3 *4)) (-4 *3 (-1119))
- (-14 *4 (-521)))))
-(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-365)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *2 (-1066 *4)) (-5 *3 (-1 *4 (-522))) (-4 *4 (-971))
+ (-5 *1 (-1070 *4)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-587 (-587 *3)))))
+ (-12 (-5 *2 (-1016 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-587 (-587 *5)))))
+ (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-522)) (-5 *1 (-291 *3)) (-4 *3 (-514)) (-4 *3 (-784)))))
+(((*1 *1) (-5 *1 (-1001))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-108)) (-5 *5 (-1016 (-708))) (-5 *6 (-708))
+ (-5 *2
+ (-2 (|:| |contp| (-522))
+ (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522)))))))
+ (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-563 (-821 *3))) (-4 *3 (-815 *3))
+ (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-563 (-821 *3))) (-4 *2 (-815 *3))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-4 *4 (-971))
+ (-5 *1 (-954 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-708) *2)) (-5 *4 (-708)) (-4 *2 (-1014))
+ (-5 *1 (-618 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-708) *3)) (-4 *3 (-1014)) (-5 *1 (-621 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-49 *3 *4)) (-4 *3 (-971))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *1) (-4 *1 (-260)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-5 *1 (-572 *3 *4 *5))
+ (-14 *5 (-850))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522)))))
+ (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4))
+ (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-1107 *3))) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1035 *3 *4 *2 *5)) (-4 *4 (-971)) (-4 *5 (-215 *3 *4))
+ (-4 *2 (-215 *3 *4)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-283)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-1036 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-302 *3)) (-4 *3 (-1120))))
((*1 *2 *1)
- (-12 (-5 *2 (-587 (-587 *3))) (-5 *1 (-1092 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-970))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-970)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120))
+ (-14 *4 (-522)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-561 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085))) (-5 *5 (-1081 *2))
+ (-4 *2 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-561 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1085)))
+ (-5 *5 (-382 (-1081 *2))) (-4 *2 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *1 (-518 *6 *2 *7)) (-4 *7 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-588 (-108))) (-5 *5 (-628 (-202)))
+ (-5 *6 (-628 (-522))) (-5 *7 (-202)) (-5 *3 (-522)) (-5 *2 (-960))
+ (-5 *1 (-692)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323))))
- ((*1 *1) (-4 *1 (-342)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4))
- (-4 *4 (-323))))
- ((*1 *1 *1) (-4 *1 (-506))) ((*1 *1) (-4 *1 (-506)))
- ((*1 *1 *1) (-5 *1 (-521))) ((*1 *1 *1) (-5 *1 (-707)))
- ((*1 *2 *1) (-12 (-5 *2 (-833 *3)) (-5 *1 (-832 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324))))
+ ((*1 *1) (-4 *1 (-343)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4))
+ (-4 *4 (-324))))
+ ((*1 *1 *1) (-4 *1 (-507))) ((*1 *1) (-4 *1 (-507)))
+ ((*1 *1 *1) (-5 *1 (-522))) ((*1 *1 *1) (-5 *1 (-708)))
+ ((*1 *2 *1) (-12 (-5 *2 (-834 *3)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4))
- (-4 *4 (-1013))))
- ((*1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-506)) (-4 *2 (-513)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-587 (-108))) (-5 *7 (-627 (-202)))
- (-5 *8 (-627 (-521))) (-5 *3 (-521)) (-5 *4 (-202)) (-5 *5 (-108))
- (-5 *2 (-959)) (-5 *1 (-691)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931))))
- ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-693)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521)))))
- (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-841 *4 *5))
- (-4 *5 (-1141 (-381 *4))))))
+ (-12 (-5 *3 (-522)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4))
+ (-4 *4 (-1014))))
+ ((*1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-507)) (-4 *2 (-514)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338)))))
+(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-366)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))
+ (-5 *2 (-1166 *6)) (-5 *1 (-311 *3 *4 *5 *6))
+ (-4 *6 (-317 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849))
- (-5 *2
- (-3 (-1080 *4)
- (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031)))))))
- (-5 *1 (-320 *4)) (-4 *4 (-323)))))
-(((*1 *1 *1) (-4 *1 (-573)))
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-588 *2)) (-5 *1 (-109 *2))
+ (-4 *2 (-1014))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-588 *4))) (-4 *4 (-1014))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-588 *4)))
+ (-5 *1 (-109 *4)) (-4 *4 (-1014))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971))
+ (-5 *1 (-652 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1142 *4)) (-5 *1 (-746 *4 *2 *3 *5))
+ (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2))
+ (-4 *5 (-598 (-382 *2))))))
+(((*1 *1 *1) (-5 *1 (-202))) ((*1 *1 *1) (-5 *1 (-354)))
+ ((*1 *1) (-5 *1 (-354))))
+(((*1 *1 *1) (-4 *1 (-574)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783))
- (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-783)) (-5 *2 (-707)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *1) (-5 *1 (-202))) ((*1 *1) (-5 *1 (-353))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-756))
- (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928) (-1106))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-1166 *5)) (-4 *5 (-283))
+ (-4 *5 (-971)) (-5 *2 (-628 *5)) (-5 *1 (-954 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-135)) (-4 *2 (-283)) (-4 *2 (-426)) (-4 *3 (-784))
+ (-4 *4 (-730)) (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-291 (-522))) (-5 *1 (-1031))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-970))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-1141 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4)))
- (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))
- (-5 *2 (-381 (-521))) (-5 *1 (-944 *4)) (-4 *4 (-1141 (-521))))))
-(((*1 *2 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 (-850))) (-4 *2 (-338)) (-5 *1 (-140 *4 *2 *5))
+ (-14 *4 (-850)) (-14 *5 (-920 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4))
+ (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-124))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *2 (-514)) (-5 *1 (-569 *2 *4))
+ (-4 *4 (-1142 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-647 *2)) (-4 *2 (-971))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-664))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 *5)) (-5 *3 (-588 (-708))) (-4 *1 (-678 *4 *5))
+ (-4 *4 (-971)) (-4 *5 (-784))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *2)) (-4 *4 (-971))
+ (-4 *2 (-784))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-4 *1 (-786 *2)) (-4 *2 (-971))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 *6)) (-5 *3 (-588 (-708))) (-4 *1 (-878 *4 *5 *6))
+ (-4 *4 (-971)) (-4 *5 (-730)) (-4 *6 (-784))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *1 (-878 *4 *5 *2)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *2 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-708)) (-4 *2 (-878 *4 (-494 *5) *5))
+ (-5 *1 (-1038 *4 *5 *2)) (-4 *4 (-971)) (-4 *5 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-881 *4)) (-5 *1 (-1115 *4))
+ (-4 *4 (-971)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))))
+(((*1 *2 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2 (-353)) (-5 *1 (-184)))))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-628 *3))))
+ (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-588 *7)) (-5 *5 (-588 (-588 *8))) (-4 *7 (-784))
+ (-4 *8 (-283)) (-4 *6 (-730)) (-4 *9 (-878 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-588 (-2 (|:| -1916 (-1081 *9)) (|:| -1400 (-522)))))))
+ (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-707))))
+ (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1032)) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-4 *1 (-125)) (-5 *2 (-708))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-347 *3)) (-4 *3 (-1119))
- (-4 *3 (-1013))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-348 *3)) (-4 *3 (-1120))
+ (-4 *3 (-1014))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-1013))
- (-5 *2 (-521))))
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-1120)) (-4 *3 (-1014))
+ (-5 *2 (-522))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119))
- (-5 *2 (-521))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)) (-5 *3 (-129))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-521)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-783))
- (-4 *4 (-242 *3)) (-4 *5 (-729)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2))
- (-4 *2 (-404 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1006 *2)) (-4 *2 (-404 *4)) (-4 *4 (-13 (-783) (-513)))
- (-5 *1 (-144 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-146))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084)))))
+ (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-348 *4)) (-4 *4 (-1120))
+ (-5 *2 (-522))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)) (-5 *3 (-129))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-522)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *2)) (-5 *1 (-163 *2)) (-4 *2 (-282))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-587 (-587 *4))) (-5 *2 (-587 *4)) (-4 *4 (-282))
- (-5 *1 (-163 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 *8))
- (-5 *4
- (-587
- (-2 (|:| -1245 (-627 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-627 *7)))))
- (-5 *5 (-707)) (-4 *8 (-1141 *7)) (-4 *7 (-1141 *6)) (-4 *6 (-323))
- (-5 *2
- (-2 (|:| -1245 (-627 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-627 *7))))
- (-5 *1 (-467 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-202))
- (-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 *4))))
- (|:| |xValues| (-1008 *4)) (|:| |yValues| (-1008 *4))))
- (-5 *1 (-141)) (-5 *3 (-587 (-587 (-871 *4)))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-765)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1084))
- (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void"))) (-5 *1 (-1087)))))
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-588 (-588 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-588 (-588 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-588 *3))) (-5 *1 (-1093 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-561 *3))
+ (-4 *3 (-13 (-405 *5) (-27) (-1106)))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3)))
+ (-5 *1 (-524 *5 *3 *6)) (-4 *6 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971))
+ (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-677 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-907 *2)) (-4 *2 (-971))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784)))
+ (-14 *3 (-588 (-1085))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-5 *2 (-587 (-587 (-587 *4))))
- (-5 *1 (-1091 *4)) (-5 *3 (-587 (-587 *4))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-108) *7 (-587 *7))) (-4 *1 (-1113 *4 *5 *6 *7))
- (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-982))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707)))
- (-5 *1 (-832 *4)))))
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-606 *4 *5)))
+ (-5 *1 (-572 *4 *5 *6)) (-4 *5 (-13 (-157) (-655 (-382 (-522)))))
+ (-14 *6 (-850)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4))
+ (-5 *2 (-2 (|:| |ans| (-382 *5)) (|:| |nosol| (-108))))
+ (-5 *1 (-941 *4 *5)) (-5 *3 (-382 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-628 (-382 (-881 (-522)))))
+ (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956))
+ (-5 *3 (-291 (-522))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521))))
- (-5 *2 (-154 (-290 *4))) (-5 *1 (-167 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-154 *3)) (-5 *1 (-1109 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-729))
- (-4 *3 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *5 (-513))
- (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-877 (-381 (-880 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *6))
- (-4 *6
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2))
- (-4 *2 (-877 (-880 *4) *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
- (-5 *1 (-817 *4 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-990 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9))))
- (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8))
- (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-783))
- (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1946 *9))))
- (-5 *1 (-990 *6 *7 *4 *8 *9)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))))
-(((*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119)) (-4 *2 (-783))))
+ (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4))
+ (-5 *3 (-588 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-588 (-108))) (-5 *7 (-628 (-202)))
+ (-5 *8 (-628 (-522))) (-5 *3 (-522)) (-5 *4 (-202)) (-5 *5 (-108))
+ (-5 *2 (-960)) (-5 *1 (-692)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-780)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-125)) (-5 *3 (-708)) (-5 *2 (-1171)))))
+(((*1 *1 *1 *1) (-4 *1 (-131)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-708))
+ (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-347 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120))))
((*1 *2 *2)
- (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-834 *3)) (-4 *3 (-1014))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783))
- (-4 *6 (-984 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2720 *1) (|:| |upper| *1)))
- (-4 *1 (-902 *4 *5 *3 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970))
- (-5 *1 (-1069 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
- ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
- ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+ (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784))
+ (-4 *6 (-985 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3686 *1) (|:| |upper| *1)))
+ (-4 *1 (-903 *4 *5 *3 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932))))
+ ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-587 (-1080 *13))) (-5 *3 (-1080 *13))
- (-5 *4 (-587 *12)) (-5 *5 (-587 *10)) (-5 *6 (-587 *13))
- (-5 *7 (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| *13)))))
- (-5 *8 (-587 (-707))) (-5 *9 (-1165 (-587 (-1080 *10))))
- (-4 *12 (-783)) (-4 *10 (-282)) (-4 *13 (-877 *10 *11 *12))
- (-4 *11 (-729)) (-5 *1 (-645 *11 *12 *10 *13)))))
-(((*1 *2 *3 *1)
- (-12
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-639)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-239))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))))
+(((*1 *1)
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-283)) (-4 *6 (-348 *5)) (-4 *4 (-348 *5))
(-5 *2
- (-2 (|:| |cycle?| (-108)) (|:| -3374 (-707)) (|:| |period| (-707))))
- (-5 *1 (-1065 *4)) (-4 *4 (-1119)) (-5 *3 (-707)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 *3 (-587 *1)))
- (-4 *1 (-989 *4 *5 *6 *3)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-1036 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-707)) (-4 *2 (-1013))
- (-5 *1 (-617 *2)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-959)) (-5 *1 (-685)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-708)) (-4 *2 (-1014))
+ (-5 *1 (-618 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-13 (-282) (-135)))
- (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729))
- (-5 *2 (-587 (-381 (-880 *4)))) (-5 *1 (-852 *4 *5 *6 *7))
- (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-282)) (-5 *2 (-392 *3))
- (-5 *1 (-679 *5 *4 *6 *3)) (-4 *3 (-877 *6 *5 *4)))))
+ (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-338))
+ (-5 *1 (-489 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2))
+ (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157))
+ (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-1080 *4))
- (-5 *1 (-491 *4)))))
+ (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1066 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135))
+ (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33))))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-694)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-425))
- (-5 *2
- (-587
- (-2 (|:| |eigval| (-3 (-381 (-880 *4)) (-1074 (-1084) (-880 *4))))
- (|:| |eigmult| (-707))
- (|:| |eigvec| (-587 (-627 (-381 (-880 *4))))))))
- (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-880 *4)))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-587 (-1084))) (|:| |pred| (-51))))
- (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-405 *4) (-928) (-1106)))
+ (-4 *4 (-13 (-514) (-784)))
+ (-4 *2 (-13 (-405 (-154 *4)) (-928) (-1106)))
+ (-5 *1 (-551 *4 *5 *2)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-154 (-202))) (-5 *6 (-1068))
+ (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2))
- (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202)))
- (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-783)) (-4 *5 (-729))
- (-4 *6 (-513)) (-4 *7 (-877 *6 *5 *3))
- (-5 *1 (-435 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-961 (-381 (-521))) (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $))
- (-15 -2818 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-4 *1 (-303 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123))
- (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157))
- (-4 *1 (-341 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-157))
- (-4 *1 (-344 *4 *5)) (-4 *5 (-1141 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4))
- (-4 *4 (-1141 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
- (-4 *3 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-337)) (-5 *1 (-824 *2 *3))
- (-4 *2 (-1141 *3)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-587 (-154 *4))) (-5 *1 (-142 *3 *4))
- (-4 *3 (-1141 (-154 (-521)))) (-4 *4 (-13 (-337) (-781)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-587 (-154 *4)))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-587 (-154 *4)))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))))
+ (-12 (-4 *6 (-514)) (-4 *2 (-878 *3 *5 *4))
+ (-5 *1 (-670 *5 *4 *6 *2)) (-5 *3 (-382 (-881 *6))) (-4 *5 (-730))
+ (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084))
- (-5 *2
- (-2 (|:| |zeros| (-1065 (-202))) (|:| |ones| (-1065 (-202)))
- (|:| |singularities| (-1065 (-202)))))
- (-5 *1 (-100)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1119))
- (-4 *5 (-1119)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-217 *6 *7)) (-14 *6 (-707))
- (-4 *7 (-1119)) (-4 *5 (-1119)) (-5 *2 (-217 *6 *5))
- (-5 *1 (-216 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119))
- (-4 *2 (-347 *5)) (-5 *1 (-345 *6 *4 *5 *2)) (-4 *4 (-347 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013))
- (-4 *2 (-399 *5)) (-5 *1 (-397 *6 *4 *5 *2)) (-4 *4 (-399 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-587 *6)) (-4 *6 (-1119))
- (-4 *5 (-1119)) (-5 *2 (-587 *5)) (-5 *1 (-585 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-885 *6)) (-4 *6 (-1119))
- (-4 *5 (-1119)) (-5 *2 (-885 *5)) (-5 *1 (-884 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1065 *6)) (-4 *6 (-1119))
- (-4 *3 (-1119)) (-5 *2 (-1065 *3)) (-5 *1 (-1063 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1165 *6)) (-4 *6 (-1119))
- (-4 *5 (-1119)) (-5 *2 (-1165 *5)) (-5 *1 (-1164 *6 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-441)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+ (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-108))
+ (-5 *1 (-335 *4 *5)) (-14 *5 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-717 *4 (-794 *5)))) (-4 *4 (-426))
+ (-14 *5 (-588 (-1085))) (-5 *2 (-108)) (-5 *1 (-573 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-694)))))
+(((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-628 (-382 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-587 (-1 *6 (-587 *6))))
- (-4 *5 (-37 (-381 (-521)))) (-4 *6 (-1156 *5)) (-5 *2 (-587 *6))
- (-5 *1 (-1158 *5 *6)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-283) (-135))) (-4 *4 (-13 (-784) (-563 (-1085))))
+ (-4 *5 (-730)) (-5 *1 (-853 *3 *4 *5 *2)) (-4 *2 (-878 *3 *5 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-156))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-953 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-628 *3))) (-4 *3 (-971)) (-5 *1 (-953 *3)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1015 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4))
- (-5 *1 (-942 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-521))) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-337)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-337)) (-4 *5 (-970))
- (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
+ (-12 (-5 *3 (-588 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522)))))
+ (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *5))
+ (-4 *5 (-1142 (-382 *4))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-1171)) (-5 *1 (-768)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *1 (-570 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-990 *3 *4 *5 *6)) (-4 *2 (-1023 *3 *4 *5 *6)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-885 (-1031)))
- (-5 *1 (-320 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))))
-(((*1 *1) (-5 *1 (-739))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-781)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3655 (-392 *3))))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-951 (-777 (-522))))
+ (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *4)))) (-4 *4 (-971))
+ (-5 *1 (-547 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-708)) (-5 *2 (-108)) (-5 *1 (-540 *3)) (-4 *3 (-507)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032))))))
+ (-4 *4 (-324)) (-5 *2 (-1171)) (-5 *1 (-492 *4)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708))
+ (-4 *4 (-157))))
+ ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1085))))
(((*1 *2 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1170))
- (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1142 *4)) (-5 *2 (-628 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-628 *4))
+ (-5 *1 (-383 *3 *4 *5)) (-4 *3 (-384 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3))
+ (-5 *2 (-628 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5))
- (-4 *3 (-1141 *4))
- (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108))
- (-5 *2 (-959)) (-5 *1 (-690)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-623 *4 *5 *6)) (-4 *4 (-1014)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514))
+ (-4 *3 (-878 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -1400 (-708)) (|:| -2977 *3) (|:| |radicand| (-588 *3))))
+ (-5 *1 (-882 *5 *6 *7 *3 *8)) (-5 *4 (-708))
+ (-4 *8
+ (-13 (-338)
+ (-10 -8 (-15 -2805 (*3 $)) (-15 -2816 (*3 $)) (-15 -2190 ($ *3))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-708)) (-4 *4 (-324))
+ (-5 *1 (-492 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-5 *2
+ (-2 (|:| |contp| (-522))
+ (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522)))))))
+ (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-5 *2
+ (-2 (|:| |contp| (-522))
+ (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522)))))))
+ (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *1 *1) (-5 *1 (-202)))
((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
- (-14 *4 *2))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *3 (-587 (-521)))
- (-5 *1 (-811)))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *1) (-5 *1 (-354))) ((*1 *1) (-5 *1 (-354))))
(((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))
+ (-12 (-5 *2 (-708)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522))
(-14 *4 *2) (-4 *5 (-157))))
((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-849)) (-5 *1 (-150 *3 *4))
+ (-12 (-4 *4 (-157)) (-5 *2 (-850)) (-5 *1 (-150 *3 *4))
(-4 *3 (-151 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-849))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-850))))
((*1 *2)
- (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
- (-5 *2 (-849))))
+ (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3))
+ (-5 *2 (-850))))
((*1 *2 *3)
- (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
- (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6))))
+ (-12 (-4 *4 (-338)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))
+ (-5 *2 (-708)) (-5 *1 (-489 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337))
- (-5 *2 (-707)) (-5 *1 (-608 *5))))
+ (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338))
+ (-5 *2 (-708)) (-5 *1 (-609 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
- (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-707))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4))))
+ (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239))))
+ (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-708))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707))))
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-708))))
((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3))
- (-4 *3 (-625 *4 *5 *6))))
+ (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-5 *2 (-708)) (-5 *1 (-627 *4 *5 *6 *3))
+ (-4 *3 (-626 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513))
- (-5 *2 (-707)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4))
- (-14 *3 (-849)) (-4 *4 (-970)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-159))) (-5 *1 (-1000)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-587 (-718 *3))) (-5 *1 (-718 *3)) (-4 *3 (-513))
- (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514))
+ (-5 *2 (-708)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-758)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *4 (-1085))
+ (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-1137 *4 *3))
+ (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850))
+ (-5 *2
+ (-3 (-1081 *4)
+ (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032)))))))
+ (-5 *1 (-321 *4)) (-4 *4 (-324)))))
+(((*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-189)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-560 *5)) (-4 *5 (-404 *4)) (-4 *4 (-961 (-521)))
- (-4 *4 (-13 (-783) (-513))) (-5 *2 (-1080 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-560 *1)) (-4 *1 (-970)) (-4 *1 (-277))
- (-5 *2 (-1080 *1)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))))
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2)))
+ (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5))
+ (-4 *3 (-317 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124))
+ (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))))
((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084)))))
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-971)) (-14 *3 (-588 (-1085)))))
((*1 *1 *1)
- (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-783)))
- (-14 *3 (-587 (-1084)))))
- ((*1 *1 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1013))))
+ (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784)))
+ (-14 *3 (-588 (-1085)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *2 (-971)) (-4 *3 (-1014))))
((*1 *1 *1)
- (-12 (-14 *2 (-587 (-1084))) (-4 *3 (-157))
- (-4 *5 (-215 (-3478 *2) (-707)))
+ (-12 (-14 *2 (-588 (-1085))) (-4 *3 (-157))
+ (-4 *5 (-215 (-3480 *2) (-708)))
(-14 *6
- (-1 (-108) (-2 (|:| -2723 *4) (|:| -2246 *5))
- (-2 (|:| -2723 *4) (|:| -2246 *5))))
- (-5 *1 (-434 *2 *3 *4 *5 *6 *7)) (-4 *4 (-783))
- (-4 *7 (-877 *3 *5 (-793 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-783))))
+ (-1 (-108) (-2 (|:| -2717 *4) (|:| -1400 *5))
+ (-2 (|:| -2717 *4) (|:| -1400 *5))))
+ (-5 *1 (-435 *2 *3 *4 *5 *6 *7)) (-4 *4 (-784))
+ (-4 *7 (-878 *3 *5 (-794 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-784))))
((*1 *1 *1)
- (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970))))
+ (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971))))
((*1 *1 *1)
- (-12 (-5 *1 (-672 *2 *3)) (-4 *3 (-783)) (-4 *2 (-970))
- (-4 *3 (-663))))
- ((*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970))))
+ (-12 (-5 *1 (-673 *2 *3)) (-4 *3 (-784)) (-4 *2 (-971))
+ (-4 *3 (-664))))
+ ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-779)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-587 *5))) (-4 *5 (-1156 *4))
- (-4 *4 (-37 (-381 (-521))))
- (-5 *2 (-1 (-1065 *4) (-587 (-1065 *4)))) (-5 *1 (-1158 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-587
- (-2 (|:| -3167 (-707))
- (|:| |eqns|
- (-587
- (-2 (|:| |det| *7) (|:| |rows| (-587 (-521)))
- (|:| |cols| (-587 (-521))))))
- (|:| |fgb| (-587 *7)))))
- (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135)))
- (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707))
- (-5 *1 (-852 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-156)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-971)) (-4 *3 (-780)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7))
+ (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120))
+ (-4 *7 (-1120))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *3 *5 *6))
+ (-4 *3 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-242 *3)) (-4 *3 (-784)) (-5 *2 (-708)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1141 (-381 (-521))))
- (-5 *2 (-2 (|:| |den| (-521)) (|:| |gcdnum| (-521))))
- (-5 *1 (-841 *3 *4)) (-4 *4 (-1141 (-381 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-841 *4 *3))
- (-4 *3 (-1141 (-381 *4))))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-877 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-4 *3 (-1141 *4)) (-4 *2 (-1156 *4))
- (-5 *1 (-1159 *4 *3 *5 *2)) (-4 *5 (-597 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27))
- (-5 *2 (-587 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-587 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084)))
- (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-4 *3 (-828 *5)) (-5 *2 (-627 *3))
- (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3))
- (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-878 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-730)) (-4 *5 (-971)) (-4 *6 (-878 *5 *4 *2))
+ (-4 *2 (-784)) (-5 *1 (-879 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *6)) (-15 -2805 (*6 $))
+ (-15 -2816 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514))
+ (-5 *2 (-1085)) (-5 *1 (-967 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522)))))
+ (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4)))))
+(((*1 *1 *1) (-5 *1 (-983))))
+(((*1 *2)
+ (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-318 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850))))
+ ((*1 *2)
+ (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-319 *3 *4)) (-4 *3 (-324))
+ (-14 *4 (-1081 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-886 (-1032))) (-5 *1 (-320 *3 *4)) (-4 *3 (-324))
+ (-14 *4 (-850)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812))
+ (-5 *3 (-588 (-522))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354)))
+ (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171))
+ (-5 *1 (-725))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354)))
+ (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171))
+ (-5 *1 (-725)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971))))
((*1 *2 *1)
- (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084)))))
+ (-12 (-4 *2 (-971)) (-5 *1 (-49 *2 *3)) (-14 *3 (-588 (-1085)))))
((*1 *2 *1)
- (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4))
- (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084)))))
- ((*1 *2 *1) (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970))))
+ (-12 (-5 *2 (-291 *3)) (-5 *1 (-200 *3 *4))
+ (-4 *3 (-13 (-971) (-784))) (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-357 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-971))))
((*1 *2 *1)
- (-12 (-14 *3 (-587 (-1084))) (-4 *5 (-215 (-3478 *3) (-707)))
+ (-12 (-14 *3 (-588 (-1085))) (-4 *5 (-215 (-3480 *3) (-708)))
(-14 *6
- (-1 (-108) (-2 (|:| -2723 *4) (|:| -2246 *5))
- (-2 (|:| -2723 *4) (|:| -2246 *5))))
- (-4 *2 (-157)) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *4 (-783))
- (-4 *7 (-877 *2 *5 (-793 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *3 (-783)) (-4 *2 (-1013))))
+ (-1 (-108) (-2 (|:| -2717 *4) (|:| -1400 *5))
+ (-2 (|:| -2717 *4) (|:| -1400 *5))))
+ (-4 *2 (-157)) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *4 (-784))
+ (-4 *7 (-878 *2 *5 (-794 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *3 (-784)) (-4 *2 (-1014))))
((*1 *2 *1)
- (-12 (-4 *2 (-513)) (-5 *1 (-568 *2 *3)) (-4 *3 (-1141 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-970))))
+ (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-971))))
((*1 *2 *1)
- (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-783))
- (-4 *3 (-663))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970))))
+ (-12 (-4 *2 (-971)) (-5 *1 (-673 *2 *3)) (-4 *3 (-784))
+ (-4 *3 (-664))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971))))
((*1 *2 *1)
- (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *3 (-728)) (-4 *4 (-783))
- (-4 *2 (-970))))
+ (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *3 (-729)) (-4 *4 (-784))
+ (-4 *2 (-971))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-820 *4)) (-4 *4 (-1013)) (-5 *2 (-108))
- (-5 *1 (-817 *4 *5)) (-4 *5 (-1013))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-820 *5)) (-4 *5 (-1013)) (-5 *2 (-108))
- (-5 *1 (-818 *5 *3)) (-4 *3 (-1119))))
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-621 *2)) (-4 *2 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1013))
- (-4 *6 (-1119)) (-5 *2 (-108)) (-5 *1 (-818 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2))
- (-4 *3 (-13 (-783) (-513))))))
+ (-12 (-5 *3 (-1 (-588 *5) (-588 *5))) (-5 *4 (-522))
+ (-5 *2 (-588 *5)) (-5 *1 (-621 *5)) (-4 *5 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202))))
+ (-5 *2 (-960)) (-5 *1 (-692)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521))
- (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522))
+ (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157))
(-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *9)) (-4 *9 (-970)) (-4 *5 (-783)) (-4 *6 (-729))
- (-4 *8 (-970)) (-4 *2 (-877 *9 *7 *5))
- (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729))
- (-4 *4 (-877 *8 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-199 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-230 *3))))
- ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3052 *3) (|:| |coef1| (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-122 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-984 *3 *4 *2)) (-4 *2 (-783))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))))
- ((*1 *2 *1) (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013))))
+ (-12 (-5 *3 (-588 *9)) (-4 *9 (-971)) (-4 *5 (-784)) (-4 *6 (-730))
+ (-4 *8 (-971)) (-4 *2 (-878 *9 *7 *5))
+ (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730))
+ (-4 *4 (-878 *8 *6 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-202))) ((*1 *1) (-5 *1 (-354))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))))
+ ((*1 *2 *1) (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014))))
((*1 *2 *1)
- (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
- (-4 *6 (-215 (-3478 *3) (-707)))
+ (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157))
+ (-4 *6 (-215 (-3480 *3) (-708)))
(-14 *7
- (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *6))
- (-2 (|:| -2723 *5) (|:| -2246 *6))))
- (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-434 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-783)) (-4 *8 (-877 *4 *6 (-793 *3)))))
+ (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *6))
+ (-2 (|:| -2717 *5) (|:| -1400 *6))))
+ (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-435 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-784)) (-4 *8 (-878 *4 *6 (-794 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-663)) (-4 *2 (-783)) (-5 *1 (-672 *3 *2))
- (-4 *3 (-970))))
+ (-12 (-4 *2 (-664)) (-4 *2 (-784)) (-5 *1 (-673 *3 *2))
+ (-4 *3 (-971))))
((*1 *1 *1)
- (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-967 *5 *6))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4)))
- (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-967 *4 *5))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-441)) (-5 *3 (-587 (-239))) (-5 *1 (-1166))))
- ((*1 *1 *1) (-5 *1 (-1166))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1121)))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))))
+ (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-522))) (-5 *5 (-1 (-1066 *4))) (-4 *4 (-338))
+ (-4 *4 (-971)) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-426)) (-4 *4 (-757))
+ (-14 *5 (-1085)) (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))))
+(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
+ ((*1 *1 *1 *1) (-4 *1 (-447)))
+ ((*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-812))))
+ ((*1 *1 *1) (-5 *1 (-898)))
+ ((*1 *1 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-154 (-381 (-521))))) (-5 *2 (-587 (-154 *4)))
- (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-781))))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))))
+ (-12 (-5 *2 (-588 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522))
+ (-14 *4 (-708)) (-4 *5 (-157)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *1))))
+ (-4 *1 (-990 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1124)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-514)) (-5 *1 (-1145 *3 *2))
+ (-4 *2 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2259 ($ $ $))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971))))
+ ((*1 *2 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 (-382 *2)))
+ (-4 *2 (-1142 *4)) (-5 *1 (-316 *3 *4 *2 *5))
+ (-4 *3 (-317 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-317 *3 *2 *4)) (-4 *3 (-1124))
+ (-4 *4 (-1142 (-382 *2))) (-4 *2 (-1142 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 *5)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))
- (-14 *4 (-707)) (-4 *5 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1013) (-961 *5)))
- (-4 *5 (-814 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-859 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
- ((*1 *2 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)))))
+ (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1142 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-971))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-1142 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1170))
- (-5 *1 (-422 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202))) (-5 *6 (-615 (-202)))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-687)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5))
- (-4 *4 (-1013)) (-4 *5 (-1013)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-849)) (-5 *1 (-636))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-627 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-337)) (-5 *1 (-904 *5)))))
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-539 *3)) (-5 *1 (-401 *5 *3))
+ (-4 *3 (-13 (-1106) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-4 *5 (-13 (-514) (-962 (-522)) (-135)))
+ (-5 *2 (-539 (-382 (-881 *5)))) (-5 *1 (-528 *5))
+ (-5 *3 (-382 (-881 *5))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1142 *9)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-283))
+ (-4 *10 (-878 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-588 (-1081 *10)))
+ (|:| |dterm|
+ (-588 (-588 (-2 (|:| -2522 (-708)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-588 *6)) (|:| |nlead| (-588 *10))))
+ (-5 *1 (-715 *6 *7 *8 *9 *10)) (-5 *3 (-1081 *10)) (-5 *4 (-588 *6))
+ (-5 *5 (-588 *10)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-782) (-338))) (-5 *2 (-108)) (-5 *1 (-981 *4 *3))
+ (-4 *3 (-1142 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
+ (-12 (-5 *3 (-454 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971))
+ (-5 *2 (-881 *5)) (-5 *1 (-873 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
+ (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
(-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-404 *3)) (-4 *3 (-783)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *7 (-1141 *5)) (-4 *4 (-661 *5 *7))
- (-5 *2 (-2 (|:| -3534 (-627 *6)) (|:| |vec| (-1165 *5))))
- (-5 *1 (-747 *5 *6 *7 *4 *3)) (-4 *6 (-597 *5)) (-4 *3 (-597 *4)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-405 *3)) (-4 *3 (-784)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1085)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-338)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-757)) (-14 *5 (-1085)) (-5 *2 (-588 (-1139 *5 *4)))
+ (-5 *1 (-1028 *4 *5)) (-5 *3 (-1139 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)) (-5 *2 (-587 *6))
- (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1065 *4)) (-4 *4 (-37 *3)) (-4 *4 (-970))
- (-5 *3 (-381 (-521))) (-5 *1 (-1069 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-760)) (-5 *3 (-587 (-1084))) (-5 *1 (-761)))))
-(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-171))))
- ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-275))))
- ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1067)) (-5 *1 (-280)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |%expansion| (-287 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))))
- (-5 *1 (-394 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
- (-14 *6 (-1084)) (-14 *7 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 *6)) (-4 *5 (-1123)) (-4 *6 (-1141 *5))
- (-5 *2 (-2 (|:| -2246 (-707)) (|:| -2979 *3) (|:| |radicand| *6)))
- (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-707)) (-4 *7 (-1141 *3)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |k| (-613 *3)) (|:| |c| *4))))
+ (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850)))))
+(((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3))
+ (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2))
+ (-4 *2 (-626 *3 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *6))))
+ (-5 *4 (-951 (-777 (-522)))) (-5 *5 (-1085)) (-5 *7 (-382 (-522)))
+ (-4 *6 (-971)) (-5 *2 (-792)) (-5 *1 (-547 *6)))))
(((*1 *1 *1) (-4 *1 (-220)))
((*1 *1 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119)))
- (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119)))))
- ((*1 *1 *1) (-4 *1 (-446)))
- ((*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3))))
+ (-3708 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120)))
+ (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120)))))
+ ((*1 *1 *1) (-4 *1 (-447)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
+ (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)) (-4 *2 (-337)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *2 (-984 *4 *5 *6)) (-5 *1 (-712 *4 *5 *6 *2 *3))
- (-4 *3 (-989 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-224 *3 *4))
- (-14 *3 (-587 (-1084))) (-4 *4 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-14 *3 (-587 (-1084)))
- (-5 *1 (-427 *3 *4 *5)) (-4 *4 (-970))
- (-4 *5 (-215 (-3478 *3) (-707)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-453 *3 *4))
- (-14 *3 (-587 (-1084))) (-4 *4 (-970)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-513) (-783) (-961 (-521))))
- (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 (-154 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *1 (-538 *2)) (-4 *2 (-961 *3))
- (-4 *2 (-337))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-574 *4 *2))
- (-4 *2 (-13 (-404 *4) (-927) (-1105)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1006 *2)) (-4 *2 (-13 (-404 *4) (-927) (-1105)))
- (-4 *4 (-13 (-783) (-513))) (-5 *1 (-574 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-886)) (-5 *2 (-1084))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1006 *1)) (-4 *1 (-886)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1084))
- (-4 *5 (-13 (-513) (-961 (-521)) (-135)))
- (-5 *2
- (-2 (|:| -1347 (-381 (-880 *5))) (|:| |coeff| (-381 (-880 *5)))))
- (-5 *1 (-527 *5)) (-5 *3 (-381 (-880 *5))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-707)) (-5 *3 (-871 *5)) (-4 *5 (-970))
- (-5 *1 (-1073 *4 *5)) (-14 *4 (-849))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-707))) (-5 *3 (-707)) (-5 *1 (-1073 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-970))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-707))) (-5 *3 (-871 *5)) (-4 *5 (-970))
- (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-707)) (-4 *5 (-157))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
- (-4 *4 (-157))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *2 *4)) (-4 *2 (-347 *3))
- (-4 *4 (-347 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1051 *2 *3)) (-14 *2 (-707)) (-4 *3 (-970)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-338)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971))
+ (-4 *3 (-514))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-514)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-527 *3)) (-4 *3 (-962 (-522)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
+ (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))
+ (-5 *2 (-382 (-522))) (-5 *1 (-945 *4)) (-4 *4 (-1142 (-522))))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-539 *3)) (-5 *1 (-515 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-628 *4)) (-5 *3 (-850)) (-4 *4 (-971))
+ (-5 *1 (-953 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *1 *1) (-5 *1 (-353)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-849)) (-5 *4 (-202)) (-5 *5 (-521)) (-5 *6 (-802))
- (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))))
+ (-12 (-5 *2 (-588 (-628 *4))) (-5 *3 (-850)) (-4 *4 (-971))
+ (-5 *1 (-953 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-561 *3)) (-5 *5 (-1081 *3))
+ (-4 *3 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-561 *3)) (-5 *5 (-382 (-1081 *3)))
+ (-4 *3 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-539 *3)) (-5 *1 (-518 *6 *3 *7)) (-4 *7 (-1014)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-290 (-521))) (|:| -4049 (-290 (-353)))
- (|:| CF (-290 (-154 (-353)))) (|:| |switch| (-1083))))
- (-5 *1 (-1083)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-514 *6 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-691)))))
+ (-3 (|:| I (-291 (-522))) (|:| -4055 (-291 (-354)))
+ (|:| CF (-291 (-154 (-354)))) (|:| |switch| (-1084))))
+ (-5 *1 (-1084)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *3 (-588 (-239)))
+ (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-442)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-37 (-382 (-522))))
+ (-4 *2 (-157)))))
(((*1 *1)
- (-12 (-4 *3 (-1013)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1013))
- (-4 *4 (-607 *3))))
- ((*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2)
- (-12 (-4 *3 (-970)) (-5 *2 (-885 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1141 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1165 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4))
- (-14 *3 (-849)) (-14 *4 (-849)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
- (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-381 (-521)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
+ (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014))
+ (-4 *4 (-608 *3))))
+ ((*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5))
+ (-4 *3 (-1142 *4))
+ (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *3 (-348 *2)) (-4 *4 (-348 *2))
+ (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-348 *2)) (-4 *5 (-348 *2)) (-4 *2 (-157))
+ (-5 *1 (-627 *2 *4 *5 *3)) (-4 *3 (-626 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4240 "*"))) (-4 *2 (-971)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-302 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-485 *3 *4))
+ (-14 *4 (-522)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *5))
+ (-4 *5 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-382 (-522)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521)))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
+ (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522)))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8))
- (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521)))
- (-4 *8 (-13 (-27) (-1105) (-404 *7)))
- (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8))
+ (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522)))
+ (-4 *8 (-13 (-27) (-1106) (-405 *7)))
+ (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521))))
- (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8)))
- (-4 *8 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *8 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522))))
+ (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8)))
+ (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-381 (-521))) (-4 *4 (-970)) (-4 *1 (-1148 *4 *3))
- (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-877 *5 *6 *7)) (-4 *5 (-425))
- (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-422 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-521))) (-5 *2 (-521)) (-5 *1 (-870)))))
-(((*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-521)) (-5 *3 (-849)) (-4 *1 (-378))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-521)) (-4 *1 (-378))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-999 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-521) *2 *2)) (-4 *2 (-125)) (-5 *1 (-999 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108)))))
+ (-12 (-5 *2 (-382 (-522))) (-4 *4 (-971)) (-4 *1 (-1149 *4 *3))
+ (-4 *3 (-1126 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-108)) (-4 *7 (-985 *4 *5 *6))
+ (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-904 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343))
+ (-5 *2 (-1081 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
- (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-521)) (-4 *5 (-13 (-425) (-783) (-961 *4) (-583 *4)))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
+ (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1014)) (-4 *2 (-784))
+ (-5 *1 (-109 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085))
+ (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-171))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-425) (-783) (-961 *5) (-583 *5))) (-5 *5 (-521))
- (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
+ (-12 (-5 *3 (-291 (-202))) (-5 *4 (-1085))
+ (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-588 (-202))) (-5 *1 (-276)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-4 *1 (-379))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-4 *1 (-379))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *5))
+ (-4 *5 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-522)) (-4 *5 (-13 (-426) (-784) (-962 *4) (-584 *4)))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-426) (-784) (-962 *5) (-584 *5))) (-5 *5 (-522))
+ (-5 *2 (-51)) (-5 *1 (-290 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521)))
- (-4 *7 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522)))
+ (-4 *7 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521)))
- (-4 *3 (-13 (-27) (-1105) (-404 *7)))
- (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *7 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522)))
+ (-4 *3 (-13 (-27) (-1106) (-405 *7)))
+ (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-521)) (-4 *4 (-970)) (-4 *1 (-1127 *4 *3))
- (-4 *3 (-1156 *4))))
+ (-12 (-5 *2 (-522)) (-4 *4 (-971)) (-4 *1 (-1128 *4 *3))
+ (-4 *3 (-1157 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970))
- (-4 *2 (-1156 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1981 *6) (|:| |sol?| (-108))) (-521)
- *6))
- (-4 *6 (-337)) (-4 *7 (-1141 *6))
- (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6)))
- (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
+ (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-784)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-92)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-5 *2 (-2 (|:| -1684 (-587 *6)) (|:| -1564 (-587 *6)))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))
- (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1013)) (-5 *2 (-707)))))
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-588 (-156)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-381 (-521))) (-4 *4 (-961 (-521)))
- (-4 *4 (-13 (-783) (-513))) (-5 *1 (-31 *4 *2)) (-4 *2 (-404 *4))))
+ (-12 (-5 *3 (-382 (-522))) (-4 *4 (-962 (-522)))
+ (-4 *4 (-13 (-784) (-514))) (-5 *1 (-31 *4 *2)) (-4 *2 (-405 *4))))
((*1 *1 *1 *1) (-5 *1 (-126)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-404 *3))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-405 *3))))
((*1 *1 *1 *1) (-5 *1 (-202)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-521))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-220)) (-5 *2 (-522))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3))
- (-4 *5 (-1156 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1127 *4 *5))))
+ (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3))
+ (-4 *5 (-1157 *4)) (-5 *1 (-254 *4 *5 *2)) (-4 *2 (-1128 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-381 (-521))) (-4 *4 (-337)) (-4 *4 (-37 *3))
- (-4 *5 (-1125 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1148 *4 *5))
- (-4 *6 (-909 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-259)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-335 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-5 *1 (-353)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-360 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *3 (-382 (-522))) (-4 *4 (-338)) (-4 *4 (-37 *3))
+ (-4 *5 (-1126 *4)) (-5 *1 (-255 *4 *5 *2 *6)) (-4 *2 (-1149 *4 *5))
+ (-4 *6 (-910 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-260)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-5 *1 (-354)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-361 *2)) (-4 *2 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-404 *3)) (-4 *3 (-783)) (-4 *3 (-1025))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-446)) (-5 *2 (-521))))
+ (-12 (-5 *2 (-708)) (-4 *1 (-405 *3)) (-4 *3 (-784)) (-4 *3 (-1026))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-447)) (-5 *2 (-522))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
+ (-12 (-5 *2 (-708)) (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-521)) (-4 *4 (-323))
- (-5 *1 (-491 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-497))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-497))))
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-522)) (-4 *4 (-324))
+ (-5 *1 (-492 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-498))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-498))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *4 (-1013))
- (-5 *1 (-620 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *4 (-1014))
+ (-5 *1 (-621 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3)) (-4 *3 (-337))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3)) (-4 *3 (-338))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-708)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-627 *4)) (-5 *3 (-707)) (-4 *4 (-970))
- (-5 *1 (-628 *4))))
+ (-12 (-5 *2 (-628 *4)) (-5 *3 (-708)) (-4 *4 (-971))
+ (-5 *1 (-629 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *3 (-970)) (-5 *1 (-651 *3 *4))
- (-4 *4 (-589 *3))))
+ (-12 (-5 *2 (-522)) (-4 *3 (-971)) (-5 *1 (-652 *3 *4))
+ (-4 *4 (-590 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-4 *4 (-970))
- (-5 *1 (-651 *4 *5)) (-4 *5 (-589 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-849))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-707))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-770 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-4 *4 (-971))
+ (-5 *1 (-652 *4 *5)) (-4 *5 (-590 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-708))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-708)) (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-771 *3)) (-4 *3 (-971))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-521)) (-5 *1 (-770 *4)) (-4 *4 (-970))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-927)) (-5 *2 (-381 (-521)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-849))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-522)) (-5 *1 (-771 *4)) (-4 *4 (-971))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-382 (-522)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-850))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-1034 *3 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-337))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-1035 *3 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *3 *4)) (-4 *4 (-338))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1015 *3)) (-5 *1 (-833 *3)) (-4 *3 (-342))
- (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1165 (-587 *3))) (-4 *4 (-282))
- (-5 *2 (-587 *3)) (-5 *1 (-428 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
- (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-707))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1142 *5))
+ (-5 *1 (-665 *5 *2)) (-4 *5 (-338)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-382 (-522)))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *5))
+ (-4 *5 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-708))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-269 *3)) (-5 *5 (-707))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6))
- (-4 *6 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *5 *6))))
+ (-12 (-5 *4 (-270 *3)) (-5 *5 (-708))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6))
+ (-4 *6 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *6 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-707)))
- (-4 *7 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-708)))
+ (-4 *7 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-707)))
- (-4 *3 (-13 (-27) (-1105) (-404 *7)))
- (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *7 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-708)))
+ (-4 *3 (-13 (-27) (-1106) (-405 *7)))
+ (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *7 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-143)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-337)) (-4 *3 (-970))
- (-5 *1 (-1069 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *1) (-4 *1 (-506))))
+ (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-283))
+ (-5 *2 (-708)) (-5 *1 (-429 *5 *3)))))
+(((*1 *1 *1) (-4 *1 (-507))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1032)) (-5 *2 (-108)) (-5 *1 (-758)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *3 (-157))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2979 *3) (|:| |gap| (-707)) (|:| -3852 (-718 *3))
- (|:| -2334 (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-970))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783))
- (-5 *2
- (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -3852 *1)
- (|:| -2334 *1)))
- (-4 *1 (-984 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2
- (-2 (|:| -2979 *1) (|:| |gap| (-707)) (|:| -3852 *1)
- (|:| -2334 *1)))
- (-4 *1 (-984 *3 *4 *5)))))
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4238)) (-4 *1 (-461 *4))
+ (-4 *4 (-1120)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-239)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-777 (-202)))) (-5 *4 (-202)) (-5 *2 (-588 *4))
+ (-5 *1 (-243)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-4 *3 (-514)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-708)) (-4 *4 (-283)) (-4 *6 (-1142 *4))
+ (-5 *2 (-1166 (-588 *6))) (-5 *1 (-429 *4 *6)) (-5 *5 (-588 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
(-5 *2
(-2
@@ -6210,10464 +6202,10413 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1065 (-202)))
+ (-3 (|:| |str| (-1066 (-202)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1403
+ (|:| -2386
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-516)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-5 *1 (-517)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-393 *2)) (-4 *2 (-283)) (-5 *1 (-843 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-393 (-881 *6))) (-5 *5 (-1085)) (-5 *3 (-881 *6))
+ (-4 *6 (-13 (-283) (-135))) (-5 *2 (-51)) (-5 *1 (-844 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-382 (-522))) (-5 *1 (-281)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-784)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1) (-4 *1 (-278))))
+(((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1107 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124))
+ (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5)))
+ (-5 *2 (-2 (|:| |num| (-628 *5)) (|:| |den| *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-560 *5))) (-4 *4 (-783)) (-5 *2 (-560 *5))
- (-5 *1 (-530 *4 *5)) (-4 *5 (-404 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-521))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-707)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-729)) (-4 *4 (-877 *5 *6 *7)) (-4 *5 (-425)) (-4 *7 (-783))
- (-5 *1 (-422 *5 *6 *7 *4)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521))))
- (-4 *5 (-1141 *4))
- (-5 *2 (-2 (|:| -1347 (-381 *5)) (|:| |coeff| (-381 *5))))
- (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5)))))
-(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
+ (-12 (-5 *3 (-522)) (-4 *4 (-1142 (-382 *3))) (-5 *2 (-850))
+ (-5 *1 (-842 *4 *5)) (-4 *5 (-1142 (-382 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1088)) (-5 *3 (-1085)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-818 *4 *5)) (-5 *3 (-818 *4 *6)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-608 *5)) (-5 *1 (-814 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-521))) (-5 *4 (-833 (-521)))
- (-5 *2 (-627 (-521))) (-5 *1 (-542))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521))))
- (-5 *1 (-542))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-521))) (-5 *4 (-587 (-833 (-521))))
- (-5 *2 (-587 (-627 (-521)))) (-5 *1 (-542)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-587 (-521))) (-5 *2 (-707)) (-5 *1 (-542)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1013)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-4 *5 (-338))
+ (-5 *2 (-588 (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5)))))
+ (-5 *1 (-905 *5)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8))))
+ (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-885 *3)) (-5 *1 (-1072 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1060))))
-(((*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1087)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3))
- (-4 *3 (-13 (-404 *4) (-927))))))
-(((*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))))
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-507))))
+ ((*1 *1 *1) (-4 *1 (-980))))
+(((*1 *1 *1 *1) (-4 *1 (-699))))
(((*1 *2 *3)
- (-12 (-14 *4 (-587 (-1084))) (-14 *5 (-707))
- (-5 *2
- (-587
- (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4)
- (-224 *4 (-381 (-521))))))
- (-5 *1 (-474 *4 *5))
- (-5 *3
- (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4)
- (-224 *4 (-381 (-521))))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970))
- (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
-(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-587
- (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *2))
- (|:| |logand| (-1080 *2)))))
- (-5 *4 (-587 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-337)) (-5 *1 (-538 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-171)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-1086 (-381 (-521))))
- (-5 *1 (-169)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-202))
- (-5 *7 (-627 (-521))) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-4 *1 (-131)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-627 *4)) (-4 *4 (-337)) (-5 *2 (-1080 *4))
- (-5 *1 (-494 *4 *5 *6)) (-4 *5 (-337)) (-4 *6 (-13 (-337) (-781))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927))
- (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-880 (-521)))) (-5 *1 (-411))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-202))) (-5 *2 (-1017))
- (-5 *1 (-696))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-627 (-521))) (-5 *2 (-1017))
- (-5 *1 (-696)))))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-108)) (-5 *1 (-276)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-708)) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-971)) (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171))
+ (-5 *1 (-915 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171))
+ (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514)))))
+(((*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-708))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-377)) (-5 *2 (-708)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084))
- (-5 *1 (-238 *2)) (-4 *2 (-1119))))
+ (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085))
+ (-5 *1 (-238 *2)) (-4 *2 (-1120))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-587 (-239))) (-5 *4 (-1084)) (-5 *2 (-51))
+ (|partial| -12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-51))
(-5 *1 (-239)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
- (-14 *3 (-521)) (-14 *4 (-707)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-886 *3)) (-5 *1 (-1073 *4 *3))
+ (-4 *3 (-1142 *4)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3))
- (-4 *3 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *2 *4)) (-4 *4 (-1141 *2))
- (-4 *2 (-157))))
- ((*1 *2)
- (-12 (-4 *4 (-1141 *2)) (-4 *2 (-157)) (-5 *1 (-382 *3 *2 *4))
- (-4 *3 (-383 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157))))
- ((*1 *2)
- (-12 (-4 *3 (-1141 *2)) (-5 *2 (-521)) (-5 *1 (-704 *3 *4))
- (-4 *4 (-383 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *3 (-157))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-157)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-588 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971)) (-5 *2 (-108)) (-5 *1 (-418 *4 *3))
+ (-4 *3 (-1142 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-157)) (-4 *2 (-23)) (-5 *1 (-265 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1142 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-157))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1142 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-971))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-157))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-708))) (-5 *3 (-108)) (-5 *1 (-1074 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-971)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-4 *5 (-337))
- (-4 *5 (-970)) (-5 *2 (-108)) (-5 *1 (-953 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337)) (-4 *4 (-970))
- (-5 *2 (-108)) (-5 *1 (-953 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-627 (-202))) (-5 *6 (-108)) (-5 *7 (-627 (-521)))
- (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-521)) (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-498 *3 *2))
- (-4 *2 (-1156 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-4 *4 (-1141 *3))
- (-4 *5 (-661 *3 *4)) (-5 *1 (-502 *3 *4 *5 *2)) (-4 *2 (-1156 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-342) (-562 (-521)))) (-5 *1 (-503 *3 *2))
- (-4 *2 (-1156 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-13 (-513) (-135)))
- (-5 *1 (-1061 *3)))))
+ (-12 (-5 *3 (-588 (-1 (-108) *8))) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8))))
+ (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-4 *6 (-426))
+ (-5 *2 (-588 (-588 *7))) (-5 *1 (-500 *6 *7 *5)) (-4 *7 (-338))
+ (-4 *5 (-13 (-338) (-782))))))
+(((*1 *1 *1) (|partial| -4 *1 (-1061))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354))))
+ ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-27) (-404 *4)))
- (-4 *4 (-13 (-783) (-513) (-961 (-521))))
- (-4 *7 (-1141 (-381 *6))) (-5 *1 (-509 *4 *5 *6 *7 *2))
- (-4 *2 (-316 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-688)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3))
- (-4 *3 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-523 *6 *3 *7)) (-4 *7 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *2 (-1170))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1141 (-381 *5))) (-14 *7 *6))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1097 *3 *2)) (-4 *3 (-1013)))))
-(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202)))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-959)) (-5 *1 (-690)))))
+ (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-850)) (-5 *2 (-442)) (-5 *1 (-1167)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-110)) (-4 *4 (-971)) (-5 *1 (-652 *4 *2))
+ (-4 *2 (-590 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-771 *2)) (-4 *2 (-971)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1088)))))
+(((*1 *1) (-5 *1 (-267))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514))
+ (-5 *2 (-1081 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-522)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-393 *2)) (-4 *2 (-514)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-218))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-522)) (-5 *1 (-218)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1014)) (-5 *2 (-108)) (-5 *1 (-814 *3 *4 *5))
+ (-4 *3 (-1014)) (-4 *5 (-608 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135)))
- (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
+ (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-554 *3 *2)) (-4 *3 (-1013))
- (-4 *2 (-1119)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+ (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))))
+(((*1 *2)
+ (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838))
+ (-5 *1 (-431 *3 *4 *2 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *2 (-838))
+ (-5 *1 (-835 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-838)) (-5 *1 (-836 *2 *3)) (-4 *3 (-1142 *2)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-708)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-781)) (-4 *4 (-337)) (-5 *2 (-707))
- (-5 *1 (-873 *4 *5)) (-4 *5 (-1141 *4)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 (-154 (-521))))) (-5 *2 (-587 (-154 *4)))
- (-5 *1 (-352 *4)) (-4 *4 (-13 (-337) (-781)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 (-381 (-880 (-154 (-521))))))
- (-5 *4 (-587 (-1084))) (-5 *2 (-587 (-587 (-154 *5))))
- (-5 *1 (-352 *5)) (-4 *5 (-13 (-337) (-781))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-1 (-1080 (-880 *4)) (-880 *4)))
- (-5 *1 (-1173 *4)) (-4 *4 (-337)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-636)) (-5 *1 (-280)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-110))))
+ (-12 (-4 *4 (-13 (-784) (-514))) (-5 *2 (-108)) (-5 *1 (-252 *4 *3))
+ (-4 *3 (-13 (-405 *4) (-928))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-783)) (-5 *1 (-857 *4 *2))
- (-4 *2 (-404 *4))))
+ (-12 (-5 *3 (-1068)) (-4 *4 (-784)) (-5 *1 (-858 *4 *2))
+ (-4 *2 (-405 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-1067)) (-5 *2 (-290 (-521)))
- (-5 *1 (-858)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-785 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-513)) (-4 *5 (-970))
- (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-786 *5 *3))
- (-4 *3 (-785 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-371)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3052 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
- (-5 *1 (-683)))))
+ (-12 (-5 *3 (-1085)) (-5 *4 (-1068)) (-5 *2 (-291 (-522)))
+ (-5 *1 (-859)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-1117)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-514)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-1111 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-442)) (-5 *4 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-697)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1187 *4 *2)) (-4 *1 (-348 *4 *2)) (-4 *4 (-783))
+ (-12 (-5 *3 (-1188 *4 *2)) (-4 *1 (-349 *4 *2)) (-4 *4 (-784))
(-4 *2 (-157))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-783)) (-4 *2 (-970))))
+ (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-755 *4)) (-4 *1 (-1180 *4 *2)) (-4 *4 (-783))
- (-4 *2 (-970))))
+ (-12 (-5 *3 (-756 *4)) (-4 *1 (-1181 *4 *2)) (-4 *4 (-784))
+ (-4 *2 (-971))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1) (-4 *1 (-573)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-286)) (-5 *1 (-271))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-271))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-1067))) (-5 *3 (-1067)) (-5 *2 (-286))
- (-5 *1 (-271)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 (-2 (|:| -1974 (-1080 *6)) (|:| -2246 (-521)))))
- (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3052 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-269 *6)) (-5 *4 (-110)) (-4 *6 (-404 *5))
- (-4 *5 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51))
- (-5 *1 (-291 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-269 *7)) (-5 *4 (-110)) (-5 *5 (-587 *7))
- (-4 *7 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497))))
- (-5 *2 (-51)) (-5 *1 (-291 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-587 (-269 *7))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7))
- (-4 *7 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497))))
- (-5 *2 (-51)) (-5 *1 (-291 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-587 (-269 *8))) (-5 *4 (-587 (-110))) (-5 *5 (-269 *8))
- (-5 *6 (-587 *8)) (-4 *8 (-404 *7))
- (-4 *7 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51))
- (-5 *1 (-291 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-587 *7)) (-5 *4 (-587 (-110))) (-5 *5 (-269 *7))
- (-4 *7 (-404 *6)) (-4 *6 (-13 (-783) (-513) (-562 (-497))))
- (-5 *2 (-51)) (-5 *1 (-291 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 (-110))) (-5 *6 (-587 (-269 *8)))
- (-4 *8 (-404 *7)) (-5 *5 (-269 *8))
- (-4 *7 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51))
- (-5 *1 (-291 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-269 *5)) (-5 *4 (-110)) (-4 *5 (-404 *6))
- (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51))
- (-5 *1 (-291 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6))
- (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51))
- (-5 *1 (-291 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-4 *3 (-404 *6))
- (-4 *6 (-13 (-783) (-513) (-562 (-497)))) (-5 *2 (-51))
- (-5 *1 (-291 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-269 *3)) (-5 *6 (-587 *3))
- (-4 *3 (-404 *7)) (-4 *7 (-13 (-783) (-513) (-562 (-497))))
- (-5 *2 (-51)) (-5 *1 (-291 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-337)) (-14 *5 (-919 *3 *4)))))
+ (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (-521) (-202) (-1084) (-1067) (-1089)))
- (-5 *1 (-1089)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-877 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-970)) (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1)))
- (-4 *1 (-1141 *3)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 (-522)))))
+ (-5 *1 (-336 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 (-708)))))
+ (-5 *1 (-361 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| -1916 *3) (|:| -1400 (-522)))))
+ (-5 *1 (-393 *3)) (-4 *3 (-514))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 (-708)))))
+ (-5 *1 (-756 *3)) (-4 *3 (-784)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157))))
+ ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2))))
+ ((*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2) (-12 (-5 *2 (-291 (-202))) (-5 *1 (-243)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-287)) (-5 *1 (-272))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-287)) (-5 *1 (-272))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-1068))) (-5 *3 (-1068)) (-5 *2 (-287))
+ (-5 *1 (-272)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856))
+ (-5 *1 (-854 *3)) (-4 *3 (-563 (-498)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-5 *2 (-856)) (-5 *1 (-854 *3))
+ (-4 *3 (-563 (-498)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-522)) (-5 *4 (-393 *2)) (-4 *2 (-878 *7 *5 *6))
+ (-5 *1 (-680 *5 *6 *7 *2)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-283)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-215 *3 *4)) (-4 *4 (-970))
- (-4 *4 (-1119))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
- (-4 *5 (-215 (-3478 *3) (-707)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *5))
- (-2 (|:| -2723 *2) (|:| -2246 *5))))
- (-5 *1 (-434 *3 *4 *2 *5 *6 *7)) (-4 *2 (-783))
- (-4 *7 (-877 *4 *5 (-793 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)))))
+ (-12 (-5 *2 (-850)) (-5 *1 (-140 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-338)) (-14 *5 (-920 *3 *4)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-587
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-588
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202)))))
- (-5 *1 (-516))))
+ (-5 *1 (-517))))
((*1 *2 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-5 *2 (-587 *3))))
+ (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-5 *2 (-588 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-587
+ (-588
(-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
(|:| |abserr| (-202)) (|:| |relerr| (-202)))))
- (-5 *1 (-739)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *5)))))
-(((*1 *2 *3 *4)
- (-12
+ (-5 *1 (-740)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-692)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-692)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-588 (-1085))) (-14 *5 (-708))
+ (-5 *2
+ (-588
+ (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4)
+ (-224 *4 (-382 (-522))))))
+ (-5 *1 (-475 *4 *5))
(-5 *3
- (-587
- (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
- (|:| |wcond| (-587 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *5))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *5))))))))))
- (-5 *4 (-1067)) (-4 *5 (-13 (-282) (-135))) (-4 *8 (-877 *5 *7 *6))
- (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-521))
- (-5 *1 (-852 *5 *6 *7 *8)))))
+ (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4)
+ (-224 *4 (-382 (-522))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-1142 (-154 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-4 *7 (-514))
+ (-4 *8 (-878 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *3) (|:| |radicand| *3)))
+ (-5 *1 (-882 *5 *6 *7 *8 *3)) (-5 *4 (-708))
+ (-4 *3
+ (-13 (-338)
+ (-10 -8 (-15 -2805 (*8 $)) (-15 -2816 (*8 $)) (-15 -2190 ($ *8))))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1013))
- (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3))))
- (-5 *2 (-587 (-1084))) (-5 *1 (-992 *3 *4 *5))
- (-4 *5 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013))
- (-5 *2 (-108)))))
-(((*1 *1 *1) (-4 *1 (-506))))
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *6))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7))))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-270 (-770 *3)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-770 *3)) (-5 *1 (-581 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 (-770 (-881 *5)))) (-4 *5 (-426))
+ (-5 *2 (-770 (-382 (-881 *5)))) (-5 *1 (-582 *5))
+ (-5 *3 (-382 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5)))
+ (-4 *5 (-426)) (-5 *2 (-770 *3)) (-5 *1 (-582 *5)))))
+(((*1 *1 *1) (-4 *1 (-507))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1044 (-202))) (-5 *1 (-231))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1045 (-202))) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
- (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239)))
+ (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202)))
(-5 *1 (-235 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 *5)) (-5 *4 (-1006 (-353)))
- (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354)))
+ (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202)))
(-5 *1 (-235 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
- (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3))
- (-4 *3 (-13 (-562 (-497)) (-1013)))))
+ (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239)))
+ (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-563 (-498)) (-1014)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1044 (-202))) (-5 *1 (-235 *3))
- (-4 *3 (-13 (-562 (-497)) (-1013)))))
+ (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1045 (-202))) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-563 (-498)) (-1014)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
- (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239)))
+ (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202)))
(-5 *1 (-235 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 *5)) (-5 *4 (-1006 (-353)))
- (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1044 (-202)))
+ (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354)))
+ (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1045 (-202)))
(-5 *1 (-235 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-323)) (-5 *2 (-1165 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-627 *1)) (-4 *1 (-133)) (-4 *1 (-837))
- (-5 *2 (-1165 *1)))))
-(((*1 *2)
- (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
- (-5 *2 (-707)) (-5 *1 (-315 *3 *4 *5 *6)) (-4 *3 (-316 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-707)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971))
+ (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-708)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2))
+ (-4 *2 (-1142 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085))
+ (-4 *4 (-13 (-514) (-962 (-522)) (-135))) (-5 *1 (-528 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-588 (-2 (|:| -1650 *1) (|:| -1544 (-588 *7)))))
+ (-5 *3 (-588 *7)) (-4 *1 (-1114 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-2 (|:| -1916 (-1081 *6)) (|:| -1400 (-522)))))
+ (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-522))
+ (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637))))
+ ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-588
+ (-2 (|:| |scalar| (-382 (-522))) (|:| |coeff| (-1081 *2))
+ (|:| |logand| (-1081 *2)))))
+ (-5 *4 (-588 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-338)) (-5 *1 (-539 *2)))))
+(((*1 *1 *1) (-5 *1 (-983))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343))
+ (-5 *2 (-1081 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343))
+ (-5 *2 (-1081 *3)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-621 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
- (-5 *1 (-160 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
- (-5 *1 (-160 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-970)) (-5 *2 (-521))
- (-5 *1 (-416 *5 *3 *6)) (-4 *3 (-1141 *5))
- (-4 *6 (-13 (-378) (-961 *5) (-337) (-1105) (-259)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5))
- (-4 *3 (-1141 *4))
- (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2769 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-51)) (-5 *1 (-821 *4))
+ (-4 *4 (-1014)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-694)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-546 *3)) (-4 *3 (-970)))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7))))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2259 *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426))
+ (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-587 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-381 (-521))))
- (-5 *2
- (-587
- (-2 (|:| |outval| *4) (|:| |outmult| (-521))
- (|:| |outvect| (-587 (-627 *4))))))
- (-5 *1 (-715 *4)) (-4 *4 (-13 (-337) (-781))))))
-(((*1 *1 *2) (-12 (-5 *2 (-755 *3)) (-4 *3 (-783)) (-5 *1 (-612 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-521)) (-4 *6 (-729)) (-4 *7 (-783)) (-4 *8 (-282))
- (-4 *9 (-877 *8 *6 *7))
- (-5 *2 (-2 (|:| -3201 (-1080 *9)) (|:| |polval| (-1080 *8))))
- (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)) (-5 *4 (-1080 *8)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-849)) (-5 *1 (-722)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-897)))))
+ (-12 (-5 *3 (-588 (-2 (|:| -1916 *4) (|:| -2793 (-522)))))
+ (-4 *4 (-1142 (-522))) (-5 *2 (-675 (-708))) (-5 *1 (-416 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-393 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-971))
+ (-5 *2 (-675 (-708))) (-5 *1 (-418 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-274 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1008 (-776 (-202)))) (-5 *3 (-202)) (-5 *2 (-108))
- (-5 *1 (-280))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))))
+ (-12 (-4 *4 (-37 (-382 (-522))))
+ (-5 *2 (-2 (|:| -2884 (-1066 *4)) (|:| -2896 (-1066 *4))))
+ (-5 *1 (-1072 *4)) (-5 *3 (-1066 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2)) (-4 *2 (-615 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *1) (-4 *1 (-462)))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *1) (-4 *1 (-463)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *3 (-202))
- (-5 *2 (-959)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *5)) (-4 *5 (-1141 *3)) (-4 *3 (-282))
- (-5 *2 (-108)) (-5 *1 (-428 *3 *5)))))
-(((*1 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-587 (-707))) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-759)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135))) (-5 *1 (-499 *4 *2))
+ (-4 *2 (-1157 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3)))
+ (-4 *5 (-1142 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-503 *4 *5 *6 *2))
+ (-4 *2 (-1157 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-13 (-338) (-343) (-563 *3)))
+ (-5 *1 (-504 *4 *2)) (-4 *2 (-1157 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-13 (-514) (-135)))
+ (-5 *1 (-1062 *4)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-960)) (-5 *3 (-1085)) (-5 *1 (-171)))))
+(((*1 *2 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))
+ ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *3 (-784)) (-5 *2 (-708)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-306 *3)) (-4 *3 (-784)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1166)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-805 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1166)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-805 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1166)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-806 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1167)) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 (-1 (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-808 (-1 (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-202) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 (-1 (-202) (-202) (-202)))) (-5 *4 (-1008 (-353)))
- (-5 *2 (-1167)) (-5 *1 (-231))))
+ (-12 (-5 *3 (-811 (-1 (-202) (-202) (-202)))) (-5 *4 (-1009 (-354)))
+ (-5 *2 (-1168)) (-5 *1 (-231))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-269 *7)) (-5 *4 (-1084)) (-5 *5 (-587 (-239)))
- (-4 *7 (-404 *6)) (-4 *6 (-13 (-513) (-783) (-961 (-521))))
- (-5 *2 (-1166)) (-5 *1 (-232 *6 *7))))
+ (-12 (-5 *3 (-270 *7)) (-5 *4 (-1085)) (-5 *5 (-588 (-239)))
+ (-4 *7 (-405 *6)) (-4 *6 (-13 (-514) (-784) (-962 (-522))))
+ (-5 *2 (-1167)) (-5 *1 (-232 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1166))
- (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013)))))
+ (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1167))
+ (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1166)) (-5 *1 (-235 *3))
- (-4 *3 (-13 (-562 (-497)) (-1013)))))
+ (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1167)) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-563 (-498)) (-1014)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-805 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
- (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166))
+ (-12 (-5 *3 (-806 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239)))
+ (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167))
(-5 *1 (-235 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-805 *5)) (-5 *4 (-1006 (-353)))
- (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1166))
+ (-12 (-5 *3 (-806 *5)) (-5 *4 (-1007 (-354)))
+ (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1167))
(-5 *1 (-235 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-807 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
- (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-12 (-5 *3 (-808 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239)))
+ (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168))
(-5 *1 (-235 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-807 *5)) (-5 *4 (-1006 (-353)))
- (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-12 (-5 *3 (-808 *5)) (-5 *4 (-1007 (-354)))
+ (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168))
(-5 *1 (-235 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239))) (-5 *2 (-1167))
- (-5 *1 (-235 *3)) (-4 *3 (-13 (-562 (-497)) (-1013)))))
+ (-12 (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239))) (-5 *2 (-1168))
+ (-5 *1 (-235 *3)) (-4 *3 (-13 (-563 (-498)) (-1014)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1006 (-353))) (-5 *2 (-1167)) (-5 *1 (-235 *3))
- (-4 *3 (-13 (-562 (-497)) (-1013)))))
+ (-12 (-5 *4 (-1007 (-354))) (-5 *2 (-1168)) (-5 *1 (-235 *3))
+ (-4 *3 (-13 (-563 (-498)) (-1014)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-810 *6)) (-5 *4 (-1006 (-353))) (-5 *5 (-587 (-239)))
- (-4 *6 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-12 (-5 *3 (-811 *6)) (-5 *4 (-1007 (-354))) (-5 *5 (-588 (-239)))
+ (-4 *6 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168))
(-5 *1 (-235 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-810 *5)) (-5 *4 (-1006 (-353)))
- (-4 *5 (-13 (-562 (-497)) (-1013))) (-5 *2 (-1167))
+ (-12 (-5 *3 (-811 *5)) (-5 *4 (-1007 (-354)))
+ (-4 *5 (-13 (-563 (-498)) (-1014))) (-5 *2 (-1168))
(-5 *1 (-235 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1166)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1167)) (-5 *1 (-236))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1166))
+ (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1167))
(-5 *1 (-236))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-871 (-202)))) (-5 *2 (-1166)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *2 (-1167)) (-5 *1 (-236))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-871 (-202)))) (-5 *4 (-587 (-239)))
- (-5 *2 (-1166)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-588 (-239)))
+ (-5 *2 (-1167)) (-5 *1 (-236))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1167)) (-5 *1 (-236))))
+ (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1168)) (-5 *1 (-236))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-587 (-202))) (-5 *4 (-587 (-239))) (-5 *2 (-1167))
+ (-12 (-5 *3 (-588 (-202))) (-5 *4 (-588 (-239))) (-5 *2 (-1168))
(-5 *1 (-236)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *1) (-4 *1 (-462)))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *1) (-4 *1 (-463)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1493 *1) (|:| -4220 *1) (|:| |associate| *1)))
- (-4 *1 (-513)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-171)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-507)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-587 *5) *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-594 (-381 *7))) (-5 *4 (-1 (-587 *6) *7))
- (-5 *5 (-1 (-392 *7) *7))
- (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-587 *5) *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *6 (-1141 *5)) (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-595 *7 (-381 *7))) (-5 *4 (-1 (-587 *6) *7))
- (-5 *5 (-1 (-392 *7) *7))
- (-4 *6 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *7 (-1141 *6)) (-5 *2 (-587 (-381 *7))) (-5 *1 (-748 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-594 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-587 (-381 *5))) (-5 *1 (-748 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-594 (-381 *6))) (-5 *4 (-1 (-392 *6) *6))
- (-4 *6 (-1141 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *5 (-381 *5))) (-4 *5 (-1141 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-587 (-381 *5))) (-5 *1 (-748 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-595 *6 (-381 *6))) (-5 *4 (-1 (-392 *6) *6))
- (-4 *6 (-1141 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-587 (-381 *6))) (-5 *1 (-748 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378))
- (-5 *2 (-849)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-729)) (-4 *5 (-970)) (-4 *6 (-877 *5 *4 *2))
- (-4 *2 (-783)) (-5 *1 (-878 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *6)) (-15 -2807 (*6 $))
- (-15 -2818 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513))
- (-5 *2 (-1084)) (-5 *1 (-966 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-783))))
+ (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-1166 *3))
+ (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3))
+ (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-522)) (-4 *5 (-782)) (-4 *5 (-338))
+ (-5 *2 (-708)) (-5 *1 (-874 *5 *6)) (-4 *6 (-1142 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-291 (-354))) (-5 *1 (-281)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-110)) (-5 *3 (-587 *5)) (-5 *4 (-707)) (-4 *5 (-783))
- (-5 *1 (-560 *5)))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-784))
+ (-5 *1 (-561 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1 *1) (-4 *1 (-462)))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *1) (-4 *1 (-463)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1141 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-538 *3)) (-4 *3 (-337)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *3 (-587 (-239)))
- (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-441)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202) (-202)))
+ (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))))
+(((*1 *1 *1) (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-971))))
+ ((*1 *1 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-381 (-521))) (-5 *1 (-280)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-51)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-588 (-1166 *4))) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-4 *3 (-514))
+ (-5 *2 (-588 (-1166 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4))
+ (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-51)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1 *1) (-4 *1 (-462)))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *1) (-4 *1 (-463)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-1141 (-381 *3))) (-5 *2 (-849))
- (-5 *1 (-841 *4 *5)) (-4 *5 (-1141 (-381 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2 (-108)) (-5 *1 (-275)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-5 *2 (-108)) (-5 *1 (-417 *4 *3))
- (-4 *3 (-1141 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-521)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-588 (-561 *2))) (-5 *4 (-1085))
+ (-4 *2 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *5 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-587 (-587 (-202)))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1084)) (-5 *5 (-1008 (-202))) (-5 *2 (-855))
- (-5 *1 (-853 *3)) (-4 *3 (-562 (-497)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-5 *2 (-855)) (-5 *1 (-853 *3))
- (-4 *3 (-562 (-497)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013))))
- ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-412 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-560 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-892))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-991 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1084))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *6))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522))))
+ (-5 *1 (-169)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-832 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2) (-12 (-5 *2 (-776 (-521))) (-5 *1 (-495))))
- ((*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| -1974 (-1080 *6)) (|:| -2246 (-521)))))
- (-4 *6 (-282)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-521))
- (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))))
+ (-12 (-4 *1 (-339 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-413 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-893))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-992 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1085))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-588 (-708)))
+ (-5 *1 (-833 *4)))))
+(((*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496))))
+ ((*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1 *1) (-4 *1 (-462)))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *1) (-4 *1 (-463)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| -1974 *4) (|:| -2098 (-521)))))
- (-4 *4 (-1141 (-521))) (-5 *2 (-674 (-707))) (-5 *1 (-415 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-392 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-970))
- (-5 *2 (-674 (-707))) (-5 *1 (-417 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-587 (-1165 *4))) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513))
- (-5 *2 (-587 (-1165 *3))))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-202))
+ (-5 *7 (-628 (-522))) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-513)) (-5 *1 (-896 *2 *3)) (-4 *3 (-1141 *2)))))
+ (-12 (-4 *3 (-514)) (-4 *3 (-157)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2))
+ (-4 *2 (-626 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2) (-12 (-5 *2 (-587 *3)) (-5 *1 (-999 *3)) (-4 *3 (-125)))))
-(((*1 *2) (-12 (-5 *2 (-776 (-521))) (-5 *1 (-495))))
- ((*1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-1013)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971))
+ (-5 *3 (-522)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-588 *3)) (-5 *1 (-1000 *3)) (-4 *3 (-125)))))
+(((*1 *2) (-12 (-5 *2 (-777 (-522))) (-5 *1 (-496))))
+ ((*1 *1) (-12 (-5 *1 (-777 *2)) (-4 *2 (-1014)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108))
- (-5 *2 (-959)) (-5 *1 (-682)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-627 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-627 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-802))
- (-5 *5 (-849)) (-5 *6 (-587 (-239))) (-5 *2 (-1166))
- (-5 *1 (-1169))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *5 (-850))
+ (-5 *2 (-1171)) (-5 *1 (-442))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-588 (-872 (-202)))) (-5 *4 (-803)) (-5 *5 (-850))
+ (-5 *2 (-1171)) (-5 *1 (-442)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-426) (-135))) (-5 *2 (-393 *3))
+ (-5 *1 (-95 *4 *3)) (-4 *3 (-1142 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-587 (-239)))
- (-5 *2 (-1166)) (-5 *1 (-1169)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *2 (-587 (-202)))
- (-5 *1 (-441)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-102 *3)))))
-(((*1 *1 *1) (-4 *1 (-979)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-587 (-627 *6))) (-5 *4 (-108)) (-5 *5 (-521))
- (-5 *2 (-627 *6)) (-5 *1 (-953 *6)) (-4 *6 (-337)) (-4 *6 (-970))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 (-627 *4))) (-5 *2 (-627 *4)) (-5 *1 (-953 *4))
- (-4 *4 (-337)) (-4 *4 (-970))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-587 (-627 *5))) (-5 *4 (-521)) (-5 *2 (-627 *5))
- (-5 *1 (-953 *5)) (-4 *5 (-337)) (-4 *5 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-707)) (|:| -3201 *4))) (-5 *5 (-707))
- (-4 *4 (-877 *6 *7 *8)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-422 *6 *7 *8 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-710)) (-5 *1 (-51)))))
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-13 (-426) (-135)))
+ (-5 *2 (-393 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *1 *1) (-4 *1 (-131)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-426)) (-4 *4 (-784))
+ (-4 *5 (-730)) (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-711)) (-5 *1 (-51)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-275))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1008 (-776 (-202)))) (-5 *2 (-202)) (-5 *1 (-280)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *1) (-5 *1 (-1167))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-689)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-282)) (-5 *1 (-163 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-108))
- (-5 *1 (-1120 *3)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-685)))))
+ (|partial| -12 (-5 *3 (-708)) (-5 *1 (-540 *2)) (-4 *2 (-507))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3355 *3) (|:| -1400 (-708)))) (-5 *1 (-540 *3))
+ (-4 *3 (-507)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-628 *4)) (-4 *4 (-338)) (-5 *2 (-1081 *4))
+ (-5 *1 (-495 *4 *5 *6)) (-4 *5 (-338)) (-4 *6 (-13 (-338) (-782))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1120)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-587 (-587 *7)))
- (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
- (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-587 (-587 *8)))
- (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-129))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1053)) (-5 *2 (-132)))))
-(((*1 *2) (-12 (-5 *2 (-769 (-521))) (-5 *1 (-495))))
- ((*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1013)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-1085)) (-4 *6 (-405 *5))
+ (-4 *5 (-784)) (-5 *2 (-588 (-561 *6))) (-5 *1 (-531 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1054)) (-5 *2 (-132)))))
+(((*1 *2) (-12 (-5 *2 (-770 (-522))) (-5 *1 (-496))))
+ ((*1 *1) (-12 (-5 *1 (-770 *2)) (-4 *2 (-1014)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-903 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *1 *1 *1) (-5 *1 (-202)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963))))
- ((*1 *1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *1 *1) (-4 *1 (-979))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-959)) (-5 *1 (-686))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-362)) (-5 *2 (-959)) (-5 *1 (-686)))))
-(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *6)) (-5 *5 (-1 (-393 (-1081 *6)) (-1081 *6)))
+ (-4 *6 (-338))
+ (-5 *2
+ (-588
+ (-2 (|:| |outval| *7) (|:| |outmult| (-522))
+ (|:| |outvect| (-588 (-628 *7))))))
+ (-5 *1 (-495 *6 *7 *4)) (-4 *7 (-338)) (-4 *4 (-13 (-338) (-782))))))
+(((*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-782)) (-5 *1 (-279 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928))
+ (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))))
+(((*1 *2 *1) (-12 (-4 *3 (-971)) (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108))
+ (-5 *2 (-960)) (-5 *1 (-683)))))
+(((*1 *2 *2 *2)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1165 (-381 (-880 *4))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *4)))))))
- (-5 *3 (-587 *7)) (-4 *4 (-13 (-282) (-135)))
- (-4 *7 (-877 *4 *6 *5)) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-392 (-1080 *7)))
- (-5 *1 (-834 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-837)) (-4 *5 (-1141 *4)) (-5 *2 (-392 (-1080 *5)))
- (-5 *1 (-835 *4 *5)) (-5 *3 (-1080 *5)))))
+ (-588
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-708)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-730)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-426)) (-4 *5 (-784))
+ (-5 *1 (-423 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-792)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-516 *2)) (-4 *2 (-507)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2))
- (-4 *3 (-13 (-783) (-513)))))
+ (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2))
+ (-4 *3 (-13 (-784) (-514)))))
((*1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1) (-5 *1 (-450))) ((*1 *1) (-4 *1 (-1105))))
-(((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-791)))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1) (-5 *1 (-451))) ((*1 *1) (-4 *1 (-1106))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-104)))))
(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-202)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1 *1 *1) (-5 *1 (-353)))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *1 *1) (-5 *1 (-354)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-628 *5))) (-4 *5 (-283)) (-4 *5 (-971))
+ (-5 *2 (-1166 (-1166 *5))) (-5 *1 (-954 *5)) (-5 *4 (-1166 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849)))))
-(((*1 *2 *1) (-12 (-5 *2 (-758)) (-5 *1 (-757)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1178 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *1 (-605 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-605 *3 *4)) (-5 *1 (-1183 *3 *4))
- (-4 *3 (-783)) (-4 *4 (-157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-513))))))
+ (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1089)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-881 (-522)))) (-5 *1 (-412))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-202))) (-5 *2 (-1018))
+ (-5 *1 (-697))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-628 (-522))) (-5 *2 (-1018))
+ (-5 *1 (-697)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729))
- (-5 *2 (-108)) (-5 *1 (-913 *3 *4 *5 *6))
- (-4 *6 (-877 *3 *5 *4))))
+ (|partial| -12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730))
+ (-5 *2 (-108)) (-5 *1 (-914 *3 *4 *5 *6))
+ (-4 *6 (-878 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-723)) (-5 *2 (-959))
- (-5 *3
- (-2 (|:| |fn| (-290 (-202)))
- (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-723)) (-5 *2 (-959))
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202)))))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-689)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-779)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323))
- (-5 *2 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031))))))
- (-5 *1 (-320 *4)))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-501 *4 *2 *5 *6))
+ (-4 *4 (-283)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-708))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1102))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1102)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-628 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-777 *4)) (-5 *3 (-561 *4)) (-5 *5 (-108))
+ (-4 *4 (-13 (-1106) (-29 *6)))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-201 *6 *4)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-425))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *5 (-837)) (-5 *1 (-430 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-837)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031))))))
- (-4 *4 (-323)) (-5 *2 (-707)) (-5 *1 (-320 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-325 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323))
- (-14 *4
- (-3 (-1080 *3)
- (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323))
- (-14 *4 (-849)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2
- (-2 (|:| |solns| (-587 *5))
- (|:| |maps| (-587 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1039 *3 *5)) (-4 *3 (-1141 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
- (-4 *3 (-894)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
- (-4 *9 (-989 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
- (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-987 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-694)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1081 *7)) (-5 *3 (-522)) (-4 *7 (-878 *6 *4 *5))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971))
+ (-5 *1 (-296 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803))
+ (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-1167))
+ (-5 *1 (-1170))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *9)) (-4 *8 (-984 *5 *6 *7))
- (-4 *9 (-1022 *5 *6 *7 *8)) (-4 *5 (-425)) (-4 *6 (-729))
- (-4 *7 (-783)) (-5 *2 (-707)) (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-108))
- (-5 *2 (-959)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47))))
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239)))
+ (-5 *2 (-1167)) (-5 *1 (-1170)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-1032)) (-5 *2 (-108)) (-5 *1 (-758)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-4 *3 (-918 *2)) (-4 *4 (-1141 *3)) (-4 *2 (-282))
- (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3)))))
+ (-12 (-4 *3 (-919 *2)) (-4 *4 (-1142 *3)) (-4 *2 (-283))
+ (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-783)) (-5 *2 (-1036 *3 (-560 *1)))
- (-4 *1 (-404 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464))))
+ (-12 (-4 *3 (-514)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1)))
+ (-4 *1 (-405 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465))))
((*1 *2 *1)
- (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4))
- (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4))))
+ (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4))
+ (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-663) *4))
- (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
+ (-12 (-4 *4 (-157)) (-4 *2 (|SubsetCategory| (-664) *4))
+ (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))))
(((*1 *1 *1) (-4 *1 (-91)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
(((*1 *1)
- (-12 (-4 *1 (-378)) (-2416 (|has| *1 (-6 -4224)))
- (-2416 (|has| *1 (-6 -4216)))))
- ((*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-4 *1 (-766 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-4 *1 (-783))) ((*1 *1) (-5 *1 (-1031))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-903 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521))))
- (-4 *2 (-157)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *2) (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-631))) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-638))) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-636))) (-5 *1 (-304))))
- ((*1 *1) (-5 *1 (-304))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-449 *4 *5 *6 *7)) (|:| -1354 (-587 *7))))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
-(((*1 *1 *1 *1) (-4 *1 (-894))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-521))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-587 (-269 *4))) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47))))
+ (-12 (-4 *1 (-379)) (-2401 (|has| *1 (-6 -4229)))
+ (-2401 (|has| *1 (-6 -4221)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-4 *1 (-767 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-4 *1 (-784))) ((*1 *1) (-5 *1 (-1032))))
+(((*1 *2 *3) (-12 (-5 *3 (-154 (-522))) (-5 *2 (-108)) (-5 *1 (-420))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4)
+ (-224 *4 (-382 (-522)))))
+ (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108))
+ (-5 *1 (-475 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-889 *3)) (-4 *3 (-507))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-588 *11)) (-5 *5 (-588 (-1081 *9)))
+ (-5 *6 (-588 *9)) (-5 *7 (-588 *12)) (-5 *8 (-588 (-708)))
+ (-4 *11 (-784)) (-4 *9 (-283)) (-4 *12 (-878 *9 *10 *11))
+ (-4 *10 (-730)) (-5 *2 (-588 (-1081 *12)))
+ (-5 *1 (-646 *10 *11 *9 *12)) (-5 *3 (-1081 *12)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-354)) (-5 *1 (-983)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-2 (|:| |deg| (-708)) (|:| -2574 *5))))
+ (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *2 (-588 *5))
+ (-5 *1 (-194 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-2 (|:| -1916 *5) (|:| -2793 (-522)))))
+ (-5 *4 (-522)) (-4 *5 (-1142 *4)) (-5 *2 (-588 *5))
+ (-5 *1 (-634 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-588 (-202)))
+ (-5 *1 (-442)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-588 (-239))) (-5 *1 (-1168))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1068)) (-5 *1 (-1168))))
+ ((*1 *1 *1) (-5 *1 (-1168))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4))
- (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6))
- (-4 *6 (-13 (-383 *4 *5) (-961 *4)))))
+ (-12 (-4 *3 (-283)) (-4 *4 (-919 *3)) (-4 *5 (-1142 *4))
+ (-5 *2 (-1166 *6)) (-5 *1 (-388 *3 *4 *5 *6))
+ (-4 *6 (-13 (-384 *4 *5) (-962 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *3 (-783)) (-5 *2 (-1036 *3 (-560 *1)))
- (-4 *1 (-404 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464))))
+ (-12 (-4 *3 (-971)) (-4 *3 (-784)) (-5 *2 (-1037 *3 (-561 *1)))
+ (-4 *1 (-405 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465))))
((*1 *2 *1)
- (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-566 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-663) *3))))
+ (-12 (-4 *3 (-157)) (-4 *2 (-37 *3)) (-5 *1 (-567 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-664) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-157)) (-4 *2 (-654 *3)) (-5 *1 (-603 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-663) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
+ (-12 (-4 *3 (-157)) (-4 *2 (-655 *3)) (-5 *1 (-604 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-664) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1) (-4 *1 (-1108))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-337)) (-5 *1 (-600 *4 *2))
- (-4 *2 (-597 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-290 (-202))) (-5 *2 (-290 (-381 (-521))))
- (-5 *1 (-280)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1141 *2)) (-4 *2 (-1123)) (-5 *1 (-136 *2 *4 *3))
- (-4 *3 (-1141 (-381 *4))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *1 (-1039 *3 *2)) (-4 *3 (-1141 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1) (-4 *1 (-1109))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-561 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *4 *2)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-338) (-782)))
+ (-5 *2 (-588 (-2 (|:| -2976 (-588 *3)) (|:| -2972 *5))))
+ (-5 *1 (-164 *5 *3)) (-4 *3 (-1142 (-154 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-338) (-782)))
+ (-5 *2 (-588 (-2 (|:| -2976 (-588 *3)) (|:| -2972 *4))))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
+ (-14 *3 (-522)) (-14 *4 (-708)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-324))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2976 (-588 (-2 (|:| |irr| *3) (|:| -2245 (-522)))))))
+ (-5 *1 (-194 *5 *3)) (-4 *3 (-1142 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
- (-4 *3 (-894)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))))
+ (-12 (-4 *2 (-514)) (-5 *1 (-569 *2 *3)) (-4 *3 (-1142 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-102 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1) (-4 *1 (-1108))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-1073 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167))))
- ((*1 *2 *1) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-1167)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-1141 *4)) (-4 *4 (-970))
- (-5 *2 (-1165 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1080 *7))
- (-4 *5 (-970)) (-4 *7 (-970)) (-4 *2 (-1141 *5))
- (-5 *1 (-470 *5 *2 *6 *7)) (-4 *6 (-1141 *2)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2)
- (-12 (-4 *1 (-323))
- (-5 *2 (-587 (-2 (|:| -1974 (-521)) (|:| -2246 (-521))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-587 (-110))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1) (-4 *1 (-1109))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-522)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784)))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-971)) (-4 *3 (-784))
+ (-4 *5 (-242 *3)) (-4 *6 (-730)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-251))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081 *8)) (-5 *4 (-588 *6)) (-4 *6 (-784))
+ (-4 *8 (-878 *7 *5 *6)) (-4 *5 (-730)) (-4 *7 (-971))
+ (-5 *2 (-588 (-708))) (-5 *1 (-296 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-444 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-514)) (-5 *2 (-522)) (-5 *1 (-569 *3 *4))
+ (-4 *4 (-1142 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-971)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-971)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *1 (-878 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-708)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-878 *4 *5 *3)) (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *3 (-784)) (-5 *2 (-708))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-900 *3 *2 *4)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *2 (-729))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-708))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1157 *3))
+ (-5 *2 (-522))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1126 *3))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1185 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-708)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-224 *4 *5))
+ (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-588 (-893))) (-5 *1 (-267)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-212 *3))
+ (-4 *3 (-1014))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120)))))
+(((*1 *1 *1) (-4 *1 (-980)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-971)) (-4 *2 (-729)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1074 3 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1085)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-393 *3)) (-4 *3 (-514))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-2 (|:| -1916 *4) (|:| -2793 (-522)))))
+ (-4 *4 (-1142 (-522))) (-5 *2 (-708)) (-5 *1 (-416 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1) (-4 *1 (-1108))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-108))
- (-5 *6 (-202)) (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-959)) (-5 *1 (-693)))))
-(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-849)) (-4 *3 (-337))
- (-14 *4 (-919 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-157)) (-5 *1 (-264 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1141 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-157))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *1 *1) (|partial| -4 *1 (-659)))
- ((*1 *1 *1) (|partial| -4 *1 (-663)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-986 *3 *2)) (-4 *3 (-13 (-781) (-337)))
- (-4 *2 (-1141 *3))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
-(((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-903 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1) (-4 *1 (-1109))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-991 *5 *6 *7 *3 *4))
+ (-4 *4 (-990 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4))))
+ (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1141 (-521))) (-5 *1 (-457 *3)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-880 *6)) (-5 *4 (-1084))
- (-5 *5 (-776 *7))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-4 *7 (-13 (-1105) (-29 *6))) (-5 *1 (-201 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1080 *6)) (-5 *4 (-776 *6))
- (-4 *6 (-13 (-1105) (-29 *5)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-201 *5 *6)))))
-(((*1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
- (-4 *4 (-157)))))
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 *3 *4 *5 *6)) (-4 *6 (-962 *4)) (-4 *3 (-283))
+ (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *6 (-384 *4 *5))
+ (-14 *7 (-1166 *6)) (-5 *1 (-389 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166 *6)) (-4 *6 (-384 *4 *5)) (-4 *4 (-919 *3))
+ (-4 *5 (-1142 *4)) (-4 *3 (-283)) (-5 *1 (-389 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-628 *6))) (-5 *4 (-108)) (-5 *5 (-522))
+ (-5 *2 (-628 *6)) (-5 *1 (-954 *6)) (-4 *6 (-338)) (-4 *6 (-971))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 (-628 *4))) (-5 *2 (-628 *4)) (-5 *1 (-954 *4))
+ (-4 *4 (-338)) (-4 *4 (-971))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-5 *2 (-628 *5))
+ (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-971)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-514)) (-4 *2 (-426)) (-5 *1 (-897 *2 *3))
+ (-4 *3 (-1142 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2190 ($ *7)))))
+ (-4 *7 (-782))
+ (-4 *8
+ (-13 (-1144 *3 *7) (-338) (-1106)
+ (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))))
+ (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8))
+ (-14 *10 (-1085)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *5))
- (-4 *5 (-13 (-27) (-1105) (-404 *4)))))
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *5))
+ (-4 *5 (-13 (-27) (-1106) (-405 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
+ (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-381 (-521)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
+ (-12 (-5 *4 (-382 (-522)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-269 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *5 *3))))
+ (-12 (-5 *4 (-270 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-269 *3)) (-5 *5 (-381 (-521)))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-289 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-521))) (-5 *4 (-269 *6))
- (-4 *6 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *5 *6))))
+ (-12 (-5 *4 (-270 *3)) (-5 *5 (-382 (-522)))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-290 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-522))) (-5 *4 (-270 *6))
+ (-4 *6 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *6 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-521))) (-5 *4 (-269 *7)) (-5 *5 (-1132 (-521)))
- (-4 *7 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *6 *7))))
+ (-12 (-5 *3 (-1 *7 (-522))) (-5 *4 (-270 *7)) (-5 *5 (-1133 (-522)))
+ (-4 *7 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-521)))
- (-4 *3 (-13 (-27) (-1105) (-404 *7)))
- (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *7 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-522)))
+ (-4 *3 (-13 (-27) (-1106) (-405 *7)))
+ (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-381 (-521)))) (-5 *4 (-269 *8))
- (-5 *5 (-1132 (-381 (-521)))) (-5 *6 (-381 (-521)))
- (-4 *8 (-13 (-27) (-1105) (-404 *7)))
- (-4 *7 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *7 *8))))
+ (-12 (-5 *3 (-1 *8 (-382 (-522)))) (-5 *4 (-270 *8))
+ (-5 *5 (-1133 (-382 (-522)))) (-5 *6 (-382 (-522)))
+ (-4 *8 (-13 (-27) (-1106) (-405 *7)))
+ (-4 *7 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1084)) (-5 *5 (-269 *3)) (-5 *6 (-1132 (-381 (-521))))
- (-5 *7 (-381 (-521))) (-4 *3 (-13 (-27) (-1105) (-404 *8)))
- (-4 *8 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-51)) (-5 *1 (-432 *8 *3))))
+ (-12 (-5 *4 (-1085)) (-5 *5 (-270 *3)) (-5 *6 (-1133 (-382 (-522))))
+ (-5 *7 (-382 (-522))) (-4 *3 (-13 (-27) (-1106) (-405 *8)))
+ (-4 *8 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-51)) (-5 *1 (-433 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3))))
- (-4 *3 (-970)) (-5 *1 (-546 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-547 *3))))
+ (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3))))
+ (-4 *3 (-971)) (-5 *1 (-547 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-548 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3))))
- (-4 *3 (-970)) (-4 *1 (-1125 *3))))
+ (-12 (-5 *2 (-1066 (-2 (|:| |k| (-522)) (|:| |c| *3))))
+ (-4 *3 (-971)) (-4 *1 (-1126 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-707))
- (-5 *3 (-1065 (-2 (|:| |k| (-381 (-521))) (|:| |c| *4))))
- (-4 *4 (-970)) (-4 *1 (-1146 *4))))
+ (-12 (-5 *2 (-708))
+ (-5 *3 (-1066 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4))))
+ (-4 *4 (-971)) (-4 *1 (-1147 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-4 *1 (-1156 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-4 *1 (-1157 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1065 (-2 (|:| |k| (-707)) (|:| |c| *3))))
- (-4 *3 (-970)) (-4 *1 (-1156 *3)))))
+ (-12 (-5 *2 (-1066 (-2 (|:| |k| (-708)) (|:| |c| *3))))
+ (-4 *3 (-971)) (-4 *1 (-1157 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1) (-4 *1 (-1108))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-674 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013))))
- ((*1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-1165 (-627 *4)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1) (-4 *1 (-1109))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-522)) (-5 *1 (-419 *3)) (-4 *3 (-379)) (-4 *3 (-971)))))
+(((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-150 *3 *2)) (-4 *3 (-151 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *2 *4)) (-4 *4 (-1142 *2))
+ (-4 *2 (-157))))
((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-390 *3 *4))
- (-4 *3 (-391 *4))))
+ (-12 (-4 *4 (-1142 *2)) (-4 *2 (-157)) (-5 *1 (-383 *3 *2 *4))
+ (-4 *3 (-384 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157))))
((*1 *2)
- (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 (-627 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337))
- (-5 *2 (-1165 (-627 (-381 (-880 *5))))) (-5 *1 (-1001 *5))
- (-5 *4 (-627 (-381 (-880 *5))))))
+ (-12 (-4 *3 (-1142 *2)) (-5 *2 (-522)) (-5 *1 (-705 *3 *4))
+ (-4 *4 (-384 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *3 (-157))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *1 *1 *1) (-4 *1 (-603))) ((*1 *1 *1 *1) (-5 *1 (-1032))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085))))
+ (-4 *7 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8))
+ (|:| |wcond| (-588 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *5))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *5))))))))))
+ (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-588 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-1084))) (-4 *5 (-337))
- (-5 *2 (-1165 (-627 (-880 *5)))) (-5 *1 (-1001 *5))
- (-5 *4 (-627 (-880 *5)))))
+ (-12 (-5 *3 (-628 *8)) (-5 *4 (-588 (-1085))) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085))))
+ (-4 *7 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8))
+ (|:| |wcond| (-588 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *5))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *5))))))))))
+ (-5 *1 (-853 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-627 *4))) (-4 *4 (-337))
- (-5 *2 (-1165 (-627 *4))) (-5 *1 (-1001 *4)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-404 *3) (-927))) (-5 *1 (-252 *3 *2))
- (-4 *3 (-13 (-783) (-513))))))
-(((*1 *1 *1 *1) (-4 *1 (-602))) ((*1 *1 *1 *1) (-5 *1 (-1031))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5))
- (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-1176 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1176 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-980 (-948 *3) (-1080 (-948 *3))))
- (-5 *1 (-948 *3)) (-4 *3 (-13 (-781) (-337) (-946))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-513) (-135))) (-5 *1 (-1135 *3 *2))
- (-4 *2 (-1141 *3)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-521)) (-5 *5 (-108)) (-5 *6 (-627 (-202)))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-690)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
- (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *2 (-1115 (-854)))
- (-5 *1 (-292))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
- (-5 *5 (-1008 (-202))) (-5 *6 (-521)) (-5 *7 (-1067))
- (-5 *2 (-1115 (-854))) (-5 *1 (-292))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
- (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521))
- (-5 *2 (-1115 (-854))) (-5 *1 (-292))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
- (-5 *5 (-1008 (-202))) (-5 *6 (-202)) (-5 *7 (-521)) (-5 *8 (-1067))
- (-5 *2 (-1115 (-854))) (-5 *1 (-292)))))
+ (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7))
+ (|:| |wcond| (-588 (-881 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *4))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *4))))))))))
+ (-5 *1 (-853 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *9)) (-5 *5 (-850)) (-4 *9 (-878 *6 *8 *7))
+ (-4 *6 (-13 (-283) (-135))) (-4 *7 (-13 (-784) (-563 (-1085))))
+ (-4 *8 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9))
+ (|:| |wcond| (-588 (-881 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *6))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *6))))))))))
+ (-5 *1 (-853 *6 *7 *8 *9)) (-5 *4 (-588 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-850))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135)))
+ (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *9)) (|:| |neqzro| (-588 *9))
+ (|:| |wcond| (-588 (-881 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *6))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *6))))))))))
+ (-5 *1 (-853 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 *8)) (-5 *4 (-850)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085))))
+ (-4 *7 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8))
+ (|:| |wcond| (-588 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *5))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *5))))))))))
+ (-5 *1 (-853 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 *9)) (-5 *5 (-1068))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135)))
+ (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522))
+ (-5 *1 (-853 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *9)) (-5 *4 (-588 (-1085))) (-5 *5 (-1068))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135)))
+ (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522))
+ (-5 *1 (-853 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 *8)) (-5 *4 (-1068)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085))))
+ (-4 *7 (-730)) (-5 *2 (-522)) (-5 *1 (-853 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 *10)) (-5 *5 (-850))
+ (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135)))
+ (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522))
+ (-5 *1 (-853 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-628 *10)) (-5 *4 (-588 (-1085))) (-5 *5 (-850))
+ (-5 *6 (-1068)) (-4 *10 (-878 *7 *9 *8)) (-4 *7 (-13 (-283) (-135)))
+ (-4 *8 (-13 (-784) (-563 (-1085)))) (-4 *9 (-730)) (-5 *2 (-522))
+ (-5 *1 (-853 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *9)) (-5 *4 (-850)) (-5 *5 (-1068))
+ (-4 *9 (-878 *6 *8 *7)) (-4 *6 (-13 (-283) (-135)))
+ (-4 *7 (-13 (-784) (-563 (-1085)))) (-4 *8 (-730)) (-5 *2 (-522))
+ (-5 *1 (-853 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-171)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-783))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1) (-4 *1 (-1108))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1) (-4 *1 (-1109))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-338)) (-5 *1 (-950 *3 *2)) (-4 *2 (-598 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-338)) (-5 *2 (-2 (|:| -3197 *3) (|:| -1420 (-588 *5))))
+ (-5 *1 (-950 *5 *3)) (-5 *4 (-588 *5)) (-4 *3 (-598 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-560 *4)) (-5 *1 (-559 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-783)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
- (-14 *4 *2))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-392 *4) *4)) (-4 *4 (-513)) (-5 *2 (-392 *4))
- (-5 *1 (-393 *4))))
- ((*1 *1 *1) (-5 *1 (-854)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854))))
- ((*1 *1 *1) (-5 *1 (-855)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))
- (-5 *4 (-381 (-521))) (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))
- (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))
- (-5 *4 (-381 (-521))) (-5 *1 (-945 *3)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))
- (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *1) (-5 *1 (-304))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506))
- (-5 *2 (-381 (-521)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-392 *3)) (-4 *3 (-506))
- (-4 *3 (-513))))
- ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-381 (-521)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-506))
- (-5 *2 (-381 (-521)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-769 *3)) (-4 *3 (-506))
- (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-776 *3)) (-4 *3 (-506))
- (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506))
- (-5 *2 (-381 (-521)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-933 *3)) (-4 *3 (-961 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-627 *3))
- (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-627 *3))
- (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))))
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-331 *4))
- (-4 *4 (-323)))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-256)))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *1) (-5 *1 (-305))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-382 (-881 (-522))))) (-5 *2 (-588 (-291 (-522))))
+ (-5 *1 (-956)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *5)) (-4 *5 (-584 *4)) (-4 *4 (-514))
+ (-5 *2 (-108)) (-5 *1 (-583 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-283))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-361 *3)) (|:| |rm| (-361 *3))))
+ (-5 *1 (-361 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1353 (-708)) (|:| -3421 (-708))))
+ (-5 *1 (-708))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))))
+ (|partial| -12 (-4 *1 (-559 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-708)) (|:| -3892 *4))) (-5 *5 (-708))
+ (-4 *4 (-878 *6 *7 *8)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-423 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-783))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-784))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
- ((*1 *1 *1) (-4 *1 (-1108))))
-(((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2))
- (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234))))))
((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2))
- (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-587
- (-2
- (|:| -2535
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202))))
- (|:| |yinit| (-587 (-202))) (|:| |intvals| (-587 (-202)))
- (|:| |g| (-290 (-202))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (|:| -3050
- (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
- (|:| |expense| (-353)) (|:| |accuracy| (-353))
- (|:| |intermediateResults| (-353)))))))
- (-5 *1 (-739)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-984 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
+ ((*1 *1 *1) (-4 *1 (-1109))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-960)))))
+(((*1 *2 *1) (-12 (-4 *1 (-883)) (-5 *2 (-588 (-588 (-872 (-202)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-901)) (-5 *2 (-588 (-588 (-872 (-202))))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-514))
+ (-5 *2 (-2 (|:| -1222 (-628 *5)) (|:| |vec| (-1166 (-588 (-850))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-850)) (-4 *3 (-598 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108))
+ (-5 *1 (-332 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-108))
+ (-5 *1 (-492 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1009 (-777 (-202)))) (-5 *2 (-202)) (-5 *1 (-281)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-184))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 (-354))) (-5 *2 (-354)) (-5 *1 (-184)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-871 (-202))) (-5 *4 (-802)) (-5 *2 (-1170))
- (-5 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-871 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ (-12 (-5 *3 (-872 (-202))) (-5 *4 (-803)) (-5 *2 (-1171))
+ (-5 *1 (-442))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-872 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-872 *3)) (-4 *3 (-971)) (-4 *1 (-1046 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-588 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-872 *3)) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116)) (-5 *3 (-202)))))
-(((*1 *1 *1) (-4 *1 (-573)))
+ (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)) (-5 *3 (-202)))))
+(((*1 *1 *1) (-4 *1 (-574)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-440)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513)))))
-(((*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-684)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *2 (-587 (-587 (-521))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-521)) (-4 *7 (-877 *4 *6 *5)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928) (-1106))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-202) (-202) (-202)))
+ (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined"))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202)))
+ (-5 *1 (-635))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-872 (-202)) (-202) (-202))) (-5 *4 (-1009 (-202)))
+ (-5 *5 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-635))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1045 (-202))) (-5 *3 (-1 (-872 (-202)) (-202) (-202)))
+ (-5 *4 (-1009 (-202))) (-5 *5 (-588 (-239))) (-5 *1 (-635)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1038 *4 *3 *5))) (-4 *4 (-37 (-382 (-522))))
+ (-4 *4 (-971)) (-4 *3 (-784)) (-5 *1 (-1038 *4 *3 *5))
+ (-4 *5 (-878 *4 (-494 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1115 *4))) (-5 *3 (-1085)) (-5 *1 (-1115 *4))
+ (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-393 *4)) (-4 *4 (-514)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171))
+ (-5 *1 (-1121 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-5 *2 (-1171))
+ (-5 *1 (-1121 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
- (-5 *2 (-587 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
- (-5 *2 (-587 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-547 *3)) (-4 *3 (-970))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 *3)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-663))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-970)) (-5 *2 (-587 *3))))
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-1156 *3)) (-4 *3 (-970)) (-5 *2 (-1065 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-707)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2))
- (-4 *2 (-1141 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-212 *3))
- (-4 *3 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-212 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-257 *3)) (-4 *3 (-1119))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-283)) (-5 *1 (-163 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47)))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013))
- (-5 *1 (-674 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-342))))
+ (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
+ (-5 *1 (-117 *3)) (-4 *3 (-784))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-539 *4)) (-4 *4 (-13 (-29 *3) (-1106)))
+ (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *1 (-537 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-539 (-382 (-881 *3))))
+ (-4 *3 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *1 (-542 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338))
+ (-5 *2 (-2 (|:| -3663 *3) (|:| |special| *3))) (-5 *1 (-665 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166 *5)) (-4 *5 (-338)) (-4 *5 (-971))
+ (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5))
+ (-5 *3 (-588 (-628 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1166 (-1166 *5))) (-4 *5 (-338)) (-4 *5 (-971))
+ (-5 *2 (-588 (-588 (-628 *5)))) (-5 *1 (-954 *5))
+ (-5 *3 (-588 (-628 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-588 *1)) (-4 *1 (-1054))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-588 *1)) (-4 *1 (-1054)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-628 *5))) (-5 *4 (-522)) (-4 *5 (-338))
+ (-4 *5 (-971)) (-5 *2 (-108)) (-5 *1 (-954 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338)) (-4 *4 (-971))
+ (-5 *2 (-108)) (-5 *1 (-954 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1081 *4)) (-5 *1 (-492 *4))
+ (-4 *4 (-324)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4))))
+ (-5 *1 (-1174 *4)) (-4 *4 (-338)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-708)) (-5 *2 (-108))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1165 *4)) (-5 *1 (-491 *4))
- (-4 *4 (-323))))
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-108))
+ (-5 *1 (-1121 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-4 *2 (-1142 *5))
+ (-5 *1 (-1160 *5 *2 *6 *3)) (-4 *6 (-598 *2)) (-4 *3 (-1157 *5)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-108)) (-5 *6 (-202))
+ (-5 *7 (-628 (-522)))
+ (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-343))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1166 *4)) (-5 *1 (-492 *4))
+ (-4 *4 (-324))))
((*1 *2 *1)
- (-12 (-4 *2 (-783)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013))
+ (-12 (-4 *2 (-784)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014))
(-14 *4
- (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *3))
- (-2 (|:| -2723 *2) (|:| -2246 *3)))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-411)))))
-(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506))))
- ((*1 *1 *1) (-4 *1 (-979))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-587 (-849))) (-5 *1 (-1168)))))
-(((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-781) (-337))) (-5 *2 (-108)) (-5 *1 (-980 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-521)) (-4 *3 (-157)) (-4 *5 (-347 *3))
- (-4 *6 (-347 *3)) (-5 *1 (-626 *3 *5 *6 *2))
- (-4 *2 (-625 *3 *5 *6)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))))
-(((*1 *1 *1) (-4 *1 (-573)))
+ (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *3))
+ (-2 (|:| -2717 *2) (|:| -1400 *3)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7))
+ (-4 *4 (-563 (-498))) (-4 *5 (-1120)) (-4 *6 (-1120))
+ (-4 *7 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3717 (-522)) (|:| -2976 (-588 *3))))
+ (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856))
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 (-202)))))
+ (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))))
+ (-5 *1 (-141))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522)))
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 (-202)))))
+ (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))))
+ (-5 *1 (-141)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-628 (-202))) (-5 *6 (-108)) (-5 *7 (-628 (-522)))
+ (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-522)) (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085)))
+ (-4 *5 (-514)) (-5 *2 (-588 (-588 (-881 *5)))) (-5 *1 (-1091 *5)))))
+(((*1 *1 *1) (-5 *1 (-983))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971))
+ (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4)))))
+(((*1 *1 *1) (-4 *1 (-574)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928) (-1106))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514)))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1157 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2))
+ (-4 *2 (-1157 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135)))
+ (-5 *1 (-1062 *3)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-913 *3 *4 *5 *2))
- (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)))))
+ (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-113 *3)) (-14 *3 (-522))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1066 *2)) (-4 *2 (-283)) (-5 *1 (-158 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-382 *3)) (-4 *3 (-283)) (-5 *1 (-158 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-158 (-522))) (-5 *1 (-703 *3)) (-4 *3 (-379))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-158 (-382 (-522)))) (-5 *1 (-800 *3)) (-14 *3 (-522))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-522)) (-5 *2 (-158 (-382 (-522))))
+ (-5 *1 (-801 *3 *4)) (-4 *4 (-798 *3)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))))
+(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-982))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-707)) (-5 *1 (-203))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-154 (-202))) (-5 *3 (-707)) (-5 *1 (-203))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1048))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277))))
- ((*1 *1 *1) (-4 *1 (-277)))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))))
+ (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-412)) (-5 *1 (-1089)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-27) (-405 *4)))
+ (-4 *4 (-13 (-784) (-514) (-962 (-522))))
+ (-4 *7 (-1142 (-382 *6))) (-5 *1 (-510 *4 *5 *6 *7 *2))
+ (-4 *2 (-317 *5 *6 *7)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-1018)) (-5 *1 (-267)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-404 *3))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2))
+ (-4 *2 (-405 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085))))
+ ((*1 *1 *1) (-4 *1 (-146))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7))
+ (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-838)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-5 *1 (-835 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5))
+ (-4 *5 (-1142 *4)) (-4 *4 (-838)) (-5 *1 (-836 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1068)) (|:| -2888 (-1068))))
+ (-5 *1 (-759)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-760)) (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-588 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522))))))
+ (-5 *2 (-588 (-382 (-522)))) (-5 *1 (-945 *4))
+ (-4 *4 (-1142 (-522))))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-689)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-202) (-202) (-202)))
+ (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined"))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202)))
+ (-5 *1 (-635)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-140 *2 *3 *4)) (-14 *2 (-850)) (-4 *3 (-338))
+ (-14 *4 (-920 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-157)) (-5 *1 (-265 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1142 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-157))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660)))
+ ((*1 *1 *1) (|partial| -4 *1 (-664)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338)))
+ (-4 *2 (-1142 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-686)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1120)) (-5 *2 (-1171)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-622 *4 *5)) (-4 *4 (-1014))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-858)))))
-(((*1 *1) (-5 *1 (-982))))
+ (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1181 *3 *2)) (-4 *3 (-784)) (-4 *2 (-971))))
+ ((*1 *2 *1) (-12 (-4 *2 (-971)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-780)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-507))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-4 *3 (-13 (-27) (-1105) (-404 *6) (-10 -8 (-15 -2223 ($ *7)))))
- (-4 *7 (-781))
- (-4 *8
- (-13 (-1143 *3 *7) (-337) (-1105)
- (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $)))))
+ (-12 (-5 *4 (-1 (-588 *7) *7 (-1081 *7))) (-5 *5 (-1 (-393 *7) *7))
+ (-4 *7 (-1142 *6)) (-4 *6 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-5 *2 (-588 (-2 (|:| |frac| (-382 *7)) (|:| -3197 *3))))
+ (-5 *1 (-746 *6 *7 *3 *8)) (-4 *3 (-598 *7))
+ (-4 *8 (-598 (-382 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1067)) (|:| |prob| (-1067))))))
- (-5 *1 (-396 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1067)) (-4 *9 (-909 *8))
- (-14 *10 (-1084)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-588 (-2 (|:| |frac| (-382 *6)) (|:| -3197 (-596 *6 (-382 *6))))))
+ (-5 *1 (-749 *5 *6)) (-5 *3 (-596 *6 (-382 *6))))))
+(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3))
+ (-4 *3 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-524 *6 *3 *7)) (-4 *7 (-1014)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-707)) (-5 *2 (-108)) (-5 *1 (-539 *3)) (-4 *3 (-506)))))
+ (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522))))))
+ (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4))
+ (-4 *4 (-13 (-338) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-270 (-382 (-881 (-154 (-522)))))))
+ (-5 *2 (-588 (-588 (-270 (-881 (-154 *4)))))) (-5 *1 (-353 *4))
+ (-4 *4 (-13 (-338) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 (-154 (-522)))))
+ (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4))
+ (-4 *4 (-13 (-338) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-270 (-382 (-881 (-154 (-522))))))
+ (-5 *2 (-588 (-270 (-881 (-154 *4))))) (-5 *1 (-353 *4))
+ (-4 *4 (-13 (-338) (-782))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1102)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
- (-5 *2
- (-2 (|:| |contp| (-521))
- (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521)))))))
- (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-291 *5)))
+ (-5 *1 (-1041 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
- (-5 *2
- (-2 (|:| |contp| (-521))
- (|:| -3655 (-587 (-2 (|:| |irr| *3) (|:| -3083 (-521)))))))
- (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
+ (-12 (-5 *3 (-588 (-382 (-881 *5)))) (-5 *4 (-588 (-1085)))
+ (-4 *5 (-13 (-283) (-784) (-135))) (-5 *2 (-588 (-588 (-291 *5))))
+ (-5 *1 (-1041 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-192 *4))
+ (-4 *4
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 (*2 $))
+ (-15 -2664 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 (*2 $))
+ (-15 -2664 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *2 (-1171))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1142 (-382 *5))) (-14 *7 *6))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811))
- (-5 *3 (-587 (-521))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *1))))
- (-4 *1 (-989 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1123)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-513)) (-5 *1 (-1144 *3 *2))
- (-4 *2 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2286 ($ $ $))))))))
-(((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-805 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-807 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-5 *1 (-810 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-707)) (-5 *1 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-323)) (-4 *4 (-303 *3)) (-4 *5 (-1141 *4))
- (-5 *1 (-713 *3 *4 *5 *2 *6)) (-4 *2 (-1141 *5)) (-14 *6 (-849))))
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-904 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730))
+ (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8)))
+ (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-971))
+ (-5 *1 (-652 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-4 *3 (-342))))
- ((*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-337)) (-4 *2 (-342)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-914 *4 *5 *6 *7 *3))
- (-4 *3 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304))
- (-5 *1 (-306)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-771 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-621 *4 *5)) (-4 *4 (-1013))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-404 *3))))
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-588 (-881 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-588 (-881 *4))) (-5 *1 (-391 *3 *4))
+ (-4 *3 (-392 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-588 (-881 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-588 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-4 *1 (-1180 *3 *2)) (-4 *3 (-783)) (-4 *2 (-970))))
- ((*1 *2 *1) (-12 (-4 *2 (-970)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-779)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
+ (-12 (-5 *3 (-1166 (-427 *4 *5 *6 *7))) (-5 *2 (-588 (-881 *4)))
+ (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-514)) (-4 *4 (-157))
+ (-14 *5 (-850)) (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-756)) (-14 *5 (-1084)) (-5 *2 (-587 (-1138 *5 *4)))
- (-5 *1 (-1027 *4 *5)) (-5 *3 (-1138 *5 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-776 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-337)) (-4 *6 (-1141 (-381 *2)))
- (-4 *2 (-1141 *5)) (-5 *1 (-193 *5 *2 *6 *3))
- (-4 *3 (-316 *5 *2 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-979)) (-4 *3 (-1105))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+ (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522)))
+ (-5 *1 (-169)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *5 (-1141 *4)) (-5 *2 (-1080 (-381 *5))) (-5 *1 (-563 *4 *5))
- (-5 *3 (-381 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-135) (-27) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2 (-1080 (-381 *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-381 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-833 (-521))) (-5 *4 (-521)) (-5 *2 (-627 *4))
- (-5 *1 (-952 *5)) (-4 *5 (-970))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-952 *4))
- (-4 *4 (-970))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-833 (-521)))) (-5 *4 (-521))
- (-5 *2 (-587 (-627 *4))) (-5 *1 (-952 *5)) (-4 *5 (-970))))
+ (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-1116 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *5 (-1124)) (-4 *6 (-1142 *5))
+ (-4 *7 (-1142 (-382 *6))) (-5 *2 (-588 (-881 *5)))
+ (-5 *1 (-316 *4 *5 *6 *7)) (-4 *4 (-317 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-587 (-521)))) (-5 *2 (-587 (-627 (-521))))
- (-5 *1 (-952 *4)) (-4 *4 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1034 *3 *4 *2 *5)) (-4 *4 (-970)) (-4 *5 (-215 *3 *4))
- (-4 *2 (-215 *3 *4)))))
+ (-12 (-5 *3 (-1085)) (-4 *1 (-317 *4 *5 *6)) (-4 *4 (-1124))
+ (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5))) (-4 *4 (-338))
+ (-5 *2 (-588 (-881 *4))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-808)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-1170))
- (-5 *1 (-407 *3 *4)) (-4 *4 (-404 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-587 (-1065 *7))) (-4 *6 (-783))
- (-4 *7 (-877 *5 (-493 *6) *6)) (-4 *5 (-970))
- (-5 *2 (-1 (-1065 *7) *7)) (-5 *1 (-1037 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))))
+ (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1098 *3 *2)) (-4 *3 (-1014)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-108))
- (-5 *1 (-612 *4)))))
+ (-12 (-4 *4 (-13 (-514) (-784))) (-5 *2 (-154 *5))
+ (-5 *1 (-551 *4 *5 *3)) (-4 *5 (-13 (-405 *4) (-928) (-1106)))
+ (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106))))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1151 *4 *5 *6))
+ (|:| |%expon| (-294 *4 *5 *6))
+ (|:| |%expTerms|
+ (-588 (-2 (|:| |k| (-382 (-522))) (|:| |c| *4))))))
+ (|:| |%type| (-1068))))
+ (-5 *1 (-1152 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3)))
+ (-14 *5 (-1085)) (-14 *6 *4))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-904 *5 *6 *7 *8)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-282)) (-4 *3 (-918 *2)) (-4 *4 (-1141 *3))
- (-5 *1 (-387 *2 *3 *4 *5)) (-4 *5 (-13 (-383 *3 *4) (-961 *3))))))
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106)))))
+ ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
+ ((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-382 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135)))
+ (-5 *1 (-374 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-290 (-202))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))))
- (-5 *1 (-184)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032))))))
+ (-4 *4 (-324)) (-5 *2 (-628 *4)) (-5 *1 (-321 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-628 *11)) (-5 *4 (-588 (-382 (-881 *8))))
+ (-5 *5 (-708)) (-5 *6 (-1068)) (-4 *8 (-13 (-283) (-135)))
+ (-4 *11 (-878 *8 *10 *9)) (-4 *9 (-13 (-784) (-563 (-1085))))
+ (-4 *10 (-730))
(-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-554 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1013))
- (-4 *2 (-783)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-818 *4 *3))
- (-4 *3 (-1119))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
- (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-970))
- (-5 *1 (-295 *4 *5 *2 *6)) (-4 *6 (-877 *2 *4 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
- (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
- (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-849)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080 *1)) (-4 *1 (-937)))))
-(((*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105)))))
- ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-1013)))))
+ (-2
+ (|:| |rgl|
+ (-588
+ (-2 (|:| |eqzro| (-588 *11)) (|:| |neqzro| (-588 *11))
+ (|:| |wcond| (-588 (-881 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *8))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *8))))))))))
+ (|:| |rgsz| (-522))))
+ (-5 *1 (-853 *8 *9 *10 *11)) (-5 *7 (-522)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1084))
- (-4 *5 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3))) (-5 *1 (-514 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-292)) (-5 *3 (-202)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
- (-5 *1 (-160 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
+ (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1142 *4))
+ (-5 *2 (-2 (|:| |radicand| (-382 *5)) (|:| |deg| (-708))))
+ (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-627 (-880 *4))) (-5 *1 (-952 *4))
- (-4 *4 (-970)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-538 *3) *3 (-1084)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1084)))
- (-4 *3 (-259)) (-4 *3 (-573)) (-4 *3 (-961 *4)) (-4 *3 (-404 *7))
- (-5 *4 (-1084)) (-4 *7 (-562 (-820 (-521)))) (-4 *7 (-425))
- (-4 *7 (-814 (-521))) (-4 *7 (-783)) (-5 *2 (-538 *3))
- (-5 *1 (-530 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-970)) (-4 *2 (-1141 *4))
- (-5 *1 (-417 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-381 (-1080 (-290 *5)))) (-5 *3 (-1165 (-290 *5)))
- (-5 *4 (-521)) (-4 *5 (-13 (-513) (-783))) (-5 *1 (-1041 *5)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1142 *5)) (-4 *5 (-338))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-532 *5 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-422 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-1085)) (-4 *4 (-514)) (-4 *4 (-784))
+ (-5 *1 (-531 *4 *2)) (-4 *2 (-405 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202)))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-960)) (-5 *1 (-691)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4))
- (-5 *2 (-392 *3)) (-5 *1 (-409 *4 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-513))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-587 (-1084))) (-4 *2 (-157))
- (-4 *3 (-215 (-3478 *4) (-707)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2723 *5) (|:| -2246 *3))
- (-2 (|:| -2723 *5) (|:| -2246 *3))))
- (-5 *1 (-434 *4 *2 *5 *3 *6 *7)) (-4 *5 (-783))
- (-4 *7 (-877 *2 *3 (-793 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-925 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165 *5)) (-4 *5 (-728)) (-5 *2 (-108))
- (-5 *1 (-778 *4 *5)) (-14 *4 (-707)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-587
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-729)) (-4 *3 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-783))
- (-5 *1 (-422 *4 *5 *6 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))))
+(((*1 *1 *1 *1) (-5 *1 (-202)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964))))
+ ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-405 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *1 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *4))
+ (-4 *4 (-405 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-148))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *4))
+ (-4 *4 (-13 (-405 *3) (-928)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-277 *3)) (-4 *3 (-278))))
+ ((*1 *2 *2) (-12 (-4 *1 (-278)) (-5 *2 (-110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *4 (-784)) (-5 *1 (-404 *3 *4))
+ (-4 *3 (-405 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *4))
+ (-4 *4 (-405 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-561 *3)) (-4 *3 (-784))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *4))
+ (-4 *4 (-13 (-405 *3) (-928) (-1106))))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-5 *2 (-1171)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-938)) (-5 *2 (-792)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-382 (-522)))
+ (-5 *1 (-408 *4 *3)) (-4 *3 (-405 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-561 *3)) (-4 *3 (-405 *5))
+ (-4 *5 (-13 (-784) (-514) (-962 (-522))))
+ (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-408 *5 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *1)) (-4 *1 (-984 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-108))))
+ (-12 (-4 *4 (-338)) (-5 *2 (-850)) (-5 *1 (-303 *3 *4))
+ (-4 *3 (-304 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-338)) (-5 *2 (-770 (-850))) (-5 *1 (-303 *3 *4))
+ (-4 *3 (-304 *4))))
+ ((*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-850))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-770 (-850))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-291 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-808 *2)) (-4 *2 (-1120))))
((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-588 (-872 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-872 *3))) (-4 *3 (-971)) (-4 *1 (-1046 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-872 *3))) (-4 *1 (-1046 *3)) (-4 *3 (-971)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-378 *3)) (-4 *3 (-379))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379))))
+ ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-1066 (-522))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-716 *5 (-793 *6)))) (-5 *4 (-108)) (-4 *5 (-425))
- (-14 *6 (-587 (-1084)))
+ (-12 (-5 *3 (-588 (-717 *5 (-794 *6)))) (-5 *4 (-108)) (-4 *5 (-426))
+ (-14 *6 (-588 (-1085))) (-5 *2 (-588 (-968 *5 *6)))
+ (-5 *1 (-573 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-971)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-338)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135)))
+ (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-561 *4)) (-5 *6 (-1085))
+ (-4 *4 (-13 (-405 *7) (-27) (-1106)))
+ (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
(-5 *2
- (-587 (-1055 *5 (-493 (-793 *6)) (-793 *6) (-716 *5 (-793 *6)))))
- (-5 *1 (-572 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
- (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6))
- (-4 *6 (-316 *3 *4 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-524 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8))
- (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-108)) (-5 *1 (-903 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2 (-353)) (-5 *1 (-171)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *5 (-513))
- (-5 *2
- (-2 (|:| |minor| (-587 (-849))) (|:| -3196 *3)
- (|:| |minors| (-587 (-587 (-849)))) (|:| |ops| (-587 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-597 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1156 *4))
- (-4 *4 (-37 (-381 (-521))))
- (-5 *2 (-1 (-1065 *4) (-1065 *4) (-1065 *4))) (-5 *1 (-1158 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-850)) (-5 *4 (-393 *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-971)) (-5 *2 (-588 *6)) (-5 *1 (-418 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-872 *5)) (-4 *5 (-971)) (-5 *2 (-708))
+ (-5 *1 (-1074 *4 *5)) (-14 *4 (-850))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-971))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971))
+ (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))))
+(((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-708)) (-4 *5 (-514))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-897 *5 *3)) (-4 *3 (-1142 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1066 *3))) (-5 *1 (-1066 *3)) (-4 *3 (-1120)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-587 (-290 (-202))))
- (|:| |constraints|
- (-587
- (-2 (|:| |start| (-202)) (|:| |finish| (-202))
- (|:| |grid| (-707)) (|:| |boundaryType| (-521))
- (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
- (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
- (|:| |tol| (-202))))
- (-5 *2 (-108)) (-5 *1 (-189)))))
+ (|partial| -12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2))
+ (-5 *2 (-354)) (-5 *1 (-722 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971))
+ (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514))
+ (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784))
+ (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-784)) (-4 *5 (-563 *2)) (-5 *2 (-354))
+ (-5 *1 (-722 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1120)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-555 *3 *2)) (-4 *3 (-1014))
+ (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1001))) (-5 *1 (-267)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-719 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-891 *3 *2)) (-4 *2 (-124)) (-4 *3 (-514))
+ (-4 *3 (-971)) (-4 *2 (-729))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1081 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-898)) (-4 *2 (-124)) (-5 *1 (-1087 *3)) (-4 *3 (-514))
+ (-4 *3 (-971))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1139 *4 *3)) (-14 *4 (-1085))
+ (-4 *3 (-971)))))
+(((*1 *1 *1) (-4 *1 (-980))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-1065 *4))) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4))
- (-4 *4 (-970)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-1105) (-886) (-29 *4))))))
+ (|partial| -12 (-5 *3 (-561 *4)) (-4 *4 (-784)) (-4 *2 (-784))
+ (-5 *1 (-560 *2 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-290 (-353))) (-5 *2 (-290 (-202))) (-5 *1 (-280)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-5 *1 (-1158 *3 *2))
- (-4 *2 (-1156 *3)))))
+ (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 (-522))))
+ (-4 *5 (-405 *4)) (-5 *2 (-393 (-1081 (-382 (-522)))))
+ (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 (-880 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425))
- (-5 *1 (-846 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-452)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
- (-5 *1 (-160 *3)))))
+ (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-935 *2)) (-4 *2 (-1119)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
+ (-12 (-5 *2 (-588 (-454 *3 *4))) (-14 *3 (-588 (-1085)))
+ (-4 *4 (-426)) (-5 *1 (-576 *3 *4)))))
+(((*1 *1) (-5 *1 (-132)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-239))) (-5 *2 (-1045 (-202))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-239)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-803))
+ (-5 *5 (-850)) (-5 *6 (-588 (-239))) (-5 *2 (-442)) (-5 *1 (-1170))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *2 (-442))
+ (-5 *1 (-1170))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-588 (-239)))
+ (-5 *2 (-442)) (-5 *1 (-1170)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-960)) (-5 *1 (-687))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-363)) (-5 *2 (-960)) (-5 *1 (-687)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-291 (-202))) (-5 *1 (-243)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-782)) (-4 *4 (-338)) (-5 *2 (-708))
+ (-5 *1 (-874 *4 *5)) (-4 *5 (-1142 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-588 (-291 (-202)))) (-5 *1 (-243)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *5 (-984 *3 *4 *2)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
+ (-12
(-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-689)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-793 *4))
- (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-575 *4 *5)))))
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *4))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *4)))))))
+ (-5 *3 (-588 *7)) (-4 *4 (-13 (-283) (-135)))
+ (-4 *7 (-878 *4 *6 *5)) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *1) (-4 *1 (-324))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-1047)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-588 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1015 (-1015 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-757)) (-5 *2 (-51)) (-5 *1 (-767)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1067)) (-5 *4 (-154 (-202))) (-5 *5 (-521))
- (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-521)) (-4 *2 (-404 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-961 *4)) (-4 *3 (-13 (-783) (-513))))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1083)) (-5 *1 (-304)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-154 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
- (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-1080 *3)) (-5 *1 (-1094 *3))
- (-4 *3 (-337)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-849))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-820 (-521))))
- (-4 *5 (-814 (-521)))
- (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-524 *5 *3)) (-4 *3 (-573))
- (-4 *3 (-13 (-27) (-1105) (-404 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1084)) (-5 *4 (-776 *2)) (-4 *2 (-1048))
- (-4 *2 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-562 (-820 (-521)))) (-4 *5 (-814 (-521)))
- (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521))))
- (-5 *1 (-524 *5 *2)))))
+ (-12 (-5 *2 (-792)) (-5 *1 (-1066 *3)) (-4 *3 (-1014))
+ (-4 *3 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *5 (-1142 *4))
+ (-5 *2 (-588 (-2 (|:| |deg| (-708)) (|:| -3197 *5))))
+ (-5 *1 (-746 *4 *5 *3 *6)) (-4 *3 (-598 *5))
+ (-4 *6 (-598 (-382 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-522))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-587 (-1089))) (-5 *1 (-1046)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-587 (-880 *3))) (-4 *3 (-425))
- (-5 *1 (-334 *3 *4)) (-14 *4 (-587 (-1084)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-587 (-716 *3 (-793 *4)))) (-4 *3 (-425))
- (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))))
+ (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1122)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171))))
+ (-12 (-4 *4 (-838)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-393 (-1081 *7)))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-1081 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275))))
+ (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5)))
+ (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3))
+ (-4 *3 (-1142 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))))
-(((*1 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
- (-4 *7 (-1141 (-381 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -1522 *3)))
- (-5 *1 (-519 *5 *6 *7 *3)) (-4 *3 (-316 *5 *6 *7))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
- (-5 *2
- (-2 (|:| |answer| (-381 *6)) (|:| -1522 (-381 *6))
- (|:| |specpart| (-381 *6)) (|:| |polypart| *6)))
- (-5 *1 (-520 *5 *6)) (-5 *3 (-381 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *3 (-1141 *4)) (-5 *1 (-745 *4 *3 *2 *5)) (-4 *2 (-597 *3))
- (-4 *5 (-597 (-381 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-381 *5))
- (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *5 (-1141 *4))
- (-5 *1 (-745 *4 *5 *2 *6)) (-4 *2 (-597 *5)) (-4 *6 (-597 *3)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-521))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337)))
- (-4 *3 (-1141 *4)) (-5 *2 (-521))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-513) (-783) (-961 *2) (-583 *2) (-425)))
- (-5 *2 (-521)) (-5 *1 (-1028 *4 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *4)))))
+ (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3))
+ (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3))
+ (-4 *3 (-1142 (-522)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-776 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))
- (-4 *6 (-13 (-513) (-783) (-961 *2) (-583 *2) (-425)))
- (-5 *2 (-521)) (-5 *1 (-1028 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-1067))
- (-4 *6 (-13 (-513) (-783) (-961 *2) (-583 *2) (-425)))
- (-5 *2 (-521)) (-5 *1 (-1028 *6 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *6)))))
+ (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3))
+ (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3))
+ (-4 *3 (-1142 (-522)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-425)) (-5 *2 (-521))
- (-5 *1 (-1029 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-776 (-381 (-880 *6))))
- (-5 *3 (-381 (-880 *6))) (-4 *6 (-425)) (-5 *2 (-521))
- (-5 *1 (-1029 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-381 (-880 *6))) (-5 *4 (-1084))
- (-5 *5 (-1067)) (-4 *6 (-425)) (-5 *2 (-521)) (-5 *1 (-1029 *6))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3))
+ (-4 *3 (-1142 (-382 (-522))))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-521)) (-5 *1 (-1102 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-521))))
- (-4 *4 (-13 (-1141 *3) (-513) (-10 -8 (-15 -2286 ($ $ $)))))
- (-4 *3 (-513)) (-5 *1 (-1144 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-514))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522))))
+ (-4 *5 (-1142 *4)) (-5 *2 (-588 (-382 *5))) (-5 *1 (-942 *4 *5))
+ (-5 *3 (-382 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507)))))
+(((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1068)) (-4 *1 (-339 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-381 *5))
- (|:| |c2| (-381 *5)) (|:| |deg| (-707))))
- (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1067)) (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521)))
- (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-694)))))
-(((*1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1950 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2259 *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 (-154 (-522))))) (-5 *2 (-588 (-154 *4)))
+ (-5 *1 (-353 *4)) (-4 *4 (-13 (-338) (-782)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-382 (-881 (-154 (-522))))))
+ (-5 *4 (-588 (-1085))) (-5 *2 (-588 (-588 (-154 *5))))
+ (-5 *1 (-353 *5)) (-4 *5 (-13 (-338) (-782))))))
+(((*1 *1 *1) (-4 *1 (-574)))
((*1 *2 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1113 *4 *5 *3 *6)) (-4 *4 (-513)) (-4 *5 (-729))
- (-4 *3 (-783)) (-4 *6 (-984 *4 *5 *3)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5))
- (-5 *2 (-587 *3)) (-5 *1 (-713 *4 *5 *6 *3 *7)) (-4 *3 (-1141 *6))
- (-14 *7 (-849)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-282) (-135)))
- (-4 *2 (-877 *4 *6 *5)) (-5 *1 (-852 *4 *5 *6 *2))
- (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-587 *6) "failed") (-521) *6 *6)) (-4 *6 (-337))
- (-4 *7 (-1141 *6))
- (-5 *2 (-2 (|:| |answer| (-538 (-381 *7))) (|:| |a0| *6)))
- (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-621 *4 *3)) (-4 *4 (-1013))
- (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1165 *6)) (-5 *4 (-1165 (-521))) (-5 *5 (-521))
- (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-942 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928) (-1106))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-338)) (-5 *1 (-261 *3 *2)) (-4 *2 (-1157 *3)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-646 *3)) (-5 *1 (-763 *2 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282))))
- ((*1 *2 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282))))
- ((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282))))
- ((*1 *2 *1) (-12 (-4 *1 (-979)) (-5 *2 (-521)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-759)) (-5 *1 (-758)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-117 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *6 (-202))
- (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-521)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-422 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-512 *3)) (-4 *3 (-13 (-379) (-1106))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338)))
+ (-4 *3 (-1142 *4)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-588 *1)) (-4 *1 (-849)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-1 (-1081 (-881 *4)) (-881 *4)))
+ (-5 *1 (-1174 *4)) (-4 *4 (-338)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-4 *1 (-832 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1083 *4 *5 *6))
+ (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1139 *5 *4)) (-5 *1 (-1158 *4 *5 *6))
+ (-4 *4 (-971)) (-14 *5 (-1085)) (-14 *6 *4))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-522)) (-5 *1 (-393 *2)) (-4 *2 (-514)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119))
- (-4 *4 (-347 *2)) (-4 *5 (-347 *2))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120))
+ (-4 *4 (-348 *2)) (-4 *5 (-348 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-347 *2))
- (-4 *5 (-347 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-348 *2))
+ (-4 *5 (-348 *2)) (-4 *2 (-1120))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1120))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 (-521))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 (-521)) (-14 *5 (-707))))
+ (-12 (-5 *3 (-588 (-522))) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 (-522)) (-14 *5 (-708))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-707))))
+ (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-708))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-707))))
+ (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-708))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-707))))
+ (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-708))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-707))))
+ (-12 (-5 *3 (-522)) (-4 *2 (-157)) (-5 *1 (-128 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-708))))
((*1 *2 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-521))
- (-14 *4 (-707))))
+ (-12 (-4 *2 (-157)) (-5 *1 (-128 *3 *4 *2)) (-14 *3 (-522))
+ (-14 *4 (-708))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-222 (-1067))) (-5 *1 (-192 *4))
+ (-12 (-5 *3 (-1085)) (-5 *2 (-222 (-1068))) (-5 *1 (-192 *4))
(-4 *4
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ *3)) (-15 -1718 ((-1170) $))
- (-15 -2084 ((-1170) $)))))))
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ *3)) (-15 -1678 ((-1171) $))
+ (-15 -2664 ((-1171) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-915)) (-5 *1 (-192 *3))
+ (-12 (-5 *2 (-916)) (-5 *1 (-192 *3))
(-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $))
- (-15 -2084 ((-1170) $)))))))
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $))
+ (-15 -2664 ((-1171) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-707)) (-5 *1 (-222 *4)) (-4 *4 (-783))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-783))))
+ (-12 (-5 *3 "count") (-5 *2 (-708)) (-5 *1 (-222 *4)) (-4 *4 (-784))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-222 *3)) (-4 *3 (-784))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 "unique") (-5 *1 (-222 *3)) (-4 *3 (-784))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-261 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119))))
+ (-12 (-4 *1 (-262 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-263 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1119))))
+ (-12 (-4 *1 (-264 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1120))))
((*1 *2 *1 *2)
- (-12 (-4 *3 (-157)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1141 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-12 (-4 *3 (-157)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1142 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-587 *1)) (-4 *1 (-277))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-277)) (-5 *2 (-110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-588 *1)) (-4 *1 (-278))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-110))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2))
- (-4 *4 (-1141 (-381 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-4 *1 (-391 *2)) (-4 *2 (-157))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1067)) (-5 *1 (-471))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-51)) (-5 *1 (-576))))
+ (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2))
+ (-4 *4 (-1142 (-382 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-4 *1 (-392 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1068)) (-5 *1 (-472))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-577))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1132 (-521))) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1133 (-522))) (-4 *1 (-593 *3)) (-4 *3 (-1120))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *3 (-708)) (-5 *1 (-616 *2)) (-4 *2 (-1014))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
+ (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-587 (-820 *4))) (-5 *1 (-820 *4))
- (-4 *4 (-1013))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-588 (-821 *4))) (-5 *1 (-821 *4))
+ (-4 *4 (-1014))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-833 *4)) (-5 *1 (-832 *4))
- (-4 *4 (-1013))))
+ (-12 (-5 *3 (-708)) (-5 *2 (-834 *4)) (-5 *1 (-833 *4))
+ (-4 *4 (-1014))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-849)) (-4 *2 (-337))
- (-5 *1 (-919 *4 *2))))
+ (-12 (-5 *3 (-217 *4 *2)) (-14 *4 (-850)) (-4 *2 (-338))
+ (-5 *1 (-920 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-935 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 "value") (-4 *1 (-936 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7)) (-4 *2 (-970))
+ (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7)) (-4 *2 (-971))
(-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *2 *6 *7))
- (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-970))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *2 *6 *7))
+ (-4 *6 (-215 *5 *2)) (-4 *7 (-215 *4 *2)) (-4 *2 (-971))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-1013))
- (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4))))
- (-5 *1 (-992 *4 *5 *2))
- (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-1013))
- (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4))))
+ (-12 (-5 *3 (-850)) (-4 *4 (-1014))
+ (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4))))
(-5 *1 (-993 *4 *5 *2))
- (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4))))))
+ (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-850)) (-4 *4 (-1014))
+ (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4))))
+ (-5 *1 (-994 *4 *5 *2))
+ (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-4 *1 (-1016 *3 *4 *5 *6 *7))
- (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *7 (-1013))))
+ (-12 (-5 *2 (-588 (-522))) (-4 *1 (-1017 *3 *4 *5 *6 *7))
+ (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *7 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013))))
- ((*1 *1 *1 *1) (-4 *1 (-1053)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014))))
+ ((*1 *1 *1 *1) (-4 *1 (-1054)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-381 *1)) (-4 *1 (-1141 *2)) (-4 *2 (-970))
- (-4 *2 (-337))))
+ (-12 (-5 *3 (-382 *1)) (-4 *1 (-1142 *2)) (-4 *2 (-971))
+ (-4 *2 (-338))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970))
- (-4 *3 (-513))))
+ (-12 (-5 *2 (-382 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-971))
+ (-4 *3 (-514))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
+ (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1153 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 "last") (-4 *1 (-1154 *2)) (-4 *2 (-1120))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1154 *3)) (-4 *3 (-1120))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-587 (-560 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 (-47))) (-5 *3 (-560 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1141 (-154 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))))
- ((*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3)) (-5 *1 (-387 *3 *2 *4 *5))
- (-4 *3 (-282)) (-4 *5 (-13 (-383 *2 *4) (-961 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1141 *2)) (-4 *2 (-918 *3))
- (-5 *1 (-388 *3 *2 *4 *5 *6)) (-4 *3 (-282)) (-4 *5 (-383 *2 *4))
- (-14 *6 (-1165 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *5 (-970))
- (-4 *2 (-13 (-378) (-961 *5) (-337) (-1105) (-259)))
- (-5 *1 (-416 *5 *3 *2)) (-4 *3 (-1141 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-560 (-464)))) (-5 *1 (-464))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560 (-464))) (-5 *1 (-464))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-587 (-560 (-464))))
- (-5 *1 (-464))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 (-464))) (-5 *3 (-560 (-464))) (-5 *1 (-464))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-849)) (-4 *4 (-323))
- (-5 *1 (-491 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1141 *4))
- (-5 *1 (-711 *4 *2 *5 *3)) (-4 *3 (-1141 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157))))
- ((*1 *1 *1) (-4 *1 (-979))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
- (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1013)) (-4 *2 (-828 *4)) (-5 *1 (-629 *4 *2 *5 *3))
- (-4 *5 (-347 *2)) (-4 *3 (-13 (-347 *4) (-10 -7 (-6 -4233)))))))
+ (-12 (-5 *3 "first") (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202))
+ (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-689)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-426)) (-4 *3 (-784)) (-4 *4 (-730))
+ (-5 *1 (-914 *2 *3 *4 *5)) (-4 *5 (-878 *2 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-304)))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-707)) (-4 *4 (-13 (-513) (-135)))
- (-5 *1 (-1135 *4 *2)) (-4 *2 (-1141 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1166))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-239))) (-5 *1 (-1167)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1013)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-924 *3)) (-4 *3 (-157)) (-5 *1 (-735 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-1168))))
- ((*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1168)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-961 (-381 *2)))) (-5 *2 (-521))
- (-5 *1 (-111 *4 *3)) (-4 *3 (-1141 *4)))))
+ (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-305)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
+(((*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1167))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-239))) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
+(((*1 *1 *1) (-5 *1 (-983))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-637)) (-5 *1 (-281)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-442))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1168)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *5 (-342))
- (-5 *2 (-707)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-441))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1092 (-587 *4))) (-4 *4 (-783))
- (-5 *2 (-587 (-587 *4))) (-5 *1 (-1091 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4)
- (-224 *4 (-381 (-521)))))
- (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108))
- (-5 *1 (-474 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-92)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791)))
- (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791)))
- (|:| |args| (-587 (-791)))))
- (-5 *1 (-1084)))))
+ (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792)))
+ (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792)))
+ (|:| |args| (-588 (-792)))))
+ (-5 *1 (-1085)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-893))) (-5 *1 (-267)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 (-2 (|:| -1916 (-1081 *6)) (|:| -1400 (-522)))))
+ (-4 *6 (-283)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-680 *4 *5 *6 *7)) (-4 *7 (-878 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *1 (-957 *2))
+ (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *2 (-587 (-202))) (-5 *1 (-280)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-5 *2 (-392 (-1080 (-1080 *4))))
- (-5 *1 (-1118 *4)) (-5 *3 (-1080 (-1080 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-497)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4))
- (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6)))
- (-4 *8 (-316 *5 *6 *7)) (-4 *4 (-13 (-783) (-513) (-961 (-521))))
- (-5 *2 (-2 (|:| -3490 (-707)) (|:| -2136 *8)))
- (-5 *1 (-839 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6))
- (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4)))
- (-4 *6 (-316 (-381 (-521)) *4 *5))
- (-5 *2 (-2 (|:| -3490 (-707)) (|:| -2136 *6)))
- (-5 *1 (-840 *4 *5 *6)))))
+ (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-522))) (-5 *4 (-522)) (-5 *2 (-51))
+ (-5 *1 (-931)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-356 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-357 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-521)) (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3))
- (-4 *3 (-970))))
+ (-12 (-5 *4 (-522)) (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3))
+ (-4 *3 (-971))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-755 *4)) (-4 *4 (-783)) (-4 *1 (-1180 *4 *3))
- (-4 *3 (-970)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970))
- (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
- (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4))))
- ((*1 *1 *1) (-4 *1 (-506)))
- ((*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-612 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-849)) (-5 *1 (-616 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-1117 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-756 *4)) (-4 *4 (-784)) (-4 *1 (-1181 *4 *3))
+ (-4 *3 (-971)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971))
+ (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-613 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-850)) (-5 *1 (-617 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-4 *1 (-921 *3)) (-4 *3 (-1120)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-1118 *3)) (-4 *3 (-1120))))
((*1 *2 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-927))
- (-4 *2 (-970)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1053)) (-5 *2 (-1132 (-521))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1084))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-587 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -1347 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1105) (-27) (-404 *8)))
- (-4 *8 (-13 (-425) (-783) (-135) (-961 *3) (-583 *3)))
- (-5 *3 (-521)) (-5 *2 (-587 *4)) (-5 *1 (-939 *8 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1113 *4 *5 *6 *3)) (-4 *4 (-513)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-928))
+ (-4 *2 (-971)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-1133 (-522))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088))))
+ ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-514)) (-4 *5 (-971))
+ (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-765)) (-5 *3 (-1067)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(((*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3))
- (-4 *3 (-1119)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-521)) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *1 (-144 *4 *2))
- (-4 *2 (-404 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1084))))
- ((*1 *1 *1) (-4 *1 (-146))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-202) (-202) (-202)))
- (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined"))
- (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202)))
- (-5 *1 (-634)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-587 *7) *7 (-1080 *7))) (-5 *5 (-1 (-392 *7) *7))
- (-4 *7 (-1141 *6)) (-4 *6 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-5 *2 (-587 (-2 (|:| |frac| (-381 *7)) (|:| -3196 *3))))
- (-5 *1 (-745 *6 *7 *3 *8)) (-4 *3 (-597 *7))
- (-4 *8 (-597 (-381 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-5 *2
- (-587 (-2 (|:| |frac| (-381 *6)) (|:| -3196 (-595 *6 (-381 *6))))))
- (-5 *1 (-748 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-707)) (-5 *5 (-587 *3)) (-4 *3 (-282)) (-4 *6 (-783))
- (-4 *7 (-729)) (-5 *2 (-108)) (-5 *1 (-570 *6 *7 *3 *8))
- (-4 *8 (-877 *3 *7 *6)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25))))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-108)) (-5 *1 (-453)))))
+(((*1 *2 *1) (-12 (-4 *1 (-324)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324)) (-5 *2 (-108))
+ (-5 *1 (-332 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4)
- (-224 *4 (-381 (-521)))))
- (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108))
- (-5 *1 (-474 *4 *5)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-970))
- (-5 *1 (-786 *5 *2)) (-4 *2 (-785 *5)))))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-1066 (-202))) (-5 *1 (-171))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085)))
+ (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *4 (-588 (-1085)))
+ (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-338)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3)))
+ (-5 *1 (-704 *3 *4)) (-4 *3 (-647 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-338)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-786 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-338)) (-4 *5 (-971))
+ (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-787 *5 *3))
+ (-4 *3 (-786 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-588 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
+ (-4 *2 (-13 (-405 *4) (-928))) (-4 *4 (-13 (-784) (-514)))
+ (-5 *1 (-252 *4 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1950 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-251)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *8 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-587 *8)) (|:| |towers| (-587 (-951 *5 *6 *7 *8)))))
- (-5 *1 (-951 *5 *6 *7 *8)) (-5 *3 (-587 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *8 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-587 *8))
- (|:| |towers| (-587 (-1055 *5 *6 *7 *8)))))
- (-5 *1 (-1055 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
-(((*1 *1 *1 *1) (-4 *1 (-506))))
-(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))))
+(((*1 *2)
(-12
- (-5 *2
- (-2 (|:| |mval| (-627 *3)) (|:| |invmval| (-627 *3))
- (|:| |genIdeal| (-473 *3 *4 *5 *6))))
- (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-497)) (-5 *1 (-496 *4))
- (-4 *4 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-842 *3)) (-4 *3 (-282)))))
+ (-5 *2 (-2 (|:| -1376 (-588 (-1085))) (|:| -2314 (-588 (-1085)))))
+ (-5 *1 (-1122)))))
+(((*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-372)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-270 *6)) (-5 *4 (-110)) (-4 *6 (-405 *5))
+ (-4 *5 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51))
+ (-5 *1 (-292 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-270 *7)) (-5 *4 (-110)) (-5 *5 (-588 *7))
+ (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498))))
+ (-5 *2 (-51)) (-5 *1 (-292 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-588 (-270 *7))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7))
+ (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498))))
+ (-5 *2 (-51)) (-5 *1 (-292 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-588 (-270 *8))) (-5 *4 (-588 (-110))) (-5 *5 (-270 *8))
+ (-5 *6 (-588 *8)) (-4 *8 (-405 *7))
+ (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51))
+ (-5 *1 (-292 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-588 *7)) (-5 *4 (-588 (-110))) (-5 *5 (-270 *7))
+ (-4 *7 (-405 *6)) (-4 *6 (-13 (-784) (-514) (-563 (-498))))
+ (-5 *2 (-51)) (-5 *1 (-292 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-110))) (-5 *6 (-588 (-270 *8)))
+ (-4 *8 (-405 *7)) (-5 *5 (-270 *8))
+ (-4 *7 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51))
+ (-5 *1 (-292 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-270 *5)) (-5 *4 (-110)) (-4 *5 (-405 *6))
+ (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51))
+ (-5 *1 (-292 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6))
+ (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51))
+ (-5 *1 (-292 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-4 *3 (-405 *6))
+ (-4 *6 (-13 (-784) (-514) (-563 (-498)))) (-5 *2 (-51))
+ (-5 *1 (-292 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-270 *3)) (-5 *6 (-588 *3))
+ (-4 *3 (-405 *7)) (-4 *7 (-13 (-784) (-514) (-563 (-498))))
+ (-5 *2 (-51)) (-5 *1 (-292 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-628 *4)) (-4 *4 (-971)) (-5 *1 (-1052 *3 *4))
+ (-14 *3 (-708)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-302 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-485 *3 *4)) (-4 *3 (-1120))
+ (-14 *4 (-522)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-1081 (-881 *4))) (-5 *1 (-391 *3 *4))
+ (-4 *3 (-392 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-4 *3 (-338))
+ (-5 *2 (-1081 (-881 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *4 *5 *6)))))
+ (-12 (-5 *3 (-270 (-382 (-881 *5)))) (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5)))))
+ (-5 *1 (-1041 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135)))
+ (-5 *2 (-1075 (-588 (-291 *5)) (-588 (-270 (-291 *5)))))
+ (-5 *1 (-1041 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513))
- (-5 *2 (-2 (|:| -2979 *4) (|:| -3852 *3) (|:| -2334 *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-984 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| -2979 *3) (|:| -3852 *1) (|:| -2334 *1)))
- (-4 *1 (-1141 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-587
- (-2
- (|:| -2535
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (|:| -3050
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1065 (-202)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1403
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-516))))
+ (-12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1950 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-256))))
((*1 *2 *1)
- (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119))
- (-5 *2 (-587 *4)))))
+ (-12 (-5 *2 (-3 (-522) (-202) (-1085) (-1068) (-1090)))
+ (-5 *1 (-1090)))))
+(((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730))
+ (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3197 (-588 *9)) (|:| -1886 *4) (|:| |ineq| (-588 *9))))
+ (-5 *1 (-915 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9))
+ (-4 *4 (-990 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-426)) (-4 *7 (-730))
+ (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -3197 (-588 *9)) (|:| -1886 *4) (|:| |ineq| (-588 *9))))
+ (-5 *1 (-1021 *6 *7 *8 *9 *4)) (-5 *3 (-588 *9))
+ (-4 *4 (-990 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-513))))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1165 *5)) (-5 *3 (-707)) (-5 *4 (-1031)) (-4 *5 (-323))
- (-5 *1 (-491 *5)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-353)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-692))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-362))
- (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-692)))))
-(((*1 *1 *1 *1) (-4 *1 (-131)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-506))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968))
- (-5 *3 (-521)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-337) (-1105))))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
+ ((*1 *2) (-12 (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-855))
- (-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 (-202)))))
- (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
- (-5 *1 (-141))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-381 (-521)))
+ (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324))
+ (-4 *2
+ (-13 (-377)
+ (-10 -7 (-15 -2190 (*2 *4)) (-15 -2120 ((-850) *2))
+ (-15 -3855 ((-1166 *2) (-850))) (-15 -3428 (*2 *2)))))
+ (-5 *1 (-331 *2 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305))
+ (-5 *1 (-307)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-971))
+ (-5 *1 (-787 *5 *2)) (-4 *2 (-786 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-338))
(-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 (-202)))))
- (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
- (-5 *1 (-141))))
+ (-2 (|:| A (-628 *5))
+ (|:| |eqs|
+ (-588
+ (-2 (|:| C (-628 *5)) (|:| |g| (-1166 *5)) (|:| -3197 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *5)) (-5 *4 (-1166 *5))
+ (-4 *6 (-598 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-338)) (-4 *6 (-598 *5))
+ (-5 *2 (-2 (|:| -1222 (-628 *6)) (|:| |vec| (-1166 *5))))
+ (-5 *1 (-750 *5 *6)) (-5 *3 (-628 *6)) (-5 *4 (-1166 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960))
+ (-5 *1 (-684)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1085))
+ (-4 *6 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-4 *4 (-13 (-29 *6) (-1106) (-887)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3855 (-588 *4))))
+ (-5 *1 (-738 *6 *4 *3)) (-4 *3 (-598 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-108)) (-5 *5 (-628 (-154 (-202))))
+ (-5 *2 (-960)) (-5 *1 (-693)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1120))
+ (-4 *3 (-348 *4)) (-4 *5 (-348 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 (-202)))))
- (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
- (-5 *1 (-141)) (-5 *3 (-587 (-871 (-202))))))
+ (-12 (-5 *3 (-881 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938))))
+ ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1))))
((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-588 *1)) (-4 *1 (-938))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 (-382 (-522)))) (-5 *2 (-588 *1)) (-4 *1 (-938))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-938)) (-5 *2 (-588 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-782) (-338))) (-4 *3 (-1142 *4)) (-5 *2 (-588 *1))
+ (-4 *1 (-987 *4 *3)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-878 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-971)) (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1)))
+ (-4 *1 (-1142 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *2)) (-4 *2 (-157))))
+ ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-391 *3 *2)) (-4 *3 (-392 *2))))
+ ((*1 *2) (-12 (-4 *1 (-392 *2)) (-4 *2 (-157)))))
+(((*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))))
+(((*1 *1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 (-202)))))
- (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
- (-5 *1 (-141)) (-5 *3 (-587 (-587 (-871 (-202)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-218))))
+ (-5 *3
+ (-588
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-522)))))
+ (-4 *2 (-514)) (-5 *1 (-393 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1170)) (-5 *1 (-218)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970))
- (-5 *3 (-521)))))
-(((*1 *1 *1) (-12 (-5 *1 (-546 *2)) (-4 *2 (-970)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))))
-(((*1 *1) (-4 *1 (-323)))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-522))
+ (|:| -2976 (-588 (-2 (|:| |irr| *4) (|:| -2245 (-522)))))))
+ (-4 *4 (-1142 (-522))) (-5 *2 (-393 *4)) (-5 *1 (-416 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2))
+ (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2))
+ (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239)))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-761)) (-5 *3 (-588 (-1085))) (-5 *1 (-762)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-850)) (-4 *1 (-215 *3 *4)) (-4 *4 (-971))
+ (-4 *4 (-1120))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157))
+ (-4 *5 (-215 (-3480 *3) (-708)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *5))
+ (-2 (|:| -2717 *2) (|:| -1400 *5))))
+ (-5 *1 (-435 *3 *4 *2 *5 *6 *7)) (-4 *2 (-784))
+ (-4 *7 (-878 *4 *5 (-794 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-588 *1)) (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-588 *3)) (-5 *1 (-889 *3)) (-4 *3 (-507)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085)))
+ (-4 *6 (-13 (-514) (-962 *5))) (-4 *5 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *6)))))) (-5 *1 (-963 *5 *6)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 G)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-405 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-588 *1)) (-4 *1 (-878 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4))
- (-4 *4 (-13 (-513) (-783) (-135)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-587 (-1080 *5)))
- (|:| |prim| (-1080 *5))))
- (-5 *1 (-406 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-135)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1080 *3))
- (|:| |pol2| (-1080 *3)) (|:| |prim| (-1080 *3))))
- (-5 *1 (-406 *4 *3)) (-4 *3 (-27)) (-4 *3 (-404 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-5 *4 (-1084)) (-4 *5 (-13 (-337) (-135)))
- (-5 *2
- (-2 (|:| |coef1| (-521)) (|:| |coef2| (-521))
- (|:| |prim| (-1080 *5))))
- (-5 *1 (-887 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-587 (-1084)))
- (-4 *5 (-13 (-337) (-135)))
- (-5 *2
- (-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 *5)))
- (|:| |prim| (-1080 *5))))
- (-5 *1 (-887 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 (-880 *6))) (-5 *4 (-587 (-1084))) (-5 *5 (-1084))
- (-4 *6 (-13 (-337) (-135)))
- (-5 *2
- (-2 (|:| -2979 (-587 (-521))) (|:| |poly| (-587 (-1080 *6)))
- (|:| |prim| (-1080 *6))))
- (-5 *1 (-887 *6)))))
+ (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-588 *3))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $))
+ (-15 -2816 (*7 $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-171))))
+ ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-276))))
+ ((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1068)) (-5 *1 (-281)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-4 *7 (-877 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-108)) (|:| |z0| (-587 *7)) (|:| |n0| (-587 *7))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1008 (-776 (-202)))) (-5 *1 (-280)))))
-(((*1 *1)
- (-12 (-4 *1 (-378)) (-2416 (|has| *1 (-6 -4224)))
- (-2416 (|has| *1 (-6 -4216)))))
- ((*1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1013)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (-4 *1 (-783)))
- ((*1 *2 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-783))))
- ((*1 *1) (-5 *1 (-1031))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
- (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-218))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-1068))) (-5 *2 (-1171)) (-5 *1 (-218)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-833 *4))
+ (-4 *4 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354)))
+ (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171))
+ (-5 *1 (-725)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3))
+ (-4 *3 (-1014)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-13 (-338) (-784)))
+ (-14 *4 (-1085)) (-14 *5 *3) (-5 *1 (-294 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-354))) (-5 *1 (-964)) (-5 *3 (-354)))))
+(((*1 *2) (-12 (-5 *2 (-1045 (-202))) (-5 *1 (-1104)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-756 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-780)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-51)) (-5 *1 (-766)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-587 (-1114 *5)))
- (-5 *1 (-1173 *5)) (-5 *4 (-1114 *5)))))
+ (-12
+ (-5 *3
+ (-588
+ (-2 (|:| |eqzro| (-588 *8)) (|:| |neqzro| (-588 *8))
+ (|:| |wcond| (-588 (-881 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *5))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *5))))))))))
+ (-5 *4 (-1068)) (-4 *5 (-13 (-283) (-135))) (-4 *8 (-878 *5 *7 *6))
+ (-4 *6 (-13 (-784) (-563 (-1085)))) (-4 *7 (-730)) (-5 *2 (-522))
+ (-5 *1 (-853 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)))))
+(((*1 *1)
+ (-12 (-4 *1 (-379)) (-2401 (|has| *1 (-6 -4229)))
+ (-2401 (|has| *1 (-6 -4221)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-1014)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-4 *1 (-784)))
+ ((*1 *2 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784))))
+ ((*1 *1) (-5 *1 (-1032))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-72 FCN)))) (-5 *2 (-959))
- (-5 *1 (-683)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |h| *6)
- (|:| |c1| (-381 *6)) (|:| |c2| (-381 *6)) (|:| -1670 *6)))
- (-5 *1 (-941 *5 *6)) (-5 *3 (-381 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282))
- (-5 *2 (-587 (-707))) (-5 *1 (-714 *3 *4 *5 *6 *7))
- (-4 *3 (-1141 *6)) (-4 *7 (-877 *6 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-1168)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-871 *5)) (-5 *3 (-707)) (-4 *5 (-970))
- (-5 *1 (-1073 *4 *5)) (-14 *4 (-849)))))
+ (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522))))
+ (-4 *5 (-815 (-522)))
+ (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-525 *5 *3)) (-4 *3 (-574))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-337)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5))
- (-5 *2 (-387 *4 (-381 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1165 *6)) (-4 *6 (-13 (-383 *4 *5) (-961 *4)))
- (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *3 (-282))
- (-5 *1 (-387 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-337))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)))))
-(((*1 *1 *1) (|partial| -4 *1 (-133))) ((*1 *1 *1) (-4 *1 (-323)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-837)))))
+ (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-971)) (-4 *2 (-1126 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-288 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))))
+ (-5 *1 (-395 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1106) (-405 *5)))
+ (-14 *6 (-1085)) (-14 *7 *3))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-708)) (-5 *5 (-588 *3)) (-4 *3 (-283)) (-4 *6 (-784))
+ (-4 *7 (-730)) (-5 *2 (-108)) (-5 *1 (-571 *6 *7 *3 *8))
+ (-4 *8 (-878 *3 *7 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-5 *2 (-1165 *3)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1141 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
+ (-12 (-4 *3 (-1014))
+ (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3))))
+ (-5 *2 (-588 (-1085))) (-5 *1 (-993 *3 *4 *5))
+ (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-693)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-300 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
- (-5 *2 (-707))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
- (-5 *2 (-707))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-663)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 *4))))
+ (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803)))
+ (-5 *4 (-588 (-850))) (-5 *5 (-588 (-239))) (-5 *1 (-442))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803)))
+ (-5 *4 (-588 (-850))) (-5 *1 (-442))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442))))
+ ((*1 *1 *1) (-5 *1 (-442))))
(((*1 *2 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-37 (-381 (-521))))
- (-4 *2 (-157)))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-892))) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 (-1176 *4 *5 *6 *7)))
- (-5 *1 (-1176 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
+ (-5 *1 (-160 *3)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-522) "failed") *5)) (-4 *5 (-971))
+ (-5 *2 (-522)) (-5 *1 (-505 *5 *3)) (-4 *3 (-1142 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971))
+ (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 *9)) (-5 *4 (-1 (-108) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-984 *6 *7 *8)) (-4 *6 (-513))
- (-4 *7 (-729)) (-4 *8 (-783)) (-5 *2 (-587 (-1176 *6 *7 *8 *9)))
- (-5 *1 (-1176 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-157)) (-4 *2 (-970)) (-5 *1 (-651 *2 *3))
- (-4 *3 (-589 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-770 *2)) (-4 *2 (-157)) (-4 *2 (-970)))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-522) "failed") *4)) (-4 *4 (-971))
+ (-5 *2 (-522)) (-5 *1 (-505 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-392 *3)) (-4 *3 (-506)) (-4 *3 (-513))))
- ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-733 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-769 *3)) (-4 *3 (-506)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-776 *3)) (-4 *3 (-506)) (-4 *3 (-1013))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-922 *3)) (-4 *3 (-157)) (-4 *3 (-506)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-933 *3)) (-4 *3 (-961 (-381 (-521)))))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202)))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1049 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
- (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33)))
- (-5 *1 (-1050 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-1049 *3 *4))) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-546 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-970)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-425)) (-4 *4 (-783))
- (-5 *1 (-530 *4 *2)) (-4 *2 (-259)) (-4 *2 (-404 *4)))))
+ (-12 (-4 *4 (-338)) (-5 *2 (-588 (-1066 *4))) (-5 *1 (-261 *4 *5))
+ (-5 *3 (-1066 *4)) (-4 *5 (-1157 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 *6)) (-4 *5 (-1124)) (-4 *6 (-1142 *5))
+ (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *3) (|:| |radicand| *6)))
+ (-5 *1 (-136 *5 *6 *7)) (-5 *4 (-708)) (-4 *7 (-1142 *3)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2 (-521)) (-5 *1 (-183)))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110)))
- ((*1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1) (-4 *1 (-506)))
- ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33))))))
+ (-474 (-382 (-522)) (-217 *5 (-708)) (-794 *4)
+ (-224 *4 (-382 (-522)))))
+ (-14 *4 (-588 (-1085))) (-14 *5 (-708)) (-5 *2 (-108))
+ (-5 *1 (-475 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014))
+ (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971))))
+ ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-522)
+ *6))
+ (-4 *6 (-338)) (-4 *7 (-1142 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-382 *7)) (|:| |a0| *6))
+ (-2 (|:| -1856 (-382 *7)) (|:| |coeff| (-382 *7))) "failed"))
+ (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-587 (-707)))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1049 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
+ (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708))
+ (-14 *4 (-708)) (-4 *5 (-157)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-588 *3)) (-5 *5 (-850)) (-4 *3 (-1142 *4))
+ (-4 *4 (-283)) (-5 *1 (-434 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-893))) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-44 (-1068) (-711))) (-5 *1 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-474 *3 *4 *5 *6))) (-4 *3 (-338)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784))
+ (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-324)) (-5 *2 (-1166 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-4 *1 (-894))) ((*1 *1 *1) (-5 *1 (-1031))))
+ (|partial| -12 (-5 *3 (-628 *1)) (-4 *1 (-133)) (-4 *1 (-838))
+ (-5 *2 (-1166 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-784)) (-4 *5 (-838)) (-4 *6 (-730))
+ (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-393 (-1081 *8)))
+ (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-1081 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-838)) (-4 *5 (-1142 *4)) (-5 *2 (-393 (-1081 *5)))
+ (-5 *1 (-836 *4 *5)) (-5 *3 (-1081 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-154 (-202)))) (-5 *2 (-960))
+ (-5 *1 (-692)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085)))
+ (-4 *5 (-426))
+ (-5 *2
+ (-2 (|:| |gblist| (-588 (-224 *4 *5)))
+ (|:| |gvlist| (-588 (-522)))))
+ (-5 *1 (-576 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-108))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-108)) (-5 *1 (-1110 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4))))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110)))
+ ((*1 *1 *1) (-5 *1 (-156))) ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *2 (-985 *4 *5 *6)) (-5 *1 (-713 *4 *5 *6 *2 *3))
+ (-4 *3 (-990 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-474 (-382 (-522)) (-217 *4 (-708)) (-794 *3)
+ (-224 *3 (-382 (-522)))))
+ (-14 *3 (-588 (-1085))) (-14 *4 (-708)) (-5 *1 (-475 *3 *4)))))
+(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1) (-4 *1 (-895))) ((*1 *1 *1) (-5 *1 (-1032))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
(-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-970)) (-4 *2 (-1013)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -1347 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-337)) (-5 *1 (-531 *4 *2)) (-4 *2 (-1141 *4)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-473 (-381 (-521)) (-217 *4 (-707)) (-793 *3)
- (-224 *3 (-381 (-521)))))
- (-14 *3 (-587 (-1084))) (-14 *4 (-707)) (-5 *1 (-474 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-971)) (-4 *2 (-1014)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *3 (-588 (-803)))
+ (-5 *1 (-442)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5)))
+ (-5 *2 (-708)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-143))))
+ ((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-1013)) (-5 *2 (-587 *1))
- (-4 *1 (-356 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-672 *3 *4))) (-5 *1 (-672 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-663))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-877 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-588 (-993 *4 *5 *2))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4))))
+ (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-588 (-993 *5 *6 *2))) (-5 *4 (-850)) (-4 *5 (-1014))
+ (-4 *6 (-13 (-971) (-815 *5) (-784) (-563 (-821 *5))))
+ (-4 *2 (-13 (-405 *6) (-815 *5) (-563 (-821 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157))
- (-5 *2 (-1165 (-627 (-880 *4)))) (-5 *1 (-168 *4)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
- (-4 *2 (-625 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-707)) (-4 *6 (-1013)) (-4 *7 (-828 *6))
- (-5 *2 (-627 *7)) (-5 *1 (-629 *6 *7 *3 *4)) (-4 *3 (-347 *7))
- (-4 *4 (-13 (-347 *6) (-10 -7 (-6 -4233)))))))
-(((*1 *2 *3) (-12 (-5 *2 (-353)) (-5 *1 (-721 *3)) (-4 *3 (-562 *2))))
+ (-12 (-4 *4 (-971))
+ (-4 *2 (-13 (-379) (-962 *4) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *4 *3 *2)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-4 *5 (-971))
+ (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5)))))
+(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
+ ((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *2 *3) (-12 (-5 *2 (-354)) (-5 *1 (-722 *3)) (-4 *3 (-563 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-353)) (-5 *1 (-721 *3))
- (-4 *3 (-562 *2))))
+ (-12 (-5 *4 (-850)) (-5 *2 (-354)) (-5 *1 (-722 *3))
+ (-4 *3 (-563 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2))
- (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 *2))
+ (-5 *2 (-354)) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970))
- (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971))
+ (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-4 *4 (-562 *2))
- (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 *2))
+ (-5 *2 (-354)) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783))
- (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784))
+ (-4 *4 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783))
- (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5))))
- (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *5 (-984 *2 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6))
- (-4 *6 (-13 (-27) (-404 *5)))
- (-4 *5 (-13 (-783) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7)))
- (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3))
- (-4 *3 (-316 *6 *7 *8)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-959)) (-5 *3 (-1084)) (-5 *1 (-243)))))
-(((*1 *2 *1) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 (-707)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *3 (-783)) (-5 *2 (-707)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 *5)) (-5 *4 (-521)) (-4 *5 (-781)) (-4 *5 (-337))
- (-5 *2 (-707)) (-5 *1 (-873 *5 *6)) (-4 *6 (-1141 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)) (-4 *2 (-970))))
- ((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-516)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784))
+ (-4 *5 (-563 *2)) (-5 *2 (-354)) (-5 *1 (-722 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-224 *3 *4))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-522))) (-14 *3 (-588 (-1085)))
+ (-5 *1 (-428 *3 *4 *5)) (-4 *4 (-971))
+ (-4 *5 (-215 (-3480 *3) (-708)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-454 *3 *4))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-971)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-382 (-522))))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1068)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-759)))))
+(((*1 *1) (-5 *1 (-1001))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *2 (-960))
+ (-5 *1 (-687)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522))) (-5 *3 (-522))
+ (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-382 *5))
+ (|:| |c2| (-382 *5)) (|:| |deg| (-708))))
+ (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1142 (-382 *5))))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1119))
- (-4 *4 (-347 *2)) (-4 *5 (-347 *2))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1120))
+ (-4 *4 (-348 *2)) (-4 *5 (-348 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3))
- (-4 *3 (-1119))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3))
+ (-4 *3 (-1120))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4234)) (-4 *1 (-115 *3))
- (-4 *3 (-1119))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4239)) (-4 *1 (-115 *3))
+ (-4 *3 (-1120))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-263 *3 *2)) (-4 *3 (-1013))
- (-4 *2 (-1119))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1084)) (-5 *1 (-576))))
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-264 *3 *2)) (-4 *3 (-1014))
+ (-4 *2 (-1120))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1085)) (-5 *1 (-577))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1132 (-521))) (|has| *1 (-6 -4234)) (-4 *1 (-592 *2))
- (-4 *2 (-1119))))
+ (-12 (-5 *3 (-1133 (-522))) (|has| *1 (-6 -4239)) (-4 *1 (-593 *2))
+ (-4 *2 (-1120))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-587 (-521))) (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-588 (-522))) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4234)) (-4 *1 (-935 *2))
- (-4 *2 (-1119))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-950 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4239)) (-4 *1 (-936 *2))
+ (-4 *2 (-1120))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1096 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2))
- (-4 *2 (-1119))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2))
+ (-4 *2 (-1120))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *3))
- (-4 *3 (-1119))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *3))
+ (-4 *3 (-1120))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2))
- (-4 *2 (-1119)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-425)) (-4 *4 (-783))
- (-4 *5 (-729)) (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *3 (-970)) (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-1141 *4)) (-5 *1 (-500 *4 *2 *5 *6))
- (-4 *4 (-282)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-707))))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2))
+ (-4 *2 (-1120)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-588 *9)) (-5 *3 (-1 (-108) *9))
+ (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-5 *1 (-904 *6 *7 *8 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-282))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-420 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-13 (-27) (-1106) (-405 (-154 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-420 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-282)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-420 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-693)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-239))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202) (-202))) (-5 *1 (-239))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-239)))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2
- (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
- (|:| |expense| (-353)) (|:| |accuracy| (-353))
- (|:| |intermediateResults| (-353))))
- (-5 *1 (-739)))))
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-514) (-784) (-962 (-522))))
+ (-5 *1 (-167 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 (-154 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4)))
+ (-5 *2 (-2 (|:| |num| (-1166 *4)) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-251)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-12 (-5 *3 (-628 (-382 (-881 (-522)))))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-353)) (|:| |stabilityFactor| (-353))))
- (-5 *1 (-184)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1073 3 *3)) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
- ((*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-970)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-513)) (-4 *2 (-425)) (-5 *1 (-896 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *8)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084))))
- (-4 *7 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
- (|:| |wcond| (-587 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *5))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *5))))))))))
- (-5 *1 (-852 *5 *6 *7 *8)) (-5 *4 (-587 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *8)) (-5 *4 (-587 (-1084))) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084))))
- (-4 *7 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
- (|:| |wcond| (-587 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *5))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *5))))))))))
- (-5 *1 (-852 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7))
- (|:| |wcond| (-587 (-880 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *4))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *4))))))))))
- (-5 *1 (-852 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *9)) (-5 *5 (-849)) (-4 *9 (-877 *6 *8 *7))
- (-4 *6 (-13 (-282) (-135))) (-4 *7 (-13 (-783) (-562 (-1084))))
- (-4 *8 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9))
- (|:| |wcond| (-587 (-880 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *6))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *6))))))))))
- (-5 *1 (-852 *6 *7 *8 *9)) (-5 *4 (-587 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-849))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
- (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *9)) (|:| |neqzro| (-587 *9))
- (|:| |wcond| (-587 (-880 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *6))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *6))))))))))
- (-5 *1 (-852 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *8)) (-5 *4 (-849)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084))))
- (-4 *7 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *8)) (|:| |neqzro| (-587 *8))
- (|:| |wcond| (-587 (-880 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *5))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *5))))))))))
- (-5 *1 (-852 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 *9)) (-5 *5 (-1067))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
- (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521))
- (-5 *1 (-852 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *9)) (-5 *4 (-587 (-1084))) (-5 *5 (-1067))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
- (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521))
- (-5 *1 (-852 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *8)) (-5 *4 (-1067)) (-4 *8 (-877 *5 *7 *6))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-13 (-783) (-562 (-1084))))
- (-4 *7 (-729)) (-5 *2 (-521)) (-5 *1 (-852 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 *10)) (-5 *5 (-849))
- (-5 *6 (-1067)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-282) (-135)))
- (-4 *8 (-13 (-783) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521))
- (-5 *1 (-852 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-627 *10)) (-5 *4 (-587 (-1084))) (-5 *5 (-849))
- (-5 *6 (-1067)) (-4 *10 (-877 *7 *9 *8)) (-4 *7 (-13 (-282) (-135)))
- (-4 *8 (-13 (-783) (-562 (-1084)))) (-4 *9 (-729)) (-5 *2 (-521))
- (-5 *1 (-852 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *9)) (-5 *4 (-849)) (-5 *5 (-1067))
- (-4 *9 (-877 *6 *8 *7)) (-4 *6 (-13 (-282) (-135)))
- (-4 *7 (-13 (-783) (-562 (-1084)))) (-4 *8 (-729)) (-5 *2 (-521))
- (-5 *1 (-852 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513))
- (-5 *2 (-108)) (-5 *1 (-582 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323)) (-5 *2 (-108))
- (-5 *1 (-331 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *4)) (-4 *4 (-323)) (-5 *2 (-108))
- (-5 *1 (-491 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-392 *4)) (-4 *4 (-513)))))
+ (-588
+ (-2 (|:| |radval| (-291 (-522))) (|:| |radmult| (-522))
+ (|:| |radvect| (-588 (-628 (-291 (-522))))))))
+ (-5 *1 (-956)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1068)) (-5 *5 (-628 (-202))) (-5 *6 (-628 (-522)))
+ (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-695)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7))
- (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119))
- (-4 *7 (-1119)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-622 *4 *5)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1085)) (-5 *1 (-616 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305))
+ (-5 *1 (-307)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1080 *4)) (-4 *4 (-323))
- (-4 *2
- (-13 (-376)
- (-10 -7 (-15 -2223 (*2 *4)) (-15 -3999 ((-849) *2))
- (-15 -1245 ((-1165 *2) (-849))) (-15 -2687 (*2 *2)))))
- (-5 *1 (-330 *2 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
-(((*1 *1 *2) (-12 (-5 *2 (-166)) (-5 *1 (-225)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-587 *3)) (-5 *1 (-888 *3)) (-4 *3 (-506)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1116 *3)) (-4 *3 (-901)))))
+(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-218)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-708)) (-5 *1 (-519)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
(-5 *1 (-160 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013))
- (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-453 *4 *5))) (-14 *4 (-587 (-1084)))
- (-4 *5 (-425))
- (-5 *2
- (-2 (|:| |gblist| (-587 (-224 *4 *5)))
- (|:| |gvlist| (-587 (-521)))))
- (-5 *1 (-575 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3052 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-132)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-587 (-627 (-521))))
- (-5 *1 (-1023)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-337)) (-5 *1 (-260 *3 *2)) (-4 *2 (-1156 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337))
- (-5 *2 (-2 (|:| -3658 (-392 *3)) (|:| |special| (-392 *3))))
- (-5 *1 (-664 *5 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218)))))
-(((*1 *1 *1) (-4 *1 (-573)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-574 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927) (-1105))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119))
- (-4 *2 (-1013)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33))))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085))
+ (-14 *4 *2))))
(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1031)) (-5 *2 (-1170)) (-5 *1 (-767)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-729)) (-4 *6 (-783)) (-4 *7 (-513))
- (-4 *3 (-877 *7 *5 *6))
- (-5 *2
- (-2 (|:| -2246 (-707)) (|:| -2979 *3) (|:| |radicand| (-587 *3))))
- (-5 *1 (-881 *5 *6 *7 *3 *8)) (-5 *4 (-707))
- (-4 *8
- (-13 (-337)
- (-10 -8 (-15 -2807 (*3 $)) (-15 -2818 (*3 $)) (-15 -2223 ($ *3))))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1017)) (-5 *3 (-710)) (-5 *1 (-51)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-513))
- (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-1136 *4 *3))
- (-4 *3 (-1141 *4)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-116 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-792)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *1 (-539 *2)) (-4 *2 (-962 *3))
+ (-4 *2 (-338))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2))
+ (-4 *2 (-13 (-405 *4) (-928) (-1106)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1007 *2)) (-4 *2 (-13 (-405 *4) (-928) (-1106)))
+ (-4 *4 (-13 (-784) (-514))) (-5 *1 (-575 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-887)) (-5 *2 (-1085))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-887)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-135))
+ (-4 *3 (-283)) (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1084)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7))
- (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119))
- (-4 *7 (-1119))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6))
- (-4 *3 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521)))))
- (-4 *5 (-783)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-602))) ((*1 *1 *1 *1) (-5 *1 (-1031))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202))))
- (-5 *2 (-959)) (-5 *1 (-691)))))
+ (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *8 (-985 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-588 *8)) (|:| |towers| (-588 (-952 *5 *6 *7 *8)))))
+ (-5 *1 (-952 *5 *6 *7 *8)) (-5 *3 (-588 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *8 (-985 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-588 *8))
+ (|:| |towers| (-588 (-1056 *5 *6 *7 *8)))))
+ (-5 *1 (-1056 *5 *6 *7 *8)) (-5 *3 (-588 *8)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1114 *4 *5 *3 *6)) (-4 *4 (-514)) (-4 *5 (-730))
+ (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379))
+ (-5 *2 (-850)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-305)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1014)) (-5 *2 (-818 *3 *4)) (-5 *1 (-814 *3 *4 *5))
+ (-4 *3 (-1014)) (-4 *5 (-608 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-277))))
- ((*1 *1 *1) (-4 *1 (-277))) ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1013)))))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
+ (-5 *1 (-160 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-538 *3)) (-5 *1 (-400 *5 *3))
- (-4 *3 (-13 (-1105) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-4 *5 (-13 (-513) (-961 (-521)) (-135)))
- (-5 *2 (-538 (-381 (-880 *5)))) (-5 *1 (-527 *5))
- (-5 *3 (-381 (-880 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |k| (-612 *3)) (|:| |c| *4))))
- (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849)))))
+ (-12 (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-514))
+ (-4 *7 (-878 *3 *5 *6))
+ (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *8) (|:| |radicand| *8)))
+ (-5 *1 (-882 *5 *6 *3 *7 *8)) (-5 *4 (-708))
+ (-4 *8
+ (-13 (-338)
+ (-10 -8 (-15 -2805 (*7 $)) (-15 -2816 (*7 $)) (-15 -2190 ($ *7))))))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-514) (-962 (-522)) (-135)))
+ (-5 *2
+ (-2 (|:| -1856 (-382 (-881 *5))) (|:| |coeff| (-382 (-881 *5)))))
+ (-5 *1 (-528 *5)) (-5 *3 (-382 (-881 *5))))))
(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 (-627 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282)) (-5 *2 (-392 *3))
- (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-877 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-282))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-392 (-1080 *7)))
- (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-425)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-392 *1)) (-4 *1 (-877 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-425)) (-5 *2 (-392 *3))
- (-5 *1 (-905 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-425))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7))))
- (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-392 *3)) (-5 *1 (-1144 *4 *3))
- (-4 *3 (-13 (-1141 *4) (-513) (-10 -8 (-15 -2286 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-14 *5 (-587 (-1084)))
- (-5 *2
- (-587 (-1055 *4 (-493 (-793 *6)) (-793 *6) (-716 *4 (-793 *6)))))
- (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-381 (-521))))
- (-5 *2 (-2 (|:| -2752 (-1065 *4)) (|:| -2764 (-1065 *4))))
- (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))))
+ (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-850)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-588 (-1081 *7))) (-5 *3 (-1081 *7))
+ (-4 *7 (-878 *5 *6 *4)) (-4 *5 (-838)) (-4 *6 (-730))
+ (-4 *4 (-784)) (-5 *1 (-835 *5 *6 *4 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-507))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5))
+ (-5 *2 (-588 *3)) (-5 *1 (-714 *4 *5 *6 *3 *7)) (-4 *3 (-1142 *6))
+ (-14 *7 (-850)))))
+(((*1 *1 *1 *1) (-4 *1 (-507))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2776 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -1924 *7) (|:| |sol?| (-108)))
+ (-522) *7))
+ (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7))
+ (-5 *3 (-382 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-532 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *5))))
- (-5 *1 (-1040 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-13 (-282) (-783) (-135)))
- (-5 *2 (-587 (-269 (-290 *4)))) (-5 *1 (-1040 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-269 (-381 (-880 *5)))) (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *5))))
- (-5 *1 (-1040 *5))))
+ (-12 (-5 *4 (-708)) (-4 *5 (-971)) (-5 *2 (-522))
+ (-5 *1 (-417 *5 *3 *6)) (-4 *3 (-1142 *5))
+ (-4 *6 (-13 (-379) (-962 *5) (-338) (-1106) (-260)))))
((*1 *2 *3)
- (-12 (-5 *3 (-269 (-381 (-880 *4))))
- (-4 *4 (-13 (-282) (-783) (-135))) (-5 *2 (-587 (-269 (-290 *4))))
- (-5 *1 (-1040 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-381 (-880 *5)))) (-5 *4 (-587 (-1084)))
- (-4 *5 (-13 (-282) (-783) (-135)))
- (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-381 (-880 *4))))
- (-4 *4 (-13 (-282) (-783) (-135)))
- (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-269 (-381 (-880 *5))))) (-5 *4 (-587 (-1084)))
- (-4 *5 (-13 (-282) (-783) (-135)))
- (-5 *2 (-587 (-587 (-269 (-290 *5))))) (-5 *1 (-1040 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-269 (-381 (-880 *4)))))
- (-4 *4 (-13 (-282) (-783) (-135)))
- (-5 *2 (-587 (-587 (-269 (-290 *4))))) (-5 *1 (-1040 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-902 *4 *5 *6 *3)) (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-521)) (-5 *2 (-108)) (-5 *1 (-510)))))
+ (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5))
+ (-4 *3 (-1142 *4))
+ (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-1087 (-382 (-522))))
+ (-5 *1 (-169)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120))
+ (-4 *2 (-1014)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-708)) (-5 *3 (-872 *5)) (-4 *5 (-971))
+ (-5 *1 (-1074 *4 *5)) (-14 *4 (-850))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-708))) (-5 *3 (-708)) (-5 *1 (-1074 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-971))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-708))) (-5 *3 (-872 *5)) (-4 *5 (-971))
+ (-5 *1 (-1074 *4 *5)) (-14 *4 (-850)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202))
+ (-5 *2 (-960)) (-5 *1 (-687)))))
+(((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-964)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-628 *3)) (|:| |invmval| (-628 *3))
+ (|:| |genIdeal| (-474 *3 *4 *5 *6))))
+ (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1018)) (-5 *3 (-711)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-283) (-135)))
+ (-4 *2 (-878 *4 *6 *5)) (-5 *1 (-853 *4 *5 *6 *2))
+ (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-603))) ((*1 *1 *1 *1) (-5 *1 (-1032))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-150 *3 *4))
+ (-4 *3 (-151 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708))
+ (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-784)) (-5 *2 (-708)) (-5 *1 (-404 *3 *4))
+ (-4 *3 (-405 *4))))
+ ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-506 *3)) (-4 *3 (-507))))
+ ((*1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-708))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-733 *3 *4))
+ (-4 *3 (-734 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-918 *3 *4))
+ (-4 *3 (-919 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-708)) (-5 *1 (-922 *3 *4))
+ (-4 *3 (-923 *4))))
+ ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-937 *3)) (-4 *3 (-938))))
+ ((*1 *2) (-12 (-4 *1 (-971)) (-5 *2 (-708))))
+ ((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-979 *3)) (-4 *3 (-980)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-157)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-5 *1 (-626 *4 *5 *6 *2))
- (-4 *2 (-625 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-587 *5) *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5))
- (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3196 *3))))
- (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-597 *6))
- (-4 *7 (-597 (-381 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-587 *5) *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *6 (-1141 *5))
- (-5 *2 (-587 (-2 (|:| |poly| *6) (|:| -3196 (-595 *6 (-381 *6))))))
- (-5 *1 (-748 *5 *6)) (-5 *3 (-595 *6 (-381 *6))))))
-(((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783))))
+ (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157))
+ (-4 *5 (-215 (-3480 *3) (-708)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *5))
+ (-2 (|:| -2717 *2) (|:| -1400 *5))))
+ (-4 *2 (-784)) (-5 *1 (-435 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-878 *4 *5 (-794 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-522)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-708)) (-4 *5 (-157))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1113 *2 *3 *4 *5)) (-4 *2 (-513))
- (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-984 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 (-1165 (-521)))) (-5 *3 (-849)) (-5 *1 (-439)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))))
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708))
+ (-4 *4 (-157))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *2 *4)) (-4 *2 (-348 *3))
+ (-4 *4 (-348 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1052 *2 *3)) (-14 *2 (-708)) (-4 *3 (-971)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166 (-1085))) (-5 *3 (-1166 (-427 *4 *5 *6 *7)))
+ (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-1166 (-628 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1166 (-427 *4 *5 *6 *7)))
+ (-5 *1 (-427 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-850))
+ (-14 *6 (-588 *2)) (-14 *7 (-1166 (-628 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166 (-427 *3 *4 *5 *6))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085)))
+ (-14 *6 (-1166 (-628 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166 (-1085))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-157)) (-14 *4 (-850)) (-14 *5 (-588 (-1085)))
+ (-14 *6 (-1166 (-628 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1085)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157))
+ (-14 *4 (-850)) (-14 *5 (-588 *2)) (-14 *6 (-1166 (-628 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-427 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-850))
+ (-14 *4 (-588 (-1085))) (-14 *5 (-1166 (-628 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-498)) (-5 *1 (-497 *4))
+ (-4 *4 (-1120)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-740)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-499 *3 *2))
+ (-4 *2 (-1157 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-4 *4 (-1142 *3))
+ (-4 *5 (-662 *3 *4)) (-5 *1 (-503 *3 *4 *5 *2)) (-4 *2 (-1157 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-338) (-343) (-563 (-522)))) (-5 *1 (-504 *3 *2))
+ (-4 *2 (-1157 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-13 (-514) (-135)))
+ (-5 *1 (-1062 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-170)) (-5 *3 (-521))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-719 *2)) (-4 *2 (-157))))
+ (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *2 (-108)) (-5 *1 (-243))))
+ ((*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-108)) (-5 *1 (-243))))
((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-756)) (-14 *5 (-1084))
- (-5 *2 (-587 *4)) (-5 *1 (-1027 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-801 (-893 *3) (-893 *3))) (-5 *1 (-893 *3))
- (-4 *3 (-894)))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168))))
+ ((*1 *2) (-12 (-5 *2 (-354)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-588 *6) "failed") (-522) *6 *6)) (-4 *6 (-338))
+ (-4 *7 (-1142 *6))
+ (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6)))
+ (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278))))
+ ((*1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1166 *4)) (-5 *3 (-628 *4)) (-4 *4 (-338))
+ (-5 *1 (-609 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-338))
+ (-4 *5 (-13 (-348 *4) (-10 -7 (-6 -4239))))
+ (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239))))
+ (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-626 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-588 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-338))
+ (-5 *1 (-751 *2 *3)) (-4 *3 (-598 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-514))
+ (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-985 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *1 *1) (-5 *1 (-354)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-713 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-690)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 (-872 *4))) (-4 *1 (-1046 *4)) (-4 *4 (-971))
+ (-5 *2 (-708)))))
+(((*1 *2 *1) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-1081 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-1093 *3)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *3 (-514)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-310 *5 *6 *7 *8)) (-4 *5 (-404 *4)) (-4 *6 (-1141 *5))
- (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7))
- (-4 *4 (-13 (-783) (-513) (-961 (-521)))) (-5 *2 (-108))
- (-5 *1 (-839 *4 *5 *6 *7 *8))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-919 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3))
+ (-4 *3 (-348 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-310 (-381 (-521)) *4 *5 *6))
- (-4 *4 (-1141 (-381 (-521)))) (-4 *5 (-1141 (-381 *4)))
- (-4 *6 (-316 (-381 (-521)) *4 *5)) (-5 *2 (-108))
- (-5 *1 (-840 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1165 (-1165 (-521)))) (-5 *1 (-439)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-304)))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-919 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-473 *4 *5 *6 *3)) (-4 *6 (-348 *4)) (-4 *3 (-348 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 *5)) (-4 *5 (-919 *4)) (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |num| (-628 *4)) (|:| |den| *4)))
+ (-5 *1 (-631 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *6 (-1142 *5))
+ (-5 *2 (-2 (|:| -3197 *7) (|:| |rh| (-588 (-382 *6)))))
+ (-5 *1 (-744 *5 *6 *7 *3)) (-5 *4 (-588 (-382 *6)))
+ (-4 *7 (-598 *6)) (-4 *3 (-598 (-382 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-919 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1135 *4 *5 *3))
+ (-4 *3 (-1142 *5)))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1120)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-783))
- (-4 *2 (-1119))))
- ((*1 *2 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
+ (-12 (-4 *1 (-555 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-784))
+ (-4 *2 (-1120))))
+ ((*1 *2 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
((*1 *2 *1)
- (-12 (-4 *2 (-1119)) (-5 *1 (-801 *2 *3)) (-4 *3 (-1119))))
- ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
+ (-12 (-4 *2 (-1120)) (-5 *1 (-802 *2 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *5 (-1067))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-959))
- (-5 *1 (-687)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-337)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 (-381 *3)))
- (-4 *1 (-309 *4 *3 *5 *2)) (-4 *2 (-316 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-337)) (-4 *4 (-1141 *2))
- (-4 *5 (-1141 (-381 *4))) (-4 *1 (-309 *2 *4 *5 *6))
- (-4 *6 (-316 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-337)) (-4 *3 (-1141 *2)) (-4 *4 (-1141 (-381 *3)))
- (-4 *1 (-309 *2 *3 *4 *5)) (-4 *5 (-316 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
- (-4 *1 (-309 *3 *4 *5 *2)) (-4 *2 (-316 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-387 *4 (-381 *4) *5 *6)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-4 *6 (-316 *3 *4 *5)) (-4 *3 (-337))
- (-4 *1 (-309 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-850)) (-5 *4 (-202)) (-5 *5 (-522)) (-5 *6 (-803))
+ (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202))))
+ (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-588 (-291 (-202))))
+ (|:| -3802 (-588 (-202)))))))
+ (-5 *2 (-588 (-1068))) (-5 *1 (-243)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-915 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-381 *5)) (-4 *4 (-1123)) (-4 *5 (-1141 *4))
- (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-5 *3 (-382 *5)) (-4 *4 (-1124)) (-4 *5 (-1142 *4))
+ (-5 *1 (-136 *4 *5 *2)) (-4 *2 (-1142 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-381 (-521)))) (-5 *2 (-381 (-521)))
+ (-12 (-5 *3 (-1087 (-382 (-522)))) (-5 *2 (-382 (-522)))
(-5 *1 (-169))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-627 (-290 (-202)))) (-5 *3 (-587 (-1084)))
- (-5 *4 (-1165 (-290 (-202)))) (-5 *1 (-184))))
+ (-12 (-5 *2 (-628 (-291 (-202)))) (-5 *3 (-588 (-1085)))
+ (-5 *4 (-1166 (-291 (-202)))) (-5 *1 (-184))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-269 *3))) (-4 *3 (-284 *3)) (-4 *3 (-1013))
- (-4 *3 (-1119)) (-5 *1 (-269 *3))))
+ (-12 (-5 *2 (-588 (-270 *3))) (-4 *3 (-285 *3)) (-4 *3 (-1014))
+ (-4 *3 (-1120)) (-5 *1 (-270 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-284 *2)) (-4 *2 (-1013)) (-4 *2 (-1119))
- (-5 *1 (-269 *2))))
+ (-12 (-4 *2 (-285 *2)) (-4 *2 (-1014)) (-4 *2 (-1120))
+ (-5 *1 (-270 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 (-587 *1))))
- (-4 *1 (-277))))
+ (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 (-588 *1))))
+ (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277))))
+ (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 *1)) (-4 *1 (-277))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 *1)) (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1 *1 (-587 *1))) (-4 *1 (-277))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1 *1 (-588 *1))) (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 (-587 *1))))
- (-4 *1 (-277))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 (-588 *1))))
+ (-4 *1 (-278))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-1 *1 *1))) (-4 *1 (-277))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-1 *1 *1))) (-4 *1 (-278))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-269 *3))) (-4 *1 (-284 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-588 (-270 *3))) (-4 *1 (-285 *3)) (-4 *3 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-269 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-270 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-521))) (-5 *4 (-1086 (-381 (-521))))
- (-5 *1 (-285 *2)) (-4 *2 (-37 (-381 (-521))))))
+ (-12 (-5 *3 (-1 *2 (-522))) (-5 *4 (-1087 (-382 (-522))))
+ (-5 *1 (-286 *2)) (-4 *2 (-37 (-382 (-522))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *1)) (-4 *1 (-348 *4 *5))
- (-4 *4 (-783)) (-4 *5 (-157))))
+ (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *1)) (-4 *1 (-349 *4 *5))
+ (-4 *4 (-784)) (-4 *5 (-157))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157))))
+ (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-970))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-707)) (-5 *4 (-1 *1 (-587 *1)))
- (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-970))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-708)) (-5 *4 (-1 *1 (-588 *1)))
+ (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-971))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707)))
- (-5 *4 (-587 (-1 *1 (-587 *1)))) (-4 *1 (-404 *5)) (-4 *5 (-783))
- (-4 *5 (-970))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708)))
+ (-5 *4 (-588 (-1 *1 (-588 *1)))) (-4 *1 (-405 *5)) (-4 *5 (-784))
+ (-4 *5 (-971))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-587 (-707)))
- (-5 *4 (-587 (-1 *1 *1))) (-4 *1 (-404 *5)) (-4 *5 (-783))
- (-4 *5 (-970))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-588 (-708)))
+ (-5 *4 (-588 (-1 *1 *1))) (-4 *1 (-405 *5)) (-4 *5 (-784))
+ (-4 *5 (-971))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-587 (-110))) (-5 *3 (-587 *1)) (-5 *4 (-1084))
- (-4 *1 (-404 *5)) (-4 *5 (-783)) (-4 *5 (-562 (-497)))))
+ (-12 (-5 *2 (-588 (-110))) (-5 *3 (-588 *1)) (-5 *4 (-1085))
+ (-4 *1 (-405 *5)) (-4 *5 (-784)) (-4 *5 (-563 (-498)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1084)) (-4 *1 (-404 *4)) (-4 *4 (-783))
- (-4 *4 (-562 (-497)))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1085)) (-4 *1 (-405 *4)) (-4 *4 (-784))
+ (-4 *4 (-563 (-498)))))
((*1 *1 *1)
- (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)) (-4 *2 (-562 (-497)))))
+ (-12 (-4 *1 (-405 *2)) (-4 *2 (-784)) (-4 *2 (-563 (-498)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-1084))) (-4 *1 (-404 *3)) (-4 *3 (-783))
- (-4 *3 (-562 (-497)))))
+ (-12 (-5 *2 (-588 (-1085))) (-4 *1 (-405 *3)) (-4 *3 (-784))
+ (-4 *3 (-563 (-498)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783))
- (-4 *3 (-562 (-497)))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784))
+ (-4 *3 (-563 (-498)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1119))))
+ (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1120))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 *5)) (-4 *1 (-482 *4 *5))
- (-4 *4 (-1013)) (-4 *5 (-1119))))
+ (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 *5)) (-4 *1 (-483 *4 *5))
+ (-4 *4 (-1014)) (-4 *5 (-1120))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-769 *3)) (-4 *3 (-337)) (-5 *1 (-655 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-770 *3)) (-4 *3 (-338)) (-5 *1 (-656 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1014))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-381 (-880 *4))) (-5 *3 (-1084)) (-4 *4 (-513))
- (-5 *1 (-966 *4))))
+ (-12 (-5 *2 (-382 (-881 *4))) (-5 *3 (-1085)) (-4 *4 (-514))
+ (-5 *1 (-967 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-587 (-1084))) (-5 *4 (-587 (-381 (-880 *5))))
- (-5 *2 (-381 (-880 *5))) (-4 *5 (-513)) (-5 *1 (-966 *5))))
+ (-12 (-5 *3 (-588 (-1085))) (-5 *4 (-588 (-382 (-881 *5))))
+ (-5 *2 (-382 (-881 *5))) (-4 *5 (-514)) (-5 *1 (-967 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-269 (-381 (-880 *4)))) (-5 *2 (-381 (-880 *4)))
- (-4 *4 (-513)) (-5 *1 (-966 *4))))
+ (-12 (-5 *3 (-270 (-382 (-881 *4)))) (-5 *2 (-382 (-881 *4)))
+ (-4 *4 (-514)) (-5 *1 (-967 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-269 (-381 (-880 *4))))) (-5 *2 (-381 (-880 *4)))
- (-4 *4 (-513)) (-5 *1 (-966 *4))))
+ (-12 (-5 *3 (-588 (-270 (-382 (-881 *4))))) (-5 *2 (-382 (-881 *4)))
+ (-4 *4 (-514)) (-5 *1 (-967 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1065 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-627 *5)) (-4 *5 (-970)) (-5 *1 (-974 *3 *4 *5))
- (-14 *3 (-707)) (-14 *4 (-707)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-728)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-210)) (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-242 *4))
- (-4 *6 (-729)) (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-4 *3 (-783)) (-4 *5 (-242 *3)) (-4 *6 (-729))
- (-5 *2 (-1 *1 (-707))) (-4 *1 (-229 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-707)) (-4 *1 (-242 *2)) (-4 *2 (-783)))))
-(((*1 *1) (-5 *1 (-108))))
+ (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1066 *3)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-587 (-381 *6))) (-5 *3 (-381 *6))
- (-4 *6 (-1141 *5)) (-4 *5 (-13 (-337) (-135) (-961 (-521))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1068)) (-5 *2 (-522)) (-5 *1 (-1103 *4))
+ (-4 *4 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-622 *4 *3)) (-4 *4 (-1014))
+ (-4 *3 (-1014)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514))
+ (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *8)) (|:| |badPols| (-588 *8))))
+ (-5 *1 (-904 *5 *6 *7 *8)) (-5 *4 (-588 *8)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-233)))))
+(((*1 *1) (-5 *1 (-108))))
+(((*1 *2 *3) (-12 (-5 *3 (-382 (-522))) (-5 *2 (-202)) (-5 *1 (-281)))))
+(((*1 *1) (-5 *1 (-1088))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-784)) (-5 *3 (-588 *6)) (-5 *5 (-588 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-588 *5)) (|:| |f3| *5)
+ (|:| |f4| (-588 *5))))
+ (-5 *1 (-1092 *6)) (-5 *4 (-588 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1 *1) (-5 *1 (-708)))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1166 *6)) (-5 *4 (-1166 (-522))) (-5 *5 (-522))
+ (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-943 *6)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-547 *3)) (-4 *3 (-971)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3))
+ (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971)))))
+(((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-498))) (-5 *1 (-498)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 (-561 *4))) (-4 *4 (-405 *3)) (-4 *3 (-784))
+ (-5 *1 (-531 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-382 (-1081 (-291 *3)))) (-4 *3 (-13 (-514) (-784)))
+ (-5 *1 (-1042 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730))
+ (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-988 *7 *8 *9 *3 *4)) (-4 *4 (-990 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-988 *6 *7 *8 *3 *4)) (-4 *4 (-990 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-988 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-708)) (-5 *6 (-108)) (-4 *7 (-426)) (-4 *8 (-730))
+ (-4 *9 (-784)) (-4 *3 (-985 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-1055 *7 *8 *9 *3 *4)) (-4 *4 (-1023 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-708)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *3 (-985 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-1055 *6 *7 *8 *3 *4)) (-4 *4 (-1023 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-588 *4))
+ (|:| |todo| (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))))
+ (-5 *1 (-1055 *5 *6 *7 *3 *4)) (-4 *4 (-1023 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-588 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))))
(-5 *2
(-2 (|:| |mainpart| *3)
(|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-525 *5 *6)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2))
- (-4 *2 (-1141 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(((*1 *2 *1) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105)))))
- ((*1 *1 *1 *1) (-4 *1 (-729))))
-(((*1 *1 *1 *1) (-4 *1 (-282))) ((*1 *1 *1 *1) (-5 *1 (-707)))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-755 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-347 *3)) (-4 *3 (-1119)) (-4 *3 (-783)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-347 *4)) (-4 *4 (-1119))
- (-5 *2 (-108)))))
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-515 *6 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-513)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $))
- (-15 -2818 ((-1036 *3 (-560 $)) $))
- (-15 -2223 ($ (-1036 *3 (-560 $))))))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 (-560 *4))) (-4 *4 (-404 *3)) (-4 *3 (-783))
- (-5 *1 (-530 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+ (-12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))
+ (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9))
+ (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6))
+ (-4 *8 (-348 *7)) (-4 *9 (-348 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2)) (-4 *2 (-283))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2))
+ (-4 *2 (-626 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-974 *2 *3 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-215 *3 *4)) (-4 *6 (-215 *2 *4)) (-4 *4 (-283)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1013))
- (-4 *3 (-151 *6)) (-4 (-880 *6) (-814 *5))
- (-4 *6 (-13 (-814 *5) (-157))) (-5 *1 (-162 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-817 *4 *1)) (-5 *3 (-820 *4)) (-4 *1 (-814 *4))
- (-4 *4 (-1013))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *6)) (-5 *4 (-820 *5)) (-4 *5 (-1013))
- (-4 *6 (-13 (-1013) (-961 *3))) (-4 *3 (-814 *5))
- (-5 *1 (-859 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1013))
- (-4 *3 (-13 (-404 *6) (-562 *4) (-814 *5) (-961 (-560 $))))
- (-5 *4 (-820 *5)) (-4 *6 (-13 (-513) (-783) (-814 *5)))
- (-5 *1 (-860 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 (-521) *3)) (-5 *4 (-820 (-521))) (-4 *3 (-506))
- (-5 *1 (-861 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *6)) (-5 *3 (-560 *6)) (-4 *5 (-1013))
- (-4 *6 (-13 (-783) (-961 (-560 $)) (-562 *4) (-814 *5)))
- (-5 *4 (-820 *5)) (-5 *1 (-862 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-813 *5 *6 *3)) (-5 *4 (-820 *5)) (-4 *5 (-1013))
- (-4 *6 (-814 *5)) (-4 *3 (-607 *6)) (-5 *1 (-863 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-817 *6 *3) *8 (-820 *6) (-817 *6 *3)))
- (-4 *8 (-783)) (-5 *2 (-817 *6 *3)) (-5 *4 (-820 *6))
- (-4 *6 (-1013)) (-4 *3 (-13 (-877 *9 *7 *8) (-562 *4)))
- (-4 *7 (-729)) (-4 *9 (-13 (-970) (-783) (-814 *6)))
- (-5 *1 (-864 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1013))
- (-4 *3 (-13 (-877 *8 *6 *7) (-562 *4))) (-5 *4 (-820 *5))
- (-4 *7 (-814 *5)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *8 (-13 (-970) (-783) (-814 *5))) (-5 *1 (-864 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-918 *6))
- (-4 *6 (-13 (-513) (-814 *5) (-562 *4))) (-5 *4 (-820 *5))
- (-5 *1 (-867 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-817 *5 (-1084))) (-5 *3 (-1084)) (-5 *4 (-820 *5))
- (-4 *5 (-1013)) (-5 *1 (-868 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-587 (-820 *7))) (-5 *5 (-1 *9 (-587 *9)))
- (-5 *6 (-1 (-817 *7 *9) *9 (-820 *7) (-817 *7 *9))) (-4 *7 (-1013))
- (-4 *9 (-13 (-970) (-562 (-820 *7)) (-961 *8))) (-5 *2 (-817 *7 *9))
- (-5 *3 (-587 *9)) (-4 *8 (-13 (-970) (-783)))
- (-5 *1 (-869 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1141 (-381 (-521)))) (-5 *1 (-841 *3 *2))
- (-4 *2 (-1141 (-381 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-98 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1067) (-710))) (-5 *1 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425))))
- ((*1 *1 *1 *1) (-4 *1 (-425)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521)))))
+ (-12
+ (-5 *2
+ (-588
+ (-588
+ (-3 (|:| -2888 (-1085))
+ (|:| |bounds| (-588 (-3 (|:| S (-1085)) (|:| P (-881 (-522))))))))))
+ (-5 *1 (-1089)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-514) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-588 (-561 *3)))
+ (|:| |vals| (-588 *3))))
+ (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426))))
+ ((*1 *1 *1 *1) (-4 *1 (-426)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-5 *1 (-458 *2)) (-4 *2 (-1142 (-522)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-707)))
+ (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-708)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-282))
- (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4))))
+ (-12 (-4 *3 (-730)) (-4 *4 (-784)) (-4 *5 (-283))
+ (-5 *1 (-845 *3 *4 *5 *2)) (-4 *2 (-878 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *6 *4 *5))
- (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-282))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-878 *6 *4 *5))
+ (-5 *1 (-845 *4 *5 *6 *2)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-283))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *5 (-282)) (-5 *1 (-844 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *5 (-283)) (-5 *1 (-845 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1080 *7))) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-282)) (-5 *2 (-1080 *7)) (-5 *1 (-844 *4 *5 *6 *7))
- (-4 *7 (-877 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-849)))
+ (-12 (-5 *3 (-588 (-1081 *7))) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-283)) (-5 *2 (-1081 *7)) (-5 *1 (-845 *4 *5 *6 *7))
+ (-4 *7 (-878 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-850)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-425)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2))
- (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-426)) (-4 *3 (-514)) (-5 *1 (-897 *3 *2))
+ (-4 *2 (-1142 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124))
+ (-5 *2 (-588 (-2 (|:| |gen| *3) (|:| -3266 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| -2977 *3) (|:| -2518 *4))))
+ (-5 *1 (-673 *3 *4)) (-4 *3 (-971)) (-4 *4 (-664))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-5 *2 (-1066 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
(-5 *1 (-692)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-282))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1384 *1)))
- (-4 *1 (-282)))))
-(((*1 *1 *1 *1) (-4 *1 (-282))) ((*1 *1 *1 *1) (-5 *1 (-707)))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-1080 *4))) (-5 *3 (-1080 *4))
- (-4 *4 (-837)) (-5 *1 (-604 *4)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-266)))
- ((*1 *1) (-5 *1 (-791)))
- ((*1 *1)
- (-12 (-4 *2 (-425)) (-4 *3 (-783)) (-4 *4 (-729))
- (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1000)))
- ((*1 *1)
- (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33)))))
- ((*1 *1) (-5 *1 (-1087))) ((*1 *1) (-5 *1 (-1088))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-394 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1105) (-404 *3)))
- (-14 *4 (-1084)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-4 *2 (-13 (-27) (-1105) (-404 *3) (-10 -8 (-15 -2223 ($ *4)))))
- (-4 *4 (-781))
- (-4 *5
- (-13 (-1143 *2 *4) (-337) (-1105)
- (-10 -8 (-15 -2193 ($ $)) (-15 -1749 ($ $)))))
- (-5 *1 (-396 *3 *2 *4 *5 *6 *7)) (-4 *6 (-909 *5)) (-14 *7 (-1084)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-304)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202)))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-959)) (-5 *1 (-690)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521))))
- (-5 *4 (-290 (-154 (-353)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521))))
- (-5 *4 (-290 (-353))) (-5 *1 (-304))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521))))
- (-5 *4 (-290 (-521))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-154 (-353)))))
- (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-353)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-521)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-154 (-353)))))
- (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-353)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-521)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-154 (-353)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-353))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-521))) (-5 *1 (-304))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521))))
- (-5 *4 (-290 (-631))) (-5 *1 (-304))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521))))
- (-5 *4 (-290 (-636))) (-5 *1 (-304))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-880 (-521))))
- (-5 *4 (-290 (-638))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-631)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-636)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-290 (-638)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-631)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-636)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-290 (-638)))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-631))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-636))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-638))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-631))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-636))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-627 (-638))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-631))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-636))) (-5 *1 (-304))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-290 (-638))) (-5 *1 (-304))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-304))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-113 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-521))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-799 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-14 *2 (-521))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-521)) (-14 *3 *2) (-5 *1 (-800 *3 *4))
- (-4 *4 (-797 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-521)) (-5 *1 (-800 *2 *3)) (-4 *3 (-797 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-521)) (-4 *1 (-1127 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-1156 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1127 *2 *3)) (-4 *2 (-970)) (-4 *3 (-1156 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-511 *3)) (-4 *3 (-13 (-378) (-1105))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-781)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-301 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971))
+ (-4 *2 (-426))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-1142 (-522))) (-5 *2 (-588 (-522)))
+ (-5 *1 (-458 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *3 (-426)))))
+(((*1 *1 *1 *1) (-4 *1 (-283))) ((*1 *1 *1 *1) (-5 *1 (-708)))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-986 *4 *3)) (-4 *4 (-13 (-781) (-337)))
- (-4 *3 (-1141 *4)) (-5 *2 (-108)))))
-(((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))))
+ (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338)))
+ (-4 *3 (-1142 *4)) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-561 *4)) (-4 *4 (-784))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-5 *2 (-108)) (-5 *1 (-816 *5 *3 *4))
+ (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *6)) (-4 *6 (-815 *5)) (-4 *5 (-1014))
+ (-5 *2 (-108)) (-5 *1 (-816 *5 *6 *4)) (-4 *4 (-563 (-821 *5))))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-708)) (-4 *6 (-338)) (-5 *4 (-1115 *6))
+ (-5 *2 (-1 (-1066 *4) (-1066 *4))) (-5 *1 (-1174 *6))
+ (-5 *5 (-1066 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-461 *3)) (-4 *3 (-1120))
+ (-4 *3 (-1014)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-834 *4)) (-4 *4 (-1014)) (-5 *2 (-108))
+ (-5 *1 (-833 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-850)) (-5 *2 (-108)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2)
+ (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1142 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-755 *3)) (|:| |rm| (-755 *3))))
- (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513)))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-756 *3)) (|:| |rm| (-756 *3))))
+ (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-588 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-980))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)) (-4 *2 (-980))))
+ ((*1 *1 *1) (-4 *1 (-782)))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)) (-4 *2 (-980))))
+ ((*1 *1 *1) (-4 *1 (-980))) ((*1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514))
+ (-5 *2 (-382 (-881 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-1126 *4)) (-4 *4 (-971)) (-4 *4 (-514))
+ (-5 *2 (-382 (-881 *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218)) (-5 *3 (-1067))))
- ((*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-218))))
- ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-698))))
+ (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218)) (-5 *3 (-1068))))
+ ((*1 *2 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-218))))
+ ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-5 *1 (-411)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2)
- (-12 (-5 *2 (-627 (-838 *3))) (-5 *1 (-325 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-627 *3)) (-5 *1 (-326 *3 *4)) (-4 *3 (-323))
- (-14 *4
- (-3 (-1080 *3)
- (-1165 (-587 (-2 (|:| -3434 *3) (|:| -2723 (-1031)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-627 *3)) (-5 *1 (-327 *3 *4)) (-4 *3 (-323))
- (-14 *4 (-849)))))
+ (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014))
+ (-5 *2 (-588 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| |k| (-822 *3)) (|:| |c| *4))))
+ (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-613 *3))) (-5 *1 (-822 *3)) (-4 *3 (-784)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-647 *3)) (-5 *1 (-764 *2 *3)) (-4 *3 (-971)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))
- (-4 *4 (-562 (-497))) (-4 *5 (-1119)) (-4 *6 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-283)) (-5 *2 (-393 *3))
+ (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-878 *6 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108))
+ (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-1080 (-880 *4))) (-5 *1 (-390 *3 *4))
- (-4 *3 (-391 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-4 *3 (-337))
- (-5 *2 (-1080 (-880 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+ (-12 (-5 *2 (-1166 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4))
+ (-14 *3 (-850)) (-14 *4 (-850)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
+ (|partial| -12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-514))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))
- (-4 *2 (-513))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-513)))
+ (|partial| -12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))
+ (-4 *2 (-514))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-514)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970))
- (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-513))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-707)))
+ (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971))
+ (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-514))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-708)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-513))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
+ (|partial| -12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-514))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-513))
- (-5 *1 (-896 *3 *4))))
+ (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1142 *3)) (-4 *3 (-514))
+ (-5 *1 (-897 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970))
- (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-513))))
+ (|partial| -12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971))
+ (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-514))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-202) (-202) (-202)))
- (-5 *4 (-1 (-202) (-202) (-202) (-202)))
- (-5 *2 (-1 (-871 (-202)) (-202) (-202))) (-5 *1 (-634)))))
-(((*1 *1 *1) (-12 (-4 *1 (-404 *2)) (-4 *2 (-783)) (-4 *2 (-513))))
- ((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)))))
-(((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1245 (-587 *1))))
- (-4 *1 (-341 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-426 *3 *4 *5 *6))
- (|:| -1245 (-587 (-426 *3 *4 *5 *6)))))
- (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-425))))
- ((*1 *1 *1 *1) (-4 *1 (-425))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3)) (-5 *6 (-1080 *3))
- (-4 *3 (-13 (-404 *7) (-27) (-1105)))
- (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-560 *3)) (-5 *5 (-587 *3))
- (-5 *6 (-381 (-1080 *3))) (-4 *3 (-13 (-404 *7) (-27) (-1105)))
- (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-517 *7 *3 *8)) (-4 *8 (-1013)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))))
+ (|partial| -12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-157)) (-4 *2 (-514))))
+ ((*1 *1 *1) (|partial| -4 *1 (-660))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-514)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283))))
+ ((*1 *2 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-283))))
+ ((*1 *2 *1) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514)) (-4 *2 (-283))))
+ ((*1 *2 *1) (-12 (-4 *1 (-980)) (-5 *2 (-522)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-283)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1036 *4 *5 *6 *3)) (-4 *3 (-626 *4 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-983))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-282)) (-4 *3 (-157)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3)))
- (-5 *1 (-626 *3 *4 *5 *6)) (-4 *6 (-625 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3))) (-5 *1 (-637 *3))
- (-4 *3 (-282)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1084)) (-5 *2 (-1088)) (-5 *1 (-1087)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-154 (-202))))
- (-5 *2 (-959)) (-5 *1 (-691)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 *3)) (-5 *1 (-897 *4 *3))
+ (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-426))
+ (-5 *2
+ (-588
+ (-2 (|:| |eigval| (-3 (-382 (-881 *4)) (-1075 (-1085) (-881 *4))))
+ (|:| |geneigvec| (-588 (-628 (-382 (-881 *4))))))))
+ (-5 *1 (-268 *4)) (-5 *3 (-628 (-382 (-881 *4)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-426))))
+ ((*1 *1 *1 *1) (-4 *1 (-426))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1150 *3 *4 *5)) (-5 *1 (-293 *3 *4 *5))
- (-4 *3 (-13 (-337) (-783))) (-14 *4 (-1084)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-378)) (-5 *2 (-521))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-636))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-783))
- (-14 *4
- (-1 (-108) (-2 (|:| -2723 *3) (|:| -2246 *2))
- (-2 (|:| -2723 *3) (|:| -2246 *2)))))))
-(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
+ (-12 (-5 *3 (-1 *2 (-588 *2))) (-5 *4 (-588 *5))
+ (-4 *5 (-37 (-382 (-522)))) (-4 *2 (-1157 *5))
+ (-5 *1 (-1159 *5 *2)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-540 *2)) (-4 *2 (-507)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-628 (-522))) (-5 *3 (-588 (-522))) (-5 *1 (-1024)))))
+(((*1 *2)
+ (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4))
+ (-4 *3 (-304 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-708)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 (-382 (-522))))
+ (-5 *2
+ (-588
+ (-2 (|:| |outval| *4) (|:| |outmult| (-522))
+ (|:| |outvect| (-588 (-628 *4))))))
+ (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1068)) (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784))
+ (-4 *4 (-985 *6 *7 *8)) (-5 *2 (-1171))
+ (-5 *1 (-713 *6 *7 *8 *4 *5)) (-4 *5 (-990 *6 *7 *8 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7)) (-5 *2 (-588 *4))
+ (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4))
- (-4 *4 (-970))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4))
+ (-4 *4 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708))))
((*1 *1 *1) (-4 *1 (-210)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4))
- (-4 *4 (-1141 *3))))
+ (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4))
+ (-4 *4 (-1142 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3))
- (-4 *3 (-1141 *2))))
- ((*1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-970))))
+ (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3))
+ (-4 *3 (-1142 *2))))
+ ((*1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-828 *4))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4))
+ (-4 *4 (-1014))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-828 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-411))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031))))))
- (-4 *4 (-323)) (-5 *2 (-627 *4)) (-5 *1 (-320 *4)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-221 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2)
- (-12 (-4 *4 (-337)) (-5 *2 (-849)) (-5 *1 (-302 *3 *4))
- (-4 *3 (-303 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-337)) (-5 *2 (-769 (-849))) (-5 *1 (-302 *3 *4))
- (-4 *3 (-303 *4))))
- ((*1 *2) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-849))))
- ((*1 *2)
- (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-769 (-849))))))
+ (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1133 *3)) (-4 *3 (-1120)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-392 *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-970)) (-5 *2 (-587 *6)) (-5 *1 (-417 *5 *6)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))))
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-423 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-759)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-756 *3)) (-4 *3 (-784)) (-5 *1 (-613 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *2 (-960))
+ (-5 *1 (-686)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-588 (-2 (|:| |totdeg| (-708)) (|:| -3892 *3))))
+ (-5 *4 (-708)) (-4 *3 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *6 (-730))
+ (-4 *7 (-784)) (-5 *1 (-423 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -1856 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-588 (-382 *8))) (-4 *7 (-338)) (-4 *8 (-1142 *7))
+ (-5 *3 (-382 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-532 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-117 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-171))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-275))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1065 (-202))) (-5 *2 (-587 (-1067))) (-5 *1 (-280)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-513)) (-4 *2 (-877 *3 *5 *4))
- (-5 *1 (-669 *5 *4 *6 *2)) (-5 *3 (-381 (-880 *6))) (-4 *5 (-729))
- (-4 *4 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-4 *1 (-139 *3))))
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522))) (-5 *2 (-108))
+ (-5 *1 (-1191 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-139 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-587 (-2 (|:| -2246 (-707)) (|:| -1952 *4) (|:| |num| *4))))
- (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4))))
+ (-5 *2 (-588 (-2 (|:| -1400 (-708)) (|:| -1893 *4) (|:| |num| *4))))
+ (-4 *4 (-1142 *3)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-108)) (-5 *1 (-411))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-5 *3 (-588 (-881 (-522)))) (-5 *4 (-108)) (-5 *1 (-412))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-5 *3 (-587 (-1084))) (-5 *4 (-108)) (-5 *1 (-411))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-5 *3 (-588 (-1085))) (-5 *4 (-108)) (-5 *1 (-412))))
((*1 *2 *1)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157))))
+ (-12 (-5 *2 (-1066 *3)) (-5 *1 (-552 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-5 *1 (-605 *3 *4))
+ (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4))
(-4 *4 (-157))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-5 *1 (-605 *3 *4))
+ (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4))
(-4 *4 (-157))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-5 *1 (-605 *3 *4))
+ (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-5 *1 (-606 *3 *4))
(-4 *4 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 (-587 *3)))) (-4 *3 (-1013))
- (-5 *1 (-615 *3))))
+ (-12 (-5 *2 (-588 (-588 (-588 *3)))) (-4 *3 (-1014))
+ (-5 *1 (-616 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-783)) (-4 *3 (-1013))
+ (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-784)) (-4 *3 (-1014))
(-14 *4
- (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *3))
- (-2 (|:| -2723 *2) (|:| -2246 *3))))))
+ (-1 (-108) (-2 (|:| -2717 *2) (|:| -1400 *3))
+ (-2 (|:| -2717 *2) (|:| -1400 *3))))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-801 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))
+ (-12 (-5 *1 (-802 *2 *3)) (-4 *2 (-1120)) (-4 *3 (-1120))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 *4))))
- (-4 *4 (-1013)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 *4))))
+ (-4 *4 (-1014)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *5)) (-4 *5 (-13 (-1013) (-33)))
- (-5 *2 (-587 (-1049 *3 *5))) (-5 *1 (-1049 *3 *5))
- (-4 *3 (-13 (-1013) (-33)))))
+ (-12 (-5 *4 (-588 *5)) (-4 *5 (-13 (-1014) (-33)))
+ (-5 *2 (-588 (-1050 *3 *5))) (-5 *1 (-1050 *3 *5))
+ (-4 *3 (-13 (-1014) (-33)))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| |val| *4) (|:| -1946 *5))))
- (-4 *4 (-13 (-1013) (-33))) (-4 *5 (-13 (-1013) (-33)))
- (-5 *2 (-587 (-1049 *4 *5))) (-5 *1 (-1049 *4 *5))))
+ (-12 (-5 *3 (-588 (-2 (|:| |val| *4) (|:| -1886 *5))))
+ (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33)))
+ (-5 *2 (-588 (-1050 *4 *5))) (-5 *1 (-1050 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1946 *4)))
- (-4 *3 (-13 (-1013) (-33))) (-4 *4 (-13 (-1013) (-33)))
- (-5 *1 (-1049 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1886 *4)))
+ (-4 *3 (-13 (-1014) (-33))) (-4 *4 (-13 (-1014) (-33)))
+ (-5 *1 (-1050 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33)))))
+ (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33)))))
+ (-12 (-5 *4 (-108)) (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-13 (-1013) (-33)))
- (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33)))))
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-13 (-1014) (-33)))
+ (-5 *1 (-1051 *2 *3)) (-4 *2 (-13 (-1014) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-1049 *2 *3))) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33))) (-5 *1 (-1050 *2 *3))))
+ (-12 (-5 *4 (-588 (-1050 *2 *3))) (-4 *2 (-13 (-1014) (-33)))
+ (-4 *3 (-13 (-1014) (-33))) (-5 *1 (-1051 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-1050 *2 *3))) (-5 *1 (-1050 *2 *3))
- (-4 *2 (-13 (-1013) (-33))) (-4 *3 (-13 (-1013) (-33)))))
+ (-12 (-5 *4 (-588 (-1051 *2 *3))) (-5 *1 (-1051 *2 *3))
+ (-4 *2 (-13 (-1014) (-33))) (-4 *3 (-13 (-1014) (-33)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4))))
+ (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1074 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-156))))))
+ (-12 (-5 *1 (-1075 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970))
- (-4 *5 (-783)) (-5 *2 (-880 *4))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971))
+ (-4 *5 (-784)) (-5 *2 (-881 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *5)) (-4 *4 (-970))
- (-4 *5 (-783)) (-5 *2 (-880 *4))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-678 *4 *5)) (-4 *4 (-971))
+ (-4 *5 (-784)) (-5 *2 (-881 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970))
- (-5 *2 (-880 *4))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971))
+ (-5 *2 (-881 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-1156 *4)) (-4 *4 (-970))
- (-5 *2 (-880 *4)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-521)) (-14 *3 (-707))
- (-4 *4 (-157))))
- ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1084))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-757)))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-1157 *4)) (-4 *4 (-971))
+ (-5 *2 (-881 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-156)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1165
- (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202))
- (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -2625 (-521))
- (|:| -2791 (-521)) (|:| |spline| (-521)) (|:| -2499 (-521))
- (|:| |axesColor| (-802)) (|:| -2021 (-521))
- (|:| |unitsColor| (-802)) (|:| |showing| (-521)))))
- (-5 *1 (-1166)))))
+ (-12 (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1084))) (-5 *2 (-1170)) (-5 *1 (-1087))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170))
- (-5 *1 (-1087))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-587 (-1084))) (-5 *3 (-1084)) (-5 *2 (-1170))
- (-5 *1 (-1087)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304))
- (-5 *1 (-306)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-587
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-521)))))
- (-4 *2 (-513)) (-5 *1 (-392 *2))))
+ (|partial| -12 (-4 *5 (-962 (-47)))
+ (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4))
+ (-5 *2 (-393 (-1081 (-47)))) (-5 *1 (-410 *4 *5 *3))
+ (-4 *3 (-1142 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-521))
- (|:| -3655 (-587 (-2 (|:| |irr| *4) (|:| -3083 (-521)))))))
- (-4 *4 (-1141 (-521))) (-5 *2 (-392 *4)) (-5 *1 (-415 *4)))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1 (-1066 (-881 *4)) (-1066 (-881 *4))))
+ (-5 *1 (-1174 *4)) (-4 *4 (-338)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1032)) (-4 *4 (-324))
+ (-5 *1 (-492 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-708)) (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-337)) (-14 *6 (-1165 (-627 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-849)) (-14 *5 (-587 (-1084)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-338)) (-14 *6 (-1166 (-628 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-850)) (-14 *5 (-588 (-1085)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1120))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'JINT 'X 'ELAM) (-2234) (-636))))
- (-5 *1 (-59 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'JINT 'X 'ELAM) (-2201) (-637))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 'XC) (-636))))
- (-5 *1 (-61 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 'XC) (-637))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-313 (-2234 'X) (-2234) (-636))) (-5 *1 (-62 *3))
- (-14 *3 (-1084))))
+ (-12 (-5 *2 (-314 (-2201 'X) (-2201) (-637))) (-5 *1 (-62 *3))
+ (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-627 (-313 (-2234) (-2234 'X 'HESS) (-636))))
- (-5 *1 (-63 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-628 (-314 (-2201) (-2201 'X 'HESS) (-637))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-313 (-2234) (-2234 'XC) (-636))) (-5 *1 (-64 *3))
- (-14 *3 (-1084))))
+ (-12 (-5 *2 (-314 (-2201) (-2201 'XC) (-637))) (-5 *1 (-64 *3))
+ (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'X) (-2234 '-1351) (-636))))
- (-5 *1 (-69 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'X) (-2201 '-1352) (-637))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 'X) (-636))))
- (-5 *1 (-72 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 'X) (-637))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'X 'EPS) (-2234 '-1351) (-636))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084))
- (-14 *5 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'X 'EPS) (-2201 '-1352) (-637))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085))
+ (-14 *5 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'EPS) (-2234 'YA 'YB) (-636))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1084)) (-14 *4 (-1084))
- (-14 *5 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'EPS) (-2201 'YA 'YB) (-637))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1085)) (-14 *4 (-1085))
+ (-14 *5 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-313 (-2234) (-2234 'X) (-636))) (-5 *1 (-75 *3))
- (-14 *3 (-1084))))
+ (-12 (-5 *2 (-314 (-2201) (-2201 'X) (-637))) (-5 *1 (-75 *3))
+ (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-313 (-2234) (-2234 'X) (-636))) (-5 *1 (-76 *3))
- (-14 *3 (-1084))))
+ (-12 (-5 *2 (-314 (-2201) (-2201 'X) (-637))) (-5 *1 (-76 *3))
+ (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 'XC) (-636))))
- (-5 *1 (-77 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 'XC) (-637))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 'X) (-636))))
- (-5 *1 (-78 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 'X) (-637))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234) (-2234 'X) (-636))))
- (-5 *1 (-79 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201) (-2201 'X) (-637))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'X '-1351) (-2234) (-636))))
- (-5 *1 (-80 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'X '-1352) (-2201) (-637))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-627 (-313 (-2234 'X '-1351) (-2234) (-636))))
- (-5 *1 (-81 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-628 (-314 (-2201 'X '-1352) (-2201) (-637))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-627 (-313 (-2234 'X) (-2234) (-636)))) (-5 *1 (-82 *3))
- (-14 *3 (-1084))))
+ (-12 (-5 *2 (-628 (-314 (-2201 'X) (-2201) (-637)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'X) (-2234) (-636))))
- (-5 *1 (-83 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'X) (-2201) (-637))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-313 (-2234 'X) (-2234 '-1351) (-636))))
- (-5 *1 (-84 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-1166 (-314 (-2201 'X) (-2201 '-1352) (-637))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-627 (-313 (-2234 'XL 'XR 'ELAM) (-2234) (-636))))
- (-5 *1 (-85 *3)) (-14 *3 (-1084))))
+ (-12 (-5 *2 (-628 (-314 (-2201 'XL 'XR 'ELAM) (-2201) (-637))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1085))))
((*1 *1 *2)
- (-12 (-5 *2 (-313 (-2234 'X) (-2234 '-1351) (-636))) (-5 *1 (-87 *3))
- (-14 *3 (-1084))))
- ((*1 *2 *1) (-12 (-5 *2 (-929 2)) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103))))
+ (-12 (-5 *2 (-314 (-2201 'X) (-2201 '-1352) (-637))) (-5 *1 (-87 *3))
+ (-14 *3 (-1085))))
+ ((*1 *2 *1) (-12 (-5 *2 (-930 2)) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-103))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5))
- (-14 *3 (-521)) (-14 *4 (-707)) (-4 *5 (-157))))
+ (-12 (-5 *2 (-588 (-128 *3 *4 *5))) (-5 *1 (-128 *3 *4 *5))
+ (-14 *3 (-522)) (-14 *4 (-708)) (-4 *5 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
- (-14 *3 (-521)) (-14 *4 (-707))))
+ (-12 (-5 *2 (-588 *5)) (-4 *5 (-157)) (-5 *1 (-128 *3 *4 *5))
+ (-14 *3 (-522)) (-14 *4 (-708))))
((*1 *1 *2)
- (-12 (-5 *2 (-1051 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157))
- (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))))
+ (-12 (-5 *2 (-1052 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157))
+ (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522))))
((*1 *1 *2)
- (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-707)) (-4 *5 (-157))
- (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-521))))
+ (-12 (-5 *2 (-217 *4 *5)) (-14 *4 (-708)) (-4 *5 (-157))
+ (-5 *1 (-128 *3 *4 *5)) (-14 *3 (-522))))
((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-627 *4))) (-4 *4 (-157))
- (-5 *2 (-1165 (-627 (-381 (-880 *4))))) (-5 *1 (-168 *4))))
+ (-12 (-5 *3 (-1166 (-628 *4))) (-4 *4 (-157))
+ (-5 *2 (-1166 (-628 (-382 (-881 *4))))) (-5 *1 (-168 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *3))
+ (-12 (-5 *2 (-588 *3))
(-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $))
- (-15 -2084 ((-1170) $)))))
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $))
+ (-15 -2664 ((-1171) $)))))
(-5 *1 (-192 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-929 10)) (-5 *1 (-195))))
- ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-222 *3)) (-4 *3 (-783))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-222 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-930 10)) (-5 *1 (-195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 *3)) (-5 *1 (-222 *3)) (-4 *3 (-784))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-222 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1006 (-290 *4)))
- (-4 *4 (-13 (-783) (-513) (-562 (-353)))) (-5 *2 (-1006 (-353)))
+ (-12 (-5 *3 (-1007 (-291 *4)))
+ (-4 *4 (-13 (-784) (-514) (-563 (-354)))) (-5 *2 (-1007 (-354)))
(-5 *1 (-234 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-783))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-251))))
+ ((*1 *1 *2) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-251))))
((*1 *2 *1)
- (-12 (-4 *2 (-1141 *3)) (-5 *1 (-264 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1142 *3)) (-5 *1 (-265 *3 *2 *4 *5 *6 *7))
(-4 *3 (-157)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-404 *3)))
- (-14 *5 (-1084)) (-14 *6 *4)
- (-4 *3 (-13 (-783) (-961 (-521)) (-583 (-521)) (-425)))
- (-5 *1 (-287 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-304))))
+ (-12 (-5 *2 (-1151 *4 *5 *6)) (-4 *4 (-13 (-27) (-1106) (-405 *3)))
+ (-14 *5 (-1085)) (-14 *6 *4)
+ (-4 *3 (-13 (-784) (-962 (-522)) (-584 (-522)) (-426)))
+ (-5 *1 (-288 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-305))))
((*1 *2 *1)
- (-12 (-5 *2 (-290 *5)) (-5 *1 (-313 *3 *4 *5))
- (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-291 *5)) (-5 *1 (-314 *3 *4 *5))
+ (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *3 *4 *2))
- (-4 *3 (-303 *4))))
+ (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *3 *4 *2))
+ (-4 *3 (-304 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-4 *2 (-303 *4)) (-5 *1 (-321 *2 *4 *3))
- (-4 *3 (-303 *4))))
+ (-12 (-4 *4 (-324)) (-4 *2 (-304 *4)) (-5 *1 (-322 *2 *4 *3))
+ (-4 *3 (-304 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-1187 *3 *4))))
+ (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-1188 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-1178 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157))))
+ (-12 (-4 *1 (-349 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *2 (-1179 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))
- (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-357))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-636))) (-4 *1 (-357))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))
+ (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-358))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-637))) (-4 *1 (-358))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))
- (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-358))))
- ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-1067))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363))))
- ((*1 *2 *3) (-12 (-5 *2 (-368)) (-5 *1 (-367 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-368))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))
+ (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-359))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364))))
+ ((*1 *2 *3) (-12 (-5 *2 (-369)) (-5 *1 (-368 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-369))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))
- (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-370))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))
+ (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-371))))
((*1 *1 *2)
- (-12 (-5 *2 (-269 (-290 (-154 (-353))))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-270 (-291 (-154 (-354))))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-269 (-290 (-353)))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-270 (-291 (-354)))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-269 (-290 (-521)))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-270 (-291 (-522)))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-154 (-353)))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-291 (-154 (-354)))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-353))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-291 (-354))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-521))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-291 (-522))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-269 (-290 (-631)))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-270 (-291 (-632)))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-269 (-290 (-636)))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-270 (-291 (-637)))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-269 (-290 (-638)))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-270 (-291 (-639)))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-631))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-291 (-632))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-636))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-291 (-637))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-638))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-291 (-639))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))
- (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084))
- (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))
+ (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085))
+ (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-304))) (-5 *1 (-372 *3 *4 *5 *6))
- (-14 *3 (-1084)) (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-588 (-305))) (-5 *1 (-373 *3 *4 *5 *6))
+ (-14 *3 (-1085)) (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-304)) (-5 *1 (-372 *3 *4 *5 *6)) (-14 *3 (-1084))
- (-14 *4 (-3 (|:| |fst| (-408)) (|:| -1366 "void")))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1088))))
+ (-12 (-5 *2 (-305)) (-5 *1 (-373 *3 *4 *5 *6)) (-14 *3 (-1085))
+ (-14 *4 (-3 (|:| |fst| (-409)) (|:| -1367 "void")))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1089))))
((*1 *1 *2)
- (-12 (-5 *2 (-305 *4)) (-4 *4 (-13 (-783) (-21)))
- (-5 *1 (-401 *3 *4)) (-4 *3 (-13 (-157) (-37 (-381 (-521)))))))
+ (-12 (-5 *2 (-306 *4)) (-4 *4 (-13 (-784) (-21)))
+ (-5 *1 (-402 *3 *4)) (-4 *3 (-13 (-157) (-37 (-382 (-522)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-401 *2 *3)) (-4 *2 (-13 (-157) (-37 (-381 (-521)))))
- (-4 *3 (-13 (-783) (-21)))))
+ (-12 (-5 *1 (-402 *2 *3)) (-4 *2 (-13 (-157) (-37 (-382 (-522)))))
+ (-4 *3 (-13 (-784) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-381 (-880 (-381 *3)))) (-4 *3 (-513)) (-4 *3 (-783))
- (-4 *1 (-404 *3))))
+ (-12 (-5 *2 (-382 (-881 (-382 *3)))) (-4 *3 (-514)) (-4 *3 (-784))
+ (-4 *1 (-405 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-381 *3))) (-4 *3 (-513)) (-4 *3 (-783))
- (-4 *1 (-404 *3))))
+ (-12 (-5 *2 (-881 (-382 *3))) (-4 *3 (-514)) (-4 *3 (-784))
+ (-4 *1 (-405 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-381 *3)) (-4 *3 (-513)) (-4 *3 (-783))
- (-4 *1 (-404 *3))))
+ (-12 (-5 *2 (-382 *3)) (-4 *3 (-514)) (-4 *3 (-784))
+ (-4 *1 (-405 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-970)) (-4 *3 (-783))
- (-4 *1 (-404 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-408))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-408))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-408))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-408))))
- ((*1 *1 *2) (-12 (-5 *2 (-408)) (-5 *1 (-411))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-411))))
+ (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-971)) (-4 *3 (-784))
+ (-4 *1 (-405 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-409))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-409))))
+ ((*1 *1 *2) (-12 (-5 *2 (-409)) (-5 *1 (-412))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-412))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))
- (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-413))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-636))) (-4 *1 (-413))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))
+ (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-414))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-637))) (-4 *1 (-414))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1088)) (|:| -2080 (-587 (-304)))))
- (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-304)) (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-304))) (-4 *1 (-414))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1089)) (|:| -2033 (-588 (-305)))))
+ (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-305)) (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-305))) (-4 *1 (-415))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-381 (-880 *3)))) (-4 *3 (-157))
- (-14 *6 (-1165 (-627 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-14 *4 (-849)) (-14 *5 (-587 (-1084)))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-441))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-441))))
+ (-12 (-5 *2 (-1166 (-382 (-881 *3)))) (-4 *3 (-157))
+ (-14 *6 (-1166 (-628 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-14 *4 (-850)) (-14 *5 (-588 (-1085)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-872 (-202))))) (-5 *1 (-442))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-442))))
((*1 *1 *2)
- (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-970)) (-14 *4 (-1084))
- (-14 *5 *3) (-5 *1 (-447 *3 *4 *5))))
+ (-12 (-5 *2 (-1151 *3 *4 *5)) (-4 *3 (-971)) (-14 *4 (-1085))
+ (-14 *5 *3) (-5 *1 (-448 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-929 16)) (-5 *1 (-458))))
- ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458))))
- ((*1 *1 *2) (-12 (-5 *2 (-1036 (-521) (-560 (-464)))) (-5 *1 (-464))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-471))))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-930 16)) (-5 *1 (-459))))
+ ((*1 *2 *1) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1037 (-522) (-561 (-465)))) (-5 *1 (-465))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-472))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-337))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-5 *1 (-555 *3 *2)) (-4 *2 (-681 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-561 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2) (-12 (-4 *1 (-565 *2)) (-4 *2 (-970))))
+ (-12 (-4 *3 (-157)) (-5 *1 (-556 *3 *2)) (-4 *2 (-682 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-971))))
((*1 *2 *1)
- (-12 (-5 *2 (-1183 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849))))
+ (-12 (-5 *2 (-1184 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))
((*1 *2 *1)
- (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849))))
+ (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-5 *1 (-579 *3 *2)) (-4 *2 (-681 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-616 *3)) (-5 *1 (-612 *3)) (-4 *3 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-612 *3)) (-4 *3 (-783))))
+ (-12 (-4 *3 (-157)) (-5 *1 (-580 *3 *2)) (-4 *2 (-682 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-613 *3)) (-4 *3 (-784))))
((*1 *2 *1)
- (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-5 *1 (-615 *3))
- (-4 *3 (-1013))))
+ (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-5 *1 (-616 *3))
+ (-4 *3 (-1014))))
((*1 *1 *2)
- (-12 (-5 *2 (-885 (-885 (-885 *3)))) (-4 *3 (-1013))
- (-5 *1 (-615 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-616 *3)) (-4 *3 (-783))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-886 (-886 (-886 *3)))) (-4 *3 (-1014))
+ (-5 *1 (-616 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-617 *3)) (-4 *3 (-784))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *2)) (-4 *4 (-347 *3))
- (-4 *2 (-347 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-638))) (-5 *1 (-631))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-636))) (-5 *1 (-631))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-521))) (-5 *1 (-631))))
- ((*1 *1 *2) (-12 (-5 *2 (-154 (-353))) (-5 *1 (-631))))
- ((*1 *1 *2) (-12 (-5 *2 (-638)) (-5 *1 (-636))))
- ((*1 *2 *1) (-12 (-5 *2 (-353)) (-5 *1 (-636))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-290 (-521))) (-5 *2 (-290 (-638))) (-5 *1 (-638))))
- ((*1 *1 *2) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1013))))
+ (-12 (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *2)) (-4 *4 (-348 *3))
+ (-4 *2 (-348 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-639))) (-5 *1 (-632))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-637))) (-5 *1 (-632))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-522))) (-5 *1 (-632))))
+ ((*1 *1 *2) (-12 (-5 *2 (-154 (-354))) (-5 *1 (-632))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639)) (-5 *1 (-637))))
+ ((*1 *2 *1) (-12 (-5 *2 (-354)) (-5 *1 (-637))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-291 (-522))) (-5 *2 (-291 (-639))) (-5 *1 (-639))))
+ ((*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1014))))
((*1 *2 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-157)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2723 *3) (|:| -2246 *4)))
- (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-783)) (-4 *4 (-1013))
+ (-12 (-5 *2 (-2 (|:| -2717 *3) (|:| -1400 *4)))
+ (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-784)) (-4 *4 (-1014))
(-14 *5 (-1 (-108) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -2723 *3) (|:| -2246 *4))) (-4 *3 (-783))
- (-4 *4 (-1013)) (-5 *1 (-650 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -2717 *3) (|:| -1400 *4))) (-4 *3 (-784))
+ (-4 *4 (-1014)) (-5 *1 (-651 *3 *4 *5)) (-14 *5 (-1 (-108) *2 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-157)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-157)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-2 (|:| -2979 *3) (|:| -2523 *4)))) (-4 *3 (-970))
- (-4 *4 (-663)) (-5 *1 (-672 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-700))))
+ (-12 (-5 *2 (-588 (-2 (|:| -2977 *3) (|:| -2518 *4)))) (-4 *3 (-971))
+ (-4 *4 (-664)) (-5 *1 (-673 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-701))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
(|:| |mdnia|
- (-2 (|:| |fn| (-290 (-202)))
- (|:| -1403 (-587 (-1008 (-776 (-202)))))
+ (-2 (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-588 (-1009 (-777 (-202)))))
(|:| |abserr| (-202)) (|:| |relerr| (-202))))))
- (-5 *1 (-705))))
+ (-5 *1 (-706))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-290 (-202)))
- (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202))
+ (-2 (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
- (-5 *1 (-705))))
+ (-5 *1 (-706))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
- (-5 *1 (-705))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-705))))
- ((*1 *2 *3) (-12 (-5 *2 (-710)) (-5 *1 (-709 *3)) (-4 *3 (-1119))))
+ (-5 *1 (-706))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-706))))
+ ((*1 *2 *3) (-12 (-5 *2 (-711)) (-5 *1 (-710 *3)) (-4 *3 (-1120))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
(|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *1 (-744))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-744))))
+ (-5 *1 (-745))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-745))))
((*1 *2 *1)
- (-12 (-4 *2 (-828 *3)) (-5 *1 (-753 *3 *2 *4)) (-4 *3 (-1013))
+ (-12 (-4 *2 (-829 *3)) (-5 *1 (-754 *3 *2 *4)) (-4 *3 (-1014))
(-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1013)) (-14 *4 *3) (-5 *1 (-753 *3 *2 *4))
- (-4 *2 (-828 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-760))))
+ (-12 (-4 *3 (-1014)) (-14 *4 *3) (-5 *1 (-754 *3 *2 *4))
+ (-4 *2 (-829 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-761))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202))))
- (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202))))
+ (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-587 (-290 (-202))))
- (|:| -3797 (-587 (-202)))))))
- (-5 *1 (-774))))
+ (-2 (|:| |lfn| (-588 (-291 (-202))))
+ (|:| -3802 (-588 (-202)))))))
+ (-5 *1 (-775))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
- (-5 *1 (-774))))
+ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))
+ (-5 *1 (-775))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
- (-5 *1 (-774))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-774))))
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
+ (-5 *1 (-775))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-775))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-788 *3 *4 *5 *6))
- (-4 *4 (-970)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-790))))
+ (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-789 *3 *4 *5 *6))
+ (-4 *4 (-971)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-791))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 *3)) (-4 *3 (-970)) (-5 *1 (-794 *3 *4 *5 *6))
- (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707))))
+ (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-795 *3 *4 *5 *6))
+ (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708))))
((*1 *2 *1)
- (-12 (-5 *2 (-880 *3)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *3 (-970))
- (-14 *4 (-587 (-1084))) (-14 *5 (-587 (-707))) (-14 *6 (-707))))
- ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-802))))
+ (-12 (-5 *2 (-881 *3)) (-5 *1 (-795 *3 *4 *5 *6)) (-4 *3 (-971))
+ (-14 *4 (-588 (-1085))) (-14 *5 (-588 (-708))) (-14 *6 (-708))))
+ ((*1 *1 *2) (-12 (-5 *2 (-143)) (-5 *1 (-803))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 (-47))) (-5 *2 (-290 (-521))) (-5 *1 (-803))))
+ (-12 (-5 *3 (-881 (-47))) (-5 *2 (-291 (-522))) (-5 *1 (-804))))
((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 (-47)))) (-5 *2 (-290 (-521)))
- (-5 *1 (-803))))
- ((*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-755 *3)) (-5 *1 (-821 *3)) (-4 *3 (-783))))
+ (-12 (-5 *3 (-382 (-881 (-47)))) (-5 *2 (-291 (-522)))
+ (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-756 *3)) (-5 *1 (-822 *3)) (-4 *3 (-784))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-587 (-290 (-202))))
+ (-2 (|:| |pde| (-588 (-291 (-202))))
(|:| |constraints|
- (-587
+ (-588
(-2 (|:| |start| (-202)) (|:| |finish| (-202))
- (|:| |grid| (-707)) (|:| |boundaryType| (-521))
- (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
- (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |grid| (-708)) (|:| |boundaryType| (-522))
+ (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202))))))
+ (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068))
(|:| |tol| (-202))))
- (-5 *1 (-826))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-826))))
+ (-5 *1 (-827))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-827))))
((*1 *2 *1)
- (-12 (-5 *2 (-1106 *3)) (-5 *1 (-829 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-1107 *3)) (-5 *1 (-830 *3)) (-4 *3 (-1014))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-833 *3))) (-4 *3 (-1013)) (-5 *1 (-832 *3))))
+ (-12 (-5 *2 (-588 (-834 *3))) (-4 *3 (-1014)) (-5 *1 (-833 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-5 *1 (-833 *3))))
+ (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-834 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3))))
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-381 (-392 *3))) (-4 *3 (-282)) (-5 *1 (-842 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-381 *3)) (-5 *1 (-842 *3)) (-4 *3 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-450)) (-5 *2 (-290 *4)) (-5 *1 (-847 *4))
- (-4 *4 (-13 (-783) (-513)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894))))
- ((*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-894))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-897))))
+ (-12 (-5 *2 (-382 (-393 *3))) (-4 *3 (-283)) (-5 *1 (-843 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-382 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-451)) (-5 *2 (-291 *4)) (-5 *1 (-848 *4))
+ (-4 *4 (-13 (-784) (-514)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895))))
+ ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-895))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898))))
((*1 *2 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521))))
- ((*1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-957 *3)) (-4 *3 (-1119))))
- ((*1 *2 *3) (-12 (-5 *3 (-286)) (-5 *1 (-957 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1171)) (-5 *1 (-958 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *3) (-12 (-5 *3 (-287)) (-5 *1 (-958 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-958 *3 *4 *5 *2 *6)) (-4 *2 (-877 *3 *4 *5))
- (-14 *6 (-587 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119))))
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-959 *3 *4 *5 *2 *6)) (-4 *2 (-878 *3 *4 *5))
+ (-14 *6 (-588 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120))))
((*1 *2 *3)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-966 *3)) (-4 *3 (-513))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-970))))
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-967 *3)) (-4 *3 (-514))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-971))))
((*1 *2 *1)
- (-12 (-5 *2 (-627 *5)) (-5 *1 (-974 *3 *4 *5)) (-14 *3 (-707))
- (-14 *4 (-707)) (-4 *5 (-970))))
+ (-12 (-5 *2 (-628 *5)) (-5 *1 (-975 *3 *4 *5)) (-14 *3 (-708))
+ (-14 *4 (-708)) (-4 *5 (-971))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *4 (-783)) (-5 *1 (-1037 *3 *4 *2))
- (-4 *2 (-877 *3 (-493 *4) *4))))
+ (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-5 *1 (-1038 *3 *4 *2))
+ (-4 *2 (-878 *3 (-494 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *2 (-783)) (-5 *1 (-1037 *3 *2 *4))
- (-4 *4 (-877 *3 (-493 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-791))))
+ (-12 (-4 *3 (-971)) (-4 *2 (-784)) (-5 *1 (-1038 *3 *2 *4))
+ (-4 *4 (-878 *3 (-494 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-792))))
((*1 *2 *1)
- (-12 (-5 *2 (-627 *4)) (-5 *1 (-1051 *3 *4)) (-14 *3 (-707))
- (-4 *4 (-970))))
- ((*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1053))))
+ (-12 (-5 *2 (-628 *4)) (-5 *1 (-1052 *3 *4)) (-14 *3 (-708))
+ (-4 *4 (-971))))
+ ((*1 *1 *2) (-12 (-5 *2 (-132)) (-4 *1 (-1054))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3))))
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-1066 *3)) (-5 *1 (-1070 *3)) (-4 *3 (-971))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084))
- (-14 *5 *3) (-5 *1 (-1082 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1083))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1084))))
- ((*1 *2 *1) (-12 (-5 *2 (-1093 (-1084) (-411))) (-5 *1 (-1088))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1089))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1089))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1089))))
- ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-1089))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1092 *3)) (-4 *3 (-1013))))
- ((*1 *2 *3) (-12 (-5 *2 (-1100)) (-5 *1 (-1099 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1100))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 *3)) (-4 *3 (-970)) (-5 *1 (-1114 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085))
+ (-14 *5 *3) (-5 *1 (-1083 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1084))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1085))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094 (-1085) (-412))) (-5 *1 (-1089))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1093 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1101)) (-5 *1 (-1100 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-792)) (-5 *1 (-1101))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-5 *1 (-1115 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-971))))
((*1 *1 *2)
- (-12 (-5 *2 (-885 *3)) (-4 *3 (-1119)) (-5 *1 (-1117 *3))))
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-1120)) (-5 *1 (-1118 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *1 (-1127 *3 *2)) (-4 *2 (-1156 *3))))
+ (-12 (-4 *3 (-971)) (-4 *1 (-1128 *3 *2)) (-4 *2 (-1157 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1008 *3)) (-4 *3 (-1119)) (-5 *1 (-1132 *3))))
+ (-12 (-5 *2 (-1009 *3)) (-4 *3 (-1120)) (-5 *1 (-1133 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *3)) (-14 *3 (-1084)) (-5 *1 (-1138 *3 *4))
- (-4 *4 (-970))))
+ (-12 (-5 *2 (-1162 *3)) (-14 *3 (-1085)) (-5 *1 (-1139 *3 *4))
+ (-4 *4 (-971))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *1 (-1148 *3 *2)) (-4 *2 (-1125 *3))))
+ (-12 (-4 *3 (-971)) (-4 *1 (-1149 *3 *2)) (-4 *2 (-1126 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-970)) (-14 *4 (-1084))
- (-14 *5 *3) (-5 *1 (-1157 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1166))))
- ((*1 *2 *3) (-12 (-5 *3 (-441)) (-5 *2 (-1166)) (-5 *1 (-1169))))
- ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1170))))
+ (-12 (-5 *2 (-1139 *4 *3)) (-4 *3 (-971)) (-14 *4 (-1085))
+ (-14 *5 *3) (-5 *1 (-1158 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1167))))
+ ((*1 *2 *3) (-12 (-5 *3 (-442)) (-5 *2 (-1167)) (-5 *1 (-1170))))
+ ((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-1171))))
((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-729)) (-14 *6 (-587 *4))
- (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-877 *3 *5 *4))
- (-14 *7 (-587 (-707))) (-14 *8 (-707))))
+ (-12 (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4))
+ (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-878 *3 *5 *4))
+ (-14 *7 (-588 (-708))) (-14 *8 (-708))))
((*1 *2 *1)
- (-12 (-4 *2 (-877 *3 *5 *4)) (-5 *1 (-1175 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-970)) (-4 *4 (-783)) (-4 *5 (-729)) (-14 *6 (-587 *4))
- (-14 *7 (-587 (-707))) (-14 *8 (-707))))
- ((*1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-970))))
- ((*1 *1 *2) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970))))
+ (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-1176 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-971)) (-4 *4 (-784)) (-4 *5 (-730)) (-14 *6 (-588 *4))
+ (-14 *7 (-588 (-708))) (-14 *8 (-708))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-971))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))
((*1 *2 *1)
- (-12 (-5 *2 (-1187 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783))
+ (-12 (-5 *2 (-1188 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784))
(-4 *4 (-157))))
((*1 *2 *1)
- (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1183 *3 *4)) (-4 *3 (-783))
+ (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784))
(-4 *4 (-157))))
((*1 *1 *2)
- (-12 (-5 *2 (-605 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *1 (-1183 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)) (-4 *2 (-779)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-902 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *5 (-984 *3 *4 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-13 (-337) (-783)))
- (-14 *4 (-1084)) (-14 *5 *3) (-5 *1 (-293 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-353))) (-5 *1 (-963)) (-5 *3 (-353)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1084)) (-4 *5 (-562 (-820 (-521))))
- (-4 *5 (-814 (-521)))
- (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-524 *5 *3)) (-4 *3 (-573))
- (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-521) "failed") *5)) (-4 *5 (-970))
- (-5 *2 (-521)) (-5 *1 (-504 *5 *3)) (-4 *3 (-1141 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970))
- (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-521) "failed") *4)) (-4 *4 (-970))
- (-5 *2 (-521)) (-5 *1 (-504 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
+ (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *1 (-1184 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1187 *3 *2)) (-4 *3 (-971)) (-4 *2 (-780)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-37 (-381 (-521))))
- (-4 *2 (-157)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1013)) (-4 *2 (-783))
- (-5 *1 (-109 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
- (-5 *1 (-914 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
- (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-707))) (-5 *3 (-108)) (-5 *1 (-1073 *4 *5))
- (-14 *4 (-849)) (-4 *5 (-970)))))
+ (-12 (-5 *2 (-588 *1)) (-5 *3 (-588 *7)) (-4 *1 (-990 *4 *5 *6 *7))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 *1)) (-4 *1 (-990 *4 *5 *6 *3)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6)) (-5 *2 (-588 *1))
+ (-4 *1 (-990 *4 *5 *6 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-784) (-283) (-962 (-522)) (-584 (-522)) (-135)))
+ (-5 *1 (-741 *4 *2)) (-4 *2 (-13 (-29 *4) (-1106) (-887))))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *6 (-202))
+ (-5 *3 (-522)) (-5 *2 (-960)) (-5 *1 (-690)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-747 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 (-382 *6))) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-2 (|:| -3855 (-588 (-382 *6))) (|:| -1222 (-628 *5))))
+ (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-382 *6)) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-747 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-596 *6 (-382 *6))) (-4 *6 (-1142 *5))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-2 (|:| -3855 (-588 (-382 *6))) (|:| -1222 (-628 *5))))
+ (-5 *1 (-747 *5 *6)) (-5 *4 (-588 (-382 *6))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-522)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-283))
+ (-4 *9 (-878 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3892 (-1081 *9)) (|:| |polval| (-1081 *8))))
+ (-5 *1 (-680 *6 *7 *8 *9)) (-5 *3 (-1081 *9)) (-5 *4 (-1081 *8)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-5 *1 (-57 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-57 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
+ (-12 (-4 *4 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *4)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-1142 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-849)) (-5 *2 (-441)) (-5 *1 (-1166)))))
+ (-12 (-4 *3 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2 (-588 *3)) (-5 *1 (-1040 *4 *3)) (-4 *4 (-1142 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-108)) (-5 *1 (-1089))))
+ (-12 (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-108)) (-5 *1 (-1090))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-108)) (-5 *1 (-1089))))
+ (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-108)) (-5 *1 (-1090))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1089))))
+ (-12 (-5 *3 (|[\|\|]| (-202))) (-5 *2 (-108)) (-5 *1 (-1090))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-521))) (-5 *2 (-108)) (-5 *1 (-1089)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4224)) (-4 *1 (-378))))
- ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636))))
- ((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-636)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1952 *5) (|:| -1634 *5))))
- (-5 *1 (-743 *4 *5 *3 *6)) (-4 *3 (-597 *5))
- (-4 *6 (-597 (-381 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1952 *4) (|:| -1634 *4))))
- (-5 *1 (-743 *5 *4 *3 *6)) (-4 *3 (-597 *4))
- (-4 *6 (-597 (-381 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *5 (-1141 *4)) (-5 *2 (-587 (-2 (|:| -1952 *5) (|:| -1634 *5))))
- (-5 *1 (-743 *4 *5 *6 *3)) (-4 *6 (-597 *5))
- (-4 *3 (-597 (-381 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *4 (-1141 *5)) (-5 *2 (-587 (-2 (|:| -1952 *4) (|:| -1634 *4))))
- (-5 *1 (-743 *5 *4 *6 *3)) (-4 *6 (-597 *4))
- (-4 *3 (-597 (-381 *4))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-297 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-124))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-335 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-360 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-590 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
- (-5 *1 (-693)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-1080 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *4 (-560 $)) $))
- (-15 -2818 ((-1036 *4 (-560 $)) $))
- (-15 -2223 ($ (-1036 *4 (-560 $))))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *3 (-108)) (-5 *1 (-106))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (|has| *1 (-6 -4224)) (-4 *1 (-378))))
- ((*1 *2) (-12 (-4 *1 (-378)) (-5 *2 (-849)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-4 *7 (-783))
- (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-729)) (-4 *8 (-282))
- (-5 *2 (-587 (-707))) (-5 *1 (-679 *6 *7 *8 *9)) (-5 *5 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084)))
- (-5 *2 (-627 (-290 (-202)))) (-5 *1 (-184))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-4 *6 (-828 *5)) (-5 *2 (-627 *6))
- (-5 *1 (-629 *5 *6 *3 *4)) (-4 *3 (-347 *6))
- (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-707))))
+ (-12 (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-108)) (-5 *1 (-1090)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (|has| *1 (-6 -4229)) (-4 *1 (-379))))
+ ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-850))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637))))
+ ((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-637)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-960)) (-5 *1 (-686)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-971)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -1400 (-522)))) (-4 *1 (-405 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-707)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-821 *3)) (|:| -1400 (-821 *3))))
+ (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-971))
+ (-4 *7 (-878 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -1400 (-522))))
+ (-5 *1 (-879 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $))
+ (-15 -2816 (*7 $))))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-881 (-522))) (-5 *2 (-305))
+ (-5 *1 (-307))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-1007 (-881 (-522)))) (-5 *2 (-305))
+ (-5 *1 (-307))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-616 *3)) (-4 *3 (-971)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *2 (-960)) (-5 *1 (-689)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-588 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *5 *6))
+ (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-423 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-323))
- (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -2992 *3))))
- (-5 *1 (-194 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-707)) (-5 *3 (-871 *4)) (-4 *1 (-1045 *4))
- (-4 *4 (-970))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-707)) (-5 *4 (-871 (-202))) (-5 *2 (-1170))
- (-5 *1 (-1167)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-560 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084)))
- (-4 *2 (-13 (-404 *5) (-27) (-1105)))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *1 (-523 *5 *2 *6)) (-4 *6 (-1013)))))
+ (-12 (-5 *3 (-1081 (-522))) (-5 *2 (-522)) (-5 *1 (-871)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-588 *4)) (-4 *4 (-784))
+ (-5 *1 (-1092 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-348 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-971))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-1046 *3)) (-4 *3 (-971))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4))
+ (-14 *3 (-850)) (-4 *4 (-971))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-855)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-707)) (-4 *1 (-208 *4))
- (-4 *4 (-970))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-708)) (-4 *1 (-208 *4))
+ (-4 *4 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-707))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-208 *3)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-210)) (-5 *2 (-708))))
((*1 *1 *1) (-4 *1 (-210)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-242 *3)) (-4 *3 (-783))))
- ((*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-783))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-242 *3)) (-4 *3 (-784))))
+ ((*1 *1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
- (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124))
+ (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *4))
- (-4 *4 (-1141 *3))))
+ (-12 (-5 *2 (-708)) (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *4))
+ (-4 *4 (-1142 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-337) (-135))) (-5 *1 (-373 *2 *3))
- (-4 *3 (-1141 *2))))
+ (-12 (-4 *2 (-13 (-338) (-135))) (-5 *1 (-374 *2 *3))
+ (-4 *3 (-1142 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-337)) (-4 *2 (-828 *3)) (-5 *1 (-538 *2))
- (-5 *3 (-1084))))
+ (-12 (-4 *2 (-338)) (-4 *2 (-829 *3)) (-5 *1 (-539 *2))
+ (-5 *3 (-1085))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-538 *2)) (-4 *2 (-337))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-791))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-539 *2)) (-4 *2 (-338))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *4)) (-5 *3 (-587 (-707))) (-4 *1 (-828 *4))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-588 *4)) (-5 *3 (-588 (-708))) (-4 *1 (-829 *4))
+ (-4 *4 (-1014))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-828 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *3 (-708)) (-4 *1 (-829 *2)) (-4 *2 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *1 (-828 *3)) (-4 *3 (-1013))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-828 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *2 (-588 *3)) (-4 *1 (-829 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1014))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1141 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-970)) (-14 *5 *3))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-587 (-453 *4 *5))) (-5 *3 (-587 (-793 *4)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-425)) (-5 *1 (-444 *4 *5 *6))
- (-4 *6 (-425)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-158 *3)) (-4 *3 (-282))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-614 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-677 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-783))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *1 (-906 *3)) (-4 *3 (-970))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5))))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-422 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970))))
- ((*1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-331 *3)) (-4 *3 (-323)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-513)) (-4 *3 (-157))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1245 (-587 *1))))
- (-4 *1 (-341 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-426 *3 *4 *5 *6))
- (|:| -1245 (-587 (-426 *3 *4 *5 *6)))))
- (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5))
+ (-4 *3 (-971)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3 *4 *5 *6)) (-4 *3 (-338)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-4 *6 (-317 *3 *4 *5))
+ (-5 *2 (-388 *4 (-382 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1166 *6)) (-4 *6 (-13 (-384 *4 *5) (-962 *4)))
+ (-4 *4 (-919 *3)) (-4 *5 (-1142 *4)) (-4 *3 (-283))
+ (-5 *1 (-388 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-878 *3 *4 *5)) (-4 *3 (-338))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-474 *3 *4 *5 *6)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-898)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-588 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1114 *5 *6 *7 *8)) (-4 *5 (-514))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1119))
- (-4 *5 (-347 *4)) (-4 *2 (-347 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *2 *7)) (-4 *6 (-970))
- (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))))
+ (-12 (-5 *3 (-872 (-202))) (-5 *2 (-1171)) (-5 *1 (-442)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-338)) (-4 *4 (-348 *3)) (-4 *5 (-348 *3))
+ (-5 *1 (-489 *3 *4 *5 *2)) (-4 *2 (-626 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-514)) (-4 *5 (-348 *4)) (-4 *6 (-348 *4))
+ (-4 *7 (-919 *4)) (-4 *2 (-626 *7 *8 *9))
+ (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-626 *4 *5 *6))
+ (-4 *8 (-348 *7)) (-4 *9 (-348 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971))
+ (-4 *3 (-348 *2)) (-4 *4 (-348 *2)) (-4 *2 (-338))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-338)) (-4 *3 (-157)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *1 (-627 *3 *4 *5 *2))
+ (-4 *2 (-626 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-628 *2)) (-4 *2 (-338)) (-4 *2 (-971))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1035 *2 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-338))))
+ ((*1 *2 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-1092 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-5 *1 (-1166 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-522) *2 *2)) (-4 *2 (-125)) (-5 *1 (-1000 *2)))))
+(((*1 *1 *1) (|partial| -4 *1 (-133))) ((*1 *1 *1) (-4 *1 (-324)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-133)) (-4 *1 (-838)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-4 *2 (-829 *5)) (-5 *1 (-630 *5 *2 *3 *4))
+ (-4 *3 (-348 *2)) (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1142 (-154 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1142 (-154 *2))))))
(((*1 *2 *3)
- (-12 (-14 *4 (-587 (-1084))) (-4 *5 (-425))
+ (-12 (-5 *3 (-202)) (-5 *2 (-108)) (-5 *1 (-275 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1009 (-777 (-202)))) (-5 *3 (-202)) (-5 *2 (-108))
+ (-5 *1 (-281))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-154 (-202)) (-154 (-202)))) (-5 *4 (-1009 (-202)))
+ (-5 *2 (-1168)) (-5 *1 (-233)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085))) (-4 *5 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *5)))))) (-5 *1 (-707 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-514))
+ (-5 *2 (-588 (-588 (-270 (-382 (-881 *4)))))) (-5 *1 (-707 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-628 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3855 (-588 *6)))
+ *7 *6))
+ (-4 *6 (-338)) (-4 *7 (-598 *6))
(-5 *2
- (-2 (|:| |glbase| (-587 (-224 *4 *5))) (|:| |glval| (-587 (-521)))))
- (-5 *1 (-575 *4 *5)) (-5 *3 (-587 (-224 *4 *5))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-1165 *3)))))
+ (-2 (|:| |particular| (-3 (-1166 *6) "failed"))
+ (|:| -3855 (-588 (-1166 *6)))))
+ (-5 *1 (-750 *6 *7)) (-5 *4 (-1166 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-880 (-202))) (-5 *2 (-290 (-353))) (-5 *1 (-280)))))
+ (-12 (-5 *3 (-588 (-202))) (-5 *2 (-1166 (-637))) (-5 *1 (-281)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1068)) (-5 *2 (-192 (-472))) (-5 *1 (-772)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-952 *5 *6 *7 *3))) (-5 *1 (-952 *5 *6 *7 *3))
+ (-4 *3 (-985 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-588 *6)) (-4 *1 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-990 *3 *4 *5 *2)) (-4 *3 (-426)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-1056 *5 *6 *7 *3))) (-5 *1 (-1056 *5 *6 *7 *3))
+ (-4 *3 (-985 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-971)) (-5 *2 (-1166 *3)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1142 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-5 *1 (-833 *3)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-627 (-521))) (-5 *1 (-1023)))))
+ (-12 (-5 *2 (-613 *3)) (-4 *3 (-784)) (-4 *1 (-349 *3 *4))
+ (-4 *4 (-157)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-62 -4055)))) (-5 *3 (-202))
+ (-5 *2 (-960)) (-5 *1 (-686)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *2)
+ (-12 (-4 *1 (-324))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-521)) (-5 *2 (-587 (-2 (|:| -1974 *3) (|:| -2098 *4))))
- (-5 *1 (-633 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-791)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202))
- (-5 *2 (-959)) (-5 *1 (-686)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-554 *4 *3)) (-4 *4 (-1013))
- (-4 *3 (-1119)) (-4 *3 (-1013)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 (-880 *4))) (-5 *3 (-587 (-1084))) (-4 *4 (-425))
- (-5 *1 (-846 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338))
+ (-5 *2
+ (-2 (|:| |ir| (-539 (-382 *6))) (|:| |specpart| (-382 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-532 *5 *6)) (-5 *3 (-382 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1167))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3052 *3) (|:| |coef2| (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970)))))
+ (-12 (-5 *3 (-588 (-291 (-202)))) (-5 *4 (-708))
+ (-5 *2 (-628 (-202))) (-5 *1 (-243)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-202)) (-5 *5 (-522)) (-5 *2 (-1116 *3))
+ (-5 *1 (-727 *3)) (-4 *3 (-901))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-588 (-872 (-202))))) (-5 *4 (-108))
+ (-5 *1 (-1116 *2)) (-4 *2 (-901)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-850))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-850))
+ (-5 *1 (-492 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 *5)) (-4 *5 (-1142 *3)) (-4 *3 (-283))
+ (-5 *2 (-108)) (-5 *1 (-429 *3 *5)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-382 *2)) (-4 *2 (-1142 *5))
+ (-5 *1 (-744 *5 *2 *3 *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *3 (-598 *2)) (-4 *6 (-598 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-382 *2))) (-4 *2 (-1142 *5))
+ (-5 *1 (-744 *5 *2 *3 *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2))
+ (-4 *6 (-598 (-382 *2))))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4))
+ (-4 *4 (-37 (-382 (-522)))) (-4 *4 (-971)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-108))))
+ (|partial| -12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-971))
+ (-4 *2 (-1157 *3)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-158 *6))
+ (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-5 *2 (-708))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-282)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-290 (-521))) (-5 *4 (-1 (-202) (-202)))
- (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202)))
- (-5 *1 (-634)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-627 *7)) (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *6 *5))
- (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729)) (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-842 *3)) (-4 *3 (-282)))))
+ (-12 (-4 *1 (-357 *3 *4)) (-4 *3 (-971)) (-4 *4 (-1014))
+ (-5 *2 (-708))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-673 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-664)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-377)) (-5 *2 (-708))))
+ ((*1 *1 *1) (-4 *1 (-377))))
+(((*1 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-588 (-708))) (-5 *1 (-1169)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-345 *4 *5)) (-4 *4 (-157))
+ (-4 *5 (-1142 *4)) (-5 *2 (-628 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3))
+ (-5 *2 (-628 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202)))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1068)) (-5 *1 (-281)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-627 (-381 (-880 (-521)))))
- (-5 *2 (-587 (-627 (-290 (-521))))) (-5 *1 (-955)))))
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-1023 *5 *6 *7 *8))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-544 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-338)) (-5 *2 (-588 *3)) (-5 *1 (-874 *4 *3))
+ (-4 *3 (-1142 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-856)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1))
- (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-783))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *7)) (-4 *7 (-784))
+ (-4 *8 (-878 *5 *6 *7)) (-4 *5 (-514)) (-4 *6 (-730))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1166 (-382 *8)) "failed"))
+ (|:| -3855 (-588 (-1166 (-382 *8))))))
+ (-5 *1 (-611 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-951 (-777 (-522)))) (-5 *1 (-547 *3)) (-4 *3 (-971)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -1924 *6) (|:| |sol?| (-108))) (-522)
+ *6))
+ (-4 *6 (-338)) (-4 *7 (-1142 *6))
+ (-5 *2 (-2 (|:| |answer| (-539 (-382 *7))) (|:| |a0| *6)))
+ (-5 *1 (-532 *6 *7)) (-5 *3 (-382 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-588 (-561 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1081 (-47))) (-5 *3 (-561 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
((*1 *2 *3)
- (-12 (-4 *1 (-837)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))))
-(((*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-765)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3655 (-587 (-2 (|:| |irr| *10) (|:| -3083 (-521)))))))
- (-5 *6 (-587 *3)) (-5 *7 (-587 *8)) (-4 *8 (-783)) (-4 *3 (-282))
- (-4 *10 (-877 *3 *9 *8)) (-4 *9 (-729))
- (-5 *2
- (-2 (|:| |polfac| (-587 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-587 (-1080 *3)))))
- (-5 *1 (-570 *8 *9 *3 *10)) (-5 *4 (-587 (-1080 *3))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
- (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))))
+ (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1142 (-154 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343))))
+ ((*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3)) (-5 *1 (-388 *3 *2 *4 *5))
+ (-4 *3 (-283)) (-4 *5 (-13 (-384 *2 *4) (-962 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1142 *2)) (-4 *2 (-919 *3))
+ (-5 *1 (-389 *3 *2 *4 *5 *6)) (-4 *3 (-283)) (-4 *5 (-384 *2 *4))
+ (-14 *6 (-1166 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-850)) (-4 *5 (-971))
+ (-4 *2 (-13 (-379) (-962 *5) (-338) (-1106) (-260)))
+ (-5 *1 (-417 *5 *3 *2)) (-4 *3 (-1142 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-561 (-465)))) (-5 *1 (-465))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-561 (-465))) (-5 *1 (-465))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-588 (-561 (-465))))
+ (-5 *1 (-465))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1081 (-465))) (-5 *3 (-561 (-465))) (-5 *1 (-465))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324))
+ (-5 *1 (-492 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1142 *4))
+ (-5 *1 (-712 *4 *2 *5 *3)) (-4 *3 (-1142 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))
+ ((*1 *1 *1) (-4 *1 (-980))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-5 *2 (-1092 (-587 *4))) (-5 *1 (-1091 *4))
- (-5 *3 (-587 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521))))
- ((*1 *1 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1) (-4 *1 (-797 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-899 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-728))
- (-4 *4 (-783)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-381 (-521))) (-4 *1 (-511 *3))
- (-4 *3 (-13 (-378) (-1105)))))
- ((*1 *1 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))))
+ (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-14 *5 (-588 (-1085))) (-5 *2 (-588 (-588 (-949 (-382 *4)))))
+ (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *5))))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-881 *4)))
+ (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-588 (-949 (-382 *4))))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-337))
- (-5 *2 (-108)) (-5 *1 (-608 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *6 (-13 (-347 *5) (-10 -7 (-6 -4234))))
- (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4234)))) (-5 *2 (-108))
- (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-625 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-353)) (|:| |stability| (-353))
- (|:| |expense| (-353)) (|:| |accuracy| (-353))
- (|:| |intermediateResults| (-353))))
- (-5 *2 (-959)) (-5 *1 (-280)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-689)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-425))
- (-5 *2 (-453 *4 *5)) (-5 *1 (-575 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
- (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
- (-5 *1 (-724)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 *1)) (-5 *4 (-1166 *1)) (-4 *1 (-584 *5))
+ (-4 *5 (-971))
+ (-5 *2 (-2 (|:| -1222 (-628 *5)) (|:| |vec| (-1166 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 *1)) (-4 *1 (-584 *4)) (-4 *4 (-971))
+ (-5 *2 (-628 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-459)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1084)) (-5 *1 (-497))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1085)) (-5 *1 (-498))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497)))))
+ (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497)))))
+ (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1084)) (-5 *1 (-642 *3)) (-4 *3 (-562 (-497)))))
+ (-12 (-5 *2 (-1085)) (-5 *1 (-643 *3)) (-4 *3 (-563 (-498)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-587 (-1084))) (-5 *2 (-1084)) (-5 *1 (-642 *3))
- (-4 *3 (-562 (-497))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-560 *4)) (-5 *6 (-1080 *4))
- (-4 *4 (-13 (-404 *7) (-27) (-1105)))
- (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-560 *4)) (-5 *6 (-381 (-1080 *4)))
- (-4 *4 (-13 (-404 *7) (-27) (-1105)))
- (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))))
-(((*1 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
- (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-1170))
- (-5 *1 (-1021 *3 *4 *5 *6 *7)) (-4 *7 (-989 *3 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-323)) (-5 *3 (-521)) (-5 *2 (-1093 (-849) (-707))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
- (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *6))))
- (-5 *4 (-950 (-776 (-521)))) (-5 *5 (-1084)) (-5 *7 (-381 (-521)))
- (-4 *6 (-970)) (-5 *2 (-791)) (-5 *1 (-546 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-627 *4)) (-5 *3 (-849)) (-4 *4 (-970))
- (-5 *1 (-952 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 (-627 *4))) (-5 *3 (-849)) (-4 *4 (-970))
- (-5 *1 (-952 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-301 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-484 *3 *4))
- (-14 *4 (-521)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1058 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
+ (-12 (-5 *4 (-588 (-1085))) (-5 *2 (-1085)) (-5 *1 (-643 *3))
+ (-4 *3 (-563 (-498))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085))
+ (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1119)) (-5 *1 (-801 *3 *2)) (-4 *3 (-1119))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-381 (-521)))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-587 *6)) (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5))
- (-4 *3 (-513)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123))
- (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
- (-5 *2 (-2 (|:| |num| (-627 *5)) (|:| |den| *5))))))
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1650 (-588 *6)) (|:| -1544 (-588 *6)))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-872 *4)) (-4 *4 (-971)) (-5 *1 (-1074 *3 *4))
+ (-14 *3 (-850)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8))))
- (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1049 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-110)) (-4 *4 (-970)) (-5 *1 (-651 *4 *2))
- (-4 *2 (-589 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-770 *2)) (-4 *2 (-970)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1187 *3 *4)) (-4 *1 (-348 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-157))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970))))
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522))))
+ (-5 *2 (-2 (|:| -2286 *3) (|:| |nconst| *3))) (-5 *1 (-525 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-426))
+ (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-588 *7)) (|:| |badPols| (-588 *7))))
+ (-5 *1 (-904 *4 *5 *6 *7)) (-5 *3 (-588 *7)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2314 (-588 *3)) (|:| -1376 (-588 *3))))
+ (-5 *1 (-1121 *3)) (-4 *3 (-1014)))))
+(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
+ ((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5))
+ (-4 *4 (-1014)) (-4 *5 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-588 (-1085))) (-4 *4 (-157))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2717 *5) (|:| -1400 *2))
+ (-2 (|:| -2717 *5) (|:| -1400 *2))))
+ (-4 *2 (-215 (-3480 *3) (-708))) (-5 *1 (-435 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-784)) (-4 *7 (-878 *4 *2 (-794 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1120)) (-5 *1 (-802 *3 *2)) (-4 *3 (-1120))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-363)) (-5 *1 (-411)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-588 *3)) (|:| -1886 *4))))
+ (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-971)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-915 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-930 *3)) (-14 *3 (-522)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-4 *1 (-1142 *3)) (-4 *3 (-971))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-755 *3)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-970))))
+ (-12 (-5 *2 (-850)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-729))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157))))
- ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2))))
- ((*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))))
+ (-12 (-5 *2 (-382 (-522))) (-4 *1 (-1147 *3)) (-4 *3 (-971)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971))
+ (-5 *2 (-588 (-588 (-872 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108)) (-4 *4 (-971))
+ (-4 *1 (-1046 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 (-872 *3)))) (-4 *3 (-971))
+ (-4 *1 (-1046 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-588 (-588 (-588 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1046 *4)) (-4 *4 (-971))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-588 (-588 (-872 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1046 *4)) (-4 *4 (-971))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-588 (-156)))
+ (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-588 (-588 (-872 *5)))) (-5 *3 (-588 (-156)))
+ (-5 *4 (-156)) (-4 *1 (-1046 *5)) (-4 *5 (-971)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))
+ (-4 *2 (-426))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-317 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1142 *2))
+ (-4 *4 (-1142 (-382 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971)) (-4 *2 (-426))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *3 (-426))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-878 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-283)) (-4 *3 (-514)) (-5 *1 (-1073 *3 *2))
+ (-4 *2 (-1142 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-337) (-781))) (-5 *1 (-164 *3 *2))
- (-4 *2 (-1141 (-154 *3))))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *3 (-513)) (-5 *1 (-896 *3 *2))
- (-4 *2 (-1141 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-693)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-758)))))
-(((*1 *2 *2) (-12 (-5 *1 (-539 *2)) (-4 *2 (-506)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-1084))
- (-4 *2 (-13 (-27) (-1105) (-404 *5)))
- (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *5 *2)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1115 *3)) (-4 *3 (-900)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-425) (-135))) (-5 *2 (-392 *3))
- (-5 *1 (-95 *4 *3)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-13 (-425) (-135)))
- (-5 *2 (-392 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *1) (-5 *1 (-1166))))
+ (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-5 *1 (-915 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-5 *1 (-1021 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-37 (-382 (-522))))
+ (-4 *2 (-157)))))
+(((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-1014)) (-5 *2 (-708)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-627 *6)) (-5 *5 (-1 (-392 (-1080 *6)) (-1080 *6)))
- (-4 *6 (-337))
- (-5 *2
- (-587
- (-2 (|:| |outval| *7) (|:| |outmult| (-521))
- (|:| |outvect| (-587 (-627 *7))))))
- (-5 *1 (-494 *6 *7 *4)) (-4 *7 (-337)) (-4 *4 (-13 (-337) (-781))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 *7)) (-5 *3 (-521)) (-4 *7 (-877 *6 *4 *5))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-970))
- (-5 *1 (-295 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-154 (-521))) (-5 *2 (-108)) (-5 *1 (-419))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4)
- (-224 *4 (-381 (-521)))))
- (-14 *4 (-587 (-1084))) (-14 *5 (-707)) (-5 *2 (-108))
- (-5 *1 (-474 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-888 *3)) (-4 *3 (-506))))
- ((*1 *2 *1) (-12 (-4 *1 (-1123)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-560 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4)))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-253 *4 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-970)) (-4 *2 (-728))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
- (-14 *4 (-587 (-1084)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-521)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783)))
- (-14 *4 (-587 (-1084)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783))
- (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-251))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *8)) (-5 *4 (-587 *6)) (-4 *6 (-783))
- (-4 *8 (-877 *7 *5 *6)) (-4 *5 (-729)) (-4 *7 (-970))
- (-5 *2 (-587 (-707))) (-5 *1 (-295 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-849))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-783)) (-4 *4 (-157))
- (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-443 *3 *2)) (-4 *3 (-157)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-513)) (-5 *2 (-521)) (-5 *1 (-568 *3 *4))
- (-4 *4 (-1141 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *3)) (-4 *3 (-970)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-832 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *1 (-877 *4 *5 *6)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 (-707)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-877 *4 *5 *3)) (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *3 (-783)) (-5 *2 (-707))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-899 *3 *2 *4)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *2 (-728))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *6)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-707))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1127 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1156 *3))
- (-5 *2 (-521))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3))
- (-5 *2 (-381 (-521)))))
+ (-12 (-5 *3 (-1081 *9)) (-5 *4 (-588 *7)) (-5 *5 (-588 *8))
+ (-4 *7 (-784)) (-4 *8 (-971)) (-4 *9 (-878 *8 *6 *7)) (-4 *6 (-730))
+ (-5 *2 (-1081 *8)) (-5 *1 (-296 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1120)) (-5 *1 (-165 *3 *2))
+ (-4 *2 (-615 *3)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4239)) (-4 *4 (-338)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-489 *4 *5 *6 *3))
+ (-4 *3 (-626 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4239)) (-4 *4 (-514)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-4 *7 (-919 *4)) (-4 *8 (-348 *7))
+ (-4 *9 (-348 *7)) (-5 *2 (-588 *6))
+ (-5 *1 (-490 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-626 *4 *5 *6))
+ (-4 *10 (-626 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-1182 *3)) (-4 *3 (-337)) (-5 *2 (-769 (-849)))))
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-4 *3 (-514)) (-5 *2 (-588 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-4 *4 (-157)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)) (-5 *2 (-588 *6)) (-5 *1 (-627 *4 *5 *6 *3))
+ (-4 *3 (-626 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-990 *5 *6 *7 *3 *4))
- (-4 *4 (-989 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4))))
- (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-514))
+ (-5 *2 (-588 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-337)) (-5 *1 (-949 *3 *2)) (-4 *2 (-597 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-5 *2 (-2 (|:| -3196 *3) (|:| -1426 (-587 *5))))
- (-5 *1 (-949 *5 *3)) (-5 *4 (-587 *5)) (-4 *3 (-597 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-791))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-889)))))
-(((*1 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-1119)))))
+ (-12 (-4 *4 (-1014)) (-4 *2 (-829 *4)) (-5 *1 (-630 *4 *2 *5 *3))
+ (-4 *5 (-348 *2)) (-4 *3 (-13 (-348 *4) (-10 -7 (-6 -4238)))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
- (-5 *1 (-117 *3)) (-4 *3 (-783))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-538 *4)) (-4 *4 (-13 (-29 *3) (-1105)))
- (-4 *3 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *1 (-536 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-538 (-381 (-880 *3))))
- (-4 *3 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *1 (-541 *3))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5)))
+ (-5 *2 (-108)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-317 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1016 *3)) (-5 *1 (-834 *3)) (-4 *3 (-343))
+ (-4 *3 (-1014)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-338) (-782))) (-5 *1 (-164 *2 *3))
+ (-4 *3 (-1142 (-154 *2))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2))
+ (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-803)) (-5 *1 (-1169)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-628 *2)) (-4 *2 (-157)) (-5 *1 (-134 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-157)) (-4 *2 (-1142 *4)) (-5 *1 (-161 *4 *2 *3))
+ (-4 *3 (-662 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-337))
- (-5 *2 (-2 (|:| -3658 *3) (|:| |special| *3))) (-5 *1 (-664 *5 *3))))
+ (-12 (-5 *3 (-628 (-382 (-881 *5)))) (-5 *4 (-1085))
+ (-5 *2 (-881 *5)) (-5 *1 (-268 *5)) (-4 *5 (-426))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-382 (-881 *4)))) (-5 *2 (-881 *4))
+ (-5 *1 (-268 *4)) (-4 *4 (-426))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-154 (-382 (-522)))))
+ (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *4))
+ (-4 *4 (-13 (-338) (-782)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1165 *5)) (-4 *5 (-337)) (-4 *5 (-970))
- (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
- (-5 *3 (-587 (-627 *5)))))
+ (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *4 (-1085))
+ (-5 *2 (-881 (-154 (-382 (-522))))) (-5 *1 (-702 *5))
+ (-4 *5 (-13 (-338) (-782)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-881 (-382 (-522))))
+ (-5 *1 (-716 *4)) (-4 *4 (-13 (-338) (-782)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1165 (-1165 *5))) (-4 *5 (-337)) (-4 *5 (-970))
- (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
- (-5 *3 (-587 (-627 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-129)) (-5 *2 (-587 *1)) (-4 *1 (-1053))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-587 *1)) (-4 *1 (-1053)))))
+ (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *4 (-1085))
+ (-5 *2 (-881 (-382 (-522)))) (-5 *1 (-716 *5))
+ (-4 *5 (-13 (-338) (-782))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-792))))
+ ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-890)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-685)))))
+(((*1 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-420)) (-5 *3 (-522)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-1068)) (-5 *1 (-723)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1166 (-588 *3))) (-4 *4 (-283))
+ (-5 *2 (-588 *3)) (-5 *1 (-429 *4 *3)) (-4 *3 (-1142 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-855))
- (-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 (-202)))))
- (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
- (-5 *1 (-141))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-381 (-521)))
- (-5 *2
- (-2 (|:| |brans| (-587 (-587 (-871 (-202)))))
- (|:| |xValues| (-1008 (-202))) (|:| |yValues| (-1008 (-202)))))
- (-5 *1 (-141)))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))
+ (-5 *2 (-354)) (-5 *1 (-243))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1166 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-281)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-708)) (-4 *4 (-13 (-514) (-135)))
+ (-5 *1 (-1136 *4 *2)) (-4 *2 (-1142 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-903 *4 *5 *6 *3)) (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *6 (-784)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1067)) (|:| -2890 (-1067))))
- (-5 *1 (-758)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-506))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1170)) (-5 *1 (-192 *4))
- (-4 *4
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 (*2 $))
- (-15 -2084 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 (*2 $))
- (-15 -2084 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *5 (-1123)) (-4 *6 (-1141 *5))
- (-4 *7 (-1141 (-381 *6))) (-5 *2 (-587 (-880 *5)))
- (-5 *1 (-315 *4 *5 *6 *7)) (-4 *4 (-316 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *1 (-316 *4 *5 *6)) (-4 *4 (-1123))
- (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5))) (-4 *4 (-337))
- (-5 *2 (-587 (-880 *4))))))
+ (-12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-588 *5))
+ (-5 *1 (-819 *4 *5)) (-4 *5 (-1120)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
- ((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-513)) (-4 *4 (-783))
- (-5 *1 (-530 *4 *2)) (-4 *2 (-404 *4)))))
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1085)) (-5 *6 (-108))
+ (-4 *7 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-4 *3 (-13 (-1106) (-887) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-196 *7 *3)) (-5 *5 (-777 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *2 (-588 *3)) (-5 *1 (-853 *4 *5 *6 *3))
+ (-4 *3 (-878 *4 *6 *5)))))
(((*1 *2 *1)
(-12
(-5 *2
(-3 (|:| |nullBranch| "null")
(|:| |assignmentBranch|
- (-2 (|:| |var| (-1084))
- (|:| |arrayIndex| (-587 (-880 (-521))))
+ (-2 (|:| |var| (-1085))
+ (|:| |arrayIndex| (-588 (-881 (-522))))
(|:| |rand|
- (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791))))))
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792))))))
(|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1084)) (|:| |rand| (-791))
+ (-2 (|:| |var| (-1085)) (|:| |rand| (-792))
(|:| |ints2Floats?| (-108))))
(|:| |conditionalBranch|
- (-2 (|:| |switch| (-1083)) (|:| |thenClause| (-304))
- (|:| |elseClause| (-304))))
+ (-2 (|:| |switch| (-1084)) (|:| |thenClause| (-305))
+ (|:| |elseClause| (-305))))
(|:| |returnBranch|
- (-2 (|:| -1447 (-108))
- (|:| -3434
- (-2 (|:| |ints2Floats?| (-108)) (|:| -1598 (-791))))))
- (|:| |blockBranch| (-587 (-304)))
- (|:| |commentBranch| (-587 (-1067))) (|:| |callBranch| (-1067))
+ (-2 (|:| -3985 (-108))
+ (|:| -3435
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -1575 (-792))))))
+ (|:| |blockBranch| (-588 (-305)))
+ (|:| |commentBranch| (-588 (-1068))) (|:| |callBranch| (-1068))
(|:| |forBranch|
- (-2 (|:| -1403 (-1006 (-880 (-521))))
- (|:| |span| (-880 (-521))) (|:| |body| (-304))))
- (|:| |labelBranch| (-1031))
- (|:| |loopBranch| (-2 (|:| |switch| (-1083)) (|:| |body| (-304))))
+ (-2 (|:| -2386 (-1007 (-881 (-522))))
+ (|:| |span| (-881 (-522))) (|:| |body| (-305))))
+ (|:| |labelBranch| (-1032))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1084)) (|:| |body| (-305))))
(|:| |commonBranch|
- (-2 (|:| -2890 (-1084)) (|:| |contents| (-587 (-1084)))))
- (|:| |printBranch| (-587 (-791)))))
- (-5 *1 (-304)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 *2))
- (-5 *2 (-353)) (-5 *1 (-721 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970))
- (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513))
- (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783))
- (-4 *4 (-562 *2)) (-5 *2 (-353)) (-5 *1 (-721 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-783)) (-4 *5 (-562 *2)) (-5 *2 (-353))
- (-5 *1 (-721 *5)))))
-(((*1 *1) (-5 *1 (-132)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-1044 (-202))) (-5 *1 (-239)))))
+ (-2 (|:| -2888 (-1085)) (|:| |contents| (-588 (-1085)))))
+ (|:| |printBranch| (-588 (-792)))))
+ (-5 *1 (-305)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-4 *3 (-1014))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-256)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *5 (-1141 *4))
- (-5 *2 (-587 (-2 (|:| |deg| (-707)) (|:| -3196 *5))))
- (-5 *1 (-745 *4 *5 *3 *6)) (-4 *3 (-597 *5))
- (-4 *6 (-597 (-381 *5))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-337) (-135) (-961 (-521))))
- (-4 *5 (-1141 *4)) (-5 *2 (-587 (-381 *5))) (-5 *1 (-941 *4 *5))
- (-5 *3 (-381 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-689)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-4 *2 (-1014)) (-5 *1 (-892 *2 *3)) (-4 *3 (-1014)))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9))
+ (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8))
+ (-5 *2
+ (-588
+ (-2 (|:| -3197 (-588 *9)) (|:| -1886 *10) (|:| |ineq| (-588 *9)))))
+ (-5 *1 (-915 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-588 *10)) (-5 *5 (-108)) (-4 *10 (-990 *6 *7 *8 *9))
+ (-4 *6 (-426)) (-4 *7 (-730)) (-4 *8 (-784)) (-4 *9 (-985 *6 *7 *8))
+ (-5 *2
+ (-588
+ (-2 (|:| -3197 (-588 *9)) (|:| -1886 *10) (|:| |ineq| (-588 *9)))))
+ (-5 *1 (-1021 *6 *7 *8 *9 *10)) (-5 *3 (-588 *9)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-697)))))
+(((*1 *1 *1) (-4 *1 (-514))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *5 (-985 *3 *4 *2)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-143)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *1 *1) (-5 *1 (-202)))
+ ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1) (-4 *1 (-1049))) ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2)
+ (-12 (-4 *4 (-1124)) (-4 *5 (-1142 *4)) (-4 *6 (-1142 (-382 *5)))
+ (-5 *2 (-588 (-588 *4))) (-5 *1 (-316 *3 *4 *5 *6))
+ (-4 *3 (-317 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-4 *3 (-343)) (-5 *2 (-588 (-588 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-776 (-353))) (-5 *2 (-776 (-202))) (-5 *1 (-280)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521)))))
- (-4 *2 (-13 (-783) (-21))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-588 (-291 (-202))))
+ (|:| |constraints|
+ (-588
+ (-2 (|:| |start| (-202)) (|:| |finish| (-202))
+ (|:| |grid| (-708)) (|:| |boundaryType| (-522))
+ (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202))))))
+ (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068))
+ (|:| |tol| (-202))))
+ (-5 *2 (-108)) (-5 *1 (-189)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-925 *3)) (-4 *3 (-157)) (-5 *1 (-736 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-337) (-135)))
- (-5 *2 (-587 (-2 (|:| -2246 (-707)) (|:| -1952 *4) (|:| |num| *4))))
- (-5 *1 (-373 *3 *4)) (-4 *4 (-1141 *3)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970))
- (-5 *1 (-1069 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970))
- (-14 *4 (-1084)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-521))) (-5 *1 (-968)))))
-(((*1 *1 *1 *1) (-4 *1 (-446))) ((*1 *1 *1 *1) (-4 *1 (-698))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-1165 (-627 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-627 *4)) (-4 *5 (-597 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-961 (-521))) (-4 *1 (-277)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-506)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-60 *3)) (-14 *3 (-1084))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-67 *3)) (-14 *3 (-1084))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-70 *3)) (-14 *3 (-1084))))
- ((*1 *2 *1) (-12 (-4 *1 (-369)) (-5 *2 (-1170))))
- ((*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-371))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-791))) (-5 *2 (-1170)) (-5 *1 (-1047)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1141 *4)) (-4 *4 (-1123))
- (-4 *1 (-316 *4 *3 *5)) (-4 *5 (-1141 (-381 *3))))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-124))))
-(((*1 *1 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *2 (-783)) (-4 *3 (-157))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-571 *2 *3 *4)) (-4 *2 (-783))
- (-4 *3 (-13 (-157) (-654 (-381 (-521))))) (-14 *4 (-849))))
- ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-817 *4 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1048))))
+ (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014))
+ (-4 *2 (-784)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3210 *1) (|:| -4225 *1) (|:| |associate| *1)))
+ (-4 *1 (-514)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1142 *3)) (-5 *1 (-374 *3 *2))
+ (-4 *3 (-13 (-338) (-135))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-522)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-60 *3)) (-14 *3 (-1085))))
+ ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-67 *3)) (-14 *3 (-1085))))
+ ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-70 *3)) (-14 *3 (-1085))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1171))))
+ ((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-372))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048))))
+ ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-1048))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-792))) (-5 *2 (-1171)) (-5 *1 (-1048)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-623 *4 *5 *6)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-342 *2)) (-4 *2 (-514)) (-4 *2 (-157)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-338)) (-4 *3 (-971))
+ (-5 *1 (-1070 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1066 (-1066 *4))) (-5 *2 (-1066 *4)) (-5 *1 (-1070 *4))
+ (-4 *4 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-774)) (-5 *4 (-982)) (-5 *2 (-959)) (-5 *1 (-773))))
- ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-959)) (-5 *1 (-773))))
+ (-12 (-5 *3 (-775)) (-5 *4 (-983)) (-5 *2 (-960)) (-5 *1 (-774))))
+ ((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-960)) (-5 *1 (-774))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-587 (-353))) (-5 *5 (-587 (-776 (-353))))
- (-5 *6 (-587 (-290 (-353)))) (-5 *3 (-290 (-353))) (-5 *2 (-959))
- (-5 *1 (-773))))
+ (-12 (-5 *4 (-588 (-354))) (-5 *5 (-588 (-777 (-354))))
+ (-5 *6 (-588 (-291 (-354)))) (-5 *3 (-291 (-354))) (-5 *2 (-960))
+ (-5 *1 (-774))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353)))
- (-5 *5 (-587 (-776 (-353)))) (-5 *2 (-959)) (-5 *1 (-773))))
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354)))
+ (-5 *5 (-588 (-777 (-354)))) (-5 *2 (-960)) (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-353))) (-5 *2 (-959))
- (-5 *1 (-773))))
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-354))) (-5 *2 (-960))
+ (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-290 (-353)))) (-5 *4 (-587 (-353)))
- (-5 *2 (-959)) (-5 *1 (-773)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-3 (-108) (-587 *1)))
- (-4 *1 (-989 *4 *5 *6 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-820 *4)) (-4 *4 (-1013)) (-5 *1 (-817 *4 *3))
- (-4 *3 (-1013)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-802)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-105)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-365)))))
-(((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-587 (-521)))
- (|:| |cols| (-587 (-521)))))
- (-5 *4 (-627 *12)) (-5 *5 (-587 (-381 (-880 *9))))
- (-5 *6 (-587 (-587 *12))) (-5 *7 (-707)) (-5 *8 (-521))
- (-4 *9 (-13 (-282) (-135))) (-4 *12 (-877 *9 *11 *10))
- (-4 *10 (-13 (-783) (-562 (-1084)))) (-4 *11 (-729))
- (-5 *2
- (-2 (|:| |eqzro| (-587 *12)) (|:| |neqzro| (-587 *12))
- (|:| |wcond| (-587 (-880 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *9))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *9)))))))))
- (-5 *1 (-852 *9 *10 *11 *12)))))
-(((*1 *2)
- (-12 (-14 *4 (-707)) (-4 *5 (-1119)) (-5 *2 (-126))
- (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-337)) (-5 *2 (-126)) (-5 *1 (-302 *3 *4))
- (-4 *3 (-303 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-157))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-521))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729))
- (-5 *2 (-521)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-906 *3)) (-4 *3 (-970)) (-5 *2 (-849))))
- ((*1 *2) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-337)) (-5 *2 (-126)))))
+ (-12 (-5 *3 (-588 (-291 (-354)))) (-5 *4 (-588 (-354)))
+ (-5 *2 (-960)) (-5 *1 (-774)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-515 *4 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-354)) (-5 *2 (-202)) (-5 *1 (-1169))))
+ ((*1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-514) (-784)))
+ (-4 *2 (-13 (-405 *4) (-928) (-1106))) (-5 *1 (-551 *4 *2 *3))
+ (-4 *3 (-13 (-405 (-154 *4)) (-928) (-1106))))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-366)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 *4))))
- (-5 *1 (-817 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))
+ (-12 (-4 *2 (-878 *3 *5 *4)) (-5 *1 (-914 *3 *4 *5 *2))
+ (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 (-821 *6)))
+ (-5 *5 (-1 (-818 *6 *8) *8 (-821 *6) (-818 *6 *8))) (-4 *6 (-1014))
+ (-4 *8 (-13 (-971) (-563 (-821 *6)) (-962 *7))) (-5 *2 (-818 *6 *8))
+ (-4 *7 (-13 (-971) (-784))) (-5 *1 (-870 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 *4))))
+ (-5 *1 (-818 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))
((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *7 (-1013)) (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *7 (-1014)) (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-1106) (-887) (-29 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *3 *4 *5 *6)) (-4 *6 (-878 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730))
+ (-5 *2 (-108)) (-5 *1 (-474 *4 *5 *6 *7)) (-4 *7 (-878 *4 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *4 (-513))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2380 *4))) (-5 *1 (-896 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-692)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8)))
- (-4 *7 (-783)) (-4 *8 (-282)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-729))
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730))
+ (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8)))
+ (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-878 *4 *5 *6)) (-5 *2 (-588 (-588 *7)))
+ (-5 *1 (-422 *4 *5 *6 *7)) (-5 *3 (-588 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730))
+ (-4 *7 (-784)) (-4 *8 (-878 *5 *6 *7)) (-5 *2 (-588 (-588 *8)))
+ (-5 *1 (-422 *5 *6 *7 *8)) (-5 *3 (-588 *8)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
(-5 *2
- (-2 (|:| |upol| (-1080 *8)) (|:| |Lval| (-587 *8))
- (|:| |Lfact|
- (-587 (-2 (|:| -1974 (-1080 *8)) (|:| -2246 (-521)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-679 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-1098)))))
-(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-212 *3))))
- ((*1 *1) (-12 (-4 *1 (-212 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-513))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3) (-12 (-5 *3 (-362)) (-5 *2 (-1170)) (-5 *1 (-365))))
- ((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-365)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-521) (-521))) (-5 *1 (-335 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-707) (-707))) (-5 *1 (-360 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-1084)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-506)) (-5 *1 (-145 *2)))))
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-171)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-1166 *5))) (-5 *4 (-522)) (-5 *2 (-1166 *5))
+ (-5 *1 (-954 *5)) (-4 *5 (-338)) (-4 *5 (-343)) (-4 *5 (-971)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1067))) (-5 *2 (-1067)) (-5 *1 (-171))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
+ (-12 (-4 *4 (-13 (-338) (-962 (-382 *2)))) (-5 *2 (-522))
+ (-5 *1 (-111 *4 *3)) (-4 *3 (-1142 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-144 *3 *2))
- (-4 *2 (-404 *3)))))
+ (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522)))
+ (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $))
+ (-15 -2816 ((-1037 *3 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *3 (-561 $))))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-363)) (-5 *2 (-1171)) (-5 *1 (-366))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-366)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-513) (-783) (-961 (-521)))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-13 (-27) (-1105) (-404 (-154 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-760)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1013) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1049 *4 *5)) (-4 *4 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-627 (-521))) (-5 *5 (-108)) (-5 *7 (-627 (-202)))
- (-5 *3 (-521)) (-5 *6 (-202)) (-5 *2 (-959)) (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-970))
- (-5 *1 (-1069 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-521)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-970))
- (-14 *4 (-1084)) (-14 *5 *3))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *2 (-514)) (-5 *1 (-897 *2 *4))
+ (-4 *4 (-1142 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-338)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-474 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-588 (-588 *4)))) (-5 *2 (-588 (-588 *4)))
+ (-5 *1 (-1092 *4)) (-4 *4 (-784)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-291 (-354))) (-5 *2 (-291 (-202))) (-5 *1 (-281)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5)) (-4 *5 (-343))
+ (-5 *2 (-708)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-588 *5) *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-595 (-382 *7))) (-5 *4 (-1 (-588 *6) *7))
+ (-5 *5 (-1 (-393 *7) *7))
+ (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-588 *5) *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *6 (-1142 *5)) (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-596 *7 (-382 *7))) (-5 *4 (-1 (-588 *6) *7))
+ (-5 *5 (-1 (-393 *7) *7))
+ (-4 *6 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *7 (-1142 *6)) (-5 *2 (-588 (-382 *7))) (-5 *1 (-749 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-595 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-595 (-382 *6))) (-5 *4 (-1 (-393 *6) *6))
+ (-4 *6 (-1142 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-596 *5 (-382 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-588 (-382 *5))) (-5 *1 (-749 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-596 *6 (-382 *6))) (-5 *4 (-1 (-393 *6) *6))
+ (-4 *6 (-1142 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-5 *2 (-588 (-382 *6))) (-5 *1 (-749 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-628 (-382 (-881 (-522)))))
+ (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956)))))
+(((*1 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 (-353))) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-441))))
+ (-12 (-5 *2 (-588 (-354))) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-354))) (-5 *1 (-442))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-802)) (-5 *2 (-1170)) (-5 *1 (-1166))))
+ (-12 (-5 *3 (-850)) (-5 *4 (-803)) (-5 *2 (-1171)) (-5 *1 (-1167))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-337)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
- (-5 *2 (-707)) (-5 *1 (-488 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-4 *3 (-513)) (-5 *2 (-707))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *4 (-157)) (-4 *5 (-347 *4))
- (-4 *6 (-347 *4)) (-5 *2 (-707)) (-5 *1 (-626 *4 *5 *6 *3))
- (-4 *3 (-625 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-4 *5 (-513))
- (-5 *2 (-707)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1138 *4 *5)) (-5 *3 (-587 *5)) (-14 *4 (-1084))
- (-4 *5 (-337)) (-5 *1 (-851 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *5)) (-4 *5 (-337)) (-5 *2 (-1080 *5))
- (-5 *1 (-851 *4 *5)) (-14 *4 (-1084))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-707)) (-4 *6 (-337))
- (-5 *2 (-381 (-880 *6))) (-5 *1 (-971 *5 *6)) (-14 *5 (-1084)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-587
- (-2
- (|:| -2535
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (|:| -3050
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1065 (-202)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1403
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-516)))))
+ (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-202)) (-5 *3 (-708)) (-5 *1 (-203))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-154 (-202))) (-5 *3 (-708)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1050 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1051 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1119)) (-4 *1 (-215 *3 *4)))))
+ (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1120)) (-4 *1 (-215 *3 *4)))))
(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-931)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-854)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-969)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971))
+ (-5 *1 (-1070 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971))
+ (-14 *4 (-1085)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *2 (-960))
+ (-5 *1 (-686)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *3))))
- (-5 *1 (-546 *3)) (-4 *3 (-970)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-2 (|:| -2535 (-1084)) (|:| -3050 (-411)))))
- (-5 *1 (-1088)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-425)) (-4 *4 (-756))
- (-14 *5 (-1084)) (-5 *2 (-521)) (-5 *1 (-1027 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4))
- (-4 *4 (-1119)) (-5 *2 (-108)))))
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-522))
+ (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522)))
+ (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $))
+ (-15 -2816 ((-1037 *3 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *3 (-561 $))))))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-627 *4)) (-4 *4 (-970)) (-5 *1 (-1051 *3 *4))
- (-14 *3 (-707)))))
+ (-12 (-5 *2 (-588 (-2 (|:| -2530 (-1085)) (|:| -3048 (-412)))))
+ (-5 *1 (-1089)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *1)) (-4 *1 (-278))))
+ ((*1 *1 *1) (-4 *1 (-278)))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-98 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-5 *1 (-1159 *3 *2))
+ (-4 *2 (-1157 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-878 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)) (-4 *3 (-157))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-514)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1142 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-157)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1222 (-628 (-382 (-881 *4))))
+ (|:| |vec| (-588 (-382 (-881 *4)))) (|:| -3166 (-708))
+ (|:| |rows| (-588 (-522))) (|:| |cols| (-588 (-522)))))
+ (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730))
+ (-5 *2
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *4))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *4)))))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))))
(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-290 *4))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
+ (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-511)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-108)) (-5 *5 (-627 (-154 (-202))))
- (-5 *2 (-959)) (-5 *1 (-692)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *2)) (-4 *2 (-157))))
- ((*1 *2) (-12 (-4 *2 (-157)) (-5 *1 (-390 *3 *2)) (-4 *3 (-391 *2))))
- ((*1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-157)))))
+ (-12 (-5 *3 (-1093 (-588 *4))) (-4 *4 (-784))
+ (-5 *2 (-588 (-588 *4))) (-5 *1 (-1092 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-588 *6)) (-4 *6 (-784)) (-4 *4 (-338)) (-4 *5 (-730))
+ (-5 *1 (-474 *4 *5 *6 *2)) (-4 *2 (-878 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-411)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-628 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4))
+ (-4 *3 (-392 *4))))
+ ((*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-971)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-522)) (|has| *1 (-6 -4229)) (-4 *1 (-379))
+ (-5 *2 (-850)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522))
+ (-5 *2 (-960)) (-5 *1 (-694)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-587 *1)) (-4 *1 (-984 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-521)) (-5 *6 (-1 (-1170) (-1165 *5) (-1165 *5) (-353)))
- (-5 *3 (-1165 (-353))) (-5 *5 (-353)) (-5 *2 (-1170))
- (-5 *1 (-724)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |gen| *3) (|:| -3265 *4))))
- (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1981 *6) (|:| |sol?| (-108))) (-521)
- *6))
- (-4 *6 (-337)) (-4 *7 (-1141 *6))
+ (-12
(-5 *2
- (-3 (-2 (|:| |answer| (-381 *7)) (|:| |a0| *6))
- (-2 (|:| -1347 (-381 *7)) (|:| |coeff| (-381 *7))) "failed"))
- (-5 *1 (-531 *6 *7)) (-5 *3 (-381 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5)))))
+ (-2 (|:| -2977 *3) (|:| |gap| (-708)) (|:| -1353 (-719 *3))
+ (|:| -3421 (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-971))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784))
+ (-5 *2
+ (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -1353 *1)
+ (|:| -3421 *1)))
+ (-4 *1 (-985 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2
+ (-2 (|:| -2977 *1) (|:| |gap| (-708)) (|:| -1353 *1)
+ (|:| -3421 *1)))
+ (-4 *1 (-985 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-5 *2 (-290 *4))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-404 (-154 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157))))
+ (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-5 *2 (-291 *4))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-13 (-27) (-1106) (-405 (-154 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *3))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *5 (-202))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN)))) (-5 *2 (-959))
- (-5 *1 (-686)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1084)) (-5 *1 (-615 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *3 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-1110 *3 *2)) (-4 *2 (-13 (-27) (-1106) (-405 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1068)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-239)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-521)) (|has| *1 (-6 -4224)) (-4 *1 (-378))
- (-5 *2 (-849)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *4 (-513))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2380 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
+ (-12 (-5 *2 (-872 *3)) (-4 *3 (-13 (-338) (-1106) (-928)))
+ (-5 *1 (-160 *3)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1067)) (-5 *2 (-710)) (-5 *1 (-110))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-892)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-587 (-1084))) (-4 *4 (-157))
- (-4 *5 (-215 (-3478 *3) (-707)))
- (-14 *6
- (-1 (-108) (-2 (|:| -2723 *2) (|:| -2246 *5))
- (-2 (|:| -2723 *2) (|:| -2246 *5))))
- (-4 *2 (-783)) (-5 *1 (-434 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-877 *4 *5 (-793 *3))))))
+ (-12 (-5 *3 (-588 *1)) (-4 *1 (-985 *4 *5 *6)) (-4 *4 (-971))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1114 *5 *6 *7 *3))
+ (-4 *5 (-514)) (-4 *6 (-730)) (-4 *7 (-784)) (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-290 (-202)))) (-5 *2 (-108)) (-5 *1 (-243))))
- ((*1 *2 *3) (-12 (-5 *3 (-290 (-202))) (-5 *2 (-108)) (-5 *1 (-243))))
+ (-12 (-5 *3 (-595 (-382 *2))) (-4 *2 (-1142 *4)) (-5 *1 (-747 *4 *2))
+ (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-984 *4 *5 *6)))))
+ (-12 (-5 *3 (-596 *2 (-382 *2))) (-4 *2 (-1142 *4))
+ (-5 *1 (-747 *4 *2))
+ (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522))))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-569 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -1924 *4) (|:| |sol?| (-108)))
+ (-522) *4))
+ (-4 *4 (-338)) (-4 *5 (-1142 *4)) (-5 *1 (-532 *4 *5)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1068)) (-5 *2 (-711)) (-5 *1 (-110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-893)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637))))
+ ((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-637)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-797 *3)) (-5 *2 (-521))))
- ((*1 *1 *1) (-4 *1 (-927)))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-937))))
- ((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-4 *1 (-937))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-937)) (-5 *2 (-707))))
- ((*1 *1 *1) (-4 *1 (-937))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *3 (-513)))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522))))
+ ((*1 *1 *1) (-4 *1 (-928)))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-938))))
+ ((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-4 *1 (-938))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-708))))
+ ((*1 *1 *1) (-4 *1 (-938))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *1) (-5 *1 (-760))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
+ (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-513) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-587 (-560 *3)))
- (|:| |vals| (-587 *3))))
- (-5 *1 (-253 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513))
- (-5 *2 (-381 (-880 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-1125 *4)) (-4 *4 (-970)) (-4 *4 (-513))
- (-5 *2 (-381 (-880 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-282)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1035 *4 *5 *6 *3)) (-4 *3 (-625 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
+ (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3))
+ (-4 *3 (-1142 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354))))
+ ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *1) (-5 *1 (-983))))
+(((*1 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-522))) (-5 *1 (-898)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-5 *1 (-1138 *4 *2))
+ (-4 *2 (-1142 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-47))) (-5 *2 (-392 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1141 (-47)))))
+ (-12 (-5 *4 (-588 (-47))) (-5 *2 (-393 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1142 (-47)))))
((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1141 (-47)))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1142 (-47)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-47))) (-4 *5 (-783)) (-4 *6 (-729))
- (-5 *2 (-392 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-877 (-47) *6 *5))))
+ (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730))
+ (-5 *2 (-393 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-878 (-47) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-47))) (-4 *5 (-783)) (-4 *6 (-729))
- (-4 *7 (-877 (-47) *6 *5)) (-5 *2 (-392 (-1080 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1080 *7))))
+ (-12 (-5 *4 (-588 (-47))) (-4 *5 (-784)) (-4 *6 (-730))
+ (-4 *7 (-878 (-47) *6 *5)) (-5 *2 (-393 (-1081 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1081 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-152 *4 *3))
- (-4 *3 (-1141 (-154 *4)))))
+ (-12 (-4 *4 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-152 *4 *3))
+ (-4 *3 (-1142 (-154 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
+ (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-781))) (-5 *2 (-392 *3))
- (-5 *1 (-164 *4 *3)) (-4 *3 (-1141 (-154 *4)))))
+ (-12 (-4 *4 (-13 (-338) (-782))) (-5 *2 (-393 *3))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-5 *2 (-392 *3)) (-5 *1 (-194 *4 *3))
- (-4 *3 (-1141 *4))))
+ (-12 (-4 *4 (-324)) (-5 *2 (-393 *3)) (-5 *1 (-194 *4 *3))
+ (-4 *3 (-1142 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
- (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3))
+ (-4 *3 (-1142 (-522)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-707))) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
- (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *4 (-588 (-708))) (-5 *2 (-393 *3)) (-5 *1 (-416 *3))
+ (-4 *3 (-1142 (-522)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-587 (-707))) (-5 *5 (-707)) (-5 *2 (-392 *3))
- (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *4 (-588 (-708))) (-5 *5 (-708)) (-5 *2 (-393 *3))
+ (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-707)) (-5 *2 (-392 *3)) (-5 *1 (-415 *3))
- (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *4 (-708)) (-5 *2 (-393 *3)) (-5 *1 (-416 *3))
+ (-4 *3 (-1142 (-522)))))
((*1 *2 *3)
- (-12 (-5 *2 (-392 (-154 (-521)))) (-5 *1 (-419))
- (-5 *3 (-154 (-521)))))
+ (-12 (-5 *2 (-393 (-154 (-522)))) (-5 *1 (-420))
+ (-5 *3 (-154 (-522)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-4 *5 (-729)) (-4 *7 (-513)) (-5 *2 (-392 *3))
- (-5 *1 (-429 *4 *5 *6 *7 *3)) (-4 *6 (-513))
- (-4 *3 (-877 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-282)) (-5 *2 (-392 (-1080 *4))) (-5 *1 (-431 *4))
- (-5 *3 (-1080 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-392 *6) *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
- (-4 *7 (-13 (-337) (-135) (-661 *5 *6))) (-5 *2 (-392 *3))
- (-5 *1 (-463 *5 *6 *7 *3)) (-4 *3 (-1141 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7)))
- (-4 *7 (-13 (-282) (-135))) (-4 *5 (-783)) (-4 *6 (-729))
- (-5 *2 (-392 *3)) (-5 *1 (-501 *5 *6 *7 *3))
- (-4 *3 (-877 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-392 (-1080 *7)) (-1080 *7)))
- (-4 *7 (-13 (-282) (-135))) (-4 *5 (-783)) (-4 *6 (-729))
- (-4 *8 (-877 *7 *6 *5)) (-5 *2 (-392 (-1080 *8)))
- (-5 *1 (-501 *5 *6 *7 *8)) (-5 *3 (-1080 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-392 *3)) (-5 *1 (-515 *3)) (-4 *3 (-506))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-587 *5) *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *6 (-1141 *5)) (-5 *2 (-587 (-594 (-381 *6))))
- (-5 *1 (-598 *5 *6)) (-5 *3 (-594 (-381 *6)))))
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-4 *5 (-730)) (-4 *7 (-514)) (-5 *2 (-393 *3))
+ (-5 *1 (-430 *4 *5 *6 *7 *3)) (-4 *6 (-514))
+ (-4 *3 (-878 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-283)) (-5 *2 (-393 (-1081 *4))) (-5 *1 (-432 *4))
+ (-5 *3 (-1081 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-393 *6) *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338))
+ (-4 *7 (-13 (-338) (-135) (-662 *5 *6))) (-5 *2 (-393 *3))
+ (-5 *1 (-464 *5 *6 *7 *3)) (-4 *3 (-1142 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7)))
+ (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730))
+ (-5 *2 (-393 *3)) (-5 *1 (-502 *5 *6 *7 *3))
+ (-4 *3 (-878 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-393 (-1081 *7)) (-1081 *7)))
+ (-4 *7 (-13 (-283) (-135))) (-4 *5 (-784)) (-4 *6 (-730))
+ (-4 *8 (-878 *7 *6 *5)) (-5 *2 (-393 (-1081 *8)))
+ (-5 *1 (-502 *5 *6 *7 *8)) (-5 *3 (-1081 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-393 *3)) (-5 *1 (-516 *3)) (-4 *3 (-507))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-588 *5) *6))
+ (-4 *5 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *6 (-1142 *5)) (-5 *2 (-588 (-595 (-382 *6))))
+ (-5 *1 (-599 *5 *6)) (-5 *3 (-595 (-382 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))
- (-4 *5 (-1141 *4)) (-5 *2 (-587 (-594 (-381 *5))))
- (-5 *1 (-598 *4 *5)) (-5 *3 (-594 (-381 *5)))))
+ (-4 *4 (-13 (-338) (-135) (-962 (-522)) (-962 (-382 (-522)))))
+ (-4 *5 (-1142 *4)) (-5 *2 (-588 (-595 (-382 *5))))
+ (-5 *1 (-599 *4 *5)) (-5 *3 (-595 (-382 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-755 *4)) (-4 *4 (-783)) (-5 *2 (-587 (-612 *4)))
- (-5 *1 (-612 *4))))
+ (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-588 (-613 *4)))
+ (-5 *1 (-613 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-521)) (-5 *2 (-587 *3)) (-5 *1 (-633 *3))
- (-4 *3 (-1141 *4))))
+ (-12 (-5 *4 (-522)) (-5 *2 (-588 *3)) (-5 *1 (-634 *3))
+ (-4 *3 (-1142 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-323)) (-5 *2 (-392 *3))
- (-5 *1 (-635 *4 *5 *6 *3)) (-4 *3 (-877 *6 *5 *4))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324)) (-5 *2 (-393 *3))
+ (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-878 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-323))
- (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-392 (-1080 *7)))
- (-5 *1 (-635 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-324))
+ (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7)))
+ (-5 *1 (-636 *4 *5 *6 *7)) (-5 *3 (-1081 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-729))
+ (-12 (-4 *4 (-730))
(-4 *5
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-4 *6 (-282)) (-5 *2 (-392 *3)) (-5 *1 (-667 *4 *5 *6 *3))
- (-4 *3 (-877 (-880 *6) *4 *5))))
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-4 *6 (-283)) (-5 *2 (-393 *3)) (-5 *1 (-668 *4 *5 *6 *3))
+ (-4 *3 (-878 (-881 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-729))
- (-4 *5 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *6 (-513))
- (-5 *2 (-392 *3)) (-5 *1 (-669 *4 *5 *6 *3))
- (-4 *3 (-877 (-381 (-880 *6)) *4 *5))))
+ (-12 (-4 *4 (-730))
+ (-4 *5 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *6 (-514))
+ (-5 *2 (-393 *3)) (-5 *1 (-670 *4 *5 *6 *3))
+ (-4 *3 (-878 (-382 (-881 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-13 (-282) (-135)))
- (-5 *2 (-392 *3)) (-5 *1 (-670 *4 *5 *6 *3))
- (-4 *3 (-877 (-381 *6) *4 *5))))
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-13 (-283) (-135)))
+ (-5 *2 (-393 *3)) (-5 *1 (-671 *4 *5 *6 *3))
+ (-4 *3 (-878 (-382 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135)))
- (-5 *2 (-392 *3)) (-5 *1 (-678 *4 *5 *6 *3))
- (-4 *3 (-877 *6 *5 *4))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135)))
+ (-5 *2 (-393 *3)) (-5 *1 (-679 *4 *5 *6 *3))
+ (-4 *3 (-878 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-783)) (-4 *5 (-729)) (-4 *6 (-13 (-282) (-135)))
- (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-392 (-1080 *7)))
- (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1080 *7))))
+ (-12 (-4 *4 (-784)) (-4 *5 (-730)) (-4 *6 (-13 (-283) (-135)))
+ (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-393 (-1081 *7)))
+ (-5 *1 (-679 *4 *5 *6 *7)) (-5 *3 (-1081 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-932 *3))
- (-4 *3 (-1141 (-381 (-521))))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-933 *3))
+ (-4 *3 (-1142 (-382 (-522))))))
((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-964 *3))
- (-4 *3 (-1141 (-381 (-880 (-521)))))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-965 *3))
+ (-4 *3 (-1142 (-382 (-881 (-522)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1141 (-381 (-521))))
- (-4 *5 (-13 (-337) (-135) (-661 (-381 (-521)) *4)))
- (-5 *2 (-392 *3)) (-5 *1 (-995 *4 *5 *3)) (-4 *3 (-1141 *5))))
+ (-12 (-4 *4 (-1142 (-382 (-522))))
+ (-4 *5 (-13 (-338) (-135) (-662 (-382 (-522)) *4)))
+ (-5 *2 (-393 *3)) (-5 *1 (-996 *4 *5 *3)) (-4 *3 (-1142 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1141 (-381 (-880 (-521)))))
- (-4 *5 (-13 (-337) (-135) (-661 (-381 (-880 (-521))) *4)))
- (-5 *2 (-392 *3)) (-5 *1 (-997 *4 *5 *3)) (-4 *3 (-1141 *5))))
+ (-12 (-4 *4 (-1142 (-382 (-881 (-522)))))
+ (-4 *5 (-13 (-338) (-135) (-662 (-382 (-881 (-522))) *4)))
+ (-5 *2 (-393 *3)) (-5 *1 (-998 *4 *5 *3)) (-4 *3 (-1142 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-729)) (-4 *5 (-783)) (-4 *6 (-425))
- (-4 *7 (-877 *6 *4 *5)) (-5 *2 (-392 (-1080 (-381 *7))))
- (-5 *1 (-1079 *4 *5 *6 *7)) (-5 *3 (-1080 (-381 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-392 *1)) (-4 *1 (-1123))))
+ (-12 (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-426))
+ (-4 *7 (-878 *6 *4 *5)) (-5 *2 (-393 (-1081 (-382 *7))))
+ (-5 *1 (-1080 *4 *5 *6 *7)) (-5 *3 (-1081 (-382 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-393 *1)) (-4 *1 (-1124))))
((*1 *2 *3)
- (-12 (-5 *2 (-392 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 -4049)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1031)) (-4 *4 (-323))
- (-5 *1 (-491 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-5 *1 (-57 *3)) (-4 *3 (-1119))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-1119)) (-5 *1 (-57 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-12 (-5 *1 (-616 *2)) (-4 *2 (-783))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304))
- (-5 *1 (-306))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-1006 (-880 (-521)))) (-5 *2 (-304))
- (-5 *1 (-306))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-871 (-202))) (-5 *2 (-1170)) (-5 *1 (-441)))))
+ (-12 (-5 *2 (-393 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1142 (-522))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-202))) (-5 *2 (-1165 (-636))) (-5 *1 (-280)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-353)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9))))
- (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-989 *5 *6 *7 *8))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-1170))
- (-5 *1 (-987 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9))))
- (-5 *4 (-707)) (-4 *8 (-984 *5 *6 *7)) (-4 *9 (-1022 *5 *6 *7 *8))
- (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783)) (-5 *2 (-1170))
- (-5 *1 (-1054 *5 *6 *7 *8 *9)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-854))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-854))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-871 (-202)) (-202))) (-5 *3 (-1008 (-202)))
- (-5 *1 (-855)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-521)) (-5 *5 (-1067)) (-5 *6 (-627 (-202)))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 *1)) (-5 *4 (-1165 *1)) (-4 *1 (-583 *5))
- (-4 *5 (-970))
- (-5 *2 (-2 (|:| -3534 (-627 *5)) (|:| |vec| (-1165 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 *1)) (-4 *1 (-583 *4)) (-4 *4 (-970))
- (-5 *2 (-627 *4)))))
-(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
- ((*1 *1 *1) (-4 *1 (-1053))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-970)) (-4 *3 (-783))
- (-4 *4 (-242 *3)) (-4 *5 (-729)))))
+ (-12 (-5 *3 (-588 (-561 *5))) (-4 *4 (-784)) (-5 *2 (-561 *5))
+ (-5 *1 (-531 *4 *5)) (-4 *5 (-405 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3))
+ (-4 *3 (-1142 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-393 *3)) (-5 *1 (-843 *3)) (-4 *3 (-283)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
- (-5 *2 (-587 (-587 (-871 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-587 (-587 (-871 *4)))) (-5 *3 (-108)) (-4 *4 (-970))
- (-4 *1 (-1045 *4))))
+ (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-895)))))
+(((*1 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-507)))))
+(((*1 *1 *1) (-4 *1 (-1054))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *3 (-588 (-239))) (-5 *1 (-237))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 (-871 *3)))) (-4 *3 (-970))
- (-4 *1 (-1045 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-587 (-587 (-587 *4)))) (-5 *3 (-108))
- (-4 *1 (-1045 *4)) (-4 *4 (-970))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-587 (-587 (-871 *4)))) (-5 *3 (-108))
- (-4 *1 (-1045 *4)) (-4 *4 (-970))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-587 (-587 (-587 *5)))) (-5 *3 (-587 (-156)))
- (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-587 (-587 (-871 *5)))) (-5 *3 (-587 (-156)))
- (-5 *4 (-156)) (-4 *1 (-1045 *5)) (-4 *5 (-970)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-684)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1084)) (-5 *6 (-108))
- (-4 *7 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-4 *3 (-13 (-1105) (-886) (-29 *7)))
+ (-12
(-5 *2
- (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-587 (-776 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *7 *3)) (-5 *5 (-776 *3)))))
-(((*1 *1 *1) (-4 *1 (-513))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1141 *3)) (-5 *1 (-373 *3 *2))
- (-4 *3 (-13 (-337) (-135))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-218))))
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *1 (-239))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-522)) (-5 *4 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *2 (-1171)) (-5 *1 (-1168))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-202)) (|:| |phi| (-202)) (|:| -3091 (-202))
+ (|:| |scaleX| (-202)) (|:| |scaleY| (-202)) (|:| |scaleZ| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202))))
+ (-5 *1 (-1168))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6) (-10 -8 (-15 -2190 ($ *7)))))
+ (-4 *7 (-782))
+ (-4 *8
+ (-13 (-1144 *3 *7) (-338) (-1106)
+ (-10 -8 (-15 -2157 ($ $)) (-15 -1858 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1068)) (|:| |prob| (-1068))))))
+ (-5 *1 (-397 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1068)) (-4 *9 (-910 *8))
+ (-14 *10 (-1085)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9))))
+ (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-990 *5 *6 *7 *8))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171))
+ (-5 *1 (-988 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-2 (|:| |val| (-588 *8)) (|:| -1886 *9))))
+ (-5 *4 (-708)) (-4 *8 (-985 *5 *6 *7)) (-4 *9 (-1023 *5 *6 *7 *8))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784)) (-5 *2 (-1171))
+ (-5 *1 (-1055 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-336 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-361 *4)) (-4 *4 (-1014))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5))
+ (-4 *4 (-1014)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-708)) (-5 *1 (-756 *4)) (-4 *4 (-784)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-522))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784))
+ (-5 *1 (-423 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-971)) (-4 *7 (-971))
+ (-4 *6 (-1142 *5)) (-5 *2 (-1081 (-1081 *7)))
+ (-5 *1 (-471 *5 *6 *4 *7)) (-4 *4 (-1142 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784))
+ (-4 *4 (-242 *3)) (-4 *5 (-730)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1088))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1171)) (-5 *1 (-1088)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-1024)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-628 (-202))) (-5 *5 (-628 (-522))) (-5 *3 (-522))
+ (-5 *2 (-960)) (-5 *1 (-694)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-338) (-135) (-962 (-522))))
+ (-4 *5 (-1142 *4))
+ (-5 *2 (-2 (|:| -1856 (-382 *5)) (|:| |coeff| (-382 *5))))
+ (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-689)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-628 (-1081 *8))) (-4 *5 (-971)) (-4 *8 (-971))
+ (-4 *6 (-1142 *5)) (-5 *2 (-628 *6)) (-5 *1 (-471 *5 *6 *7 *8))
+ (-4 *7 (-1142 *6)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1068)) (-5 *3 (-522)) (-5 *1 (-218))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-587 (-1067))) (-5 *3 (-521)) (-5 *4 (-1067))
+ (-12 (-5 *2 (-588 (-1068))) (-5 *3 (-522)) (-5 *4 (-1068))
(-5 *1 (-218))))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
- ((*1 *2 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-521))
- (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-410)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *3 (-729)) (-4 *2 (-971)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-594 (-381 *2))) (-4 *2 (-1141 *4)) (-5 *1 (-746 *4 *2))
- (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-595 *2 (-381 *2))) (-4 *2 (-1141 *4))
- (-5 *1 (-746 *4 *2))
- (-4 *4 (-13 (-337) (-135) (-961 (-521)) (-961 (-381 (-521))))))))
-(((*1 *1) (-5 *1 (-129))))
-(((*1 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-506)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-1023)))))
+ (-12 (-5 *3 (-1068)) (-4 *4 (-13 (-283) (-135)))
+ (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| |eqzro| (-588 *7)) (|:| |neqzro| (-588 *7))
+ (|:| |wcond| (-588 (-881 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1166 (-382 (-881 *4))))
+ (|:| -3855 (-588 (-1166 (-382 (-881 *4))))))))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-849)) (-4 *1 (-681 *3)) (-4 *3 (-157)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))))
+(((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-332 *3)) (-4 *3 (-324)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-522)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1120))
+ (-4 *5 (-348 *4)) (-4 *3 (-348 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-621 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-522))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-522)))))
+(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-215 *3 *2)) (-4 *2 (-1120)) (-4 *2 (-971))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-872 (-202))) (-5 *2 (-202)) (-5 *1 (-1117))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-971)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-850)) (-4 *1 (-682 *3)) (-4 *3 (-157)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-730)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426)) (-4 *6 (-784))
+ (-5 *2 (-108)) (-5 *1 (-423 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6))
- (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-903 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-92)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4233)) (-4 *1 (-460 *4))
- (-4 *4 (-1119)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-4 *1 (-277))) ((*1 *1 *1) (-4 *1 (-277))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1087)) (-5 *3 (-1084)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-707)) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-970)) (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
- (-4 *5 (-215 *3 *2)))))
+ (-12 (-4 *2 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *1 (-1040 *3 *2)) (-4 *3 (-1142 *2)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-856)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-834 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1013))
- (-4 *5 (-1119)) (-5 *1 (-818 *4 *5))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-971)) (-5 *2 (-886 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1142 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-588 (-522))) (-5 *1 (-1024)) (-5 *3 (-522)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-115 *2)) (-4 *2 (-1120)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-971)) (-5 *1 (-650 *3 *4))
+ (-4 *4 (-1142 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-821 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1014))
+ (-4 *5 (-1120)) (-5 *1 (-819 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-820 *4)) (-5 *3 (-587 (-1 (-108) *5))) (-4 *4 (-1013))
- (-4 *5 (-1119)) (-5 *1 (-818 *4 *5))))
+ (-12 (-5 *2 (-821 *4)) (-5 *3 (-588 (-1 (-108) *5))) (-4 *4 (-1014))
+ (-4 *5 (-1120)) (-5 *1 (-819 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-820 *5)) (-5 *3 (-587 (-1084)))
- (-5 *4 (-1 (-108) (-587 *6))) (-4 *5 (-1013)) (-4 *6 (-1119))
- (-5 *1 (-818 *5 *6))))
+ (-12 (-5 *2 (-821 *5)) (-5 *3 (-588 (-1085)))
+ (-5 *4 (-1 (-108) (-588 *6))) (-4 *5 (-1014)) (-4 *6 (-1120))
+ (-5 *1 (-819 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1119)) (-4 *4 (-783))
- (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-404 *4))))
+ (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1120)) (-4 *4 (-784))
+ (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-1 (-108) *5))) (-4 *5 (-1119)) (-4 *4 (-783))
- (-5 *1 (-865 *4 *2 *5)) (-4 *2 (-404 *4))))
+ (-12 (-5 *3 (-588 (-1 (-108) *5))) (-4 *5 (-1120)) (-4 *4 (-784))
+ (-5 *1 (-866 *4 *2 *5)) (-4 *2 (-405 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1119))
- (-5 *2 (-290 (-521))) (-5 *1 (-866 *5))))
+ (-12 (-5 *3 (-1085)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1120))
+ (-5 *2 (-291 (-522))) (-5 *1 (-867 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-587 (-1 (-108) *5))) (-4 *5 (-1119))
- (-5 *2 (-290 (-521))) (-5 *1 (-866 *5))))
+ (-12 (-5 *3 (-1085)) (-5 *4 (-588 (-1 (-108) *5))) (-4 *5 (-1120))
+ (-5 *2 (-291 (-522))) (-5 *1 (-867 *5))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 (-1084))) (-5 *3 (-1 (-108) (-587 *6)))
- (-4 *6 (-13 (-404 *5) (-814 *4) (-562 (-820 *4)))) (-4 *4 (-1013))
- (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4))))
- (-5 *1 (-992 *4 *5 *6)))))
+ (-12 (-5 *2 (-588 (-1085))) (-5 *3 (-1 (-108) (-588 *6)))
+ (-4 *6 (-13 (-405 *5) (-815 *4) (-563 (-821 *4)))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4))))
+ (-5 *1 (-993 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1166 *5)) (-4 *5 (-729)) (-5 *2 (-108))
+ (-5 *1 (-779 *4 *5)) (-14 *4 (-708)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-514)) (-4 *3 (-157))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3855 (-588 *1))))
+ (-4 *1 (-342 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-427 *3 *4 *5 *6))
+ (|:| -3855 (-588 (-427 *3 *4 *5 *6)))))
+ (-5 *1 (-427 *3 *4 *5 *6)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085))
+ (-14 *4 *2))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-1 (-108) *8))) (-4 *8 (-984 *5 *6 *7))
- (-4 *5 (-513)) (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8))))
- (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-331 *3)) (-4 *3 (-323)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1013)) (-5 *2 (-108)) (-5 *1 (-813 *3 *4 *5))
- (-4 *3 (-1013)) (-4 *5 (-607 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-817 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-696)))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *4 (-834 (-522)))
+ (-5 *2 (-628 (-522))) (-5 *1 (-543))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-588 (-628 (-522))))
+ (-5 *1 (-543))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-522))) (-5 *4 (-588 (-834 (-522))))
+ (-5 *2 (-588 (-628 (-522)))) (-5 *1 (-543)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-849)) (-4 *1 (-303 *3)) (-4 *3 (-337)) (-4 *3 (-342))))
- ((*1 *2 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-337))))
+ (-12 (-5 *2 (-850)) (-4 *1 (-304 *3)) (-4 *3 (-338)) (-4 *3 (-343))))
+ ((*1 *2 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-338))))
((*1 *2 *1)
- (-12 (-4 *1 (-344 *2 *3)) (-4 *3 (-1141 *2)) (-4 *2 (-157))))
+ (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1142 *2)) (-4 *2 (-157))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-849)) (-4 *4 (-323))
- (-5 *1 (-491 *4))))
+ (-12 (-5 *2 (-1166 *4)) (-5 *3 (-850)) (-4 *4 (-324))
+ (-5 *1 (-492 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
- (-4 *5 (-215 *3 *2)) (-4 *2 (-970)))))
+ (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (-4 *2 (-971)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-730))
+ (-4 *3 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *5 (-514))
+ (-5 *1 (-670 *4 *3 *5 *2)) (-4 *2 (-878 (-382 (-881 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-5 *1 (-911 *4 *5 *3 *2)) (-4 *2 (-878 (-881 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *6))
+ (-4 *6
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-4 *4 (-971)) (-4 *5 (-730)) (-5 *1 (-911 *4 *5 *6 *2))
+ (-4 *2 (-878 (-881 *4) *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-521)) (-5 *4 (-392 *2)) (-4 *2 (-877 *7 *5 *6))
- (-5 *1 (-679 *5 *6 *7 *2)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-282)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-587 *7)) (|:| |badPols| (-587 *7))))
- (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-587 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-347 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *1 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-1120))))
((*1 *2 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-417 *3 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-971)) (-5 *1 (-418 *3 *2)) (-4 *2 (-1142 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-614 *3)) (-4 *3 (-1119)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-802)) (-5 *1 (-1168)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-381 (-521))))
- (-5 *2 (-2 (|:| -2886 (-1065 *4)) (|:| -2898 (-1065 *4))))
- (-5 *1 (-1071 *4)) (-5 *3 (-1065 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-783)))))
-(((*1 *2 *3) (-12 (-5 *3 (-202)) (-5 *2 (-290 (-353))) (-5 *1 (-280)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
- (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1013)) (-5 *2 (-587 (-707)))
- (-5 *1 (-832 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1065 (-521))) (-5 *1 (-1069 *4)) (-4 *4 (-970))
- (-5 *3 (-521)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013))
- (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-4 *1 (-598 *3)) (-4 *3 (-971)) (-4 *3 (-338))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-708)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338))
+ (-5 *1 (-601 *5 *2)) (-4 *2 (-598 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1120))
+ (-4 *5 (-348 *4)) (-4 *2 (-348 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-522)) (-4 *1 (-974 *4 *5 *6 *2 *7)) (-4 *6 (-971))
+ (-4 *7 (-215 *4 *6)) (-4 *2 (-215 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *6)) (-5 *4 (-1084)) (-4 *6 (-404 *5))
- (-4 *5 (-783)) (-5 *2 (-587 (-560 *6))) (-5 *1 (-530 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-515 *2)) (-4 *2 (-506)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-776 *4)) (-5 *3 (-560 *4)) (-5 *5 (-108))
- (-4 *4 (-13 (-1105) (-29 *6)))
- (-4 *6 (-13 (-425) (-783) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-201 *6 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-233)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1084)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-587 (-239))) (-5 *1 (-237)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-849)) (-5 *4 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1166)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-970)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3852 *1) (|:| -2334 *1))) (-4 *1 (-282))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-360 *3)) (|:| |rm| (-360 *3))))
- (-5 *1 (-360 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3852 (-707)) (|:| -2334 (-707))))
- (-5 *1 (-707))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| -3852 *3) (|:| -2334 *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-625 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-108)) (-5 *6 (-202))
- (-5 *7 (-627 (-521)))
- (-5 *8 (-3 (|:| |fn| (-362)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-362)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-521)) (-5 *2 (-959)) (-5 *1 (-690)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970))
- (-4 *2 (-13 (-378) (-961 *4) (-337) (-1105) (-259)))
- (-5 *1 (-416 *4 *3 *2)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-992 *3 *4 *5))) (-4 *3 (-1013))
- (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3))))
- (-4 *5 (-13 (-404 *4) (-814 *3) (-562 (-820 *3))))
- (-5 *1 (-993 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1101)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-587 (-880 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-587 (-880 *4))) (-5 *1 (-390 *3 *4))
- (-4 *3 (-391 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-587 (-880 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-587 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3)))))
+ (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-338))
+ (-4 *1 (-662 *5 *6)) (-4 *5 (-157)) (-4 *6 (-1142 *5))
+ (-5 *2 (-628 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1007 (-777 *3))) (-4 *3 (-13 (-1106) (-887) (-29 *5)))
+ (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-196 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1007 (-777 *3))) (-5 *5 (-1068))
+ (-4 *3 (-13 (-1106) (-887) (-29 *6)))
+ (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 *3)) (|:| |f2| (-588 (-777 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-196 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1007 (-777 (-291 *5))))
+ (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1007 (-777 (-291 *6))))
+ (-5 *5 (-1068))
+ (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1007 (-777 (-382 (-881 *5))))) (-5 *3 (-382 (-881 *5)))
+ (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-291 *5))) (|:| |f2| (-588 (-777 (-291 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1007 (-777 (-382 (-881 *6))))) (-5 *5 (-1068))
+ (-5 *3 (-382 (-881 *6)))
+ (-4 *6 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (|:| |f1| (-777 (-291 *6))) (|:| |f2| (-588 (-777 (-291 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-197 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-3 *3 (-588 *3))) (-5 *1 (-403 *5 *3))
+ (-4 *3 (-13 (-1106) (-887) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-448 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354))))
+ (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3) (-12 (-5 *3 (-706)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354))))
+ (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354))))
+ (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-1009 (-777 (-354))))
+ (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354)))))
+ (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354)))))
+ (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354)))))
+ (-5 *5 (-354)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-291 (-354))) (-5 *4 (-588 (-1009 (-777 (-354)))))
+ (-5 *5 (-354)) (-5 *6 (-983)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354))))
+ (-5 *5 (-1068)) (-5 *2 (-960)) (-5 *1 (-523))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-291 (-354))) (-5 *4 (-1007 (-777 (-354))))
+ (-5 *5 (-1085)) (-5 *2 (-960)) (-5 *1 (-523))))
((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-426 *4 *5 *6 *7))) (-5 *2 (-587 (-880 *4)))
- (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-513)) (-4 *4 (-157))
- (-14 *5 (-849)) (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-849)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-239)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-587 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-1170)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-807 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 (-871 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
+ (-12 (-4 *4 (-13 (-338) (-135) (-962 (-522)))) (-4 *5 (-1142 *4))
+ (-5 *2 (-539 (-382 *5))) (-5 *1 (-526 *4 *5)) (-5 *3 (-382 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *2 (-3 (-291 *5) (-588 (-291 *5)))) (-5 *1 (-542 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-678 *3 *2)) (-4 *3 (-971)) (-4 *2 (-784))
+ (-4 *3 (-37 (-382 (-522))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-1085)) (-5 *1 (-881 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-4 *3 (-971))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-4 *2 (-784))
+ (-5 *1 (-1038 *3 *2 *4)) (-4 *4 (-878 *3 (-494 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971))
+ (-5 *1 (-1070 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1076 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1083 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1085)) (-5 *1 (-1115 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-4 *3 (-971))))
+ ((*1 *1 *1 *2)
+ (-3708
+ (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971))
+ (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106))
+ (-4 *3 (-37 (-382 (-522))))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-1126 *3)) (-4 *3 (-971))
+ (-12 (|has| *3 (-15 -4090 ((-588 *2) *3)))
+ (|has| *3 (-15 -1858 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1126 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1130 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1142 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522))))))
+ ((*1 *1 *1 *2)
+ (-3708
+ (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971))
+ (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106))
+ (-4 *3 (-37 (-382 (-522))))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-1147 *3)) (-4 *3 (-971))
+ (-12 (|has| *3 (-15 -4090 ((-588 *2) *3)))
+ (|has| *3 (-15 -1858 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1147 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-871 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))))
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1151 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3708
+ (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971))
+ (-12 (-4 *3 (-29 (-522))) (-4 *3 (-887)) (-4 *3 (-1106))
+ (-4 *3 (-37 (-382 (-522))))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-1157 *3)) (-4 *3 (-971))
+ (-12 (|has| *3 (-15 -4090 ((-588 *2) *3)))
+ (|has| *3 (-15 -1858 (*3 *3 *2))) (-4 *3 (-37 (-382 (-522))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1157 *2)) (-4 *2 (-971)) (-4 *2 (-37 (-382 (-522))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1162 *4)) (-14 *4 (-1085)) (-5 *1 (-1158 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *3 (-971)) (-14 *5 *3))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-513))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-560 *4)) (-4 *4 (-783)) (-4 *2 (-783))
- (-5 *1 (-559 *2 *4)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-290 (-202))) (-5 *1 (-243)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-587 (-1080 (-521)))) (-5 *1 (-170)) (-5 *3 (-521)))))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-539 *2)) (-4 *2 (-338)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-1014)) (-4 *4 (-1120)) (-5 *2 (-108))
+ (-5 *1 (-1066 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-1044 *4 *2))
+ (-4 *2 (-13 (-555 (-522) *4) (-10 -7 (-6 -4238) (-6 -4239))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-784)) (-4 *3 (-1120)) (-5 *1 (-1044 *3 *2))
+ (-4 *2 (-13 (-555 (-522) *3) (-10 -7 (-6 -4238) (-6 -4239)))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1142 (-522))) (-5 *1 (-458 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-513))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-521)) (-5 *1 (-392 *2)) (-4 *2 (-513)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-514))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-878 *4 *6 *5)) (-4 *4 (-426))
+ (-4 *5 (-784)) (-4 *6 (-730)) (-5 *1 (-914 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-337) (-10 -8 (-15 ** ($ $ (-381 (-521)))))))
- (-5 *2 (-587 *3)) (-5 *1 (-1039 *4 *3)) (-4 *4 (-1141 *3)))))
+ (-12 (-14 *4 (-588 (-1085))) (-4 *5 (-426))
+ (-5 *2
+ (-2 (|:| |glbase| (-588 (-224 *4 *5))) (|:| |glval| (-588 (-522)))))
+ (-5 *1 (-576 *4 *5)) (-5 *3 (-588 (-224 *4 *5))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-130 *2 *4 *3))
+ (-4 *3 (-348 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-473 *2 *4 *5 *3))
+ (-4 *5 (-348 *2)) (-4 *3 (-348 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 *4)) (-4 *4 (-919 *2)) (-4 *2 (-514))
+ (-5 *1 (-631 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-919 *2)) (-4 *2 (-514)) (-5 *1 (-1135 *2 *4 *3))
+ (-4 *3 (-1142 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-588 (-522))) (-5 *2 (-708)) (-5 *1 (-543)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2))
+ (-4 *2 (-1142 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-803)) (-5 *3 (-588 (-239))) (-5 *1 (-237)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792))))
+ ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-881 *6)) (-5 *4 (-1085))
+ (-5 *5 (-777 *7))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-4 *7 (-13 (-1106) (-29 *6))) (-5 *1 (-201 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1081 *6)) (-5 *4 (-777 *6))
+ (-4 *6 (-13 (-1106) (-29 *5)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-201 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-338) (-782))) (-5 *1 (-164 *3 *2))
+ (-4 *2 (-1142 (-154 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-850)) (-5 *1 (-723)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-993 *3 *4 *5))) (-4 *3 (-1014))
+ (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3))))
+ (-4 *5 (-13 (-405 *4) (-815 *3) (-563 (-821 *3))))
+ (-5 *1 (-994 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 (-202))) (-5 *2 (-291 (-354))) (-5 *1 (-281)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *1 (-812)) (-5 *3 (-522)))))
+(((*1 *1) (-5 *1 (-442))))
+(((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-971)) (-5 *1 (-823 *2 *3)) (-4 *2 (-1142 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1049))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2 (-1065 (-202))) (-5 *1 (-171))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-290 (-202))) (-5 *4 (-587 (-1084)))
- (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275))))
+ (-5 *2
+ (-588
+ (-2
+ (|:| -2530
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202))))
+ (|:| |yinit| (-588 (-202))) (|:| |intvals| (-588 (-202)))
+ (|:| |g| (-291 (-202))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3048
+ (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354))
+ (|:| |expense| (-354)) (|:| |accuracy| (-354))
+ (|:| |intermediateResults| (-354)))))))
+ (-5 *1 (-740)))))
+(((*1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708))
+ (-4 *4 (-157)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 (-154 (-382 (-522)))))
+ (-5 *2
+ (-588
+ (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-522))
+ (|:| |outvect| (-588 (-628 (-154 *4)))))))
+ (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *2 (-382 (-881 *4))) (-5 *1 (-853 *4 *5 *6 *3))
+ (-4 *3 (-878 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-628 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *2 (-628 (-382 (-881 *4))))
+ (-5 *1 (-853 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *2 (-588 (-382 (-881 *4))))
+ (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-1014)) (-5 *1 (-834 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171))
+ (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171))
+ (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 (-1177 *4 *5 *6 *7)))
+ (-5 *1 (-1177 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *4 (-587 (-1084)))
- (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-1065 (-202))) (-5 *1 (-275)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-849)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-239)))))
+ (-12 (-5 *3 (-588 *9)) (-5 *4 (-1 (-108) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-985 *6 *7 *8)) (-4 *6 (-514))
+ (-4 *7 (-730)) (-4 *8 (-784)) (-5 *2 (-588 (-1177 *6 *7 *8 *9)))
+ (-5 *1 (-1177 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-108)) (-5 *1 (-821 *4))
+ (-4 *4 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6))
- (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-781)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-4 *5 (-425)) (-5 *2 (-587 *6))
- (-5 *1 (-499 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-781))))))
+ (-12 (-5 *3 (-628 *8)) (-4 *8 (-878 *5 *7 *6))
+ (-4 *5 (-13 (-283) (-135))) (-4 *6 (-13 (-784) (-563 (-1085))))
+ (-4 *7 (-730))
+ (-5 *2
+ (-588
+ (-2 (|:| -3166 (-708))
+ (|:| |eqns|
+ (-588
+ (-2 (|:| |det| *8) (|:| |rows| (-588 (-522)))
+ (|:| |cols| (-588 (-522))))))
+ (|:| |fgb| (-588 *8)))))
+ (-5 *1 (-853 *5 *6 *7 *8)) (-5 *4 (-708)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
- (|:| |relerr| (-202))))
- (-5 *2 (-2 (|:| -1426 (-110)) (|:| |w| (-202)))) (-5 *1 (-183)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-694)))))
+ (-12 (-4 *4 (-13 (-338) (-782)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2976 (-393 *3))))
+ (-5 *1 (-164 *4 *3)) (-4 *3 (-1142 (-154 *4))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 *1)) (|has| *1 (-6 -4234)) (-4 *1 (-935 *3))
- (-4 *3 (-1119)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425)))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-588 (-1 *4 (-588 *4)))) (-4 *4 (-1014))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-588 (-1 *4 (-588 *4))))
+ (-5 *1 (-109 *4)) (-4 *4 (-1014)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-707)) (-4 *3 (-1119)) (-4 *1 (-55 *3 *4 *5))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-708)) (-4 *3 (-1120)) (-4 *1 (-55 *3 *4 *5))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *1) (-5 *1 (-156)))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1067)) (-4 *1 (-363))))
- ((*1 *1) (-5 *1 (-368)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-707)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1068)) (-4 *1 (-364))))
+ ((*1 *1) (-5 *1 (-369)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-708)) (-4 *1 (-593 *3)) (-4 *3 (-1120))))
((*1 *1)
- (-12 (-4 *3 (-1013)) (-5 *1 (-813 *2 *3 *4)) (-4 *2 (-1013))
- (-4 *4 (-607 *3))))
- ((*1 *1) (-12 (-5 *1 (-817 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
- ((*1 *1) (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970))))
- ((*1 *1 *1) (-5 *1 (-1084))) ((*1 *1) (-5 *1 (-1084)))
- ((*1 *1) (-5 *1 (-1100))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-337)) (-4 *3 (-970))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1384 *1)))
- (-4 *1 (-785 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-587 *2) *2 *2 *2)) (-4 *2 (-1013))
- (-5 *1 (-98 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-98 *2)))))
+ (-12 (-4 *3 (-1014)) (-5 *1 (-814 *2 *3 *4)) (-4 *2 (-1014))
+ (-4 *4 (-608 *3))))
+ ((*1 *1) (-12 (-5 *1 (-818 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
+ ((*1 *1) (-12 (-5 *1 (-1074 *2 *3)) (-14 *2 (-850)) (-4 *3 (-971))))
+ ((*1 *1 *1) (-5 *1 (-1085))) ((*1 *1) (-5 *1 (-1085)))
+ ((*1 *1) (-5 *1 (-1101))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202)))
+ (-5 *5 (-3 (|:| |fn| (-363)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-795 *4 *5 *6 *7))
+ (-4 *4 (-971)) (-14 *5 (-588 (-1085))) (-14 *6 (-588 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-971)) (-4 *5 (-784)) (-4 *6 (-730))
+ (-14 *8 (-588 *5)) (-5 *2 (-1171))
+ (-5 *1 (-1176 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-878 *4 *6 *5))
+ (-14 *9 (-588 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-615 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-290 (-202))) (-5 *2 (-381 (-521))) (-5 *1 (-280)))))
+ (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-338)) (-5 *1 (-825 *2 *4))
+ (-4 *2 (-1142 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 *1)) (-4 *1 (-404 *4))
- (-4 *4 (-783))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 *1)) (-4 *1 (-405 *4))
+ (-4 *4 (-784))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784))))
((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1084)) (-4 *1 (-404 *3)) (-4 *3 (-783)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+ (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1085)) (-4 *1 (-405 *3)) (-4 *3 (-784)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-628 (-522))) (-5 *1 (-1024)))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1171)) (-5 *1 (-354))))
+ ((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-354)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171))
+ (-5 *1 (-423 *4 *5 *6 *3)) (-4 *3 (-878 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-4 *6 (-815 *5)) (-5 *2 (-814 *5 *6 (-588 *6)))
+ (-5 *1 (-816 *5 *6 *4)) (-5 *3 (-588 *6)) (-4 *4 (-563 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 *3))) (-5 *1 (-816 *5 *3 *4))
+ (-4 *3 (-962 (-1085))) (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-5 *2 (-588 (-270 (-881 *3))))
+ (-5 *1 (-816 *5 *3 *4)) (-4 *3 (-971))
+ (-2401 (-4 *3 (-962 (-1085)))) (-4 *3 (-815 *5))
+ (-4 *4 (-563 (-821 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-5 *2 (-818 *5 *3)) (-5 *1 (-816 *5 *3 *4))
+ (-2401 (-4 *3 (-962 (-1085)))) (-2401 (-4 *3 (-971)))
+ (-4 *3 (-815 *5)) (-4 *4 (-563 (-821 *5))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-2 (|:| -2535 *3) (|:| -3050 *4))))
- (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1096 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1096 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-513)) (-5 *1 (-896 *4 *2))
- (-4 *2 (-1141 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
+ (-12 (-5 *2 (-588 (-2 (|:| -2530 *3) (|:| -3048 *4))))
+ (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1097 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1097 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1081 (-522))) (-5 *3 (-522)) (-4 *1 (-798 *4)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-587
- (-2 (|:| -3167 (-707))
- (|:| |eqns|
- (-587
- (-2 (|:| |det| *7) (|:| |rows| (-587 (-521)))
- (|:| |cols| (-587 (-521))))))
- (|:| |fgb| (-587 *7)))))
- (-4 *7 (-877 *4 *6 *5)) (-4 *4 (-13 (-282) (-135)))
- (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729)) (-5 *2 (-707))
- (-5 *1 (-852 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-705))
+ (-12 (-5 *3 (-706))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))
- (-5 *1 (-522))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))
+ (-5 *1 (-523))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-705)) (-5 *4 (-982))
+ (-12 (-5 *3 (-706)) (-5 *4 (-983))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067))) (|:| |extra| (-959))))
- (-5 *1 (-522))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))
+ (-5 *1 (-523))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-723)) (-5 *3 (-982))
+ (-12 (-4 *1 (-724)) (-5 *3 (-983))
(-5 *4
- (-2 (|:| |fn| (-290 (-202)))
- (|:| -1403 (-587 (-1008 (-776 (-202))))) (|:| |abserr| (-202))
+ (-2 (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))
- (|:| |extra| (-959))))))
+ (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))
+ (|:| |extra| (-960))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-723)) (-5 *3 (-982))
+ (-12 (-4 *1 (-724)) (-5 *3 (-983))
(-5 *4
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))
- (|:| |extra| (-959))))))
+ (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))
+ (|:| |extra| (-960))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-736)) (-5 *3 (-982))
+ (-12 (-4 *1 (-737)) (-5 *3 (-983))
(-5 *4
(-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
(|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))))))
+ (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))))))
((*1 *2 *3)
- (-12 (-5 *3 (-744))
+ (-12 (-5 *3 (-745))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *1 (-741))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *1 (-742))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-744)) (-5 *4 (-982))
+ (-12 (-5 *3 (-745)) (-5 *4 (-983))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *1 (-741))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *1 (-742))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-772)) (-5 *3 (-982))
+ (-12 (-4 *1 (-773)) (-5 *3 (-983))
(-5 *4
- (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
- (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))))))
+ (-2 (|:| |lfn| (-588 (-291 (-202)))) (|:| -3802 (-588 (-202)))))
+ (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-772)) (-5 *3 (-982))
+ (-12 (-4 *1 (-773)) (-5 *3 (-983))
(-5 *4
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202)))) (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
- (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))))))
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
+ (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))))))
((*1 *2 *3)
- (-12 (-5 *3 (-774))
+ (-12 (-5 *3 (-775))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *1 (-773))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-774)) (-5 *4 (-982))
+ (-12 (-5 *3 (-775)) (-5 *4 (-983))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *1 (-773))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *1 (-774))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-823)) (-5 *3 (-982))
+ (-12 (-4 *1 (-824)) (-5 *3 (-983))
(-5 *4
- (-2 (|:| |pde| (-587 (-290 (-202))))
+ (-2 (|:| |pde| (-588 (-291 (-202))))
(|:| |constraints|
- (-587
+ (-588
(-2 (|:| |start| (-202)) (|:| |finish| (-202))
- (|:| |grid| (-707)) (|:| |boundaryType| (-521))
- (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
- (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |grid| (-708)) (|:| |boundaryType| (-522))
+ (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202))))))
+ (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068))
(|:| |tol| (-202))))
- (-5 *2 (-2 (|:| -1853 (-353)) (|:| |explanations| (-1067))))))
+ (-5 *2 (-2 (|:| -1798 (-354)) (|:| |explanations| (-1068))))))
((*1 *2 *3)
- (-12 (-5 *3 (-826))
+ (-12 (-5 *3 (-827))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *1 (-825))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *1 (-826))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-826)) (-5 *4 (-982))
+ (-12 (-5 *3 (-827)) (-5 *4 (-983))
(-5 *2
- (-2 (|:| -1853 (-353)) (|:| -2890 (-1067))
- (|:| |explanations| (-587 (-1067)))))
- (-5 *1 (-825)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-880 (-202))) (-5 *2 (-202)) (-5 *1 (-280)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-404 *4)) (-5 *1 (-144 *4 *2))
- (-4 *4 (-13 (-783) (-513))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-5 *1 (-857 *3 *2)) (-4 *2 (-404 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1084)) (-5 *2 (-290 (-521))) (-5 *1 (-858)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
- (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-1170))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-455 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
-(((*1 *1 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)))))
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *1 (-826)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1125 *3))
- (-5 *2 (-381 (-521))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-948 *3))
- (-4 *3 (-13 (-781) (-337) (-946)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1141 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-986 *2 *3)) (-4 *2 (-13 (-781) (-337)))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-513)) (-5 *2 (-108)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-707))
- (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-195))))
- ((*1 *2 *1) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458))))
- ((*1 *1 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-282))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-381 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521))))
- ((*1 *1 *1) (-4 *1 (-979))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1084)) (-5 *5 (-587 (-381 (-880 *6))))
- (-5 *3 (-381 (-880 *6)))
- (-4 *6 (-13 (-513) (-961 (-521)) (-135)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-527 *6)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-108)) (-5 *5 (-521)) (-4 *6 (-337)) (-4 *6 (-342))
- (-4 *6 (-970)) (-5 *2 (-587 (-587 (-627 *6)))) (-5 *1 (-953 *6))
- (-5 *3 (-587 (-627 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-337)) (-4 *4 (-342)) (-4 *4 (-970))
- (-5 *2 (-587 (-587 (-627 *4)))) (-5 *1 (-953 *4))
- (-5 *3 (-587 (-627 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970))
- (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
- (-5 *3 (-587 (-627 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *5 (-337)) (-4 *5 (-342)) (-4 *5 (-970))
- (-5 *2 (-587 (-587 (-627 *5)))) (-5 *1 (-953 *5))
- (-5 *3 (-587 (-627 *5))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-51))) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *2) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1080 *4)) (-5 *1 (-540 *4))
- (-4 *4 (-323)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 (-880 (-521)))) (-5 *4 (-587 (-1084)))
- (-5 *2 (-587 (-587 (-353)))) (-5 *1 (-947)) (-5 *5 (-353))))
+ (-12 (-5 *2 (-1081 (-382 (-881 *3)))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-689)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-784)) (-5 *1 (-858 *3 *2)) (-4 *2 (-405 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-967 *4 *5)) (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-14 *5 (-587 (-1084))) (-5 *2 (-587 (-587 (-948 (-381 *4)))))
- (-5 *1 (-1189 *4 *5 *6)) (-14 *6 (-587 (-1084)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-880 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *5))))) (-5 *1 (-1189 *5 *6 *7))
- (-14 *6 (-587 (-1084))) (-14 *7 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4)))
- (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-587 (-587 (-948 (-381 *4))))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-1141 *4)) (-5 *2 (-1 *6 (-587 *6)))
- (-5 *1 (-1159 *4 *5 *3 *6)) (-4 *3 (-597 *5)) (-4 *6 (-1156 *4)))))
+ (-12 (-5 *3 (-1085)) (-5 *2 (-291 (-522))) (-5 *1 (-859)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-522)) (-5 *2 (-588 (-2 (|:| -1916 *3) (|:| -2793 *4))))
+ (-5 *1 (-634 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-971)) (-5 *2 (-522)) (-5 *1 (-417 *4 *3 *5))
+ (-4 *3 (-1142 *4))
+ (-4 *5 (-13 (-379) (-962 *4) (-338) (-1106) (-260))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1032)) (-5 *1 (-105))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-340 *2)) (-4 *2 (-1014))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-561 *6))) (-5 *4 (-1085)) (-5 *2 (-561 *6))
+ (-4 *6 (-405 *5)) (-4 *5 (-784)) (-5 *1 (-531 *5 *6)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-588 *6)) (-4 *1 (-903 *3 *4 *5 *6)) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-4 *3 (-514)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-157)) (-4 *2 (-971)) (-5 *1 (-652 *2 *3))
+ (-4 *3 (-590 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-771 *2)) (-4 *2 (-157)) (-4 *2 (-971)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-108))
+ (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1142 *6))
+ (-4 *6 (-13 (-338) (-135) (-962 *4))) (-5 *4 (-522))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
+ (|:| -3197
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-941 *6 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1014)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-497))) (-5 *1 (-497)))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-588 (-498))) (-5 *1 (-498)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-381 (-880 *5)) (-1074 (-1084) (-880 *5))))
- (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-880 *5)))))
- (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-880 *5)))))))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| (-108)) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-354)) (-5 *1 (-92)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1081 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514)))
+ (-5 *1 (-31 *4 *2)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-984 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *3 (-513)))))
-(((*1 *2)
- (-12 (-4 *3 (-513)) (-5 *2 (-587 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-391 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1165 *5)) (-4 *5 (-583 *4)) (-4 *4 (-513))
- (-5 *2 (-1165 *4)) (-5 *1 (-582 *4 *5)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *1) (-5 *1 (-759))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085))
+ (-14 *4 *2))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1068)) (-5 *3 (-760)) (-5 *1 (-759)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1165 *4)) (-4 *4 (-583 (-521)))
- (-5 *2 (-1165 (-521))) (-5 *1 (-1190 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1946 *7))))
- (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-914 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 (-2 (|:| |val| (-587 *6)) (|:| -1946 *7))))
- (-4 *6 (-984 *3 *4 *5)) (-4 *7 (-989 *3 *4 *5 *6)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-1020 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-628 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-628 *4)) (-5 *1 (-391 *3 *4))
+ (-4 *3 (-392 *4))))
+ ((*1 *2) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-628 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-393 *3)) (-4 *3 (-507)) (-4 *3 (-514))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-770 *3)) (-4 *3 (-507)) (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-777 *3)) (-4 *3 (-507)) (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-934 *3)) (-4 *3 (-962 (-382 (-522)))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-837)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))))
+ (-12 (-4 *4 (-324)) (-5 *2 (-108)) (-5 *1 (-194 *4 *3))
+ (-4 *3 (-1142 *4)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-791))))
- ((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-323)) (-5 *1 (-331 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
- ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-871 (-202)) (-871 (-202)))) (-5 *1 (-239))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-303 *4)) (-4 *4 (-337))
- (-5 *2 (-627 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-303 *3)) (-4 *3 (-337)) (-5 *2 (-1165 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-627 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-341 *4)) (-4 *4 (-157))
- (-5 *2 (-1165 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1141 *4)) (-5 *2 (-1165 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
- (-5 *2 (-1165 *3))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN)))) (-5 *3 (-202))
+ (-5 *2 (-960)) (-5 *1 (-687)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1066 (-588 (-522)))) (-5 *3 (-588 (-522)))
+ (-5 *1 (-812)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522))))
((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-391 *4)) (-4 *4 (-157))
- (-5 *2 (-627 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3))))
+ (-12 (-5 *2 (-1081 (-382 (-522)))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *3 (-730)) (-4 *5 (-784)) (-5 *2 (-108))
+ (-5 *1 (-423 *4 *3 *5 *6)) (-4 *6 (-878 *4 *3 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135))) (-4 *6 (-730))
+ (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-588 *3))
+ (-5 *1 (-544 *5 *6 *7 *8 *3)) (-4 *3 (-1023 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-627 *5))) (-5 *3 (-627 *5)) (-4 *5 (-337))
- (-5 *2 (-1165 *5)) (-5 *1 (-1001 *5)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959))
- (-5 *1 (-693)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1165 *1)) (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123))
- (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1006 (-880 (-521)))) (-5 *3 (-880 (-521)))
- (-5 *1 (-304))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1006 (-880 (-521)))) (-5 *1 (-304)))))
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5))))))
+ (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5)))
+ (-14 *6 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-283) (-135)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *4)) (|:| -3677 (-588 (-881 *4))))))
+ (-5 *1 (-995 *4 *5)) (-5 *3 (-588 (-881 *4)))
+ (-14 *5 (-588 (-1085)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-283) (-135)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5))))))
+ (-5 *1 (-995 *5 *6)) (-5 *3 (-588 (-881 *5)))
+ (-14 *6 (-588 (-1085))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-522)) (-5 *5 (-1068)) (-5 *6 (-628 (-202)))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1141 *3)) (-4 *3 (-970)) (-5 *2 (-1080 *3)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-627 *2)) (-5 *4 (-707))
- (-4 *2 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *5 (-1141 *2)) (-5 *1 (-468 *2 *5 *6)) (-4 *6 (-383 *2 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1043 *4 *2))
- (-4 *2 (-13 (-554 (-521) *4) (-10 -7 (-6 -4233) (-6 -4234))))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-783)) (-4 *3 (-1119)) (-5 *1 (-1043 *3 *2))
- (-4 *2 (-13 (-554 (-521) *3) (-10 -7 (-6 -4233) (-6 -4234)))))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-555 *4 *3)) (-4 *4 (-1014))
+ (-4 *3 (-1120)) (-4 *3 (-1014)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-755 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-970)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202)))) (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
+ (-5 *1 (-243)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-792)))))
+(((*1 *2)
+ (-12
+ (-5 *2
+ (-1166 (-588 (-2 (|:| -3435 (-839 *3)) (|:| -2717 (-1032))))))
+ (-5 *1 (-326 *3 *4)) (-14 *3 (-850)) (-14 *4 (-850))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032))))))
+ (-5 *1 (-327 *3 *4)) (-4 *3 (-324)) (-14 *4 (-3 (-1081 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032))))))
+ (-5 *1 (-328 *3 *4)) (-4 *3 (-324)) (-14 *4 (-850)))))
+(((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-291 (-202)))) (-5 *2 (-354)) (-5 *1 (-184)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-473 *3 *4 *5 *6))) (-4 *3 (-337)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783))
- (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *1)) (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-587 *1)) (-5 *3 (-587 *7)) (-4 *1 (-989 *4 *5 *6 *7))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *3 (-587 (-802)))
- (-5 *1 (-441)))))
-(((*1 *1) (-5 *1 (-129))) ((*1 *1 *1) (-5 *1 (-132)))
- ((*1 *1 *1) (-4 *1 (-1053))))
-(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-51)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-849)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 (-881 *4))) (-5 *3 (-588 (-1085))) (-4 *4 (-426))
+ (-5 *1 (-847 *4)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1120)) (-5 *2 (-588 *1)) (-4 *1 (-936 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4))
+ (-14 *3 (-850)) (-4 *4 (-971)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-2 (|:| |k| (-756 *3)) (|:| |c| *4))))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-1050 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
+ (-4 *4 (-13 (-1014) (-33))) (-4 *5 (-13 (-1014) (-33)))
+ (-5 *1 (-1051 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-588 (-1050 *3 *4))) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-202))
- (-5 *2 (-959)) (-5 *1 (-686)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1165 (-1084))) (-5 *3 (-1165 (-426 *4 *5 *6 *7)))
- (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849))
- (-14 *6 (-587 (-1084))) (-14 *7 (-1165 (-627 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1165 (-426 *4 *5 *6 *7)))
- (-5 *1 (-426 *4 *5 *6 *7)) (-4 *4 (-157)) (-14 *5 (-849))
- (-14 *6 (-587 *2)) (-14 *7 (-1165 (-627 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-426 *3 *4 *5 *6))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084)))
- (-14 *6 (-1165 (-627 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1165 (-1084))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-157)) (-14 *4 (-849)) (-14 *5 (-587 (-1084)))
- (-14 *6 (-1165 (-627 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1084)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *3 (-157))
- (-14 *4 (-849)) (-14 *5 (-587 *2)) (-14 *6 (-1165 (-627 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-426 *2 *3 *4 *5)) (-4 *2 (-157)) (-14 *3 (-849))
- (-14 *4 (-587 (-1084))) (-14 *5 (-1165 (-627 *2))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-689)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202))))
- (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-587 (-290 (-202))))
- (|:| -3797 (-587 (-202)))))))
- (-5 *2 (-587 (-1067))) (-5 *1 (-243)))))
-(((*1 *1) (-5 *1 (-1087))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729))
- (-4 *9 (-783)) (-4 *3 (-984 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-987 *7 *8 *9 *3 *4)) (-4 *4 (-989 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-707)) (-5 *6 (-108)) (-4 *7 (-425)) (-4 *8 (-729))
- (-4 *9 (-783)) (-4 *3 (-984 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-1054 *7 *8 *9 *3 *4)) (-4 *4 (-1022 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-391 *4)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-354)) (-5 *1 (-983)))))
+(((*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3))
+ (-4 *3 (-1142 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-588 *3)) (|:| |image| (-588 *3))))
+ (-5 *1 (-834 *3)) (-4 *3 (-1014)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *1) (-4 *1 (-462)))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *1) (-4 *1 (-463)))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1071 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1071 *3)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-1050 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-460 *3)) (-4 *3 (-1119))
- (-4 *3 (-1013)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1013)) (-5 *2 (-108))
- (-5 *1 (-832 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-849)) (-5 *2 (-108)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-615 *3)) (-4 *3 (-970)) (-4 *3 (-1013)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-539 *2)) (-4 *2 (-506)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1132 *3)) (-4 *3 (-1119)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-989 *3 *4 *5 *6)) (-4 *3 (-425)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-886))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1141 (-154 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1141 (-154 *2))))))
-(((*1 *1 *2) (-12 (-5 *2 (-362)) (-5 *1 (-576)))))
-(((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-202)) (-5 *5 (-521)) (-5 *2 (-1115 *3))
- (-5 *1 (-726 *3)) (-4 *3 (-900))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-108))
- (-5 *1 (-1115 *2)) (-4 *2 (-900)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-707)) (-4 *5 (-337)) (-5 *2 (-158 *6))
- (-5 *1 (-795 *5 *4 *6)) (-4 *4 (-1156 *5)) (-4 *6 (-1141 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 *8)) (-5 *4 (-587 *7)) (-4 *7 (-783))
- (-4 *8 (-877 *5 *6 *7)) (-4 *5 (-513)) (-4 *6 (-729))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1165 (-381 *8)) "failed"))
- (|:| -1245 (-587 (-1165 (-381 *8))))))
- (-5 *1 (-610 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-871 *4)) (-4 *4 (-970)) (-5 *1 (-1073 *3 *4))
- (-14 *3 (-849)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1080 *9)) (-5 *4 (-587 *7)) (-5 *5 (-587 *8))
- (-4 *7 (-783)) (-4 *8 (-970)) (-4 *9 (-877 *8 *6 *7)) (-4 *6 (-729))
- (-5 *2 (-1080 *8)) (-5 *1 (-295 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-1051 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-393 *3)) (-4 *3 (-514)) (-5 *1 (-394 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-159))) (-5 *1 (-1001)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-337) (-781))) (-5 *1 (-164 *2 *3))
- (-4 *3 (-1141 (-154 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-1067)) (-5 *1 (-722)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-497) (-587 (-497)))) (-5 *1 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-108)))))
-(((*1 *1 *1) (-5 *1 (-202)))
- ((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1) (-4 *1 (-1048))) ((*1 *1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *3 *4 *5 *6)) (-4 *6 (-877 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 *6)) (-4 *6 (-783)) (-4 *4 (-337)) (-4 *5 (-729))
- (-5 *2 (-108)) (-5 *1 (-473 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *2 (-513)) (-5 *1 (-896 *2 *4))
- (-4 *4 (-1141 *2)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-510)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-588 (-202))) (-5 *1 (-183)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-588 *11))
+ (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1886 *11))))))
+ (-5 *6 (-708))
+ (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1886 *11))))
+ (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9))
+ (-4 *11 (-990 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730))
+ (-4 *9 (-784)) (-5 *1 (-988 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-588 *11))
+ (|:| |todo| (-588 (-2 (|:| |val| *3) (|:| -1886 *11))))))
+ (-5 *6 (-708))
+ (-5 *2 (-588 (-2 (|:| |val| (-588 *10)) (|:| -1886 *11))))
+ (-5 *3 (-588 *10)) (-5 *4 (-588 *11)) (-4 *10 (-985 *7 *8 *9))
+ (-4 *11 (-1023 *7 *8 *9 *10)) (-4 *7 (-426)) (-4 *8 (-730))
+ (-4 *9 (-784)) (-5 *1 (-1055 *7 *8 *9 *10 *11)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-547 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-971)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
- (-5 *1 (-160 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-970)) (-5 *1 (-1137 *4 *2))
- (-4 *2 (-1141 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-335 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-360 *4)) (-4 *4 (-1013))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-23)) (-5 *1 (-590 *4 *2 *5))
- (-4 *4 (-1013)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-5 *2 (-707)) (-5 *1 (-755 *4)) (-4 *4 (-783)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-627 (-202))) (-5 *5 (-627 (-521))) (-5 *3 (-521))
- (-5 *2 (-959)) (-5 *1 (-693)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-620 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-423 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-588 (-719 *3))) (-5 *1 (-719 *3)) (-4 *3 (-514))
+ (-4 *3 (-971)))))
+(((*1 *1 *2) (-12 (-5 *2 (-363)) (-5 *1 (-577)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-881 *5)) (-4 *5 (-971)) (-5 *2 (-454 *4 *5))
+ (-5 *1 (-873 *4 *5)) (-14 *4 (-588 (-1085))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-426)) (-4 *4 (-784))
+ (-5 *1 (-531 *4 *2)) (-4 *2 (-260)) (-4 *2 (-405 *4)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-154 (-202))) (-5 *5 (-522)) (-5 *6 (-1068))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2) (-12 (-5 *2 (-708)) (-5 *1 (-419 *3)) (-4 *3 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *1) (-5 *1 (-129))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-154 (-202))) (-5 *5 (-522))
+ (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-833 *3))) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1006 (-776 *3))) (-4 *3 (-13 (-1105) (-886) (-29 *5)))
- (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-587 (-776 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1006 (-776 *3))) (-5 *5 (-1067))
- (-4 *3 (-13 (-1105) (-886) (-29 *6)))
- (-4 *6 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |f1| (-776 *3)) (|:| |f2| (-587 (-776 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-196 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1006 (-776 (-290 *5))))
- (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |f1| (-776 (-290 *5))) (|:| |f2| (-587 (-776 (-290 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-197 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-381 (-880 *6))) (-5 *4 (-1006 (-776 (-290 *6))))
- (-5 *5 (-1067))
- (-4 *6 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |f1| (-776 (-290 *6))) (|:| |f2| (-587 (-776 (-290 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-197 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1006 (-776 (-381 (-880 *5))))) (-5 *3 (-381 (-880 *5)))
- (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |f1| (-776 (-290 *5))) (|:| |f2| (-587 (-776 (-290 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-197 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1006 (-776 (-381 (-880 *6))))) (-5 *5 (-1067))
- (-5 *3 (-381 (-880 *6)))
- (-4 *6 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2
- (-3 (|:| |f1| (-776 (-290 *6))) (|:| |f2| (-587 (-776 (-290 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-197 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-3 *3 (-587 *3))) (-5 *1 (-402 *5 *3))
- (-4 *3 (-13 (-1105) (-886) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-447 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353))))
- (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3) (-12 (-5 *3 (-705)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353))))
- (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353))))
- (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-1008 (-776 (-353))))
- (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353)))))
- (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353)))))
- (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353)))))
- (-5 *5 (-353)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-290 (-353))) (-5 *4 (-587 (-1008 (-776 (-353)))))
- (-5 *5 (-353)) (-5 *6 (-982)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-776 (-353))))
- (-5 *5 (-1067)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-290 (-353))) (-5 *4 (-1006 (-776 (-353))))
- (-5 *5 (-1084)) (-5 *2 (-959)) (-5 *1 (-522))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-337) (-135) (-961 (-521)))) (-4 *5 (-1141 *4))
- (-5 *2 (-538 (-381 *5))) (-5 *1 (-525 *4 *5)) (-5 *3 (-381 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084)) (-4 *5 (-135))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *2 (-3 (-290 *5) (-587 (-290 *5)))) (-5 *1 (-541 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-677 *3 *2)) (-4 *3 (-970)) (-4 *2 (-783))
- (-4 *3 (-37 (-381 (-521))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1084)) (-5 *1 (-880 *3)) (-4 *3 (-37 (-381 (-521))))
- (-4 *3 (-970))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-4 *2 (-783))
- (-5 *1 (-1037 *3 *2 *4)) (-4 *4 (-877 *3 (-493 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970))
- (-5 *1 (-1069 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1075 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1082 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *1 (-1114 *3)) (-4 *3 (-37 (-381 (-521))))
- (-4 *3 (-970))))
- ((*1 *1 *1 *2)
- (-3703
- (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970))
- (-12 (-4 *3 (-29 (-521))) (-4 *3 (-886)) (-4 *3 (-1105))
- (-4 *3 (-37 (-381 (-521))))))
- (-12 (-5 *2 (-1084)) (-4 *1 (-1125 *3)) (-4 *3 (-970))
- (-12 (|has| *3 (-15 -4085 ((-587 *2) *3)))
- (|has| *3 (-15 -1749 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1125 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1129 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
- ((*1 *1 *1 *2)
- (-3703
- (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970))
- (-12 (-4 *3 (-29 (-521))) (-4 *3 (-886)) (-4 *3 (-1105))
- (-4 *3 (-37 (-381 (-521))))))
- (-12 (-5 *2 (-1084)) (-4 *1 (-1146 *3)) (-4 *3 (-970))
- (-12 (|has| *3 (-15 -4085 ((-587 *2) *3)))
- (|has| *3 (-15 -1749 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1146 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1150 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3703
- (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970))
- (-12 (-4 *3 (-29 (-521))) (-4 *3 (-886)) (-4 *3 (-1105))
- (-4 *3 (-37 (-381 (-521))))))
- (-12 (-5 *2 (-1084)) (-4 *1 (-1156 *3)) (-4 *3 (-970))
- (-12 (|has| *3 (-15 -4085 ((-587 *2) *3)))
- (|has| *3 (-15 -1749 (*3 *3 *2))) (-4 *3 (-37 (-381 (-521))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1156 *2)) (-4 *2 (-970)) (-4 *2 (-37 (-381 (-521))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1084)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *3 (-970)) (-14 *5 *3))))
+ (|partial| -12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-498) (-588 (-498)))) (-5 *1 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1066 *3)) (-5 *1 (-158 *3)) (-4 *3 (-283)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085)))))
+ (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018))
+ (-5 *1 (-372))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-588 (-588 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-588 (-3 (|:| |array| (-588 *3)) (|:| |scalar| (-1085)))))
+ (-5 *6 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1018))
+ (-5 *1 (-372))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-588 (-1085))) (-5 *5 (-1088)) (-5 *3 (-1085))
+ (-5 *2 (-1018)) (-5 *1 (-372)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-130 *2 *4 *3))
- (-4 *3 (-347 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-472 *2 *4 *5 *3))
- (-4 *5 (-347 *2)) (-4 *3 (-347 *4))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-522)) (-5 *1 (-183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-806 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-808 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-708)) (-5 *1 (-811 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1168))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-354)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-850)) (-4 *4 (-343)) (-4 *4 (-338)) (-5 *2 (-1081 *1))
+ (-4 *1 (-304 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-157)) (-4 *3 (-338))
+ (-4 *2 (-1142 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-627 *4)) (-4 *4 (-918 *2)) (-4 *2 (-513))
- (-5 *1 (-630 *2 *4))))
+ (-12 (-5 *3 (-1166 *4)) (-4 *4 (-324)) (-5 *2 (-1081 *4))
+ (-5 *1 (-492 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-561 *5)) (-4 *5 (-405 *4)) (-4 *4 (-962 (-522)))
+ (-4 *4 (-13 (-784) (-514))) (-5 *2 (-1081 *5)) (-5 *1 (-31 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-918 *2)) (-4 *2 (-513)) (-5 *1 (-1134 *2 *4 *3))
- (-4 *3 (-1141 *4)))))
+ (-12 (-5 *3 (-561 *1)) (-4 *1 (-971)) (-4 *1 (-278))
+ (-5 *2 (-1081 *1)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-522)) (-4 *2 (-405 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-962 *4)) (-4 *3 (-13 (-784) (-514))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-154 (-202))) (-5 *5 (-521)) (-5 *6 (-1067))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-695)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-914 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-984 *4 *5 *6)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-989 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-590 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
-(((*1 *1) (-5 *1 (-266))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-707)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-707)) (-5 *4 (-849)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-691)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-381 (-880 *4))) (-5 *3 (-1084))
- (-4 *4 (-13 (-513) (-961 (-521)) (-135))) (-5 *1 (-527 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2286 *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135))) (-5 *1 (-498 *4 *2))
- (-4 *2 (-1156 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3)))
- (-4 *5 (-1141 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-502 *4 *5 *6 *2))
- (-4 *2 (-1156 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-13 (-337) (-342) (-562 *3)))
- (-5 *1 (-503 *4 *2)) (-4 *2 (-1156 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1065 *4)) (-5 *3 (-521)) (-4 *4 (-13 (-513) (-135)))
- (-5 *1 (-1061 *4)))))
+ (-12 (-5 *3 (-628 *2)) (-4 *4 (-1142 *2))
+ (-4 *2 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-5 *1 (-469 *2 *4 *5)) (-4 *5 (-384 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1035 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
+ (-4 *5 (-215 *3 *2)) (-4 *2 (-971)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-588 (-708)))) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-4 *3 (-828 *5)) (-5 *2 (-1165 *3))
- (-5 *1 (-629 *5 *3 *6 *4)) (-4 *6 (-347 *3))
- (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-871 (-202)) (-202) (-202)))
- (-5 *3 (-1 (-202) (-202) (-202) (-202))) (-5 *1 (-231)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-587 *1))
- (-4 *1 (-989 *4 *5 *6 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-513)) (-4 *3 (-157)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
- (-4 *2 (-625 *3 *4 *5)))))
+ (-12 (-5 *3 (-382 (-522))) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-514)) (-4 *8 (-878 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1400 (-708)) (|:| -2977 *9) (|:| |radicand| *9)))
+ (-5 *1 (-882 *5 *6 *7 *8 *9)) (-5 *4 (-708))
+ (-4 *9
+ (-13 (-338)
+ (-10 -8 (-15 -2805 (*8 $)) (-15 -2816 (*8 $)) (-15 -2190 ($ *8))))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1950 *3) (|:| |coef2| (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-708)) (-5 *1 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1014) (-33))) (-4 *6 (-13 (-1014) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1950 *3) (|:| |coef1| (-719 *3)) (|:| |coef2| (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))))
+(((*1 *2 *1) (-12 (-4 *1 (-921 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-708)) (-4 *6 (-1014)) (-4 *3 (-829 *6))
+ (-5 *2 (-628 *3)) (-5 *1 (-630 *6 *3 *7 *4)) (-4 *7 (-348 *3))
+ (-4 *4 (-13 (-348 *6) (-10 -7 (-6 -4238)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-154 (-202))) (-5 *4 (-522)) (-5 *2 (-960))
+ (-5 *1 (-696)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1097 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-707)) (-5 *1 (-539 *2)) (-4 *2 (-506))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1066 *3)) (-4 *3 (-1014))
+ (-4 *3 (-1120)))))
+(((*1 *2 *3) (-12 (-5 *3 (-872 *2)) (-5 *1 (-909 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3) (-12 (-5 *3 (-850)) (-5 *2 (-833 (-522))) (-5 *1 (-846))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3354 *3) (|:| -2246 (-707)))) (-5 *1 (-539 *3))
- (-4 *3 (-506)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-521)) (-5 *1 (-418 *3)) (-4 *3 (-378)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1088)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-202)) (-5 *4 (-521))
- (-5 *5 (-3 (|:| |fn| (-362)) (|:| |fp| (-62 G)))) (-5 *2 (-959))
- (-5 *1 (-685)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-353)) (-5 *1 (-982)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-587 (-892))) (-5 *1 (-266)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-387 *3 *4 *5 *6)) (-4 *6 (-961 *4)) (-4 *3 (-282))
- (-4 *4 (-918 *3)) (-4 *5 (-1141 *4)) (-4 *6 (-383 *4 *5))
- (-14 *7 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1165 *6)) (-4 *6 (-383 *4 *5)) (-4 *4 (-918 *3))
- (-4 *5 (-1141 *4)) (-4 *3 (-282)) (-5 *1 (-388 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (-12 (-5 *3 (-588 (-522))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
+ (-12 (-5 *3 (-1 *5 (-588 *5))) (-4 *5 (-1157 *4))
+ (-4 *4 (-37 (-382 (-522))))
+ (-5 *2 (-1 (-1066 *4) (-588 (-1066 *4)))) (-5 *1 (-1159 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-283)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-513))
- (-5 *2 (-2 (|:| -3534 (-627 *5)) (|:| |vec| (-1165 (-587 (-849))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-849)) (-4 *3 (-597 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-791))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-791) (-587 (-791)))) (-5 *1 (-110))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-791) (-587 (-791)))) (-5 *1 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1170)) (-5 *1 (-192 *3))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 (*2 $))
- (-15 -2084 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-368))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-368))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-471))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1100))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1100)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-202) (-202) (-202)))
- (-5 *4 (-3 (-1 (-202) (-202) (-202) (-202)) "undefined"))
- (-5 *5 (-1008 (-202))) (-5 *6 (-587 (-239))) (-5 *2 (-1044 (-202)))
- (-5 *1 (-634))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-871 (-202)) (-202) (-202))) (-5 *4 (-1008 (-202)))
- (-5 *5 (-587 (-239))) (-5 *2 (-1044 (-202))) (-5 *1 (-634))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1044 (-202))) (-5 *3 (-1 (-871 (-202)) (-202) (-202)))
- (-5 *4 (-1008 (-202))) (-5 *5 (-587 (-239))) (-5 *1 (-634)))))
+ (-12 (-5 *4 (-850)) (-5 *2 (-1081 *3)) (-5 *1 (-1095 *3))
+ (-4 *3 (-338)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1080 *4)) (-5 *1 (-491 *4))
- (-4 *4 (-323)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1088)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-113 *3)) (-14 *3 (-521))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1065 *2)) (-4 *2 (-282)) (-5 *1 (-158 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-381 *3)) (-4 *3 (-282)) (-5 *1 (-158 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-158 (-521))) (-5 *1 (-702 *3)) (-4 *3 (-378))))
+ (-12 (-5 *3 (-1068)) (-5 *2 (-588 (-1090))) (-5 *1 (-809)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-588 (-239))) (-5 *2 (-1045 (-202)))
+ (-5 *1 (-635)))))
+(((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1166 *1)) (-4 *1 (-342 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-850))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-708)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-792))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-158 (-381 (-521)))) (-5 *1 (-799 *3)) (-14 *3 (-521))))
+ (|partial| -12 (-5 *2 (-1 (-792) (-588 (-792)))) (-5 *1 (-110))))
((*1 *2 *1)
- (-12 (-14 *3 (-521)) (-5 *2 (-158 (-381 (-521))))
- (-5 *1 (-800 *3 *4)) (-4 *4 (-797 *3)))))
-(((*1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))))
+ (-12 (-5 *2 (-1171)) (-5 *1 (-192 *3))
+ (-4 *3
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 (*2 $))
+ (-15 -2664 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-369))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-369))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-472))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1101))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1101)))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-792)))))
(((*1 *2 *3 *4)
(-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-643 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1084)) (-5 *2 (-1017)) (-5 *1 (-266)))))
+ (-5 *1 (-644 *3 *4)) (-4 *3 (-1120)) (-4 *4 (-1120)))))
+(((*1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *2 (-587 (-381 (-521)))) (-5 *1 (-944 *4))
- (-4 *4 (-1141 (-521))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-783))) (-5 *2 (-154 *5))
- (-5 *1 (-550 *4 *5 *3)) (-4 *5 (-13 (-404 *4) (-927) (-1105)))
- (-4 *3 (-13 (-404 (-154 *4)) (-927) (-1105))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3)) (-4 *3 (-13 (-337) (-135)))
- (-5 *1 (-373 *3 *4)))))
+ (-588
+ (-2 (|:| -3166 (-708))
+ (|:| |eqns|
+ (-588
+ (-2 (|:| |det| *7) (|:| |rows| (-588 (-522)))
+ (|:| |cols| (-588 (-522))))))
+ (|:| |fgb| (-588 *7)))))
+ (-4 *7 (-878 *4 *6 *5)) (-4 *4 (-13 (-283) (-135)))
+ (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-708))
+ (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-784) (-514) (-962 (-522)))) (-5 *2 (-1171))
+ (-5 *1 (-408 *3 *4)) (-4 *4 (-405 *3)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1013) (-33))) (-5 *1 (-1049 *3 *2))
- (-4 *3 (-13 (-1013) (-33))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-560 *4)) (-5 *6 (-1084))
- (-4 *4 (-13 (-404 *7) (-27) (-1105)))
- (-4 *7 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1245 (-587 *4))))
- (-5 *1 (-523 *7 *4 *3)) (-4 *3 (-597 *4)) (-4 *3 (-1013)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1000))) (-5 *1 (-266)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-802))
- (-5 *5 (-849)) (-5 *6 (-587 (-239))) (-5 *2 (-441)) (-5 *1 (-1169))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *2 (-441))
- (-5 *1 (-1169))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-587 (-871 (-202))))) (-5 *4 (-587 (-239)))
- (-5 *2 (-441)) (-5 *1 (-1169)))))
-(((*1 *2 *2) (-12 (-5 *2 (-587 (-290 (-202)))) (-5 *1 (-243)))))
+ (-12 (-4 *2 (-13 (-1014) (-33))) (-5 *1 (-1050 *3 *2))
+ (-4 *3 (-13 (-1014) (-33))))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4240 "*"))) (-4 *5 (-348 *2)) (-4 *6 (-348 *2))
+ (-4 *2 (-971)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1142 *2))
+ (-4 *4 (-626 *2 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1085))) (-4 *6 (-338))
+ (-5 *2 (-588 (-270 (-881 *6)))) (-5 *1 (-500 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *7 (-13 (-338) (-782))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ (|partial| -12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507))
+ (-4 *3 (-514))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-507)) (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507))
+ (-4 *3 (-1014))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353))))
- ((*1 *1 *1 *1) (-4 *1 (-506)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-707)))))
+ (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507))
+ (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3))
+ (-4 *3 (-962 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-628 *7)) (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *1 (-853 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354))))
+ ((*1 *1 *1 *1) (-4 *1 (-507)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-338))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-708)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-593 *3)) (-4 *3 (-1120))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-592 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2286 *3)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-1013)) (-4 *1 (-831 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-425)) (-4 *3 (-783)) (-4 *4 (-729))
- (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1084)) (-5 *3 (-587 (-892))) (-5 *1 (-266)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1084)) (-5 *2 (-1170)) (-5 *1 (-1087))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1087)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-587 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
- (-4 *2 (-13 (-404 *4) (-927))) (-4 *4 (-13 (-783) (-513)))
- (-5 *1 (-252 *4 *2)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -4164 (-587 (-1084))) (|:| -2948 (-587 (-1084)))))
- (-5 *1 (-1121)))))
+ (-12 (-5 *3 (-522)) (-4 *1 (-593 *2)) (-4 *2 (-1120)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-269 (-381 (-880 *5)))) (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135)))
- (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5)))))
- (-5 *1 (-1040 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-783) (-135)))
- (-5 *2 (-1074 (-587 (-290 *5)) (-587 (-269 (-290 *5)))))
- (-5 *1 (-1040 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-337))
- (-5 *2
- (-2 (|:| A (-627 *5))
- (|:| |eqs|
- (-587
- (-2 (|:| C (-627 *5)) (|:| |g| (-1165 *5)) (|:| -3196 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-749 *5 *6)) (-5 *3 (-627 *5)) (-5 *4 (-1165 *5))
- (-4 *6 (-597 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-337)) (-4 *6 (-597 *5))
- (-5 *2 (-2 (|:| -3534 (-627 *6)) (|:| |vec| (-1165 *5))))
- (-5 *1 (-749 *5 *6)) (-5 *3 (-627 *6)) (-5 *4 (-1165 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1166))))
- ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1168)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-362)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-202)) (-5 *2 (-959)) (-5 *1 (-686)))))
+ (|partial| -12 (-5 *4 (-1085)) (-4 *5 (-563 (-821 (-522))))
+ (-4 *5 (-815 (-522)))
+ (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-525 *5 *3)) (-4 *3 (-574))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *4 (-777 *2)) (-4 *2 (-1049))
+ (-4 *2 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-563 (-821 (-522)))) (-4 *5 (-815 (-522)))
+ (-4 *5 (-13 (-784) (-962 (-522)) (-426) (-584 (-522))))
+ (-5 *1 (-525 *5 *2)))))
+(((*1 *1) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-707)) (-5 *4 (-521)) (-5 *1 (-418 *2)) (-4 *2 (-970)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1017)) (-5 *1 (-266)))))
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-1066 *7))) (-4 *6 (-784))
+ (-4 *7 (-878 *5 (-494 *6) *6)) (-4 *5 (-971))
+ (-5 *2 (-1 (-1066 *7) *7)) (-5 *1 (-1038 *5 *6 *7)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2 (-353)) (-5 *1 (-184)))))
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *1)) (-5 *4 (-1084)) (-4 *1 (-27))
- (-5 *2 (-587 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1080 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-880 *1)) (-4 *1 (-27)) (-5 *2 (-587 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1084)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-587 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *2 (-587 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-5 *3 (-1081 (-881 *6))) (-4 *6 (-514))
+ (-4 *2 (-878 (-382 (-881 *6)) *5 *4)) (-5 *1 (-670 *5 *4 *6 *2))
+ (-4 *5 (-730))
+ (-4 *4 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-693)))))
+(((*1 *1 *1) (-4 *1 (-574)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-575 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928) (-1106))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-282))
- (-5 *2 (-381 (-392 (-880 *4)))) (-5 *1 (-965 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-641 *3))
- (-4 *3 (-562 (-497)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1084)) (-5 *2 (-1 (-202) (-202) (-202)))
- (-5 *1 (-641 *3)) (-4 *3 (-562 (-497))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-202))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-381 (-521))) (-5 *1 (-353)))))
-(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-1047))))
+ (-12 (-4 *3 (-1142 (-382 (-522))))
+ (-5 *2 (-2 (|:| |den| (-522)) (|:| |gcdnum| (-522))))
+ (-5 *1 (-842 *3 *4)) (-4 *4 (-1142 (-382 *3)))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-791))) (-5 *2 (-1170)) (-5 *1 (-1047)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
+ (-12 (-4 *4 (-1142 (-382 *2))) (-5 *2 (-522)) (-5 *1 (-842 *4 *3))
+ (-4 *3 (-1142 (-382 *4))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-588 (-881 *3))) (-4 *3 (-426))
+ (-5 *1 (-335 *3 *4)) (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-588 (-717 *3 (-794 *4)))) (-4 *3 (-426))
+ (-14 *4 (-588 (-1085))) (-5 *1 (-573 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-338)) (-5 *2 (-108)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *1) (-5 *1 (-412))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-278)) (-5 *3 (-1085)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-517))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-2 (|:| -3434 *4) (|:| -3245 (-521)))))
- (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-942 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-587 *1)) (-4 *1 (-935 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1 (-353))) (-5 *1 (-963)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *4 (-971)) (-4 *3 (-1142 *4)) (-4 *2 (-1157 *4))
+ (-5 *1 (-1160 *4 *3 *5 *2)) (-4 *5 (-598 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-871 *3) (-871 *3))) (-5 *1 (-160 *3))
- (-4 *3 (-13 (-337) (-1105) (-927))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-94 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-94 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1051 *3 *4)) (-14 *3 (-849)) (-4 *4 (-337))
- (-5 *1 (-919 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-282)) (-5 *1 (-428 *3 *2)) (-4 *2 (-1141 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-282)) (-5 *1 (-433 *3 *2)) (-4 *2 (-1141 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-282)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-707)))
- (-5 *1 (-500 *3 *2 *4 *5)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4))
- (-5 *2 (-2 (|:| -2979 (-381 *5)) (|:| |poly| *3)))
- (-5 *1 (-136 *4 *5 *3)) (-4 *3 (-1141 (-381 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-104))) (-5 *1 (-159)))))
-(((*1 *2 *1) (-12 (-5 *2 (-760)) (-5 *1 (-761)))))
+ (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-171))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-276))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-202))) (-5 *2 (-588 (-1068))) (-5 *1 (-281)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-233)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 (-777 *3))) (-4 *3 (-13 (-27) (-1106) (-405 *5)))
+ (-4 *5 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2
+ (-3 (-777 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-777 *3) "failed")))
+ "failed"))
+ (-5 *1 (-581 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-270 *3)) (-5 *5 (-1068))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-426) (-784) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-777 *3)) (-5 *1 (-581 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 (-777 (-881 *5)))) (-4 *5 (-426))
+ (-5 *2
+ (-3 (-777 (-382 (-881 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-777 (-382 (-881 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-777 (-382 (-881 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-582 *5)) (-5 *3 (-382 (-881 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-270 (-382 (-881 *5)))) (-5 *3 (-382 (-881 *5)))
+ (-4 *5 (-426))
+ (-5 *2
+ (-3 (-777 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-777 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-777 *3) "failed")))
+ "failed"))
+ (-5 *1 (-582 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-270 (-382 (-881 *6)))) (-5 *5 (-1068))
+ (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-777 *3))
+ (-5 *1 (-582 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-426)) (-4 *3 (-784)) (-4 *3 (-962 (-522)))
+ (-4 *3 (-514)) (-5 *1 (-40 *3 *2)) (-4 *2 (-405 *3))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $))
+ (-15 -2816 ((-1037 *3 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *3 (-561 $))))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-708)) (-5 *2 (-1 (-354))) (-5 *1 (-964)))))
+(((*1 *2 *2) (-12 (-5 *2 (-628 *3)) (-4 *3 (-283)) (-5 *1 (-638 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171))
+ (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171))
+ (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-792)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124))
+ (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3)) (-4 *3 (-971)) (-5 *1 (-629 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-1101)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-104))) (-5 *1 (-159)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-985 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-108)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707))
+ (-12 (-14 *4 *2) (-4 *5 (-1120)) (-5 *2 (-708))
(-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-297 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-124))
- (-5 *2 (-707))))
+ (-12 (-4 *1 (-298 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-124))
+ (-5 *2 (-708))))
((*1 *2)
- (-12 (-4 *4 (-337)) (-5 *2 (-707)) (-5 *1 (-302 *3 *4))
- (-4 *3 (-303 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-335 *3)) (-4 *3 (-1013))))
- ((*1 *2) (-12 (-4 *1 (-342)) (-5 *2 (-707))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-360 *3)) (-4 *3 (-1013))))
+ (-12 (-4 *4 (-338)) (-5 *2 (-708)) (-5 *1 (-303 *3 *4))
+ (-4 *3 (-304 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-336 *3)) (-4 *3 (-1014))))
+ ((*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-708))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-361 *3)) (-4 *3 (-1014))))
((*1 *2)
- (-12 (-4 *4 (-1013)) (-5 *2 (-707)) (-5 *1 (-398 *3 *4))
- (-4 *3 (-399 *4))))
+ (-12 (-4 *4 (-1014)) (-5 *2 (-708)) (-5 *1 (-399 *3 *4))
+ (-4 *3 (-400 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-590 *3 *4 *5)) (-4 *3 (-1013))
+ (-12 (-5 *2 (-708)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1014))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-707))
- (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-755 *3)) (-4 *3 (-783))))
- ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-931))))
+ (-12 (-4 *4 (-157)) (-4 *5 (-1142 *4)) (-5 *2 (-708))
+ (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-756 *3)) (-4 *3 (-784))))
+ ((*1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-932))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-781) (-337))) (-5 *1 (-980 *2 *3))
- (-4 *3 (-1141 *2)))))
+ (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3))
+ (-4 *3 (-1142 *2)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3))
- (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3))
+ (-4 *3 (-1120))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1113 *4 *5 *3 *2)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *3 (-783)) (-4 *2 (-984 *4 *5 *3))))
+ (|partial| -12 (-4 *1 (-1114 *4 *5 *3 *2)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *3 (-784)) (-4 *2 (-985 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *1 (-1117 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-560 *1)) (-4 *1 (-277)))))
-(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-521))) (-4 *3 (-970)) (-5 *1 (-546 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1125 *3)) (-4 *3 (-970))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-521))) (-4 *1 (-1156 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1089)))))
+ (-12 (-5 *3 (-708)) (-5 *1 (-1118 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-239))) (-5 *4 (-1085)) (-5 *2 (-108))
+ (-5 *1 (-239)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1046 *3)) (-4 *3 (-971)) (-5 *2 (-708)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-685)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-849)) (-4 *5 (-282)) (-4 *3 (-1141 *5))
- (-5 *2 (-2 (|:| |plist| (-587 *3)) (|:| |modulo| *5)))
- (-5 *1 (-433 *5 *3)) (-5 *4 (-587 *3)))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-514) (-784) (-962 (-522)))) (-4 *5 (-405 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1081 (-382 (-522))))
+ (|:| |overan| (-1081 (-47))) (|:| -3083 (-108))))
+ (-5 *1 (-410 *4 *5 *3)) (-4 *3 (-1142 *5)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))
- (-4 *2 (-337))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-202))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-971)) (-4 *3 (-729))
+ (-4 *2 (-338))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-202))))
((*1 *1 *1 *1)
- (-3703 (-12 (-5 *1 (-269 *2)) (-4 *2 (-337)) (-4 *2 (-1119)))
- (-12 (-5 *1 (-269 *2)) (-4 *2 (-446)) (-4 *2 (-1119)))))
- ((*1 *1 *1 *1) (-4 *1 (-337)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-353))))
+ (-3708 (-12 (-5 *1 (-270 *2)) (-4 *2 (-338)) (-4 *2 (-1120)))
+ (-12 (-5 *1 (-270 *2)) (-4 *2 (-447)) (-4 *2 (-1120)))))
+ ((*1 *1 *1 *1) (-4 *1 (-338)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-354))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1036 *3 (-560 *1))) (-4 *3 (-513)) (-4 *3 (-783))
- (-4 *1 (-404 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-446)))
+ (-12 (-5 *2 (-1037 *3 (-561 *1))) (-4 *3 (-514)) (-4 *3 (-784))
+ (-4 *1 (-405 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-447)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-323)) (-5 *1 (-491 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-497)))
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-324)) (-5 *1 (-492 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-498)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-157)) (-5 *1 (-566 *2 *4 *3)) (-4 *2 (-37 *4))
- (-4 *3 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-567 *2 *4 *3)) (-4 *2 (-37 *4))
+ (-4 *3 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-157)) (-5 *1 (-566 *3 *4 *2)) (-4 *3 (-37 *4))
- (-4 *2 (|SubsetCategory| (-663) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-578 *2)) (-4 *2 (-157)) (-4 *2 (-337))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-567 *3 *4 *2)) (-4 *3 (-37 *4))
+ (-4 *2 (|SubsetCategory| (-664) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-579 *2)) (-4 *2 (-157)) (-4 *2 (-338))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-157)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-654 *4))
- (-4 *3 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-604 *2 *4 *3)) (-4 *2 (-655 *4))
+ (-4 *3 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-157)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-654 *4))
- (-4 *2 (|SubsetCategory| (-663) *4))))
+ (-12 (-4 *4 (-157)) (-5 *1 (-604 *3 *4 *2)) (-4 *3 (-655 *4))
+ (-4 *2 (|SubsetCategory| (-664) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2)) (-4 *2 (-337))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2)) (-4 *2 (-338))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-794 *2 *3 *4 *5)) (-4 *2 (-337))
- (-4 *2 (-970)) (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-707)))
- (-14 *5 (-707))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513))))
+ (|partial| -12 (-5 *1 (-795 *2 *3 *4 *5)) (-4 *2 (-338))
+ (-4 *2 (-971)) (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-708)))
+ (-14 *5 (-708))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-919 *2)) (-4 *2 (-514))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-973 *3 *4 *2 *5 *6)) (-4 *2 (-970))
- (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-337))))
+ (-12 (-4 *1 (-974 *3 *4 *2 *5 *6)) (-4 *2 (-971))
+ (-4 *5 (-215 *4 *2)) (-4 *6 (-215 *3 *2)) (-4 *2 (-338))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-337))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-338))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-337)) (-4 *2 (-970)) (-4 *3 (-783))
- (-4 *4 (-729)) (-14 *6 (-587 *3))
- (-5 *1 (-1175 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-877 *2 *4 *3))
- (-14 *7 (-587 (-707))) (-14 *8 (-707))))
+ (|partial| -12 (-4 *2 (-338)) (-4 *2 (-971)) (-4 *3 (-784))
+ (-4 *4 (-730)) (-14 *6 (-588 *3))
+ (-5 *1 (-1176 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-878 *2 *4 *3))
+ (-14 *7 (-588 (-708))) (-14 *8 (-708))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-337)) (-4 *2 (-970))
- (-4 *3 (-779)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1100)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-338)) (-4 *2 (-971))
+ (-4 *3 (-780)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-522)) (-5 *1 (-843 *3)) (-4 *3 (-283)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1120)) (-5 *1 (-350 *4 *2))
+ (-4 *2 (-13 (-348 *4) (-10 -7 (-6 -4239)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27))
+ (-5 *2 (-588 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
-(((*1 *1 *1 *1) (-4 *1 (-506))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-291 (-202))) (-5 *4 (-588 (-1085)))
+ (-5 *5 (-1009 (-777 (-202)))) (-5 *2 (-1066 (-202))) (-5 *1 (-276)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-589 *5)) (-4 *5 (-970))
- (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-785 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-971))
+ (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-786 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-627 *3)) (-4 *1 (-391 *3)) (-4 *3 (-157))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970))))
+ (-12 (-5 *2 (-628 *3)) (-4 *1 (-392 *3)) (-4 *3 (-157))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-786 *2)) (-4 *2 (-971))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-970))
- (-5 *1 (-786 *2 *3)) (-4 *3 (-785 *2)))))
-(((*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-1013))))
- ((*1 *1 *1) (-5 *1 (-576))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-381 *5)) (-4 *5 (-1141 *4)) (-4 *4 (-513))
- (-4 *4 (-970)) (-4 *2 (-1156 *4)) (-5 *1 (-1159 *4 *5 *6 *2))
- (-4 *6 (-597 *5)))))
+ (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-971))
+ (-5 *1 (-787 *2 *3)) (-4 *3 (-786 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-324)) (-4 *2 (-971)) (-5 *1 (-650 *2 *3))
+ (-4 *3 (-1142 *2)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157)) (-4 *2 (-1105))))
- ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-783))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 *3)) (-5 *1 (-560 *3)) (-4 *3 (-783)))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-971)) (-4 *2 (-626 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1142 *4)) (-4 *5 (-348 *4))
+ (-4 *6 (-348 *4)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-126)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-192 *2))
(-4 *2
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $))
- (-15 -2084 ((-1170) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-21)) (-4 *2 (-1119))))
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $))
+ (-15 -2664 ((-1171) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
- ((*1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
+ ((*1 *1 *1) (-5 *1 (-792))) ((*1 *1 *1 *1) (-5 *1 (-792)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))))
-(((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-783))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-21)))))
+(((*1 *2 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-784))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-793 *3)) (-14 *3 (-587 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-893 *3)) (-4 *3 (-894))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-915))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-1006 *3)) (-4 *3 (-1119))))
+ (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-794 *3)) (-14 *3 (-588 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-894 *3)) (-4 *3 (-895))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-916))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1007 *3)) (-4 *3 (-1120))))
((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-970)) (-4 *4 (-728))
- (-5 *2 (-1084))))
- ((*1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-1161 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-513)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3052 *4)))
- (-5 *1 (-896 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-286)) (-5 *1 (-765)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3))
- (-5 *2
- (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-627 *3))))
- (-5 *1 (-324 *3 *4 *5)) (-4 *5 (-383 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-1141 *3))
- (-5 *2
- (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-627 *3))))
- (-5 *1 (-704 *4 *5)) (-4 *5 (-383 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3))
- (-5 *2
- (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-627 *3))))
- (-5 *1 (-911 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-4 *3 (-1141 *4)) (-4 *5 (-1141 *3))
- (-5 *2
- (-2 (|:| -1245 (-627 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-627 *3))))
- (-5 *1 (-1174 *4 *3 *5 *6)) (-4 *6 (-383 *3 *5)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *3 (-1067)) (-5 *1 (-915))))
+ (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-971)) (-4 *4 (-729))
+ (-5 *2 (-1085))))
+ ((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1162 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-952 *5 *6 *7 *8))) (-5 *1 (-952 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-108)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-5 *2 (-588 (-1056 *5 *6 *7 *8))) (-5 *1 (-1056 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-1068)) (-5 *1 (-916))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1084)) (-5 *3 (-1008 *4)) (-4 *4 (-1119))
- (-5 *1 (-1006 *4)))))
-(((*1 *1) (-5 *1 (-998))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1009 *4)) (-4 *4 (-1120))
+ (-5 *1 (-1007 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-903 *4 *5 *3 *6)) (-4 *4 (-971)) (-4 *5 (-730))
+ (-4 *3 (-784)) (-4 *6 (-985 *4 *5 *3)) (-5 *2 (-108)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-4 *6 (-13 (-513) (-783)))
- (-5 *2 (-587 (-290 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-290 *6))
- (-4 *5 (-970))))
- ((*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-538 *5)) (-4 *5 (-13 (-29 *4) (-1105)))
- (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *2 (-587 *5)) (-5 *1 (-536 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-538 (-381 (-880 *4))))
- (-4 *4 (-13 (-425) (-961 (-521)) (-783) (-583 (-521))))
- (-5 *2 (-587 (-290 *4))) (-5 *1 (-541 *4))))
+ (-12 (-5 *4 (-850)) (-4 *6 (-13 (-514) (-784)))
+ (-5 *2 (-588 (-291 *6))) (-5 *1 (-198 *5 *6)) (-5 *3 (-291 *6))
+ (-4 *5 (-971))))
+ ((*1 *2 *1) (-12 (-5 *1 (-393 *2)) (-4 *2 (-514))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-539 *5)) (-4 *5 (-13 (-29 *4) (-1106)))
+ (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *2 (-588 *5)) (-5 *1 (-537 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-539 (-382 (-881 *4))))
+ (-4 *4 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *2 (-588 (-291 *4))) (-5 *1 (-542 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1009 *3 *2)) (-4 *3 (-781)) (-4 *2 (-1058 *3))))
+ (-12 (-4 *1 (-1010 *3 *2)) (-4 *3 (-782)) (-4 *2 (-1059 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 *1)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-781))
- (-4 *2 (-1058 *4))))
+ (-12 (-5 *3 (-588 *1)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782))
+ (-4 *2 (-1059 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105)))))
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1178 (-1084) *3)) (-5 *1 (-1185 *3)) (-4 *3 (-970))))
+ (-12 (-5 *2 (-1179 (-1085) *3)) (-5 *1 (-1186 *3)) (-4 *3 (-971))))
((*1 *2 *1)
- (-12 (-5 *2 (-1178 *3 *4)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-970)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-560 *3)) (-5 *5 (-1 (-1080 *3) (-1080 *3)))
- (-4 *3 (-13 (-27) (-404 *6))) (-4 *6 (-13 (-783) (-513)))
- (-5 *2 (-538 *3)) (-5 *1 (-508 *6 *3)))))
+ (-12 (-5 *2 (-1179 *3 *4)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-143)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-192 *2))
(-4 *2
- (-13 (-783)
- (-10 -8 (-15 -2550 ((-1067) $ (-1084))) (-15 -1718 ((-1170) $))
- (-15 -2084 ((-1170) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-25)) (-4 *2 (-1119))))
+ (-13 (-784)
+ (-10 -8 (-15 -2545 ((-1068) $ (-1085))) (-15 -1678 ((-1171) $))
+ (-15 -2664 ((-1171) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-25)) (-4 *2 (-1120))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-297 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-124))))
+ (-12 (-4 *1 (-298 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-124))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-337) (-135))) (-5 *1 (-373 *3 *2))
- (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-13 (-338) (-135))) (-5 *1 (-374 *3 *2))
+ (-4 *2 (-1142 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ (-12 (-4 *1 (-444 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783))
- (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-497)))
+ (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784))
+ (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-498)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-347 *2))
- (-4 *4 (-347 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1014))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-871 (-202))) (-5 *1 (-1116))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1119)) (-4 *2 (-25)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-696)))))
-(((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-872 (-202))) (-5 *1 (-1117))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-1120)) (-4 *2 (-25)))))
+(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
+ ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-406 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *1 *1) (-4 *1 (-1049))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-697)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-850)) (-4 *5 (-514)) (-5 *2 (-628 *5))
+ (-5 *1 (-884 *5 *3)) (-4 *3 (-598 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-675 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014))))
+ ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-283) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *1 (-401 *4 *2)) (-4 *2 (-13 (-1106) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-1085)) (-4 *5 (-135))
+ (-4 *5 (-13 (-426) (-962 (-522)) (-784) (-584 (-522))))
+ (-5 *2 (-291 *5)) (-5 *1 (-542 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *2
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-493 *3)) (-4 *3 (-13 (-664) (-25))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-382 (-881 (-522)))))
+ (-5 *2 (-588 (-628 (-291 (-522))))) (-5 *1 (-956)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-850))) (-5 *2 (-833 (-522))) (-5 *1 (-846)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1014)) (-4 *3 (-829 *5)) (-5 *2 (-628 *3))
+ (-5 *1 (-630 *5 *3 *6 *4)) (-4 *6 (-348 *3))
+ (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4238)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085))
+ (-5 *2 (-522)) (-5 *1 (-1028 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1166 *1)) (-4 *1 (-342 *4)) (-4 *4 (-157))
+ (-5 *2 (-1166 (-628 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-391 *3 *4))
+ (-4 *3 (-392 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 (-628 *3)))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521)))
- (-5 *4 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))))
+ (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338))
+ (-5 *2 (-1166 (-628 (-382 (-881 *5))))) (-5 *1 (-1002 *5))
+ (-5 *4 (-628 (-382 (-881 *5))))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *1 (-944 *3)) (-4 *3 (-1141 (-521))) (-5 *4 (-381 (-521)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-381 (-521)))
- (-5 *2 (-587 (-2 (|:| -1970 *5) (|:| -1981 *5)))) (-5 *1 (-944 *3))
- (-4 *3 (-1141 (-521))) (-5 *4 (-2 (|:| -1970 *5) (|:| -1981 *5)))))
+ (-12 (-5 *3 (-588 (-1085))) (-4 *5 (-338))
+ (-5 *2 (-1166 (-628 (-881 *5)))) (-5 *1 (-1002 *5))
+ (-5 *4 (-628 (-881 *5)))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-587 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521))))))
- (-5 *1 (-945 *3)) (-4 *3 (-1141 (-381 (-521))))
- (-5 *4 (-2 (|:| -1970 (-381 (-521))) (|:| -1981 (-381 (-521)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-381 (-521)))
- (-5 *2 (-587 (-2 (|:| -1970 *4) (|:| -1981 *4)))) (-5 *1 (-945 *3))
- (-4 *3 (-1141 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-381 (-521)))
- (-5 *2 (-587 (-2 (|:| -1970 *5) (|:| -1981 *5)))) (-5 *1 (-945 *3))
- (-4 *3 (-1141 *5)) (-5 *4 (-2 (|:| -1970 *5) (|:| -1981 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-425))
- (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-108)) (-4 *7 (-984 *4 *5 *6))
- (-4 *4 (-425)) (-4 *4 (-513)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-903 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-982))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-513))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-492 *3)) (-4 *3 (-13 (-663) (-25))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
+ (-12 (-5 *3 (-588 (-628 *4))) (-4 *4 (-338))
+ (-5 *2 (-1166 (-628 *4))) (-5 *1 (-1002 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-902 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-513))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-707)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-729)) (-4 *7 (-877 *4 *5 *6)) (-4 *4 (-425)) (-4 *6 (-783))
- (-5 *2 (-108)) (-5 *1 (-422 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513)) (-4 *4 (-729))
- (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-783)) (-5 *4 (-587 *6))
- (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| *4) (|:| |td| (-587 *4))))
- (-5 *1 (-1091 *6)) (-5 *5 (-587 *4)))))
+ (-12 (-4 *2 (-1014)) (-5 *1 (-892 *3 *2)) (-4 *3 (-1014)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-587 *2)) (-4 *2 (-1013)) (-4 *2 (-1119)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-792))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1170)) (-5 *1 (-792))))
+ (-12 (-5 *1 (-588 *2)) (-4 *2 (-1014)) (-4 *2 (-1120)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-793))))
+ ((*1 *2 *3) (-12 (-5 *3 (-792)) (-5 *2 (-1171)) (-5 *1 (-793))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1067)) (-5 *4 (-791)) (-5 *2 (-1170)) (-5 *1 (-792))))
+ (-12 (-5 *3 (-1068)) (-5 *4 (-792)) (-5 *2 (-1171)) (-5 *1 (-793))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-521)) (-5 *2 (-1170)) (-5 *1 (-1065 *4))
- (-4 *4 (-1013)) (-4 *4 (-1119)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-871 *3)) (-4 *3 (-13 (-337) (-1105) (-927)))
- (-5 *1 (-160 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *3 (-587 (-802)))
- (-5 *4 (-587 (-849))) (-5 *5 (-587 (-239))) (-5 *1 (-441))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *3 (-587 (-802)))
- (-5 *4 (-587 (-849))) (-5 *1 (-441))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-871 (-202))))) (-5 *1 (-441))))
- ((*1 *1 *1) (-5 *1 (-441))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-587 *3)) (-5 *5 (-849)) (-4 *3 (-1141 *4))
- (-4 *4 (-282)) (-5 *1 (-433 *4 *3)))))
+ (-12 (-5 *3 (-522)) (-5 *2 (-1171)) (-5 *1 (-1066 *4))
+ (-4 *4 (-1014)) (-4 *4 (-1120)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-393 (-1081 (-522)))) (-5 *1 (-170)) (-5 *3 (-522)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-821 *4)) (-4 *4 (-1014)) (-5 *2 (-108))
+ (-5 *1 (-818 *4 *5)) (-4 *5 (-1014))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-821 *5)) (-4 *5 (-1014)) (-5 *2 (-108))
+ (-5 *1 (-819 *5 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-821 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1120)) (-5 *2 (-108)) (-5 *1 (-819 *5 *6)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -3406 (-587 (-791))) (|:| -2303 (-587 (-791)))
- (|:| |presup| (-587 (-791))) (|:| -2749 (-587 (-791)))
- (|:| |args| (-587 (-791)))))
- (-5 *1 (-1084))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-587 (-791)))) (-5 *1 (-1084)))))
-(((*1 *1 *2) (-12 (-4 *1 (-607 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-1084)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-154 (-202)))) (-5 *2 (-959))
- (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
+ (-2 (|:| -2337 (-588 (-792))) (|:| -1210 (-588 (-792)))
+ (|:| |presup| (-588 (-792))) (|:| -4123 (-588 (-792)))
+ (|:| |args| (-588 (-792)))))
+ (-5 *1 (-1085))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-1085)))))
+(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1085)))))
+(((*1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-343)) (-4 *2 (-1014)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-1165 (-587 (-521)))) (-5 *1 (-452))))
+ (-12 (-5 *3 (-708)) (-5 *2 (-1166 (-588 (-522)))) (-5 *1 (-453))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1119)) (-5 *1 (-1065 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-627 (-202))) (-5 *6 (-627 (-521))) (-5 *3 (-521))
- (-5 *4 (-202)) (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-5 *4 (-880 (-521))) (-5 *2 (-304))
- (-5 *1 (-306)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-970)) (-5 *1 (-1069 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1157 *2 *3 *4)) (-4 *2 (-970)) (-14 *3 (-1084))
- (-14 *4 *2))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1013)) (-5 *2 (-817 *3 *4)) (-5 *1 (-813 *3 *4 *5))
- (-4 *3 (-1013)) (-4 *5 (-607 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -1981 *7) (|:| |sol?| (-108)))
- (-521) *7))
- (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7))
- (-5 *3 (-381 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-531 *7 *8)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1120)) (-5 *1 (-1066 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-522)) (|has| *1 (-6 -4239)) (-4 *1 (-348 *3))
+ (-4 *3 (-1120)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2))
+ (-4 *3 (-13 (-784) (-514))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *5 (-729)) (-4 *2 (-242 *4)))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *1) (-4 *1 (-798 *2))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-626 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-348 *2))
+ (-4 *4 (-348 *2)))))
(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-150 *3 *4))
- (-4 *3 (-151 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-707))
- (-5 *1 (-214 *3 *4 *5)) (-4 *3 (-215 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-783)) (-5 *2 (-707)) (-5 *1 (-403 *3 *4))
- (-4 *3 (-404 *4))))
- ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-505 *3)) (-4 *3 (-506))))
- ((*1 *2) (-12 (-4 *1 (-700)) (-5 *2 (-707))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-732 *3 *4))
- (-4 *3 (-733 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-513)) (-5 *2 (-707)) (-5 *1 (-917 *3 *4))
- (-4 *3 (-918 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-707)) (-5 *1 (-921 *3 *4))
- (-4 *3 (-922 *4))))
- ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-936 *3)) (-4 *3 (-937))))
- ((*1 *2) (-12 (-4 *1 (-970)) (-5 *2 (-707))))
- ((*1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-978 *3)) (-4 *3 (-979)))))
-(((*1 *2 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167))))
- ((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-1167)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-918 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-130 *4 *5 *3))
- (-4 *3 (-347 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-918 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-472 *4 *5 *6 *3)) (-4 *6 (-347 *4)) (-4 *3 (-347 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513))
- (-5 *2 (-2 (|:| |num| (-627 *4)) (|:| |den| *4)))
- (-5 *1 (-630 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521)))))
- (-4 *6 (-1141 *5))
- (-5 *2 (-2 (|:| -3196 *7) (|:| |rh| (-587 (-381 *6)))))
- (-5 *1 (-743 *5 *6 *7 *3)) (-5 *4 (-587 (-381 *6)))
- (-4 *7 (-597 *6)) (-4 *3 (-597 (-381 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-918 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1134 *4 *5 *3))
- (-4 *3 (-1141 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
- (-4 *6 (-729)) (-4 *7 (-783))
- (-5 *2 (-2 (|:| |goodPols| (-587 *8)) (|:| |badPols| (-587 *8))))
- (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-587 *8)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1013)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-707)) (-4 *1 (-1141 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-893 *3)) (-4 *3 (-894)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-425)) (-4 *3 (-729)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-422 *4 *3 *5 *6)) (-4 *6 (-877 *4 *3 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *1 (-496 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-497)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-416 *3)) (-4 *3 (-1142 (-522))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-356 *3 *4)) (-4 *3 (-970)) (-4 *4 (-1013))
- (-5 *2 (-587 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-2 (|:| |k| (-821 *3)) (|:| |c| *4))))
- (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-587 (-612 *3))) (-5 *1 (-821 *3)) (-4 *3 (-783)))))
+ (-12 (-4 *1 (-229 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *5 (-730)) (-4 *2 (-242 *4)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5))
+ (-4 *3 (-514)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-1177 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-588 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-985 *5 *6 *7)) (-4 *5 (-514))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-5 *1 (-1177 *5 *6 *7 *8)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-465)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-425))
- (-5 *2
- (-587
- (-2 (|:| |eigval| (-3 (-381 (-880 *4)) (-1074 (-1084) (-880 *4))))
- (|:| |geneigvec| (-587 (-627 (-381 (-880 *4))))))))
- (-5 *1 (-267 *4)) (-5 *3 (-627 (-381 (-880 *4)))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7)) (-5 *2 (-587 *4))
- (-5 *1 (-990 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -1347 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-587 (-381 *8))) (-4 *7 (-337)) (-4 *8 (-1141 *7))
- (-5 *3 (-381 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-531 *7 *8)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
+ (-12 (-5 *2 (-393 (-1081 *1))) (-5 *1 (-291 *4)) (-5 *3 (-1081 *1))
+ (-4 *4 (-426)) (-4 *4 (-514)) (-4 *4 (-784))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-838)) (-5 *2 (-393 (-1081 *1))) (-5 *3 (-1081 *1)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-298 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-124)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-405 *3) (-928))) (-5 *1 (-252 *3 *2))
+ (-4 *3 (-13 (-784) (-514))))))
+(((*1 *2 *3) (-12 (-5 *3 (-498)) (-5 *1 (-497 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-498)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-981 (-949 *3) (-1081 (-949 *3))))
+ (-5 *1 (-949 *3)) (-4 *3 (-13 (-782) (-338) (-947))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-707)) (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-684)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *2 (-959)) (-5 *1 (-688)))))
+ (-12 (-5 *2 (-588 (-561 *5))) (-5 *3 (-1085)) (-4 *5 (-405 *4))
+ (-4 *4 (-784)) (-5 *1 (-531 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-1089)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-766)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-1166 *4))
+ (-5 *1 (-751 *4 *3)) (-4 *3 (-598 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1014)) (-5 *1 (-199 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-1120)) (-4 *1 (-230 *3))))
+ ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1120)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-707)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-854)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-337)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-488 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-513)) (-4 *5 (-347 *4)) (-4 *6 (-347 *4))
- (-4 *7 (-918 *4)) (-4 *2 (-625 *7 *8 *9))
- (-5 *1 (-489 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-625 *4 *5 *6))
- (-4 *8 (-347 *7)) (-4 *9 (-347 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-625 *2 *3 *4)) (-4 *2 (-970))
- (-4 *3 (-347 *2)) (-4 *4 (-347 *2)) (-4 *2 (-337))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-337)) (-4 *3 (-157)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *1 (-626 *3 *4 *5 *2))
- (-4 *2 (-625 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-627 *2)) (-4 *2 (-337)) (-4 *2 (-970))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1034 *2 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-215 *2 *3)) (-4 *5 (-215 *2 *3)) (-4 *3 (-337))))
- ((*1 *2 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-783)) (-5 *1 (-1091 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-192 (-471))) (-5 *1 (-771)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-708)) (-4 *5 (-338)) (-5 *2 (-382 *6))
+ (-5 *1 (-796 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1142 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338))
+ (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5)))
+ (-5 *1 (-797 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-708)) (-5 *4 (-1158 *5 *6 *7)) (-4 *5 (-338))
+ (-14 *6 (-1085)) (-14 *7 *5) (-5 *2 (-382 (-1139 *6 *5)))
+ (-5 *1 (-797 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-514) (-135))) (-5 *1 (-1136 *3 *2))
+ (-4 *2 (-1142 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5)) (-4 *5 (-337))
- (-5 *2
- (-2 (|:| |ir| (-538 (-381 *6))) (|:| |specpart| (-381 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-531 *5 *6)) (-5 *3 (-381 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-783)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1013)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-832 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-999 *3)) (-4 *3 (-125)))))
+ (|partial| -12 (-5 *3 (-1166 *4)) (-4 *4 (-584 (-522)))
+ (-5 *2 (-1166 (-382 (-522)))) (-5 *1 (-1191 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-1022 *5 *6 *7 *8))
- (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *8 (-984 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-543 *5 *6 *7 *8 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-458)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1097 *4 *5))
- (-4 *4 (-1013)) (-4 *5 (-1013)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-623 *4 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-784)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1014)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-833 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1000 *3)) (-4 *3 (-125)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2976 (-588 (-2 (|:| |irr| *10) (|:| -2245 (-522)))))))
+ (-5 *6 (-588 *3)) (-5 *7 (-588 *8)) (-4 *8 (-784)) (-4 *3 (-283))
+ (-4 *10 (-878 *3 *9 *8)) (-4 *9 (-730))
+ (-5 *2
+ (-2 (|:| |polfac| (-588 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-588 (-1081 *3)))))
+ (-5 *1 (-571 *8 *9 *3 *10)) (-5 *4 (-588 (-1081 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1950 *3) (|:| |coef1| (-719 *3))))
+ (-5 *1 (-719 *3)) (-4 *3 (-514)) (-4 *3 (-971)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1067)) (-4 *1 (-338 *2 *4)) (-4 *2 (-1013))
- (-4 *4 (-1013))))
+ (-12 (-5 *3 (-1068)) (-4 *1 (-339 *2 *4)) (-4 *2 (-1014))
+ (-4 *4 (-1014))))
((*1 *1 *2)
- (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-300 *2 *3)) (-4 *2 (-970)) (-4 *3 (-728))
- (-4 *2 (-425))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-316 *2 *3 *4)) (-4 *2 (-1123)) (-4 *3 (-1141 *2))
- (-4 *4 (-1141 (-381 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-425))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *3 (-425))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-877 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-282)) (-4 *3 (-513)) (-5 *1 (-1072 *3 *2))
- (-4 *2 (-1141 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-696)))))
+ (-12 (-4 *1 (-339 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-522)) (-5 *5 (-108)) (-5 *6 (-628 (-202)))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1081 *7)) (-4 *7 (-878 *6 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *6 (-971)) (-5 *2 (-1081 *6))
+ (-5 *1 (-296 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| -2977 *4) (|:| -1353 *3) (|:| -3421 *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *2 (-2 (|:| -1353 *1) (|:| -3421 *1))) (-4 *1 (-985 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-514)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| -2977 *3) (|:| -1353 *1) (|:| -3421 *1)))
+ (-4 *1 (-1142 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-4 *2 (-1142 *4))
+ (-5 *1 (-851 *4 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1008 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-1119))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119))))
- ((*1 *1 *2) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-282)) (-5 *1 (-637 *3)))))
+ (-12 (-5 *2 (-1009 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1133 *2)) (-4 *2 (-1120)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-425)) (-4 *3 (-783)) (-4 *3 (-961 (-521)))
- (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $))
- (-15 -2818 ((-1036 *3 (-560 $)) $))
- (-15 -2223 ($ (-1036 *3 (-560 $))))))))))
+ (-12 (-5 *2 (-1166 *1)) (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124))
+ (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4))))))
+(((*1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708))
+ (-4 *4 (-157)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-627 (-381 (-880 (-521)))))
- (-5 *2 (-627 (-290 (-521)))) (-5 *1 (-955)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-425)) (-4 *3 (-783)) (-4 *3 (-961 (-521)))
- (-4 *3 (-513)) (-5 *1 (-40 *3 *2)) (-4 *2 (-404 *3))
- (-4 *2
- (-13 (-337) (-277)
- (-10 -8 (-15 -2807 ((-1036 *3 (-560 $)) $))
- (-15 -2818 ((-1036 *3 (-560 $)) $))
- (-15 -2223 ($ (-1036 *3 (-560 $))))))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-1137 *3 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-568 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -1981 *4) (|:| |sol?| (-108)))
- (-521) *4))
- (-4 *4 (-337)) (-4 *5 (-1141 *4)) (-5 *1 (-531 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *2 (-1116 (-855)))
+ (-5 *1 (-293))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-522)) (-5 *7 (-1068))
+ (-5 *2 (-1116 (-855))) (-5 *1 (-293))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522))
+ (-5 *2 (-1116 (-855))) (-5 *1 (-293))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-291 (-522))) (-5 *4 (-1 (-202) (-202)))
+ (-5 *5 (-1009 (-202))) (-5 *6 (-202)) (-5 *7 (-522)) (-5 *8 (-1068))
+ (-5 *2 (-1116 (-855))) (-5 *1 (-293)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-159))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-104)) (-5 *1 (-1001)))))
+(((*1 *2 *3) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-519)) (-5 *3 (-522)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-408))))
- ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-950 *3)) (-4 *3 (-1119)))))
-(((*1 *1 *1) (-4 *1 (-1053))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1067)) (-4 *4 (-13 (-282) (-135)))
- (-4 *5 (-13 (-783) (-562 (-1084)))) (-4 *6 (-729))
- (-5 *2
- (-587
- (-2 (|:| |eqzro| (-587 *7)) (|:| |neqzro| (-587 *7))
- (|:| |wcond| (-587 (-880 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1165 (-381 (-880 *4))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *4))))))))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-970)) (-5 *1 (-649 *3 *4))
- (-4 *4 (-1141 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-597 *3)) (-4 *3 (-970)) (-4 *3 (-337))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-707)) (-5 *4 (-1 *5 *5)) (-4 *5 (-337))
- (-5 *1 (-600 *5 *2)) (-4 *2 (-597 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-587 *3)) (-4 *3 (-877 *4 *6 *5)) (-4 *4 (-425))
- (-4 *5 (-783)) (-4 *6 (-729)) (-5 *1 (-913 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-849)) (-5 *1 (-722)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-627 (-154 (-381 (-521)))))
- (-5 *2
- (-587
- (-2 (|:| |outval| (-154 *4)) (|:| |outmult| (-521))
- (|:| |outvect| (-587 (-627 (-154 *4)))))))
- (-5 *1 (-701 *4)) (-4 *4 (-13 (-337) (-781))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-1167)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-337)) (-5 *1 (-824 *2 *4))
- (-4 *2 (-1141 *4)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-688)))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-270 *2)) (-4 *2 (-1120))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-951 *3)) (-4 *3 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-5 *2 (-1093 (-588 *4))) (-5 *1 (-1092 *4))
+ (-5 *3 (-588 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-784)) (-5 *1 (-122 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-561 *4)) (-5 *1 (-560 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-784)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-871 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-587 (-871 *3))) (-4 *3 (-970)) (-4 *1 (-1045 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-587 (-871 *3))) (-4 *1 (-1045 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-710)) (-5 *1 (-110)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-987 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-987 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-707)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-1054 *6 *7 *8 *3 *4)) (-4 *4 (-1022 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-587 *4))
- (|:| |todo| (-587 (-2 (|:| |val| (-587 *3)) (|:| -1946 *4))))))
- (-5 *1 (-1054 *5 *6 *7 *3 *4)) (-4 *4 (-1022 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
- (-5 *2 (-587 (-587 (-587 (-707))))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *4))))
- (-5 *1 (-712 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *2 (-959)) (-5 *1 (-688)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-518)))))
-(((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-791) (-791) (-791))) (-5 *4 (-521)) (-5 *2 (-791))
- (-5 *1 (-590 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-791)) (-5 *1 (-787 *3 *4 *5)) (-4 *3 (-970))
- (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-791))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-791))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-791))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-791))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1080 *3)) (-4 *3 (-970)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-587 *3)) (-4 *3 (-1119)))))
-(((*1 *2 *3) (-12 (-5 *2 (-521)) (-5 *1 (-526 *3)) (-4 *3 (-961 *2))))
+ (-12
+ (-5 *2
+ (-588
+ (-2
+ (|:| -2530
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (|:| -3048
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1066 (-202)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2386
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-517))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
-(((*1 *1 *1) (-5 *1 (-791)))
+ (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120))
+ (-5 *2 (-588 *4)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-143)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-5 *1 (-915 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 *7)) (-4 *7 (-990 *3 *4 *5 *6)) (-4 *3 (-426))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *6 (-985 *3 *4 *5))
+ (-5 *1 (-1021 *3 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-283))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-382 (-522)))) (-5 *1 (-169)) (-5 *3 (-522))))
+ ((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120))))
+ ((*1 *1 *1) (-4 *1 (-798 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-900 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-729))
+ (-4 *4 (-784)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-903 *3 *4 *2 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-985 *3 *4 *2)) (-4 *2 (-784))))
((*1 *2 *1)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-521)) (-4 *1 (-1066))))
- ((*1 *2 *1) (-12 (-5 *2 (-1067)) (-5 *1 (-1084)))))
+ (-12 (-4 *1 (-985 *3 *4 *2)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *2 (-784)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-587
- (-2 (|:| |scalar| (-381 (-521))) (|:| |coeff| (-1080 *3))
- (|:| |logand| (-1080 *3)))))
- (-5 *1 (-538 *3)) (-4 *3 (-337)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *7)) (-4 *7 (-877 *4 *5 *6)) (-4 *6 (-562 (-1084)))
- (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *2 (-1074 (-587 (-880 *4)) (-587 (-269 (-880 *4)))))
- (-5 *1 (-473 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-521)) (-5 *1 (-457 *4))
- (-4 *4 (-1141 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-783)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-453 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
- (-5 *2 (-224 *4 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-521)) (-5 *1 (-353)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-513) (-135))) (-5 *2 (-587 *3))
- (-5 *1 (-1135 *4 *3)) (-4 *3 (-1141 *4)))))
-(((*1 *1 *1) (-4 *1 (-602))) ((*1 *1 *1) (-5 *1 (-1031))))
-(((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1119)) (-4 *2 (-1013))))
- ((*1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1013)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-1120 *3)) (-4 *3 (-783))
- (-4 *3 (-1013)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
+ (-1166
+ (-2 (|:| |scaleX| (-202)) (|:| |scaleY| (-202))
+ (|:| |deltaX| (-202)) (|:| |deltaY| (-202)) (|:| -3398 (-522))
+ (|:| -1235 (-522)) (|:| |spline| (-522)) (|:| -2640 (-522))
+ (|:| |axesColor| (-803)) (|:| -1968 (-522))
+ (|:| |unitsColor| (-803)) (|:| |showing| (-522)))))
+ (-5 *1 (-1167)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-588 (-588 (-588 *5)))) (-5 *3 (-1 (-108) *5 *5))
+ (-5 *4 (-588 *5)) (-4 *5 (-784)) (-5 *1 (-1092 *5)))))
+(((*1 *1) (-5 *1 (-143))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2) (-12 (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-690)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-587 *1)) (-4 *1 (-282)))))
+ (-12 (-5 *3 (-588 (-588 (-872 (-202)))))
+ (-5 *2 (-588 (-1009 (-202)))) (-5 *1 (-857)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-514))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-759)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5))
- (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-1176 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-587 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-984 *5 *6 *7)) (-4 *5 (-513))
- (-4 *6 (-729)) (-4 *7 (-783)) (-5 *1 (-1176 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-382 (-522))) (-4 *1 (-512 *3))
+ (-4 *3 (-13 (-379) (-1106)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-968 *5 *6))) (-5 *1 (-1190 *5 *6 *7))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-881 *4)))
+ (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-588 (-968 *4 *5))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-269 (-880 (-521))))
+ (-12 (-5 *3 (-588 (-1085))) (-5 *2 (-1171)) (-5 *1 (-1088))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171))
+ (-5 *1 (-1088))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-588 (-1085))) (-5 *3 (-1085)) (-5 *2 (-1171))
+ (-5 *1 (-1088)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-971)) (-5 *1 (-1070 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1158 *2 *3 *4)) (-4 *2 (-971)) (-14 *3 (-1085))
+ (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-901)))))
+(((*1 *2 *3) (-12 (-5 *2 (-522)) (-5 *1 (-527 *3)) (-4 *3 (-962 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-522)) (-4 *1 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1068)) (-5 *1 (-1085)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1120)))))
+(((*1 *2 *1) (-12 (-4 *1 (-342 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-393 *5)) (-4 *5 (-514))
(-5 *2
- (-2 (|:| |varOrder| (-587 (-1084)))
- (|:| |inhom| (-3 (-587 (-1165 (-707))) "failed"))
- (|:| |hom| (-587 (-1165 (-707))))))
- (-5 *1 (-213)))))
-(((*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-5 *1 (-1094 *2)) (-4 *2 (-337)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1141 *5))
- (-4 *5 (-13 (-337) (-135) (-961 (-521))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-381 *6)) (|:| |c| (-381 *6))
- (|:| -1670 *6)))
- (-5 *1 (-940 *5 *6)) (-5 *3 (-381 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-5 *1 (-290 *3)) (-4 *3 (-513)) (-4 *3 (-783)))))
+ (-2 (|:| -1400 (-708)) (|:| -2977 *5) (|:| |radicand| (-588 *5))))
+ (-5 *1 (-295 *5)) (-5 *4 (-708))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-522)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-338))
+ (-5 *2 (-108)) (-5 *1 (-609 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-338)) (-4 *6 (-13 (-348 *5) (-10 -7 (-6 -4239))))
+ (-4 *4 (-13 (-348 *5) (-10 -7 (-6 -4239)))) (-5 *2 (-108))
+ (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-626 *5 *6 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-442)) (-5 *3 (-588 (-239))) (-5 *1 (-1167))))
+ ((*1 *1 *1) (-5 *1 (-1167))))
+(((*1 *1 *1) (-4 *1 (-603))) ((*1 *1 *1) (-5 *1 (-1032))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-707) *2)) (-5 *4 (-707)) (-4 *2 (-1013))
- (-5 *1 (-617 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-707) *3)) (-4 *3 (-1013)) (-5 *1 (-620 *3)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-560 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084))) (-5 *5 (-1080 *2))
- (-4 *2 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-560 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1084)))
- (-5 *5 (-381 (-1080 *2))) (-4 *2 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *1 (-517 *6 *2 *7)) (-4 *7 (-1013)))))
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-393 *4) *4)) (-4 *4 (-514)) (-5 *2 (-393 *4))
+ (-5 *1 (-394 *4))))
+ ((*1 *1 *1) (-5 *1 (-855)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855))))
+ ((*1 *1 *1) (-5 *1 (-856)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))
+ (-5 *4 (-382 (-522))) (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))
+ (-5 *1 (-945 *3)) (-4 *3 (-1142 (-522)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))
+ (-5 *4 (-382 (-522))) (-5 *1 (-946 *3)) (-4 *3 (-1142 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1913 (-382 (-522))) (|:| -1924 (-382 (-522)))))
+ (-5 *1 (-946 *3)) (-4 *3 (-1142 (-382 (-522))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-782) (-338))) (-5 *1 (-981 *2 *3))
+ (-4 *3 (-1142 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-588 (-202)))) (-5 *1 (-855)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-628 (-382 (-522)))) (-5 *2 (-588 *4)) (-5 *1 (-716 *4))
+ (-4 *4 (-13 (-338) (-782))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1166 *5)) (-5 *3 (-708)) (-5 *4 (-1032)) (-4 *5 (-324))
+ (-5 *1 (-492 *5)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-354)) (|:| |stability| (-354))
+ (|:| |expense| (-354)) (|:| |accuracy| (-354))
+ (|:| |intermediateResults| (-354))))
+ (-5 *2 (-960)) (-5 *1 (-281)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-337)) (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
- (-5 *2 (-1165 *6)) (-5 *1 (-310 *3 *4 *5 *6))
- (-4 *6 (-316 *3 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-970)) (-5 *1 (-49 *2 *3)) (-14 *3 (-587 (-1084)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 (-849))) (-4 *2 (-337)) (-5 *1 (-140 *4 *2 *5))
- (-14 *4 (-849)) (-14 *5 (-919 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-290 *3)) (-5 *1 (-200 *3 *4))
- (-4 *3 (-13 (-970) (-783))) (-14 *4 (-587 (-1084)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-124))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-356 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-970))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *2 (-513)) (-5 *1 (-568 *2 *4))
- (-4 *4 (-1141 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-646 *2)) (-4 *2 (-970))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-970)) (-5 *1 (-672 *2 *3)) (-4 *3 (-663))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *5)) (-5 *3 (-587 (-707))) (-4 *1 (-677 *4 *5))
- (-4 *4 (-970)) (-4 *5 (-783))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-677 *4 *2)) (-4 *4 (-970))
- (-4 *2 (-783))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-707)) (-4 *1 (-785 *2)) (-4 *2 (-970))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-587 *6)) (-5 *3 (-587 (-707))) (-4 *1 (-877 *4 *5 *6))
- (-4 *4 (-970)) (-4 *5 (-729)) (-4 *6 (-783))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *1 (-877 *4 *5 *2)) (-4 *4 (-970))
- (-4 *5 (-729)) (-4 *2 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-4 *2 (-877 *4 (-493 *5) *5))
- (-5 *1 (-1037 *4 *5 *2)) (-4 *4 (-970)) (-4 *5 (-783))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-707)) (-5 *2 (-880 *4)) (-5 *1 (-1114 *4))
- (-4 *4 (-970)))))
-(((*1 *2 *2) (-12 (-5 *2 (-202)) (-5 *1 (-203))))
- ((*1 *2 *2) (-12 (-5 *2 (-154 (-202))) (-5 *1 (-203))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-405 *3 *2))
- (-4 *2 (-404 *3))))
- ((*1 *1 *1) (-4 *1 (-1048))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-783)) (-5 *2 (-587 (-605 *4 *5)))
- (-5 *1 (-571 *4 *5 *6)) (-4 *5 (-13 (-157) (-654 (-381 (-521)))))
- (-14 *6 (-849)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119))))
+ (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-971)) (-4 *4 (-784))
+ (-4 *5 (-242 *4)) (-4 *6 (-730)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1122)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-151 *3)) (-4 *3 (-157)) (-4 *3 (-507))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-393 *3)) (-4 *3 (-507))
+ (-4 *3 (-514))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-734 *3)) (-4 *3 (-157)) (-4 *3 (-507))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-770 *3)) (-4 *3 (-507))
+ (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-777 *3)) (-4 *3 (-507))
+ (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-923 *3)) (-4 *3 (-157)) (-4 *3 (-507))
+ (-5 *2 (-382 (-522)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-382 (-522))) (-5 *1 (-934 *3)) (-4 *3 (-962 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-336 (-110))) (-4 *2 (-971)) (-5 *1 (-652 *2 *4))
+ (-4 *4 (-590 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-336 (-110))) (-5 *1 (-771 *2)) (-4 *2 (-971)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-202))
+ (-5 *2 (-960)) (-5 *1 (-693))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-363))
+ (-5 *4 (-202)) (-5 *2 (-960)) (-5 *1 (-693)))))
+(((*1 *2)
+ (-12 (-4 *3 (-514)) (-5 *2 (-588 (-628 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-392 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-561 *3)) (-4 *3 (-784)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-353))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-381 (-880 (-353)))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-521))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-381 (-880 (-521)))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (-12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 *2))
- (-14 *4 (-587 *2)) (-4 *5 (-361))))
+ (-12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 *2))
+ (-14 *4 (-588 *2)) (-4 *5 (-362))))
((*1 *1 *2)
- (-12 (-5 *2 (-290 *5)) (-4 *5 (-361)) (-5 *1 (-313 *3 *4 *5))
- (-14 *3 (-587 (-1084))) (-14 *4 (-587 (-1084)))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-880 (-521))))) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-381 (-880 (-353))))) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-880 (-521)))) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-880 (-353)))) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358))))
- ((*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-521)))) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-381 (-880 (-353)))) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 (-521))) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 (-353))) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-521))) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-290 (-353))) (-4 *1 (-370))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-880 (-521))))) (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-381 (-880 (-353))))) (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-880 (-521)))) (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-880 (-353)))) (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414))))
+ (-12 (-5 *2 (-291 *5)) (-4 *5 (-362)) (-5 *1 (-314 *3 *4 *5))
+ (-14 *3 (-588 (-1085))) (-14 *4 (-588 (-1085)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359))))
+ ((*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 (-522))) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-881 (-354))) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-522))) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-291 (-354))) (-4 *1 (-371))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
(|:| |mdnia|
- (-2 (|:| |fn| (-290 (-202)))
- (|:| -1403 (-587 (-1008 (-776 (-202)))))
+ (-2 (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-588 (-1009 (-777 (-202)))))
(|:| |abserr| (-202)) (|:| |relerr| (-202))))))
- (-5 *1 (-705))))
+ (-5 *1 (-706))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
(|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *1 (-744))))
+ (-5 *1 (-745))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-290 (-202))) (|:| -3797 (-587 (-202)))
- (|:| |lb| (-587 (-776 (-202))))
- (|:| |cf| (-587 (-290 (-202))))
- (|:| |ub| (-587 (-776 (-202))))))
+ (-2 (|:| |fn| (-291 (-202))) (|:| -3802 (-588 (-202)))
+ (|:| |lb| (-588 (-777 (-202))))
+ (|:| |cf| (-588 (-291 (-202))))
+ (|:| |ub| (-588 (-777 (-202))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-587 (-290 (-202))))
- (|:| -3797 (-587 (-202)))))))
- (-5 *1 (-774))))
+ (-2 (|:| |lfn| (-588 (-291 (-202))))
+ (|:| -3802 (-588 (-202)))))))
+ (-5 *1 (-775))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-587 (-290 (-202))))
+ (-2 (|:| |pde| (-588 (-291 (-202))))
(|:| |constraints|
- (-587
+ (-588
(-2 (|:| |start| (-202)) (|:| |finish| (-202))
- (|:| |grid| (-707)) (|:| |boundaryType| (-521))
- (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
- (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
+ (|:| |grid| (-708)) (|:| |boundaryType| (-522))
+ (|:| |dStart| (-628 (-202))) (|:| |dFinish| (-628 (-202))))))
+ (|:| |f| (-588 (-588 (-291 (-202))))) (|:| |st| (-1068))
(|:| |tol| (-202))))
- (-5 *1 (-826))))
+ (-5 *1 (-827))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *1 (-902 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-961 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *1 (-903 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-962 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (-3703
- (-12 (-5 *2 (-880 *3))
- (-12 (-2416 (-4 *3 (-37 (-381 (-521)))))
- (-2416 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2416 (-4 *3 (-506))) (-2416 (-4 *3 (-37 (-381 (-521)))))
- (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2416 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521))))
- (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)))))
+ (-3708
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2401 (-4 *3 (-37 (-382 (-522)))))
+ (-2401 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2401 (-4 *3 (-507))) (-2401 (-4 *3 (-37 (-382 (-522)))))
+ (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2401 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522))))
+ (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)))))
((*1 *1 *2)
- (-3703
- (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5))
- (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521)))
- (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))
- (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5))
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))))
+ (-3708
+ (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5))
+ (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522)))
+ (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)))))
-(((*1 *2 *3) (-12 (-5 *3 (-587 (-51))) (-5 *2 (-1170)) (-5 *1 (-792)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1180 *3 *4)) (-4 *3 (-783)) (-4 *4 (-970))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-779)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-353))) (-5 *1 (-239))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-513)) (-4 *2 (-157))))
- ((*1 *2 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202)))
- (-5 *6 (-3 (|:| |fn| (-362)) (|:| |fp| (-68 APROD)))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-693)))))
+ (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)))))
+(((*1 *2 *3) (-12 (-5 *3 (-588 (-51))) (-5 *2 (-1171)) (-5 *1 (-793)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *5 (-202))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-79 FCN)))) (-5 *2 (-960))
+ (-5 *1 (-684)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-628 *3))
+ (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-628 *3))
+ (-4 *3 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *4 (-1142 *3)) (-5 *1 (-469 *3 *4 *5)) (-4 *5 (-384 *3 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-131)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-144 *3 *2))
+ (-4 *2 (-405 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-145 *2)) (-4 *2 (-507))))
+ ((*1 *1 *1 *1) (-5 *1 (-792)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969))
+ (-5 *3 (-522)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-425)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-984 *3 *4 *5)) (-5 *1 (-569 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-989 *3 *4 *5 *6)) (-4 *2 (-1022 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1165 *4)) (-5 *3 (-707)) (-4 *4 (-323))
- (-5 *1 (-491 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-290 (-202))) (-5 *1 (-189)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-5 *2 (-885 (-1031))) (-5 *1 (-317 *3 *4)) (-14 *3 (-849))
- (-14 *4 (-849))))
- ((*1 *2)
- (-12 (-5 *2 (-885 (-1031))) (-5 *1 (-318 *3 *4)) (-4 *3 (-323))
- (-14 *4 (-1080 *3))))
+ (-12 (-4 *3 (-962 (-522))) (-4 *3 (-13 (-784) (-514)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-405 *3))))
((*1 *2)
- (-12 (-5 *2 (-885 (-1031))) (-5 *1 (-319 *3 *4)) (-4 *3 (-323))
- (-14 *4 (-849)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-337)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-108))
- (-5 *1 (-473 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-151 *2)) (-4 *2 (-157))))
- ((*1 *1 *1 *1) (-4 *1 (-446)))
- ((*1 *1 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157))))
- ((*1 *2 *2) (-12 (-5 *2 (-587 (-521))) (-5 *1 (-811))))
- ((*1 *1 *1) (-5 *1 (-897)))
- ((*1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-157)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1141 *9)) (-4 *7 (-729)) (-4 *8 (-783)) (-4 *9 (-282))
- (-4 *10 (-877 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-587 (-1080 *10)))
- (|:| |dterm|
- (-587 (-587 (-2 (|:| -4038 (-707)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-587 *6)) (|:| |nlead| (-587 *10))))
- (-5 *1 (-714 *6 *7 *8 *9 *10)) (-5 *3 (-1080 *10)) (-5 *4 (-587 *6))
- (-5 *5 (-587 *10)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1) (-5 *1 (-791))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-538 *3)) (-5 *1 (-514 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-970)) (-5 *2 (-521)) (-5 *1 (-416 *4 *3 *5))
- (-4 *3 (-1141 *4))
- (-4 *5 (-13 (-378) (-961 *4) (-337) (-1105) (-259))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084))
- (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-171))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-290 (-202))) (-5 *4 (-1084))
- (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))))
+ (-12 (-4 *4 (-157)) (-5 *2 (-1081 *4)) (-5 *1 (-150 *3 *4))
+ (-4 *3 (-151 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-971)) (-4 *1 (-278))))
+ ((*1 *2) (-12 (-4 *1 (-304 *3)) (-4 *3 (-338)) (-5 *2 (-1081 *3))))
+ ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-157)) (-4 *2 (-1142 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-987 *3 *2)) (-4 *3 (-13 (-782) (-338)))
+ (-4 *2 (-1142 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-628 (-291 (-522)))) (-5 *1 (-956)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-708)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-392 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970)) (-5 *2 (-587 (-587 (-156)))))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-1081 *5))) (-5 *3 (-1081 *5))
+ (-4 *5 (-151 *4)) (-4 *4 (-507)) (-5 *1 (-137 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 *3)) (-4 *3 (-1142 *5))
+ (-4 *5 (-1142 *4)) (-4 *4 (-324)) (-5 *1 (-333 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-1081 (-522)))) (-5 *3 (-1081 (-522)))
+ (-5 *1 (-530))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-588 (-1081 *1))) (-5 *3 (-1081 *1))
+ (-4 *1 (-838)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1081 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-324)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3)) (-5 *6 (-1081 *3))
+ (-4 *3 (-13 (-405 *7) (-27) (-1106)))
+ (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-561 *3)) (-5 *5 (-588 *3))
+ (-5 *6 (-382 (-1081 *3))) (-4 *3 (-13 (-405 *7) (-27) (-1106)))
+ (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-518 *7 *3 *8)) (-4 *8 (-1014)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-971) (-784)))
+ (-14 *3 (-588 (-1085))))))
+(((*1 *1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-690)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-776 (-202)))) (-5 *4 (-202)) (-5 *2 (-587 *4))
- (-5 *1 (-243)))))
-(((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
+ (-12 (-5 *3 (-628 (-154 (-382 (-522))))) (-5 *2 (-588 (-154 *4)))
+ (-5 *1 (-702 *4)) (-4 *4 (-13 (-338) (-782))))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1084)) (-5 *3 (-408)) (-4 *5 (-783))
- (-5 *1 (-1019 *5 *4)) (-4 *4 (-404 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-817 *4 *5)) (-5 *3 (-817 *4 *6)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-607 *5)) (-5 *1 (-813 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-392 *2)) (-4 *2 (-513)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-521)) (-5 *1 (-1065 *3)) (-4 *3 (-1119))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1119)) (-5 *2 (-521)))))
+ (-12 (-5 *2 (-1085)) (-5 *3 (-409)) (-4 *5 (-784))
+ (-5 *1 (-1020 *5 *4)) (-4 *4 (-405 *5)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-316 *4 *3 *5)) (-4 *4 (-1123)) (-4 *3 (-1141 *4))
- (-4 *5 (-1141 (-381 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-588 *4)) (-4 *4 (-338)) (-5 *2 (-628 *4))
+ (-5 *1 (-751 *4 *5)) (-4 *5 (-598 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-708)) (-4 *5 (-338))
+ (-5 *2 (-628 *5)) (-5 *1 (-751 *5 *6)) (-4 *6 (-598 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-291 (-202))) (-5 *2 (-202)) (-5 *1 (-281)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *3)) (-4 *3 (-1120)) (-5 *2 (-522)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *3 (-588 (-239)))
+ (-5 *1 (-237))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-872 (-202)) (-872 (-202)))) (-5 *1 (-239))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 (-454 *5 *6))) (-5 *3 (-454 *5 *6))
+ (-14 *5 (-588 (-1085))) (-4 *6 (-426)) (-5 *2 (-1166 *6))
+ (-5 *1 (-576 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-382 (-881 *3))) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *3 (-514)) (-4 *3 (-157)) (-14 *4 (-850))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-1166 (-628 *3))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-522)) (-5 *1 (-1024))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1166 (-522))) (-5 *3 (-588 (-522))) (-5 *4 (-522))
+ (-5 *1 (-1024)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
- (|:| |fn| (-1165 (-290 (-202)))) (|:| |yinit| (-587 (-202)))
- (|:| |intvals| (-587 (-202))) (|:| |g| (-290 (-202)))
- (|:| |abserr| (-202)) (|:| |relerr| (-202))))
- (-5 *2 (-353)) (-5 *1 (-184)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-132))) (-5 *1 (-129))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-129)))))
+ (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-426))
+ (-5 *2 (-454 *4 *5)) (-5 *1 (-576 *4 *5)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1054)) (-5 *3 (-132)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-381 (-521)))) (-5 *1 (-169)) (-5 *3 (-521))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1165 (-3 (-441) "undefined"))) (-5 *1 (-1166)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1053)) (-5 *3 (-132)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-5 *2 (-627 (-381 *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-871 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-587 (-560 *2))) (-5 *4 (-587 (-1084)))
- (-4 *2 (-13 (-404 (-154 *5)) (-927) (-1105)))
- (-4 *5 (-13 (-513) (-783))) (-5 *1 (-550 *5 *6 *2))
- (-4 *6 (-13 (-404 *5) (-927) (-1105))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119)))))
-(((*1 *1) (-5 *1 (-759))))
-(((*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-854))))
- ((*1 *2 *1) (-12 (-5 *2 (-1008 (-202))) (-5 *1 (-855)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
-(((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
- ((*1 *2 *2) (-12 (-5 *2 (-521)) (-5 *1 (-440))))
- ((*1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-855)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4)))
- (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))))
+ (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1014) (-962 *5)))
+ (-4 *5 (-815 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-860 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-382 (-522))) (-5 *1 (-195)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-708)) (-4 *4 (-324)) (-5 *1 (-194 *4 *2))
+ (-4 *2 (-1142 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-898)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *1) (-12 (-5 *1 (-270 *2)) (-4 *2 (-21)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-5 *2 (-2 (|:| -2535 *3) (|:| -3050 *4))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-587 (-880 *3))) (-4 *3 (-425)) (-5 *1 (-334 *3 *4))
- (-14 *4 (-587 (-1084)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-425))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-423 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-423 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-587 *7)) (-5 *3 (-1067)) (-4 *7 (-877 *4 *5 *6))
- (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *1 (-423 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-337)) (-4 *3 (-729)) (-4 *4 (-783))
- (-5 *1 (-473 *2 *3 *4 *5)) (-4 *5 (-877 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 (-716 *3 (-793 *4)))) (-4 *3 (-425))
- (-14 *4 (-587 (-1084))) (-5 *1 (-572 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-229 *4 *3 *5 *6)) (-4 *4 (-970)) (-4 *3 (-783))
- (-4 *5 (-242 *3)) (-4 *6 (-729)) (-5 *2 (-587 (-707)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 (-707))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1084)) (-5 *6 (-587 (-560 *3)))
- (-5 *5 (-560 *3)) (-4 *3 (-13 (-27) (-1105) (-404 *7)))
- (-4 *7 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3)))
- (-5 *1 (-514 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1119))))
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-5 *2 (-2 (|:| -2530 *3) (|:| -3048 *4))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-522)) (-5 *6 (-1 (-1171) (-1166 *5) (-1166 *5) (-354)))
+ (-5 *3 (-1166 (-354))) (-5 *5 (-354)) (-5 *2 (-1171))
+ (-5 *1 (-725)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-730))
+ (-4 *5 (-13 (-784) (-10 -8 (-15 -1431 ((-1085) $))))) (-4 *6 (-514))
+ (-5 *2 (-2 (|:| -1210 (-881 *6)) (|:| -3136 (-881 *6))))
+ (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-878 (-382 (-881 *6)) *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-4 *1 (-221 *2)) (-4 *2 (-1120))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-985 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-1153 *3)) (-4 *3 (-1119))))
- ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-1080 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4)))
- (-4 *4 (-783)) (-5 *1 (-1091 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-425)) (-4 *4 (-783)) (-4 *5 (-729)) (-5 *2 (-108))
- (-5 *1 (-913 *3 *4 *5 *6)) (-4 *6 (-877 *3 *5 *4))))
+ (-12 (-5 *2 (-708)) (-4 *1 (-1154 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-338)) (-4 *4 (-514)) (-4 *5 (-1142 *4))
+ (-5 *2 (-2 (|:| -2012 (-569 *4 *5)) (|:| -1320 (-382 *5))))
+ (-5 *1 (-569 *4 *5)) (-5 *3 (-382 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-425)) (-4 *6 (-729)) (-4 *7 (-783))
- (-4 *3 (-984 *5 *6 *7))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-1021 *5 *6 *7 *3 *4)) (-4 *4 (-989 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-202)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-513)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-513)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *2)) (-5 *4 (-1084)) (-4 *2 (-404 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-783) (-513)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-849)) (-4 *1 (-937))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1080 *1)) (-5 *3 (-849)) (-5 *4 (-791))
- (-4 *1 (-937))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-849)) (-4 *4 (-13 (-781) (-337)))
- (-4 *1 (-986 *4 *2)) (-4 *2 (-1141 *4)))))
-(((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-588 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4))
+ (-14 *3 (-850)) (-4 *4 (-971))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-426)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1142 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-872 (-202)))) (-5 *1 (-1167)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-283)) (-4 *3 (-157)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3)))
+ (-5 *1 (-627 *3 *4 *5 *6)) (-4 *6 (-626 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -1353 *3) (|:| -3421 *3))) (-5 *1 (-638 *3))
+ (-4 *3 (-283)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-170)) (-5 *3 (-522))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-720 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1081 (-522))) (-5 *1 (-871)) (-5 *3 (-522)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-588 (-708))) (-5 *1 (-897 *4 *3))
+ (-4 *3 (-1142 *4)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-561 *4)) (-5 *6 (-1081 *4))
+ (-4 *4 (-13 (-405 *7) (-27) (-1106)))
+ (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
(-5 *2
- (-587
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-521)))))
- (-5 *1 (-392 *3)) (-4 *3 (-513))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-707)) (-4 *3 (-323)) (-4 *5 (-1141 *3))
- (-5 *2 (-587 (-1080 *3))) (-5 *1 (-467 *3 *5 *6))
- (-4 *6 (-1141 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *4 *5 *6)) (-4 *4 (-282))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-420 *4 *5 *6 *2)))))
-(((*1 *2 *1 *1)
- (-12
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-561 *4)) (-5 *6 (-382 (-1081 *4)))
+ (-4 *4 (-13 (-405 *7) (-27) (-1106)))
+ (-4 *7 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
(-5 *2
- (-2 (|:| -2286 (-718 *3)) (|:| |coef1| (-718 *3))
- (|:| |coef2| (-718 *3))))
- (-5 *1 (-718 *3)) (-4 *3 (-513)) (-4 *3 (-970))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-513)) (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *2 (-2 (|:| -2286 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-984 *3 *4 *5)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3855 (-588 *4))))
+ (-5 *1 (-518 *7 *4 *3)) (-4 *3 (-598 *4)) (-4 *3 (-1014)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
(((*1 *1) (-5 *1 (-108))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-269 *2)) (-4 *2 (-663)) (-4 *2 (-1119)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-562 *2) (-157))) (-5 *2 (-820 *4))
- (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-151 *5))))
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-563 *2) (-157))) (-5 *2 (-821 *4))
+ (-5 *1 (-155 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-151 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-587 (-1008 (-776 (-353)))))
- (-5 *2 (-587 (-1008 (-776 (-202))))) (-5 *1 (-280))))
- ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-353))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-521)) (-5 *1 (-368))))
+ (-12 (-5 *3 (-588 (-1009 (-777 (-354)))))
+ (-5 *2 (-588 (-1009 (-777 (-202))))) (-5 *1 (-281))))
+ ((*1 *1 *2) (-12 (-5 *2 (-202)) (-5 *1 (-354))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-369))))
((*1 *1 *2)
- (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-383 *3 *4))
- (-4 *4 (-1141 *3))))
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-384 *3 *4))
+ (-4 *4 (-1142 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
- (-5 *2 (-1165 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-157)) (-4 *1 (-391 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-157)) (-5 *2 (-1165 *3))))
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1142 *3))
+ (-5 *2 (-1166 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-157)) (-4 *1 (-392 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-392 *3)) (-4 *3 (-157)) (-5 *2 (-1166 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-392 *1)) (-4 *1 (-404 *3)) (-4 *3 (-513))
- (-4 *3 (-783))))
+ (-12 (-5 *2 (-393 *1)) (-4 *1 (-405 *3)) (-4 *3 (-514))
+ (-4 *3 (-784))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-436 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-497))))
- ((*1 *2 *1) (-12 (-4 *1 (-562 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-437 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-498))))
+ ((*1 *2 *1) (-12 (-4 *1 (-563 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (-12 (-4 *3 (-157)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-157)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1142 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-820 *3))) (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 *3)) (-4 *3 (-970)) (-4 *1 (-906 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-981))))
+ (-12 (-5 *2 (-588 (-821 *3))) (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 *3)) (-4 *3 (-971)) (-4 *1 (-907 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-982))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 *3)) (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5))
- (-4 *5 (-562 (-1084))) (-4 *4 (-729)) (-4 *5 (-783))))
+ (-12 (-5 *2 (-881 *3)) (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5))
+ (-4 *5 (-563 (-1085))) (-4 *4 (-730)) (-4 *5 (-784))))
((*1 *1 *2)
- (-3703
- (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5))
- (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521)))
- (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))
- (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5))
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))))
+ (-3708
+ (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5))
+ (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522)))
+ (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))))
((*1 *1 *2)
- (-12 (-5 *2 (-880 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8)))
- (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-989 *4 *5 *6 *7)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1067))
- (-5 *1 (-987 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1084)) (-5 *1 (-998))))
- ((*1 *1 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1119))))
+ (-12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8)))
+ (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-990 *4 *5 *6 *7)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068))
+ (-5 *1 (-988 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-999))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))
((*1 *1 *2)
- (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *5 (-1013)) (-4 *2 (-1013)) (-4 *6 (-1013))))
+ (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *5 (-1014)) (-4 *2 (-1014)) (-4 *6 (-1014))))
((*1 *1 *2)
- (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
- (-4 *2 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))
+ (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-4 *2 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))
((*1 *1 *2)
- (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *2 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))
+ (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *2 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))
((*1 *1 *2)
- (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))))
+ (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013))
- (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-587 *7)) (|:| -1946 *8)))
- (-4 *7 (-984 *4 *5 *6)) (-4 *8 (-1022 *4 *5 *6 *7)) (-4 *4 (-425))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-1067))
- (-5 *1 (-1054 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1017)) (-5 *1 (-1089))))
- ((*1 *2 *1) (-12 (-5 *2 (-1017)) (-5 *1 (-1089))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-791)) (-5 *3 (-521)) (-5 *1 (-1100))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-521)) (-5 *1 (-1100))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-716 *4 (-793 *5)))
- (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *5 (-587 (-1084)))
- (-5 *2 (-716 *4 (-793 *6))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *6 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-880 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-716 *4 (-793 *6)))
- (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *6 (-587 (-1084)))
- (-5 *2 (-880 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 *4)) (-4 *4 (-13 (-781) (-282) (-135) (-946)))
- (-5 *2 (-1080 (-948 (-381 *4)))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084))) (-14 *6 (-587 (-1084)))))
+ (-12 (-5 *2 (-588 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014))
+ (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-588 *7)) (|:| -1886 *8)))
+ (-4 *7 (-985 *4 *5 *6)) (-4 *8 (-1023 *4 *5 *6 *7)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1068))
+ (-5 *1 (-1055 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-1090))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-1090))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-792)) (-5 *3 (-522)) (-5 *1 (-1101))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-717 *4 (-794 *5)))
+ (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *5 (-588 (-1085)))
+ (-5 *2 (-717 *4 (-794 *6))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *6 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-717 *4 (-794 *6)))
+ (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085)))
+ (-5 *2 (-881 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1081 *4)) (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2 (-1081 (-949 (-382 *4)))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1055 *4 (-493 (-793 *6)) (-793 *6) (-716 *4 (-793 *6))))
- (-4 *4 (-13 (-781) (-282) (-135) (-946))) (-14 *6 (-587 (-1084)))
- (-5 *2 (-587 (-716 *4 (-793 *6)))) (-5 *1 (-1189 *4 *5 *6))
- (-14 *5 (-587 (-1084))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-989 *4 *5 *6 *3)) (-4 *4 (-425)) (-4 *5 (-729))
- (-4 *6 (-783)) (-4 *3 (-984 *4 *5 *6)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *3 (-984 *4 *5 *6))
- (-5 *2 (-587 (-2 (|:| |val| (-108)) (|:| -1946 *1))))
- (-4 *1 (-989 *4 *5 *6 *3)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-707)) (-5 *1 (-615 *2)) (-4 *2 (-1013)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-849))
- (-5 *2 (-1165 (-587 (-2 (|:| -3434 *4) (|:| -2723 (-1031))))))
- (-5 *1 (-320 *4)) (-4 *4 (-323)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-297 *4 *2)) (-4 *4 (-1013))
- (-4 *2 (-124)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+ (-5 *3 (-1056 *4 (-494 (-794 *6)) (-794 *6) (-717 *4 (-794 *6))))
+ (-4 *4 (-13 (-782) (-283) (-135) (-947))) (-14 *6 (-588 (-1085)))
+ (-5 *2 (-588 (-717 *4 (-794 *6)))) (-5 *1 (-1190 *4 *5 *6))
+ (-14 *5 (-588 (-1085))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1085)) (-5 *2 (-1089)) (-5 *1 (-1088)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-1068)) (-5 *5 (-628 (-202)))
+ (-5 *2 (-960)) (-5 *1 (-685)))))
+(((*1 *2)
+ (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-341 *3 *4))
+ (-4 *3 (-342 *4))))
+ ((*1 *2) (-12 (-4 *1 (-342 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171))
+ (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-426)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *6 (-985 *3 *4 *5)) (-5 *2 (-1171))
+ (-5 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *7 (-990 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1081 *3)) (-4 *3 (-343)) (-4 *1 (-304 *3))
+ (-4 *3 (-338)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-337)) (-4 *2 (-781)) (-5 *1 (-873 *2 *3))
- (-4 *3 (-1141 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *5 *6)) (-4 *4 (-426))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-1171))
+ (-5 *1 (-423 *4 *5 *6 *7)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4233)) (-4 *1 (-139 *2)) (-4 *2 (-1119))
- (-4 *2 (-1013))))
+ (-12 (|has| *1 (-6 -4238)) (-4 *1 (-139 *2)) (-4 *2 (-1120))
+ (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4233)) (-4 *1 (-139 *3))
- (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4238)) (-4 *1 (-139 *3))
+ (-4 *3 (-1120))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-614 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-615 *3)) (-4 *3 (-1120))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-521)) (-4 *4 (-1013))
- (-5 *1 (-674 *4))))
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-522)) (-4 *4 (-1014))
+ (-5 *1 (-675 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-5 *1 (-674 *2)) (-4 *2 (-1013))))
+ (-12 (-5 *3 (-522)) (-5 *1 (-675 *2)) (-4 *2 (-1014))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1049 *3 *4)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *4 (-13 (-1013) (-33))) (-5 *1 (-1050 *3 *4)))))
+ (-12 (-5 *2 (-1050 *3 *4)) (-4 *3 (-13 (-1014) (-33)))
+ (-4 *4 (-13 (-1014) (-33))) (-5 *1 (-1051 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-707))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-708))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *5 (-627 (-202))) (-5 *4 (-202))
- (-5 *2 (-959)) (-5 *1 (-687)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *2 (-588 (-588 (-522))))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-5 *3 (-522)) (-4 *7 (-878 *4 *6 *5)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-970)) (-5 *1 (-763 *2 *3)) (-4 *2 (-646 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-588 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
+ (-12 (-4 *3 (-971)) (-5 *1 (-764 *2 *3)) (-4 *2 (-647 *3)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1068)) (-5 *4 (-522)) (-5 *5 (-628 (-154 (-202))))
+ (-5 *2 (-960)) (-5 *1 (-692)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1139 *5 *4)) (-4 *4 (-757)) (-14 *5 (-1085))
+ (-5 *2 (-588 *4)) (-5 *1 (-1028 *4 *5)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4235 "*"))) (-4 *5 (-347 *2)) (-4 *6 (-347 *2))
- (-4 *2 (-970)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1141 *2))
- (-4 *4 (-625 *2 *5 *6)))))
+ (-12
+ (-5 *3
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068)))))
+ (-5 *2 (-960)) (-5 *1 (-281))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1798 (-354)) (|:| -2888 (-1068))
+ (|:| |explanations| (-588 (-1068))) (|:| |extra| (-960))))
+ (-5 *2 (-960)) (-5 *1 (-281)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1067)) (-5 *1 (-51)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-353) (-353))) (-5 *4 (-353))
- (-5 *2
- (-2 (|:| -3434 *4) (|:| -2974 *4) (|:| |totalpts| (-521))
- (|:| |success| (-108))))
- (-5 *1 (-725)) (-5 *5 (-521)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-381 (-880 *3)))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-139 *2))
+ (-4 *2 (-1120)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-707))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120)) (-4 *4 (-348 *3))
+ (-4 *5 (-348 *3)) (-5 *2 (-708))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-707)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-157) (-37 (-381 (-521)))))
- (-4 *2 (-13 (-783) (-21))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-4 *1 (-300 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-728)) (-4 *3 (-157)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1084))
- (-4 *4 (-13 (-783) (-282) (-961 (-521)) (-583 (-521)) (-135)))
- (-5 *1 (-740 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-886)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-791))) ((*1 *1 *1 *1) (-5 *1 (-791)))
- ((*1 *1 *1) (-5 *1 (-791)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1065 *3)) (-5 *1 (-1069 *3)) (-4 *3 (-970)))))
-(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-1067)) (-5 *1 (-280)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-587 (-381 *7)))
- (-4 *7 (-1141 *6)) (-5 *3 (-381 *7)) (-4 *6 (-337))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-531 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1080 *5)) (-4 *5 (-337)) (-5 *2 (-587 *6))
- (-5 *1 (-494 *5 *6 *4)) (-4 *6 (-337)) (-4 *4 (-13 (-337) (-781))))))
-(((*1 *2 *3) (-12 (-5 *3 (-353)) (-5 *2 (-202)) (-5 *1 (-280)))))
-(((*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-126)))))
+ (-12 (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
+ (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-708)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-628 *2)) (-5 *4 (-522))
+ (-4 *2 (-13 (-283) (-10 -8 (-15 -3450 ((-393 $) $)))))
+ (-4 *5 (-1142 *2)) (-5 *1 (-469 *2 *5 *6)) (-4 *6 (-384 *2 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1080 *7)) (-4 *5 (-970))
- (-4 *7 (-970)) (-4 *2 (-1141 *5)) (-5 *1 (-470 *5 *2 *6 *7))
- (-4 *6 (-1141 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-970)) (-4 *7 (-970))
- (-4 *4 (-1141 *5)) (-5 *2 (-1080 *7)) (-5 *1 (-470 *5 *4 *6 *7))
- (-4 *6 (-1141 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-418 *3)) (-4 *3 (-970)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-353)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-239)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-381 (-521))))) (-5 *1 (-239))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-1008 (-353)))) (-5 *1 (-239)))))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-1022 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4)))
- (-5 *2 (-2 (|:| |num| (-1165 *4)) (|:| |den| *4))))))
-(((*1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-218)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5)) (-4 *3 (-135))
- (-4 *3 (-282)) (-4 *3 (-513)) (-4 *4 (-729)) (-4 *5 (-783))
- (-5 *1 (-903 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-587 (-1080 *7))) (-5 *3 (-1080 *7))
- (-4 *7 (-877 *5 *6 *4)) (-4 *5 (-837)) (-4 *6 (-729))
- (-4 *4 (-783)) (-5 *1 (-834 *5 *6 *4 *7)))))
-(((*1 *2) (-12 (-5 *2 (-353)) (-5 *1 (-963)))))
-(((*1 *2 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-587 (-871 *4))) (-4 *1 (-1045 *4)) (-4 *4 (-970))
- (-5 *2 (-707)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-914 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-984 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1020 *4 *5 *6 *7 *3)) (-4 *3 (-989 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-783)) (-5 *3 (-587 *6)) (-5 *5 (-587 *3))
+ (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-895)))))
+(((*1 *1) (-5 *1 (-1168))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-555 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1120))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202))) (-5 *6 (-616 (-202)))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-688)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-968 *4 *5)) (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-14 *5 (-588 (-1085)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *4)) (|:| -3677 (-588 (-881 *4))))))
+ (-5 *1 (-1190 *4 *5 *6)) (-14 *6 (-588 (-1085)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5))))))
+ (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5)))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5))))))
+ (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5)))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-782) (-283) (-135) (-947)))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-587 *5)) (|:| |f3| *5)
- (|:| |f4| (-587 *5))))
- (-5 *1 (-1091 *6)) (-5 *4 (-587 *5)))))
+ (-588 (-2 (|:| -2559 (-1081 *5)) (|:| -3677 (-588 (-881 *5))))))
+ (-5 *1 (-1190 *5 *6 *7)) (-5 *3 (-588 (-881 *5)))
+ (-14 *6 (-588 (-1085))) (-14 *7 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-782) (-283) (-135) (-947)))
+ (-5 *2
+ (-588 (-2 (|:| -2559 (-1081 *4)) (|:| -3677 (-588 (-881 *4))))))
+ (-5 *1 (-1190 *4 *5 *6)) (-5 *3 (-588 (-881 *4)))
+ (-14 *5 (-588 (-1085))) (-14 *6 (-588 (-1085))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1151 *3 *4 *5)) (-5 *1 (-294 *3 *4 *5))
+ (-4 *3 (-13 (-338) (-784))) (-14 *4 (-1085)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-393 *3)) (-4 *3 (-514))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-637))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-784))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -2717 *3) (|:| -1400 *2))
+ (-2 (|:| -2717 *3) (|:| -1400 *2)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-324)) (-5 *3 (-522)) (-5 *2 (-1094 (-850) (-708))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1098 *4 *5))
+ (-4 *4 (-1014)) (-4 *5 (-1014)))))
+(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-792))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-878 *4 *6 *5))
+ (-4 *4 (-13 (-283) (-135))) (-4 *5 (-13 (-784) (-563 (-1085))))
+ (-4 *6 (-730)) (-5 *2 (-108)) (-5 *1 (-853 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-881 *4))) (-4 *4 (-13 (-283) (-135)))
+ (-4 *5 (-13 (-784) (-563 (-1085)))) (-4 *6 (-730)) (-5 *2 (-108))
+ (-5 *1 (-853 *4 *5 *6 *7)) (-4 *7 (-878 *4 *6 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1179 (-1085) *3)) (-4 *3 (-971)) (-5 *1 (-1186 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *1 (-1188 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-756 *4)) (-4 *4 (-784)) (-5 *2 (-108))
+ (-5 *1 (-613 *4)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-728))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-729))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-49 *3 *4))
- (-14 *4 (-587 (-1084)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-588 (-1085)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1120))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-521))
- (-14 *6 (-707)) (-4 *7 (-157)) (-4 *8 (-157))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-128 *5 *6 *7)) (-14 *5 (-522))
+ (-14 *6 (-708)) (-4 *7 (-157)) (-4 *8 (-157))
(-5 *2 (-128 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-154 *5)) (-4 *5 (-157))
(-4 *6 (-157)) (-5 *2 (-154 *6)) (-5 *1 (-153 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-290 *3) (-290 *3))) (-4 *3 (-13 (-970) (-783)))
- (-5 *1 (-200 *3 *4)) (-14 *4 (-587 (-1084)))))
+ (-12 (-5 *2 (-1 (-291 *3) (-291 *3))) (-4 *3 (-13 (-971) (-784)))
+ (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-707))
- (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-217 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-217 *5 *6)) (-14 *5 (-708))
+ (-4 *6 (-1120)) (-4 *7 (-1120)) (-5 *2 (-217 *5 *7))
(-5 *1 (-216 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-269 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-269 *6)) (-5 *1 (-268 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-270 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-270 *6)) (-5 *1 (-269 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-269 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-270 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1067)) (-5 *5 (-560 *6))
- (-4 *6 (-277)) (-4 *2 (-1119)) (-5 *1 (-272 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1068)) (-5 *5 (-561 *6))
+ (-4 *6 (-278)) (-4 *2 (-1120)) (-5 *1 (-273 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-560 *5)) (-4 *5 (-277))
- (-4 *2 (-277)) (-5 *1 (-273 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-561 *5)) (-4 *5 (-278))
+ (-4 *2 (-278)) (-5 *1 (-274 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-560 *1)) (-4 *1 (-277))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-561 *1)) (-4 *1 (-278))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-970))
- (-4 *6 (-970)) (-5 *2 (-627 *6)) (-5 *1 (-279 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-628 *5)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-5 *2 (-628 *6)) (-5 *1 (-280 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-290 *5)) (-4 *5 (-783))
- (-4 *6 (-783)) (-5 *2 (-290 *6)) (-5 *1 (-288 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-291 *5)) (-4 *5 (-784))
+ (-4 *6 (-784)) (-5 *2 (-291 *6)) (-5 *1 (-289 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-310 *5 *6 *7 *8)) (-4 *5 (-337))
- (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *8 (-316 *5 *6 *7))
- (-4 *9 (-337)) (-4 *10 (-1141 *9)) (-4 *11 (-1141 (-381 *10)))
- (-5 *2 (-310 *9 *10 *11 *12))
- (-5 *1 (-307 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-316 *9 *10 *11))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-311 *5 *6 *7 *8)) (-4 *5 (-338))
+ (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *8 (-317 *5 *6 *7))
+ (-4 *9 (-338)) (-4 *10 (-1142 *9)) (-4 *11 (-1142 (-382 *10)))
+ (-5 *2 (-311 *9 *10 *11 *12))
+ (-5 *1 (-308 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-317 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1013))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1123)) (-4 *8 (-1123))
- (-4 *6 (-1141 *5)) (-4 *7 (-1141 (-381 *6))) (-4 *9 (-1141 *8))
- (-4 *2 (-316 *8 *9 *10)) (-5 *1 (-314 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-316 *5 *6 *7)) (-4 *10 (-1141 (-381 *9)))))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1124)) (-4 *8 (-1124))
+ (-4 *6 (-1142 *5)) (-4 *7 (-1142 (-382 *6))) (-4 *9 (-1142 *8))
+ (-4 *2 (-317 *8 *9 *10)) (-5 *1 (-315 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-317 *5 *6 *7)) (-4 *10 (-1142 (-382 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119))
- (-4 *2 (-347 *6)) (-5 *1 (-345 *5 *4 *6 *2)) (-4 *4 (-347 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1120)) (-4 *6 (-1120))
+ (-4 *2 (-348 *6)) (-5 *1 (-346 *5 *4 *6 *2)) (-4 *4 (-348 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-356 *3 *4)) (-4 *3 (-970))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-357 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-392 *5)) (-4 *5 (-513))
- (-4 *6 (-513)) (-5 *2 (-392 *6)) (-5 *1 (-379 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-393 *5)) (-4 *5 (-514))
+ (-4 *6 (-514)) (-5 *2 (-393 *6)) (-5 *1 (-380 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-381 *5)) (-4 *5 (-513))
- (-4 *6 (-513)) (-5 *2 (-381 *6)) (-5 *1 (-380 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-382 *5)) (-4 *5 (-514))
+ (-4 *6 (-514)) (-5 *2 (-382 *6)) (-5 *1 (-381 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-387 *5 *6 *7 *8)) (-4 *5 (-282))
- (-4 *6 (-918 *5)) (-4 *7 (-1141 *6))
- (-4 *8 (-13 (-383 *6 *7) (-961 *6))) (-4 *9 (-282))
- (-4 *10 (-918 *9)) (-4 *11 (-1141 *10))
- (-5 *2 (-387 *9 *10 *11 *12))
- (-5 *1 (-386 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-383 *10 *11) (-961 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-388 *5 *6 *7 *8)) (-4 *5 (-283))
+ (-4 *6 (-919 *5)) (-4 *7 (-1142 *6))
+ (-4 *8 (-13 (-384 *6 *7) (-962 *6))) (-4 *9 (-283))
+ (-4 *10 (-919 *9)) (-4 *11 (-1142 *10))
+ (-5 *2 (-388 *9 *10 *11 *12))
+ (-5 *1 (-387 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-384 *10 *11) (-962 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157))
- (-4 *2 (-391 *6)) (-5 *1 (-389 *4 *5 *2 *6)) (-4 *4 (-391 *5))))
+ (-4 *2 (-392 *6)) (-5 *1 (-390 *4 *5 *2 *6)) (-4 *4 (-392 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-513)) (-5 *1 (-392 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-514)) (-5 *1 (-393 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-970) (-783)))
- (-4 *6 (-13 (-970) (-783))) (-4 *2 (-404 *6))
- (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-404 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-971) (-784)))
+ (-4 *6 (-13 (-971) (-784))) (-4 *2 (-405 *6))
+ (-5 *1 (-396 *5 *4 *6 *2)) (-4 *4 (-405 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
- (-4 *2 (-399 *6)) (-5 *1 (-397 *5 *4 *6 *2)) (-4 *4 (-399 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-4 *2 (-400 *6)) (-5 *1 (-398 *5 *4 *6 *2)) (-4 *4 (-400 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-460 *3)) (-4 *3 (-1119))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-461 *3)) (-4 *3 (-1120))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-477 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-783))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-478 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-784))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-538 *5)) (-4 *5 (-337))
- (-4 *6 (-337)) (-5 *2 (-538 *6)) (-5 *1 (-537 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-539 *5)) (-4 *5 (-338))
+ (-4 *6 (-338)) (-5 *2 (-539 *6)) (-5 *1 (-538 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -1347 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-337)) (-4 *6 (-337))
- (-5 *2 (-2 (|:| -1347 *6) (|:| |coeff| *6)))
- (-5 *1 (-537 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -1856 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-338)) (-4 *6 (-338))
+ (-5 *2 (-2 (|:| -1856 *6) (|:| |coeff| *6)))
+ (-5 *1 (-538 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-337)) (-4 *2 (-337)) (-5 *1 (-537 *5 *2))))
+ (-4 *5 (-338)) (-4 *2 (-338)) (-5 *1 (-538 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-588 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
- (-4 *5 (-337)) (-4 *6 (-337))
+ (-4 *5 (-338)) (-4 *6 (-338))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-587 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-537 *5 *6))))
+ (-588 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-538 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-551 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-551 *6)) (-5 *1 (-548 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-552 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-552 *6)) (-5 *1 (-549 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-551 *7))
- (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-551 *8))
- (-5 *1 (-549 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-552 *7))
+ (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-552 *8))
+ (-5 *1 (-550 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-551 *7))
- (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8))
- (-5 *1 (-549 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-552 *7))
+ (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8))
+ (-5 *1 (-550 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-551 *6)) (-5 *5 (-1065 *7))
- (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8))
- (-5 *1 (-549 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-552 *6)) (-5 *5 (-1066 *7))
+ (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8))
+ (-5 *1 (-550 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-551 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1120)) (-5 *1 (-552 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-587 *6)) (-5 *1 (-585 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-588 *6)) (-5 *1 (-586 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7))
- (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-587 *8))
- (-5 *1 (-586 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-588 *6)) (-5 *5 (-588 *7))
+ (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-588 *8))
+ (-5 *1 (-587 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-592 *3)) (-4 *3 (-1119))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-970)) (-4 *8 (-970))
- (-4 *6 (-347 *5)) (-4 *7 (-347 *5)) (-4 *2 (-625 *8 *9 *10))
- (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-625 *5 *6 *7))
- (-4 *9 (-347 *8)) (-4 *10 (-347 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-970))
- (-4 *8 (-970)) (-4 *6 (-347 *5)) (-4 *7 (-347 *5))
- (-4 *2 (-625 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-625 *5 *6 *7)) (-4 *9 (-347 *8)) (-4 *10 (-347 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-513)) (-4 *7 (-513))
- (-4 *6 (-1141 *5)) (-4 *2 (-1141 (-381 *8)))
- (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1141 (-381 *6)))
- (-4 *8 (-1141 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-970)) (-4 *9 (-970)) (-4 *5 (-783))
- (-4 *6 (-729)) (-4 *2 (-877 *9 *7 *5))
- (-5 *1 (-665 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-729))
- (-4 *4 (-877 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-783)) (-4 *6 (-783)) (-4 *7 (-729))
- (-4 *9 (-970)) (-4 *2 (-877 *9 *8 *6))
- (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-729))
- (-4 *4 (-877 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-672 *5 *7)) (-4 *5 (-970))
- (-4 *6 (-970)) (-4 *7 (-663)) (-5 *2 (-672 *6 *7))
- (-5 *1 (-671 *5 *6 *7))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1120))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-971)) (-4 *8 (-971))
+ (-4 *6 (-348 *5)) (-4 *7 (-348 *5)) (-4 *2 (-626 *8 *9 *10))
+ (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-626 *5 *6 *7))
+ (-4 *9 (-348 *8)) (-4 *10 (-348 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-971))
+ (-4 *8 (-971)) (-4 *6 (-348 *5)) (-4 *7 (-348 *5))
+ (-4 *2 (-626 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-626 *5 *6 *7)) (-4 *9 (-348 *8)) (-4 *10 (-348 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-514)) (-4 *7 (-514))
+ (-4 *6 (-1142 *5)) (-4 *2 (-1142 (-382 *8)))
+ (-5 *1 (-648 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1142 (-382 *6)))
+ (-4 *8 (-1142 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-971)) (-4 *9 (-971)) (-4 *5 (-784))
+ (-4 *6 (-730)) (-4 *2 (-878 *9 *7 *5))
+ (-5 *1 (-666 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-730))
+ (-4 *4 (-878 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-784)) (-4 *6 (-784)) (-4 *7 (-730))
+ (-4 *9 (-971)) (-4 *2 (-878 *9 *8 *6))
+ (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-730))
+ (-4 *4 (-878 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-673 *5 *7)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-4 *7 (-664)) (-5 *2 (-673 *6 *7))
+ (-5 *1 (-672 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-672 *3 *4))
- (-4 *4 (-663))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-673 *3 *4))
+ (-4 *4 (-664))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5)) (-4 *5 (-970))
- (-4 *6 (-970)) (-5 *2 (-718 *6)) (-5 *1 (-717 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-719 *5)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-5 *2 (-719 *6)) (-5 *1 (-718 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157))
- (-4 *2 (-733 *6)) (-5 *1 (-734 *4 *5 *2 *6)) (-4 *4 (-733 *5))))
+ (-4 *2 (-734 *6)) (-5 *1 (-735 *4 *5 *2 *6)) (-4 *4 (-734 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *2 (-769 *6)) (-5 *1 (-768 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *2 (-770 *6)) (-5 *1 (-769 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-768 *5 *6))))
+ (-12 (-5 *2 (-770 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-770 *5))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-769 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *2 (-776 *6)) (-5 *1 (-775 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *2 (-777 *6)) (-5 *1 (-776 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-776 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-776 *5))
- (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-775 *5 *6))))
+ (-12 (-5 *2 (-777 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-777 *5))
+ (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-776 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-805 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-805 *6)) (-5 *1 (-804 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-806 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-806 *6)) (-5 *1 (-805 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-807 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-807 *6)) (-5 *1 (-806 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-808 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-808 *6)) (-5 *1 (-807 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-810 *6)) (-5 *1 (-809 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-817 *5 *6)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-817 *5 *7))
- (-5 *1 (-816 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-818 *5 *6)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-818 *5 *7))
+ (-5 *1 (-817 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1013))
- (-4 *6 (-1013)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-821 *5)) (-4 *5 (-1014))
+ (-4 *6 (-1014)) (-5 *2 (-821 *6)) (-5 *1 (-820 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-970))
- (-4 *6 (-970)) (-5 *2 (-880 *6)) (-5 *1 (-874 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-5 *2 (-881 *6)) (-5 *1 (-875 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-783))
- (-4 *8 (-970)) (-4 *6 (-729))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-784))
+ (-4 *8 (-971)) (-4 *6 (-730))
(-4 *2
- (-13 (-1013)
- (-10 -8 (-15 -1628 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-707))))))
- (-5 *1 (-879 *6 *7 *8 *5 *2)) (-4 *5 (-877 *8 *6 *7))))
+ (-13 (-1014)
+ (-10 -8 (-15 -1602 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-708))))))
+ (-5 *1 (-880 *6 *7 *8 *5 *2)) (-4 *5 (-878 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-970))
- (-4 *6 (-970)) (-5 *2 (-871 *6)) (-5 *1 (-907 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-872 *5)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-5 *2 (-872 *6)) (-5 *1 (-908 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-880 *4))) (-4 *4 (-970))
- (-4 *2 (-877 (-880 *4) *5 *6)) (-4 *5 (-729))
+ (-12 (-5 *3 (-1 *2 (-881 *4))) (-4 *4 (-971))
+ (-4 *2 (-878 (-881 *4) *5 *6)) (-4 *5 (-730))
(-4 *6
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-5 *1 (-910 *4 *5 *6 *2))))
+ (-13 (-784)
+ (-10 -8 (-15 -1431 ((-1085) $))
+ (-15 -1611 ((-3 $ "failed") (-1085))))))
+ (-5 *1 (-911 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-513)) (-4 *6 (-513))
- (-4 *2 (-918 *6)) (-5 *1 (-916 *5 *6 *4 *2)) (-4 *4 (-918 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-514)) (-4 *6 (-514))
+ (-4 *2 (-919 *6)) (-5 *1 (-917 *5 *6 *4 *2)) (-4 *4 (-919 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-157)) (-4 *6 (-157))
- (-4 *2 (-922 *6)) (-5 *1 (-923 *4 *5 *2 *6)) (-4 *4 (-922 *5))))
+ (-4 *2 (-923 *6)) (-5 *1 (-924 *4 *5 *2 *6)) (-4 *4 (-923 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7))
- (-4 *5 (-970)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7))
+ (-4 *5 (-971)) (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *5 (-971))
(-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-970)) (-4 *10 (-970))
- (-14 *5 (-707)) (-14 *6 (-707)) (-4 *8 (-215 *6 *7))
- (-4 *9 (-215 *5 *7)) (-4 *2 (-973 *5 *6 *10 *11 *12))
- (-5 *1 (-975 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-973 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-971)) (-4 *10 (-971))
+ (-14 *5 (-708)) (-14 *6 (-708)) (-4 *8 (-215 *6 *7))
+ (-4 *9 (-215 *5 *7)) (-4 *2 (-974 *5 *6 *10 *11 *12))
+ (-5 *1 (-976 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-974 *5 *6 *7 *8 *9)) (-4 *11 (-215 *6 *10))
(-4 *12 (-215 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-1008 *6)) (-5 *1 (-1004 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-1009 *6)) (-5 *1 (-1005 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1008 *5)) (-4 *5 (-781))
- (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-587 *6))
- (-5 *1 (-1004 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1009 *5)) (-4 *5 (-782))
+ (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-588 *6))
+ (-5 *1 (-1005 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1006 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-1006 *6)) (-5 *1 (-1005 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1007 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-1007 *6)) (-5 *1 (-1006 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1009 *4 *2)) (-4 *4 (-781))
- (-4 *2 (-1058 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1010 *4 *2)) (-4 *4 (-782))
+ (-4 *2 (-1059 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-1065 *6)) (-5 *1 (-1063 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1066 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-1066 *6)) (-5 *1 (-1064 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1065 *6)) (-5 *5 (-1065 *7))
- (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1065 *8))
- (-5 *1 (-1064 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1066 *6)) (-5 *5 (-1066 *7))
+ (-4 *6 (-1120)) (-4 *7 (-1120)) (-4 *8 (-1120)) (-5 *2 (-1066 *8))
+ (-5 *1 (-1065 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-970))
- (-4 *6 (-970)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1081 *5)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-5 *2 (-1081 *6)) (-5 *1 (-1079 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1096 *3 *4)) (-4 *3 (-1013))
- (-4 *4 (-1013))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1097 *3 *4)) (-4 *3 (-1014))
+ (-4 *4 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5 *7 *9)) (-4 *5 (-970))
- (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1129 *6 *8 *10)) (-5 *1 (-1124 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1084))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1125 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1085))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-1132 *6)) (-5 *1 (-1131 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-1133 *6)) (-5 *1 (-1132 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-781))
- (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1065 *6))
- (-5 *1 (-1131 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1133 *5)) (-4 *5 (-782))
+ (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1066 *6))
+ (-5 *1 (-1132 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1138 *5 *6)) (-14 *5 (-1084))
- (-4 *6 (-970)) (-4 *8 (-970)) (-5 *2 (-1138 *7 *8))
- (-5 *1 (-1133 *5 *6 *7 *8)) (-14 *7 (-1084))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1139 *5 *6)) (-14 *5 (-1085))
+ (-4 *6 (-971)) (-4 *8 (-971)) (-5 *2 (-1139 *7 *8))
+ (-5 *1 (-1134 *5 *6 *7 *8)) (-14 *7 (-1085))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970))
- (-4 *2 (-1141 *6)) (-5 *1 (-1139 *5 *4 *6 *2)) (-4 *4 (-1141 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971))
+ (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *4 *6 *2)) (-4 *4 (-1142 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5 *7 *9)) (-4 *5 (-970))
- (-4 *6 (-970)) (-14 *7 (-1084)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1150 *6 *8 *10)) (-5 *1 (-1145 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1084))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5 *7 *9)) (-4 *5 (-971))
+ (-4 *6 (-971)) (-14 *7 (-1085)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1151 *6 *8 *10)) (-5 *1 (-1146 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1085))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-970)) (-4 *6 (-970))
- (-4 *2 (-1156 *6)) (-5 *1 (-1154 *5 *6 *4 *2)) (-4 *4 (-1156 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-971)) (-4 *6 (-971))
+ (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6 *4 *2)) (-4 *4 (-1157 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1119))
- (-4 *6 (-1119)) (-5 *2 (-1165 *6)) (-5 *1 (-1164 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1120))
+ (-4 *6 (-1120)) (-5 *2 (-1166 *6)) (-5 *1 (-1165 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1165 *5))
- (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1165 *6))
- (-5 *1 (-1164 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1166 *5))
+ (-4 *5 (-1120)) (-4 *6 (-1120)) (-5 *2 (-1166 *6))
+ (-5 *1 (-1165 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1180 *3 *4)) (-4 *3 (-783))
- (-4 *4 (-970))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-971))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-970)) (-5 *1 (-1186 *3 *4))
- (-4 *4 (-779)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1050 *2 *3)) (-4 *2 (-13 (-1013) (-33)))
- (-4 *3 (-13 (-1013) (-33))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-971)) (-5 *1 (-1187 *3 *4))
+ (-4 *4 (-780)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-855)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-300 *2 *3)) (-4 *3 (-728)) (-4 *2 (-970))
- (-4 *2 (-425))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *4)) (-4 *4 (-1141 (-521))) (-5 *2 (-587 (-521)))
- (-5 *1 (-457 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-425))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-877 *3 *4 *2)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *2 (-783)) (-4 *3 (-425)))))
-(((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-282)))))
+ (-12 (-5 *2 (-588 (-850))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-971)) (-4 *2 (-338))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-338)) (-5 *1 (-601 *4 *2))
+ (-4 *2 (-598 *4)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-522)) (-5 *3 (-850)) (-5 *1 (-637))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-628 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-338)) (-5 *1 (-905 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1074 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-971)))))
(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-341 *2)) (-4 *2 (-157)) (-4 *2 (-513))))
- ((*1 *1 *1) (|partial| -4 *1 (-659))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-627 (-521))) (-5 *3 (-587 (-521))) (-5 *1 (-1023)))))
-(((*1 *2 *1) (-12 (-5 *2 (-202)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-961 (-47)))
- (-4 *4 (-13 (-513) (-783) (-961 (-521)))) (-4 *5 (-404 *4))
- (-5 *2 (-392 (-1080 (-47)))) (-5 *1 (-409 *4 *5 *3))
- (-4 *3 (-1141 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-791))) (-5 *1 (-791))))
- ((*1 *1 *1 *1) (-5 *1 (-791))))
+ (-12 (-4 *2 (-283)) (-4 *3 (-919 *2)) (-4 *4 (-1142 *3))
+ (-5 *1 (-388 *2 *3 *4 *5)) (-4 *5 (-13 (-384 *3 *4) (-962 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-588 (-51))) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
- (-14 *4 (-587 (-1084)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971))
+ (-14 *4 (-588 (-1085)))))
((*1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783)))
- (-14 *4 (-587 (-1084)))))
- ((*1 *1) (-12 (-4 *1 (-303 *2)) (-4 *2 (-342)) (-4 *2 (-337))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784)))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-309 *3 *4 *5 *2)) (-4 *3 (-337))
- (-4 *4 (-1141 *3)) (-4 *5 (-1141 (-381 *4)))
- (-4 *2 (-316 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-310 *3 *4 *5 *2)) (-4 *3 (-338))
+ (-4 *4 (-1142 *3)) (-4 *5 (-1142 (-382 *4)))
+ (-4 *2 (-317 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-364 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-157))))
- ((*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1141 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-368)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-115 *2)) (-4 *2 (-1119)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-707)) (-5 *1 (-789 *2)) (-4 *2 (-157))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-511 *2)) (-4 *2 (-13 (-378) (-1105))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 *2)))
- (-5 *2 (-820 *3)) (-5 *1 (-992 *3 *4 *5))
- (-4 *5 (-13 (-404 *4) (-814 *3) (-562 *2))))))
+ ((*1 *1) (-12 (-4 *2 (-157)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1142 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-369)))))
+(((*1 *2 *1) (-12 (-5 *2 (-759)) (-5 *1 (-758)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-4 *2 (-828 *5)) (-5 *1 (-629 *5 *2 *3 *4))
- (-4 *3 (-347 *2)) (-4 *4 (-13 (-347 *5) (-10 -7 (-6 -4233)))))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 *2)))
+ (-5 *2 (-821 *3)) (-5 *1 (-993 *3 *4 *5))
+ (-4 *5 (-13 (-405 *4) (-815 *3) (-563 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-872 *3) (-872 *3))) (-5 *1 (-160 *3))
+ (-4 *3 (-13 (-338) (-1106) (-928))))))
+(((*1 *1 *2) (-12 (-5 *1 (-951 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1008 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-628 (-291 (-202))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-354)) (|:| |stabilityFactor| (-354))))
+ (-5 *1 (-184)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-588 *6)) (-5 *4 (-588 (-224 *5 *6))) (-4 *6 (-426))
+ (-5 *2 (-224 *5 *6)) (-14 *5 (-588 (-1085))) (-5 *1 (-576 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-612 *3)) (-4 *3 (-783)) (-4 *1 (-348 *3 *4))
+ (|partial| -12 (-5 *2 (-1179 *3 *4)) (-4 *3 (-784)) (-4 *4 (-157))
+ (-5 *1 (-606 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1184 *3 *4))
+ (-4 *3 (-784)) (-4 *4 (-157)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-128 *2 *3 *4)) (-14 *2 (-522)) (-14 *3 (-708))
+ (-4 *4 (-157))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2))
+ (-4 *2 (-405 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514)))
+ (-5 *1 (-144 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-157)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4)) (-4 *3 (-784))
(-4 *4 (-157)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-376)) (-5 *2 (-707))))
- ((*1 *1 *1) (-4 *1 (-376))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-950 (-776 (-521)))) (-5 *1 (-546 *3)) (-4 *3 (-970)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084))
- (-4 *5 (-13 (-783) (-961 (-521)) (-425) (-583 (-521))))
- (-5 *2 (-2 (|:| -2562 *3) (|:| |nconst| *3))) (-5 *1 (-524 *5 *3))
- (-4 *3 (-13 (-27) (-1105) (-404 *5))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-929 *3)) (-14 *3 (-521)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1119)) (-5 *1 (-165 *3 *2))
- (-4 *2 (-614 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-349 *4 *2))
- (-4 *2 (-13 (-347 *4) (-10 -7 (-6 -4234)))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-587 (-290 (-202)))) (|:| -3797 (-587 (-202)))))
- (-5 *2 (-353)) (-5 *1 (-243))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-290 (-202)))) (-5 *2 (-353)) (-5 *1 (-280)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-4 *3 (-1013))
- (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *4 (-1123)) (-4 *5 (-1141 *4)) (-4 *6 (-1141 (-381 *5)))
- (-5 *2 (-587 (-587 *4))) (-5 *1 (-315 *3 *4 *5 *6))
- (-4 *3 (-316 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-316 *3 *4 *5)) (-4 *3 (-1123)) (-4 *4 (-1141 *3))
- (-4 *5 (-1141 (-381 *4))) (-4 *3 (-342)) (-5 *2 (-587 (-587 *3))))))
-(((*1 *1) (-5 *1 (-1170))))
+ (-12 (-4 *5 (-338)) (-4 *7 (-1142 *5)) (-4 *4 (-662 *5 *7))
+ (-5 *2 (-2 (|:| -1222 (-628 *6)) (|:| |vec| (-1166 *5))))
+ (-5 *1 (-748 *5 *6 *7 *4 *3)) (-4 *6 (-598 *5)) (-4 *3 (-598 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338))
+ (-4 *7 (-1142 (-382 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -3434 *3)))
+ (-5 *1 (-520 *5 *6 *7 *3)) (-4 *3 (-317 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1142 *5)) (-4 *5 (-338))
+ (-5 *2
+ (-2 (|:| |answer| (-382 *6)) (|:| -3434 (-382 *6))
+ (|:| |specpart| (-382 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-521 *5 *6)) (-5 *3 (-382 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-258 *2)) (-4 *2 (-1120)) (-4 *2 (-784))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-258 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-896 *2)) (-4 *2 (-784)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-354) (-354))) (-5 *4 (-354))
+ (-5 *2
+ (-2 (|:| -3435 *4) (|:| -2972 *4) (|:| |totalpts| (-522))
+ (|:| |success| (-108))))
+ (-5 *1 (-726)) (-5 *5 (-522)))))
+(((*1 *1) (-5 *1 (-1171))))
(((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *3))) (-4 *3 (-970)) (-4 *1 (-625 *3 *4 *5))
- (-4 *4 (-347 *3)) (-4 *5 (-347 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-587 (-587 (-791)))) (-5 *1 (-791))))
+ (-12 (-5 *2 (-588 (-588 *3))) (-4 *3 (-971)) (-4 *1 (-626 *3 *4 *5))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-588 (-792)))) (-5 *1 (-792))))
((*1 *2 *1)
- (-12 (-5 *2 (-1051 *3 *4)) (-5 *1 (-919 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-337))))
+ (-12 (-5 *2 (-1052 *3 *4)) (-5 *1 (-920 *3 *4)) (-14 *3 (-850))
+ (-4 *4 (-338))))
((*1 *1 *2)
- (-12 (-5 *2 (-587 (-587 *5))) (-4 *5 (-970))
- (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5))
+ (-12 (-5 *2 (-588 (-588 *5))) (-4 *5 (-971))
+ (-4 *1 (-974 *3 *4 *5 *6 *7)) (-4 *6 (-215 *4 *5))
(-4 *7 (-215 *3 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-304)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1084))
- (-4 *4 (-13 (-425) (-783) (-135) (-961 (-521)) (-583 (-521))))
- (-5 *1 (-514 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-404 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-587 (-587 *7)))
- (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
- (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-587 (-587 *8)))
- (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-282) (-135))) (-4 *5 (-729)) (-4 *6 (-783))
- (-4 *7 (-877 *4 *5 *6)) (-5 *2 (-587 (-587 *7)))
- (-5 *1 (-421 *4 *5 *6 *7)) (-5 *3 (-587 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-282) (-135))) (-4 *6 (-729))
- (-4 *7 (-783)) (-4 *8 (-877 *5 *6 *7)) (-5 *2 (-587 (-587 *8)))
- (-5 *1 (-421 *5 *6 *7 *8)) (-5 *3 (-587 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2769 *4)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-405 *4)) (-5 *1 (-144 *4 *2))
+ (-4 *4 (-13 (-784) (-514))))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-587 (-1084))) (-4 *4 (-1013))
- (-4 *5 (-13 (-970) (-814 *4) (-783) (-562 (-820 *4))))
- (-5 *1 (-992 *4 *5 *2))
- (-4 *2 (-13 (-404 *5) (-814 *4) (-562 (-820 *4))))))
+ (-12 (-5 *3 (-588 (-1085))) (-4 *4 (-1014))
+ (-4 *5 (-13 (-971) (-815 *4) (-784) (-563 (-821 *4))))
+ (-5 *1 (-993 *4 *5 *2))
+ (-4 *2 (-13 (-405 *5) (-815 *4) (-563 (-821 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1013))
- (-4 *4 (-13 (-970) (-814 *3) (-783) (-562 (-820 *3))))
- (-5 *1 (-992 *3 *4 *2))
- (-4 *2 (-13 (-404 *4) (-814 *3) (-562 (-820 *3)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-587 (-587 *4)))) (-5 *2 (-587 (-587 *4)))
- (-5 *1 (-1091 *4)) (-4 *4 (-783)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1049 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1013) (-33))) (-4 *6 (-13 (-1013) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1050 *5 *6)))))
+ (-12 (-4 *3 (-1014))
+ (-4 *4 (-13 (-971) (-815 *3) (-784) (-563 (-821 *3))))
+ (-5 *1 (-993 *3 *4 *2))
+ (-4 *2 (-13 (-405 *4) (-815 *3) (-563 (-821 *3)))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-426)) (-4 *4 (-784)) (-4 *5 (-730)) (-5 *2 (-588 *6))
+ (-5 *1 (-914 *3 *4 *5 *6)) (-4 *6 (-878 *3 *5 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522)))))
+ (-4 *3 (-1142 *4)) (-5 *1 (-746 *4 *3 *2 *5)) (-4 *2 (-598 *3))
+ (-4 *5 (-598 (-382 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-382 *5))
+ (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-1142 *4))
+ (-5 *1 (-746 *4 *5 *2 *6)) (-4 *2 (-598 *5)) (-4 *6 (-598 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-555 *2 *3)) (-4 *3 (-1120)) (-4 *2 (-1014))
+ (-4 *2 (-784)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-792)) (-5 *1 (-365 *3 *4 *5)) (-14 *3 (-708))
+ (-14 *4 (-708)) (-4 *5 (-157)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3534 (-627 (-381 (-880 *4))))
- (|:| |vec| (-587 (-381 (-880 *4)))) (|:| -3167 (-707))
- (|:| |rows| (-587 (-521))) (|:| |cols| (-587 (-521)))))
- (-4 *4 (-13 (-282) (-135))) (-4 *5 (-13 (-783) (-562 (-1084))))
- (-4 *6 (-729))
- (-5 *2
- (-2 (|:| |partsol| (-1165 (-381 (-880 *4))))
- (|:| -1245 (-587 (-1165 (-381 (-880 *4)))))))
- (-5 *1 (-852 *4 *5 *6 *7)) (-4 *7 (-877 *4 *6 *5)))))
+ (-12 (-5 *3 (-777 (-354))) (-5 *2 (-777 (-202))) (-5 *1 (-281)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-881 (-522))) (-5 *3 (-1085))
+ (-5 *4 (-1009 (-382 (-522)))) (-5 *1 (-30)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1033 *2)) (-4 *2 (-1120)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1067)) (-5 *3 (-587 (-239))) (-5 *1 (-237))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-239)))))
-(((*1 *1) (-5 *1 (-759))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-415 *3)) (-4 *3 (-1141 (-521))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-688)))))
+ (-12 (-4 *1 (-724)) (-5 *2 (-960))
+ (-5 *3
+ (-2 (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-588 (-1009 (-777 (-202))))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-724)) (-5 *2 (-960))
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202)))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-338)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-878 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-338)) (-4 *3 (-730)) (-4 *4 (-784))
+ (-5 *1 (-474 *2 *3 *4 *5)) (-4 *5 (-878 *2 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1065 *4) (-1065 *4))) (-5 *2 (-1065 *4))
- (-5 *1 (-1188 *4)) (-4 *4 (-1119))))
+ (-12 (-5 *3 (-1 (-1066 *4) (-1066 *4))) (-5 *2 (-1066 *4))
+ (-5 *1 (-1189 *4)) (-4 *4 (-1120))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-588 (-1066 *5)) (-588 (-1066 *5)))) (-5 *4 (-522))
+ (-5 *2 (-588 (-1066 *5))) (-5 *1 (-1189 *5)) (-4 *5 (-1120)))))
+(((*1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1120)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-221 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730))
+ (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-587 (-1065 *5)) (-587 (-1065 *5)))) (-5 *4 (-521))
- (-5 *2 (-587 (-1065 *5))) (-5 *1 (-1188 *5)) (-4 *5 (-1119)))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730))
+ (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-819 *4 *3))
+ (-4 *3 (-1120))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-821 *3)) (-4 *3 (-1014)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-347 *3))
- (-4 *5 (-347 *3)) (-5 *2 (-521))))
+ (-12 (-5 *2 (-588 (-2 (|:| |k| (-1085)) (|:| |c| (-1186 *3)))))
+ (-5 *1 (-1186 *3)) (-4 *3 (-971))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5 *6 *7)) (-4 *5 (-970))
- (-4 *6 (-215 *4 *5)) (-4 *7 (-215 *3 *5)) (-5 *2 (-521)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-984 *4 *5 *6)) (-4 *4 (-513))
- (-4 *5 (-729)) (-4 *6 (-783)) (-5 *1 (-903 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-729))
- (-4 *3 (-13 (-783) (-10 -8 (-15 -1438 ((-1084) $))))) (-4 *5 (-513))
- (-5 *1 (-669 *4 *3 *5 *2)) (-4 *2 (-877 (-381 (-880 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729))
- (-4 *3
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-5 *1 (-910 *4 *5 *3 *2)) (-4 *2 (-877 (-880 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-587 *6))
- (-4 *6
- (-13 (-783)
- (-10 -8 (-15 -1438 ((-1084) $))
- (-15 -1638 ((-3 $ "failed") (-1084))))))
- (-4 *4 (-970)) (-4 *5 (-729)) (-5 *1 (-910 *4 *5 *6 *2))
- (-4 *2 (-877 (-880 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-538 *2)) (-4 *2 (-337)))))
+ (-12 (-5 *2 (-588 (-2 (|:| |k| *3) (|:| |c| (-1188 *3 *4)))))
+ (-5 *1 (-1188 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-521)) (-4 *1 (-1007 *3)) (-4 *3 (-1119)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-707)) (-4 *4 (-323)) (-5 *1 (-194 *4 *2))
- (-4 *2 (-1141 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-521)) (-5 *1 (-633 *2)) (-4 *2 (-1141 *3)))))
-(((*1 *1) (-5 *1 (-441))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-587 (-1 *4 (-587 *4)))) (-4 *4 (-1013))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013))
- (-5 *1 (-109 *4))))
+ (-12 (-5 *2 (-522)) (-4 *1 (-1008 *3)) (-4 *3 (-1120)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-708))
+ (-4 *3 (-13 (-664) (-343) (-10 -7 (-15 ** (*3 *3 (-522))))))
+ (-5 *1 (-223 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1066 *4)) (-4 *4 (-37 *3)) (-4 *4 (-971))
+ (-5 *3 (-382 (-522))) (-5 *1 (-1070 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-782)) (-5 *2 (-522))))
+ ((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-834 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-987 *4 *3)) (-4 *4 (-13 (-782) (-338)))
+ (-4 *3 (-1142 *4)) (-5 *2 (-522))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-587 (-1 *4 (-587 *4))))
- (-5 *1 (-109 *4)) (-4 *4 (-1013)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-4 *6 (-814 *5)) (-5 *2 (-813 *5 *6 (-587 *6)))
- (-5 *1 (-815 *5 *6 *4)) (-5 *3 (-587 *6)) (-4 *4 (-562 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 *3))) (-5 *1 (-815 *5 *3 *4))
- (-4 *3 (-961 (-1084))) (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-587 (-269 (-880 *3))))
- (-5 *1 (-815 *5 *3 *4)) (-4 *3 (-970))
- (-2416 (-4 *3 (-961 (-1084)))) (-4 *3 (-814 *5))
- (-4 *4 (-562 (-820 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1013)) (-5 *2 (-817 *5 *3)) (-5 *1 (-815 *5 *3 *4))
- (-2416 (-4 *3 (-961 (-1084)))) (-2416 (-4 *3 (-970)))
- (-4 *3 (-814 *5)) (-4 *4 (-562 (-820 *5))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-105))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-339 *2)) (-4 *2 (-1013))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1067)) (-5 *1 (-1101)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1141 *6))
- (-4 *6 (-13 (-337) (-135) (-961 *4))) (-5 *4 (-521))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
- (|:| -3196
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-940 *6 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1067)) (-5 *3 (-759)) (-5 *1 (-758)))))
-(((*1 *2 *3) (-12 (-5 *2 (-381 (-521))) (-5 *1 (-518)) (-5 *3 (-521))))
+ (|partial| -12 (-4 *4 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426)))
+ (-5 *2 (-522)) (-5 *1 (-1029 *4 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))
+ (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426)))
+ (-5 *2 (-522)) (-5 *1 (-1029 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-1068))
+ (-4 *6 (-13 (-514) (-784) (-962 *2) (-584 *2) (-426)))
+ (-5 *2 (-522)) (-5 *1 (-1029 *6 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *6)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-381 (-521)))) (-5 *1 (-870)) (-5 *3 (-521)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-392 (-1080 *1))) (-5 *1 (-290 *4)) (-5 *3 (-1080 *1))
- (-4 *4 (-425)) (-4 *4 (-513)) (-4 *4 (-783))))
+ (|partial| -12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-426)) (-5 *2 (-522))
+ (-5 *1 (-1030 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1085)) (-5 *5 (-777 (-382 (-881 *6))))
+ (-5 *3 (-382 (-881 *6))) (-4 *6 (-426)) (-5 *2 (-522))
+ (-5 *1 (-1030 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-382 (-881 *6))) (-5 *4 (-1085))
+ (-5 *5 (-1068)) (-4 *6 (-426)) (-5 *2 (-522)) (-5 *1 (-1030 *6))))
((*1 *2 *3)
- (-12 (-4 *1 (-837)) (-5 *2 (-392 (-1080 *1))) (-5 *3 (-1080 *1)))))
+ (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-708))) (-5 *3 (-156)) (-5 *1 (-1074 *4 *5))
+ (-14 *4 (-850)) (-4 *5 (-971)))))
+(((*1 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-588 *3))
+ (-5 *1 (-904 *4 *5 *6 *3)) (-4 *3 (-985 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-588 *3)) (-4 *3 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *1 (-904 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5)) (-4 *3 (-514))
+ (-4 *4 (-730)) (-4 *5 (-784)) (-5 *1 (-904 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-588 *7) (-588 *7))) (-5 *2 (-588 *7))
+ (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-5 *1 (-904 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-5 *2 (-522)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-338)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1)))
+ (-4 *1 (-786 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-507))))
+(((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1068)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856))
+ (-5 *1 (-854 *3)) (-4 *3 (-563 (-498)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1085)) (-5 *5 (-1009 (-202))) (-5 *2 (-856))
+ (-5 *1 (-854 *3)) (-4 *3 (-563 (-498)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-855))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-855))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1009 (-202))) (-5 *1 (-856))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-588 (-1 (-202) (-202)))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *3 (-1009 (-202)))
+ (-5 *1 (-856)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1119))
- (-4 *5 (-347 *4)) (-4 *2 (-347 *4))))
+ (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4))
+ (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-521)) (-4 *1 (-973 *4 *5 *6 *7 *2)) (-4 *6 (-970))
- (-4 *7 (-215 *5 *6)) (-4 *2 (-215 *4 *6)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-353)) (-5 *3 (-1067)) (-5 *1 (-92)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1067)) (-5 *3 (-521)) (-5 *1 (-982)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-707)) (-4 *5 (-513))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-896 *5 *3)) (-4 *3 (-1141 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1084)) (-5 *1 (-982)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-587 *5) *6))
- (-4 *5 (-13 (-337) (-135) (-961 (-381 (-521))))) (-4 *6 (-1141 *5))
- (-5 *2 (-587 (-2 (|:| -2682 *5) (|:| -3196 *3))))
- (-5 *1 (-745 *5 *6 *3 *7)) (-4 *3 (-597 *6))
- (-4 *7 (-597 (-381 *6))))))
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-514)) (-4 *2 (-971))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-514)) (-5 *1 (-897 *3 *2)) (-4 *2 (-1142 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-514))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *3 (-985 *4 *5 *6))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *1))))
+ (-4 *1 (-990 *4 *5 *6 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-157) (-37 (-382 (-522)))))
+ (-4 *2 (-13 (-784) (-21))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1073 *3 *4)) (-14 *3 (-849))
- (-4 *4 (-970)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1065 (-587 (-521)))) (-5 *1 (-811)) (-5 *3 (-521)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-761)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-381 (-880 *3))) (-5 *1 (-426 *3 *4 *5 *6))
- (-4 *3 (-513)) (-4 *3 (-157)) (-14 *4 (-849))
- (-14 *5 (-587 (-1084))) (-14 *6 (-1165 (-627 *3))))))
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-256))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1181 *3 *4)) (-4 *3 (-784)) (-4 *4 (-971))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1187 *3 *4)) (-4 *3 (-971))
+ (-4 *4 (-780)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-522)) (-4 *1 (-626 *3 *4 *5)) (-4 *3 (-971))
+ (-4 *4 (-348 *3)) (-4 *5 (-348 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-850)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-239)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-823))
+ (-12
(-5 *3
- (-2 (|:| |pde| (-587 (-290 (-202))))
- (|:| |constraints|
- (-587
- (-2 (|:| |start| (-202)) (|:| |finish| (-202))
- (|:| |grid| (-707)) (|:| |boundaryType| (-521))
- (|:| |dStart| (-627 (-202))) (|:| |dFinish| (-627 (-202))))))
- (|:| |f| (-587 (-587 (-290 (-202))))) (|:| |st| (-1067))
- (|:| |tol| (-202))))
- (-5 *2 (-959)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-1067)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-684)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 *6)) (-5 *3 (-521)) (-4 *6 (-282)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *1 (-679 *4 *5 *6 *7)) (-4 *7 (-877 *6 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1067)) (-5 *4 (-521)) (-5 *5 (-627 (-202)))
- (-5 *2 (-959)) (-5 *1 (-694)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-627 (-202))) (-5 *4 (-521)) (-5 *2 (-959))
- (-5 *1 (-692)))))
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-354)) (-5 *1 (-184)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-522))))
+ (-4 *4 (-13 (-1142 *3) (-514) (-10 -8 (-15 -2259 ($ $ $)))))
+ (-4 *3 (-514)) (-5 *1 (-1145 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-454 *4 *5))) (-14 *4 (-588 (-1085)))
+ (-4 *5 (-426)) (-5 *2 (-588 (-224 *4 *5))) (-5 *1 (-576 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-522)) (-4 *4 (-730)) (-4 *5 (-784)) (-4 *2 (-971))
+ (-5 *1 (-296 *4 *5 *2 *6)) (-4 *6 (-878 *2 *4 *5)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1084)) (|:| |fn| (-290 (-202)))
- (|:| -1403 (-1008 (-776 (-202)))) (|:| |abserr| (-202))
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
(|:| |relerr| (-202))))
(-5 *2
(-2
@@ -16682,1445 +16623,1513 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1065 (-202)))
+ (-3 (|:| |str| (-1066 (-202)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1403
+ (|:| -2386
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-516)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 (-381 (-880 (-521))))) (-5 *4 (-587 (-1084)))
- (-5 *2 (-587 (-587 *5))) (-5 *1 (-354 *5))
- (-4 *5 (-13 (-781) (-337)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 (-521)))) (-5 *2 (-587 *4)) (-5 *1 (-354 *4))
- (-4 *4 (-13 (-781) (-337))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-707)) (-4 *5 (-157))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-521)) (-5 *1 (-128 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-707)) (-4 *5 (-157))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-473 (-381 (-521)) (-217 *5 (-707)) (-793 *4)
- (-224 *4 (-381 (-521)))))
- (-5 *3 (-587 (-793 *4))) (-14 *4 (-587 (-1084))) (-14 *5 (-707))
- (-5 *1 (-474 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-521)) (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783))
- (-5 *2 (-1170)) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *7 (-877 *4 *5 *6)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1113 *3 *4 *5 *2)) (-4 *3 (-513))
- (-4 *4 (-729)) (-4 *5 (-783)) (-4 *2 (-984 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-848)) (-5 *2 (-2 (|:| -2979 (-587 *1)) (|:| -1384 *1)))
- (-5 *3 (-587 *1)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-587 (-1080 *11))) (-5 *3 (-1080 *11))
- (-5 *4 (-587 *10)) (-5 *5 (-587 *8)) (-5 *6 (-587 (-707)))
- (-5 *7 (-1165 (-587 (-1080 *8)))) (-4 *10 (-783))
- (-4 *8 (-282)) (-4 *11 (-877 *8 *9 *10)) (-4 *9 (-729))
- (-5 *1 (-645 *9 *10 *8 *11)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1065 *4)) (-5 *3 (-1 *4 (-521))) (-4 *4 (-970))
- (-5 *1 (-1069 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-562 (-820 *3))) (-4 *3 (-814 *3))
- (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-562 (-820 *3))) (-4 *2 (-814 *3))
- (-4 *2 (-13 (-404 *3) (-1105))))))
+ (-5 *1 (-517)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-587 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-587 (-108))) (-5 *5 (-627 (-202)))
- (-5 *6 (-627 (-521))) (-5 *7 (-202)) (-5 *3 (-521)) (-5 *2 (-959))
- (-5 *1 (-691)))))
-(((*1 *1 *1) (-5 *1 (-202))) ((*1 *1 *1) (-5 *1 (-353)))
- ((*1 *1) (-5 *1 (-353))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-587 *7)) (-5 *5 (-587 (-587 *8))) (-4 *7 (-783))
- (-4 *8 (-282)) (-4 *6 (-729)) (-4 *9 (-877 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-587 (-2 (|:| -1974 (-1080 *9)) (|:| -2246 (-521)))))))
- (-5 *1 (-679 *6 *7 *8 *9)) (-5 *3 (-1080 *9)))))
+ (-12 (-4 *3 (-13 (-338) (-135)))
+ (-5 *2 (-588 (-2 (|:| -1400 (-708)) (|:| -1893 *4) (|:| |num| *4))))
+ (-5 *1 (-374 *3 *4)) (-4 *4 (-1142 *3)))))
+(((*1 *1 *2) (-12 (-5 *1 (-204 *2)) (-4 *2 (-13 (-338) (-1106))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-5 *1 (-457 *2)) (-4 *2 (-1141 (-521))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-820 *3)) (-4 *3 (-1013)))))
+ (-12 (-4 *4 (-1120)) (-5 *2 (-708)) (-5 *1 (-165 *4 *3))
+ (-4 *3 (-615 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-425)) (-4 *5 (-729)) (-4 *6 (-783)) (-5 *2 (-707))
- (-5 *1 (-422 *4 *5 *6 *3)) (-4 *3 (-877 *4 *5 *6)))))
+ (-12 (-5 *3 (-1081 *4)) (-4 *4 (-324))
+ (-5 *2 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032))))))
+ (-5 *1 (-321 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-291 *3)) (-4 *3 (-13 (-971) (-784)))
+ (-5 *1 (-200 *3 *4)) (-14 *4 (-588 (-1085))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-337))
- (-5 *1 (-488 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-625 *2 *3 *4)) (-4 *3 (-347 *2)) (-4 *4 (-347 *2))
- (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-347 *2)) (-4 *5 (-347 *2)) (-4 *2 (-157))
- (-5 *1 (-626 *2 *4 *5 *3)) (-4 *3 (-625 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1034 *3 *2 *4 *5)) (-4 *4 (-215 *3 *2))
- (-4 *5 (-215 *3 *2)) (|has| *2 (-6 (-4235 "*"))) (-4 *2 (-970)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-513)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3))))
+ (|partial| -12 (-5 *2 (-522)) (-5 *1 (-1103 *3)) (-4 *3 (-971)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6))
+ (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-881 *5)) (-4 *5 (-426)) (-5 *2 (-588 *6))
+ (-5 *1 (-500 *5 *6 *4)) (-4 *6 (-338)) (-4 *4 (-13 (-338) (-782))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171))
+ (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1068)) (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-1171))
+ (-5 *1 (-1022 *4 *5 *6 *7 *8)) (-4 *8 (-990 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $))
+ (-15 -2816 ((-1037 *3 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *3 (-561 $)))))))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-952 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 (-627 *3))) (-4 *3 (-970)) (-5 *1 (-952 *3)))))
+ (-12 (-4 *3 (-514)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *3 (-561 $)) $))
+ (-15 -2816 ((-1037 *3 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *3 (-561 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 *2))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *4 (-561 $)) $))
+ (-15 -2816 ((-1037 *4 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *4 (-561 $)))))))
+ (-4 *4 (-514)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-588 (-561 *2)))
+ (-4 *2
+ (-13 (-338) (-278)
+ (-10 -8 (-15 -2805 ((-1037 *4 (-561 $)) $))
+ (-15 -2816 ((-1037 *4 (-561 $)) $))
+ (-15 -2190 ($ (-1037 *4 (-561 $)))))))
+ (-4 *4 (-514)) (-5 *1 (-40 *4 *2)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1066 *4)) (-5 *3 (-522)) (-4 *4 (-971))
+ (-5 *1 (-1070 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-522)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-971))
+ (-14 *4 (-1085)) (-14 *5 *3))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-708)) (-5 *1 (-790 *2)) (-4 *2 (-157)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-426))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1081 *6)) (-4 *6 (-878 *5 *3 *4)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *5 (-838)) (-5 *1 (-431 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1081 *1)) (-4 *1 (-838)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-588 (-1085))) (-4 *2 (-157))
+ (-4 *4 (-215 (-3480 *5) (-708)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -2717 *3) (|:| -1400 *4))
+ (-2 (|:| -2717 *3) (|:| -1400 *4))))
+ (-5 *1 (-435 *5 *2 *3 *4 *6 *7)) (-4 *3 (-784))
+ (-4 *7 (-878 *2 *4 (-794 *5))))))
+(((*1 *1 *1) (-5 *1 (-983))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1165 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-157))
- (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-157)) (-4 *5 (-1141 *4)) (-5 *2 (-627 *4))
- (-5 *1 (-382 *3 *4 *5)) (-4 *3 (-383 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-157)) (-4 *4 (-1141 *3))
- (-5 *2 (-627 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-880 (-381 (-521)))) (-5 *4 (-1084))
- (-5 *5 (-1008 (-776 (-202)))) (-5 *2 (-587 (-202))) (-5 *1 (-275)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3)) (-4 *2 (-783)) (-4 *3 (-970))))
- ((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-970)) (-4 *3 (-779)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1085)) (|:| |fn| (-291 (-202)))
+ (|:| -2386 (-1009 (-777 (-202)))) (|:| |abserr| (-202))
+ (|:| |relerr| (-202))))
+ (-5 *2 (-2 (|:| -1420 (-110)) (|:| |w| (-202)))) (-5 *1 (-183)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-426))) (-5 *1 (-1112 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-1106))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-850)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-411)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-522))) (-5 *1 (-969)))))
+(((*1 *1) (-12 (-4 *1 (-304 *2)) (-4 *2 (-343)) (-4 *2 (-338)))))
+(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169))))
+ ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1169)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1119))))
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-880 (-353))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-881 (-354))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-381 (-880 (-353)))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-290 (-353))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-353))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-291 (-354))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-354))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-880 (-521))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-881 (-522))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-381 (-880 (-521)))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-290 (-521))) (-5 *1 (-313 *3 *4 *5))
- (-4 *5 (-961 (-521))) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084))) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-291 (-522))) (-5 *1 (-314 *3 *4 *5))
+ (-4 *5 (-962 (-522))) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085))) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1084)) (-5 *1 (-313 *3 *4 *5))
- (-14 *3 (-587 *2)) (-14 *4 (-587 *2)) (-4 *5 (-361))))
+ (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-314 *3 *4 *5))
+ (-14 *3 (-588 *2)) (-14 *4 (-588 *2)) (-4 *5 (-362))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-290 *5)) (-4 *5 (-361))
- (-5 *1 (-313 *3 *4 *5)) (-14 *3 (-587 (-1084)))
- (-14 *4 (-587 (-1084)))))
+ (|partial| -12 (-5 *2 (-291 *5)) (-4 *5 (-362))
+ (-5 *1 (-314 *3 *4 *5)) (-14 *3 (-588 (-1085)))
+ (-14 *4 (-588 (-1085)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-627 (-381 (-880 (-521))))) (-4 *1 (-358))))
+ (|partial| -12 (-5 *2 (-628 (-382 (-881 (-522))))) (-4 *1 (-359))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-627 (-381 (-880 (-353))))) (-4 *1 (-358))))
+ (|partial| -12 (-5 *2 (-628 (-382 (-881 (-354))))) (-4 *1 (-359))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-627 (-880 (-521)))) (-4 *1 (-358))))
+ (|partial| -12 (-5 *2 (-628 (-881 (-522)))) (-4 *1 (-359))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-627 (-880 (-353)))) (-4 *1 (-358))))
+ (|partial| -12 (-5 *2 (-628 (-881 (-354)))) (-4 *1 (-359))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-627 (-290 (-521)))) (-4 *1 (-358))))
+ (|partial| -12 (-5 *2 (-628 (-291 (-522)))) (-4 *1 (-359))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-627 (-290 (-353)))) (-4 *1 (-358))))
+ (|partial| -12 (-5 *2 (-628 (-291 (-354)))) (-4 *1 (-359))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-381 (-880 (-521)))) (-4 *1 (-370))))
+ (|partial| -12 (-5 *2 (-382 (-881 (-522)))) (-4 *1 (-371))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-381 (-880 (-353)))) (-4 *1 (-370))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-521))) (-4 *1 (-370))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-880 (-353))) (-4 *1 (-370))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-521))) (-4 *1 (-370))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-290 (-353))) (-4 *1 (-370))))
+ (|partial| -12 (-5 *2 (-382 (-881 (-354)))) (-4 *1 (-371))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-522))) (-4 *1 (-371))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-881 (-354))) (-4 *1 (-371))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-522))) (-4 *1 (-371))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-291 (-354))) (-4 *1 (-371))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1165 (-381 (-880 (-521))))) (-4 *1 (-414))))
+ (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-522))))) (-4 *1 (-415))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1165 (-381 (-880 (-353))))) (-4 *1 (-414))))
+ (|partial| -12 (-5 *2 (-1166 (-382 (-881 (-354))))) (-4 *1 (-415))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1165 (-880 (-521)))) (-4 *1 (-414))))
+ (|partial| -12 (-5 *2 (-1166 (-881 (-522)))) (-4 *1 (-415))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1165 (-880 (-353)))) (-4 *1 (-414))))
+ (|partial| -12 (-5 *2 (-1166 (-881 (-354)))) (-4 *1 (-415))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1165 (-290 (-521)))) (-4 *1 (-414))))
+ (|partial| -12 (-5 *2 (-1166 (-291 (-522)))) (-4 *1 (-415))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1165 (-290 (-353)))) (-4 *1 (-414))))
+ (|partial| -12 (-5 *2 (-1166 (-291 (-354)))) (-4 *1 (-415))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-323)) (-4 *5 (-303 *4)) (-4 *6 (-1141 *5))
- (-5 *2 (-1080 (-1080 *4))) (-5 *1 (-713 *4 *5 *6 *3 *7))
- (-4 *3 (-1141 *6)) (-14 *7 (-849))))
+ (|partial| -12 (-4 *4 (-324)) (-4 *5 (-304 *4)) (-4 *6 (-1142 *5))
+ (-5 *2 (-1081 (-1081 *4))) (-5 *1 (-714 *4 *5 *6 *3 *7))
+ (-4 *3 (-1142 *6)) (-14 *7 (-850))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-587 *6)) (-4 *6 (-984 *3 *4 *5))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *1 (-902 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-961 *2)) (-4 *2 (-1119))))
+ (|partial| -12 (-5 *2 (-588 *6)) (-4 *6 (-985 *3 *4 *5))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784))
+ (-4 *1 (-903 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1120))))
((*1 *1 *2)
- (|partial| -3703
- (-12 (-5 *2 (-880 *3))
- (-12 (-2416 (-4 *3 (-37 (-381 (-521)))))
- (-2416 (-4 *3 (-37 (-521)))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2416 (-4 *3 (-506))) (-2416 (-4 *3 (-37 (-381 (-521)))))
- (-4 *3 (-37 (-521))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)))
- (-12 (-5 *2 (-880 *3))
- (-12 (-2416 (-4 *3 (-918 (-521)))) (-4 *3 (-37 (-381 (-521))))
- (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *1 (-984 *3 *4 *5)) (-4 *4 (-729))
- (-4 *5 (-783)))))
+ (|partial| -3708
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2401 (-4 *3 (-37 (-382 (-522)))))
+ (-2401 (-4 *3 (-37 (-522)))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2401 (-4 *3 (-507))) (-2401 (-4 *3 (-37 (-382 (-522)))))
+ (-4 *3 (-37 (-522))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 *3))
+ (-12 (-2401 (-4 *3 (-919 (-522)))) (-4 *3 (-37 (-382 (-522))))
+ (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *1 (-985 *3 *4 *5)) (-4 *4 (-730))
+ (-4 *5 (-784)))))
((*1 *1 *2)
- (|partial| -3703
- (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5))
- (-12 (-2416 (-4 *3 (-37 (-381 (-521))))) (-4 *3 (-37 (-521)))
- (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))
- (-12 (-5 *2 (-880 (-521))) (-4 *1 (-984 *3 *4 *5))
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))))
- (-4 *3 (-970)) (-4 *4 (-729)) (-4 *5 (-783)))))
+ (|partial| -3708
+ (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5))
+ (-12 (-2401 (-4 *3 (-37 (-382 (-522))))) (-4 *3 (-37 (-522)))
+ (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))
+ (-12 (-5 *2 (-881 (-522))) (-4 *1 (-985 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))))
+ (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-880 (-381 (-521)))) (-4 *1 (-984 *3 *4 *5))
- (-4 *3 (-37 (-381 (-521)))) (-4 *5 (-562 (-1084))) (-4 *3 (-970))
- (-4 *4 (-729)) (-4 *5 (-783)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-225)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
+ (|partial| -12 (-5 *2 (-881 (-382 (-522)))) (-4 *1 (-985 *3 *4 *5))
+ (-4 *3 (-37 (-382 (-522)))) (-4 *5 (-563 (-1085))) (-4 *3 (-971))
+ (-4 *4 (-730)) (-4 *5 (-784)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1171)) (-5 *1 (-225)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-522))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-708)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-730)) (-4 *4 (-878 *5 *6 *7)) (-4 *5 (-426)) (-4 *7 (-784))
+ (-5 *1 (-423 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-620 *2)) (-4 *2 (-1013))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-587 *5) (-587 *5))) (-5 *4 (-521))
- (-5 *2 (-587 *5)) (-5 *1 (-620 *5)) (-4 *5 (-1013)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-521))) (-5 *5 (-1 (-1065 *4))) (-4 *4 (-337))
- (-4 *4 (-970)) (-5 *2 (-1065 *4)) (-5 *1 (-1069 *4)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1123)) (-4 *5 (-1141 (-381 *2)))
- (-4 *2 (-1141 *4)) (-5 *1 (-315 *3 *4 *2 *5))
- (-4 *3 (-316 *4 *2 *5))))
+ (-12 (-5 *3 (-1166 (-588 (-2 (|:| -3435 *4) (|:| -2717 (-1032))))))
+ (-4 *4 (-324)) (-5 *2 (-708)) (-5 *1 (-321 *4))))
((*1 *2)
- (|partial| -12 (-4 *1 (-316 *3 *2 *4)) (-4 *3 (-1123))
- (-4 *4 (-1141 (-381 *2))) (-4 *2 (-1141 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-587 (-1084))) (-5 *1 (-497)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 *1)) (-4 *1 (-1045 *3)) (-4 *3 (-970))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-381 *1)) (-4 *1 (-1141 *3)) (-4 *3 (-970))
- (-4 *3 (-513))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1141 *2)) (-4 *2 (-970)) (-4 *2 (-513)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-326 *3 *4)) (-14 *3 (-850))
+ (-14 *4 (-850))))
+ ((*1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-327 *3 *4)) (-4 *3 (-324))
+ (-14 *4
+ (-3 (-1081 *3)
+ (-1166 (-588 (-2 (|:| -3435 *3) (|:| -2717 (-1032)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-708)) (-5 *1 (-328 *3 *4)) (-4 *3 (-324))
+ (-14 *4 (-850)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-522)) (-5 *4 (-628 (-202))) (-5 *2 (-960))
+ (-5 *1 (-695)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-229 *2 *3 *4 *5)) (-4 *2 (-971)) (-4 *3 (-784))
+ (-4 *4 (-242 *3)) (-4 *5 (-730)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-588 (-522))) (-5 *3 (-628 (-522))) (-5 *1 (-1024)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1081 *1)) (-4 *1 (-938)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-971))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1120))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-971) (-784)))
+ (-14 *4 (-588 (-1085)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-613 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-784))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-822 *3)) (-4 *3 (-784)))))
+(((*1 *1 *1 *1) (-4 *1 (-447))) ((*1 *1 *1 *1) (-4 *1 (-699))))
+(((*1 *2) (-12 (-5 *2 (-1171)) (-5 *1 (-1169)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-1085))) (-5 *1 (-498)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
+ (|partial| -12 (-5 *2 (-1081 *3)) (-4 *3 (-324)) (-5 *1 (-332 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1068)) (-5 *1 (-1102)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 *3)) (-4 *3 (-1141 *5)) (-4 *5 (-282))
- (-5 *2 (-707)) (-5 *1 (-428 *5 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-392 *2)) (-4 *2 (-282)) (-5 *1 (-842 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-1084))
- (-4 *5 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-392 (-880 *6))) (-5 *5 (-1084)) (-5 *3 (-880 *6))
- (-4 *6 (-13 (-282) (-135))) (-5 *2 (-51)) (-5 *1 (-843 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-546 *2)) (-4 *2 (-37 (-381 (-521)))) (-4 *2 (-970)))))
-(((*1 *2 *1) (-12 (-4 *1 (-918 *2)) (-4 *2 (-513)) (-4 *2 (-506))))
- ((*1 *1 *1) (-4 *1 (-979))))
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-560 *1)) (-4 *1 (-404 *4)) (-4 *4 (-783))
- (-4 *4 (-513)) (-5 *2 (-381 (-1080 *1)))))
+ (-12 (-5 *3 (-561 *1)) (-4 *1 (-405 *4)) (-4 *4 (-784))
+ (-4 *4 (-514)) (-5 *2 (-382 (-1081 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *6) (-27) (-1105)))
- (-4 *6 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-1080 (-381 (-1080 *3)))) (-5 *1 (-517 *6 *3 *7))
- (-5 *5 (-1080 *3)) (-4 *7 (-1013))))
+ (-12 (-5 *4 (-561 *3)) (-4 *3 (-13 (-405 *6) (-27) (-1106)))
+ (-4 *6 (-13 (-426) (-962 (-522)) (-784) (-135) (-584 (-522))))
+ (-5 *2 (-1081 (-382 (-1081 *3)))) (-5 *1 (-518 *6 *3 *7))
+ (-5 *5 (-1081 *3)) (-4 *7 (-1014))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1161 *5)) (-14 *5 (-1084)) (-4 *6 (-970))
- (-5 *2 (-1138 *5 (-880 *6))) (-5 *1 (-875 *5 *6)) (-5 *3 (-880 *6))))
+ (-12 (-5 *4 (-1162 *5)) (-14 *5 (-1085)) (-4 *6 (-971))
+ (-5 *2 (-1139 *5 (-881 *6))) (-5 *1 (-876 *5 *6)) (-5 *3 (-881 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-877 *3 *4 *5)) (-4 *3 (-970)) (-4 *4 (-729))
- (-4 *5 (-783)) (-5 *2 (-1080 *3))))
+ (-12 (-4 *1 (-878 *3 *4 *5)) (-4 *3 (-971)) (-4 *4 (-730))
+ (-4 *5 (-784)) (-5 *2 (-1081 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-970)) (-4 *5 (-729)) (-4 *3 (-783)) (-5 *2 (-1080 *1))
- (-4 *1 (-877 *4 *5 *3))))
+ (-12 (-4 *4 (-971)) (-4 *5 (-730)) (-4 *3 (-784)) (-5 *2 (-1081 *1))
+ (-4 *1 (-878 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-970))
- (-4 *7 (-877 *6 *5 *4)) (-5 *2 (-381 (-1080 *3)))
- (-5 *1 (-878 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971))
+ (-4 *7 (-878 *6 *5 *4)) (-5 *2 (-382 (-1081 *3)))
+ (-5 *1 (-879 *5 *4 *6 *7 *3))
(-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $)))))))
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1080 *3))
+ (-12 (-5 *2 (-1081 *3))
(-4 *3
- (-13 (-337)
- (-10 -8 (-15 -2223 ($ *7)) (-15 -2807 (*7 $)) (-15 -2818 (*7 $)))))
- (-4 *7 (-877 *6 *5 *4)) (-4 *5 (-729)) (-4 *4 (-783)) (-4 *6 (-970))
- (-5 *1 (-878 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1084)) (-4 *5 (-513))
- (-5 *2 (-381 (-1080 (-381 (-880 *5))))) (-5 *1 (-966 *5))
- (-5 *3 (-381 (-880 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-229 *3 *4 *5 *6)) (-4 *3 (-970)) (-4 *4 (-783))
- (-4 *5 (-242 *4)) (-4 *6 (-729)) (-5 *2 (-587 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-935 *3)) (-4 *3 (-1119)) (-5 *2 (-587 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-707)) (-5 *2 (-1170)) (-5 *1 (-353))))
- ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-353)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-4 *3 (-513))
- (-5 *2 (-1080 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
+ (-13 (-338)
+ (-10 -8 (-15 -2190 ($ *7)) (-15 -2805 (*7 $)) (-15 -2816 (*7 $)))))
+ (-4 *7 (-878 *6 *5 *4)) (-4 *5 (-730)) (-4 *4 (-784)) (-4 *6 (-971))
+ (-5 *1 (-879 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-4 *5 (-514))
+ (-5 *2 (-382 (-1081 (-382 (-881 *5))))) (-5 *1 (-967 *5))
+ (-5 *3 (-382 (-881 *5))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-522)) (-5 *1 (-634 *2)) (-4 *2 (-1142 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *1 (-144 *4 *2))
+ (-4 *2 (-405 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1007 *2)) (-4 *2 (-405 *4)) (-4 *4 (-13 (-784) (-514)))
+ (-5 *1 (-144 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1007 *1)) (-4 *1 (-146))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-146)) (-5 *2 (-1085)))))
+(((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1120)) (-5 *2 (-588 *3)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1121 *3)) (-4 *3 (-1014)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1073 *2 *3)) (-14 *2 (-849)) (-4 *3 (-970)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-970)) (-4 *4 (-1141 *3)) (-5 *1 (-149 *3 *4 *2))
- (-4 *2 (-1141 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-269 *2)) (-4 *2 (-1119)))))
-(((*1 *1 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-282)))))
-(((*1 *1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-304))))
- ((*1 *1 *2) (-12 (-5 *2 (-1067)) (-5 *1 (-304)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1141 *6))
- (-4 *6 (-13 (-27) (-404 *5)))
- (-4 *5 (-13 (-783) (-513) (-961 (-521)))) (-4 *8 (-1141 (-381 *7)))
- (-5 *2 (-538 *3)) (-5 *1 (-509 *5 *6 *7 *8 *3))
- (-4 *3 (-316 *6 *7 *8)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-707)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *2 (-959)) (-5 *1 (-688)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-627 *3))
- (-4 *3 (-13 (-282) (-10 -8 (-15 -2337 ((-392 $) $)))))
- (-4 *4 (-1141 *3)) (-5 *1 (-468 *3 *4 *5)) (-4 *5 (-383 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-587 (-560 *1))) (-4 *1 (-277)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-381 (-880 *6)) (-1074 (-1084) (-880 *6))))
- (-5 *5 (-707)) (-4 *6 (-425)) (-5 *2 (-587 (-627 (-381 (-880 *6)))))
- (-5 *1 (-267 *6)) (-5 *4 (-627 (-381 (-880 *6))))))
- ((*1 *2 *3 *4)
+ (-12 (-5 *1 (-547 *2)) (-4 *2 (-37 (-382 (-522)))) (-4 *2 (-971)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-514))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-897 *4 *3)) (-4 *3 (-1142 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-514)) (-5 *2 (-1166 (-628 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-628 *4)) (-4 *5 (-598 *4)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-522)) (-5 *5 (-628 (-202)))
+ (-5 *6 (-3 (|:| |fn| (-363)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-363)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-202)) (-5 *2 (-960)) (-5 *1 (-687)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856))
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 (-202)))))
+ (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))))
+ (-5 *1 (-141))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-382 (-522)))
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 (-202)))))
+ (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))))
+ (-5 *1 (-141))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 (-202)))))
+ (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))))
+ (-5 *1 (-141)) (-5 *3 (-588 (-872 (-202))))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 (-202)))))
+ (|:| |xValues| (-1009 (-202))) (|:| |yValues| (-1009 (-202)))))
+ (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 (-202)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-588 (-1009 (-354)))) (-5 *1 (-239))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-1068))) (-5 *1 (-305))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-305)))))
+(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-381 (-880 *5)) (-1074 (-1084) (-880 *5))))
- (|:| |eigmult| (-707)) (|:| |eigvec| (-587 *4))))
- (-4 *5 (-425)) (-5 *2 (-587 (-627 (-381 (-880 *5)))))
- (-5 *1 (-267 *5)) (-5 *4 (-627 (-381 (-880 *5)))))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-708)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-730)) (-4 *2 (-878 *4 *5 *6)) (-5 *1 (-423 *4 *5 *6 *2))
+ (-4 *4 (-426)) (-4 *6 (-784)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-339 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-971)) (-4 *4 (-730)) (-4 *5 (-784)) (-5 *2 (-588 *1))
+ (-4 *1 (-985 *3 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-588 *1)) (|has| *1 (-6 -4239)) (-4 *1 (-936 *3))
+ (-4 *3 (-1120)))))
+(((*1 *2 *1) (-12 (-5 *2 (-588 (-561 *1))) (-4 *1 (-278)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *5)) (-5 *4 (-850)) (-4 *5 (-784))
+ (-5 *2 (-588 (-613 *5))) (-5 *1 (-613 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 *5)) (-4 *5 (-404 *4)) (-4 *4 (-13 (-783) (-513)))
- (-5 *2 (-791)) (-5 *1 (-31 *4 *5)))))
+ (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-588 (-1085))) (-4 *5 (-971))
+ (-5 *2 (-454 *4 *5)) (-5 *1 (-873 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-962 (-522))) (-4 *1 (-278)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-507)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-834 *3)) (-4 *3 (-1014)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-513) (-135)))
- (-5 *2 (-2 (|:| -1970 *3) (|:| -1981 *3))) (-5 *1 (-1135 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-980 (-948 *4) (-1080 (-948 *4)))) (-5 *3 (-791))
- (-5 *1 (-948 *4)) (-4 *4 (-13 (-781) (-337) (-946))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-758)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1080 *1)) (-5 *3 (-1084)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1080 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-880 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1084)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-783) (-513)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-783) (-513))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-970))
- (-4 *2 (-1125 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-833 *3)) (-4 *3 (-1013)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *2 (-959))
- (-5 *1 (-692)))))
+ (-12 (-5 *2 (-1066 (-522))) (-5 *1 (-1070 *4)) (-4 *4 (-971))
+ (-5 *3 (-522)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-708)) (-5 *4 (-522)) (-5 *1 (-419 *2)) (-4 *2 (-971)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-338) (-10 -8 (-15 ** ($ $ (-382 (-522)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-588 *5))
+ (|:| |maps| (-588 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1040 *3 *5)) (-4 *3 (-1142 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-323)) (-5 *2 (-885 (-1080 *4))) (-5 *1 (-331 *4))
- (-5 *3 (-1080 *4)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-425)) (-4 *7 (-729)) (-4 *8 (-783))
- (-4 *3 (-984 *6 *7 *8))
- (-5 *2 (-587 (-2 (|:| |val| *3) (|:| -1946 *4))))
- (-5 *1 (-1021 *6 *7 *8 *3 *4)) (-4 *4 (-989 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-1009 (-777 (-354)))) (-5 *2 (-1009 (-777 (-202))))
+ (-5 *1 (-281)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-985 *2 *3 *4)) (-4 *2 (-971)) (-4 *3 (-730))
+ (-4 *4 (-784)) (-4 *2 (-426)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-588 *2)) (-5 *1 (-163 *2)) (-4 *2 (-283))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-588 (-588 *4))) (-5 *2 (-588 *4)) (-4 *4 (-283))
+ (-5 *1 (-163 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-587 (-2 (|:| |val| (-587 *8)) (|:| -1946 *9))))
- (-5 *5 (-108)) (-4 *8 (-984 *6 *7 *4)) (-4 *9 (-989 *6 *7 *4 *8))
- (-4 *6 (-425)) (-4 *7 (-729)) (-4 *4 (-783))
- (-5 *2 (-587 (-2 (|:| |val| *8) (|:| -1946 *9))))
- (-5 *1 (-1021 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-202)) (-5 *4 (-521)) (-5 *2 (-959)) (-5 *1 (-695)))))
+ (-12 (-5 *3 (-588 *8))
+ (-5 *4
+ (-588
+ (-2 (|:| -3855 (-628 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-628 *7)))))
+ (-5 *5 (-708)) (-4 *8 (-1142 *7)) (-4 *7 (-1142 *6)) (-4 *6 (-324))
+ (-5 *2
+ (-2 (|:| -3855 (-628 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-628 *7))))
+ (-5 *1 (-468 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-522)) (-5 *1 (-519)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-202)) (-5 *4 (-522)) (-5 *2 (-960)) (-5 *1 (-696)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927)))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1156 *3))
- (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1127 *3 *4))))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1157 *3))
+ (-5 *1 (-254 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-381 (-521)))) (-4 *4 (-1125 *3))
- (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1148 *3 *4)) (-4 *5 (-909 *4))))
- ((*1 *1 *1) (-4 *1 (-259)))
+ (-12 (-4 *3 (-37 (-382 (-522)))) (-4 *4 (-1126 *3))
+ (-5 *1 (-255 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-910 *4))))
+ ((*1 *1 *1) (-4 *1 (-260)))
((*1 *2 *3)
- (-12 (-5 *3 (-392 *4)) (-4 *4 (-513))
- (-5 *2 (-587 (-2 (|:| -2979 (-707)) (|:| |logand| *4))))
- (-5 *1 (-294 *4))))
+ (-12 (-5 *3 (-393 *4)) (-4 *4 (-514))
+ (-5 *2 (-588 (-2 (|:| -2977 (-708)) (|:| |logand| *4))))
+ (-5 *1 (-295 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-313 *2 *3 *4)) (-14 *2 (-587 (-1084)))
- (-14 *3 (-587 (-1084))) (-4 *4 (-361))))
+ (-12 (-5 *1 (-314 *2 *3 *4)) (-14 *2 (-588 (-1085)))
+ (-14 *3 (-588 (-1085))) (-4 *4 (-362))))
((*1 *2 *1)
- (-12 (-5 *2 (-605 *3 *4)) (-5 *1 (-571 *3 *4 *5)) (-4 *3 (-783))
- (-4 *4 (-13 (-157) (-654 (-381 (-521))))) (-14 *5 (-849))))
+ (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-572 *3 *4 *5)) (-4 *3 (-784))
+ (-4 *4 (-13 (-157) (-655 (-382 (-522))))) (-14 *5 (-850))))
((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
- (-5 *1 (-1070 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1065 *3)) (-4 *3 (-37 (-381 (-521))))
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
(-5 *1 (-1071 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1066 *3)) (-4 *3 (-37 (-382 (-522))))
+ (-5 *1 (-1072 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-707)) (-4 *4 (-13 (-970) (-654 (-381 (-521)))))
- (-4 *5 (-783)) (-5 *1 (-1179 *4 *5 *2)) (-4 *2 (-1184 *5 *4))))
+ (-12 (-5 *3 (-708)) (-4 *4 (-13 (-971) (-655 (-382 (-522)))))
+ (-4 *5 (-784)) (-5 *1 (-1180 *4 *5 *2)) (-4 *2 (-1185 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-707)) (-5 *1 (-1183 *3 *4))
- (-4 *4 (-654 (-381 (-521)))) (-4 *3 (-783)) (-4 *4 (-157)))))
-(((*1 *2 *1) (-12 (-5 *2 (-707)) (-5 *1 (-820 *3)) (-4 *3 (-1013))))
- ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1119)) (-5 *2 (-707)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1165 (-1165 *4))) (-4 *4 (-970)) (-5 *2 (-627 *4))
- (-5 *1 (-953 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-51)) (-5 *1 (-765)))))
-(((*1 *2 *1) (-12 (-5 *2 (-521)) (-5 *1 (-143))))
- ((*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-802))))
- ((*1 *2 *3) (-12 (-5 *3 (-871 *2)) (-5 *1 (-908 *2)) (-4 *2 (-970)))))
+ (-12 (-5 *2 (-708)) (-5 *1 (-1184 *3 *4))
+ (-4 *4 (-655 (-382 (-522)))) (-4 *3 (-784)) (-4 *4 (-157)))))
+(((*1 *2 *1) (-12 (-5 *2 (-708)) (-5 *1 (-821 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1033 *3)) (-4 *3 (-1120)) (-5 *2 (-708)))))
+(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-971)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-757)) (-5 *4 (-51)) (-5 *2 (-1170)) (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-126)))))
+ (|partial| -12 (-5 *4 (-588 (-382 *6))) (-5 *3 (-382 *6))
+ (-4 *6 (-1142 *5)) (-4 *5 (-13 (-338) (-135) (-962 (-522))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-588 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1124)) (-4 *5 (-1142 *3)) (-4 *6 (-1142 (-382 *5)))
+ (-5 *2 (-108)) (-5 *1 (-316 *4 *3 *5 *6)) (-4 *4 (-317 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1142 *4)) (-4 *4 (-1124))
+ (-4 *1 (-317 *4 *3 *5)) (-4 *5 (-1142 (-382 *3))))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-1018)) (-5 *1 (-267)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-588 (-588 (-522)))) (-5 *1 (-898))
+ (-5 *3 (-588 (-522))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1045 *3)) (-4 *3 (-970))
- (-5 *2 (-587 (-587 (-587 (-871 *3))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1165 *4)) (-4 *4 (-391 *3)) (-4 *3 (-282))
- (-4 *3 (-513)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-4 *4 (-337)) (-5 *2 (-1165 *1))
- (-4 *1 (-303 *4))))
- ((*1 *2) (-12 (-4 *3 (-337)) (-5 *2 (-1165 *1)) (-4 *1 (-303 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-157)) (-4 *4 (-1141 *3)) (-5 *2 (-1165 *1))
- (-4 *1 (-383 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4))
- (-5 *2 (-1165 *6)) (-5 *1 (-387 *3 *4 *5 *6))
- (-4 *6 (-13 (-383 *4 *5) (-961 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-282)) (-4 *4 (-918 *3)) (-4 *5 (-1141 *4))
- (-5 *2 (-1165 *6)) (-5 *1 (-388 *3 *4 *5 *6 *7))
- (-4 *6 (-383 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-157)) (-5 *2 (-1165 *1)) (-4 *1 (-391 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-491 *4))
- (-4 *4 (-323)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-729)) (-4 *4 (-783)) (-4 *5 (-282))
- (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-877 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *6)) (-4 *6 (-877 *5 *3 *4)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *5 (-282)) (-5 *1 (-844 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-877 *6 *4 *5))
- (-5 *1 (-844 *4 *5 *6 *2)) (-4 *4 (-729)) (-4 *5 (-783))
- (-4 *6 (-282)))))
-(((*1 *2 *1) (-12 (-4 *1 (-733 *2)) (-4 *2 (-157)))))
+ (-12 (-5 *2 (-802 (-894 *3) (-894 *3))) (-5 *1 (-894 *3))
+ (-4 *3 (-895)))))
+(((*1 *2 *1) (-12 (-4 *1 (-734 *2)) (-4 *2 (-157))))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-157)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-154 (-353))) (-5 *1 (-721 *3)) (-4 *3 (-562 (-353)))))
+ (-12 (-5 *2 (-154 (-354))) (-5 *1 (-722 *3)) (-4 *3 (-563 (-354)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-849)) (-5 *2 (-154 (-353))) (-5 *1 (-721 *3))
- (-4 *3 (-562 (-353)))))
+ (-12 (-5 *4 (-850)) (-5 *2 (-154 (-354))) (-5 *1 (-722 *3))
+ (-4 *3 (-563 (-354)))))
((*1 *2 *3)
- (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-562 (-353)))
- (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-154 *4)) (-4 *4 (-157)) (-4 *4 (-563 (-354)))
+ (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-154 *5)) (-5 *4 (-849)) (-4 *5 (-157))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-154 *5)) (-5 *4 (-850)) (-4 *5 (-157))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-562 (-353)))
- (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-881 (-154 *4))) (-4 *4 (-157)) (-4 *4 (-563 (-354)))
+ (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-157))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-881 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-157))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-880 *4)) (-4 *4 (-970)) (-4 *4 (-562 (-353)))
- (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-881 *4)) (-4 *4 (-971)) (-4 *4 (-563 (-354)))
+ (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-880 *5)) (-5 *4 (-849)) (-4 *5 (-970))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-881 *5)) (-5 *4 (-850)) (-4 *5 (-971))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 *4))) (-4 *4 (-513)) (-4 *4 (-562 (-353)))
- (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-514)) (-4 *4 (-563 (-354)))
+ (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 *5))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-382 (-881 *5))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-381 (-880 (-154 *4)))) (-4 *4 (-513))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-382 (-881 (-154 *4)))) (-4 *4 (-514))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-381 (-880 (-154 *5)))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-382 (-881 (-154 *5)))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-290 *4)) (-4 *4 (-513)) (-4 *4 (-783))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-291 *4)) (-4 *4 (-514)) (-4 *4 (-784))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 *5)) (-5 *4 (-849)) (-4 *5 (-513)) (-4 *5 (-783))
- (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *5))))
+ (-12 (-5 *3 (-291 *5)) (-5 *4 (-850)) (-4 *5 (-514)) (-4 *5 (-784))
+ (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-290 (-154 *4))) (-4 *4 (-513)) (-4 *4 (-783))
- (-4 *4 (-562 (-353))) (-5 *2 (-154 (-353))) (-5 *1 (-721 *4))))
+ (-12 (-5 *3 (-291 (-154 *4))) (-4 *4 (-514)) (-4 *4 (-784))
+ (-4 *4 (-563 (-354))) (-5 *2 (-154 (-354))) (-5 *1 (-722 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-290 (-154 *5))) (-5 *4 (-849)) (-4 *5 (-513))
- (-4 *5 (-783)) (-4 *5 (-562 (-353))) (-5 *2 (-154 (-353)))
- (-5 *1 (-721 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-521)) (-5 *1 (-392 *3)) (-4 *3 (-513)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1049 *3 *2)) (-4 *3 (-13 (-1013) (-33)))
- (-4 *2 (-13 (-1013) (-33))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1141 (-381 *2))) (-5 *2 (-521)) (-5 *1 (-841 *4 *3))
- (-4 *3 (-1141 (-381 *4))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1000)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-627 *3)) (-4 *3 (-970)) (-5 *1 (-628 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-832 (-521))) (-5 *1 (-845))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-521))) (-5 *2 (-832 (-521))) (-5 *1 (-845)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-381 *4)) (-4 *4 (-1141 *3))
- (-4 *3 (-13 (-337) (-135) (-961 (-521)))) (-5 *1 (-525 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-587 (-587 *8))) (-5 *3 (-587 *8))
- (-4 *8 (-877 *5 *7 *6)) (-4 *5 (-13 (-282) (-135)))
- (-4 *6 (-13 (-783) (-562 (-1084)))) (-4 *7 (-729)) (-5 *2 (-108))
- (-5 *1 (-852 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-291 (-154 *5))) (-5 *4 (-850)) (-4 *5 (-514))
+ (-4 *5 (-784)) (-4 *5 (-563 (-354))) (-5 *2 (-154 (-354)))
+ (-5 *1 (-722 *5)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-522)) (-5 *1 (-1066 *3)) (-4 *3 (-1120))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4239)) (-4 *1 (-1154 *2)) (-4 *2 (-1120)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-202))
+ (-5 *2
+ (-2 (|:| |brans| (-588 (-588 (-872 *4))))
+ (|:| |xValues| (-1009 *4)) (|:| |yValues| (-1009 *4))))
+ (-5 *1 (-141)) (-5 *3 (-588 (-588 (-872 *4)))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-784))
+ (-5 *2 (-2 (|:| -2977 (-522)) (|:| |var| (-561 *1))))
+ (-4 *1 (-405 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-166)) (-5 *1 (-225)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-910 *2)) (-4 *2 (-1106)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-708)) (-4 *4 (-514)) (-5 *1 (-897 *4 *2))
+ (-4 *2 (-1142 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-588 (-792))) (-5 *1 (-1085)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-497))) (-5 *2 (-1084)) (-5 *1 (-497)))))
-(((*1 *2)
- (-12 (-4 *4 (-157)) (-5 *2 (-108)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-157)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-588 (-498))) (-5 *2 (-1085)) (-5 *1 (-498)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-850)) (-5 *4 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1167)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-224 *4 *5)) (-14 *4 (-587 (-1084))) (-4 *5 (-970))
- (-5 *2 (-880 *5)) (-5 *1 (-872 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-970))
- (-14 *4 (-587 (-1084)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-200 *3 *4)) (-4 *3 (-13 (-970) (-783)))
- (-14 *4 (-587 (-1084))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-337)) (-5 *1 (-703 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-785 *2)) (-4 *2 (-970)) (-4 *2 (-337)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1065 (-381 *3))) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
-(((*1 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168))))
- ((*1 *2 *2) (-12 (-5 *2 (-587 (-1067))) (-5 *1 (-1168)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-354)) (-5 *1 (-184)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-124))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1084)) (-4 *5 (-337)) (-5 *2 (-1065 (-1065 (-880 *5))))
- (-5 *1 (-1173 *5)) (-5 *4 (-1065 (-880 *5))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-587 *6)) (-4 *6 (-877 *3 *4 *5)) (-4 *3 (-337))
- (-4 *4 (-729)) (-4 *5 (-783)) (-5 *1 (-473 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *9 (-990 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730))
+ (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-988 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 *8)) (-5 *4 (-588 *9)) (-4 *8 (-985 *5 *6 *7))
+ (-4 *9 (-1023 *5 *6 *7 *8)) (-4 *5 (-426)) (-4 *6 (-730))
+ (-4 *7 (-784)) (-5 *2 (-708)) (-5 *1 (-1055 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-559 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
+ (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-338)) (-4 *3 (-971))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1383 *1)))
+ (-4 *1 (-786 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-108)) (-5 *1 (-766)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-404 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108))
- (-5 *1 (-144 *4 *5)) (-4 *5 (-404 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108))
- (-5 *1 (-252 *4 *5)) (-4 *5 (-13 (-404 *4) (-927)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-276 *4)) (-4 *4 (-277))))
- ((*1 *2 *3) (-12 (-4 *1 (-277)) (-5 *3 (-110)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-317 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1142 *4))
+ (-4 *5 (-1142 (-382 *3))) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *5 (-783)) (-5 *2 (-108))
- (-5 *1 (-403 *4 *5)) (-4 *4 (-404 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108))
- (-5 *1 (-405 *4 *5)) (-4 *5 (-404 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-783) (-513))) (-5 *2 (-108))
- (-5 *1 (-574 *4 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1119))
- (-5 *2 (-587 *3)))))
+ (-12 (-4 *1 (-317 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1142 *3))
+ (-4 *5 (-1142 (-382 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1068)) (-5 *2 (-1171)) (-5 *1 (-1168)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1085))
+ (-4 *5 (-13 (-426) (-784) (-135) (-962 (-522)) (-584 (-522))))
+ (-5 *2 (-2 (|:| -1856 *3) (|:| |coeff| *3))) (-5 *1 (-515 *5 *3))
+ (-4 *3 (-13 (-27) (-1106) (-405 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-349 *2 *3)) (-4 *2 (-784)) (-4 *3 (-157))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-572 *2 *3 *4)) (-4 *2 (-784))
+ (-4 *3 (-13 (-157) (-655 (-382 (-522))))) (-14 *4 (-850))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-895)))))
+(((*1 *1) (-4 *1 (-324)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *5)) (-4 *5 (-405 *4))
+ (-4 *4 (-13 (-514) (-784) (-135)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-588 (-1081 *5)))
+ (|:| |prim| (-1081 *5))))
+ (-5 *1 (-407 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-514) (-784) (-135)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1081 *3))
+ (|:| |pol2| (-1081 *3)) (|:| |prim| (-1081 *3))))
+ (-5 *1 (-407 *4 *3)) (-4 *3 (-27)) (-4 *3 (-405 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-881 *5)) (-5 *4 (-1085)) (-4 *5 (-13 (-338) (-135)))
+ (-5 *2
+ (-2 (|:| |coef1| (-522)) (|:| |coef2| (-522))
+ (|:| |prim| (-1081 *5))))
+ (-5 *1 (-888 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-588 (-881 *5))) (-5 *4 (-588 (-1085)))
+ (-4 *5 (-13 (-338) (-135)))
+ (-5 *2
+ (-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 *5)))
+ (|:| |prim| (-1081 *5))))
+ (-5 *1 (-888 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-588 (-881 *6))) (-5 *4 (-588 (-1085))) (-5 *5 (-1085))
+ (-4 *6 (-13 (-338) (-135)))
+ (-5 *2
+ (-2 (|:| -2977 (-588 (-522))) (|:| |poly| (-588 (-1081 *6)))
+ (|:| |prim| (-1081 *6))))
+ (-5 *1 (-888 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013))
- (-5 *2 (-1 *5)) (-5 *1 (-621 *4 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-793 *5))
- (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6))
- (-4 *6 (-425))))
+ (-12 (-5 *3 (-588 (-202))) (-5 *4 (-708)) (-5 *2 (-628 (-202)))
+ (-5 *1 (-281)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1081 *1)) (-5 *4 (-1085)) (-4 *1 (-27))
+ (-5 *2 (-588 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1081 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-881 *1)) (-4 *1 (-27)) (-5 *2 (-588 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-784) (-514))) (-5 *2 (-588 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *2 (-588 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-628 (-202))) (-5 *4 (-522)) (-5 *5 (-108))
+ (-5 *2 (-960)) (-5 *1 (-683)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-522)) (-4 *3 (-157)) (-4 *5 (-348 *3))
+ (-4 *6 (-348 *3)) (-5 *1 (-627 *3 *5 *6 *2))
+ (-4 *2 (-626 *3 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1085))
+ (-5 *2 (-3 (|:| |fst| (-409)) (|:| -1367 "void"))) (-5 *1 (-1088)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-409)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-202)) (|:| |xend| (-202))
+ (|:| |fn| (-1166 (-291 (-202)))) (|:| |yinit| (-588 (-202)))
+ (|:| |intvals| (-588 (-202))) (|:| |g| (-291 (-202)))
+ (|:| |abserr| (-202)) (|:| |relerr| (-202))))
+ (-5 *2 (-354)) (-5 *1 (-184)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-915 *4 *5 *6 *7 *3))
+ (-4 *3 (-990 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-587 (-453 *5 *6))) (-5 *4 (-793 *5))
- (-14 *5 (-587 (-1084))) (-5 *2 (-453 *5 *6)) (-5 *1 (-575 *5 *6))
- (-4 *6 (-425)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-560 *3)) (-4 *3 (-13 (-404 *5) (-27) (-1105)))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-538 *3)) (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1067)) (-5 *2 (-1170)) (-5 *1 (-535)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1065 *3)) (-5 *1 (-158 *3)) (-4 *3 (-282)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-984 *2 *3 *4)) (-4 *2 (-970)) (-4 *3 (-729))
- (-4 *4 (-783)) (-4 *2 (-425)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4234)) (-4 *1 (-347 *2)) (-4 *2 (-1119))
- (-4 *2 (-783))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4234))
- (-4 *1 (-347 *3)) (-4 *3 (-1119)))))
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-915 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-426)) (-4 *5 (-730)) (-4 *6 (-784))
+ (-4 *7 (-985 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1021 *4 *5 *6 *7 *3)) (-4 *3 (-990 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-588 *3)) (-4 *3 (-990 *5 *6 *7 *8)) (-4 *5 (-426))
+ (-4 *6 (-730)) (-4 *7 (-784)) (-4 *8 (-985 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1021 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-202) (-202))) (-5 *1 (-293)) (-5 *3 (-202)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013))
- (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *4 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-612 *3)) (-4 *3 (-783))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-616 *3)) (-4 *3 (-783))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-755 *3)) (-4 *3 (-783)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-130 *3 *4 *2))
- (-4 *2 (-347 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-513)) (-4 *5 (-918 *4)) (-4 *2 (-347 *4))
- (-5 *1 (-472 *4 *5 *2 *3)) (-4 *3 (-347 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-627 *5)) (-4 *5 (-918 *4)) (-4 *4 (-513))
- (-5 *2 (-627 *4)) (-5 *1 (-630 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-513)) (-4 *4 (-918 *3)) (-5 *1 (-1134 *3 *4 *2))
- (-4 *2 (-1141 *4)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-587 (-521))) (-5 *1 (-1023)) (-5 *3 (-521)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-909 *2)) (-4 *2 (-1105)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-849))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-707)))))
+ (-12 (-4 *5 (-426)) (-4 *6 (-730)) (-4 *7 (-784))
+ (-4 *3 (-985 *5 *6 *7))
+ (-5 *2 (-588 (-2 (|:| |val| *3) (|:| -1886 *4))))
+ (-5 *1 (-991 *5 *6 *7 *3 *4)) (-4 *4 (-990 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-821 *4)) (-4 *4 (-1014)) (-5 *1 (-818 *4 *3))
+ (-4 *3 (-1014)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-382 (-881 *4))) (-4 *4 (-283))
+ (-5 *2 (-382 (-393 (-881 *4)))) (-5 *1 (-966 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-512 *2)) (-4 *2 (-13 (-379) (-1106)))))
+ ((*1 *1 *1 *1) (-4 *1 (-730))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-513))) (-5 *1 (-252 *3 *2))
- (-4 *2 (-13 (-404 *3) (-927))))))
+ (-12 (-4 *3 (-13 (-784) (-514))) (-5 *1 (-252 *3 *2))
+ (-4 *2 (-13 (-405 *3) (-928))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-521))) (-5 *1 (-870)) (-5 *3 (-521))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-282)) (-4 *4 (-347 *3)) (-4 *5 (-347 *3))
- (-5 *1 (-1035 *3 *4 *5 *2)) (-4 *2 (-625 *3 *4 *5)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-337)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-135)) (-4 *2 (-282)) (-4 *2 (-425)) (-4 *3 (-783))
- (-4 *4 (-729)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-877 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-290 (-521))) (-5 *1 (-1030))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-783) (-425))) (-5 *1 (-1111 *3 *2))
- (-4 *2 (-13 (-404 *3) (-1105))))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-560 *3))
- (-4 *3 (-13 (-404 *5) (-27) (-1105)))
- (-4 *5 (-13 (-425) (-961 (-521)) (-783) (-135) (-583 (-521))))
- (-5 *2 (-2 (|:| -1347 *3) (|:| |coeff| *3)))
- (-5 *1 (-523 *5 *3 *6)) (-4 *6 (-1013)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-970)) (-14 *3 (-587 (-1084)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-200 *2 *3)) (-4 *2 (-13 (-970) (-783)))
- (-14 *3 (-587 (-1084))))))
+ (-12 (-5 *3 (-588 *7)) (-4 *7 (-985 *4 *5 *6)) (-4 *4 (-514))
+ (-4 *5 (-730)) (-4 *6 (-784)) (-5 *2 (-108))
+ (-5 *1 (-904 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-478 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-784)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-784)) (-5 *2 (-588 (-588 (-588 *4))))
+ (-5 *1 (-1092 *4)) (-5 *3 (-588 (-588 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-132)))))
+(((*1 *1 *2) (-12 (-5 *2 (-588 (-132))) (-5 *1 (-129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1068)) (-5 *1 (-129)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-849)) (-5 *2 (-707)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-850)) (-5 *2 (-708)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-521)) (-5 *4 (-627 (-202))) (-5 *5 (-202))
- (-5 *2 (-959)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-5 *2 (-849)) (-5 *1 (-638))))
- ((*1 *2 *2) (-12 (-5 *2 (-849)) (-5 *1 (-638)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-154 *5)) (-4 *5 (-13 (-404 *4) (-927) (-1105)))
- (-4 *4 (-13 (-513) (-783)))
- (-4 *2 (-13 (-404 (-154 *4)) (-927) (-1105)))
- (-5 *1 (-550 *4 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 (-880 *4))) (-4 *4 (-425)) (-5 *2 (-108))
- (-5 *1 (-334 *4 *5)) (-14 *5 (-587 (-1084)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-716 *4 (-793 *5)))) (-4 *4 (-425))
- (-14 *5 (-587 (-1084))) (-5 *2 (-108)) (-5 *1 (-572 *4 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-950 (-776 (-521))))
- (-5 *3 (-1065 (-2 (|:| |k| (-521)) (|:| |c| *4)))) (-4 *4 (-970))
- (-5 *1 (-546 *4)))))
-((-1197 . 724882) (-1198 . 724620) (-1199 . 724432) (-1200 . 724333)
- (-1201 . 724215) (-1202 . 724106) (-1203 . 723925) (-1204 . 723654)
- (-1205 . 723322) (-1206 . 723258) (-1207 . 723053) (-1208 . 722946)
- (-1209 . 722838) (-1210 . 722772) (-1211 . 722706) (-1212 . 722623)
- (-1213 . 722183) (-1214 . 721968) (-1215 . 721825) (-1216 . 721617)
- (-1217 . 721506) (-1218 . 721432) (-1219 . 721363) (-1220 . 721150)
- (-1221 . 720829) (-1222 . 720711) (-1223 . 720613) (-1224 . 719709)
- (-1225 . 719568) (-1226 . 719428) (-1227 . 719311) (-1228 . 719228)
- (-1229 . 719076) (-1230 . 718862) (-1231 . 718736) (-1232 . 718578)
- (-1233 . 718501) (-1234 . 718277) (-1235 . 718137) (-1236 . 717982)
- (-1237 . 717901) (-1238 . 717845) (-1239 . 717730) (-1240 . 717622)
- (-1241 . 717549) (-1242 . 715419) (-1243 . 715364) (-1244 . 714953)
- (-1245 . 714088) (-1246 . 713988) (-1247 . 713936) (-1248 . 713849)
- (-1249 . 713676) (-1250 . 713609) (-1251 . 713504) (-1252 . 713363)
- (-1253 . 712126) (-1254 . 712039) (-1255 . 711513) (-1256 . 711408)
- (-1257 . 711299) (-1258 . 711228) (-1259 . 711132) (-1260 . 710802)
- (-1261 . 710749) (-1262 . 710608) (-1263 . 710450) (-1264 . 710324)
- (-1265 . 709839) (-1266 . 709777) (-1267 . 709607) (-1268 . 709474)
- (-1269 . 709405) (-1270 . 709158) (-1271 . 709047) (-1272 . 708992)
- (-1273 . 708834) (-1274 . 708757) (-1275 . 708648) (-1276 . 708554)
- (-1277 . 708438) (-1278 . 708364) (-1279 . 708229) (-1280 . 706828)
- (-1281 . 706729) (-1282 . 706644) (-1283 . 706287) (-1284 . 706169)
- (-1285 . 706116) (-1286 . 706007) (-1287 . 705920) (-1288 . 705654)
- (-1289 . 705591) (-1290 . 705534) (-1291 . 705259) (-1292 . 705111)
- (-1293 . 704906) (-1294 . 704840) (-1295 . 704787) (-1296 . 700266)
- (-1297 . 700120) (-1298 . 699975) (-1299 . 699642) (-1300 . 699330)
- (-1301 . 699104) (-1302 . 698582) (-1303 . 698444) (-1304 . 698373)
- (-1305 . 698290) (-1306 . 697972) (-1307 . 697887) (-1308 . 697701)
- (-1309 . 697616) (-1310 . 697415) (-1311 . 697309) (-1312 . 696964)
- (-1313 . 696854) (-1314 . 696714) (-1315 . 696560) (-1316 . 696120)
- (-1317 . 695833) (-1318 . 694537) (-1319 . 694422) (-1320 . 694294)
- (-1321 . 694134) (-1322 . 694003) (-1323 . 693575) (-1324 . 693396)
- (-1325 . 693336) (-1326 . 693079) (-1327 . 692984) (-1328 . 692873)
- (-1329 . 692620) (-1330 . 692564) (-1331 . 692383) (-1332 . 692297)
- (-1333 . 692231) (-1334 . 692090) (-1335 . 691840) (-1336 . 691623)
- (-1337 . 691467) (-1338 . 691393) (-1339 . 691051) (-1340 . 690862)
- (-1341 . 690157) (-1342 . 689829) (-1343 . 689777) (-1344 . 689749)
- (-1345 . 689563) (-1346 . 689486) (-1347 . 689431) (-1348 . 688776)
- (-1349 . 688632) (-1350 . 688388) (-1351 . 688119) (-1352 . 688013)
- (-1353 . 687936) (-1354 . 687879) (-1355 . 687799) (-1356 . 687771)
- (-1357 . 687640) (-1358 . 687192) (-1359 . 687015) (-1360 . 686897)
- (-1361 . 686509) (-1362 . 685745) (-1363 . 685558) (-1364 . 685505)
- (-1365 . 685075) (-1366 . 685046) (-1367 . 684735) (-1368 . 684640)
- (-1369 . 684422) (-1370 . 684285) (-1371 . 684190) (-1372 . 684107)
- (-1373 . 683894) (-1374 . 683808) (-1375 . 683724) (-1376 . 683667)
- (-1377 . 683571) (-1378 . 683418) (-1379 . 683238) (-1380 . 683166)
- (-1381 . 683018) (-1382 . 682935) (-1383 . 682875) (-1384 . 682266)
- (-1385 . 682175) (-1386 . 681970) (-1387 . 681918) (-1388 . 681828)
- (-1389 . 681707) (-1390 . 681652) (-1391 . 681273) (-1392 . 681168)
- (-1393 . 667105) (-1394 . 666880) (-1395 . 666501) (-1396 . 666397)
- (-1397 . 666341) (-1398 . 666292) (-1399 . 666099) (-1400 . 665922)
- (-1401 . 665872) (-1402 . 665706) (-1403 . 665567) (-1404 . 665438)
- (-1405 . 665370) (-1406 . 665040) (-1407 . 664988) (-1408 . 664921)
- (-1409 . 664772) (-1410 . 664469) (-1411 . 664401) (-1412 . 664060)
- (-1413 . 663946) (-1414 . 663827) (-1415 . 663718) (-1416 . 663474)
- (-1417 . 663287) (-1418 . 663068) (-1419 . 662892) (-1420 . 662740)
- (-1421 . 662673) (-1422 . 662619) (-1423 . 662438) (-1424 . 662283)
- (-1425 . 662212) (-1426 . 662134) (-1427 . 661998) (-1428 . 661754)
- (-1429 . 661155) (-1430 . 661102) (-1431 . 661005) (-1432 . 660939)
- (-1433 . 660842) (-1434 . 660685) (-1435 . 660600) (-1436 . 660515)
- (-1437 . 660190) (-1438 . 655488) (-1439 . 655405) (-1440 . 655377)
- (-1441 . 655027) (-1442 . 654883) (-1443 . 654548) (-1444 . 653773)
- (-1445 . 653720) (-1446 . 653504) (-1447 . 653199) (-1448 . 653078)
- (-1449 . 653004) (-1450 . 652683) (-1451 . 652390) (-1452 . 652111)
- (-1453 . 651294) (-1454 . 651156) (-1455 . 650990) (-1456 . 650844)
- (-1457 . 650735) (-1458 . 650617) (-1459 . 650589) (-1460 . 650532)
- (-1461 . 650308) (-1462 . 650203) (-1463 . 650069) (-1464 . 649995)
- (-1465 . 649936) (-1466 . 649774) (-1467 . 649664) (-1468 . 649372)
- (-1469 . 649120) (-1470 . 649048) (-1471 . 648886) (-1472 . 648831)
- (-1473 . 648685) (-1474 . 648566) (-1475 . 648425) (-1476 . 648318)
- (-1477 . 648231) (-1478 . 647957) (-1479 . 647801) (-1480 . 647609)
- (-1481 . 647578) (-1482 . 647521) (-1483 . 647112) (-1484 . 646833)
- (-1485 . 646692) (-1486 . 646394) (-1487 . 646241) (-1488 . 646182)
- (-1489 . 646085) (-1490 . 645898) (-1491 . 645696) (-1492 . 645630)
- (-1493 . 645441) (-1494 . 645255) (-1495 . 645181) (-1496 . 639864)
- (-1497 . 639691) (-1498 . 639460) (-1499 . 637885) (-1500 . 637725)
- (-1501 . 637121) (-1502 . 636931) (-1503 . 636793) (-1504 . 636703)
- (-1505 . 636430) (-1506 . 636356) (-1507 . 636139) (-1508 . 635765)
- (-1509 . 635697) (-1510 . 635567) (-1511 . 635430) (-1512 . 635350)
- (-1513 . 635188) (-1514 . 635062) (-1515 . 635002) (-1516 . 634888)
- (-1517 . 634833) (-1518 . 634704) (-1519 . 634617) (-1520 . 634516)
- (-1521 . 634289) (-1522 . 634111) (-1523 . 633841) (-1524 . 633632)
- (-1525 . 633561) (-1526 . 633001) (-1527 . 632949) (-1528 . 632897)
- (-1529 . 632764) (-1530 . 632630) (-1531 . 632414) (-1532 . 632317)
- (-1533 . 631207) (-1534 . 631133) (-1535 . 631079) (-1536 . 630747)
- (-1537 . 630635) (-1538 . 630535) (-1539 . 630462) (-1540 . 630224)
- (-1541 . 630156) (-1542 . 630012) (-1543 . 629803) (-1544 . 629702)
- (-1545 . 629649) (-1546 . 629222) (-1547 . 629156) (-1548 . 629124)
- (-1549 . 628856) (-1550 . 628791) (-1551 . 628573) (-1552 . 628490)
- (-1553 . 628189) (-1554 . 628069) (-1555 . 627768) (-1556 . 627687)
- (-1557 . 627613) (-1558 . 627422) (-1559 . 627372) (-1560 . 627263)
- (-1561 . 627179) (-1562 . 627094) (-1563 . 626503) (-1564 . 626329)
- (-1565 . 626213) (-1566 . 626154) (-1567 . 625945) (-1568 . 625877)
- (-1569 . 625571) (-1570 . 625515) (-1571 . 625293) (-1572 . 625216)
- (-1573 . 624253) (-1574 . 624201) (-1575 . 624106) (-1576 . 623979)
- (-1577 . 623879) (-1578 . 623793) (-1579 . 623706) (-1580 . 623239)
- (-1581 . 623062) (-1582 . 622820) (-1583 . 622437) (-1584 . 622317)
- (-1585 . 622170) (-1586 . 622100) (-1587 . 622026) (-1588 . 621867)
- (-1589 . 621628) (-1590 . 620759) (-1591 . 620658) (-1592 . 619802)
- (-1593 . 619685) (-1594 . 619199) (-1595 . 619077) (-1596 . 618906)
- (-1597 . 618819) (-1598 . 618681) (-1599 . 618583) (-1600 . 618407)
- (-1601 . 618092) (-1602 . 618020) (-1603 . 617907) (-1604 . 617792)
- (-1605 . 617514) (-1606 . 617390) (-1607 . 617005) (-1608 . 616953)
- (-1609 . 616854) (-1610 . 616522) (-1611 . 616445) (-1612 . 616247)
- (-1613 . 616120) (-1614 . 616054) (-1615 . 615816) (-1616 . 615660)
- (-1617 . 615551) (-1618 . 615463) (-1619 . 615386) (-1620 . 615226)
- (-1621 . 615195) (-1622 . 614861) (-1623 . 613437) (-1624 . 613352)
- (-1625 . 613286) (-1626 . 613237) (-1627 . 613100) (-1628 . 611916)
- (-1629 . 611727) (-1630 . 611505) (-1631 . 610500) (-1632 . 610423)
- (-1633 . 610395) (-1634 . 610168) (-1635 . 609289) (-1636 . 609218)
- (-1637 . 609088) (-1638 . 608600) (-1639 . 607422) (-1640 . 607227)
- (-1641 . 607060) (-1642 . 606898) (-1643 . 606813) (-1644 . 606425)
- (-1645 . 606391) (-1646 . 606147) (-1647 . 606022) (-1648 . 603824)
- (-1649 . 603642) (-1650 . 603557) (-1651 . 603390) (-1652 . 603337)
- (-1653 . 603090) (-1654 . 602875) (-1655 . 602774) (-1656 . 602709)
- (-1657 . 602637) (-1658 . 602151) (-1659 . 601149) (-1660 . 601097)
- (-1661 . 601038) (-1662 . 600977) (-1663 . 600811) (-1664 . 600521)
- (-1665 . 600420) (-1666 . 600191) (-1667 . 600079) (-1668 . 599965)
- (-1669 . 599894) (-1670 . 599822) (-1671 . 599748) (-1672 . 599617)
- (-1673 . 599502) (-1674 . 599357) (-1675 . 599041) (-1676 . 598807)
- (-1677 . 598690) (-1678 . 598260) (-1679 . 597968) (-1680 . 597888)
- (-1681 . 597798) (-1682 . 597549) (-1683 . 597498) (-1684 . 597339)
- (-1685 . 596867) (-1686 . 596486) (-1687 . 596376) (-1688 . 596185)
- (-1689 . 596066) (-1690 . 595983) (-1691 . 595930) (-1692 . 595807)
- (-1693 . 595724) (-1694 . 595594) (-1695 . 595487) (-1696 . 595331)
- (-1697 . 595082) (-1698 . 594838) (-1699 . 594772) (-1700 . 594405)
- (-1701 . 594345) (-1702 . 594029) (-1703 . 593958) (-1704 . 593874)
- (-1705 . 593769) (-1706 . 593656) (-1707 . 593471) (-1708 . 593376)
- (-1709 . 593292) (-1710 . 593113) (-1711 . 593026) (-1712 . 592896)
- (-1713 . 592721) (-1714 . 592212) (-1715 . 592151) (-1716 . 592057)
- (-1717 . 591512) (-1718 . 590825) (-1719 . 590655) (-1720 . 590518)
- (-1721 . 590411) (-1722 . 590051) (-1723 . 589961) (-1724 . 589909)
- (-1725 . 589838) (-1726 . 589671) (-1727 . 589617) (-1728 . 589530)
- (-1729 . 589340) (-1730 . 589247) (-1731 . 589100) (-1732 . 588953)
- (-1733 . 588826) (-1734 . 588651) (-1735 . 588126) (-1736 . 587976)
- (-1737 . 587903) (-1738 . 587759) (-1739 . 587628) (-1740 . 587562)
- (-1741 . 587368) (-1742 . 587340) (-1743 . 587182) (-1744 . 587086)
- (-1745 . 586703) (-1746 . 586566) (-1747 . 586482) (-1748 . 586060)
- (-1749 . 579106) (-1750 . 578935) (-1751 . 578852) (-1752 . 578780)
- (-1753 . 578625) (-1754 . 578265) (-1755 . 578158) (-1756 . 577979)
- (-1757 . 577880) (-1758 . 577828) (-1759 . 577769) (-1760 . 577666)
- (-1761 . 577371) (-1762 . 577318) (-1763 . 576931) (-1764 . 576860)
- (-1765 . 576705) (-1766 . 576637) (-1767 . 576535) (-1768 . 576329)
- (-1769 . 576269) (-1770 . 576168) (-1771 . 575890) (-1772 . 575731)
- (-1773 . 575500) (-1774 . 575466) (-1775 . 575414) (-1776 . 575209)
- (-1777 . 575132) (-1778 . 575047) (-1779 . 574994) (-1780 . 574823)
- (-1781 . 574546) (-1782 . 574474) (-1783 . 574409) (-1784 . 574321)
- (-1785 . 574005) (-1786 . 573847) (-1787 . 573272) (-1788 . 573177)
- (-1789 . 571459) (-1790 . 571430) (-1791 . 571031) (-1792 . 570904)
- (-1793 . 569908) (-1794 . 569645) (-1795 . 569071) (-1796 . 568916)
- (-1797 . 568845) (-1798 . 568704) (-1799 . 568653) (-1800 . 568567)
- (-1801 . 568464) (-1802 . 567512) (-1803 . 566938) (-1804 . 566865)
- (-1805 . 566785) (-1806 . 566616) (-1807 . 566509) (-1808 . 566213)
- (-1809 . 566025) (-1810 . 565948) (-1811 . 565374) (-1812 . 565206)
- (-1813 . 565075) (-1814 . 565044) (-1815 . 564922) (-1816 . 563730)
- (-1817 . 563601) (-1818 . 563529) (-1819 . 563443) (-1820 . 563359)
- (-1821 . 562785) (-1822 . 562701) (-1823 . 562276) (-1824 . 562153)
- (-1825 . 562125) (-1826 . 562018) (-1827 . 561886) (-1828 . 561791)
- (-1829 . 561659) (-1830 . 561085) (-1831 . 560892) (-1832 . 560812)
- (-1833 . 560660) (-1834 . 559410) (-1835 . 559316) (-1836 . 559260)
- (-1837 . 559178) (-1838 . 558509) (-1839 . 558184) (-1840 . 557836)
- (-1841 . 557669) (-1842 . 557614) (-1843 . 557311) (-1844 . 557206)
- (-1845 . 557056) (-1846 . 556942) (-1847 . 556869) (-1848 . 556482)
- (-1849 . 556329) (-1850 . 556217) (-1851 . 556143) (-1852 . 556030)
- (-1853 . 552745) (-1854 . 552352) (-1855 . 552272) (-1856 . 552169)
- (-1857 . 551967) (-1858 . 551887) (-1859 . 551810) (-1860 . 551683)
- (-1861 . 551611) (-1862 . 551202) (-1863 . 551119) (-1864 . 550938)
- (-1865 . 550886) (-1866 . 550834) (-1867 . 550691) (-1868 . 550583)
- (-1869 . 549960) (-1870 . 549849) (-1871 . 549745) (-1872 . 549666)
- (-1873 . 549563) (-1874 . 549294) (-1875 . 548999) (-1876 . 548870)
- (-1877 . 548356) (-1878 . 548056) (-1879 . 548003) (-1880 . 547972)
- (-1881 . 547899) (-1882 . 547826) (-1883 . 547755) (-1884 . 547643)
- (-1885 . 547559) (-1886 . 547490) (-1887 . 547381) (-1888 . 547221)
- (-1889 . 546772) (-1890 . 546678) (-1891 . 546580) (-1892 . 546527)
- (-1893 . 546398) (-1894 . 545730) (-1895 . 545677) (-1896 . 545453)
- (-1897 . 545243) (-1898 . 545180) (-1899 . 545025) (-1900 . 544884)
- (-1901 . 544481) (-1902 . 544237) (-1903 . 544154) (-1904 . 543719)
- (-1905 . 543661) (-1906 . 543568) (-1907 . 543489) (-1908 . 543438)
- (-1909 . 543386) (-1910 . 543259) (-1911 . 543188) (-1912 . 542965)
- (-1913 . 542900) (-1914 . 542757) (-1915 . 542646) (-1916 . 542547)
- (-1917 . 542443) (-1918 . 542191) (-1919 . 542117) (-1920 . 542047)
- (-1921 . 541892) (-1922 . 541791) (-1923 . 541720) (-1924 . 541496)
- (-1925 . 541283) (-1926 . 541121) (-1927 . 540696) (-1928 . 540646)
- (-1929 . 540437) (-1930 . 540367) (-1931 . 540121) (-1932 . 538966)
- (-1933 . 538736) (-1934 . 538654) (-1935 . 538592) (-1936 . 538468)
- (-1937 . 538419) (-1938 . 538112) (-1939 . 538029) (-1940 . 537956)
- (-1941 . 537841) (-1942 . 537785) (-1943 . 537730) (-1944 . 537702)
- (-1945 . 537388) (-1946 . 537326) (-1947 . 537257) (-1948 . 537119)
- (-1949 . 537034) (-1950 . 537000) (-1951 . 536941) (-1952 . 536613)
- (-1953 . 536518) (-1954 . 536487) (-1955 . 536146) (-1956 . 536021)
- (-1957 . 535914) (-1958 . 535114) (-1959 . 534997) (-1960 . 534911)
- (-1961 . 534656) (-1962 . 534269) (-1963 . 533852) (-1964 . 533352)
- (-1965 . 533217) (-1966 . 533133) (-1967 . 533053) (-1968 . 533025)
- (-1969 . 532725) (-1970 . 532388) (-1971 . 532244) (-1972 . 532143)
- (-1973 . 531978) (-1974 . 526472) (-1975 . 526420) (-1976 . 526238)
- (-1977 . 525999) (-1978 . 525898) (-1979 . 525640) (-1980 . 525587)
- (-1981 . 525250) (-1982 . 525165) (-1983 . 525030) (-1984 . 524642)
- (-1985 . 524351) (-1986 . 524064) (-1987 . 523911) (-1988 . 523746)
- (-1989 . 523652) (-1990 . 523545) (-1991 . 523465) (-1992 . 523265)
- (-1993 . 522812) (-1994 . 522674) (-1995 . 522583) (-1996 . 522233)
- (-1997 . 522090) (-1998 . 522023) (-1999 . 521844) (-2000 . 521712)
- (-2001 . 521517) (-2002 . 521368) (-2003 . 521231) (-2004 . 520884)
- (-2005 . 520786) (-2006 . 520662) (-2007 . 520526) (-2008 . 520424)
- (-2009 . 520313) (-2010 . 520148) (-2011 . 520011) (-2012 . 519959)
- (-2013 . 519891) (-2014 . 519863) (-2015 . 519783) (-2016 . 518337)
- (-2017 . 518267) (-2018 . 517878) (-2019 . 517782) (-2020 . 517203)
- (-2021 . 516819) (-2022 . 516603) (-2023 . 516421) (-2024 . 516269)
- (-2025 . 516217) (-2026 . 515941) (-2027 . 515847) (-2028 . 515712)
- (-2029 . 515634) (-2030 . 515571) (-2031 . 515284) (-2032 . 515202)
- (-2033 . 515067) (-2034 . 515001) (-2035 . 514889) (-2036 . 514764)
- (-2037 . 514693) (-2038 . 514639) (-2039 . 514273) (-2040 . 514131)
- (-2041 . 513983) (-2042 . 513694) (-2043 . 512960) (-2044 . 512326)
- (-2045 . 512277) (-2046 . 512227) (-2047 . 512171) (-2048 . 512092)
- (-2049 . 512040) (-2050 . 511936) (-2051 . 511777) (-2052 . 511105)
- (-2053 . 510862) (-2054 . 510791) (-2055 . 510687) (-2056 . 510314)
- (-2057 . 510270) (-2058 . 510136) (-2059 . 509585) (-2060 . 509392)
- (-2061 . 509268) (-2062 . 509203) (-2063 . 509119) (-2064 . 508903)
- (-2065 . 508736) (-2066 . 508617) (-2067 . 508562) (-2068 . 508478)
- (-2069 . 508395) (-2070 . 508005) (-2071 . 507847) (-2072 . 507735)
- (-2073 . 507558) (-2074 . 507330) (-2075 . 507177) (-2076 . 507009)
- (-2077 . 506171) (-2078 . 506098) (-2079 . 506032) (-2080 . 504849)
- (-2081 . 504734) (-2082 . 504481) (-2083 . 504129) (-2084 . 503707)
- (-2085 . 503670) (-2086 . 503576) (-2087 . 503498) (-2088 . 503403)
- (-2089 . 503005) (-2090 . 501902) (-2091 . 501793) (-2092 . 501740)
- (-2093 . 501621) (-2094 . 501569) (-2095 . 501338) (-2096 . 501265)
- (-2097 . 500877) (-2098 . 498777) (-2099 . 498611) (-2100 . 498222)
- (-2101 . 498059) (-2102 . 497941) (-2103 . 497651) (-2104 . 497622)
- (-2105 . 497376) (-2106 . 497302) (-2107 . 497088) (-2108 . 496915)
- (-2109 . 496860) (-2110 . 496807) (-2111 . 496701) (-2112 . 496648)
- (-2113 . 496542) (-2114 . 496440) (-2115 . 496245) (-2116 . 495691)
- (-2117 . 495521) (-2118 . 495416) (-2119 . 495154) (-2120 . 494908)
- (-2121 . 494724) (-2122 . 494562) (-2123 . 494392) (-2124 . 494260)
- (-2125 . 494188) (-2126 . 494018) (-2127 . 493821) (-2128 . 493613)
- (-2129 . 493487) (-2130 . 493403) (-2131 . 493305) (-2132 . 493239)
- (-2133 . 492902) (-2134 . 492250) (-2135 . 492193) (-2136 . 491747)
- (-2137 . 491562) (-2138 . 491433) (-2139 . 491312) (-2140 . 491219)
- (-2141 . 491149) (-2142 . 490930) (-2143 . 490615) (-2144 . 490382)
- (-2145 . 490065) (-2146 . 489960) (-2147 . 489829) (-2148 . 489378)
- (-2149 . 489321) (-2150 . 489104) (-2151 . 488999) (-2152 . 488912)
- (-2153 . 488798) (-2154 . 488567) (-2155 . 488480) (-2156 . 488407)
- (-2157 . 488298) (-2158 . 488202) (-2159 . 488093) (-2160 . 487986)
- (-2161 . 487883) (-2162 . 487684) (-2163 . 487618) (-2164 . 487441)
- (-2165 . 487386) (-2166 . 487142) (-2167 . 487012) (-2168 . 486860)
- (-2169 . 486832) (-2170 . 486745) (-2171 . 486638) (-2172 . 486568)
- (-2173 . 486457) (-2174 . 486321) (-2175 . 486077) (-2176 . 486025)
- (-2177 . 485916) (-2178 . 485784) (-2179 . 485694) (-2180 . 485588)
- (-2181 . 485505) (-2182 . 485422) (-2183 . 485345) (-2184 . 485147)
- (-2185 . 484897) (-2186 . 484489) (-2187 . 484147) (-2188 . 484077)
- (-2189 . 483908) (-2190 . 483767) (-2191 . 482581) (-2192 . 482401)
- (-2193 . 480249) (-2194 . 479973) (-2195 . 479773) (-2196 . 479634)
- (-2197 . 479393) (-2198 . 479319) (-2199 . 479020) (-2200 . 478814)
- (-2201 . 478625) (-2202 . 478569) (-2203 . 478322) (-2204 . 478213)
- (-2205 . 477843) (-2206 . 476959) (-2207 . 476741) (-2208 . 476611)
- (-2209 . 476279) (-2210 . 476208) (-2211 . 475917) (-2212 . 475794)
- (-2213 . 475457) (-2214 . 475372) (-2215 . 475268) (-2216 . 475162)
- (-2217 . 475110) (-2218 . 475058) (-2219 . 474600) (-2220 . 474283)
- (-2221 . 474080) (-2222 . 473954) (-2223 . 451085) (-2224 . 450714)
- (-2225 . 450616) (-2226 . 450437) (-2227 . 450157) (-2228 . 449797)
- (-2229 . 449702) (-2230 . 449649) (-2231 . 449453) (-2232 . 449031)
- (-2233 . 448951) (-2234 . 446199) (-2235 . 446006) (-2236 . 445755)
- (-2237 . 445695) (-2238 . 445559) (-2239 . 445228) (-2240 . 444867)
- (-2241 . 444726) (-2242 . 444698) (-2243 . 444646) (-2244 . 443817)
- (-2245 . 443767) (-2246 . 443286) (-2247 . 443073) (-2248 . 442926)
- (-2249 . 442853) (-2250 . 442556) (-2251 . 442486) (-2252 . 442304)
- (-2253 . 441502) (-2254 . 441415) (-2255 . 441349) (-2256 . 440941)
- (-2257 . 440804) (-2258 . 440752) (-2259 . 440629) (-2260 . 440459)
- (-2261 . 439604) (-2262 . 439222) (-2263 . 439114) (-2264 . 438974)
- (-2265 . 438615) (-2266 . 438512) (-2267 . 438419) (-2268 . 438382)
- (-2269 . 438196) (-2270 . 437970) (-2271 . 437807) (-2272 . 437752)
- (-2273 . 437505) (-2274 . 436911) (-2275 . 434130) (-2276 . 433954)
- (-2277 . 433901) (-2278 . 433385) (-2279 . 433332) (-2280 . 432956)
- (-2281 . 432835) (-2282 . 432738) (-2283 . 432525) (-2284 . 432422)
- (-2285 . 432370) (-2286 . 431270) (-2287 . 431201) (-2288 . 431128)
- (-2289 . 431019) (-2290 . 430966) (-2291 . 430862) (-2292 . 430807)
- (-2293 . 428555) (-2294 . 428502) (-2295 . 428421) (-2296 . 428060)
- (-2297 . 427974) (-2298 . 427746) (-2299 . 427555) (-2300 . 427446)
- (-2301 . 426892) (-2302 . 426795) (-2303 . 426694) (-2304 . 426624)
- (-2305 . 426521) (-2306 . 426213) (-2307 . 426185) (-2308 . 425821)
- (-2309 . 425768) (-2310 . 425668) (-2311 . 425596) (-2312 . 425480)
- (-2313 . 421492) (-2314 . 421385) (-2315 . 420627) (-2316 . 420547)
- (-2317 . 420473) (-2318 . 420228) (-2319 . 419616) (-2320 . 419557)
- (-2321 . 419472) (-2322 . 419039) (-2323 . 418944) (-2324 . 418820)
- (-2325 . 418662) (-2326 . 418439) (-2327 . 418310) (-2328 . 418222)
- (-2329 . 417796) (-2330 . 417280) (-2331 . 417127) (-2332 . 417044)
- (-2333 . 416974) (-2334 . 416768) (-2335 . 415483) (-2336 . 415328)
- (-2337 . 414058) (-2338 . 413956) (-2339 . 413776) (-2340 . 413427)
- (-2341 . 413365) (-2342 . 413253) (-2343 . 412949) (-2344 . 412811)
- (-2345 . 412745) (-2346 . 412593) (-2347 . 412281) (-2348 . 412133)
- (-2349 . 412063) (-2350 . 411736) (-2351 . 411664) (-2352 . 411530)
- (-2353 . 411422) (-2354 . 411323) (-2355 . 411236) (-2356 . 411092)
- (-2357 . 411021) (-2358 . 410853) (-2359 . 410776) (-2360 . 410691)
- (-2361 . 410609) (-2362 . 410515) (-2363 . 410463) (-2364 . 410313)
- (-2365 . 410106) (-2366 . 409902) (-2367 . 409803) (-2368 . 409725)
- (-2369 . 409626) (-2370 . 409548) (-2371 . 409496) (-2372 . 409444)
- (-2373 . 409218) (-2374 . 409097) (-2375 . 408932) (-2376 . 408812)
- (-2377 . 408541) (-2378 . 408426) (-2379 . 404266) (-2380 . 404166)
- (-2381 . 404036) (-2382 . 403884) (-2383 . 403788) (-2384 . 403739)
- (-2385 . 403380) (-2386 . 402901) (-2387 . 402806) (-2388 . 402595)
- (-2389 . 402486) (-2390 . 402452) (-2391 . 401986) (-2392 . 401841)
- (-2393 . 401767) (-2394 . 401695) (-2395 . 401540) (-2396 . 400239)
- (-2397 . 400086) (-2398 . 400036) (-2399 . 399913) (-2400 . 399762)
- (-2401 . 399304) (-2402 . 399233) (-2403 . 398986) (-2404 . 398862)
- (-2405 . 398655) (-2406 . 397736) (-2407 . 397541) (-2408 . 397378)
- (-2409 . 397259) (-2410 . 397102) (-2411 . 396789) (-2412 . 396576)
- (-2413 . 396396) (-2414 . 396215) (-2415 . 395950) (-2416 . 395833)
- (-2417 . 395678) (-2418 . 395494) (-2419 . 395407) (-2420 . 395081)
- (-2421 . 394871) (-2422 . 394741) (-2423 . 394639) (-2424 . 394586)
- (-2425 . 394276) (-2426 . 394112) (-2427 . 393791) (-2428 . 393143)
- (-2429 . 392926) (-2430 . 392762) (-2431 . 392659) (-2432 . 392564)
- (-2433 . 392149) (-2434 . 392115) (-2435 . 392004) (-2436 . 391881)
- (-2437 . 391829) (-2438 . 391723) (-2439 . 391644) (-2440 . 391591)
- (-2441 . 391557) (-2442 . 391505) (-2443 . 391229) (-2444 . 391127)
- (-2445 . 391026) (-2446 . 390897) (-2447 . 390420) (-2448 . 390298)
- (-2449 . 390197) (-2450 . 390027) (-2451 . 389716) (-2452 . 389629)
- (-2453 . 389421) (-2454 . 389239) (-2455 . 389159) (-2456 . 389072)
- (-2457 . 388947) (-2458 . 388695) (-2459 . 388415) (-2460 . 388348)
- (-2461 . 388084) (-2462 . 387999) (-2463 . 387892) (-2464 . 386727)
- (-2465 . 386664) (-2466 . 386609) (-2467 . 386510) (-2468 . 386365)
- (-2469 . 385449) (-2470 . 385363) (-2471 . 385262) (-2472 . 385234)
- (-2473 . 385165) (-2474 . 385080) (-2475 . 384760) (-2476 . 384224)
- (-2477 . 383979) (-2478 . 383863) (-2479 . 383829) (-2480 . 383717)
- (-2481 . 382175) (-2482 . 382101) (-2483 . 381677) (-2484 . 381534)
- (-2485 . 381464) (-2486 . 381390) (-2487 . 381298) (-2488 . 381062)
- (-2489 . 381028) (-2490 . 380527) (-2491 . 380456) (-2492 . 380404)
- (-2493 . 380297) (-2494 . 380171) (-2495 . 380087) (-2496 . 380059)
- (-2497 . 379861) (-2498 . 379681) (-2499 . 379427) (-2500 . 379354)
- (-2501 . 379305) (-2502 . 378734) (-2503 . 378514) (-2504 . 378226)
- (-2505 . 378100) (-2506 . 377998) (-2507 . 377891) (-2508 . 377836)
- (-2509 . 377787) (-2510 . 377734) (-2511 . 377656) (-2512 . 377500)
- (-2513 . 377444) (-2514 . 377364) (-2515 . 377269) (-2516 . 376990)
- (-2517 . 376920) (-2518 . 376400) (-2519 . 376291) (-2520 . 376217)
- (-2521 . 376150) (-2522 . 375479) (-2523 . 375206) (-2524 . 374659)
- (-2525 . 374606) (-2526 . 374549) (-2527 . 374427) (-2528 . 374347)
- (-2529 . 374240) (-2530 . 374097) (-2531 . 373830) (-2532 . 373779)
- (-2533 . 373581) (-2534 . 373469) (-2535 . 373315) (-2536 . 373206)
- (-2537 . 373049) (-2538 . 372929) (-2539 . 372813) (-2540 . 372659)
- (-2541 . 372582) (-2542 . 372342) (-2543 . 372212) (-2544 . 372111)
- (-2545 . 372030) (-2546 . 371877) (-2547 . 371821) (-2548 . 371659)
- (-2549 . 369880) (-2550 . 364781) (-2551 . 364616) (-2552 . 364443)
- (-2553 . 364391) (-2554 . 364318) (-2555 . 364247) (-2556 . 364021)
- (-2557 . 363943) (-2558 . 363848) (-2559 . 363789) (-2560 . 363736)
- (-2561 . 363596) (-2562 . 363497) (-2563 . 363372) (-2564 . 363129)
- (-2565 . 362951) (-2566 . 362786) (-2567 . 362575) (-2568 . 362420)
- (-2569 . 362267) (-2570 . 362034) (-2571 . 362000) (-2572 . 361921)
- (-2573 . 361812) (-2574 . 361742) (-2575 . 361631) (-2576 . 361396)
- (-2577 . 361343) (-2578 . 359978) (-2579 . 359895) (-2580 . 359544)
- (-2581 . 359093) (-2582 . 359037) (-2583 . 358789) (-2584 . 358531)
- (-2585 . 358452) (-2586 . 357854) (-2587 . 357769) (-2588 . 357661)
- (-2589 . 357563) (-2590 . 357466) (-2591 . 357379) (-2592 . 357266)
- (-2593 . 357137) (-2594 . 357018) (-2595 . 356952) (-2596 . 356867)
- (-2597 . 356728) (-2598 . 356610) (-2599 . 356391) (-2600 . 356265)
- (-2601 . 356183) (-2602 . 356134) (-2603 . 356051) (-2604 . 355930)
- (-2605 . 355821) (-2606 . 355722) (-2607 . 355667) (-2608 . 355556)
- (-2609 . 355457) (-2610 . 355429) (-2611 . 355346) (-2612 . 355172)
- (-2613 . 355065) (-2614 . 354637) (-2615 . 354415) (-2616 . 354319)
- (-2617 . 354267) (-2618 . 354100) (-2619 . 353861) (-2620 . 353651)
- (-2621 . 353464) (-2622 . 353304) (-2623 . 353252) (-2624 . 353029)
- (-2625 . 352936) (-2626 . 352415) (-2627 . 352320) (-2628 . 352162)
- (-2629 . 352085) (-2630 . 351846) (-2631 . 351730) (-2632 . 351656)
- (-2633 . 351363) (-2634 . 351311) (-2635 . 351130) (-2636 . 350982)
- (-2637 . 350838) (-2638 . 350774) (-2639 . 350521) (-2640 . 350145)
- (-2641 . 350045) (-2642 . 349971) (-2643 . 349872) (-2644 . 349791)
- (-2645 . 349550) (-2646 . 349498) (-2647 . 349402) (-2648 . 349295)
- (-2649 . 349226) (-2650 . 349060) (-2651 . 348994) (-2652 . 348890)
- (-2653 . 348503) (-2654 . 348365) (-2655 . 347982) (-2656 . 347930)
- (-2657 . 347758) (-2658 . 347663) (-2659 . 347444) (-2660 . 347291)
- (-2661 . 347148) (-2662 . 347055) (-2663 . 346984) (-2664 . 346794)
- (-2665 . 346673) (-2666 . 346645) (-2667 . 346567) (-2668 . 346455)
- (-2669 . 346402) (-2670 . 346317) (-2671 . 346261) (-2672 . 346208)
- (-2673 . 345742) (-2674 . 345313) (-2675 . 345233) (-2676 . 345101)
- (-2677 . 344938) (-2678 . 344866) (-2679 . 344731) (-2680 . 344658)
- (-2681 . 344585) (-2682 . 344175) (-2683 . 344105) (-2684 . 344007)
- (-2685 . 343660) (-2686 . 343542) (-2687 . 343240) (-2688 . 343188)
- (-2689 . 343101) (-2690 . 343045) (-2691 . 342983) (-2692 . 342765)
- (-2693 . 342698) (-2694 . 342254) (-2695 . 342175) (-2696 . 342078)
- (-2697 . 341942) (-2698 . 341833) (-2699 . 341454) (-2700 . 341364)
- (-2701 . 341277) (-2702 . 340786) (-2703 . 340758) (-2704 . 340605)
- (-2705 . 340489) (-2706 . 340396) (-2707 . 340226) (-2708 . 339951)
- (-2709 . 339844) (-2710 . 339721) (-2711 . 339577) (-2712 . 339498)
- (-2713 . 339434) (-2714 . 339155) (-2715 . 338999) (-2716 . 338886)
- (-2717 . 338830) (-2718 . 338715) (-2719 . 338591) (-2720 . 338492)
- (-2721 . 338440) (-2722 . 338358) (-2723 . 338031) (-2724 . 337841)
- (-2725 . 337619) (-2726 . 336876) (-2727 . 336773) (-2728 . 336652)
- (-2729 . 336541) (-2730 . 336038) (-2731 . 335986) (-2732 . 335879)
- (-2733 . 335672) (-2734 . 335544) (-2735 . 335435) (-2736 . 335364)
- (-2737 . 335244) (-2738 . 335145) (-2739 . 335090) (-2740 . 334946)
- (-2741 . 334320) (-2742 . 334249) (-2743 . 334050) (-2744 . 333504)
- (-2745 . 333416) (-2746 . 333120) (-2747 . 333064) (-2748 . 332998)
- (-2749 . 332964) (-2750 . 332808) (-2751 . 332749) (-2752 . 332008)
- (-2753 . 331934) (-2754 . 331844) (-2755 . 331750) (-2756 . 331670)
- (-2757 . 331329) (-2758 . 330618) (-2759 . 330590) (-2760 . 329525)
- (-2761 . 329354) (-2762 . 329326) (-2763 . 329230) (-2764 . 328489)
- (-2765 . 327735) (-2766 . 327511) (-2767 . 327399) (-2768 . 327263)
- (-2769 . 326889) (-2770 . 326823) (-2771 . 326719) (-2772 . 326018)
- (-2773 . 325839) (-2774 . 325725) (-2775 . 325037) (-2776 . 322129)
- (-2777 . 322034) (-2778 . 321576) (-2779 . 321493) (-2780 . 321412)
- (-2781 . 321250) (-2782 . 321183) (-2783 . 319971) (-2784 . 319837)
- (-2785 . 319565) (-2786 . 318989) (-2787 . 318906) (-2788 . 318847)
- (-2789 . 318750) (-2790 . 318665) (-2791 . 318572) (-2792 . 318376)
- (-2793 . 318303) (-2794 . 318205) (-2795 . 317935) (-2796 . 317359)
- (-2797 . 317290) (-2798 . 317253) (-2799 . 317158) (-2800 . 317087)
- (-2801 . 316954) (-2802 . 316839) (-2803 . 316640) (-2804 . 316547)
- (-2805 . 316370) (-2806 . 315794) (-2807 . 315095) (-2808 . 314943)
- (-2809 . 314699) (-2810 . 314665) (-2811 . 314433) (-2812 . 314056)
- (-2813 . 313971) (-2814 . 313865) (-2815 . 313706) (-2816 . 313427)
- (-2817 . 312741) (-2818 . 312064) (-2819 . 311946) (-2820 . 311526)
- (-2821 . 311431) (-2822 . 311175) (-2823 . 311095) (-2824 . 311008)
- (-2825 . 310529) (-2826 . 310270) (-2827 . 309584) (-2828 . 309439)
- (-2829 . 309184) (-2830 . 309147) (-2831 . 309044) (-2832 . 308639)
- (-2833 . 308364) (-2834 . 308252) (-2835 . 308028) (-2836 . 307976)
- (-2837 . 307873) (-2838 . 307124) (-2839 . 307071) (-2840 . 306806)
- (-2841 . 306510) (-2842 . 306216) (-2843 . 305675) (-2844 . 305644)
- (-2845 . 305413) (-2846 . 305286) (-2847 . 304936) (-2848 . 304829)
- (-2849 . 304631) (-2850 . 304057) (-2851 . 303950) (-2852 . 303840)
- (-2853 . 303460) (-2854 . 303377) (-2855 . 303278) (-2856 . 303140)
- (-2857 . 303039) (-2858 . 303008) (-2859 . 302747) (-2860 . 302669)
- (-2861 . 302421) (-2862 . 301847) (-2863 . 301796) (-2864 . 301686)
- (-2865 . 301396) (-2866 . 301340) (-2867 . 300927) (-2868 . 300739)
- (-2869 . 300665) (-2870 . 300565) (-2871 . 300285) (-2872 . 300114)
- (-2873 . 299996) (-2874 . 299422) (-2875 . 299315) (-2876 . 299245)
- (-2877 . 299138) (-2878 . 299056) (-2879 . 298949) (-2880 . 298791)
- (-2881 . 298591) (-2882 . 298539) (-2883 . 298384) (-2884 . 298120)
- (-2885 . 298089) (-2886 . 297402) (-2887 . 297199) (-2888 . 297092)
- (-2889 . 296870) (-2890 . 296358) (-2891 . 295977) (-2892 . 295893)
- (-2893 . 295770) (-2894 . 295688) (-2895 . 295482) (-2896 . 295272)
- (-2897 . 295142) (-2898 . 294455) (-2899 . 294403) (-2900 . 294329)
- (-2901 . 294171) (-2902 . 294094) (-2903 . 293871) (-2904 . 293576)
- (-2905 . 293490) (-2906 . 293420) (-2907 . 293319) (-2908 . 293285)
- (-2909 . 293212) (-2910 . 292525) (-2911 . 292218) (-2912 . 292149)
- (-2913 . 291674) (-2914 . 291580) (-2915 . 291477) (-2916 . 289715)
- (-2917 . 289224) (-2918 . 289171) (-2919 . 289065) (-2920 . 288978)
- (-2921 . 288403) (-2922 . 284341) (-2923 . 284154) (-2924 . 284095)
- (-2925 . 284029) (-2926 . 283949) (-2927 . 283736) (-2928 . 283599)
- (-2929 . 283484) (-2930 . 283366) (-2931 . 283173) (-2932 . 282598)
- (-2933 . 282254) (-2934 . 282202) (-2935 . 282134) (-2936 . 282029)
- (-2937 . 281779) (-2938 . 281624) (-2939 . 281551) (-2940 . 281334)
- (-2941 . 280813) (-2942 . 280671) (-2943 . 280563) (-2944 . 280266)
- (-2945 . 280178) (-2946 . 280091) (-2947 . 279872) (-2948 . 279815)
- (-2949 . 279717) (-2950 . 279389) (-2951 . 279290) (-2952 . 279191)
- (-2953 . 279070) (-2954 . 279018) (-2955 . 278676) (-2956 . 278485)
- (-2957 . 278212) (-2958 . 275867) (-2959 . 275836) (-2960 . 275741)
- (-2961 . 275539) (-2962 . 275091) (-2963 . 274950) (-2964 . 274355)
- (-2965 . 273918) (-2966 . 273668) (-2967 . 273615) (-2968 . 273521)
- (-2969 . 273406) (-2970 . 271555) (-2971 . 271425) (-2972 . 271340)
- (-2973 . 271080) (-2974 . 270771) (-2975 . 270716) (-2976 . 270664)
- (-2977 . 270609) (-2978 . 270465) (-2979 . 270110) (-2980 . 269951)
- (-2981 . 269801) (-2982 . 269741) (-2983 . 269689) (-2984 . 269405)
- (-2985 . 269154) (-2986 . 269084) (-2987 . 269017) (-2988 . 268964)
- (-2989 . 268846) (-2990 . 268531) (-2991 . 268482) (-2992 . 268385)
- (-2993 . 268255) (-2994 . 268203) (-2995 . 267995) (-2996 . 267868)
- (-2997 . 267785) (-2998 . 267615) (-2999 . 267560) (-3000 . 267472)
- (-3001 . 267316) (-3002 . 266944) (-3003 . 266832) (-3004 . 266581)
- (-3005 . 266135) (-3006 . 265856) (-3007 . 265610) (-3008 . 265536)
- (-3009 . 265466) (-3010 . 265438) (-3011 . 264737) (-3012 . 264685)
- (-3013 . 264576) (-3014 . 264385) (-3015 . 264269) (-3016 . 264181)
- (-3017 . 264110) (-3018 . 263887) (-3019 . 263627) (-3020 . 263535)
- (-3021 . 263389) (-3022 . 263213) (-3023 . 263030) (-3024 . 262936)
- (-3025 . 262799) (-3026 . 262666) (-3027 . 262592) (-3028 . 262379)
- (-3029 . 262133) (-3030 . 261849) (-3031 . 261564) (-3032 . 261505)
- (-3033 . 261383) (-3034 . 261332) (-3035 . 261290) (-3036 . 261186)
- (-3037 . 261028) (-3038 . 260966) (-3039 . 260908) (-3040 . 260842)
- (-3041 . 260768) (-3042 . 260553) (-3043 . 260228) (-3044 . 260179)
- (-3045 . 260110) (-3046 . 259896) (-3047 . 259643) (-3048 . 259519)
- (-3049 . 259432) (-3050 . 258230) (-3051 . 257689) (-3052 . 257308)
- (-3053 . 257092) (-3054 . 256951) (-3055 . 256920) (-3056 . 256811)
- (-3057 . 256713) (-3058 . 256636) (-3059 . 256536) (-3060 . 254708)
- (-3061 . 254563) (-3062 . 254468) (** . 251391) (-3064 . 251320)
- (-3065 . 251098) (-3066 . 250914) (-3067 . 250634) (-3068 . 250538)
- (-3069 . 249903) (-3070 . 248402) (-3071 . 248288) (-3072 . 248121)
- (-3073 . 247859) (-3074 . 247803) (-3075 . 247726) (-3076 . 247653)
- (-3077 . 247038) (-3078 . 246966) (-3079 . 246771) (-3080 . 245231)
- (-3081 . 245179) (-3082 . 245071) (-3083 . 244964) (-3084 . 244796)
- (-3085 . 244690) (-3086 . 244342) (-3087 . 244170) (-3088 . 244022)
- (-3089 . 243864) (-3090 . 243321) (-3091 . 242835) (-3092 . 242471)
- (-3093 . 242232) (-3094 . 241701) (-3095 . 241561) (-3096 . 240970)
- (-3097 . 240599) (-3098 . 240440) (-3099 . 240374) (-3100 . 239638)
- (-3101 . 239427) (-3102 . 239099) (-3103 . 239032) (-3104 . 238832)
- (-3105 . 238752) (-3106 . 238630) (-3107 . 238574) (-3108 . 238433)
- (-3109 . 238221) (-3110 . 238060) (-3111 . 237946) (-3112 . 237752)
- (-3113 . 237657) (-3114 . 237544) (-3115 . 237338) (-3116 . 237197)
- (-3117 . 237037) (-3118 . 236885) (-3119 . 236798) (-3120 . 236672)
- (-3121 . 236506) (-3122 . 236390) (-3123 . 236337) (-3124 . 236200)
- (-3125 . 236047) (-3126 . 235946) (-3127 . 235895) (-3128 . 235785)
- (-3129 . 235147) (-3130 . 234509) (-3131 . 234292) (-3132 . 234219)
- (-3133 . 234165) (-3134 . 234035) (-3135 . 233838) (-3136 . 233439)
- (-3137 . 233335) (-3138 . 233258) (-3139 . 232883) (-3140 . 231723)
- (-3141 . 231549) (-3142 . 231350) (-3143 . 231241) (-3144 . 230667)
- (-3145 . 230567) (-3146 . 230489) (-3147 . 230416) (-3148 . 230290)
- (-3149 . 230176) (-3150 . 229902) (-3151 . 229836) (-3152 . 229664)
- (-3153 . 229271) (-3154 . 229219) (-3155 . 229052) (-3156 . 228986)
- (-3157 . 227863) (-3158 . 227664) (-3159 . 227420) (-3160 . 227248)
- (-3161 . 227195) (-3162 . 227092) (-3163 . 227032) (-3164 . 226937)
- (-3165 . 226756) (-3166 . 226697) (-3167 . 225450) (-3168 . 225353)
- (-3169 . 225182) (-3170 . 225010) (-3171 . 224859) (-3172 . 224703)
- (-3173 . 224564) (-3174 . 224407) (-3175 . 224293) (-3176 . 224265)
- (-3177 . 224199) (-3178 . 224097) (-3179 . 223925) (-3180 . 223641)
- (-3181 . 223390) (-3182 . 223219) (-3183 . 223127) (-3184 . 221946)
- (-3185 . 221769) (-3186 . 221713) (-3187 . 221326) (-3188 . 221228)
- (-3189 . 220881) (-3190 . 220284) (-3191 . 219979) (-3192 . 219906)
- (-3193 . 219822) (-3194 . 219674) (-3195 . 219537) (-3196 . 219381)
- (-3197 . 219261) (-3198 . 218993) (-3199 . 218835) (-3200 . 218697)
- (-3201 . 218599) (-3202 . 218455) (-3203 . 218237) (-3204 . 218073)
- (-3205 . 217879) (-3206 . 217778) (-3207 . 217620) (-3208 . 217457)
- (-3209 . 217036) (-3210 . 216983) (-3211 . 216845) (-3212 . 216699)
- (-3213 . 216489) (-3214 . 216391) (-3215 . 215962) (-3216 . 215904)
- (-3217 . 215380) (-3218 . 215236) (-3219 . 215122) (-3220 . 215094)
- (-3221 . 215041) (-3222 . 214386) (-3223 . 214061) (-3224 . 213957)
- (-3225 . 213929) (-3226 . 213751) (-3227 . 213633) (-3228 . 213520)
- (-3229 . 213449) (-3230 . 213231) (-3231 . 212645) (-3232 . 212531)
- (-3233 . 212193) (-3234 . 212076) (-3235 . 212045) (-3236 . 211524)
- (-3237 . 211441) (-3238 . 211149) (-3239 . 210994) (-3240 . 210859)
- (-3241 . 210737) (-3242 . 210604) (-3243 . 210551) (-3244 . 210520)
- (-3245 . 210084) (-3246 . 209940) (-3247 . 209774) (-3248 . 209596)
- (-3249 . 209417) (-3250 . 209307) (-3251 . 209177) (-3252 . 209078)
- (-3253 . 208874) (-3254 . 208224) (-3255 . 208030) (-3256 . 207684)
- (-3257 . 207613) (-3258 . 207563) (-3259 . 207399) (-3260 . 207293)
- (-3261 . 207241) (-3262 . 206170) (-3263 . 206036) (-3264 . 205906)
- (-3265 . 204696) (-3266 . 204587) (-3267 . 204516) (-3268 . 204312)
- (-3269 . 204218) (-3270 . 204118) (-3271 . 204023) (-3272 . 203787)
- (-3273 . 203657) (-3274 . 203467) (-3275 . 203345) (-3276 . 203231)
- (-3277 . 203175) (-3278 . 193645) (-3279 . 193546) (-3280 . 193293)
- (-3281 . 191439) (-3282 . 191142) (-3283 . 191046) (-3284 . 190962)
- (-3285 . 190419) (-3286 . 190334) (-3287 . 190189) (-3288 . 189964)
- (-3289 . 189911) (-3290 . 189789) (-3291 . 189670) (-3292 . 189618)
- (-3293 . 189566) (-3294 . 189479) (-3295 . 189385) (-3296 . 189255)
- (-3297 . 188926) (-3298 . 188716) (-3299 . 188572) (-3300 . 188476)
- (-3301 . 188321) (-3302 . 188202) (-3303 . 188128) (-3304 . 187849)
- (-3305 . 187602) (-3306 . 187503) (-3307 . 186706) (-3308 . 186640)
- (-3309 . 186423) (-3310 . 186237) (-3311 . 186184) (-3312 . 185869)
- (-3313 . 185807) (-3314 . 185617) (-3315 . 185521) (-3316 . 185341)
- (-3317 . 185261) (-3318 . 185103) (-3319 . 184772) (-3320 . 184700)
- (-3321 . 184457) (-3322 . 184313) (-3323 . 184120) (-3324 . 184047)
- (-3325 . 183754) (-3326 . 183675) (-3327 . 183603) (-3328 . 183112)
- (-3329 . 182907) (-3330 . 182828) (-3331 . 182630) (-3332 . 182459)
- (-3333 . 182386) (-3334 . 182306) (-3335 . 182221) (-3336 . 182148)
- (-3337 . 182059) (-3338 . 182025) (-3339 . 181966) (-3340 . 181829)
- (-3341 . 181722) (-3342 . 181660) (-3343 . 181578) (-3344 . 181404)
- (-3345 . 181277) (-3346 . 181218) (-3347 . 180716) (-3348 . 180618)
- (-3349 . 180533) (-3350 . 180441) (-3351 . 180193) (-3352 . 180125)
- (-3353 . 180055) (-3354 . 179812) (-3355 . 179671) (-3356 . 179569)
- (-3357 . 179399) (-3358 . 179365) (-3359 . 179294) (-3360 . 179236)
- (-3361 . 179142) (-3362 . 179059) (-3363 . 178818) (-3364 . 178711)
- (-3365 . 178521) (-3366 . 178426) (-3367 . 178338) (-3368 . 178224)
- (-3369 . 177808) (-3370 . 177549) (-3371 . 177333) (-3372 . 177248)
- (-3373 . 177095) (-3374 . 177033) (-3375 . 176981) (-3376 . 176925)
- (-3377 . 176302) (-3378 . 176225) (-3379 . 175140) (-3380 . 175088)
- (-3381 . 174838) (-3382 . 174722) (-3383 . 173848) (-3384 . 173780)
- (-3385 . 173379) (-3386 . 173288) (-3387 . 172684) (-3388 . 172482)
- (-3389 . 171950) (-3390 . 171367) (-3391 . 171152) (-3392 . 170132)
- (-3393 . 170007) (-3394 . 169803) (-3395 . 169606) (-3396 . 169575)
- (-3397 . 169434) (-3398 . 169136) (-3399 . 168956) (-3400 . 168925)
- (-3401 . 168781) (-3402 . 168689) (-3403 . 168605) (-3404 . 168159)
- (-3405 . 168020) (-3406 . 167986) (-3407 . 167933) (-3408 . 167791)
- (-3409 . 167717) (-3410 . 167688) (-3411 . 167565) (-3412 . 167248)
- (-3413 . 167135) (-3414 . 167069) (-3415 . 166946) (-3416 . 166875)
- (-3417 . 166711) (-3418 . 166630) (-3419 . 166507) (-3420 . 165872)
- (-3421 . 165708) (-3422 . 165548) (-3423 . 165469) (-3424 . 165417)
- (-3425 . 164931) (-3426 . 164540) (-3427 . 163244) (-3428 . 163053)
- (-3429 . 162720) (-3430 . 162627) (-3431 . 162560) (-3432 . 162336)
- (-3433 . 161991) (-3434 . 161680) (-3435 . 161580) (-3436 . 161086)
- (-3437 . 160984) (-3438 . 160861) (-3439 . 160744) (-3440 . 160689)
- (-3441 . 160581) (-3442 . 160532) (-3443 . 160367) (-3444 . 160264)
- (-3445 . 160131) (-3446 . 160070) (-3447 . 159985) (-3448 . 159881)
- (-3449 . 159804) (-3450 . 159461) (-3451 . 159367) (-3452 . 159211)
- (-3453 . 158972) (-3454 . 158874) (-3455 . 158819) (-3456 . 157509)
- (-3457 . 157385) (-3458 . 157174) (-3459 . 156986) (-3460 . 156917)
- (-3461 . 156868) (-3462 . 156812) (-3463 . 156739) (-3464 . 156578)
- (-3465 . 156301) (-3466 . 155698) (-3467 . 155572) (-3468 . 154774)
- (-3469 . 154649) (-3470 . 154568) (-3471 . 154485) (-3472 . 153625)
- (-3473 . 153407) (-3474 . 153310) (-3475 . 153195) (-3476 . 153033)
- (-3477 . 152846) (-3478 . 152530) (-3479 . 152152) (-3480 . 152051)
- (-3481 . 151808) (-3482 . 151602) (-3483 . 151500) (-3484 . 151388)
- (-3485 . 151243) (-3486 . 151173) (-3487 . 151045) (-3488 . 150889)
- (-3489 . 150774) (-3490 . 148527) (-3491 . 148368) (-3492 . 148233)
- (-3493 . 147741) (-3494 . 147647) (-3495 . 147588) (-3496 . 147009)
- (-3497 . 146917) (-3498 . 146799) (-3499 . 146680) (-3500 . 146586)
- (-3501 . 146512) (-3502 . 146354) (-3503 . 146267) (-3504 . 146091)
- (-3505 . 145999) (-3506 . 145896) (-3507 . 145377) (-3508 . 145201)
- (-3509 . 144929) (-3510 . 144669) (-3511 . 144396) (-3512 . 144323)
- (-3513 . 144104) (-3514 . 143945) (-3515 . 143786) (-3516 . 143700)
- (-3517 . 142236) (-3518 . 142151) (-3519 . 142035) (-3520 . 141962)
- (-3521 . 141910) (-3522 . 141459) (-3523 . 141021) (-3524 . 140822)
- (-3525 . 140754) (-3526 . 140463) (-3527 . 140414) (-3528 . 140108)
- (-3529 . 139768) (-3530 . 139691) (-3531 . 139640) (-3532 . 139300)
- (-3533 . 139088) (-3534 . 138984) (-3535 . 138918) (-3536 . 138633)
- (-3537 . 138504) (-3538 . 138341) (-3539 . 137839) (-3540 . 137772)
- (-3541 . 137623) (-3542 . 137526) (-3543 . 137078) (-3544 . 136330)
- (-3545 . 136076) (-3546 . 135955) (-3547 . 135814) (-3548 . 135452)
- (-3549 . 135400) (-3550 . 135013) (-3551 . 134816) (-3552 . 134674)
- (-3553 . 134517) (-3554 . 134459) (-3555 . 134248) (-3556 . 134063)
- (-3557 . 133921) (-3558 . 133780) (-3559 . 133534) (-3560 . 133366)
- (-3561 . 133310) (-3562 . 133139) (-3563 . 133083) (-3564 . 132849)
- (-3565 . 132664) (-3566 . 132571) (-3567 . 132388) (-3568 . 132215)
- (-3569 . 131976) (-3570 . 131915) (-3571 . 131857) (-3572 . 131610)
- (-3573 . 131080) (-3574 . 130953) (-3575 . 130900) (-3576 . 130517)
- (-3577 . 130335) (-3578 . 130265) (-3579 . 130106) (-3580 . 129932)
- (-3581 . 129825) (-3582 . 129766) (-3583 . 129419) (-3584 . 129317)
- (-3585 . 129244) (-3586 . 129101) (-3587 . 129022) (-3588 . 128713)
- (-3589 . 128661) (-3590 . 128588) (-3591 . 128551) (-3592 . 128471)
- (-3593 . 126902) (-3594 . 126779) (-3595 . 126566) (-3596 . 126402)
- (-3597 . 126093) (-3598 . 125969) (-3599 . 125937) (-3600 . 125759)
- (-3601 . 125682) (-3602 . 125558) (-3603 . 125505) (-3604 . 125432)
- (-3605 . 125182) (-3606 . 125067) (-3607 . 124950) (-3608 . 124582)
- (-3609 . 124488) (-3610 . 124333) (-3611 . 124265) (-3612 . 124135)
- (-3613 . 124062) (-3614 . 123969) (-3615 . 123882) (-3616 . 123826)
- (-3617 . 123711) (-3618 . 123628) (-3619 . 123437) (-3620 . 123147)
- (-3621 . 122989) (-3622 . 122930) (-3623 . 122833) (-3624 . 122508)
- (-3625 . 122394) (-3626 . 122060) (-3627 . 121989) (-3628 . 121847)
- (-3629 . 121736) (-3630 . 121614) (-3631 . 121513) (-3632 . 121458)
- (-3633 . 121314) (-3634 . 121230) (-3635 . 121161) (-3636 . 121074)
- (-3637 . 120836) (-3638 . 120710) (-3639 . 120364) (-3640 . 120033)
- (-3641 . 119927) (-3642 . 119778) (-3643 . 119705) (-3644 . 119596)
- (-3645 . 119269) (-3646 . 119201) (-3647 . 119146) (-3648 . 119039)
- (-3649 . 118954) (-3650 . 118796) (-3651 . 118692) (-3652 . 118593)
- (-3653 . 118527) (-3654 . 118387) (-3655 . 117935) (-3656 . 117625)
- (-3657 . 117576) (-3658 . 117499) (-3659 . 117305) (-3660 . 117190)
- (-3661 . 117028) (-3662 . 116962) (-3663 . 116802) (-3664 . 116680)
- (-3665 . 116579) (-3666 . 116184) (-3667 . 115694) (-3668 . 115553)
- (-3669 . 115450) (-3670 . 114110) (-3671 . 113998) (-3672 . 113899)
- (-3673 . 113753) (-3674 . 113675) (-3675 . 113568) (-3676 . 113509)
- (-3677 . 113422) (-3678 . 113148) (-3679 . 113005) (-3680 . 112879)
- (-3681 . 112701) (-3682 . 112548) (-3683 . 112275) (-3684 . 111928)
- (-3685 . 111823) (-3686 . 111702) (-3687 . 111599) (-3688 . 111464)
- (-3689 . 111353) (-3690 . 111154) (-3691 . 110502) (-3692 . 110436)
- (-3693 . 110309) (-3694 . 110153) (-3695 . 110059) (-3696 . 109950)
- (-3697 . 109898) (-3698 . 109796) (-3699 . 109694) (-3700 . 109548)
- (-3701 . 109432) (-3702 . 109274) (-3703 . 109102) (-3704 . 108723)
- (-3705 . 108610) (-3706 . 108536) (-3707 . 108474) (-3708 . 107891)
- (-3709 . 107828) (-3710 . 107731) (-3711 . 107415) (-3712 . 107360)
- (-3713 . 107246) (-3714 . 107019) (-12 . 106847) (-3716 . 106549)
- (-3717 . 106190) (-3718 . 106095) (-3719 . 105965) (-3720 . 105880)
- (-3721 . 105822) (-3722 . 105215) (-3723 . 105091) (-3724 . 104511)
- (-3725 . 104425) (-3726 . 104043) (-3727 . 103969) (-3728 . 103560)
- (-3729 . 103507) (-3730 . 103263) (-3731 . 103154) (-3732 . 103125)
- (-3733 . 103025) (-3734 . 102928) (-3735 . 102821) (-3736 . 102582)
- (-3737 . 102391) (-3738 . 102357) (-3739 . 102283) (-3740 . 102188)
- (-3741 . 102105) (-3742 . 101973) (-3743 . 101743) (-3744 . 101690)
- (-3745 . 101343) (-3746 . 101214) (-3747 . 101119) (-3748 . 101064)
- (-3749 . 100927) (-3750 . 100826) (-3751 . 100792) (-3752 . 100708)
- (-3753 . 100625) (-3754 . 100500) (-3755 . 100096) (-3756 . 99959)
- (-3757 . 99888) (-3758 . 99757) (-3759 . 99456) (-3760 . 99428)
- (-3761 . 99284) (-3762 . 98469) (-3763 . 98354) (-3764 . 98298)
- (-3765 . 98227) (-3766 . 98174) (-3767 . 97982) (-3768 . 97644)
- (-3769 . 97269) (-3770 . 97132) (-3771 . 97009) (-3772 . 96931)
- (-3773 . 96857) (-3774 . 96748) (-3775 . 96529) (-3776 . 96285)
- (-3777 . 96214) (-3778 . 96095) (-3779 . 96002) (-3780 . 95886)
- (-3781 . 95472) (-3782 . 94865) (-3783 . 94791) (-3784 . 94706)
- (-3785 . 94547) (-3786 . 94431) (-3787 . 94301) (-3788 . 94245)
- (-3789 . 94127) (-3790 . 94004) (-3791 . 93906) (-3792 . 93821)
- (-3793 . 93688) (-3794 . 93636) (-3795 . 93584) (-3796 . 93413)
- (-3797 . 93290) (-3798 . 93197) (-3799 . 93074) (-3800 . 92997)
- (-3801 . 92839) (-3802 . 91775) (-3803 . 91657) (-3804 . 91544)
- (-3805 . 91290) (-3806 . 91193) (-3807 . 90195) (-3808 . 90056)
- (-3809 . 89603) (-3810 . 89347) (-3811 . 89246) (-3812 . 89113)
- (-3813 . 88906) (-3814 . 88825) (-3815 . 88309) (-3816 . 88249)
- (-3817 . 88121) (-3818 . 87808) (-3819 . 87756) (-3820 . 87673)
- (-3821 . 87586) (-3822 . 87392) (-3823 . 87322) (-3824 . 87213)
- (-3825 . 87126) (-3826 . 87004) (-3827 . 86924) (-3828 . 86115)
- (-3829 . 85742) (-3830 . 85537) (-3831 . 85318) (-3832 . 85189)
- (-3833 . 84962) (* . 80439) (-3835 . 80361) (-3836 . 80287)
- (-3837 . 80213) (-3838 . 80057) (-3839 . 79959) (-3840 . 79866)
- (-3841 . 79764) (-3842 . 79541) (-3843 . 78695) (-3844 . 78631)
- (-3845 . 78375) (-3846 . 78082) (-3847 . 77964) (-3848 . 77841)
- (-3849 . 77609) (-3850 . 77466) (-3851 . 77320) (-3852 . 77070)
- (-3853 . 76923) (-3854 . 76313) (-3855 . 76226) (-3856 . 76195)
- (-3857 . 76018) (-3858 . 75937) (-3859 . 72327) (-3860 . 72187)
- (-3861 . 72087) (-3862 . 71997) (-3863 . 71823) (-3864 . 71728)
- (-3865 . 71624) (-3866 . 71546) (-3867 . 71469) (-3868 . 71329)
- (-3869 . 71231) (-3870 . 71134) (-3871 . 71081) (-3872 . 70929)
- (-3873 . 70767) (-3874 . 70598) (-3875 . 70307) (-3876 . 70255)
- (-3877 . 70187) (-3878 . 70059) (-3879 . 69960) (-3880 . 69908)
- (-3881 . 69756) (-3882 . 69571) (-3883 . 69490) (-3884 . 69310)
- (-3885 . 69226) (-3886 . 69166) (-3887 . 69108) (-3888 . 68882)
- (-3889 . 68717) (-3890 . 68686) (-3891 . 68633) (-3892 . 68528)
- (-3893 . 67855) (-3894 . 67759) (-3895 . 67636) (-3896 . 67344)
- (-3897 . 67192) (-3898 . 67014) (-3899 . 66568) (-3900 . 66465)
- (-3901 . 66353) (-3902 . 66207) (-3903 . 66071) (-3904 . 65918)
- (-3905 . 65860) (-3906 . 65568) (-3907 . 65425) (-3908 . 65320)
- (-3909 . 65131) (-3910 . 64987) (-3911 . 64869) (-3912 . 64814)
- (-3913 . 64719) (-3914 . 64668) (-3915 . 64613) (-3916 . 64410)
- (-3917 . 64344) (-3918 . 64107) (-3919 . 63533) (-3920 . 63439)
- (-3921 . 63293) (-3922 . 63134) (-3923 . 63106) (-3924 . 62913)
- (-3925 . 62421) (-3926 . 62060) (-3927 . 61889) (-3928 . 60853)
- (-3929 . 60233) (-3930 . 59758) (-3931 . 59661) (-3932 . 59009)
- (-3933 . 58885) (-3934 . 58830) (-3935 . 58727) (-3936 . 58576)
- (-3937 . 58470) (-3938 . 58345) (-3939 . 58032) (-3940 . 57900)
- (-3941 . 57793) (-3942 . 57220) (-3943 . 57136) (-3944 . 57030)
- (-3945 . 56831) (-3946 . 56519) (-3947 . 56427) (-3948 . 56318)
- (-3949 . 56079) (-3950 . 55996) (-3951 . 55898) (-3952 . 55797)
- (-3953 . 55639) (-3954 . 55565) (-3955 . 55412) (-3956 . 55341)
- (-3957 . 55272) (-3958 . 55110) (-3959 . 54908) (-3960 . 54703)
- (-3961 . 54372) (-3962 . 53816) (-3963 . 53683) (-3964 . 53289)
- (-3965 . 53146) (-3966 . 52990) (-3967 . 52280) (-3968 . 52246)
- (-3969 . 52194) (-3970 . 52106) (-3971 . 52004) (-3972 . 51846)
- (-3973 . 51791) (-3974 . 51706) (-3975 . 51629) (-3976 . 51349)
- (-3977 . 51296) (-3978 . 51268) (-3979 . 51213) (-3980 . 51140)
- (-3981 . 51057) (-3982 . 50933) (-3983 . 50662) (-3984 . 50601)
- (-3985 . 50545) (-3986 . 50517) (-3987 . 50434) (-3988 . 50267)
- (-3989 . 50172) (-3990 . 50144) (-3991 . 50028) (-3992 . 49954)
- (-3993 . 49070) (-3994 . 48973) (-3995 . 48590) (-3996 . 48306)
- (-3997 . 48219) (-3998 . 47999) (-3999 . 47855) (-4000 . 47734)
- (-4001 . 47669) (-4002 . 47541) (-4003 . 47432) (-4004 . 47318)
- (-4005 . 47127) (-4006 . 47008) (-4007 . 46921) (-4008 . 46780)
- (-4009 . 46683) (-4010 . 46524) (-4011 . 46421) (-4012 . 45924)
- (-4013 . 45269) (-4014 . 44454) (-4015 . 44335) (-4016 . 44283)
- (-4017 . 44255) (-4018 . 44205) (-4019 . 44148) (-4020 . 44114)
- (-4021 . 44061) (-4022 . 43991) (-4023 . 43779) (-4024 . 43725)
- (-4025 . 43285) (-4026 . 43162) (-4027 . 43027) (-4028 . 42897)
- (-4029 . 42844) (-4030 . 42676) (-4031 . 42482) (-4032 . 42239)
- (-4033 . 41981) (-4034 . 41925) (-4035 . 41851) (-4036 . 41765)
- (-4037 . 41687) (-4038 . 41577) (-4039 . 41468) (-4040 . 41394)
- (-4041 . 41311) (-4042 . 41041) (-4043 . 40959) (-4044 . 39340)
- (-4045 . 39202) (-4046 . 38781) (-4047 . 38678) (-4048 . 38428)
- (-4049 . 38351) (-4050 . 37863) (-4051 . 37684) (-4052 . 37498)
- (-4053 . 37432) (-4054 . 37376) (-4055 . 37233) (-4056 . 37054)
- (-4057 . 36916) (-4058 . 36752) (-4059 . 36216) (-4060 . 36091)
- (-4061 . 36036) (-4062 . 35968) (-4063 . 35850) (-4064 . 35720)
- (-4065 . 35579) (-4066 . 35482) (-4067 . 35416) (-4068 . 34555)
- (-4069 . 34444) (-4070 . 34240) (-4071 . 33903) (-4072 . 33851)
- (-4073 . 33823) (-4074 . 33729) (-4075 . 33545) (-4076 . 33493)
- (-4077 . 33423) (-4078 . 33343) (-4079 . 33253) (-4080 . 33146)
- (-4081 . 33073) (-4082 . 32999) (-4083 . 32922) (-4084 . 32680)
- (-4085 . 31313) (-4086 . 31160) (-4087 . 31035) (-4088 . 30595)
- (-4089 . 30454) (-4090 . 30195) (-4091 . 30060) (-4092 . 29914)
- (-4093 . 29771) (-4094 . 29691) (-4095 . 29521) (-4096 . 29134)
- (-4097 . 28974) (-4098 . 28895) (-4099 . 28781) (-4100 . 28694)
- (-4101 . 27879) (-4102 . 27772) (-4103 . 27458) (-4104 . 27231)
- (-4105 . 27057) (-4106 . 26984) (-4107 . 26907) (-4108 . 26610)
- (-4109 . 26468) (-4110 . 26397) (-4111 . 25797) (-4112 . 25636)
- (-4113 . 25570) (-4114 . 25463) (-4115 . 25289) (-4116 . 24698)
- (-4117 . 24496) (-4118 . 24188) (-4119 . 24021) (-4120 . 23662)
- (-4121 . 23522) (-4122 . 23419) (-4123 . 23348) (-4124 . 23211)
- (-4125 . 23088) (-4126 . 23032) (-4127 . 22766) (-4128 . 22708)
- (-4129 . 22631) (-4130 . 22409) (-4131 . 22354) (-4132 . 22170)
- (-4133 . 22030) (-4134 . 21736) (-4135 . 19321) (-4136 . 19152)
- (-4137 . 17200) (-4138 . 17029) (-4139 . 16956) (-4140 . 16876)
- (-4141 . 16271) (-4142 . 16126) (-4143 . 15253) (-4144 . 15027)
- (-4145 . 14299) (-4146 . 14101) (-4147 . 14028) (-4148 . 13881)
- (-4149 . 13737) (-4150 . 13616) (-4151 . 13191) (-4152 . 13106)
- (-4153 . 13016) (-4154 . 12966) (-4155 . 12002) (-4156 . 11859)
- (-4157 . 10679) (-4158 . 10556) (-4159 . 9932) (-4160 . 9512)
- (-4161 . 9399) (-4162 . 9181) (-4163 . 8942) (-4164 . 8885)
- (-4165 . 8790) (-4166 . 8606) (-4167 . 8550) (-4168 . 8443)
- (-4169 . 8358) (-4170 . 8218) (-4171 . 8128) (-4172 . 8057)
- (-4173 . 7542) (-4174 . 7353) (-4175 . 7301) (-4176 . 7227)
- (-4177 . 6627) (-4178 . 6556) (-4179 . 6473) (-4180 . 6444)
- (-4181 . 6240) (-4182 . 6042) (-4183 . 5933) (-4184 . 5850)
- (-4185 . 5801) (-4186 . 5469) (-4187 . 5250) (-4188 . 4729)
- (-4189 . 4069) (-4190 . 3984) (-4191 . 3875) (-4192 . 3712)
- (-4193 . 3533) (-4194 . 3476) (-4195 . 3369) (-4196 . 3267)
- (-4197 . 3209) (-4198 . 3112) (-4199 . 3045) (-4200 . 2715)
- (-4201 . 2343) (-4202 . 2315) (-4203 . 1996) (-4204 . 1928)
- (-4205 . 1845) (-4206 . 1817) (-4207 . 1690) (-4208 . 1361)
- (-4209 . 1260) (-4210 . 510) (-4211 . 381) (-4212 . 326) (-4213 . 30)) \ No newline at end of file
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-588 (-239))) (-5 *1 (-237))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-239))))
+ ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-441)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *3 *5))
+ (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *3 (-598 *2))
+ (-4 *5 (-598 (-382 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1142 *4)) (-5 *1 (-744 *4 *2 *5 *3))
+ (-4 *4 (-13 (-338) (-135) (-962 (-382 (-522))))) (-4 *5 (-598 *2))
+ (-4 *3 (-598 (-382 *2))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1188 *3 *4)) (-4 *1 (-349 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-157))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-361 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-756 *2)) (-4 *2 (-784))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-756 *3)) (-4 *1 (-1181 *3 *4)) (-4 *3 (-784))
+ (-4 *4 (-971))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1181 *2 *3)) (-4 *2 (-784)) (-4 *3 (-971)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-202)) (-5 *2 (-1171)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202))) (-5 *1 (-642 *3))
+ (-4 *3 (-563 (-498)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1085)) (-5 *2 (-1 (-202) (-202) (-202)))
+ (-5 *1 (-642 *3)) (-4 *3 (-563 (-498))))))
+((-1198 . 725256) (-1199 . 725185) (-1200 . 724631) (-1201 . 724291)
+ (-1202 . 724065) (-1203 . 723956) (-1204 . 723846) (-1205 . 723794)
+ (-1206 . 723676) (-1207 . 723602) (-1208 . 723443) (-1209 . 723336)
+ (-1210 . 723235) (-1211 . 723118) (-1212 . 723014) (-1213 . 722802)
+ (-1214 . 722721) (-1215 . 721993) (-1216 . 721701) (-1217 . 721649)
+ (-1218 . 721536) (-1219 . 721380) (-1220 . 721262) (-1221 . 720832)
+ (-1222 . 720728) (-1223 . 719563) (-1224 . 719493) (-1225 . 719120)
+ (-1226 . 718879) (-1227 . 718806) (-1228 . 718554) (-1229 . 718483)
+ (-1230 . 718340) (-1231 . 718242) (-1232 . 717822) (-1233 . 717778)
+ (-1234 . 717486) (-1235 . 717393) (-1236 . 717316) (-1237 . 717253)
+ (-1238 . 717150) (-1239 . 717084) (-1240 . 717032) (-1241 . 716885)
+ (-1242 . 716667) (-1243 . 716505) (-1244 . 714375) (-1245 . 714267)
+ (-1246 . 714172) (-1247 . 714079) (-1248 . 713999) (-1249 . 713865)
+ (-1250 . 713580) (-1251 . 713272) (-1252 . 713217) (-1253 . 713076)
+ (-1254 . 711839) (-1255 . 711743) (-1256 . 711599) (-1257 . 711013)
+ (-1258 . 710902) (-1259 . 710800) (-1260 . 710544) (-1261 . 710454)
+ (-1262 . 710355) (-1263 . 710162) (-1264 . 710033) (-1265 . 709926)
+ (-1266 . 709805) (-1267 . 709743) (-1268 . 709639) (-1269 . 709525)
+ (-1270 . 709445) (-1271 . 709222) (-1272 . 709111) (-1273 . 708195)
+ (-1274 . 707946) (-1275 . 707822) (-1276 . 707659) (-1277 . 707574)
+ (-1278 . 707505) (-1279 . 707431) (-1280 . 707093) (-1281 . 707014)
+ (-1282 . 705613) (-1283 . 705526) (-1284 . 705462) (-1285 . 705376)
+ (-1286 . 705313) (-1287 . 705262) (-1288 . 705197) (-1289 . 704695)
+ (-1290 . 704629) (-1291 . 704539) (-1292 . 704422) (-1293 . 704319)
+ (-1294 . 703840) (-1295 . 703584) (-1296 . 703531) (-1297 . 699010)
+ (-1298 . 698909) (-1299 . 698842) (-1300 . 698758) (-1301 . 698708)
+ (-1302 . 698604) (-1303 . 698495) (-1304 . 698226) (-1305 . 698195)
+ (-1306 . 697902) (-1307 . 697643) (-1308 . 697615) (-1309 . 697466)
+ (-1310 . 697250) (-1311 . 696286) (-1312 . 695899) (-1313 . 695788)
+ (-1314 . 695493) (-1315 . 695410) (-1316 . 695292) (-1317 . 695147)
+ (-1318 . 695050) (-1319 . 694981) (-1320 . 694814) (-1321 . 693518)
+ (-1322 . 693380) (-1323 . 693237) (-1324 . 693002) (-1325 . 692710)
+ (-1326 . 692581) (-1327 . 692458) (-1328 . 692153) (-1329 . 692068)
+ (-1330 . 691949) (-1331 . 691501) (-1332 . 691118) (-1333 . 689938)
+ (-1334 . 689885) (-1335 . 689848) (-1336 . 689705) (-1337 . 689650)
+ (-1338 . 688902) (-1339 . 688850) (-1340 . 688727) (-1341 . 687362)
+ (-1342 . 687240) (-1343 . 687094) (-1344 . 686991) (-1345 . 686914)
+ (-1346 . 686830) (-1347 . 686576) (-1348 . 686404) (-1349 . 685984)
+ (-1350 . 685901) (-1351 . 685845) (-1352 . 685576) (-1353 . 685326)
+ (-1354 . 684921) (-1355 . 684864) (-1356 . 684743) (-1357 . 684660)
+ (-1358 . 684547) (-1359 . 684452) (-1360 . 684101) (-1361 . 683960)
+ (-1362 . 683572) (-1363 . 683460) (-1364 . 683313) (-1365 . 683260)
+ (-1366 . 682830) (-1367 . 682801) (-1368 . 682582) (-1369 . 682364)
+ (-1370 . 681913) (-1371 . 681701) (-1372 . 681091) (-1373 . 680867)
+ (-1374 . 680707) (-1375 . 680554) (-1376 . 680497) (-1377 . 680441)
+ (-1378 . 680327) (-1379 . 680147) (-1380 . 680060) (-1381 . 680008)
+ (-1382 . 679948) (-1383 . 679339) (-1384 . 679260) (-1385 . 679117)
+ (-1386 . 679022) (-1387 . 678828) (-1388 . 678651) (-1389 . 678548)
+ (-1390 . 678496) (-1391 . 664433) (-1392 . 664340) (-1393 . 664156)
+ (-1394 . 664061) (-1395 . 663670) (-1396 . 663614) (-1397 . 663501)
+ (-1398 . 663417) (-1399 . 663308) (-1400 . 662827) (-1401 . 662775)
+ (-1402 . 661479) (-1403 . 661372) (-1404 . 661166) (-1405 . 661068)
+ (-1406 . 661039) (-1407 . 660944) (-1408 . 660837) (-1409 . 660624)
+ (-1410 . 660433) (-1411 . 660189) (-1412 . 660104) (-1413 . 659963)
+ (-1414 . 659863) (-1415 . 659797) (-1416 . 659743) (-1417 . 659410)
+ (-1418 . 659286) (-1419 . 659139) (-1420 . 659061) (-1421 . 658854)
+ (-1422 . 658610) (-1423 . 658011) (-1424 . 657851) (-1425 . 657754)
+ (-1426 . 657417) (-1427 . 657259) (-1428 . 657131) (-1429 . 657058)
+ (-1430 . 656965) (-1431 . 652263) (-1432 . 652125) (-1433 . 652097)
+ (-1434 . 651945) (-1435 . 651293) (-1436 . 651186) (-1437 . 650963)
+ (-1438 . 650666) (-1439 . 650557) (-1440 . 650490) (-1441 . 650069)
+ (-1442 . 649748) (-1443 . 649661) (-1444 . 649422) (-1445 . 649237)
+ (-1446 . 649099) (-1447 . 648970) (-1448 . 648900) (-1449 . 648829)
+ (-1450 . 648772) (-1451 . 648548) (-1452 . 648445) (-1453 . 648386)
+ (-1454 . 648220) (-1455 . 648146) (-1456 . 648017) (-1457 . 647826)
+ (-1458 . 647644) (-1459 . 647299) (-1460 . 647179) (-1461 . 647107)
+ (-1462 . 647033) (-1463 . 646783) (-1464 . 646664) (-1465 . 646527)
+ (-1466 . 646406) (-1467 . 646372) (-1468 . 646272) (-1469 . 645470)
+ (-1470 . 645371) (-1471 . 645314) (-1472 . 645220) (-1473 . 644732)
+ (-1474 . 644579) (-1475 . 644484) (-1476 . 644391) (-1477 . 644336)
+ (-1478 . 644270) (-1479 . 643776) (-1480 . 643456) (-1481 . 643115)
+ (-1482 . 642936) (-1483 . 642862) (-1484 . 637545) (-1485 . 637444)
+ (-1486 . 637361) (-1487 . 637241) (-1488 . 637139) (-1489 . 636603)
+ (-1490 . 636465) (-1491 . 636279) (-1492 . 635568) (-1493 . 635517)
+ (-1494 . 635385) (-1495 . 635166) (-1496 . 635050) (-1497 . 634927)
+ (-1498 . 634861) (-1499 . 633796) (-1500 . 633617) (-1501 . 633557)
+ (-1502 . 633447) (-1503 . 633132) (-1504 . 632902) (-1505 . 632847)
+ (-1506 . 632776) (-1507 . 632506) (-1508 . 632472) (-1509 . 632263)
+ (-1510 . 632207) (-1511 . 632036) (-1512 . 631756) (-1513 . 631118)
+ (-1514 . 630885) (-1515 . 630832) (-1516 . 630720) (-1517 . 630612)
+ (-1518 . 630584) (-1519 . 630441) (-1520 . 630081) (-1521 . 629864)
+ (-1522 . 629547) (-1523 . 629200) (-1524 . 629151) (-1525 . 627609)
+ (-1526 . 627430) (-1527 . 627334) (-1528 . 627261) (-1529 . 627132)
+ (-1530 . 627027) (-1531 . 626759) (-1532 . 626685) (-1533 . 626520)
+ (-1534 . 625766) (-1535 . 625628) (-1536 . 625574) (-1537 . 625479)
+ (-1538 . 625348) (-1539 . 625157) (-1540 . 625054) (-1541 . 624630)
+ (-1542 . 624466) (-1543 . 624242) (-1544 . 624068) (-1545 . 623938)
+ (-1546 . 623883) (-1547 . 623432) (-1548 . 623363) (-1549 . 623057)
+ (-1550 . 622914) (-1551 . 622781) (-1552 . 622669) (-1553 . 622133)
+ (-1554 . 622038) (-1555 . 621841) (-1556 . 621704) (-1557 . 621647)
+ (-1558 . 621560) (-1559 . 621499) (-1560 . 621374) (-1561 . 621238)
+ (-1562 . 621118) (-1563 . 621014) (-1564 . 620913) (-1565 . 620696)
+ (-1566 . 620537) (-1567 . 620452) (-1568 . 620397) (-1569 . 620023)
+ (-1570 . 619906) (-1571 . 619829) (-1572 . 619724) (-1573 . 619690)
+ (-1574 . 619603) (-1575 . 619465) (-1576 . 619361) (-1577 . 619257)
+ (-1578 . 618942) (-1579 . 618874) (-1580 . 618759) (-1581 . 618481)
+ (-1582 . 618106) (-1583 . 618022) (-1584 . 617935) (-1585 . 617603)
+ (-1586 . 617526) (-1587 . 617449) (-1588 . 616748) (-1589 . 616630)
+ (-1590 . 616456) (-1591 . 616373) (-1592 . 616259) (-1593 . 616171)
+ (-1594 . 615828) (-1595 . 615751) (-1596 . 615572) (-1597 . 615442)
+ (-1598 . 615317) (-1599 . 615118) (-1600 . 615069) (-1601 . 614838)
+ (-1602 . 613654) (-1603 . 613560) (-1604 . 612555) (-1605 . 612478)
+ (-1606 . 612337) (-1607 . 612110) (-1608 . 612001) (-1609 . 611914)
+ (-1610 . 611510) (-1611 . 611022) (-1612 . 609844) (-1613 . 609688)
+ (-1614 . 609521) (-1615 . 609424) (-1616 . 609036) (-1617 . 608462)
+ (-1618 . 608325) (-1619 . 608252) (-1620 . 606054) (-1621 . 605815)
+ (-1622 . 605648) (-1623 . 605582) (-1624 . 605482) (-1625 . 605411)
+ (-1626 . 605302) (-1627 . 605204) (-1628 . 604718) (-1629 . 603716)
+ (-1630 . 603605) (-1631 . 603546) (-1632 . 603485) (-1633 . 603407)
+ (-1634 . 603276) (-1635 . 603180) (-1636 . 603125) (-1637 . 602788)
+ (-1638 . 602715) (-1639 . 602643) (-1640 . 602342) (-1641 . 602233)
+ (-1642 . 600923) (-1643 . 600871) (-1644 . 600623) (-1645 . 600497)
+ (-1646 . 600390) (-1647 . 600362) (-1648 . 600238) (-1649 . 600210)
+ (-1650 . 600051) (-1651 . 599980) (-1652 . 599722) (-1653 . 599448)
+ (-1654 . 599304) (-1655 . 599201) (-1656 . 598990) (-1657 . 598896)
+ (-1658 . 598706) (-1659 . 598640) (-1660 . 598042) (-1661 . 597886)
+ (-1662 . 597637) (-1663 . 597438) (-1664 . 596623) (-1665 . 596435)
+ (-1666 . 596251) (-1667 . 596146) (-1668 . 596025) (-1669 . 595940)
+ (-1670 . 595547) (-1671 . 595432) (-1672 . 595366) (-1673 . 595191)
+ (-1674 . 595061) (-1675 . 594992) (-1676 . 594940) (-1677 . 594912)
+ (-1678 . 594225) (-1679 . 594117) (-1680 . 594065) (-1681 . 593994)
+ (-1682 . 593817) (-1683 . 593768) (-1684 . 593698) (-1685 . 593620)
+ (-1686 . 593522) (-1687 . 593467) (-1688 . 593300) (-1689 . 593213)
+ (-1690 . 593160) (-1691 . 593005) (-1692 . 592932) (-1693 . 592842)
+ (-1694 . 592745) (-1695 . 592553) (-1696 . 592487) (-1697 . 592243)
+ (-1698 . 592187) (-1699 . 592026) (-1700 . 591842) (-1701 . 591735)
+ (-1702 . 591648) (-1703 . 591586) (-1704 . 591387) (-1705 . 591257)
+ (-1706 . 590919) (-1707 . 590832) (-1708 . 590555) (-1709 . 590482)
+ (-1710 . 590353) (-1711 . 590109) (-1712 . 589734) (-1713 . 589582)
+ (-1714 . 589364) (-1715 . 589154) (-1716 . 588551) (-1717 . 588477)
+ (-1718 . 588322) (-1719 . 588203) (-1720 . 588175) (-1721 . 588122)
+ (-1722 . 588055) (-1723 . 587918) (-1724 . 587788) (-1725 . 587662)
+ (-1726 . 587585) (-1727 . 587533) (-1728 . 587430) (-1729 . 587307)
+ (-1730 . 587220) (-1731 . 587118) (-1732 . 586320) (-1733 . 586078)
+ (-1734 . 585971) (-1735 . 585911) (-1736 . 585833) (-1737 . 585675)
+ (-1738 . 585100) (-1739 . 585047) (-1740 . 584922) (-1741 . 584769)
+ (-1742 . 584674) (-1743 . 584604) (-1744 . 584530) (-1745 . 583956)
+ (-1746 . 583875) (-1747 . 583565) (-1748 . 583440) (-1749 . 583259)
+ (-1750 . 583148) (-1751 . 583039) (-1752 . 582465) (-1753 . 582382)
+ (-1754 . 582218) (-1755 . 581778) (-1756 . 581719) (-1757 . 581500)
+ (-1758 . 581364) (-1759 . 580790) (-1760 . 580469) (-1761 . 579609)
+ (-1762 . 579468) (-1763 . 579312) (-1764 . 579183) (-1765 . 579086)
+ (-1766 . 578842) (-1767 . 578598) (-1768 . 578024) (-1769 . 577927)
+ (-1770 . 577279) (-1771 . 577020) (-1772 . 576946) (-1773 . 576775)
+ (-1774 . 576723) (-1775 . 576652) (-1776 . 576078) (-1777 . 575963)
+ (-1778 . 575828) (-1779 . 575611) (-1780 . 575531) (-1781 . 575475)
+ (-1782 . 575133) (-1783 . 574982) (-1784 . 574863) (-1785 . 574754)
+ (-1786 . 574590) (-1787 . 574428) (-1788 . 574282) (-1789 . 574093)
+ (-1790 . 573937) (-1791 . 573805) (-1792 . 573712) (-1793 . 573559)
+ (-1794 . 573447) (-1795 . 573260) (-1796 . 573157) (-1797 . 573044)
+ (-1798 . 569759) (-1799 . 569616) (-1800 . 569414) (-1801 . 568709)
+ (-1802 . 568570) (-1803 . 568454) (-1804 . 568364) (-1805 . 567955)
+ (-1806 . 567855) (-1807 . 567760) (-1808 . 567689) (-1809 . 567311)
+ (-1810 . 567141) (-1811 . 566518) (-1812 . 566190) (-1813 . 566033)
+ (-1814 . 565927) (-1815 . 565513) (-1816 . 565440) (-1817 . 565326)
+ (-1818 . 565225) (-1819 . 565026) (-1820 . 564611) (-1821 . 564224)
+ (-1822 . 564172) (-1823 . 564089) (-1824 . 563482) (-1825 . 563244)
+ (-1826 . 563149) (-1827 . 562603) (-1828 . 562569) (-1829 . 562326)
+ (-1830 . 562166) (-1831 . 562113) (-1832 . 562085) (-1833 . 562001)
+ (-1834 . 561935) (-1835 . 561861) (-1836 . 561778) (-1837 . 561568)
+ (-1838 . 561500) (-1839 . 561398) (-1840 . 560940) (-1841 . 560852)
+ (-1842 . 560741) (-1843 . 560662) (-1844 . 560476) (-1845 . 560383)
+ (-1846 . 560309) (-1847 . 559887) (-1848 . 559802) (-1849 . 559604)
+ (-1850 . 559460) (-1851 . 559348) (-1852 . 559296) (-1853 . 559213)
+ (-1854 . 558917) (-1855 . 558803) (-1856 . 558748) (-1857 . 558533)
+ (-1858 . 551579) (-1859 . 551420) (-1860 . 551170) (-1861 . 550961)
+ (-1862 . 550737) (-1863 . 550650) (-1864 . 549995) (-1865 . 549570)
+ (-1866 . 549245) (-1867 . 549074) (-1868 . 548666) (-1869 . 548550)
+ (-1870 . 547395) (-1871 . 547294) (-1872 . 547211) (-1873 . 547128)
+ (-1874 . 547021) (-1875 . 546877) (-1876 . 546794) (-1877 . 546745)
+ (-1878 . 546615) (-1879 . 546273) (-1880 . 546220) (-1881 . 545979)
+ (-1882 . 545906) (-1883 . 545592) (-1884 . 545523) (-1885 . 545279)
+ (-1886 . 545217) (-1887 . 545145) (-1888 . 545022) (-1889 . 544952)
+ (-1890 . 544837) (-1891 . 544410) (-1892 . 544303) (-1893 . 543975)
+ (-1894 . 543748) (-1895 . 543642) (-1896 . 543428) (-1897 . 543273)
+ (-1898 . 543207) (-1899 . 543151) (-1900 . 542961) (-1901 . 542844)
+ (-1902 . 542670) (-1903 . 542417) (-1904 . 542340) (-1905 . 541980)
+ (-1906 . 541480) (-1907 . 540989) (-1908 . 539649) (-1909 . 539617)
+ (-1910 . 539562) (-1911 . 539467) (-1912 . 539394) (-1913 . 539057)
+ (-1914 . 538977) (-1915 . 538853) (-1916 . 533347) (-1917 . 533240)
+ (-1918 . 533128) (-1919 . 533100) (-1920 . 533035) (-1921 . 533007)
+ (-1922 . 532919) (-1923 . 532803) (-1924 . 532466) (-1925 . 532389)
+ (-1926 . 532210) (-1927 . 532182) (-1928 . 532095) (-1929 . 531707)
+ (-1930 . 531608) (-1931 . 531455) (-1932 . 531237) (-1933 . 530923)
+ (-1934 . 530507) (-1935 . 530408) (-1936 . 530277) (-1937 . 529824)
+ (-1938 . 529283) (-1939 . 529137) (-1940 . 529044) (-1941 . 528950)
+ (-1942 . 528867) (-1943 . 528608) (-1944 . 528539) (-1945 . 528268)
+ (-1946 . 528156) (-1947 . 528104) (-1948 . 527757) (-1949 . 527309)
+ (-1950 . 526928) (-1951 . 526829) (-1952 . 526751) (-1953 . 526581)
+ (-1954 . 526479) (-1955 . 526178) (-1956 . 526040) (-1957 . 525937)
+ (-1958 . 525721) (-1959 . 525612) (-1960 . 525551) (-1961 . 525523)
+ (-1962 . 525443) (-1963 . 525336) (-1964 . 525159) (-1965 . 525100)
+ (-1966 . 524884) (-1967 . 524609) (-1968 . 524225) (-1969 . 524169)
+ (-1970 . 524049) (-1971 . 523964) (-1972 . 523879) (-1973 . 522117)
+ (-1974 . 521960) (-1975 . 521877) (-1976 . 521759) (-1977 . 521618)
+ (-1978 . 521515) (-1979 . 521408) (-1980 . 521321) (-1981 . 521186)
+ (-1982 . 520885) (-1983 . 520765) (-1984 . 520731) (-1985 . 520578)
+ (-1986 . 520087) (-1987 . 520004) (-1988 . 519240) (-1989 . 518945)
+ (-1990 . 518771) (-1991 . 518482) (-1992 . 518373) (-1993 . 518099)
+ (-1994 . 517976) (-1995 . 517926) (-1996 . 517759) (-1997 . 517678)
+ (-1998 . 517619) (-1999 . 517567) (-2000 . 517514) (-2001 . 517398)
+ (-2002 . 517211) (-2003 . 516539) (-2004 . 516486) (-2005 . 516379)
+ (-2006 . 516281) (-2007 . 516202) (-2008 . 516059) (-2009 . 515508)
+ (-2010 . 515452) (-2011 . 515378) (-2012 . 515283) (-2013 . 515177)
+ (-2014 . 515082) (-2015 . 514928) (-2016 . 514500) (-2017 . 514189)
+ (-2018 . 513802) (-2019 . 513725) (-2020 . 513599) (-2021 . 513535)
+ (-2022 . 513504) (-2023 . 513454) (-2024 . 513367) (-2025 . 512744)
+ (-2026 . 512716) (-2027 . 512639) (-2028 . 512587) (-2029 . 512487)
+ (-2030 . 512392) (-2031 . 512170) (-2032 . 512099) (-2033 . 510916)
+ (-2034 . 510738) (-2035 . 510397) (-2036 . 510288) (-2037 . 510211)
+ (-2038 . 510095) (-2039 . 509908) (-2040 . 509778) (-2041 . 509560)
+ (-2042 . 509415) (-2043 . 509347) (-2044 . 509251) (-2045 . 509098)
+ (-2046 . 509024) (-2047 . 508971) (-2048 . 508846) (-2049 . 508762)
+ (-2050 . 508643) (-2051 . 507558) (-2052 . 507499) (-2053 . 507398)
+ (-2054 . 507346) (-2055 . 507209) (-2056 . 507107) (-2057 . 507012)
+ (-2058 . 506739) (-2059 . 506687) (-2060 . 506602) (-2061 . 506495)
+ (-2062 . 506342) (-2063 . 506276) (-2064 . 505392) (-2065 . 505297)
+ (-2066 . 505091) (-2067 . 505020) (-2068 . 504914) (-2069 . 504567)
+ (-2070 . 504511) (-2071 . 503920) (-2072 . 503120) (-2073 . 502870)
+ (-2074 . 502790) (-2075 . 502407) (-2076 . 502328) (-2077 . 502245)
+ (-2078 . 502023) (-2079 . 501963) (-2080 . 501858) (-2081 . 501726)
+ (-2082 . 501442) (-2083 . 501326) (-2084 . 501240) (-2085 . 501124)
+ (-2086 . 500911) (-2087 . 500749) (-2088 . 500536) (-2089 . 500483)
+ (-2090 . 500382) (-2091 . 500198) (-2092 . 500077) (-2093 . 500020)
+ (-2094 . 499574) (-2095 . 499515) (-2096 . 499260) (-2097 . 499173)
+ (-2098 . 498299) (-2099 . 498162) (-2100 . 496383) (-2101 . 496103)
+ (-2102 . 496017) (-2103 . 495739) (-2104 . 495687) (-2105 . 495584)
+ (-2106 . 495375) (-2107 . 495307) (-2108 . 494920) (-2109 . 494700)
+ (-2110 . 494585) (-2111 . 494501) (-2112 . 494225) (-2113 . 494066)
+ (-2114 . 493970) (-2115 . 493835) (-2116 . 493779) (-2117 . 493378)
+ (-2118 . 492961) (-2119 . 492843) (-2120 . 492699) (-2121 . 492597)
+ (-2122 . 492540) (-2123 . 491905) (-2124 . 491674) (-2125 . 491563)
+ (-2126 . 491341) (-2127 . 491206) (-2128 . 491115) (-2129 . 491050)
+ (-2130 . 490857) (-2131 . 490761) (-2132 . 490660) (-2133 . 490626)
+ (-2134 . 490512) (-2135 . 489860) (-2136 . 489783) (-2137 . 489699)
+ (-2138 . 489095) (-2139 . 488967) (-2140 . 488623) (-2141 . 488418)
+ (-2142 . 488265) (-2143 . 488136) (-2144 . 487967) (-2145 . 487901)
+ (-2146 . 487824) (-2147 . 486861) (-2148 . 486781) (-2149 . 486579)
+ (-2150 . 486470) (-2151 . 486418) (-2152 . 486341) (-2153 . 486269)
+ (-2154 . 485792) (-2155 . 485736) (-2156 . 485609) (-2157 . 483457)
+ (-2158 . 483405) (-2159 . 483377) (-2160 . 482845) (-2161 . 482777)
+ (-2162 . 482663) (-2163 . 482515) (-2164 . 482430) (-2165 . 482353)
+ (-2166 . 482259) (-2167 . 482094) (-2168 . 481967) (-2169 . 481667)
+ (-2170 . 481084) (-2171 . 480893) (-2172 . 480788) (-2173 . 480705)
+ (-2174 . 480652) (-2175 . 480434) (-2176 . 480102) (-2177 . 479811)
+ (-2178 . 479738) (-2179 . 479629) (-2180 . 479485) (-2181 . 479385)
+ (-2182 . 479135) (-2183 . 478115) (-2184 . 477942) (-2185 . 477823)
+ (-2186 . 477732) (-2187 . 477561) (-2188 . 476946) (-2189 . 476894)
+ (-2190 . 454025) (-2191 . 453973) (-2192 . 453887) (-2193 . 453786)
+ (-2194 . 453661) (-2195 . 453574) (-2196 . 453419) (-2197 . 453214)
+ (-2198 . 452937) (-2199 . 452515) (-2200 . 452443) (-2201 . 449691)
+ (-2202 . 449589) (-2203 . 449516) (-2204 . 449049) (-2205 . 448845)
+ (-2206 . 448680) (-2207 . 448607) (-2208 . 448466) (-2209 . 448414)
+ (-2210 . 448219) (-2211 . 448147) (-2212 . 448045) (-2213 . 447216)
+ (-2214 . 447164) (-2215 . 446987) (-2216 . 446790) (-2217 . 446573)
+ (-2218 . 446502) (-2219 . 446343) (-2220 . 446253) (-2221 . 446201)
+ (-2222 . 446136) (-2223 . 445990) (-2224 . 445903) (-2225 . 445661)
+ (-2226 . 445558) (-2227 . 445527) (-2228 . 445345) (-2229 . 445119)
+ (-2230 . 444598) (-2231 . 444477) (-2232 . 443622) (-2233 . 443534)
+ (-2234 . 443426) (-2235 . 443310) (-2236 . 443169) (-2237 . 443091)
+ (-2238 . 442708) (-2239 . 442522) (-2240 . 442283) (-2241 . 441786)
+ (-2242 . 441644) (-2243 . 441481) (-2244 . 441426) (-2245 . 441319)
+ (-2246 . 441003) (-2247 . 440845) (-2248 . 440698) (-2249 . 440043)
+ (-2250 . 439745) (-2251 . 439644) (-2252 . 439536) (-2253 . 439441)
+ (-2254 . 439344) (-2255 . 438965) (-2256 . 438870) (-2257 . 438764)
+ (-2258 . 438385) (-2259 . 437285) (-2260 . 437027) (-2261 . 436957)
+ (-2262 . 436904) (-2263 . 436724) (-2264 . 435909) (-2265 . 435612)
+ (-2266 . 435507) (-2267 . 435159) (-2268 . 433441) (-2269 . 433328)
+ (-2270 . 432967) (-2271 . 432848) (-2272 . 432774) (-2273 . 432721)
+ (-2274 . 432577) (-2275 . 432489) (-2276 . 432349) (-2277 . 432252)
+ (-2278 . 432027) (-2279 . 431879) (-2280 . 431850) (-2281 . 431776)
+ (-2282 . 431748) (-2283 . 431696) (-2284 . 431611) (-2285 . 431372)
+ (-2286 . 431273) (-2287 . 431181) (-2288 . 431094) (-2289 . 427106)
+ (-2290 . 427036) (-2291 . 426657) (-2292 . 426258) (-2293 . 426100)
+ (-2294 . 425488) (-2295 . 425426) (-2296 . 425398) (-2297 . 424529)
+ (-2298 . 424394) (-2299 . 424310) (-2300 . 424091) (-2301 . 423966)
+ (-2302 . 423892) (-2303 . 423788) (-2304 . 423661) (-2305 . 423118)
+ (-2306 . 422692) (-2307 . 422109) (-2308 . 421997) (-2309 . 421754)
+ (-2310 . 421653) (-2311 . 421362) (-2312 . 420916) (-2313 . 420866)
+ (-2314 . 420809) (-2315 . 420717) (-2316 . 420661) (-2317 . 419665)
+ (-2318 . 419179) (-2319 . 419117) (-2320 . 419054) (-2321 . 418956)
+ (-2322 . 418669) (-2323 . 417813) (-2324 . 417747) (-2325 . 417608)
+ (-2326 . 417430) (-2327 . 417373) (-2328 . 417303) (-2329 . 417067)
+ (-2330 . 417018) (-2331 . 416755) (-2332 . 416391) (-2333 . 416292)
+ (-2334 . 416195) (-2335 . 415867) (-2336 . 415381) (-2337 . 415347)
+ (-2338 . 415182) (-2339 . 415148) (-2340 . 414983) (-2341 . 414949)
+ (-2342 . 414756) (-2343 . 414601) (-2344 . 414362) (-2345 . 414046)
+ (-2346 . 413947) (-2347 . 413825) (-2348 . 413772) (-2349 . 413678)
+ (-2350 . 413625) (-2351 . 413414) (-2352 . 412913) (-2353 . 412736)
+ (-2354 . 412665) (-2355 . 412134) (-2356 . 412079) (-2357 . 411924)
+ (-2358 . 411753) (-2359 . 411646) (-2360 . 411504) (-2361 . 411405)
+ (-2362 . 411335) (-2363 . 411285) (-2364 . 411214) (-2365 . 411074)
+ (-2366 . 410933) (-2367 . 410819) (-2368 . 410745) (-2369 . 410647)
+ (-2370 . 410567) (-2371 . 410446) (-2372 . 410293) (-2373 . 410081)
+ (-2374 . 410029) (-2375 . 409863) (-2376 . 409812) (-2377 . 409221)
+ (-2378 . 408994) (-2379 . 407693) (-2380 . 407460) (-2381 . 407284)
+ (-2382 . 407084) (-2383 . 407055) (-2384 . 407003) (-2385 . 406949)
+ (-2386 . 406810) (-2387 . 406703) (-2388 . 406332) (-2389 . 405413)
+ (-2390 . 405327) (-2391 . 405029) (-2392 . 404589) (-2393 . 404517)
+ (-2394 . 404379) (-2395 . 404256) (-2396 . 404222) (-2397 . 403880)
+ (-2398 . 403796) (-2399 . 403693) (-2400 . 403428) (-2401 . 403311)
+ (-2402 . 403131) (-2403 . 402972) (-2404 . 402646) (-2405 . 402287)
+ (-2406 . 402080) (-2407 . 402028) (-2408 . 401915) (-2409 . 401836)
+ (-2410 . 401745) (-2411 . 401428) (-2412 . 401237) (-2413 . 401114)
+ (-2414 . 401086) (-2415 . 401020) (-2416 . 400068) (-2417 . 399973)
+ (-2418 . 399769) (-2419 . 399717) (-2420 . 399594) (-2421 . 399470)
+ (-2422 . 399357) (-2423 . 399007) (-2424 . 398872) (-2425 . 398777)
+ (-2426 . 398579) (-2427 . 398368) (-2428 . 398295) (-2429 . 398165)
+ (-2430 . 398131) (-2431 . 397673) (-2432 . 397574) (-2433 . 397189)
+ (-2434 . 397046) (-2435 . 396980) (-2436 . 396850) (-2437 . 396648)
+ (-2438 . 396468) (-2439 . 396140) (-2440 . 396060) (-2441 . 395975)
+ (-2442 . 395767) (-2443 . 395450) (-2444 . 395327) (-2445 . 395249)
+ (-2446 . 394969) (-2447 . 394902) (-2448 . 394849) (-2449 . 394401)
+ (-2450 . 394334) (-2451 . 394165) (-2452 . 394107) (-2453 . 393904)
+ (-2454 . 393805) (-2455 . 393626) (-2456 . 393555) (-2457 . 393387)
+ (-2458 . 393246) (-2459 . 393101) (-2460 . 392994) (-2461 . 392794)
+ (-2462 . 392187) (-2463 . 392061) (-2464 . 391897) (-2465 . 391703)
+ (-2466 . 391625) (-2467 . 391493) (-2468 . 391056) (-2469 . 390811)
+ (-2470 . 390731) (-2471 . 390435) (-2472 . 390311) (-2473 . 389940)
+ (-2474 . 389888) (-2475 . 389693) (-2476 . 389612) (-2477 . 389369)
+ (-2478 . 389119) (-2479 . 388539) (-2480 . 388416) (-2481 . 388267)
+ (-2482 . 388215) (-2483 . 387957) (-2484 . 387904) (-2485 . 387745)
+ (-2486 . 387273) (-2487 . 387147) (-2488 . 387061) (-2489 . 386963)
+ (-2490 . 386737) (-2491 . 386600) (-2492 . 385965) (-2493 . 385909)
+ (-2494 . 385754) (-2495 . 385604) (-2496 . 385223) (-2497 . 384841)
+ (-2498 . 384677) (-2499 . 384579) (-2500 . 382728) (-2501 . 382654)
+ (-2502 . 382594) (-2503 . 382484) (-2504 . 382410) (-2505 . 382324)
+ (-2506 . 382194) (-2507 . 382003) (-2508 . 381951) (-2509 . 381542)
+ (-2510 . 381028) (-2511 . 380884) (-2512 . 380806) (-2513 . 380721)
+ (-2514 . 380437) (-2515 . 380318) (-2516 . 380251) (-2517 . 379580)
+ (-2518 . 379307) (-2519 . 379254) (-2520 . 379158) (-2521 . 378858)
+ (-2522 . 378748) (-2523 . 378488) (-2524 . 378418) (-2525 . 378335)
+ (-2526 . 378068) (-2527 . 377824) (-2528 . 377669) (-2529 . 377616)
+ (-2530 . 377462) (-2531 . 377407) (-2532 . 377298) (-2533 . 377231)
+ (-2534 . 377178) (-2535 . 377147) (-2536 . 377028) (-2537 . 376788)
+ (-2538 . 376714) (-2539 . 376662) (-2540 . 376581) (-2541 . 376528)
+ (-2542 . 376405) (-2543 . 376250) (-2544 . 375860) (-2545 . 370761)
+ (-2546 . 370688) (-2547 . 370614) (-2548 . 370559) (-2549 . 370289)
+ (-2550 . 370206) (-2551 . 370088) (-2552 . 369930) (-2553 . 369862)
+ (-2554 . 369803) (-2555 . 369730) (-2556 . 369483) (-2557 . 369401)
+ (-2558 . 369257) (-2559 . 368942) (-2560 . 368812) (-2561 . 368700)
+ (-2562 . 368570) (-2563 . 368471) (-2564 . 368400) (-2565 . 368293)
+ (-2566 . 368244) (-2567 . 368171) (-2568 . 367994) (-2569 . 367882)
+ (-2570 . 367812) (-2571 . 367015) (-2572 . 366719) (-2573 . 366560)
+ (-2574 . 366463) (-2575 . 366219) (-2576 . 365991) (-2577 . 365898)
+ (-2578 . 365814) (-2579 . 365748) (-2580 . 365669) (-2581 . 365641)
+ (-2582 . 365347) (-2583 . 365281) (-2584 . 365151) (-2585 . 365064)
+ (-2586 . 364911) (-2587 . 364798) (-2588 . 364729) (-2589 . 364512)
+ (-2590 . 363971) (-2591 . 363778) (-2592 . 363726) (-2593 . 363359)
+ (-2594 . 363191) (-2595 . 363076) (-2596 . 362994) (-2597 . 362808)
+ (-2598 . 362699) (-2599 . 362668) (-2600 . 362176) (-2601 . 362116)
+ (-2602 . 361908) (-2603 . 361070) (-2604 . 360987) (-2605 . 360934)
+ (-2606 . 360774) (-2607 . 360543) (-2608 . 360182) (-2609 . 360046)
+ (-2610 . 359730) (-2611 . 359603) (-2612 . 359530) (-2613 . 359339)
+ (-2614 . 359168) (-2615 . 358853) (-2616 . 358404) (-2617 . 358352)
+ (-2618 . 358225) (-2619 . 358142) (-2620 . 358071) (-2621 . 357740)
+ (-2622 . 357450) (-2623 . 357384) (-2624 . 357322) (-2625 . 357228)
+ (-2626 . 356192) (-2627 . 355842) (-2628 . 355758) (-2629 . 355588)
+ (-2630 . 355227) (-2631 . 355112) (-2632 . 354954) (-2633 . 354856)
+ (-2634 . 354666) (-2635 . 354559) (-2636 . 353939) (-2637 . 353798)
+ (-2638 . 353685) (-2639 . 353630) (-2640 . 353376) (-2641 . 353123)
+ (-2642 . 353064) (-2643 . 352935) (-2644 . 352839) (-2645 . 352673)
+ (-2646 . 352592) (-2647 . 352394) (-2648 . 351919) (-2649 . 351891)
+ (-2650 . 351706) (-2651 . 351618) (-2652 . 351545) (-2653 . 351193)
+ (-2654 . 351096) (-2655 . 350999) (-2656 . 350331) (-2657 . 350151)
+ (-2658 . 349771) (-2659 . 349609) (-2660 . 349453) (-2661 . 349401)
+ (-2662 . 349306) (-2663 . 349257) (-2664 . 348835) (-2665 . 348510)
+ (-2666 . 348443) (-2667 . 348363) (-2668 . 348310) (-2669 . 347658)
+ (-2670 . 347575) (-2671 . 347491) (-2672 . 347119) (-2673 . 347069)
+ (-2674 . 346498) (-2675 . 346384) (-2676 . 346347) (-2677 . 345937)
+ (-2678 . 345779) (-2679 . 345655) (-2680 . 345431) (-2681 . 345332)
+ (-2682 . 344120) (-2683 . 343900) (-2684 . 343788) (-2685 . 343609)
+ (-2686 . 343538) (-2687 . 343444) (-2688 . 343381) (-2689 . 343050)
+ (-2690 . 342912) (-2691 . 342857) (-2692 . 342569) (-2693 . 342482)
+ (-2694 . 342231) (-2695 . 342153) (-2696 . 342011) (-2697 . 341856)
+ (-2698 . 341784) (-2699 . 341631) (-2700 . 341528) (-2701 . 341427)
+ (-2702 . 340918) (-2703 . 340472) (-2704 . 340377) (-2705 . 340266)
+ (-2706 . 340122) (-2707 . 339981) (-2708 . 339860) (-2709 . 339617)
+ (-2710 . 339586) (-2711 . 339435) (-2712 . 339156) (-2713 . 339095)
+ (-2714 . 338697) (-2715 . 338575) (-2716 . 338410) (-2717 . 338083)
+ (-2718 . 337680) (-2719 . 337536) (-2720 . 337275) (-2721 . 337150)
+ (-2722 . 337056) (-2723 . 336810) (-2724 . 335707) (-2725 . 335606)
+ (-2726 . 335528) (-2727 . 335284) (-2728 . 335091) (-2729 . 334971)
+ (-2730 . 334658) (-2731 . 334584) (-2732 . 334039) (-2733 . 333984)
+ (-2734 . 333875) (-2735 . 333731) (-2736 . 333105) (-2737 . 332973)
+ (-2738 . 332680) (-2739 . 332597) (-2740 . 332349) (-2741 . 332078)
+ (-2742 . 331908) (-2743 . 331838) (-2744 . 331775) (-2745 . 331631)
+ (-2746 . 331579) (-2747 . 331500) (-2748 . 330759) (-2749 . 330469)
+ (-2750 . 330379) (-2751 . 330299) (-2752 . 329864) (-2753 . 329749)
+ (-2754 . 329642) (-2755 . 329614) (-2756 . 329586) (-2757 . 329523)
+ (-2758 . 329386) (-2759 . 329302) (-2760 . 329071) (-2761 . 328330)
+ (-2762 . 327757) (-2763 . 327699) (-2764 . 327627) (-2765 . 327571)
+ (-2766 . 323411) (-2767 . 323345) (-2768 . 323238) (-2769 . 322537)
+ (-2770 . 322450) (-2771 . 322377) (-2772 . 321689) (-2773 . 318781)
+ (-2774 . 318702) (-2775 . 318211) (-2776 . 318111) (-2777 . 317698)
+ (-2778 . 317614) (-2779 . 317562) (-2780 . 317202) (-2781 . 317093)
+ (-2782 . 316855) (-2783 . 316467) (-2784 . 315891) (-2785 . 315686)
+ (-2786 . 315580) (-2787 . 315529) (-2788 . 315399) (-2789 . 315211)
+ (-2790 . 315020) (-2791 . 314930) (-2792 . 314804) (-2793 . 312704)
+ (-2794 . 312128) (-2795 . 312054) (-2796 . 312002) (-2797 . 311923)
+ (-2798 . 311724) (-2799 . 311572) (-2800 . 311456) (-2801 . 311404)
+ (-2802 . 311058) (-2803 . 310892) (-2804 . 310316) (-2805 . 309617)
+ (-2806 . 309490) (-2807 . 309292) (-2808 . 309192) (-2809 . 308880)
+ (-2810 . 308792) (-2811 . 308721) (-2812 . 308390) (-2813 . 308001)
+ (-2814 . 307722) (-2815 . 307036) (-2816 . 306359) (-2817 . 306188)
+ (-2818 . 306117) (-2819 . 306025) (-2820 . 305745) (-2821 . 305578)
+ (-2822 . 305507) (-2823 . 305344) (-2824 . 305238) (-2825 . 304552)
+ (-2826 . 304329) (-2827 . 304256) (-2828 . 304085) (-2829 . 303976)
+ (-2830 . 303831) (-2831 . 303556) (-2832 . 303296) (-2833 . 303242)
+ (-2834 . 303124) (-2835 . 302975) (-2836 . 302226) (-2837 . 302146)
+ (-2838 . 301881) (-2839 . 301816) (-2840 . 301763) (-2841 . 301524)
+ (-2842 . 301406) (-2843 . 301332) (-2844 . 301245) (-2845 . 301153)
+ (-2846 . 301080) (-2847 . 300790) (-2848 . 300216) (-2849 . 300109)
+ (-2850 . 299999) (-2851 . 299856) (-2852 . 299771) (-2853 . 299664)
+ (-2854 . 299581) (-2855 . 299509) (-2856 . 299363) (-2857 . 299173)
+ (-2858 . 299064) (-2859 . 299035) (-2860 . 298461) (-2861 . 298410)
+ (-2862 . 298300) (-2863 . 298227) (-2864 . 298116) (-2865 . 298034)
+ (-2866 . 297933) (-2867 . 297778) (-2868 . 297602) (-2869 . 297509)
+ (-2870 . 297263) (-2871 . 296936) (-2872 . 296362) (-2873 . 296255)
+ (-2874 . 296184) (-2875 . 296095) (-2876 . 295996) (-2877 . 295889)
+ (-2878 . 295731) (-2879 . 295578) (-2880 . 295431) (-2881 . 295248)
+ (-2882 . 295180) (-2883 . 295106) (-2884 . 294419) (-2885 . 294360)
+ (-2886 . 294253) (-2887 . 294149) (-2888 . 293637) (-2889 . 293479)
+ (-2890 . 293405) (-2891 . 293355) (-2892 . 293261) (-2893 . 293114)
+ (-2894 . 292900) (-2895 . 292845) (-2896 . 292158) (-2897 . 292106)
+ (-2898 . 291854) (-2899 . 291717) (-2900 . 291564) (-2901 . 291364)
+ (-2902 . 291241) (-2903 . 291114) (-2904 . 291007) (-2905 . 290870)
+ (-2906 . 290697) (-2907 . 290663) (-2908 . 289976) (-2909 . 289669)
+ (-2910 . 289562) (-2911 . 289488) (-2912 . 289436) (-2913 . 289365)
+ (-2914 . 289214) (-2915 . 289039) (-2916 . 288906) (-2917 . 288851)
+ (-2918 . 288766) (-2919 . 288191) (-2920 . 284129) (-2921 . 284059)
+ (-2922 . 283997) (-2923 . 283928) (-2924 . 283773) (-2925 . 283315)
+ (-2926 . 283241) (-2927 . 282716) (-2928 . 282558) (-2929 . 282505)
+ (-2930 . 281930) (-2931 . 281848) (-2932 . 281693) (-2933 . 281429)
+ (-2934 . 281267) (-2935 . 281117) (-2936 . 280904) (-2937 . 280798)
+ (-2938 . 280694) (-2939 . 280567) (-2940 . 280466) (-2941 . 280264)
+ (-2942 . 280233) (-2943 . 279987) (-2944 . 279914) (-2945 . 279815)
+ (-2946 . 279762) (-2947 . 279691) (-2948 . 279632) (-2949 . 279429)
+ (-2950 . 279224) (-2951 . 279080) (-2952 . 278974) (-2953 . 278690)
+ (-2954 . 278624) (-2955 . 278351) (-2956 . 276006) (-2957 . 275975)
+ (-2958 . 275473) (-2959 . 275260) (-2960 . 275038) (-2961 . 274707)
+ (-2962 . 274605) (-2963 . 274320) (-2964 . 274189) (-2965 . 274049)
+ (-2966 . 273454) (-2967 . 273339) (-2968 . 273254) (-2969 . 273092)
+ (-2970 . 272711) (-2971 . 272155) (-2972 . 271846) (-2973 . 271787)
+ (-2974 . 271721) (-2975 . 271526) (-2976 . 271074) (-2977 . 270719)
+ (-2978 . 270669) (-2979 . 270577) (-2980 . 270444) (-2981 . 270360)
+ (-2982 . 270251) (-2983 . 270000) (-2984 . 269878) (-2985 . 269684)
+ (-2986 . 269374) (-2987 . 268820) (-2988 . 268572) (-2989 . 268363)
+ (-2990 . 268220) (-2991 . 268097) (-2992 . 268003) (-2993 . 267975)
+ (-2994 . 267924) (-2995 . 267754) (-2996 . 267705) (-2997 . 267634)
+ (-2998 . 267564) (-2999 . 267496) (-3000 . 267340) (-3001 . 267258)
+ (-3002 . 267142) (-3003 . 266984) (-3004 . 266942) (-3005 . 266748)
+ (-3006 . 266643) (-3007 . 266397) (-3008 . 266274) (-3009 . 266204)
+ (-3010 . 265494) (-3011 . 265442) (-3012 . 265236) (-3013 . 265101)
+ (-3014 . 264839) (-3015 . 264743) (-3016 . 264639) (-3017 . 264416)
+ (-3018 . 264301) (-3019 . 264246) (-3020 . 263909) (-3021 . 263768)
+ (-3022 . 263538) (-3023 . 263328) (-3024 . 263294) (-3025 . 263195)
+ (-3026 . 263037) (-3027 . 262654) (-3028 . 262408) (-3029 . 262246)
+ (-3030 . 262100) (-3031 . 262015) (-3032 . 261845) (-3033 . 261763)
+ (-3034 . 261711) (-3035 . 261581) (-3036 . 261496) (-3037 . 261434)
+ (-3038 . 261376) (-3039 . 261239) (-3040 . 261173) (-3041 . 260989)
+ (-3042 . 260848) (-3043 . 260786) (-3044 . 260752) (-3045 . 260664)
+ (-3046 . 260590) (-3047 . 260233) (-3048 . 259031) (-3049 . 258871)
+ (-3050 . 258709) (-3051 . 258602) (-3052 . 258500) (-3053 . 258376)
+ (-3054 . 258305) (-3055 . 258147) (-3056 . 258116) (-3057 . 257998)
+ (-3058 . 256170) (-3059 . 256000) (-3060 . 255878) (** . 252801)
+ (-3062 . 252714) (-3063 . 252665) (-3064 . 252607) (-3065 . 252449)
+ (-3066 . 252372) (-3067 . 252319) (-3068 . 250818) (-3069 . 250746)
+ (-3070 . 250645) (-3071 . 250383) (-3072 . 250109) (-3073 . 250005)
+ (-3074 . 249911) (-3075 . 249604) (-3076 . 249549) (-3077 . 249326)
+ (-3078 . 249217) (-3079 . 247677) (-3080 . 247507) (-3081 . 247112)
+ (-3082 . 246956) (-3083 . 246788) (-3084 . 246682) (-3085 . 246387)
+ (-3086 . 246302) (-3087 . 246130) (-3088 . 246043) (-3089 . 245553)
+ (-3090 . 245356) (-3091 . 245077) (-3092 . 244885) (-3093 . 244783)
+ (-3094 . 244628) (-3095 . 244542) (-3096 . 244262) (-3097 . 243996)
+ (-3098 . 243260) (-3099 . 243052) (-3100 . 242896) (-3101 . 242755)
+ (-3102 . 242724) (-3103 . 242544) (-3104 . 242409) (-3105 . 242339)
+ (-3106 . 242286) (-3107 . 242229) (-3108 . 242068) (-3109 . 241942)
+ (-3110 . 241829) (-3111 . 241726) (-3112 . 241317) (-3113 . 240968)
+ (-3114 . 240846) (-3115 . 240745) (-3116 . 240690) (-3117 . 240415)
+ (-3118 . 240289) (-3119 . 239845) (-3120 . 239729) (-3121 . 239425)
+ (-3122 . 239146) (-3123 . 239093) (-3124 . 238960) (-3125 . 238887)
+ (-3126 . 238814) (-3127 . 238666) (-3128 . 238028) (-3129 . 237887)
+ (-3130 . 237808) (-3131 . 237755) (-3132 . 237614) (-3133 . 237215)
+ (-3134 . 237077) (-3135 . 236994) (-3136 . 236925) (-3137 . 236720)
+ (-3138 . 235560) (-3139 . 235198) (-3140 . 235101) (-3141 . 234803)
+ (-3142 . 234772) (-3143 . 234620) (-3144 . 234496) (-3145 . 234021)
+ (-3146 . 233955) (-3147 . 233841) (-3148 . 233789) (-3149 . 233653)
+ (-3150 . 233481) (-3151 . 233328) (-3152 . 232892) (-3153 . 232580)
+ (-3154 . 232434) (-3155 . 232339) (-3156 . 231216) (-3157 . 230829)
+ (-3158 . 230720) (-3159 . 230548) (-3160 . 230489) (-3161 . 230323)
+ (-3162 . 230175) (-3163 . 230094) (-3164 . 229949) (-3165 . 229896)
+ (-3166 . 228649) (-3167 . 228452) (-3168 . 228073) (-3169 . 227901)
+ (-3170 . 227804) (-3171 . 227477) (-3172 . 227299) (-3173 . 227159)
+ (-3174 . 226826) (-3175 . 226630) (-3176 . 226488) (-3177 . 226398)
+ (-3178 . 226252) (-3179 . 226080) (-3180 . 225893) (-3181 . 225821)
+ (-3182 . 225642) (-3183 . 225550) (-3184 . 225450) (-3185 . 225138)
+ (-3186 . 225058) (-3187 . 224901) (-3188 . 224814) (-3189 . 224680)
+ (-3190 . 224478) (-3191 . 224216) (-3192 . 224106) (-3193 . 224016)
+ (-3194 . 223823) (-3195 . 223597) (-3196 . 223539) (-3197 . 223383)
+ (-3198 . 223243) (-3199 . 223055) (-3200 . 222989) (-3201 . 222851)
+ (-3202 . 222721) (-3203 . 222613) (-3204 . 222439) (-3205 . 222188)
+ (-3206 . 221666) (-3207 . 221565) (-3208 . 221354) (-3209 . 221264)
+ (-3210 . 221075) (-3211 . 220976) (-3212 . 220838) (-3213 . 220751)
+ (-3214 . 220652) (-3215 . 220557) (-3216 . 220128) (-3217 . 219990)
+ (-3218 . 219930) (-3219 . 219745) (-3220 . 219674) (-3221 . 219488)
+ (-3222 . 219370) (-3223 . 219166) (-3224 . 219062) (-3225 . 218991)
+ (-3226 . 218849) (-3227 . 218660) (-3228 . 218487) (-3229 . 218306)
+ (-3230 . 218112) (-3231 . 218034) (-3232 . 217951) (-3233 . 217810)
+ (-3234 . 217758) (-3235 . 217487) (-3236 . 217256) (-3237 . 216910)
+ (-3238 . 216389) (-3239 . 216312) (-3240 . 215994) (-3241 . 215748)
+ (-3242 . 215674) (-3243 . 214099) (-3244 . 214028) (-3245 . 213696)
+ (-3246 . 213556) (-3247 . 213412) (-3248 . 213327) (-3249 . 213159)
+ (-3250 . 212559) (-3251 . 212399) (-3252 . 212349) (-3253 . 212285)
+ (-3254 . 212187) (-3255 . 211537) (-3256 . 211351) (-3257 . 211295)
+ (-3258 . 211224) (-3259 . 210620) (-3260 . 210456) (-3261 . 210251)
+ (-3262 . 210154) (-3263 . 210042) (-3264 . 209957) (-3265 . 209901)
+ (-3266 . 208691) (-3267 . 208608) (-3268 . 208418) (-3269 . 208311)
+ (-3270 . 208205) (-3271 . 208152) (-3272 . 208099) (-3273 . 207898)
+ (-3274 . 207664) (-3275 . 207635) (-3276 . 207545) (-3277 . 207437)
+ (-3278 . 207385) (-3279 . 207233) (-3280 . 207148) (-3281 . 207042)
+ (-3282 . 206857) (-3283 . 206653) (-3284 . 206380) (-3285 . 205309)
+ (-3286 . 205243) (-3287 . 205081) (-3288 . 205025) (-3289 . 204680)
+ (-3290 . 204587) (-3291 . 204389) (-3292 . 204315) (-3293 . 204181)
+ (-3294 . 204115) (-3295 . 203946) (-3296 . 203893) (-3297 . 203783)
+ (-3298 . 203600) (-3299 . 203390) (-3300 . 203281) (-3301 . 203064)
+ (-3302 . 202934) (-3303 . 202851) (-3304 . 202560) (-3305 . 202281)
+ (-3306 . 201815) (-3307 . 201675) (-3308 . 201502) (-3309 . 201419)
+ (-3310 . 201045) (-3311 . 200936) (-3312 . 200868) (-3313 . 200439)
+ (-3314 . 200285) (-3315 . 200046) (-3316 . 199997) (-3317 . 199929)
+ (-3318 . 199858) (-3319 . 199724) (-3320 . 199596) (-3321 . 199516)
+ (-3322 . 199076) (-3323 . 198948) (-3324 . 198616) (-3325 . 198543)
+ (-3326 . 198413) (-3327 . 198209) (-3328 . 198110) (-3329 . 197978)
+ (-3330 . 197691) (-3331 . 197633) (-3332 . 197414) (-3333 . 197277)
+ (-3334 . 197183) (-3335 . 197131) (-3336 . 196968) (-3337 . 196853)
+ (-3338 . 196819) (-3339 . 196652) (-3340 . 196122) (-3341 . 195601)
+ (-3342 . 195521) (-3343 . 195421) (-3344 . 195269) (-3345 . 195095)
+ (-3346 . 195023) (-3347 . 194895) (-3348 . 194656) (-3349 . 194558)
+ (-3350 . 194431) (-3351 . 193771) (-3352 . 193609) (-3353 . 193514)
+ (-3354 . 193329) (-3355 . 193086) (-3356 . 192951) (-3357 . 192849)
+ (-3358 . 192689) (-3359 . 192479) (-3360 . 192426) (-3361 . 192341)
+ (-3362 . 192215) (-3363 . 191979) (-3364 . 191898) (-3365 . 191825)
+ (-3366 . 191694) (-3367 . 191606) (-3368 . 191419) (-3369 . 191305)
+ (-3370 . 190922) (-3371 . 190813) (-3372 . 190699) (-3373 . 190569)
+ (-3374 . 190389) (-3375 . 190327) (-3376 . 190254) (-3377 . 189826)
+ (-3378 . 189666) (-3379 . 189484) (-3380 . 188968) (-3381 . 188805)
+ (-3382 . 188750) (-3383 . 188560) (-3384 . 188476) (-3385 . 188406)
+ (-3386 . 188227) (-3387 . 188004) (-3388 . 187851) (-3389 . 187781)
+ (-3390 . 187602) (-3391 . 187473) (-3392 . 187258) (-3393 . 187173)
+ (-3394 . 187051) (-3395 . 186993) (-3396 . 186895) (-3397 . 186835)
+ (-3398 . 186742) (-3399 . 186659) (-3400 . 186500) (-3401 . 186443)
+ (-3402 . 186412) (-3403 . 186341) (-3404 . 186254) (-3405 . 186140)
+ (-3406 . 185914) (-3407 . 185567) (-3408 . 185310) (-3409 . 184789)
+ (-3410 . 184719) (-3411 . 184545) (-3412 . 184438) (-3413 . 184270)
+ (-3414 . 184169) (-3415 . 184113) (-3416 . 183948) (-3417 . 183830)
+ (-3418 . 183735) (-3419 . 183640) (-3420 . 183533) (-3421 . 183327)
+ (-3422 . 183225) (-3423 . 183148) (-3424 . 182921) (-3425 . 182435)
+ (-3426 . 172905) (-3427 . 172852) (-3428 . 172550) (-3429 . 172439)
+ (-3430 . 172380) (-3431 . 171095) (-3432 . 171037) (-3433 . 170952)
+ (-3434 . 170774) (-3435 . 170463) (-3436 . 170364) (-3437 . 170259)
+ (-3438 . 170207) (-3439 . 169954) (-3440 . 169837) (-3441 . 169490)
+ (-3442 . 169335) (-3443 . 169238) (-3444 . 169156) (-3445 . 168596)
+ (-3446 . 168343) (-3447 . 168247) (-3448 . 168191) (-3449 . 168089)
+ (-3450 . 166819) (-3451 . 166752) (-3452 . 166658) (-3453 . 166606)
+ (-3454 . 164752) (-3455 . 164629) (-3456 . 164448) (-3457 . 164375)
+ (-3458 . 164045) (-3459 . 163993) (-3460 . 163941) (-3461 . 163644)
+ (-3462 . 163352) (-3463 . 163296) (-3464 . 163210) (-3465 . 163131)
+ (-3466 . 162759) (-3467 . 162609) (-3468 . 162476) (-3469 . 162380)
+ (-3470 . 162228) (-3471 . 162162) (-3472 . 162089) (-3473 . 162061)
+ (-3474 . 161843) (-3475 . 161709) (-3476 . 161625) (-3477 . 161447)
+ (-3478 . 161321) (-3479 . 161180) (-3480 . 160864) (-3481 . 160827)
+ (-3482 . 160508) (-3483 . 160302) (-3484 . 160086) (-3485 . 159543)
+ (-3486 . 159097) (-3487 . 158995) (-3488 . 158745) (-3489 . 158665)
+ (-3490 . 158597) (-3491 . 158500) (-3492 . 158415) (-3493 . 158312)
+ (-3494 . 158205) (-3495 . 157988) (-3496 . 156419) (-3497 . 156336)
+ (-3498 . 156244) (-3499 . 155134) (-3500 . 154989) (-3501 . 154877)
+ (-3502 . 154822) (-3503 . 154794) (-3504 . 154671) (-3505 . 154263)
+ (-3506 . 154171) (-3507 . 154097) (-3508 . 153994) (-3509 . 153769)
+ (-3510 . 153497) (-3511 . 153351) (-3512 . 153302) (-3513 . 152862)
+ (-3514 . 152649) (-3515 . 152522) (-3516 . 152385) (-3517 . 152299)
+ (-3518 . 150835) (-3519 . 150781) (-3520 . 150728) (-3521 . 150592)
+ (-3522 . 150539) (-3523 . 150324) (-3524 . 150160) (-3525 . 149831)
+ (-3526 . 149779) (-3527 . 149447) (-3528 . 149325) (-3529 . 149172)
+ (-3530 . 149029) (-3531 . 148951) (-3532 . 148827) (-3533 . 148704)
+ (-3534 . 148603) (-3535 . 148484) (-3536 . 148192) (-3537 . 147984)
+ (-3538 . 147828) (-3539 . 147796) (-3540 . 147046) (-3541 . 146876)
+ (-3542 . 146747) (-3543 . 146603) (-3544 . 146551) (-3545 . 146408)
+ (-3546 . 146352) (-3547 . 146241) (-3548 . 146063) (-3549 . 145681)
+ (-3550 . 145552) (-3551 . 145484) (-3552 . 145432) (-3553 . 145358)
+ (-3554 . 145253) (-3555 . 145173) (-3556 . 145107) (-3557 . 145030)
+ (-3558 . 144975) (-3559 . 144867) (-3560 . 144537) (-3561 . 144450)
+ (-3562 . 144355) (-3563 . 144166) (-3564 . 144097) (-3565 . 144012)
+ (-3566 . 143841) (-3567 . 143717) (-3568 . 143577) (-3569 . 143281)
+ (-3570 . 143229) (-3571 . 143135) (-3572 . 142922) (-3573 . 142778)
+ (-3574 . 142639) (-3575 . 142360) (-3576 . 142308) (-3577 . 142061)
+ (-3578 . 141988) (-3579 . 141629) (-3580 . 141562) (-3581 . 141432)
+ (-3582 . 141111) (-3583 . 140993) (-3584 . 140923) (-3585 . 140805)
+ (-3586 . 140706) (-3587 . 140456) (-3588 . 140353) (-3589 . 140204)
+ (-3590 . 140152) (-3591 . 140009) (-3592 . 139680) (-3593 . 139371)
+ (-3594 . 139316) (-3595 . 139198) (-3596 . 138678) (-3597 . 138459)
+ (-3598 . 138261) (-3599 . 138146) (-3600 . 138053) (-3601 . 137750)
+ (-3602 . 137441) (-3603 . 137346) (-3604 . 137248) (-3605 . 137139)
+ (-3606 . 137013) (-3607 . 136886) (-3608 . 136833) (-3609 . 136716)
+ (-3610 . 136679) (-3611 . 136611) (-3612 . 136497) (-3613 . 136309)
+ (-3614 . 135405) (-3615 . 135354) (-3616 . 135280) (-3617 . 135231)
+ (-3618 . 135165) (-3619 . 134797) (-3620 . 134571) (-3621 . 134515)
+ (-3622 . 134174) (-3623 . 134146) (-3624 . 134069) (-3625 . 134014)
+ (-3626 . 133873) (-3627 . 133326) (-3628 . 133243) (-3629 . 133005)
+ (-3630 . 132911) (-3631 . 132577) (-3632 . 132463) (-3633 . 132295)
+ (-3634 . 132229) (-3635 . 132176) (-3636 . 131973) (-3637 . 131852)
+ (-3638 . 131712) (-3639 . 131556) (-3640 . 131487) (-3641 . 131368)
+ (-3642 . 131237) (-3643 . 131135) (-3644 . 131069) (-3645 . 131012)
+ (-3646 . 130903) (-3647 . 130786) (-3648 . 130662) (-3649 . 130553)
+ (-3650 . 130497) (-3651 . 130352) (-3652 . 130243) (-3653 . 129959)
+ (-3654 . 129928) (-3655 . 129845) (-3656 . 129751) (-3657 . 129652)
+ (-3658 . 129530) (-3659 . 129460) (-3660 . 129300) (-3661 . 129164)
+ (-3662 . 129049) (-3663 . 128972) (-3664 . 128785) (-3665 . 128663)
+ (-3666 . 128412) (-3667 . 128266) (-3668 . 128211) (-3669 . 128100)
+ (-3670 . 128020) (-3671 . 127868) (-3672 . 127744) (-3673 . 127713)
+ (-3674 . 127658) (-3675 . 127530) (-3676 . 127311) (-3677 . 126119)
+ (-3678 . 125948) (-3679 . 125734) (-3680 . 125627) (-3681 . 125471)
+ (-3682 . 125412) (-3683 . 125301) (-3684 . 125136) (-3685 . 124802)
+ (-3686 . 124703) (-3687 . 124456) (-3688 . 124287) (-3689 . 124111)
+ (-3690 . 122930) (-3691 . 122858) (-3692 . 122645) (-3693 . 122547)
+ (-3694 . 122404) (-3695 . 122205) (-3696 . 122049) (-3697 . 121923)
+ (-3698 . 121808) (-3699 . 120384) (-3700 . 120247) (-3701 . 119653)
+ (-3702 . 119476) (-3703 . 119324) (-3704 . 119238) (-3705 . 119097)
+ (-3706 . 118916) (-3707 . 118831) (-3708 . 118659) (-3709 . 118608)
+ (-3710 . 118450) (-3711 . 118365) (-3712 . 115584) (-3713 . 115532)
+ (-3714 . 113285) (-3715 . 113218) (-3716 . 113162) (-3717 . 113078)
+ (-3718 . 112945) (-3719 . 111759) (-12 . 111587) (-3721 . 111389)
+ (-3722 . 111165) (-3723 . 110989) (-3724 . 110923) (-3725 . 110764)
+ (-3726 . 110696) (-3727 . 110515) (-3728 . 110128) (-3729 . 110044)
+ (-3730 . 109992) (-3731 . 109812) (-3732 . 109784) (-3733 . 109644)
+ (-3734 . 109548) (-3735 . 109411) (-3736 . 109358) (-3737 . 109223)
+ (-3738 . 108926) (-3739 . 108874) (-3740 . 108719) (-3741 . 108621)
+ (-3742 . 108196) (-3743 . 107920) (-3744 . 107846) (-3745 . 107330)
+ (-3746 . 107175) (-3747 . 106986) (-3748 . 106937) (-3749 . 105491)
+ (-3750 . 104999) (-3751 . 104857) (-3752 . 104786) (-3753 . 104439)
+ (-3754 . 104316) (-3755 . 104145) (-3756 . 103945) (-3757 . 103586)
+ (-3758 . 103505) (-3759 . 103411) (-3760 . 103189) (-3761 . 103136)
+ (-3762 . 103066) (-3763 . 102995) (-3764 . 102856) (-3765 . 102720)
+ (-3766 . 102123) (-3767 . 102095) (-3768 . 102039) (-3769 . 101946)
+ (-3770 . 101887) (-3771 . 101831) (-3772 . 101803) (-3773 . 101324)
+ (-3774 . 100935) (-3775 . 100559) (-3776 . 99959) (-3777 . 99906)
+ (-3778 . 99799) (-3779 . 99494) (-3780 . 99371) (-3781 . 99130)
+ (-3782 . 99015) (-3783 . 98920) (-3784 . 98041) (-3785 . 97462)
+ (-3786 . 97366) (-3787 . 97205) (-3788 . 97131) (-3789 . 97034)
+ (-3790 . 96902) (-3791 . 96829) (-3792 . 96773) (-3793 . 96696)
+ (-3794 . 96578) (-3795 . 96367) (-3796 . 96259) (-3797 . 96207)
+ (-3798 . 96136) (-3799 . 95557) (-3800 . 95439) (-3801 . 95373)
+ (-3802 . 95250) (-3803 . 95184) (-3804 . 95089) (-3805 . 95005)
+ (-3806 . 94847) (-3807 . 94548) (-3808 . 94430) (-3809 . 94357)
+ (-3810 . 94275) (-3811 . 94166) (-3812 . 94036) (-3813 . 93917)
+ (-3814 . 93701) (-3815 . 93594) (-3816 . 93497) (-3817 . 93349)
+ (-3818 . 93217) (-3819 . 92153) (-3820 . 91947) (-3821 . 91887)
+ (-3822 . 91793) (-3823 . 91738) (-3824 . 91543) (-3825 . 91509)
+ (-3826 . 91327) (-3827 . 91137) (-3828 . 91024) (-3829 . 90850)
+ (-3830 . 90486) (-3831 . 90364) (-3832 . 90171) (-3833 . 90014)
+ (-3834 . 89877) (-3835 . 89672) (-3836 . 89483) (-3837 . 89264)
+ (-3838 . 89037) (* . 84514) (-3840 . 84048) (-3841 . 83637)
+ (-3842 . 83475) (-3843 . 83253) (-3844 . 83179) (-3845 . 83027)
+ (-3846 . 82436) (-3847 . 82383) (-3848 . 82298) (-3849 . 81452)
+ (-3850 . 81332) (-3851 . 81180) (-3852 . 81124) (-3853 . 80870)
+ (-3854 . 80638) (-3855 . 79773) (-3856 . 79615) (-3857 . 79530)
+ (-3858 . 79478) (-3859 . 78735) (-3860 . 78533) (-3861 . 78433)
+ (-3862 . 78402) (-3863 . 78317) (-3864 . 74707) (-3865 . 74439)
+ (-3866 . 73189) (-3867 . 72942) (-3868 . 72845) (-3869 . 72742)
+ (-3870 . 72642) (-3871 . 72608) (-3872 . 72487) (-3873 . 72400)
+ (-3874 . 72124) (-3875 . 71816) (-3876 . 71744) (-3877 . 71586)
+ (-3878 . 71261) (-3879 . 71167) (-3880 . 71058) (-3881 . 71006)
+ (-3882 . 70008) (-3883 . 69956) (-3884 . 69862) (-3885 . 69649)
+ (-3886 . 69405) (-3887 . 69229) (-3888 . 69108) (-3889 . 68941)
+ (-3890 . 68881) (-3891 . 68798) (-3892 . 68700) (-3893 . 68669)
+ (-3894 . 68587) (-3895 . 68448) (-3896 . 68078) (-3897 . 67975)
+ (-3898 . 67302) (-3899 . 67215) (-3900 . 67090) (-3901 . 66955)
+ (-3902 . 66436) (-3903 . 66325) (-3904 . 65966) (-3905 . 65616)
+ (-3906 . 65472) (-3907 . 64803) (-3908 . 63919) (-3909 . 63466)
+ (-3910 . 63388) (-3911 . 63330) (-3912 . 63157) (-3913 . 62975)
+ (-3914 . 62799) (-3915 . 62747) (-3916 . 62244) (-3917 . 62104)
+ (-3918 . 61960) (-3919 . 61635) (-3920 . 61505) (-3921 . 61287)
+ (-3922 . 61031) (-3923 . 60794) (-3924 . 60220) (-3925 . 60153)
+ (-3926 . 60084) (-3927 . 59999) (-3928 . 59739) (-3929 . 59676)
+ (-3930 . 59573) (-3931 . 59238) (-3932 . 59074) (-3933 . 58726)
+ (-3934 . 58625) (-3935 . 58429) (-3936 . 58356) (-3937 . 58251)
+ (-3938 . 58180) (-3939 . 58127) (-3940 . 57854) (-3941 . 57567)
+ (-3942 . 57496) (-3943 . 57390) (-3944 . 56615) (-3945 . 56448)
+ (-3946 . 56254) (-3947 . 56121) (-3948 . 56048) (-3949 . 55961)
+ (-3950 . 55714) (-3951 . 55641) (-3952 . 55559) (-3953 . 55450)
+ (-3954 . 55203) (-3955 . 55066) (-3956 . 55013) (-3957 . 54915)
+ (-3958 . 54860) (-3959 . 54702) (-3960 . 54604) (-3961 . 54397)
+ (-3962 . 54341) (-3963 . 53815) (-3964 . 53600) (-3965 . 53381)
+ (-3966 . 53328) (-3967 . 53262) (-3968 . 53138) (-3969 . 52744)
+ (-3970 . 52528) (-3971 . 52225) (-3972 . 52062) (-3973 . 51981)
+ (-3974 . 51711) (-3975 . 51599) (-3976 . 51571) (-3977 . 51466)
+ (-3978 . 51389) (-3979 . 51267) (-3980 . 51166) (-3981 . 51062)
+ (-3982 . 50903) (-3983 . 50696) (-3984 . 50430) (-3985 . 50125)
+ (-3986 . 49704) (-3987 . 49599) (-3988 . 49530) (-3989 . 49014)
+ (-3990 . 48889) (-3991 . 48861) (-3992 . 48752) (-3993 . 48687)
+ (-3994 . 48586) (-3995 . 48531) (-3996 . 48372) (-3997 . 48314)
+ (-3998 . 48119) (-3999 . 48022) (-4000 . 47901) (-4001 . 47848)
+ (-4002 . 47698) (-4003 . 47570) (-4004 . 47533) (-4005 . 47412)
+ (-4006 . 47327) (-4007 . 47256) (-4008 . 47086) (-4009 . 47014)
+ (-4010 . 46943) (-4011 . 44691) (-4012 . 44528) (-4013 . 44451)
+ (-4014 . 44377) (-4015 . 44280) (-4016 . 44166) (-4017 . 44020)
+ (-4018 . 43925) (-4019 . 43612) (-4020 . 43516) (-4021 . 43400)
+ (-4022 . 43348) (-4023 . 43295) (-4024 . 43241) (-4025 . 43122)
+ (-4026 . 42900) (-4027 . 42607) (-4028 . 42534) (-4029 . 42324)
+ (-4030 . 42272) (-4031 . 42201) (-4032 . 41871) (-4033 . 41705)
+ (-4034 . 41547) (-4035 . 41474) (-4036 . 41108) (-4037 . 41027)
+ (-4038 . 40870) (-4039 . 40815) (-4040 . 40536) (-4041 . 40149)
+ (-4042 . 40051) (-4043 . 39968) (-4044 . 39835) (-4045 . 39758)
+ (-4046 . 39705) (-4047 . 39622) (-4048 . 39332) (-4049 . 37713)
+ (-4050 . 37661) (-4051 . 37519) (-4052 . 37206) (-4053 . 37022)
+ (-4054 . 36205) (-4055 . 36128) (-4056 . 36016) (-4057 . 35958)
+ (-4058 . 35843) (-4059 . 35756) (-4060 . 35615) (-4061 . 35376)
+ (-4062 . 35275) (-4063 . 35127) (-4064 . 34676) (-4065 . 34536)
+ (-4066 . 34370) (-4067 . 34296) (-4068 . 33772) (-4069 . 33573)
+ (-4070 . 33379) (-4071 . 33150) (-4072 . 32839) (-4073 . 31978)
+ (-4074 . 31820) (-4075 . 31704) (-4076 . 31500) (-4077 . 31062)
+ (-4078 . 30328) (-4079 . 30034) (-4080 . 29908) (-4081 . 29764)
+ (-4082 . 29618) (-4083 . 29538) (-4084 . 29145) (-4085 . 29052)
+ (-4086 . 28982) (-4087 . 28926) (-4088 . 28810) (-4089 . 28698)
+ (-4090 . 27331) (-4091 . 27244) (-4092 . 27170) (-4093 . 26971)
+ (-4094 . 26337) (-4095 . 23922) (-4096 . 23808) (-4097 . 23728)
+ (-4098 . 23619) (-4099 . 23505) (-4100 . 23425) (-4101 . 23248)
+ (-4102 . 23139) (-4103 . 23032) (-4104 . 22547) (-4105 . 22254)
+ (-4106 . 21439) (-4107 . 21257) (-4108 . 21191) (-4109 . 21123)
+ (-4110 . 21074) (-4111 . 20905) (-4112 . 20787) (-4113 . 20759)
+ (-4114 . 20656) (-4115 . 20504) (-4116 . 20417) (-4117 . 20361)
+ (-4118 . 19603) (-4119 . 19523) (-4120 . 19353) (-4121 . 19301)
+ (-4122 . 19230) (-4123 . 19196) (-4124 . 18905) (-4125 . 16953)
+ (-4126 . 16681) (-4127 . 16628) (-4128 . 16600) (-4129 . 16520)
+ (-4130 . 16397) (-4131 . 16317) (-4132 . 16073) (-4133 . 16024)
+ (-4134 . 15944) (-4135 . 15811) (-4136 . 15724) (-4137 . 15543)
+ (-4138 . 15469) (-4139 . 15390) (-4140 . 15234) (-4141 . 15165)
+ (-4142 . 14994) (-4143 . 14911) (-4144 . 14763) (-4145 . 14539)
+ (-4146 . 13884) (-4147 . 13807) (-4148 . 12934) (-4149 . 12125)
+ (-4150 . 12091) (-4151 . 11893) (-4152 . 11819) (-4153 . 11767)
+ (-4154 . 11642) (-4155 . 11217) (-4156 . 11086) (-4157 . 10780)
+ (-4158 . 10694) (-4159 . 10621) (-4160 . 10393) (-4161 . 10334)
+ (-4162 . 10009) (-4163 . 9904) (-4164 . 9777) (-4165 . 9153)
+ (-4166 . 8921) (-4167 . 8548) (-4168 . 8309) (-4169 . 8064)
+ (-4170 . 7812) (-4171 . 7565) (-4172 . 7421) (-4173 . 7306)
+ (-4174 . 6966) (-4175 . 6862) (-4176 . 6782) (-4177 . 6267)
+ (-4178 . 6133) (-4179 . 6036) (-4180 . 5932) (-4181 . 5860)
+ (-4182 . 5483) (-4183 . 5354) (-4184 . 5299) (-4185 . 5240)
+ (-4186 . 5173) (-4187 . 4982) (-4188 . 4918) (-4189 . 4773)
+ (-4190 . 4614) (-4191 . 4537) (-4192 . 4437) (-4193 . 3832)
+ (-4194 . 3773) (-4195 . 3690) (-4196 . 3662) (-4197 . 3584)
+ (-4198 . 3499) (-4199 . 3448) (-4200 . 3363) (-4201 . 3205)
+ (-4202 . 2889) (-4203 . 2625) (-4204 . 2372) (-4205 . 2129)
+ (-4206 . 2020) (-4207 . 1946) (-4208 . 1801) (-4209 . 1620)
+ (-4210 . 1458) (-4211 . 1359) (-4212 . 1181) (-4213 . 1107)
+ (-4214 . 1001) (-4215 . 625) (-4216 . 192) (-4217 . 107) (-4218 . 30)) \ No newline at end of file